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Purpose: To develop a deep learning model that combines CT and radiation dose (RD) images to predict
the occurrence of radiation pneumonitis (RP) in lung cancer patients who received radical (chemo)radio-
therapy.
Methods: CT, RD images and clinical parameters were obtained from 314 retrospectively-collected
patients (training set) and 35 prospectively-collected patients (test-set-1) who were diagnosed with lung
cancer and received radical radiotherapy in the dose range of 50 Gy and 70 Gy. Another 194 (60 Gy group,
test-set-2) and 158 (74 Gy group, test-set-3) patients from the clinical trial RTOG 0617 were used for
external validation. A ResNet architecture was used to develop a prediction model that combines CT
and RD features. Thereafter, the CT and RD weights were adjusted by using 40 patients from test-set-2
or 3 to accommodate cohorts with different clinical settings or dose delivery patterns. Visual interpreta-
tion was implemented using a gradient-weighted class activation map (grad-CAM) to observe the area of
model attention during the prediction process. To improve the usability, ready-to-use online software
was developed.
Results: The discriminative ability of a baseline trained model had an AUC of 0.83 for test-set-1, 0.55 for
test-set-2, and 0.63 for test-set-3. After adjusting CT and RD weights of the model using a subset of the
RTOG-0617 subjects, the discriminatory power of test-set-2 and 3 improved to AUC 0.65 and AUC 0.70,
respectively. Grad-CAM showed the regions of interest to the model that contribute to the prediction of
RP.
Conclusion: A novel deep learning approach combining CT and RD images can effectively and accurately
predict the occurrence of RP, and this model can be adjusted easily to fit new cohorts.

� 2023 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 182 (2023) 109581
Radiation pneumonitis (RP) is a relatively common
radiotherapy(RT)-related side effect [1,2]; estimates of RP vary
from 5%–58% [3] but it is challenging to forecast accurately on
the individual patient level. The risk of RP constrains the tumorici-
dal dose that can be prescribed and, in serious instances, may
directly threaten the life of the patient. Prediction models of a
patient’s RP risk are hence an active topic in current research work
[4,5].

Dose-volume histogram (DVH) metrics, such as mean lung dose
[6], V5 and V20 [7], are presently in broad clinical use as surrogates
for RP risk. Normal tissue control probability (NTCP) can be com-
puted from a DVH of total lungs [8]. These aforementioned DVH
indicators do not explicitly account for the spatially heterogeneous
distribution of dose in lungs, nor do they account for the functional
state of lung parenchymal tissue prior to commencement of RT.
Hand-crafted features that describe spatial dose non-uniformity
(i.e. ‘‘dosiomics”) have been recently investigated [9], as were char-
acterization of non-tumour lung tissue via image-based analysis
(i.e. ‘‘radiomics” and texture) [10–12]. To date, few RP studies have
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been performed that combine both dosiomics from a clinical treat-
ment plan and radiomics from its corresponding planning CT
[13,14]. These studies have treated the two types of data as disjoint
feature domains.

A promising direction for predicting RP is a deeper exploration
of inter-related effects of dose and morphology. First, it is supposed
that information about the underlying radio-sensitivity of lung tis-
sue might be encoded into CT-based imaging features. Second, that
variations in applying RT planning national guidelines leads to
divergent spatial dose distributions that are not fully captured in
traditional indices such as V20. For example, in China, the con-
straint V20 not exceed 25%–30% [15,16], however National Com-
prehensive Cancer Network (NCCN) guidelines recommend 35%–
40%. Within a set of DVH constraints, there exists an unlimited
number of feasible RT plans that would meet those constraints
but result in non-comparable spatial dose distributions in normal
lung. Third, it is not entirely clear how to explicitly define hand-
crafted measures that combine both CT and dose information into
a common feature domain. Last, it remains an open debate about
the relative merits of hand-crafted features versus deep-learning
features in regard to a given clinical question.

The objective of this study was to develop and evaluate a deep-
learning (DL) model to predict RP on the basis of CT intensities and
Radiotherapy Dose (RD) distributions, using a joint feature repre-
sentation for CT attenuation (radiomics) and dose distribution (do-
siomics), rather than making an ensemble of separated models. A
design criterion was that any such DL-based predictions need to
be ‘‘adjustable” in a relatively simple way to adapt to alternative
prescribed dose and RT planning protocols.

