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Abstract

Biomechanics of biological fibrous tissues as the meniscus are strongly

influenced by past histories of strains involving the so-called material heredita-

riness. In this paper, a three-axial model of linear hereditariness that makes use

of fractional-order calculus is used to describe the constitutive behavior of the

tissue. Fluid flow across meniscus' pores is modeled in this paper with Darcy

relation yielding a novel model of fractional-order poromechanics, describing

the evolution of the diffusion phenomenon in the meniscus. A numerical appli-

cation involving an 1D confined compression test is reported to show the effect

of the material hereditariness on the pressure drop evolution.

KEYWORD S
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1 | INTRODUCTION

Meniscus is C-shaped fibro-cartilaginous tissues situated between femoral condolences and tibia. They perform
many important biomechanical functions, such as shock absorption and uniform load distribution, co-operate
with tendons and protect the knee joint from damage by hyper-extension and hyper-flexion. They also play a criti-
cal role in the proprioception, lubrication of joints and nutrition of articular cartilage.1,2 The complete or partial
loss of a meniscus can have negative effects on the knee, resulting in serious long-term consequences. Several
studies have been conducted to formulate menisci mechanical behavior, but this is extremely difficult due to their
complex inhomogeneous microstructure and lack of comprehensive experimental characterization of material
properties.3–6

In recent years, a considerable number of studies have been conducted on poroelastic models to describe diffu-
sion phenomenon on meniscus.7–9 In these models, Fick and/or Darcy transport equations has been modified
using fractional calculus in order to introduce the memory effect induced by the interaction of fluid particles and
pore structure of the elastic medium.10,11 In other studies, a power-law variation of the geometric and physical
properties of the porous medium was considered, leading to a fractional-order relationship between incoming
flow and pressure applied to the control section.12 The common base of aforementioned approaches is represen-
ted by the linear elastic behavior of the fibrous tissue representing the meniscus. However, it is well-known as
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reported in relevant scientific literature that the stress in collagen tissue representing meniscus depends on past
history of strain and not only on the actual value of the strain.13–17 This effect is known as material hereditariness
and it is usually represented by coupling linear elastic springs and linear viscous dashpot to represent the mate-
rial behavior.11,18–22

In this study, the authors use the fractional-order hereditariness model to describe the mechanical behavior of
fibrous tissue by means of a three axial model. Indeed, experimental behavior of meniscal tissues in long-standing uni-
axial test is represented by Creep function J tð Þ and Relaxation function G tð Þ that may be modeled as power-law J tð Þ/
tβ and G tð Þ/ t�β with 0≤ β≤ 1, yielding an accurate description of experimental data.3,18,23–26 The numerical examples
discussed in the paper involves a confined compression test in a semi-drained condition and a fully drained test that
have been used in order to exploit the constitutive relation of the investigated model. It has been shown that the biome-
chanics of the proposed model is markedly influenced by three parameters, namely the anomalous consolidation coeffi-
cients Cα and Cβ, accounting for different deformation effects and the β order of Caputo's fractional-order derivative.
The governing equations of the poromechanical problem of the fractional hereditary materials (FHM) were obtained
and solved as for the case of cylindrical symmetry. In particular, the classic 1D confined compression test and fully dra-
ined test of a poromechanics are studied, using the classical poroelasticity for comparison's sake. In the conclusions, the
authors highlight how, also in this application, the effects of Caputo's fractional derivative well describe the problem
when the order of the β derivation varies. In particular, the physical meanings of the chosen ranges of β values are ana-
lyzed and explained.

2 | THE CONSTITUTIVE EQUATIONS OF FRACTIONAL-ORDER
POROMECHANICS

The presence of a biphasic material containing, respectively, a fluid and a solid component is usually faced in
the context of elastic behavior of the solid and fully viscous behavior,2,3 with very low Reynolds numbers, of the
fluid. The representative volume elements (RVE), namely the smallest volume that contains elements of
the solids and pores filled by fluid phase involved in poromechanics contains at the same time the two phases that
interacts only in the force balance conditions and that undergoes the same strain field. As a consequence the con-
stitutive equations of poromechanics requires, besides the six relations among the six components of the stress
vector in and the six components of the strain vector in Voigt representation the additional hydrostatic stress field
p tð Þ, omitting spatial dependence, that represent variation of pressure in the fluid phase. This latter additional state
variable is paired by the balance of fluid content rate _ζ tð Þ that, however needs the knowledge of the fluid flux across
the boundaries of the reference volume. Darcy equation for the diffusive motion of the fluid is therefore used to
model fluxes in terms of the material permeability, a measure of the interconnection of the material pores allowing for
fluid motion.

