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Abstract
Objectives: To systematically review the risk of bias and applicability of published prediction models for risk of central line-associated
bloodstream infection (CLA-BSI) in hospitalized patients.

Study Design and Setting: Systematic review of literature in PubMed, Embase, Web of Science Core Collection, and Scopus up to July
10, 2023. Two authors independently appraised risk models using CHecklist for critical Appraisal and data extraction for systematic Re-
views of prediction Modelling Studies (CHARMS) and assessed their risk of bias and applicability using Prediction model Risk Of Bias
ASsessment Tool (PROBAST).

Results: Sixteen studies were included, describing 37 models. When studies presented multiple algorithms, we focused on the model
that was selected as the best by the study authors. Eventually we appraised 19 models, among which 15 were regression models and four
machine learning models. All models were at a high risk of bias, primarily due to inappropriate proxy outcomes, predictors that are un-
available at prediction time in clinical practice, inadequate sample size, negligence of missing data, lack of model validation, and absence
of calibration assessment. 18 out of 19 models had a high concern for applicability, one model had unclear concern for applicability due to
incomplete reporting.

Conclusion: We did not identify a prediction model of potential clinical use. There is a pressing need to develop an applicable model
for CLA-BSI. � 2023 Elsevier Inc. All rights reserved.

Keywords: Risk prediction; Central line-associated bloodstream infection; CLA-BSI; Prediction model; Central venous catheter; Bloodstream infection
1. Introduction

Central line-associated bloodstream infections (CLA-
BSIs) are bloodstream infections associated with an onset
at least 48 hours after the insertion of a central line in the
absence of infection at another site [1]. As the most com-
mon source of hospital-acquired infection [2], this type of
Data availability: I have shared the data extraction form as well as the

corresponding results in Supplementary File 3.
1 B. Van Calster and L. Wynants contributed equally to this work.
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infection is a priority target for prevention, as they cause
not only higher morbidity and mortality, but also longer
length of stay (LOS) and increased hospital expenditures
[3e5]. In the United States, up to 41,000 patients in hospi-
tals acquire CLA-BSI each year [6], and a CLA-BSI was
associated with an estimated mean attributable cost of
$55,646 and attributable LOS of 19 days compared with
those without CLA-BSIs [7]. A study performed in Ger-
many has reported the cost to be V29,909 per CLA-BSI
with median attributable LOS of 7 days [8].

Studies have shown that up to 70% of CLA-BSIs are
preventable with evidence-based strategies for central line
insertion and maintenance [9,10]. For the improvement of
infection prevention and control in hospital, some tools
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What is new?

Key findings
� Nineteen models which were developed and/or

validated to predict central line-associated blood-
stream infection (CLA-BSI) for hospitalized pa-
tients were all at high risk of bias and had high
or unclear concerns regarding applicability.

What this adds to what was known?
� Though increasing number of models and tools

have been developed to help improve the infection
control in hospital with the popularity of electronic
health records, there is still a pressing need to
develop a clinically and practically useable model
for the risk prediction of CLA-BSI.

What is the implication and what should change
now?
� There is an urgent need to improve the methodo-

logical conduct of risk prediction model develop-
ment studies. Moreover, further research may
look for the potential for dynamic risk prediction
models which allow timely adaption of patient
management if needed.
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Fig. 1. Preferred reporting items for systematic reviews and meta-analyses (
this figure legend, the reader is referred to the Web version of this article.)
have been developed to predict the infection risks for indi-
viduals, in conjunction with hospital-wide prevention stra-
tegies. In this systematic review, we summarized and
evaluated the current risk prediction models developed for
CLA-BSI. The findings of this review synthesize the advan-
tages and disadvantages of known risk prediction models
for CLA-BSI and raise some questions about the practical
implementation of these models.
2. Methods

We conducted a systematic review of CLA-BSI risk pre-
diction models to investigate previously published literature
predicting the risk of CLA-BSI. The research protocol was
registered (April 27, 2022) in the International Prospective
Register of Systematic Review (PROSPERO; ID
CRD42022328706). This report was prepared using the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement and the PRISMA for
Searching (PRISMA-S) [11,12].