This work describes the implementation a well-known 3D
ResNet DL architecture as a generator of ‘‘deep features” in the
joint CT-RD representation. A fully-connected (FC) network is
appended to the end of the ResNet to estimate class probabilities
of RP based on deep features. We assumed a linearly-weighted
mixture of CT and RD, with tunable weights, as the input. In the
event of different prescribed doses or dose planning procedures
at different institutions, we assumed that a baseline model has to
be subsequently adjusted only for a different mixing ratio of CT
and RD, as well as to retrain the FC component to use the new deep
features resulting from the alternative mixing. However, the
ResNet part will be kept frozen after training an initial baseline
model.
Method

Study design

The overall flow in this study has been illustrated in Fig. 1. This
study utilizes private data from a single institution to train a base-
line model. Subsequent model adjustments and model perfor-
mance evaluations used a prospectively collected cohort from the
same single institution, plus the RTOG-0617 randomized trial data-
set [17–20] split into two sets according to the prescribed dose
(60 Gy in control arm and 72 Gy in the experiment arm). Grad-
CAM heatmaps were overlaid on the input CT and RD to support
clinical interpretation. Model discrimination was reported as
receiver-operator ‘‘area under the curve” (AUC) and model calibra-
tion was assessed as goodness-of-fit for binary classification. The
details of each part of the study are as follows.
Study population

All patients included this study had confirmed diagnosis of lung
cancer and were treated with radically-intended radiotherapy
(IMRT or VMAT), either with or without concurrent chemotherapy.
The primary endpoint was symptomatic RP grade 2 or higher
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according to Common Terminology Criteria for Adverse Events
(CTCAE) v4.0. In the private institutional datasets, the presence
(or absence) of RP was assessed by experienced radiation oncolo-
gists based on follow-up CT, blood test and symptoms. In the RTOG
dataset, the status of RP was documented in individual case
reports. In this work, we considered only RP events which occurred
anytime from the last fraction of radiotherapy up to 6 months after
the last fraction of radiotherapy, as specifically RT-treatment
induced RP.

The Training set consisted of 314 routine care patients retro-
spectively extracted from archives at one medical university can-
cer hospital. These were primarily intended for treatment with
60 Gy, but a range of delivered doses between 50 Gy to 70 Gy
was prescribed at the treating physicians discretion. Test-set-1
comprised of 35 prospectively registered patients from the same
institution, also predominantly 60 Gy total intended dose, with
variations of delivered dose at treating physician’s discretion.
Training set and Test-set-1 were obtained with approval from an
internal review board (ref. IRBbc2021135). The discretionary devi-
ations in delivered dose were based on each patient’s overall phys-
ical condition and best achievable normal tissue constraints.
Specific details of Training set and Test-set-1 are provided in Sup-
plementary Materials 1A.

Access for secondary re-use of data from the prospectively ran-
domized controlled trial RTOG-0617 was obtained through the
trial sponsor. From the control arm (60 Gy prescribed dose), 194
subjects were defined as Test-set-2, and from the intervention
arm (74 Gy prescribed dose), 158 subjects were allocated as Test-
set-3. Specific details for filtering the RTOG-0617 subjects are pro-
vided in Supplementary Materials 1B.
Data preparation

Planning CT and RD were originally extracted in DICOM format
for all subjects. The voxel-wise values in the RD images were scaled
to represent absolute physical dose in units of Gy. We used a deep-
learning automatic lung contouring tool based on previous work
[21] to automatically segment whole lungs. Experienced radiation
oncologists (ZZ and MY) inspected and (where needed) manually
corrected the auto-generated lung masks to ensure accuracy and
segmentation consistency. Data preparation and preprocessing
steps are described in Supplementary Materials 2A.
Development of deep learning RP models

A 3D ResNet architecture was implemented as the main back-
bone of the RP model (see technical schematic in Supplementary
Materials Figure S1). In brief, the pre-processed CT and RD arrays
of the same dimensions were passed to the ResNet via linear mix-
ing (W layer) immediately followed by a 7 � 7 convolution layer. In
the W layer, we defined the composite input source as CTd, where
CTd ¼ ðA� CTÞ þ ðB� RDÞ. A and B were thus the mixing ratio of CT
and RD, such that A was always fixed at unity. Values of A and B
were tuned as part of the model training process and were deter-
mined by back-propagation of the error.

