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Assessing Performance and Clinical Usefulness in Prediction Models
With Survival Outcomes: Practical Guidance for Cox Proportional
Hazards Models
David J. McLernon, PhD; Daniele Giardiello, MSc; Ben Van Calster, PhD; Laure Wynants, PhD; Nan van Geloven, PhD;
Maarten van Smeden, PhD; Terry Therneau, PhD; and Ewout W. Steyerberg, PhD; for topic groups 6 and 8 of the
STRATOS Initiative*

Risk prediction models need thorough validation to assess
their performance. Validation of models for survival out-
comes poses challenges due to the censoring of observa-
tions and the varying time horizon at which predictions
can be made. This article describes measures to evaluate
predictions and the potential improvement in decision
making from survival models based on Cox proportional
hazards regression.
As a motivating case study, the authors consider the prediction
of the composite outcome of recurrence or death (the “event”)
in patients with breast cancer after surgery. They developed a
simple Cox regression model with 3 predictors, as in the
Nottingham Prognostic Index, in 2982 women (1275 events
over 5 years of follow-up) and externally validated this model in
686 women (285 events over 5 years). Improvement in perform-
ance was assessed after the addition of progesterone receptor
as a prognostic biomarker.

The model predictions can be evaluated across the full
range of observed follow-up times or for the event occurring
by the end of a fixed time horizon of interest. The authors
first discuss recommended statistical measures that evaluate
model performance in terms of discrimination, calibration, or
overall performance. Further, they evaluate the potential clin-
ical utility of the model to support clinical decision making
according to a net benefit measure. They provide SAS and R
code to illustrate internal and external validation.
The authors recommend the proposed set of performance
measures for transparent reporting of the validity of predic-
tions from survival models.

Ann Intern Med. 2023;176:105-114. doi:10.7326/M22-0844 Annals.org
For author, article, and disclosure information, see end of text.
This article was published at Annals.org on 27 December 2022.
* For a list of members of topic groups 6 and 8 of the STRATOS Initiative,
see the Appendix (available at Annals.org).

P rediction models for survival outcomes are important
for clinicians in estimating a patient's risk (that is,

probability) for a future outcome. The term “survival”
outcome includes any prognostic or time-to-event out-
come, such as death, progression, or recurrence of dis-
ease. Risk estimates (for the definition of this and other
terms used in the article, see theGlossary) for future events
can support shared decision making for interventions in
high-risk patients, help manage patient expectations, or
stratify patients by disease severity for inclusion in trials
(1). For example, a predictionmodel for persistent pain af-
ter breast cancer surgery might identify high-risk patients
for intervention studies (2).

Once a prediction model has been developed, it is
common to first assess its performance for the underlying
population. Such internal validation can be done using the
data set on which the model was developed—for example,
by cross-validation or bootstrapping techniques (3). External
validation refers to performance in a plausibly related pop-
ulation, which requires an independent data set that may
differ in setting, time, or place (4, 5).

Ample guidance exists for assessing the performance
of prediction models for binary outcomes, where logistic
regression is commonly used for model development
(6–8). Validation of a survival model is more challenging
because of the censoring of observation times when a
patient's outcome is undetermined during the study pe-
riod. For instance, if 5-year survival is assessed, partici-
pants may have less than 5 years of follow-up without
experiencing the event of interest. Moreover, predictions

can be evaluated over the entire range of observed fol-
low-up times or for the event occurring by the end of a
fixed time horizon.

This article aims to provide guidance on assessing
discrimination, calibration, and clinical usefulness for sur-
vival models, building on the methodological literature
for survival model evaluation (9–11). The article origi-
nates from the international STRengthening Analytical
Thinking for Observational Studies (STRATOS) initiative
(http://stratos-initiative.org), which aims to provide ac-
cessible and accurate guidance for the design and analy-
sis of observational studies (12).

For illustration, we consider a Cox model to predict
recurrence-free survival at 5 years in patients with breast
cancer. We also describe how to assess the improvement
in predictive ability and decision making when adding a
prognostic biomarker (progesterone receptor).

METHODS AND CASE STUDY

Overview
There are 4 measures to consider when validating a

model: calibration (how well predicted risks agree with
observed outcome frequencies), discrimination (how well
the model separates predictions between those with and

See also:

Web-Only
Supplement

© 2022 American College of Physicians 105

Annals of Internal Medicine RESEARCH AND REPORTING METHODS

Downloaded from https://annals.org by Ku Leuven- Univ Library on 04/17/2024.

http://www.annals.org
http://www.annals.org
http://stratos-initiative.org


without the outcome), overall performance (encompass-
ing both discrimination and calibration), and clinical use-
fulness. Before we describe these measures in further
detail, we discuss 3 key issues for the evaluation of predic-
tions from survival models. We then describe our breast
cancer case study, present how to predict survival out-
comes with the Cox proportional hazards model, perform
validation of predictions, and assess the potential clinical
usefulness of a prediction model.