2.1. Search strategy

A systematic search of the literature was performed
(July 10, 2023) in PubMed (including MEDLINE), Embase
(Embase.com), Web of Science Core Collection and
PRISMA) flow diagram. (For interpretation of the references to color in

http://Embase.com


Table 1. Characteristics of central line-associated bloodstream infections risk prediction models

Characteristic Overall (N [ 19)
Development and internal

validation (N [ 16)
External validation

(N [ 3)

Study type

Development and internal validation 9 (47%) 9 (56%)

Development only 7 (37%) 7 (44%)

External validation only 3 (16%) 3 (100%)

Data type

Nested case-control 1 (5%) 1 (6%)

Non-nested case-control 2 (11%) 1 (6%) 1 (33%)

Prospective cohort 1 (5%) 1 (33%)

Retrospective cohort 15 (79%) 14 (88%) 1 (33%)

Country

Brazil 1 (5%) 1 (33%)

China (mainland) 1 (5%) 1 (6%)

Denmark 1 (5%) 1 (6%)

Germany 1 (5%) 1 (33%)

Japan 1 (5%) 1 (33%)

Saudi Arabia 1 (5%) 1 (6%)

Taiwan 1 (5%) 1 (6%)

United States 12 (63%) 12 (75%)

Center

Monocenter 15 (79%) 12 (75%) 3 (100%)

Multicenter 4 (21%) 4 (25%)

Setting

Hospitalwide 8 (42%) 7 (44%) 1 (33%)

Intensive care unit (ICU) 6 (32%) 5 (31%) 1 (33%)

Other specific hospital units/wards 5 (26%) 4 (25%) 1 (33%)

Age

Adults 5 (26%) 3 (19%) 2 (67%)

All patients 7 (37%) 7 (44%)

Children 7 (37%) 6 (38%) 1 (33%)

Catheter type

All central lines 16 (84%) 14 (88%) 2 (67%)

Peripherally inserted central
venous catheters (PICC) only

2 (11%) 1 (6%) 1 (33%)

Permanent implantable venous ports
(Port-A) catheter only

1 (5%) 1 (6%)

Outcome event

Catheter-dependent infectiona 1 (5%) 1 (6%)

Catheter-related bloodstream
infection (CRBSI)b

3 (16%) 1 (6%) 2 (67%)

Central line-associated bloodstream
infection (CLA-BSI)

12 (63%) 12 (75%)

PICC-associated bloodstream
infection (PBSI)

2 (11%) 1 (6%) 1 (33%)

Port-A-associated bloodstream
infection (PABSI)-free survivalc

1 (5%) 1 (6%)

Type of endpoints

Binary endpoint 15 (79%) 13 (81%) 2 (67%)

Time-to-event endpoint 4 (21%) 3 (19%) 1 (33%)

Dynamic nature

Static 16 (84%) 13 (81%) 3 (100%)

(Continued )
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Table 1. Continued

Characteristic Overall (N [ 19)
Development and internal

validation (N [ 16)
External validation

(N [ 3)

Dynamic 1 (5%) 1 (6%)

Unclear 2 (11%) 2 (13%)

Sample size

Median sample size
(interquartile range)

n.c. 9 862 (210, 22,414) 267 (185, 863)

Median events
(interquartile range)

n.c. 123 (46, 241) 66 (59, 78)

Abbreviation: n.c., not calculated.
a Catheter-dependent infection is uniquely defined by L€ucking et al. as bacteremias due to an external pathogen from the skin or surroundings

assumed to have entered the bloodstream via the CVC. However, it is unclear when and how the blood cultures are taken, thus, contaminants might
also be included and introduce bias.

b Catheter-related bloodstream infection (CRBSI) requires a definitive pathological diagnosis through quantitative culture of the catheter tip or
the growth time differences between catheter and peripheral blood culture specimens, which is a narrower scope definition than central line-
associated bloodstream infections (CLA-BSI). The definition of CLA-BSI is primarily used for surveillance purposes, assuming that the presence
of a bloodstream infection in patients without any other identified source can be attributed to the central line, thus might identify a larger number
of cases that may not truly be related to the line.

c Port-A-associated bloodstream infection (PABSI)-free survival is defined by Chen et al. as the duration between Port-A implantation and
development of the first PABSI in the case group or last follow-up date in the control group.
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Scopus. We searched studies developing or externally vali-
dating risk prediction models to predict the occurrence of
CLA-BSI in hospitalized patients with a catheter. There-
fore, an AND-combination was made of the following three
concepts: ‘‘CLA-BSI’’, ‘‘prediction models’’, and ‘‘central
venous catheter’’. The search strategies were peer reviewed
by an experienced information specialist (K.T.) prior to
execution. The full search strings were reported in
Supplementary File 1 and preserved on searchRxiv
https://searchrxiv.org/. Additionally, we did forward and
backward citation searching of the included articles via
Web of Science Core Collection and Scopus to identify
additional relevant studies. (July 16, 2023).
2.2. Inclusion and exclusion criteria

Studies that developed or validated a multivariable
model to predict CLA-BSI risks for inpatients with central
lines were included. The National Healthcare Surveillance
Network (NHSN) has established the definition of CLA-
BSI, in collaboration with the Centers for Disease Control
(CDC) [1]. Although this gold standard has been adopted
and adapted worldwide by central reporting agencies such
as the European CDC [13], there is variability of adopted
CLA-BSI definitions across various countries. Further-
more, in practice, CLA-BSI identification and classifica-
tion involve subjective judgment by infection
preventionists [14]. We included studies using (local vari-
ations of) the NHSN/CDC criteria. We also included
studies using a rigorous clinical definition of catheter-
related bloodstream infection (CRBSI), which requires
definitive diagnosis of same pathogen in blood and cath-
eter culture, as outcome.