The presence of biological tissues with a marked presence of hydrated collagen, as in meniscus tissue, makes,
however, largely ineffective the elastic models of the material since a marked-time dependent behavior of the rep-
resentative volume element is observed also in absence of fluid-filling material pores.13,16,27–34 As a consequence a
mathematical formulation that can be used to represent this mechanical behavior is the linear theory of material
hereditariness that is nowadays described by the so-called Fractional-Order hereditariness (FOH). In this setting
the formalism of fractional-calculus, lately used in several biomechanical contexts18,21,25,26 allows to replace the
well-known constitutive equations of classical linear elasticity with their-fractional-order counterparts, involving,
as additional parameters the derivation order β � 0,1½ �. In this section, we introduces, shortly, the basic equation of
FHM in uniaxial case (2.1), as well as in the three-axial case (2.2), and, subsequently, the constitutive relation for a
biphasic material (2.3).

2.1 | Long-standing uniaxial tests in FHM

The presence of material hereditariness is usually detected for linear material behavior, where this time-dependent
behavior is expressed in terms of creep and relaxation function. In detail, J tð Þ denotes the strain response to the unit
step of stress (Creep test), while G tð Þ denotes the stress response to a unit step of strain (Relaxation test). Moreover, by
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using the Boltzmann superposition principle, the general stress–strain relation can be expressed in terms of one mate-
rial function [J(t) or G(t)] through a linear hereditary integral11,19:

σ tð Þ¼
Z t

0

G t�σð Þdε σð Þ¼
Z t

0

G t�σð Þ _ε σð Þdσ, ð1aÞ

ε tð Þ¼
Z t

0

J t�σð Þdσ σð Þ¼
Z t

0

J t�σð Þ _σ σð Þdσ, ð1bÞ

Where �½ � ¼ d
dt, so dσ¼ _σdt and dε¼ _εdt. Additionally, creep and relaxation function must satisfy the reciprocity rela-

tion in the Laplace domain:

bJ sð ÞbG sð Þ¼ 1
s2
, ð2Þ

s indicates the Laplace parameter and bf sð Þ¼L f tð Þ½ � is the Laplace transform of the generic function f tð Þ.
In the context of materials hereditariness, a power-law representation of creep and relaxation functions was intro-

duced in the early twentieth century,20 that is:

G tð Þ¼ Cβt�β

Γ 1�βð Þ , ð3aÞ

J tð Þ¼ tβ

CβΓ βþ1ð Þ , ð3bÞ

where Γ is the Euler-Gamma function, while β� 0,1½ � and Cβ >0 are material parameters, that may be estimated
through a best-fitting procedure of experimental data.21,35,36

Furthermore, substituting Equations (3a) and (3b) into Equations (1a) and (1b), it is found that the constitutive laws
for linear FHM are ruled by fractional operator:

σ tð Þ¼ Cβ

Γ 1�βð Þ
Z t

0

t�σð Þ�β _ε σð Þdσ¼Cβ
C
0Dβ

t ε
� �

tð Þ, ð4aÞ

ε tð Þ¼ 1
CβΓ βþ1ð Þ

Z t

0

t�σð Þβ _σ σð Þdσ¼ 1
Cβ

0I β
t σ

� �
tð Þ, ð4bÞ

where C
0Dβ

t is the so-called Caputo fractional derivative, which is a generalization of an integro-differential operator of
integer order, while 0I β

t is the Riemann-Liouville fractional integral, with 0< β<1. Due to the fact that, as β tends to
0 or 1, zero and first order derivatives are respectively obtained, Equations (4a) and (4b) reduce to the constitutive law
of a purely elastic material (a spring) or a Newton-Petroff purely viscous fluid (a dashpot), respectively.1,37 So,
Equations (4a) and (4b) essentially indicate that any linear viscoelastic material has an intermediary behavior between
an elastic material and a viscous material. Consequently, use of power-laws and of fractional-order operators is usually
connected to the introduction of the so-called springpot element in the rheological context.38

2.2 | Three-axial constitutive equations of FHM

The extension of the constitutive relation presented in Section 2.1 to the more general case of three axial isotropic mate-
rial is shortly discussed in this section. The three-axial state of stress in an FHM is described by the 2nd-order stress
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tensor σ with component σij which presents the symmetries σij ¼ σji for i≠ j and i, j¼ 1,2,3. In the same way, the state
of strain is described, by the 2nd-order small strain tensor ε.