Key IssuesWhen Validating a SurvivalModel
Three major issues differentiate the validation of sur-

vival models from that of models for binary outcomes.

First, we need to decide on a time horizon for validation
of the prediction model in practical use. The follow-up
time in the external data must be sufficient to enable
assessment over that disease-specific time horizon (13).

A second issue is whether to consider prediction
only at the fixed time point of interest (end of the time
horizon) or over the entire range of follow-up within the
time horizon. In our case study, we focus on 5 years from
enrollment as the upper limit. The fixed time point
approach evaluates the ability of the model to predict
events happening before or after the end of the time ho-
rizon. In many clinical settings, it matters not only that
patients have died by year 5 but also whether they sur-
vive, for example, 1 or 4 years. We provide measures of
performance for both settings.

Third, the Cox proportional hazards model is a stand-
ard approach for analyzing survival data (Supplement
Section 1, available at Annals.org) (14). Predicting from a
Cox model requires a baseline survival, S0(t), and an indi-
vidual's departure from baseline according to their pre-
dictor values, Xb (equation 3 in Supplement Section 1).
The baseline survival is the distribution of the predicted
survival for the patient whose predictor values are either
the average or 0 (or the reference group for categorical
predictors) across the complete follow-up time under
study. Statistical software may define the baseline survival
in different ways, so it is important to check this, and in our
case study we use 0 values (see Supplement Section 1 for
details). For example, if we wish to predict death 3 years
after a diagnosis of pancreatic cancer and our predictors
are sex (where male= 1 and female= 0) and tumor grade
(ordered categorical variable with 4 groups and reference =
grade 1), the baseline predicted survival S0(t) would be
represented for a woman with lowest tumor grade. This
S0(t) curve is analogous to the intercept in a linear or logis-
tic regression model. The departure from baseline risk for
the other patients (that is, not a woman with a grade 1 tu-
mor) involves summing the product of the b estimates
with their respective predictor values X to obtain Xb , or
the “prognostic index” (PI), and then applying this PI and
S0(t) in equation 3 (Supplement Section 1). Availability of

Table 1. Characteristics of the Breast Cancer Cohorts Used
for Model Development and External Validation*

Characteristic Development Cohort
(Rotterdam; n = 2982;
1275 Events <5 y)

Validation Cohort
(Germany; n = 686;
285 Events <5 y)

Tumor size
≤20 mm 1387 (46.5) 180 (26.2)
21–50 mm 1291 (43.3) 453 (66.0)
>50 mm 304 (10.2) 53 (7.7)

Median nodes (IQR), n 1 (0–4) 3 (1–7)
Tumor grade
1 or 2 794 (26.6) 525 (76.5)
3 2188 (73.4) 161 (23.5)

Median age (IQR), y 54 (45–65) 53 (46–61)
Median progesterone

receptor level (IQR),
fmol/mg

41 (4–198) 33 (7–132)

* Values are numbers (percentages) unless otherwise indicated. Data
are from references 15 and 17.

Glossary

Patients: Could also be referred to as participants or
individuals. In our breast cancer case study, we use
the term “patients.”

Event: Could also be referred to as outcome or failure.
In our case study, the event is breast cancer recur-
rence or death.

Censoring: Here we refer to right censoring only. This
may occur when a patient has reached the end of fol-
low-up (or the prediction time horizon) and is alive
(known as administrative censoring) or when a
patient’s event status is unknown before the end of
the prediction time horizon (e.g., due to loss to follow-
up at an earlier time point).

Risk estimates (or estimated risks): The probability of the
event of interest occurring by a particular time point
or several time points of interest as estimated from the
developed model. It is important to evaluate the per-
formance of the risk estimates from the model in new
patients.

Apparent validation: Model performance assessed in
the same data as used to develop the model. In our
case study, the Rotterdam breast cancer data set was
used for model development. Model performance
from apparent validation is usually optimistic and
therefore a biased estimate of the predictive perform-
ance in new individuals, even if those individuals are
from the same population.

Internal validation: Model performance assessed in
patients from the same underlying population as used
for model development. It corrects for the optimism at
apparent validation.

Optimism: The difference between apparent perform-
ance and performance in the underlying population.

External validation: Model performance assessed in
patients who differ from the patients used for model
development. Patients may come from a different ge-
ographic location or time period or may be at a more
(or less) advanced stage of disease. External validation
is an essential step to assess general applicability of a
prediction model.
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the b estimates and baseline risk from the developed Cox
model is necessary for full validation of the model in an
external data set. Many published reports do not provide
the baseline risk function (11). One reason is that the base-
line risk is only an optional output for software packages.
Full validation means that risk estimates come from the
previously developed model and not from refitting the
model in any way to the external data set.