We included studies based on any design (e.g.,
randomized-controlled trials, retrospective or prospective
cohort studies). There were no language or other restric-
tions on any search of the databases. Diagnostic models that
detect the presence of CLA-BSI for surveillance were
excluded. Predictor finding studies that focus on the associ-
ation between potential risk factors and CLA-BSI, were
also excluded. Studies whose populations are outpatients
(e.g., patients who received home parental nutrition) or in-
patients without central lines placement were not included.
Other exclusion criteria for research articles include the
following: qualitative study reports, lack of access to full
text, and articles that do not report original research such
as reviews, editorials, and conference abstracts.

After removing duplicates (using EndNote 20 (Clari-
vate), Rayyan, and manual checking [15,16]), titles and ab-
stracts were initially screened for exclusion by at least two
authors. As inter-reviewer agreement was considered suffi-
cient (see Supplementary File 2), the remaining title-
abstract screening was done by one author (S.G.) and irrel-
evant articles were excluded. Then, full texts of the poten-
tially relevant articles were screened independently by two
authors (E.A. and S.G.). Discrepancies were resolved
through discussion with a third author (B.V.C. or L.W.).
2.3. Data extraction and quality assessment

Data extraction from included studies was carried out
independently by two investigators (E.A. and S.G.) using
standard data extraction forms (Supplementary File 3)
based on the CHecklist for critical Appraisal and data
extraction for systematic Reviews of prediction Modeling
Studies (CHARMS) [17]. Where one article investigated
more than one model (e.g., same model development
strategy however, different algorithms), data extraction
focused on the model identified as the best model by
the article’s authors. If multiple papers discussed the

https://searchrxiv.org/


Box 1 Advantages and disadvantages of different
algorithms applied by the developed
prediction models.

Among all the 16 developed models, nine models
applied logistic regression, three were Cox propor-
tional hazards model, two were XGBoost, one was
random forest, and one on na€ıve Bayes.

Regression models still dominate the landscape of
risk prediction models for central line-associated
bloodstream infections (CLA-BSI). Among tradi-
tional regression models, logistic models are
commonly used to handle binary or categorical out-
comes. They are easy to implement but require hu-
man input to address nonlinear problems and
interactions between variables, which may occur in
real-word scenarios.

In comparison with logistic regression models, sur-
vival models such as Cox proportional hazards
models focus more on the time to an event which
contains more clinical information than simply
whether the event occurred or not. They can handle
the censoring when subjects did not experience the
event before the end of study. Nevertheless, the as-
sumptions of proportional hazards (that predictor ef-
fects are constant over time) may not always hold,
which may lead to biased estimates. Time-
dependent coefficients can be used when the propor-
tional hazard assumption is not reasonable.

In contrast to the aforementioned regression
models, machine learning algorithms such as tree-
based algorithms automatically capture complex
nonlinear and nonadditive relationships. However,
they are prone to overfitting if not properly regular-
ized or tuned. A disadvantage of machine learning al-
gorithms is that they are ‘black box’: there is no
simple equation that reflects how each predictor con-
tributes to the prediction. Time-of -to-event exten-
sions for machine learning algorithms exist but are
not often used.

Na€ıve Bayes has the advantages of computation-
ally efficiency and are straightforward to implement.
However, the assumption of conditional indepen-
dence between features may not hold in real-world
settings. Moreover, na€ıve Bayes can encounter the
‘‘zero-frequency problem’’ when there are unseen
combinations of feature values in the test data that
was not present in the training data during prediction.
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same model (e.g., development and one or more external
validation studies), each study was assessed separately.
The following data were extracted: authors, year of pub-
lication, study design, data source, definition of CLA-
BSI, modeling algorithm, validation method, missing
data approach, type of variable selection, number of
events and event rate, model performance, and evaluation
metrics.