The ResNet was used as an image-based ‘‘deep feature” genera-
tor; its weights were determined by training an initial baseline
model and thereafter the entire ResNet weights were frozen. The
RP classification model consisted of average pooling and a fully-
connected (FC) layer at the end, which uses the deep feature maps
generated by the ResNet in order to compute a class probability of
RP at a sigmoid function layer. A purely binary classification (RP or
non-RP) was computed by applying a threshold of 0.5. The core of
the ResNet comprised eight repeating residual blocks containing
convolution (conv), batch normalization (BN) and Rectified Linear
Unit (ReLU) activation. We used an Adam optimizer with a learning



Fig. 1. A, The pipeline of this study: lung segmentation, model construction, model evaluation and visualization. B, Lung mask contouring using deep learning based
automatic tool and reviewed and modified by two physicians. And model architecture. C, First, test-set-1, 2, and 3 were used to validate the base model built from training set.
Second, forty patients from test-sets-2 and 3 were used to adjust the weight and fully connected layers, respectively, and validated by the test-sets-2 and 3 (without forty
patients). This step was repeated ten times. D, Visualization of the model was achieved by the guided gradient weighted class activation mapping.
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rate of 0.0001 and Binary Cross-Entropy as the loss function. The
training strategy, loss function definition and model tuning hyper-
parameters are shown in Supplementary Materials 2D.

After training using exclusively the Training set, the baseline
model was evaluated in each of the three hitherto unseen cohorts
i.e., Test-set-1 (medical university cancer hospital, 60 Gy pre-
scribed), Test-set-2 (RTOG-0617 control arm, 60 Gy prescribed)
and Test-set-3 (RTOG-0617 experiment arm, 74 Gy prescribed).

To examine the feasibility of ‘‘adjusting” the model for the same
nominal prescribed dose but different planning protocol, we
attempted two related experiments. First, we randomly chose 40
subjects from Test-set-2 without replacement and then proceeded

to re-train only the CT-RD mixing ratio (i.e., the W layer) and the
FC classifier – the ResNet was kept frozen as abovementioned.

As cross-validation, we evaluated the adjusted model using the
remainder of Test-set-2 subjects (hereafter, Test-set-2* = the initial
194 subjects minus the 40 selected for adjustment = 154). To check
for random vagaries of selecting 40 patients, we repeated the
3

entire experiment 10 times, each time choosing different subsets
of 40 patients. Secondly, to see if there was added value of using
more patients, we adjusted the baseline model using all 194 sub-
jects prescribed to 60 Gy in the RTOG control arm. However, it is
no longer possible to check for over-optimism using repeated
cross-validation, so 1000 times bootstrapping with replacement
from Test-set-2 (hereafter Test-set-2#) was used to estimate a
range of validation results.

To examine the feasibility of ‘‘adjusting” the model for simulta-
neously different prescribed dose and different planning protocol,
we re-did the two related experiments above only utilizing Test-
set-3.

To help visualize imaging and dose features that influence
RP/non-RP prediction, and thus assist with clinical interpreta-
tion of the model attention area, activation heatmaps were
generated by back-projecting Grad-CAM values as overlay on
the planning CT and dose images (see detail in Supplementary
Materials 2C).
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Comparator RP models as alternatives to deep learning of mixed CT
and RD models

Amodel employing only CT images and a model employing only
RD images were constructed with the same process as the com-
bined model described above for comparison.

We compared the aforementioned models against simple logis-
tic regression based either on (i) dose-volume histograms (DVH)
only, or (ii) clinical parameters only, or (iii) a combination of
DVH and clinical parameters. Due to the high degree of correlation
that is well-known in DVH metrics, we only considered V20 and
mean lung dose (MLD) in the DVH-based model. For the clinical
model, the patient age and presence of interstitial lung abnormal-
ities were selected according to Supplementary Material Table S1.
Further detailed information on the construction of the DVHmodel
and clinical parameters model are provided in Supplementary
Materials 5B.
Statistical analysis

The discrimination performance of the model was quantified
using area under the receiver-operator curve (AUC), accuracy, sen-
sitivity, and specificity of RP prediction. For all performance met-
rics reported, we estimated 95% confidence intervals by 1000
times bootstrapping. Goodness-of-fit was tested by calculating
the model calibration error [22,23].