Description of the Case Study
For model development, we analyzed data from

patients who had primary surgery for breast cancer
between 1978 and 1993 in Rotterdam, the Netherlands
(15, 16). Patients were followed until 2007. After exclu-
sions, 2982 patients were included (Table 1). The out-
come was recurrence-free survival, defined as time from
primary surgery to recurrence or death. Over the maxi-
mum follow-up time of 19.3 years, 1713 events occurred,
and the estimated median potential follow-up time, calcu-
lated using the reverse Kaplan–Meier method, was 9.3
years (18). Of 2982 patients, 1275 had a recurrence or
died within 5 years and 126 were censored. An external
validation cohort consisted of 686 patients with primary
node–positive breast cancer from the German Breast
Cancer Study Group (17), of whom 285 had a recurrence
or died within 5 years of follow-up and 280 were censored
before 5 years. A prediction horizon of 5 years was chosen
because it is a clinically important milestone for recurrence-
free survival. The median survival was approximately 5
years (Rotterdam cohort, 6.7 years; German cohort, 4.9
years) (Supplement Figure 1, A andD, available at Annals.
org). The external German data set contained the same
predictors as the development data set, which is essential
for validation.

Model Development in the Case Study
For demonstration purposes, we used Cox regression

to estimate recurrence-free survival using the following 3
predictors: number of lymph nodes, tumor size (≤20 mm,
21 to 50 mm, or >50 mm), and pathologic grade (1, 2, or
3) (Table 2), similar to the Nottingham Prognostic Index
(19). Although it is generally poor practice to categorize
continuous variables, (20), we categorized tumor size
because it was not available in continuous form in the
Rotterdam data set. We fitted number of nodes as a re-
stricted cubic spline with 3 knots to address a potential
nonlinear relation with survival (Supplement Figure 1, B).
Because we were interested in 5-year risk, we applied
administrative censoring at 5 years—that is, we set the
maximum follow-up time to 5 years. The Cox model
assumes that hazards for different values of a predictor
are proportional during follow-up. Although some evi-
dence of nonproportional hazards was found (P= 0.001,
Grambsch and Therneau global test), we disregarded
the weak proportionality as noted on graphical inspec-
tion of the time-varying coefficient for each predictor
against time (Supplement Figure 1, C) (21). Further
details are in Supplement Section 1 and specialized
texts (22, 23). The 5-year risk for the event can be calcu-
lated with the information from Table 2 as:

1� S(5; PI) = 1� S(5)exp(PI) = 1� 0.804exp(PI)

The baseline 5-year survival (0.804) applies to the ref-
erence categories for the 3 predictors in the model,
where PI= 0 and exp(PI) = 1. So, a woman with a tumor
size of 20 mm or smaller, no involved nodes, and grade
less than 3 has an estimated risk of (1 – 0.804)�100%=
19.6%of recurrence or breast cancermortality within 5 years.

Measures of Performance
Researchers developing or validating a prognostic

model should follow the TRIPOD (Transparent Reporting of
a multivariable prediction model for Individual Prognosis Or
Diagnosis) checklist to ensure transparent reporting (8, 24).
In our case study, the model was developed using the
Rotterdam data set. Model validation (Supplement Section
2, available at Annals.org) assessed in the same data set
(“apparent validation”) is usually optimistic. Estimates may
not reflect predictive performance in new individuals, even

Table 2. Cox Regression Models Predicting Event-Free
Survival in Rotterdam Breast Cancer Development Data Set
(n = 2982), Without and With PGR

Characteristic Hazard Ratio (95% CI)

Without PGR* With PGR†

Tumor size
≤20 mm 1 1
21–50 mm 1.41 (1.24 to 1.60) 1.38 (1.21 to 1.57)
>50 mm 1.77 (1.48 to 2.13) 1.74 (1.45 to 2.09)

Number of nodes‡ 0.42‡ (0.36 to 0.48) 0.41‡ (0.36 to 0.48)
Tumor grade
1 or 2 1 1
3 1.44 (1.25 to 1.65) 1.36 (1.18 to 1.56)

PGR level‡ – 1.46‡ (1.27 to 1.68)

PGR = progesterone receptor.
* For the model without PGR, the formula for the prognostic index (PI) is:
PI ¼ 0:342� 1ðif size is 21� 50mmÞ þ 0:574� 1ðif size is > 50Þ

þ0:304� nodes� 0:811� nodes1 þ 0:362� 1ðif grade ¼ 3Þ

where
nodes1 ¼ max nodes

4:33;0
� �3

þ max ðnodes � 9Þ
4:33 ; 0ð Þ3 � 9 � max ðnodes � 1Þ

4:33 ; 0ð Þ3
� �

8 ,
a term from the restricted cubic spline for number of nodes.
The survival at 5 y can be calculated as:
S(5) = 0.804exp(PI), where 0.804 is the baseline risk estimate at 5 y.
† For the model with PGR:
PI ¼ 0:320� 1ðif size is 21� 50mmÞ þ 0:554� 1ðif size is > 50Þ