Two independent investigators (E.A. and S.G.) conduct-
ed the risk of bias and applicability assessments for
included studies, utilizing the Prediction model Risk Of
Bias ASsessment Tool (PROBAST) [18,19]. Overall and
domain-specific risk of bias and concern regarding applica-
bility were classified as low, high, or unclear. Disagree-
ments were resolved by a third and fourth adjudicator
(B.V.C. and L.W.), who informed the final decision.
2.4. Data synthesis

No meta-analysis was performed given the heterogene-
ity across the included studies [20]. Results were pre-
sented narratively, using descriptive statistics and
graphical plots to summarize the characteristics of the
included studies.
3. Results

Sixteen studies were included after evaluating 6,980
papers (Fig. 1). The PRISMA flow diagram [21] repre-
sented the selection process and reasons for article exclu-
sion. These 16 studies developed and/or validated 37
prediction models. Five studies developed more than one
model for CLA-BSI, in which case we restricted our focus
to the model identified as best by the authors of the paper
(Supplementary File 4). Hence, we included sixteen newly
developed models for CLA-BSI. Three externally vali-
dated models were also included, of which one was
initially developed for CLA-BSI in another country and
two were initially developed for another outcome
(Table 1). Retrospective cohort data were most commonly
used (79%). All studies used single country data and 12
(63%) models were developed or validated based on data
from the United States. Four (21%) models used multi-
center data. Sixteen (84%) models were intended for all
types of central line catheters, 2 (11%) for peripherally in-
serted central venous catheters, and 1 (5%) for permanent
implantable venous ports catheters. Twelve (63%) models
were intended to predict the risk of CLA-BSI, while 3
(16%) models were developed and validated to predict
CRBSI, which requires a definitive diagnosis of same
pathogen in cultures of blood and catheter to identify the
catheter as the source of the infection. In addition, one
model predicted an ad hoc outcome definition of
catheter-dependent infection. Model predictors were
described in detail in Supplementary File 5 and also sum-
marized by categories such as demographics, medications,
vital signs, and laboratory data in Table 2. Age, history of
CLA-BSI, total parenteral nutrition (TPN), and neutro-
phils were the most frequently included predictors in the
19 models.



Table 2. The number and type of predictor variables in the reviewed, developed, and externally validated models

Predictors

Development

Bearman et al.
2010 [22]

Wylie et al.
2010 [23]

Chen et al.
2012 [24]

L€ucking et al.
2013 [25]

Herc et al.
2017 [26]

Beeler et al.
2018 [27]

Parreco et al.
2018 [28]

Waterhouse et al.
2018 [29]a

Waterhouse et al.
2018 [29]

Demographics 0 0 0 0 0 2 2 0 0

Agee �
Admission and

patient stay
data

0 1 0 0 0 1 0 0 0

Inpatient days
before CVL
placement

�

Administration
related to
catheters

2 0 2 0 2 3 0 1 0

CVL days � �
Medical

condition
1 1 0 0 3 1 27 0 0

History of CLA-
BSI

� �

Medication/
Treatment

1 0 3 1 1 1 1 0 0

TPN � �
Laboratory test 0 0 1 4 0 0 0 0 0

Neutrophils � �
Vital signs 0 0 0 0 0 0 0 0 0

Temperature

Scoresf 0 1 0 0 0 0 6 1 1

RACHS � �
Others 0 2 0 0 0 0 0 0 2

Total numberg 4 5 6 5 6 8 36 2 3

Abbreviations: CVL, central venous line; CLA-BSI, central line-associated bloodstream infections; TPN, total parental nutrition; RACHS: Risk
Adjustment for Congenital Heart Surgery.

a Total number indicates the number of models that included the corresponding predictors.
b The three models developed by Waterhouse et al. used different predictive factors in final models.
c Baeissa et al. did not report the number and type of predictors in their final model.
d Rahmani et al. developed two eXtreme Gradient Boosting (XGBoost) models using all features and top 13 selected important features,

respectively.
e Age is the most frequently used predictors among all demographic variables; similar rule applies to the following listed predictors.
f Scores include different severity of illness scores such as Oxford Acute Severity of Illness Score (OASIS) and Pediatric Risk of Mortality

(PRISM) score.
g Total number indicates the overall number of predictors used in each model.
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3.1. Development and internal validation studies

There were sixteen developed models and the median
sample size was 9, 862 at model development, with a me-
dian number of 123 events. Nine models were based on lo-
gistic regression, three on Cox regression, two on eXtreme
Gradient Boosting, one on random forest, and one on na€ıve
Bayes (Box 1). Thirteen (81%) models predicted a binary
outcome and 3 (19%) predicted a time-to-event outcome
(Table 1). Ten (63%) models predicted the outcome at
any time during admission, five did not specify their predic-
tion time horizon, and one predicted at catheter dwell times
of 6e40 days (Table 3). Only 1 (6%) model was developed
in a dynamic way, using the daily assessment of positive
blood cultures as the proxy of outcome [31]. For 11
(69%) models, neither number/percentage of missing
values nor missing data handling method were reported.
Three (19%) models were based on complete case analysis,
one on multiple imputations, and one on the missing indi-
cator method. Nine (56%) models were internally validated
to account for optimism (six random split, one temporal
split, one bootstrapping, one cross-validation). The median
number of events per variable (EPV) was 3 (ranged from 1
to 19). Fourteen (88%) models had less than 10 EPV, 1 had
19 EPV, and 1 did not report the number of events nor the
number of candidate predictors. For 3 (19%) models,



Development External validation

Total
numberd

Waterhouse
et al.