Particularly, in this paper we use vector description of the state variables of the material introducing the six-
component stress and strain vectors, respectively as:

σT tð Þ¼ σ11 tð Þσ22 tð Þσ33 tð Þσ32 tð Þσ31 tð Þσ12 tð Þ½ �, ð5aÞ

εT tð Þ¼ ε11 tð Þε22 tð Þε33 tð Þε32 tð Þε31 tð Þε12 tð Þ½ �, ð5bÞ

where t is the current time, while σij tð Þ and εij tð Þ are the mixed index stress and strain components, namely i≠ j denote
shear stress and strain, respectively.

Let us assume that σij tð Þ¼ σij tð Þδij, where δij is the well-known Kronecker symbol that is δij ¼ 0 when i≠ j
and equals to 1 for all other cases, namely i¼ j; consequently, let us consider a single normal stress σii ¼ 1 for (i= 1,2,3).

In such a context, the evolution of the strain εii tð Þ both along the stress direction σii tð Þ and in the orthogonal planes
reads:

εii tð Þ¼ JL tð Þσii ¼ JL tð Þ, ð6aÞ

εkk tð Þ¼ εjj tð Þ¼�Jυ tð Þσii, ð6bÞ

with i≠ j≠ k and i, j,k¼ 1,2,3. In Equations (6a), (6b) JL tð Þ and Jυ tð Þ are the axial and the transverse creep functions
with respect to the stress direction, respectively. Under the assumption of smooth load process σij tð Þ with i¼ 1,2,3, the
presence of contemporaneous stress may be accounted for by the integral:

εii tð Þ¼
Z t

0

JL t�σð Þ _σii σð Þ� Jυ t�σð Þ _σjj σð Þþ _σkk σð Þ� �
dσ: ð7Þ

In the context of material isotropy, shear strains 2εij tð Þ (with i≠ j) are not involved by the axial stress σii tð Þ, but only
by the shear stress as σij tð Þ with i≠ j. The evolution of the shear strain 2εij tð Þ due to a generic shear stress history σij tð Þ
may be obtained by superposition integrals by means of the shear creep function JT �ð Þ as:

2εij tð Þ¼
Z t

0

JT t�σð Þ _σij σð Þdσ ð8Þ

with i≠ j and i, j¼ 1,2,3. The constitutive equations reported in Equations (7), (8) may be reported in Voigt notation as:

ε tð Þ¼
Z t

0

J t�σð Þ _σ σð Þdσ, ð9Þ

where J tð Þ is the creep functions matrix that is described as:

J tð Þ¼ J Að Þ tð Þ 0

0 J Tð Þ tð Þ

" #
, ð10Þ

J Að Þ tð Þ includes the elements of the axial creep matrix that is:

4 of 20 AMIRI ET AL.
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J Að Þ
ij tð Þ¼ JL tð Þδij� 1�δij

� �
Jυ tð Þ, ð11Þ

While J Tð Þ tð Þ is the shear creep matrix, which is a diagonal matrix gathering the shear creep functions JT tð Þ as:

J Tð Þ
ij tð Þ¼ JT tð Þδij: ð12Þ

Particularly, the three creep functions JL tð Þ, Jυ tð Þ and JT tð Þ are related by a linear relation that reads12:

JT tð Þ¼ 2JL tð Þ� Jυ tð Þ: ð13Þ

As seen in Equation 2, creep function matrix J tð Þ in Equation (10) is related to the definition of the relaxation
matrix G tð Þ by means of the conjugation relation as:

bG sð ÞbJ sð Þ¼ 1
s2
I, ð14Þ

where I is the identity matrix, while bG sð Þ and bJ sð Þ are the Laplace transforms of the relaxation G tð Þ and creep J tð Þ func-
tions matrices, respectively.