Patients’ baseline characteristics for continuous variables are
presented as mean ± standard deviation. For univariate analysis
of clinical parameters, Pearson chi-squared tests and exact Fisher
tests were used for categorical variables and logistic regression
for continuous variables. For significance of clinical factors, a
two-sided hypothesis test at the a = 0.05 confidence level was
assumed. Clinical and DVH data were analyzed in the Statistical
Package for Social Science program (SPSS for Windows, version
27.0; SPSS Inc, Chicago, IL). All deep learning models were con-
Table 1
Patient characteristics in Training set, Test-set-1, 2, and 3.

Characteristics Training set
(n = 314)
Mean ± SD

Test set 1
(n = 35)
Mean ± SD

Age median, range 61 (30–85) 62 (34–75)
Gender
Male 238 (75.8%) 23 (65.7%)
Female 76 (24.2%) 12 (34.3%)

Smoking
Yes 71 (22.6%) 9 (25.7%)
No 241 (76.8%) 26 (74.3%)
Unknow 2 (0.6%) 0

Histology
LUSC 84 (26.8%) 8 (22.9%)
LUAD 75 (23.9%) 10 (28.6%)
LCU – –
NOS – –
SCLC 155 (49.4%) 17 (48.6%)

Rt_technique
3D-CRT – –
IMRT 87 (27.7%) 5 (14.3%)
VMAT 227 (72.3%) 30 (85.7%)

Conso chemo
Yes 179 (57.0%) 19 (54.3%)
No 135 (43.0%) 16 (45.7%)

PTV (cc) 446.82 ± 188.51 417.72 ± 179.70
V5_lung (%) 48.80 ± 10.15 48.82 ± 10.83
V20_lung (%) 24.43 ± 5.24 24.06 ± 4.90
MLD (Gy) 13.37 ± 2.62 13.06 ± 2.61

Abbreviations: Pts = patients; LUSC = lung squamous cell carcinoma; LUAD = lung aden
SCLC = small cell lung cancer; Rt_technique = radiotherapy technique used to treat patien
radiotherapy; VMAT = volumetric modulated arc therapy; chemo = chemotherapy;
V5_lung = Lung V5 (%);V20_lung = Lung V20 (%); MLD = Mean lung dose (Gy).
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structed and test set performance assessed using Python (version
3.8.5) and R software (version 4.0.5), respectively.
Code and data availability

Code packages and libraries for constructing our deep learning
models are given in Supplementary Materials 2. The source code
is made open access at https://gitlab.com/w654053334/rp_
prediction.

The RTOG trial dataset may be obtained by contacting the spon-
sors for secondary re-use of data. Training set and Test-set-1 are
private institutional collections, which may be made available to
other researchers upon reasonable request and subject to data
sharing agreements – please contact the corresponding author.
To assist readers with using our RP model, we have prepared an
open access online version with user interface (see Supplementary
Materials 3).
Result

The characteristics of patients are shown in Table 1. Statistically
significant heterogeneity between groups was observed across the
majority of clinical factors, except for age and smoking. In Table 2,
the clinical factors were grouped by RP versus non-RP. In univari-
ate analysis, age, planning tumor volume (PTV), volume of the lung
receiving 5 Gy (V5_lung) and 20 Gy (V20_lung), and mean lung
dose (MLD) were each statistically significantly higher in patients
with RP versus non-RP. Additional detailed clinical characteristics
in the four datasets are given in Supplementary materials 1C
(Table S1-3).

The predictive performance of models for RP is summarized in
Table 3. The baseline model performed well on Test-set-1 (AUC
0.83) compared to Test-set-2 (AUC 0.55) and Test-set-3 (AUC
0.63). However, after adjustment, model discrimination was
Test set 2
(n = 194)
Mean ± SD

Test set 3
(n = 158)
Mean ± SD

P-value

64 (37–82) 63 (41–82) 0.243
<0.001

115 (59.3%) 89 (56.3%)
79 (40.7%) 69 (43.7%)

<0.001
14 (7.2%) 11 (7.0%)
167 (86.1%) 144 (91.1%)
13 (6.7%) 3 (1.9%)

<0.001
75 (38.7%) 70 (44.3%)
86 (44.3%) 63 (39.9%)
4 (2.1%) 1 (0.6%)
29 (14.9%) 24 (15.2%)
– –