2018 [29]

Baeissa
et al.

2019 [30]b

Bonello
et al.

2022 [31]

Hooshmand
et al.

2022 [32]

Rahmani
et al.

2022 [33]c

Rahmani
et al.

2022 [33]

Wang
et al.

2023 [34]

Vilela
et al.

2007 [35]

Schalk
et al.

2015 [36]

Sakai
et al.

2021 [37]

0 1 1 4 2 0 0 0 0

� � � 4

0 1 5 1 0 0 0 0 0

� � 3

0 0 2 0 0 2 0 0 2

� 3

0 0 1 19 6 0 0 0 3

� � � � 6

0 3 1 0 0 0 0 0 1

� � 4

0 3 0 3 3 0 0 0 0

� � 4

0 2 0 1 1 0 0 0 0

� � � 3

1 0 0 0 0 1 1 1 0

� 3

1 0 1 0 0 0 0 0 0

2 10 11 28 12 3 1 1 6
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apparent calibration assessment was performed. Internally
validated calibration assessment was not provided for any
model. The apparent C-index varied from 0.70 to 0.88,
the internally validated C-index from 0.67 to 0.82 (Table 4).
3.2. External validation studies

There were three external validation models and two out
of them used scores developed for other outcomes to vali-
date their capability of predicting CRBSI. One study vali-
dated the Michigan PICC catheter-associated bloodstream
infection (MPC) score, one of the 16 developed models
included above, on the data from a Japanese hospital. Only
one study assessed calibration, and the reported C-index of
these three models varied from 0.53 to 0.77 (Table 5).
3.3. Risk of bias

In our review, a PROBAST risk of bias tool assessed the
risk of biased (usually optimistic) predictive performance es-
timates [18]. All 16 developed models were at high risk of
bias (Fig. 2). For the participants domain, 6 (38%) models
were at high risk of bias, and 3 (19%) at unclear risk of bias.
High risk of bias was due to inappropriate exclusion of pa-
tients based on data after the intended moment of prediction
or lack of adjustment of sampling fractions following a case-
control design. Unclear risk of bias was due to unclear



Table 3. Characteristics of model development studies

Author and yr Model
Prediction time

horizon
Missing
handling

Validation
method

Predictor selection Development
Internal
validation

Before modeling
During

modeling Events/N EPV Events/N

Bearman et al.
2010 [22]

CPH NR NR RS
(50:50)

Univariate
selection

Stepwise
selection

123/
15,100

6a 121/
15,097

Wylie et al.
2010 [23]

LR Any time during
admission

NR RS
(67:33)

bOther NR 135/406 4 68/203

Chen et al.
2012 [24]

CPH NR NR All candidate
predictors

Stepwise
selection

58/232 3

L€ucking et al.
2013 [25]

Logistic
Bayes

NR NR Univariate
selection

Otherc 34/172 3

Herc et al.
2017 [26]

CPH PICC dwell times
of 6e40 days

MI Bootstrap
(200 reps)

Univariate
selection

Stepwise
selection

249/
23,088

3 249/
23,088

Beeler et al.
2018 [27]

RF NR NR Temporald All candidate
predictors

Othere 387/
56,174

19 NR/
49,669

Parreco et al.
2018 [28]

LR Any time during
admission

NR 10-fold CV All candidate
predictors

All
predictors
forced in
model

333/
22,190

3 333/
22,190

Waterhous et al.
2018 [29]f

LR Any time during
admission

NR Univariate
selection

NR 15/66 1

Waterhouse et al.
2018 [29]

LR Any time during
admission

NR Univariate
selection

NR 15/66 1

Waterhouse et al.
2018 [29]

LR Any time during
admission

NR Univariate
selection

NR 15/66 1

Baeissa et al.
2019 [30]

na€ıve Bayes NR NR NR NR NR/
28,972

NR

Bonello et al.
2022 [31]

LR Any time during
admission

MIM RS
(60:40)

Univariate
selection

Stepwise
selection

240/
62,421

3 159/
41,614

Hooshmand et al. 2022
[32]

LR Any time during
admission

NR RS þ CVg All candidate
predictors

Otherh 77/4,623 2 19/1,156

Rahmani et al.
2022 [33]i

XGBoost Any time during
admission

CC RS
(80:20)

All candidate
predictors

All
predictors
forced in
model

241/
22,095

6 60/
5,464

Rahmani et al.
2022 [33]