With straightforward manipulations of Equation (14), the relaxation matrix may be written as:

G tð Þ¼ G Að Þ tð Þ 0

0 G Tð Þ tð Þ

" #
, ð15Þ

where:

G Að Þ
ij tð Þ¼L�1 1

s2 bJLþbJυ� � bJL�2bJυ� �
2
4

3
5 bJL�bJυ� �

δijþ 1�δij
� �bJυh i

, ð16aÞ

G Tð Þ
ij tð Þ¼L�1 1

s2 bJLþbJυ� �
2
4

3
5δij: ð16bÞ

Boltzmann superposition principle, allows, therefore to the evaluation of the stress vector that reads:

σ tð Þ¼
Z t

0
G t�σð Þ _ε σð Þdσ: ð17Þ

The torsional, longitudinal and transverse relaxation functions GT tð Þ, GL tð Þ, and Gυ tð Þ are linearly related by an
equation that is similar to the one involving creep functions in Equation (13), reading12:

GT tð Þ¼ 1
2
GL tð Þ�Gυ tð Þð Þ: ð18Þ

The latter allows for the evaluation of the transverse relaxation Gυ tð Þ, as:

Gυ tð Þ¼GL tð Þ�2GT tð Þ ð19Þ

Introducing the power-law representation of the relaxation matrix G tð Þ into Equation (17) as:

AMIRI ET AL. 5 of 20
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G tð Þ¼Gβ
t�β

Γ 1�βð ÞþG ð20Þ

with the coefficient matrices:

Gβ ¼

G Lð Þ
β G υð Þ

β G υð Þ
β 0 0 0

G υð Þ
β G Lð Þ

β G υð Þ
β 0 0 0

G υð Þ
β G υð Þ

β G Lð Þ
β 0 0 0

0 0 0 G Tð Þ
β 0 0

0 0 0 0 G Tð Þ
β 0

0 0 0 0 0 G Tð Þ
β

2
6666666666664

3
7777777777775
, ð21aÞ

G¼

GL Gυ Gυ 0 0 0

Gυ GL Gυ 0 0 0

Gυ Gυ GL 0 0 0

0 0 0 GT 0 0

0 0 0 0 GT 0

0 0 0 0 0 GT

2
666666664

3
777777775
: ð21bÞ

It yields a relation between the stress vector and the history of the strain vector ε tð Þ as:

σ tð Þ¼Gβ

Z t

0

t�σð Þ�β _ε σð ÞdσþG¼Gβ Dβ
0þε

� �
tð ÞþG: ð22Þ

The stress vector obtained as a functional of the strain vector ε tð Þ in Equation (22) is the generalization of the consti-
tutive equation reported in Equation (4a) under the assumption of material isotropy.

Moreover, in the following discussion we assume that G¼ 0, so that a simplified expression for the inverse constitu-
tive equation corresponding to Equation (22) is obtained:

ε tð Þ¼ Jβ

Z t

0

t�σð Þβ�1σ σð Þdσ¼ Jβ I β
0þσ

� �
tð Þ, ð23Þ

where Jβ ¼G�1
β is the creep-coefficient function and it plays the same role as the compliance matrix of the linear theory

of elasticity.

2.3 | The constitutive relation for biphasic FHM

The three-axial hereditariness presented in previous section allows for the introduction of the effects of the presence of
an additional fluid phase in the material pores, as in case of meniscus. To this aim, let us consider the RVE of the
meniscus and let us refer the edges to a three axial orthogonal reference system as in Figure 1.

Let us assume, in the following that the solid phase is represented by a FHM so that the constitutive relations
are obtained as in Section 2.2. The presence of the fluid phase, instead is accounted for introducing an additional
state variable represented by the fluid pore pressure field, namely, p in the constitutive equation ruling material
strains as:

6 of 20 AMIRI ET AL.
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ε11 ¼ JLβI β
t σ11� Jνβ σ22þσ33ð Þ
� �

þ p
3H

ε22 ¼ JLβI β
t σ22� Jνβ σ11þσ33ð Þ
� �

þ p
3H

ε33 ¼ JLβI β
t σ33� Jνβ σ22þσ11ð Þ
� �

þ p
3H

2ε32 ¼ JTβ I β
t σ32

2ε31 ¼ JTβ I β
t σ31

2ε12 ¼ JTβ I β
t σ12

0
BBBBBBBBBBBBB@

, ð24Þ

H is a bulk modulus for fluid variation pressure,39 while JLβ ,J
ν
β,J

T
β are the axial, transverse and torsional component of

the Creep Matrix function Jβ defined in Section 2.2.
Furthermore, system Equation (24) can also be written in matrix form, as:

ε¼ Jβ cI β
t σ

� �
þ 1
3H

p, ð25Þ

where ε and σ are the well-known strain and stress vectors of the solid, respectively. While, p is the fluid pressure field,
defined as pT ¼ p 1 1 1 0 0 0½ �.