þ 0:305� nodes� 0:820� nodes1 þ 0:305� 1ðif grade ¼ 3Þ

� 0:003� PGR þ 0:013� PGR1

where
nodes1 ¼ max nodes

4:33;0
� �3

þ max ðnodes � 9Þ
4:33 ; 0ð Þ3 � 9 � max ðnodes � 1Þ

4:33 ; 0ð Þ3
� �

8

and
PGR1 ¼ max PGR

61:81;0
� �3 þ 41 � max ðPGR � 486Þ

61:81 ; 0ð Þ3 � 486 � max ðPGR � 41Þ
61:81 ; 0ð Þ3

� �
445

The survival at 5 y can be calculated as:
S(5) = 0.761exp(PI), where 0.761 is the baseline risk estimate at 5 y.
‡ Because number of nodes and PGR level were fitted as restricted
cubic spline functions, they are presented as interquartile HRs to aid inter-
pretation—i.e., the hazard of mortality for the 25th percentile value (i.e.,
nodes = 0 and PGR level = 4 fmol/mg vs. the hazard of mortality for the
75th percentile value (i.e., nodes = 4 and PGR level = 198 fmol/mg).
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if those individuals are from the same underlying popula-
tion (22, 23). Internal validation is required and commonly
involves bootstrapping. This involves randomly sampling
patients from our development data with replacement
(500 times, for example). The model is then developed on
each of the samples. The average difference between the
performance in bootstrap samples and that in the original
sample represents the optimism in performance of the
original model (Supplement Section 2.2.2) (22, 23). Because
the ultimate aim of a prediction model is to apply it to
new patients, potentially from slightly different settings
(4), external validation is important.

We envision the following 2 possible scenarios for
investigators wishing to validate a survival risk prediction
model.

The first scenario is investigators developing a new
prediction model. They should at least assess perform-
ance using internal validation. Common techniques are

cross-validation and bootstrapping (22, 23). If we have
access to data from several hospitals, cross-validation by
hospital can be done with each hospital left out once
(“internal-external validation”) (3). This procedure pro-
vides estimates of external validity, specifically geographic
transportability (5).

The second scenario is investigators who want to
externally validate an existing prediction model. These
investigators need the full specification of the original
model. A fixed time point assessment of calibration is
possible if the baseline risk at the time point of interest is
reported. Performance across the full time range can be
evaluated if the full baseline risk function is available, or a
survival curve of predicted risk across all time points (11).

We provide statistical software code for R and SAS to
calculate performance measures under these scenarios
(Supplement Section 3, available at Annals.org). In the

Table 3. Performance of Breast Cancer Model With and Without PGR at 5 Years in Development (n = 2982) and Validation
(n = 686) Data

Performance Measure Apparent Validation Internal Validation:
Optimism Corrected

Performance

External Validation

Without PGR With PGR Without PGR With PGR Without PGR With PGR

Calibration
Time range

Mean calibration
O/E 1 1 0.998 0.997 O = 285; E=280.4

1.02 (0.91 to 1.14)
O = 285; E = 288.8

0.99 (0.88 to 1.11)
Weak calibration
Slope 1 1 0.989 0.989 1.03 (0.80 to 1.27) 1.11 (0.89 to 1.33)

Fixed time
Mean calibration

([1 – KM] / AvgP)
1 1 0.996 0.996 1 � KM = 0.51;

AvgP = 0.50
1.02 (0.91 to 1.14)*

1 � KM = 0.51;
AvgP = 0.51
0.99 (0.89 to 1.12)*

Weak calibration
Slope 1 1 0.989 0.986 1.06 (0.82 to 1.30) 1.14 (0.92 to 1.37)
ICI NA NA NA NA 0.030 (0.015 to 0.064)† 0.025 (0.011 to 0.061)†
E50 NA NA NA NA 0.026 (0.009 to 0.066)† 0.023 (0.007 to 0.063)†
E90 NA NA NA NA 0.075 (0.030 to 0.140)† 0.053 (0.020 to 0.113)†

Discrimination
Time range

Harrell c-statistic 0.682 (0.667 to 0.697) 0.689 (0.674 to 0.704) 0.681 0.687 0.652 (0.620 to 0.685) 0.675 (0.643 to 0.706)
Uno c-statistic 0.682 (0.667 to 0.697) 0.688 (0.673 to 0.703) 0.681 0.686 0.634 (0.595 to 0.676) 0.657 (0.617 to 0.697)