XGBoost Any time during
admission

CC RS
(80:20)

Other All
predictors
forced in
model

241/
22,095

6 60/
5,464

Wang et al.
2023 [34]

LR Any time during
admission

CC All candidate
predictors

Lasso 69/222 2

Abbreviations: CPH, cox proportional hazards; LR, logistic regression; RF, random forest; XGBoost, extreme gradient boosting; NR, not recorded;
MI, multiple imputation; MIM, missing indicator method; CC, complete-case; RS, random split; CV, cross-validation; Events/N, number of events/
participants; EPV, event per variable.

a The event per variable (EPV) number is an approximated value as the author did not specify clearly the number of candidate predictors used
for model development.

b Wylie et al. chose a subset of risk factors that were present and known at the time of line placement without providing any other details
regarding the selection criteria.

c L€ucking et al. selected factors with odds ratio O2 & lower confidence limit O1 or very close to one for inclusion.
d Beeler et al. performed the internal validation using 20% randomly split data besides a temporal validation. We considered the temporal vali-

dation as a higher priority for the reporting.
e Beeler et al. selected based on the random forest algorithm’s variable importance rankings following the Gini Impurity criterion, with 15/20

baseline risk factors accounted for the most significant effect on central line-associated bloodstream infections (CLA-BSI) prediction.
f The three models developed by Waterhouse et al. used different predictive factors in final models.
g Hooshmand et al. built the logistic regression model by splitting the entire dataset into training (80%) and validation (20%) set, and assessed

the logistic regression’s classification accuracy for the validation set by performing a five-fold cross-validation and aggregating the results from
different outcomes.

h Hooshmand et al. fitted the logistic regression model on the training set as well as the Cox proportional hazards model on the entire dataset. Even-
tually logistic regression model was chosen as the ‘best’ final model. Variables with nonsignificant P values (!0.05) in both methods were omitted.

i Rahmani et al. developed two eXtreme Gradient Boosting (XGBoost) models using all features and top 13 selected important features,
respectively.
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Table 4. Performance measurements of the development and internal validation models

Author and yr Model

Apparent performance Internal validation

Calibration aDiscrimination Classification Calibration Discrimination Classification

Bearman et al.
2010 [22]

CPH NR NR Sensitivity: 75%;
specificity: 89%;

PPV: 0.05

NR NR Sensitivity: 69%;
specificity: 88%; PPV:

0.046

Wylie et al.
2010 [23]

LR NR 0.79
(0.75, 0.84)

sensitivity: 74%;
specificity: 71%;
NPV: 84%; PPV:

56%

NR 0.72 (0.64, 0.79) sensitivity: 62%;
specificity: 74%; NPV:

79%; PPV: 54%

Chen et al. 2012
[24]

CPH NR 0.844
(0.78, 0.91)

sensitivity: 89%;
specificity: 64%

L€ucking et al.
2013 [25]

Logistic
Bayes

E/O table NR NR

Herc et al. 2017
[26]

CPH Calibration
table

branged from
0.70

(0.64e0.76)
to 0.80 (0.76

e0.84)

NR NR ranged from 0.67 to
0.77

NR

Beeler et al. 2018
[27]

RF NR NR NR NR 0.82 alert rate: 33%

Parreco et al. 2018
[28]

LR NR NR NR NR 0.72 (0.67, 0.77) sensitivity: 0%; specificity:
100%; PPV: 0.0%; NPV:
98.6%; Accuracy: 98.6%;

Precision: 0.0%

cWaterhouse et al.
2018 [29]

LR NR 0.884 NR

Waterhouse et al.
2018 [29]

LR NR 0.790 NR

Waterhouse et al.
2018 [29]

LR NR 0.798 NR

Baeissa et al.
2019 [30]

Na€ıve Bayes NR NR Sensitivity: 98%;
Specificity: 99%;
Accuracy: 98%;

Classification error
rate: 0.95; Kappa:

0.63

Bonello et al.
2022 [31]

LR NR NR NR NR 0.82 Sensitivity: 25%;
specificity: 99.9%; PPV:
48.2%; NPV: 99.7%

Hooshmand et al.
2022 [32]

LR NR NR NR NR 0.71 Accuracy: 75%; error rate:
25%; sensitivity: 67%;

specificity: 75%; F1 score:
0.08

dRahmani et al.
2022 [33]

XGBoost NR NR NR NR 0.76 (0.70, 0.83) Sensitivity 0.8;
specificity 0.5; LRþ

1.73; LR- 0.37; DOR: 4.67

Rahmani et al. 2022
[33]

XGBoost NR NR NR NR 0.75 (0.67, 0.82) Sensitivity 0.8; specificity
0.5; LRþ 1.54; LR- 0.42;

DOR: 3.72

Wang et al. 2023
[34]