<0.001
115 (59.3%) 81 (51.3%)
79 (40.7%) 77 (48.7%)
– –

<0.001
173 (89.2%) 136 (86.1%)
21 (10.8%) 22 (13.9%)
507.93 ± 273.31 482.66 ± 261.40 0.014
57.68 ± 15.29 57.11 ± 14.65 <0.001
29.06 ± 7.47 31.22 ± 7.96 <0.001
16.66 ± 4.15 19.16 ± 4.55 <0.001

ocarcinoma; LCU = Large cell undifferentiated; NOS = Non-small cell lung cancer;
t; 3D-CRT = 3dimensional comformal radiation therapy; IMRT = intensity-modulated
Conso chemo = consolidation chemotherapy; PTV = planning tumor volume;
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improved in Test-set-2* (AUC 0.65) and Test-set-3* (AUC 0.70),
respectively. The discrimination metrics of using only a subset of
forty patients to adjust model were close to using the entire data-
set, with small differences in AUC of 0.03 and 0.01, respectively.
The accuracy, sensitivity and specificity largely followed the same
pattern of findings as for AUC.

The mixing ratio, i.e. A and B weights, for CT and RD from each
model were summarized in Supplementary Materials 4 Table S4.
Across the baseline model and its subsequent adjustments, RD
was overall more important than CT from an RP prediction per-
spective. Among nominally 60 Gy subjects, the post-training
weight of RD relative to CT was reasonably stable around 1.5
(range 1.42–1.67). Among nominally 74 Gy subjects, the relative
weight of RD to CT was suppressed to about 1.2 (range 1.20–1.25).

For comparison with the baseline model that included CT and
RD, an alternative baseline model was constructed by either CT
or RD alone and then tested on Test-set-1. The original baseline
model (with both CT and RD, AUC 0.83) performed better than
either CT-only or RD-only alternatives (AUC 0.63 for CT and 0.69
for RD, additionally accuracy, sensitivity and specificity were
reported in Supplementary Materials 5A Table S5).

The discrimination of the DVH-based logistic model was poorer
than that of the RD-only deep learning model (AUC 0.66 vs. 0.69)
when evaluated in Test-set-1, and both were markedly poorer than
the baseline model results. Discrimination of the logistic regression
model based on clinical parameters (AUC 0.71 in Test-set-1) was
poorer than the baseline model, but was slightly better than either
of the RD-only deep learning and the DVH-only logistic regression.

The calibration error of the baseline model was 0.07 in Test-set-
1, 0.22 in Test-set-2, and 0.18 in Test-set-3, indicating that there
was no major calibration issue. However, after the model adjust-
ment, the average expected calibration error was reduced to 0.14
for Test-set-2, and 0.13 for Test-set-3.

Some representative examples of 3D (Supplementary Materials
Video) and 2D heatmaps (Fig. 2 and Supplementary Figure S11-13)
generated by Grad-CAM may help to illustrate the global view for
the whole lung and detailed view of each slice, respectively. In
patients with pre-existing lung disease (the area indicated by the
pointer in Fig. 2 and Supplementary Figure S11), such as interstitial
lung abnormalities or emphysema, model attention appears more
widely dispersed overall in the lungs. In contrast, for patients with-
out pre-existing lung disease, relatively narrow distribution of
model attention has been observed that follows the distribution
of dose in the RD (Supplementary Figure S13). This clearly shows
that, as far as the prediction of RP goes, a good model needs to
be trained that can make use of (CT) features associated with
pre-existing lung disease as well as (RD) features related to promi-
nent dose distribution in the normal lungs.

Representative feature maps extracted from each residual block
of the RP and non-RP cases are shown in Supplementary Materials
2E (Figure S2-9). As the level deepens in the model, the extracted
features become more complex and abstract. While these features
maps are very important since the FC layer uses these ResNet-
generated feature maps to estimate the probability of RP, it
nonetheless remains challenging to interpret the feature maps
and thus visually associate them with clinically meaningful fea-
tures. Thus, in this respect, the grad-CAM heatmaps overlaid onto
the CT and RD might be potentially more useful by way of clinical
interpretation.
Discussion

In this study, we used pre-treatment radiotherapy planning CT
and planned radiation dose distribution to build a ResNet-based
deep learning model to predict RP. The baseline model is trained
5

using a joint representation of features from CT and RD, which
we implemented using a linear mixing method of the intensity/-
dose magnitudes. We then showed that such a baseline model
can be subsequently adjusted by only re-training the mixing ratio
(i.e., the W layer) and the FC classifier for RP, at the start and at the
end of the ResNet, respectively, without changing any other
weights in the ResNet feature extractor itself.