Fixed time
AUROC (IPCW) 0.721 (0.702 to 0.741) 0.727 (0.708 to 0.747) 0.720 0.725 0.678 (0.619 to 0.737) 0.704 (0.648 to 0.761)

Overall
Brier 0.207 (0.201 to 0.213)† 0.206 (0.199 to 0.212)† 0.208 0.207 0.225 (0.210 to 0.242)† 0.217 (0.204 to 0.235)†
Scaled Brier, % 15.5 (12.9 to 18.2)† 16.1 (13.4 to 18.8)† 15.2 15.7 10.1 (2.9 to 16.0)† 13.1 (5.9 to 18.5)†

Clinical usefulness
Difference in model net

benefit and treat all net
benefit at 23% threshold

0.267� 0.262 = 0.005 0.273� 0.262 = 0.010 NA NA 0.362 � 0.362 = 0 0.359� 0.362 =�0.002

AUROC = area under the receiver-operating characteristic curve; AvgP = average predicted risk at 5 y; E = number of expected events by 5 y; E50 =
median of absolute difference between observed and predicted probabilities; E90 = 90th percentile of absolute difference between observed and
predicted probabilities; ICI = integrated calibration index; IPCW = inverse probability of censoring weighting; KM = Kaplan–Meier estimate of event
rate at 5 y; NA = not applicable; O = number of observed events by 5 y; PGR = progesterone.
* The 95% CI for the fixed time mean calibration was calculated as follows: (KM / AvgP) * exp[þ /�1.96*sqrt(1/285)].
† The 95% CIs for the overall performance and calibration measures were calculated using nonparametric bootstrap on 500 samples with replacement
(generated using PROC SURVEYSELECT in SAS and rsample::bootstraps() and base::sample() in R; see R markdown output in the Supplement [available
at Annals.org] and all code and output in GitHub). The 2.5th and 97.5th percentile values were taken as the lower and upper limits.
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following sections, we describe calibration and discrimina-
tion approaches; technical details are given in Supplement
Sections 4 and 5 (available at Annals.org). For measures of
overall performance, see Supplement Section 6 (available at
Annals.org).

CALIBRATION

How well do model predictions agree with the actual
outcome frequencies in the population under study (7, 9)?
Essential to external validation, assessment of calibra-
tion applies the Cox model derived from the develop-
ment data set to the validation data (3, 25). Patients who
are censored before our time point of interest, t, add a
complication because we do not know their actual out-
come at t. For calibration at a fixed time point, we can
impute the outcome for patients censored before time
t or apply weighting (Supplement Tables 1 and 2, avail-
able at Annals.org). Calibration over a time range evaluates
the estimated risk up to time t and requires availability of
the baseline risk at ideally all (or at least multiple) time
points until t.

Figure. Performance assessment for predicting recurrence within
5 y for patients with primary breast cancer.
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Figure–Continued.

PGR= progesterone receptor. Top. Calibration plot with fixed time
assessment (predicted risk at 5 y from original model vs. secondary
model) in external validation data (n= 686). The solid line represents the
relationship between the predicted risk from the developed model
applied to the external data set and the predicted risk (representing a
proxy to the unobserved event rate) from a secondary Cox model at 5 y.
The latter was estimated by 1) calculating the predictions from the devel-
opedmodel applied to the external data, 2) taking the log(�log) transforma-
tion of these predictions, and 3) fitting a Coxmodel to the external data with
this quantity from step 2 as a predictor (as a restricted cubic spline). The re-
stricted cubic spline terms were calculated in R using rcs() and in SAS using
the %rcspline macro (https://biostat.app.vumc.org/wiki/Main/SasMacros).
The log(�log) transformation is applied to the predictions because this
serves to make the relationship with survival outcome more linear and less-
ens the number of knots needed when using restricted cubic splines. The
dashed lines represent the 95% confidence limits of the predicted risks from
the refitted model. At the bottom of the plots is the density function denot-
ing a nonparametric estimate of the distribution of the predicted risk from
the developed model. The dotted line represents a 45� reference line.
The solid line is close to the reference line for all predicted risks, and the
95% confidence limits contain the reference line, suggesting good agree-
ment between predicted risk and debiased predicted risk. Middle.
Decision curves for predicted probabilities without (solid line) and with
(dotted-and-dashed line) PGR in the development data set (n= 2982). We
focused on a range of clinically acceptable thresholds from 14% to 23%
for the decision to have adjuvant chemotherapy. A physician or patient
who is more worried about breast cancer recurrence or death than the
burden from chemotherapy may make decisions at the lower end of the
range (around 14%). In the data set used for model development, at this
threshold, making decisions using the model with (dotted-and-dashed
line) or without (solid line) PGR included is no more beneficial than the
strategy to treat all patients (dashed line). However, from a threshold of
16% onward, the model with PGR included is more beneficial than treat-
ing all patients and the model without PGR included. We smoothed the
decision curves to reduce the visual impact of random noise. Bottom.
Decision curves in the external validation data set (n= 686). The model
without PGR is no more beneficial than the treat all strategy across all of
the clinically acceptable thresholds. A similar finding applies to the model
with PGR included.We smoothed the decision curves to reduce the visual
impact of random noise.
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In the following sections, we describe a 4-level hier-
archy of increasingly robust checks on fixed time point
calibration in line with a previously proposed framework
(7). Calibration over the full time range is discussed in
detail in Supplement Section 4.1.