LR Calibration
plot

0.84 (0.78,
0.90)

Abbreviations: CPH, cox proportional hazards; LR, logistic regression;RF, random forest; XGBoost, extremegradient boosting; NR, not recorded;NPV,
negative predictive value; PPV, positive predictive value; E/O, expected/observed number of events; LR, likelihood ratio; DOR, diagnostic odds ratio.

a Performance measurements used for discrimination were C-index with 95% confidence interval, if reported.
b Herc et al. assessed the predictive performance using time-dependent area under the curve (AUC) values at clinically relevant time points over

a range of 6e40 device days.
c The three models developed by Waterhouse et al. used different predictive factors in final models.
d Rahmani et al. developed two eXtreme Gradient Boosting (XGBoost) models using all features and top 13 selected important features,

respectively.
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reporting of the eligibility criteria. For the predictor domain,
8 (50%) models were at high risk of bias, and 3 (19%) at un-
clear risk of bias. High risk of bias resulted from the use of
predictors that are unavailable at the time the model is in-
tended to be used in practice. Unclear risk of bias resulted
from unknown predictor measurement timing and unspeci-
fied definition of predictors. For the outcome domain, 11
(69%) models were at high risk of bias due to the use of a
proxy outcome (e.g., International Classification of Disease
coding which requires high compliance to coding [38]) or
an inappropriate self-defined outcome (i.e., central venous
catheter-dependent bloodstream infection which may
wrongly include contaminants). One (6%) model had an un-
clear risk of bias due to an unclear outcome definition. For
the analysis domain, all models were at high risk of bias.
Typical reasons were insufficient sample size, ignoring
missing data, inappropriate model evaluation (e.g., no inter-
nal validation at all, or ignoring calibration performance),
and problematic variable selection methods (e.g., preselect
predictors based on univariate analysis results). Details can
be found in Supplementary File 6.

All three external validation studies suffered from high
risk of bias. One study used a case-control design but did
not appropriately adjust for the distorted incidence of the
event [35]. In addition, its controls were matched on future
data. One study did not discuss missing values and how they
were handled [36]. In one study, all events (PICC-associated
bloodstream infection) were assessed by the author using the
linked microbiology data, unblinded to the MPC score [37].
This may influence determination of the outcome and lead to
a potential risk of bias. All three studies had low sample size,
resulting in a high risk of bias for the analysis domain. Two
studies did not assess calibration.

3.4. Applicability

Applicability assesses the transferability of a study
finding to a specific population or setting [18]. In our case,
we assessed the models’ applicability to predict CLA-BSI
risk for inpatients at any time during their hospitalization.
Table 5. Externally validated models

Study Model validated Outcome aSample size

Vilela et al.
2007 [35]

PRISMA score CRBSI 51/102

Schalk et al.
2015 [36]

mIPS CRBSI 66/267

Sakai et al.
2021 [37]

MPC score PBSI 89/1,459

Abbreviations: MPC score, michigan PICC catheter-associated bloodstrea
score, pediatric risk of mortality score; PBSI, PICC-associated bloodstream
tion slope; NR, not recorded; CI, confidence interval; NPV, negative predic

a Sample size is presented in a way of the number of outcome/participa
Among 16 developed models, 15 (94%) had a high concern
and one an unclear concern for applicability. Seven (44%)
models had a high concern in the participants’ domain due
to its limited eligible population, for example, solid cancer
patients who were seriously ill. One (6%) model had unclear
applicability due to the poor reporting of eligibility criteria. 8
(50%) models had a high concern for applicability in the pre-
dictors domain as the predictor values are only available
when a CLA-BSI has occurred, which made these models
unusable. 3 (19%) models had unclear applicability due to
unclear predictor definitions and timing. For the outcome
domain, 8 (50%) models had a high concern and 2 (13%)
models an unclear concern for applicability. Problematic
definition of outcome which did not follow the CDC/NHSN
criteria is the most common reason of a high concern rating.

All three external validation studies had a high concern
for applicability. One study had a high concern for applica-
bility for the participants’ domain as it used a case-control
design with controls matched on future data (LOS). One
study had a high concern for applicability as it predicted
CRBSI at catheter removal. As an effective way of prevent-
ing CLA-BSI, a catheter may be removed at the suspicion
of infection. Thus, predicting its occurrence when CLA-
BSI is suspected does not seem to provide enough time
to react and prevent it. The validation of the MPC score
had a high concern for applicability for the predictors’
domain due to the potential temporal leaks. Components
of the score like TPN through the PICC might leak future
data as TPN receipts may change after catheter placement.
The authors did not specify when they were measuring it. It
can be after patient discharge or before catheter insertion.
4. Discussion