The combination of CT and RD predicted RP reasonably well in
Test-set-1, which was expected since the test set most closely
resembled the Training set in terms of prescribed dose, RT planning
procedure and race cohort. Model performance and model calibra-
tion on the RTOG-0617 datasets, i.e., Test-set-2 and Test-set-3
were overall improved after adjusting the baseline model with
either some or all of the each dataset.

However, the adjusted model did not perform as well on either
of the RTOG-0617 subsets as it performed on Test-set-1. We
hypothesize this is because RTOG-0617 data was contributed
unevenly across 185 institutions [17], which may leave a large
amount of heterogeneity among patients as well as residual differ-
ences between scanners, physicians delineations and RT planners
that the trial protocol could not reconcile, as one can see in Table 1.
It was interesting that the baseline model initially performed bet-
ter in Test-set-3 (74 Gy) with higher AUC and sensitivity compared
to Test-set-2 (60 Gy), which should have been closer to the pre-
scription setting of the training dataset. However, we cannot rule
out random chance since the baseline model initially performed
sub-optimally for both Test-set-2 and Test-set-3. This may also
suggest that treatment delivery modality may not be the critical
factor for the model, at least relative to lung tissue and dose hot-
spots, and other sources of clinical heterogeneity may be more
important. We are unable to resolve this question at present, and
resolution of such questions needs more detailed study.

Grad-CAM heatmaps overlaid onto CT and RD suggested syner-
gistic information for the prediction of RP, that is, the influential
features point towards pre-existing lung injury in CT and regions
of high dose in normal lung. Moreover, we proposed a computa-
tionally simplified way to adjust the model to fit different clinical
settings. We suggest this a feasible method to adapt to different
dose groups and planning protocols. However, it must be noted
that even this limited adjustment-based retraining is still more
computationally intensive than retraining a conventional machine
learning model from scratch; as such, it is presently computation-
ally unfeasible to perform more than a dozen repetitions of cross-
validation or bootstraps during training.

This study included a retrospective single-institutional dataset
as training set, and three other cohorts to evaluate the perfor-
mance of our model. All test sets were prospectively collected to
ensure the best available accuracy of registering the primary out-
come of RP. In clinical practice, an RP event needs to be diagnosed
by following up patients’ symptoms and examinations. To distin-
guish RP from other types of pneumonia, follow-up CT examina-
tions, routine blood tests, and C-reactive protein may be used.
The endpoint of this study is grade 2 or higher RP, because patients
with grade 2 RP require medical intervention and their activities of
daily living are affected.

In this study, As mentioned, the relative importance of RD rela-
tive to CT was about 1.5 in most cases, except for the 74 Gy Test-
set-3 where it appeared suppressed to about 1.2. A possible reason
for this is that the standard dose (60 Gy) can induce RP in patients
with intrinsic lung susceptibility to RP, but increasing prescribed
dose to 74 Gy seems not to be additionally effective at inducing
RP. Although the method proposed in this study is potentially an
efficient way to update the baseline model for a new clinical set-
ting, it is still possible to obtain a biased dataset with randomly
sampling 40 patients [24], therefore if a larger dataset may be used
for adjustment, we expect the model will be more robust.



Table 2
Patient characteristics group according to outcome of RP or without RP.

Characteristics Without RP
(n = 565)
Mean ± SD

With RP
(n = 136)
Mean ± SD

P-value

Age median, range (years) 62 (30–86) 65 (38–80) 0.004
Gender 0.170
Male 368 (65.1%) 97 (71.3%)
Female 197 (34.9%) 39 (28.7%)

Smoking 0.229
Yes 464 (82.1%) 114 (83.8%)
No 84 (14.9%) 21 (15.4%)
Unknow 17 (3.0%) 1 (0.7%)

Histology 0.926
LUSC 189 (33.5%) 48 (35.3%)
LUAD 191 (33.8%) 43 (31.6%)
LCU 5 (0.9%) 0
NOS 43 (7.6%) 10 (7.4%)
SCLC 137 (24.2%) 35 (25.7%)

Histology 0.778
LUSC 189 (33.5%) 48 (35.3%)
NSC-NSCLC 239 (42.3%) 53 (39.0%)
SCLC 137 (24.2%) 35 (25.7%)