Level 1:Mean Calibration
Mean calibration (or “calibration-in-the-large”) meas-

ures agreement of the predicted and observed survival
fraction in the external validation data set. It indicates sys-
tematic underprediction or overprediction. Fixed time
point mean calibration is the ratio of the observed survival
fraction and the average predicted risk. The Kaplan–Meier
estimate of experiencing the event at 5 years was 51% in
the external data set, whereas the average predicted
probability was 50% (ratio= 0.51/0.50= 1.02 [95% CI,
0.91 to 1.14]) (Table 3). If the ratio is close to 1 with a nar-
row CI, we would be satisfied with themetric (26, 27).

Level 2:Weak Calibration
Goodmean calibration does not imply that observed

outcomes and predicted risk agree across the full spec-
trum of risks. Amore robust check, weak calibration com-
pares observed outcome proportions against predicted
probabilities using 2 parameters. To qualify for perfect
weak calibration, themodel's mean calibration (as defined
in the previous section as observed vs. expected ratio)
must equal 1, and additionally the calibration slope of the
straight line for observed outcomes versus predicted risks
must also equal 1.When the calibration slope is less than 1,
the low predicted risks are too low and high predicted
risks are too high, whereas a slope larger than 1 indi-
cates that low predicted risks are too high and high pre-
dicted risks are too low (25).

For a fixed time point assessment of weak calibra-
tion, we fitted a “secondary” Cox model with the PI from
the development model as the only covariate in the exter-
nal data with administrative censoring at 5 years (equation
3 in Supplement Section 1). The calibration slope—that is,
the regression coefficient of the PI—in our case study was
1.06 (CI, 0.82 to 1.30) for 5-year risk, suggesting good
calibration.

Level 3:Moderate Calibration
Moderate assessment of calibration (or “calibration-in-

the-small”) concerns whether the observed outcome rate
equals the predicted risk among patients with the same
predicted risk (6). Instead of summarizing calibration by
fitting a straight line for the log(hazard) (weak calibration),
we can assess moderate calibration by inspecting smooth
curves of predicted risk from a secondary Cox model
against the predicted risk from the developed model (28).
The predictions from this secondary model represent a
proxy observed event rate at 5 years for those patients who
were censored before 5 years in the external data set
(Supplement Section 4.2).

In our case study, graphical inspection showed good
calibration (Figure, top). Various calibration metrics can be
used to summarize the graphical assessment (Supplement
Section 4.2) (28).

Level 4: Strong Calibration
Strong calibration compares predictions with the

observed event rate for every predictor pattern in the val-
idation data. This approach is utopic and hardly ever
possible owing to limited sample size or the presence of
continuous predictors (7).

DISCRIMINATION

Discriminative ability measures how well the model
predictions separate high- from low-risk patients. Patients
with earlier events should have higher predicted risks.
The primary measure is the concordance statistic (c-statis-
tic). In the Cox model, it can be estimated without access
to the baseline hazard. Two variants of the c-statistic apply
to a fixed time point or over the survival time range.
Additional details are provided in Supplement Section 5.

Fixed Time Point Discrimination
Fixed time point discrimination is defined as the

probability that a randomly selected patient who has the
event before time t has a higher estimated risk than a
randomly selected patient who is event free at time t.
The applicable c-statistic, a time-fixed area under the
receiver-operating characteristic curve, is similar to the
analogous measure for binary outcomes. The ordering of
events occurring before time t is ignored. However, for
patients in the validation data set who are censored
before 5 years, we have an estimated risk at 5 years from
the model, but not an observed value. An approach sug-
gested by Uno and colleagues (29) uses inverse probabil-
ity of censoring weights to reassign the case weights of
those censored to patients with longer follow-up (29)
(Supplement Tables 1 and 2). Other methods exist (30).

In our case study, the area under the receiver-operat-
ing characteristic curve, calculated using inverse proba-
bility of censoring weights, for 5-year risk was 0.72 (CI,
0.70 to 0.74) at model development (apparent valida-
tion). Internal validation (using 500 bootstrap samples)
suggested no optimism in apparent performance, whereas
external validation showed slightly poorer performance
(area under the receiver-operating characteristic curve,
0.68 [CI, 0.62 to 0.74]) (Table 3). Thus, a randomly
selected patient who had the event before 5 years had a
68% chance of having a higher estimated risk than a ran-
domly selected patient who was event free at 5 years.