Therefore, Equation (25) expresses the six strain components of the solid as a function of stress σ in the solid and
fluid pressure p into the pores. In this context, the dependency of the changes of fluid content ξ tð Þ on these variables
also needs to be considered:

ξ tð Þ¼ 1
3H

σ11þσ22þσ33ð Þþ p
R
, ð26Þ

where R is a physical constant, too.39

In first approximation, Equations (25) and (26) completely describe the properties of solid, for strain and fluid con-
tent, under equilibrium conditions. However, it is convenient to express stress as functions of strain and fluid pressure,
namely:

σ¼cDβ
t Gβ ε� 1

3H
p

� 	
 �
, ð27Þ

where Gβ is the Relaxation Matrix Function reported in previous section (2.2).

FIGURE 1 Schematic representation of a cubic element (on the right side) extracted from the meniscus (on the left side) where the blue

arrows represent the fluid flow across the cubic element, while the black arrows represent normal stresses to the surface.
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The overall stress components in the saturated FHM may then be referred to the strain components and the fluid
pressure as:

σ11 ¼ 2GT
β c
Dβ

t ε11þ rθIð Þ�αcDβ
t p

σ22 ¼ 2GT
β c
Dβ

t ε22þ rθIð Þ�αcDβ
t p

σ33 ¼ 2GT
β c
Dβ

t ε33þ rθIð Þ�αcDβ
t p

σ32 ¼ GT
β c
Dβ

t 2ε32

σ31 ¼ GT
β c
Dβ

t 2ε31

σ12 ¼ GT
β c
Dβ

t 2ε12

0
BBBBBBBBBBBB@

: ð28Þ

With two specific coefficients:

r¼ Gν
β

2GT
β

; α¼ 2GT
β þ3Gν

β

3H
; ð29Þ

whereas, θI represents the volume increase of the solid per initial volume unit, namely the linear strain invariant
θI ¼ ε11þ ε22þ ε33. Although, substituting Equation (28) into Equation (26), increase in fluid content ξ tð Þ becomes:

ξ tð Þ¼ αcDβ
t θI � p

H

h i
þ p
R
: ð30Þ

Its derivative is:

_ξ tð Þ¼ αcDβþ1
t θI � p

H

h i
þ 1
R
∂p
∂t

: ð31Þ

Additionally, Darcy's law, which governs water flow in the porous medium, has been introduced to complete the
system:

q¼�k
μ
=p, ð32Þ

where q is the vector of specific volume flux across a generic cross-section, k is the Darcy permeability coefficient
depending on the material (m2) and μ is the fluid viscosity (kgm�1 s�1). Besides, assuming that water is in-compress-
ible, the water content rate of the solid must be equal to the volume of water entering per second through the surface of
the element, so:

_ξ tð Þ¼�= �q: ð33Þ

Combining the last two equations:

_ξ tð Þ¼ k
μ
=2p, ð34Þ

and substituting Equation (34) into Equation (31), the constitutive equation for a isotropic viscoelastic porous medium
becomes:

8 of 20 AMIRI ET AL.
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αcDβþ1
t θI � p

H

h i
þ 1
R
∂p
∂t

¼ k
μ
=2p: ð35Þ

For the particular case β¼ 0, Equation (35) is equals to the classical poroelasticity equation that is,

1
R
�2a

H


 �
∂p
∂t

¼ k
μ
r2p: ð36Þ

3 | POROMECHANICS OF A CYLINDRICALLY-SHAPED FHM

In this section, we use the constitutive Equation (35) in order to describe the settlement phenomenon that occurs into an
FHM porous medium under a permanent static condition. We discuss this case introducing a symmetric cylinder in the por-
omechanics problem as in (Figure 2) that allows for the reduction of the kinematic field represented by the components of
the displacement vector along a cylindrical reference system, namely, ur r,θ,x3, tð Þ, uθ r,θ,x3, tð Þ and u3 r,θ,x3, tð Þ to just a
one-dimensional component. Indeed for this case, ur ¼ uθ ¼ 0 everywhere and u3 r,θ,x3, tð Þ¼w x3, tð Þ. The specimen is
loaded by a constant and uniform pressure along the free surface of the cylinder σ and we denote the fluid pressure field
as p x3, tð Þ.

Under those circumstances, the kinematic restrictions associated to the problem reads:

ε33 ¼ ∂w x3, tð Þ
∂x3

εrr ¼ εθθ ¼ 0

8<
: , ð37Þ

so that, the first-invariant reads: θI ¼ ε33 ¼ ∂w x3, tð Þ
∂x3

.
In this section, we do not consider specific boundary conditions at the top of the specimen (for z¼ h), that will be

provided for two cases of semi-drained and fully drained cases in the next section. The flow across the bottom vanishes
in one of the two cases (q z, tð Þ¼ 0 for z¼ 0), whereas vanishing overpressure is observed at the top bottom in both cases
p h, tð Þ¼ 0 for z¼ h:.