Rt_technique 0.620
3D-CRT 162 (28.7%) 34 (25.0%)
IMRT 200 (35.4%) 48 (35.3%)
VMAT 203 (35.9%) 54 (39.7%)

Conso chemo 0.046
Yes 418 (74.0%) 89 (65.4%)
No 147 (26.0%) 47 (34.6%)

PTV (cc) 459.54 ± 226.35 515.30 ± 253.67 0.013
V5_lung (%) 52.50 ± 13.66 55.72 ± 12.70 0.013
V20_lung (%) 26.91 ± 7.22 28.52 ± 6.92 0.020
MLD (Gy) 15.42 ± 4.37 16.21 ± 3.99 0.056

Abbreviations: Pts = patients; LUSC = lung squamous cell carcinoma; LUAD = lung
adenocarcinoma; LCU = Large cell undifferentiated; NOS = Non-small cell lung
cancer; SCLC = small cell lung cancer; Rt_technique = radiotherapy technique used
to treat patient; 3D-CRT = 3dimensional comformal radiation therapy; IMRT = in-
tensity-modulated radiotherapy; VMAT = volumetric modulated arc therapy;
chemo = chemotherapy; Conso chemo = consolidation chemotherapy; PTV = plan-
ning tumor volume; V5_lung = Lung V5 (%);V20_lung = Lung V20 (%); MLD = Mean
lung dose (Gy).

A deep learning model based on CT and radiation dose images predicts radiation pneumonitis
Some interesting points were found based on the attention
maps (Fig. 2 and Supplementary Materials 6 Figure S11-13), where
we tried to understand the ‘‘diagnostic” logic of the model. The
results of this study are consistent with previous insights [25–
30] and based on our data set, interstitial lung abnormality is an
influential factor for the occurrence of RP. In the future, as the sam-
ple size expands, the model based only on patients with interstitial
Table 3
Performance of baseline model and adjustments (using 60 Gy and 74 Gy arms of RTOG-0

Model Adjustment Evaluati

Test-set
(35)

Baseline model No adjustment Test-set
(194)
Test-set
(158)

Adjusted for RTOG 60 Gy arm 40 randomly selected from Test-set-2 Test-set
(154)

Adjusted for RTOG 60 Gy arm All subjects from Test-set-2 Test-set
(194 boo

Adjusted for RTOG 74 Gy arm 40 randomly selected from Test-set-3 Test-set
(118)

Adjusted for RTOG 74 Gy arm All subjects from Test-set-3 Test-set
(158 boo

Abbreviations: AUC = area under receiver operating characteristic curve; 95% CI = 95% co
model are adjusted with 40 patients for each set; # The pound symbol indicates that the
number in parentheses are the sample size for the evaluations.
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lung abnormalities can be developed and compared with the
model developed in this study by Grad-CAM approach. Another
feature is that the attentional areas tend to be located more in
the central area of the lungs than in the peripheral areas. We spec-
ulate that there are two reasons for this phenomenon. First, RD is
denser in the central part because of the irradiation of metastatic
lymph nodes [28,29]. Secondly, the dose received by the heart
may be another factor in the development of RP [30,31]. Krafft
et al. found that cardiac DVH metrics improved the predictive
power of radiomics models for RP prediction [12]. In our previous
study, cardiac comorbidity was also found to be an independent
predictor of RP [32].

Based on these observations, we speculate that the predictive
logic of the model may be as follows: for patients with pre-
existing lung disease, which was determined in collaboration with
radiologists, the model pays attention to lung tissue with disease
and analyzes these areas in conjunction with RD distribution. For
patients with overall good (no lung disease) status, the model pref-
erentially pays attention to regions of high dose and predicts RP
mainly using the RD features. For most patients, the central part
of the lung and the regions adjacent to the heart are more impor-
tant than the peripheral lung. We also compared an RD-only deep
learning model with the DVH-based model, which is another com-
monly used model in clinical practice. From the results, the predic-
tive power of the DVH-based model is not better than that of the
RD-based deep learning model.

The result of this study has a few real-world clinical implica-
tions. In this study, we did not iteratively tune the decision thresh-
old of the model. In practice, we may select the thresholds that
prioritize either higher sensitivity or higher specificity, but we
could not do both. Patients with very low probability of RP could
receive standard or adequate doses if adjusted models with high
specificity were used for these hospitals, which might improve
their prognosis [1,2]. For patients with a very high probability of
RP, physicians can give these patients more frequent examinations
or preventive medications to lower the grade of RP or prevent it
from occurring [33]. Alternatively, this clinical tool may be of assis-
tance during the doctor-patient consultation about risks and
expectations of treatment.