Time Range Discrimination
Time range discrimination is the probability that a ran-

domly selected patient with a given survival time has a
better predicted survival (lower risk for the event) than a
randomly selected patient with a shorter survival time (31).
Uno and colleagues' c-statistic, which uses censoring
weights (Supplement Section 5.20) (32), was 0.68 (CI, 0.67
to 0.70) at apparent validation, 0.68 at internal validation,
and 0.63 (CI, 0.60 to 0.68) at external validation for re-
currence or breast cancer mortality within 5 years.

CLINICAL USEFULNESS

Discrimination and calibration are statistical measures
that are insufficient to decide whether the model is clinically
useful and can improve clinical decision making—such as by
targeting high-risk patients for additional treatment (33–37).
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For example, we may offer chemotherapy to patients with
breast cancer with a 5-year risk for recurrence or death
exceeding 20%. Treatment benefit is obtained for patients
who would die or whose cancer would recur within 5 years
and who have a risk of at least 20%: the true-positive classifi-
cations. Harm of unnecessary treatment occurs in patients
whowould not die andwhose cancerwould not recurwithin
5 years but who have a risk of at least 20%: the false-positive
classifications. The choice of risk threshold depends on the
clinical context. If the harm of unnecessary treatment (that is,
a false-positive decision) is small, treating many patients is
acceptable and hence a low threshold is sensible. However,
with harmful overtreatment, such as chemotherapy, a higher
threshold may be apt. The odds of the risk threshold equal
the harm–benefit ratio. For a 20% threshold, this ratio would
be 20%:80%= 1:4= 0.25. Once we have set the threshold,
we can calculate the net benefit as a weighted difference
of true positives (TP; those who benefit) and false positives
(FP; those who are harmed) (36):

net benefit = (TP – w�FP) /N

where w is the harm–benefit ratio and N is the total num-
ber of patients.

When we are dealing with survival data and censor-
ing, the net benefit can be calculated at any time horizon
(Supplement Section 7, available at Annals.org) (35).

Considering a single risk threshold for evaluation of net
benefit is usually too limited because the perceived harms
and benefits of treatmentmay differ between decisionmak-
ers and depend on context. Hence, we specify a range of
reasonable thresholds acceptable for treatment decisions
(38). The net benefit can be visualized for this range of clini-
cally relevant thresholds using a decision curve. This allows
us to compare the net benefit for different prediction mod-
els and for the default strategies of treating all or no patients
(“treat all” and “treat none”) (37, 39).

On the basis of previous research (40), we focused on
thresholds ranging from 14% to 23% for adjuvant chemo-
therapy in the original model (Figure, middle). At the
threshold of 23% (that is, w= 23 / 77), that model resulted
in 41.2% TP (1229 / 2982) and 48.5% FP (1446 / 2982),
yielding a net benefit of 0.27 (see Supplement Section 7
for calculations). This suggests a net 27 TP per 100 patients
—that is, after penalizing the number of TP for the number
of FP. It is equivalent to having 27 TP and 0 FP at the 23%
threshold. This net benefit was marginally greater than that
with the strategy of treating all patients. A net benefit
greater than that with the default strategies suggests that
the model adds some value to clinical decision making.
However, in the external validation data set, the model net
benefit was unfortunately not higher than for alternative
strategies for any of the acceptable thresholds. Therefore,
we conclude that the model is not useful to support deci-
sions around adjuvant chemotherapy in the validation con-
text (Figure, bottom). Various resources on decision curve
analysis are available (34–39), with detailed explanation and
software code at www.decisioncurveanalysis.org.

MODEL EXTENSION WITH A MARKER

We recognize that a key interest in contemporary med-
ical research is whether a particular marker (for example,

molecular, genetic, or imaging) adds to the perform-
ance of an existing prediction model (41). Validation in
an independent data set is the best way to compare the
performance of models with and without a new marker.
We extended our model by adding progesterone re-
ceptor at primary surgery to the Cox model (Tables 2
and 3; Supplement Section 8, available at Annals.org).
Briefly, at external validation, the improvement in fixed
time point discrimination was from 0.678 to 0.704
(change in area under the curve, 0.026) and the improve-
ment in time range discrimination was from 0.634 to
0.657 (change in c-statistic, 0.023). At the risk threshold of
23%, there was no improvement in net benefit.

All analyses were done in SAS, version 9.4 (SAS
Institute), and R, version 4.1.2 (R Foundation for
Statistical Computing). Code is provided for both SAS
and R at https://github.com/danielegiardiello/Prediction_
performance_survival.