FIGURE 2 Scheme of confined compression problem of a porous cylindrical material on which a constant pressure is imposed by a

porous membrane.
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In the following, simplified notation will be used introducing a z-axis in the direction of x3 with the same origin
and, therefore the vertical stress field will be denoted as σzz z, tð Þ¼ σ33 x3, tð Þ.

∂p z, tð Þ
∂z

¼ 0, z¼ 0: ð38Þ

Consequently, differential fluid Equation (35) becomes:

αcDβþ1
t

∂w z, tð Þ
∂z

�p z, tð Þ
H


 �
þ 1
R
∂p z, tð Þ

∂t
¼ k
μ

∂2p z, tð Þ
∂z2

ð39Þ

Supporting a load σ on z-axis, Equation (28) becomes:

σ33 ¼ 2GT
β þGν

β

� �
c
Dβ

t
∂w z, tð Þ

∂z
�α cDβ

t p
� �

z, tð Þ¼�σ: ð40Þ

Deriving Equation (40) and replacing it in Equation (39):

Cβ cDβþ1
t p

� �
z, tð ÞþCα

∂p z, tð Þ
∂t

¼ ∂2p z, tð Þ
∂z2

: ð41Þ

Both Cα and Cβ are” anomalous” consolidation coefficients (in the sense of fractional calculus), defined as:

Cβ ¼ αμ

k
α

2GT
β þGν

β

� 1
H

 !
and Cα ¼ μ

Rk
: ð42Þ

Particularly, as β¼ 0 the solid has an Elastic behavior, so the well-known consolidation equation is obtained, in 1D
condition (see Eq.5.439). In detail, the sum of these two coefficients returns the inverse of the so-called consolidation
constant cv (m2 s�1).

CβþCα ¼ 1
cv
: ð43Þ

Equation (41), with initial and boundary conditions, leads to the complete solution of diffusion problem in a porous
medium. In detail, this diffusion phenomenon is ruled by three parameters, namely the anomalous consolidation coeffi-
cients Cα and Cβ, and the order of Caputo's derivative β.

In order to further reduce the number of parameters, the relation (41) can be converted into a non-dimensional
form using the parameters reported below:

p ¼ p
P0

Cβ ¼Cβ

τc
t ¼ t

τc
z ¼ z

h
: ð44Þ

Cβ is the part of the anomalous consolidation coefficient, which is independent of β. Considering τc the characteris-
tic time of the process and h the cylinder height, t and z respectively correspond to the dimensionless values of time
and space.

Consequently, the non-dimensional pressure equation is:

∂

∂t
Cβ Dβ

t
p

� �
zð , tÞþCα

τc
p z, tÞð � ¼ ∂2p z, tð Þ

∂z2
:



ð45Þ

10 of 20 AMIRI ET AL.
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Equation (45) has been solved through variable separation method (see 2.2.140), namely separating p z, tð Þ into non-
dimensional space-dependent ϕ zð Þ and non-dimensional time-dependent y tð Þ functions, as reported below:

p z, tð Þ¼ϕ zð Þy tð Þ: ð46Þ

After substituting Equation (46) into Equation (45), a separation constant λ has been introduced:

1
ϕ

d2ϕ

dz2
¼ 1
y

CβDβþ1yþCα

τc

dy
dt


 �
¼�λ2: ð47Þ

Equation (47) is equivalent to the two following differential equations:

ϕ
00
zð Þþ λ2ϕ zð Þ¼ 0, ð48aÞ

Cβ Dβþ1y
� �

tð ÞþCα

τc
y0 tð Þþ λ2y tð Þ¼ 0: ð48bÞ

The first equation is related to space-evolution, while the second one is related to time-evolution. In detail,
Equation (48a) is a second order differential equation whose general solution is, for λ>0:

ϕ zð Þ¼D1 cos λzð ÞþD2 sin λzð Þ, ð49Þ

Where D1 and D2 are two arbitrary constants, which have been evaluated through the boundary conditions. Solving the
non-dimensional space z problem, then the non- dimensional time dimension has also been solved.