In this systematic review of risk prediction models related
to CLA-BSI, we identified 13 model development studies
(16 models) and three external validation studies (three
models). All models were labeled as having a high risk of
bias. Common reasons were inappropriate proxy outcome,
Calibration Discrimination Classification

NR C-index 0.53
(95% CI: 0.43e0.63)

NR C-index 0.77
(95% CI: 0.71e0.83)

Sensitivity: 84.9%;
Specificity:
60.7%; NPV:

92.4%; PPV: 41.5%

CS 1.16
(95% CI:

1.02e1.32)

C-index 0.61
(95% CI: 0.54e0.67)

m infection score; mIPS, modified infection probability score; PRISMA
infection; CRBSI, catheter-related bloodstream infection; CS, calibra-
tive value; PPV, positive predictive value.
nts.



Fig. 2. Traffic light plots of (A) risk of bias and (B) concern regarding applicability assessments using the Prediction model Risk Of Bias ASsess-
ment Tool (PROBAST) in each domain and overall for all models. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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predictors that are unavailable at prediction time, inadequate
sample size, negligence of missing data, lack of model vali-
dation, absence of calibration assessment, and incomplete re-
porting. In addition, all models suffered from high or unclear
concerns for applicability. Common reasons included inap-
propriate eligibility criteria, unavailable predictor measures
at the moment the prediction is needed in practice, and an
inappropriate outcome identification method. For one model,
applicability was unclear due to incomplete reporting
regarding participants, predictors, and outcome.

Similar problems as mentioned above have also been re-
ported in reviews of prediction models for other clinical out-
comes [39e41]. Despite that many reviews recommend to
follow the Transparent Reporting of a Multivariable Predic-
tion Model for Individual Prognosis or Diagnosis (TRIPOD)
guidelines, the adherence to the reporting guideline remains
poor [42]. Also, with the increasing popularity of machine
learning models, the TRIPOD-AI extension is underway
[43]. This will include much needed attention for machine
learning specific topics such as hyperparameter optimization.
4.1. Implications

Risk prediction models aim to support clinical decision-
making for patients; therefore, it is essential that the
intended clinical setting and target population for C LA-
BSI prediction are clearly defined. This helps to avoid the
inclusion of predictors that are not yet available when a pre-
diction is needed. The inclusion of such predictors makes
prediction models useless.

We repeat the recommendation to follow the TRIPOD [44]
reporting guideline. In addition to the reporting quality, the
methodological conduct of prediction model studies raised
serious concerns. Inadequate sample size often results in
models with suboptimal performance in new individuals
[45]. It is recommended to calculate the sample size required
for model development, even though further research is
needed for machine learning models. In addition, sample size
methods for external validation studies have recently been
proposed, which are important to guarantee sufficiently pre-
cise performance estimates [46,47]. Although it is a difficult
problem, missing data need to be handled carefully. Simply
excluding patients with missing data to perform a complete
case analysis results in a smaller sample size and often leads
to bias. In particular, models that give real-time predictions for
hospitalized patients using electronic health record’s informa-
tion should also be able to deal with missing data in real time.
Finally, 7 of 16 developed models were not even internally
validated and hence, did not report any optimism-corrected
performance estimate. For the nine models with internal vali-
dation, none assessed calibration using for example calibra-
tion plots [48]. It is strongly suggested to apply appropriate
internal validation strategies such as bootstrapping or cross-
validation, and assess calibration and discrimination [49].
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Aside from issues with bias and applicability, this sys-
tematic review identified only one dynamic model. Dy-
namic models have the advantage that they can update
predictions over time. This allows to dynamically adapt pa-
tient management if needed, allowing clinical staff to take
timely action to prevent CLA-BSI occurrence. Our review
identifies a clear potential for developing dynamic CLA-
BSI prediction models.
4.2. Limitations

This review has several limitations. Our data extraction
form was mainly designed based on the items in CHARMS
checklist and signaling questions from PROBAST. Though
most items were applicable for both regression-based and
machine learning models, some differences such as hyper-
parameter tuning complicated harmonization of data
extraction. There was also great variability in target popu-
lations, predictors, and outcome definitions, which made
summaries through meta-analysis impossible.
5. Conclusion

This systematic review critically appraised 19 models
which were developed and/or validated to predict CLA-
BSI for hospitalized patients. However, all models were at
high risk of bias and had high or unclear concerns regarding
applicability. We did not identify any model as potentially
clinically useable. Moreover, there was considerable vari-
ability in target populations, predictors, catheter types, and
outcome definitions. Thus, there is a need for a well-
developed and applicable model. For example, a dynamic
model that enables real-time CLA-BSI risk prediction based
on electronic health record data. Further, there is an urgent
need to improve the methodological conduct of risk predic-
tion studies for any clinical outcome of interest.
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