DISCUSSION

This guidance article addresses the assessment of the
statistical and clinical performance of a Cox proportional

Table 4. Recommendations for Assessing Performance of
Prediction Models for Survival Outcomes*

Performance assessment
If researchers are interested only in the performance of a model at 1 or

several specific time points, we recommend the fixed time point
approaches. However, if interest lies in evaluation of performance over
all time points, we recommend the time range approaches. Researchers
may wish to report performance for both approaches for a more complete
assessment.

For calibration in an external data set, assessment of moderate calibration
is essential, including graphical display. Summary measures for mean
and weak calibration are informative to support the curve (see Supplement
Section 4).

For discrimination, Uno and colleagues’ weighted approach is possible
for fixed time point (29) and time range assessments (32) (see
Supplement Section 5).

For overall performance, we recommend reporting a scaled Brier score,
which reflects an R2-type assessment.

Clinical utility
If the prediction model is to support clinical decision making, decision

curve analysis is advised to assess the net benefit for a range of clinically
defendable thresholds.

Incremental value of added marker
Report the improvement in discrimination and in scaled Brier score when

a new marker is added to the model and compare calibration curves.
Compare net benefit across the range of clinical thresholds (see
Supplement Section 8).

Publication
When reporting development of a prediction model, include the baseline

risk and ideally a link to a data set containing the full baseline risk
function so others can validate the model at a particular time point or
over a time range. Report model coefficients or the hazard ratios. Both
baseline risk and coefficients are essential for independent external
validation of the model (Supplement Table 3).

Use the TRIPOD checklist for reporting prediction model development
and validation.

TRIPOD = Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis.
* Supplement Section 1 provides further details on the Cox model;
Supplement Section 2 details the different types of validation; and
Supplement Section 3 details software tools from R, SAS, and Stata
that can be used to assess performance and gives details on the R and
SAS code for different scenarios.
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hazards model at both model development and valida-
tion. We distinguished measures to assess model per-
formance at specific time points (such as 5-year survival)
and over the range of follow-up times. Prediction at spe-
cific time points will often be relevant because clinicians
and patients are usually interested in prognosis within a
specified period of time. The methods presented here for
discrimination and fixed time point calibration can readily
be applied to parametric survival models (such as Weibull)
or more flexible approaches (42–45).

In the breast cancer example, the optimism in all per-
formance measures was minimal at internal validation,
reflecting the relatively large sample size in relation to
the small number of predictors (46). The slightly poorer
performance at external validation was expected and
reflects slightly differential prognostic effects, but also
differences in case mix and censoring distributions (47).

We have not addressed the common problem of
missing values for predictors, which is more complex in
survival analysis than for binary outcome prediction (48).
We caution against excluding patients with missing pre-
dictors and the coding of missing data indicators for
inclusion in the model (49). Multiple imputation methods
may often be adequate (50).

Censoring is a key challenge in the assessment of
survival model performance. If censoring is merely by
the end of the time horizon (administrative censoring),
the assumption of censoring being noninformative may be
reasonable. For loss to follow-up, censoring may depend
on predictors in themodel and other patient characteristics.
Appropriate approaches include inverse probability of
censoring weighting and other extensions that can deal
with covariate-dependent censoring (51, 52).

Recommendations
A key recommendation is that model development

studies report the baseline risk for multiple (if not all) time
points together with the estimated hazard ratios so that
proper calibration assessment in external data sets is feasi-
ble (Table 4; Supplement Table 3, available at Annals.org).
We recommend plotting a smooth calibration curve to
assess moderate calibration. Net benefit, with visualization
in a decision curve, quantifies the potential clinical useful-
ness when a prediction model is intended to support clini-
cal decision making (38). Discrimination and calibration are
important but not sufficient for clinical usefulness. For
example, the decision threshold may be outside the range
of predictions provided by a model, even if that model has
a high discriminatory ability. Furthermore, a poorly cali-
brated prediction model can lead to poorer net benefit
and worse decisions (53).

Caveats and Further Research
We recognize that other performance measures (such

as explained variation) and clinical usefulness measures
(such as number needed to benefit) (54) not described
here might be important under specific circumstances. We
recommend that future work focus on assessing perform-
ance for extensions of survival models, such as competing
risk and dynamic prediction situations (30, 55–59). Further
complexity may arise when multicenter data are used for

prognostic modeling, which might involve additional cluster-
specific baseline survival curves and be summarized inmeta-
analyseswith quantification of heterogeneity (60).

In conclusion, the guidance in this article may assist
readers and applied researchers to know how to assess,
report, and interpret discrimination, calibration, and over-
all performance for survival prediction models. Decision
curve and net benefit analyses provide valuable additional
insight on the potential clinical usefulness of such models.
In line with the TRIPOD recommendations, these measures
should be reported if the model is to be used to support
clinical decisionmaking.
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