There were several limitations in this study. The deep learning
model with complex neural networks needs a large dataset to
avoid overfitting. We included 701 patients in this study and
although, to best of our knowledge, this is the largest dataset on
the topic of artificial intelligence model to predict RP, model devel-
opment will benefit further from even larger datasets including
617 trial).

on AUC
(95%CI)

Accuracy
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

-1 0.83
(0.82–0.91)

0.82
(0.75–0.81)

0.70
(0.67–0.77)

0.88
(0.83–0.89)

-2 0.55
(0.47–0.69)

0.70
(0.57–0.82)

0.41
(0.39–0.52)

0.69
(0.61–0.84)

-3 0.63
(0.53–0.72)

0.66
(0.60–0.73)

0.60
(0.46–0.74)

0.68
(0.61–0.75)

-2* 0.65
(0.54–0.77)

0.76
(0.63–0.91)

0.58
(0.48–0.83)

0.70
(0.66–0.98)

-2#

tstrap samples)
0.68
(0.58–0.83)

0.78
(0.80–0.89)

0.77
(0.62–0.97)

0.65
(0.60–0.74)

-3* 0.70
(0.63–0.76)

0.71
(0.63–0.83)

0.62
(0.56–0.86)

0.73
(0.67–0.95)

-3#

tstrap samples)
0.71
(0.62–0.81)

0.78
(0.73–0.84)

0.68
(0.54–0.83)

0.77
(0.71–0.82)

nfidence interval; * the asterisk indicates that the coefficients of CT and RD for this
coefficients of CT and RD for this model are adjusted using the entire data set. The



Fig. 2. Illustration of attention (heat) map of a 60-year-old male with non-small cell lung cancer. A, Two-dimensional attention map. The left image is an overlay of the CT
image and the attention map, with blue to red representing increasing levels of importance (attention scale). The area of interstitial lung abnormalities indicated by pointers.
The image on the right is an overlay of the radiation dose (RD) image and the attention map. From dark to light represents low to high dose, and from blue to red represents
increasing importance. B, Three-dimensional attention map. The different colors represent different levels of importance (attention scale).
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heterogeneity of CT scanners, dose planning systems, etc. different
institutions with improvements expected both in terms of perfor-
mance and in terms of generalizability across backgrounds, scan-
ners, treatment strategies and patients. Second, this model did
not include combinations of clinical parameters including cyto-
kines. Our previous studies and others have demonstrated that it
has predictive value for RP [34,35]. The combination of cytokines
could improve the performance of the model [36], however, the
present aim of our study was to focus on a non-invasive approach
to modeling and therefore cytokines were not included. A potential
benefit is that this model can be directly embedded into RT plan-
ning systems, as it only needs CT and RD information and can
export its predictions directly to other systems for clinical decision
7

support. In addition, patients included in this study did not receive
concurrent chemotherapy with the same regimen, and we think
that the predictive power of the model could be improved if clini-
cal factors were harmonized. On the reverse side, it is difficult to
maintain the same treatment regimen everywhere in the world,
and the generalizability of the model would be affected if only
patients receiving the same chemotherapy regimen were included.

Finally, we did not include patients who received immunother-
apy, which is already a standard therapy for local advanced lung
cancer patients now. And the incidence of pneumonitis is higher
with the addition of durvalumab after concurrent chemo-
radiotherapy [37,38]. There are still challenges to be addressed
before including patients receiving immunotherapy in the analysis,
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such as differential diagnosis of immune checkpoint inhibitor
therapy-related pneumonitis and RP and datasets containing large
sample sizes of patients receiving immunotherapy. The model we
developed in this study can served as a base (pre-trained) model
for future studies that include patients receiving immunotherapy
[39].

In summary, we successfully developed a deep learning model
to predict RP, and this model can be adjusted easily to fit new
cohorts. We tried to uncover the model prediction logic by a visu-
alization approach. In addition, a ready-to-use online software was
developed to assist clinical practice. Despite several limitations, we
believe that deep learning algorithm possesses great potential to
sever as a clinical assistant tool.
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