In particular, Laplace transform method41–43 has been used to solve the fractional differential equation of
Equation (48b)

Y sð Þ¼
y 0ð Þ CβsβþCα

τc

h i
þCβsβ�1y0 0ð Þ

Cβsβþ1þ Cα
τc
sþ λ2

: ð50Þ

Its inverse Laplace transform is:

y tð Þ¼L�1 Y sð Þf g: ð51Þ

Consequently, the solution is (see Eq.5.3.3841):

y tð Þ¼
X∞
k¼0

� λ2n
Cβ

� 	k
tk βþ1ð Þ

k!
Ek
β,k βþ1ð Þþ1 � Cα

τcCβ
tβ

� 	
þ Cα

τcCβ

X∞
k¼0

� λ2n
Cβ

� 	k
tk βþ1ð Þþβ

k!
Ek
β, βþ1ð Þ kþ1ð Þ � Cα

τcCβ
tβ

� 	
, ð52Þ

Ek
β,k βþ1ð Þ is the three parameters Mittag-Leffler function,44,45 defined as Ek

α,β zð Þ¼ dk

dzk
Eα,β zð Þ, where:

Eα,β zð Þ¼
X∞
k¼0

zk

Γ βþαkð Þ ð53Þ

with α,β,z�C and ℜ αð Þ>0,ℜ βð Þ>0. In any case, this function is commonly used to find the solution to initial value
problems of a class of fractional partial differential equations.
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Replacing Equations (52) and (49) into Equation (46), the general solution is:

p z, tð Þ¼ D1cos λzð ÞþD2 sin λzð Þð Þ
X∞
k¼0

� λ2n
Cβ

� 	k
tk βþ1ð Þ

k!
Ek
β,k βþ1ð Þþ1 � Cα

τcCβ
tβ

� 	
þ

þ Cα

τcCβ

X∞
k¼0

� λ2n
Cβ

� 	k
tk βþ1ð Þþβ

k!
Ek
β, βþ1ð Þ kþ1ð Þ � Cα

τcCβ
tβ

� 	
:

ð54Þ

In the following section numerical examples for a semi-drained condition as well as of an undrained condition will
be exploited to show the effect of fluid diffusion across the pores of an FHM.

4 | NUMERICAL APPLICATION

In this section, the authors provide a numerical application for two particular cases: the first with initial pressure zero
at z = 0 and the second case with pressure zero for z = 0 and z = h. It must be stressed that, at the best of the authors'
knowledge no experimental papers on fractional poromechanical models may be found in scientific literature but only
on fractional-order darcy generalization.7,8,11,46

These particular cases of the fractional derivatives in Equation (45) shows the evolution of the problem for
different value of β, in particular β¼ 0,0:25,0:50,0:75,0:90,1, fixing the value of the dimensionless time t, as shown in
Figures 3 and 6. Furthermore, it is shown that for β¼ 0 the remarkable cases known in the literature return39

(Figures 3A, 6A). For this reason, the author investigated the choice of model parameters to be used to achieve steady-
state flow. In detail, the input parameters of the mathematical equation are τc ¼ 30s,Cβ ¼ 7sβ=m2,Cα ¼ 8 s=m2. The use
of these values has been an arbitrary choice of the authors in order to have a qualitative representation of the fractional
diffusion phenomenon.

4.1 | Semi-drained condition

The authors study the effect of the derivation order β on the Equation (45) with the boundary conditions (38). Conse-
quently, for the non-dimensional space Equation (48a)

p 1, tð Þ¼ϕ 1ð Þy tð Þ¼ϕ 1ð Þ¼ 0
∂p 0, tð Þ

∂z
¼ϕ0 0ð Þy tð Þ¼ϕ0 0ð Þ¼ 0

8<
: : ð55Þ

It implies that D2 ¼ 0 and cos λð Þ¼ 0! λn ¼ 2n�1ð Þπ
2 ; with n¼ 1,2,3:…. So Equation (49) becomes, trivial solution

excluded,

ϕ zð Þ¼D1 cos λnzð Þ: ð56Þ

To satisfy initial conditions p z,0ð Þ¼ 1, t¼ 0 has been set, obtaining:

X∞
n¼1

Dn cos λnzð Þ¼ 1, ð57Þ

due to the fact that 8n! yn 0ð Þ¼ 1.
This Sturm-Liouville series on 0< z<1 can be thought of as a Fourier cosine series on 0< z<2 for

which the even-numbered cosine terms are absent.40 The orthogonality relations has been used to determine the
coefficients Dn:
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Dn ¼ 2
Z1
0

cos λnzð Þdz¼ 4 �1ð Þn
π 1�2nð Þ : ð58Þ

Therefore, the solution of the dimensionless problem is:

p z, tð Þ¼ 4
π

X∞
n¼1

�1ð Þn
1�2n

cos λnzð Þ
X∞
k¼0

� λ2n
Cβ

� 	k
tk βþ1ð Þ

k!
Ek
β,k βþ1ð Þþ1 � Cα

τcCβ
tβ

� 	
þ

þ Cα

τcCβ

X∞
k¼0

� λ2n
Cβ

� 	k
tk βþ1ð Þþβ

k!
Ek
β,k βþ1ð Þþ1þβ � Cα

τcCβ
tβ

� 	
:

ð59Þ

So, in order to shown the trend of pressure with the variation of non-dimensional z-coordinate and t time, we solved
Equation (59) with Wolfram Mathematica 13.1 Software (see Figure 3):

FIGURE 3 Non-dimensional pressure field p for different values of β in the confined compression test; particularly β¼ 0 (A), β¼ 0:25

(B), β¼ 0:5 (C), β¼ 075 (D), β¼ 0:9 (E), and β¼ 1 (F). Each curve represents the pressure field for a specific value of non-dimensional time t,

where the red line represents the confined compression test at the initial time t¼ 0.
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f 1 β, t,zð Þ¼ 4
π

XN
n¼1

�1ð Þn
1�2n

cos
2n�1ð Þπz

2


 �X100
k¼0

�
2n�1ð Þπz

2

� �2
τcβ

Cβ

0
B@

1
CA

k

t βþ1ð Þk

k!
Γ kþ1½ �

Γ k βþ1ð Þþ1½ ��
Cατcβ�1tβΓ kþ2½ �

CβΓ βþk βþ1ð Þþ1½ �
� 	

þ

þ �
2n�1ð Þπz

2

� �2
τcβ

Cβ

0
B@

1
CA

k

Cατcβ�1tβþ βþ1ð Þk

Cβk!
Γ kþ1½ �

Γ βþk βþ1ð Þþ1½ ��
Cατcβ�1tβΓ kþ2½ �

CβΓ 2βþk βþ1ð Þþ1½ �
� 	

:

ð60Þ

Due to the fact that the three parameters Mittag-Leffler function isn't present in the special functions of Wol-
fram Mathematica, the Gamma Eulero function has been adopted into the code based on its definition.44,45 This
solution (60) is used to solve the problem for intermediate value of β in the fractional photomechanical model, while
the authors use Equations (61a) and (61b) to solve the particular solution of Equation (59) for β¼ 0 and β¼ 1,
respectively.

p1 t,zð Þ¼ 4
π

XN
n¼1

�1ð Þn
1�2n

cos
2n�1ð Þπz

2


 �
e
�

2n�1ð Þπz
2ð Þ2 tτc

CαþCβτc , ð61aÞ

g1 t,zð Þ¼ 4
π

XN
n¼1

�1ð Þn
1�2n

cos
2n�1ð Þπz

2


 �
e
�Cα t

2Cβ cos
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Cβ

2n�1ð Þπz
2

� �2
τc�Cα

2

r
2Cβ

2
664

3
775þ

Cα sin
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Cβ

2n�1ð Þπz
2ð Þ2τc�Cα

2

q
2Cβ

2
4

3
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Cβ

2n�1ð Þπz
2

� �2
τc�Cα

2

r
0
BBBBBB@

1
CCCCCCA
: ð61bÞ

FIGURE 4 Three-dimensional representation of non-dimensional pressure field p in the confined compression test for β¼ 0, β¼ 0:5,

β¼ 0:75, and β¼ 1, in (A–D), respectively.
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Consequently, below there are the 3D graphs that highlight the relationship between the three parameters
considered: dimensionless time t, dimensionless height inside the cylinder z and order of the fractional derivative β
(see Figure 4).

4.2 | Fully drained condition

The fully draining case has been analyzed in this section. Considering Equation (54), only the boundary conditions
change because in this case water cannot escape laterally, through the bottom or the top surface, so:

p 1, tð Þ¼ϕ 1ð Þy tð Þ¼ϕ 1ð Þ¼ 0

p 0, tð Þ¼ϕ 0y tð Þð Þ¼ϕ 0ð Þ¼ 0



: ð62Þ

It implies that D1 ¼ 0 and sin λð Þ¼ 0! λn ¼ 2n�1ð Þπ;with n¼ 1,2,3:…. So, Equation (48b) becomes, trivial solution
excluded,

ϕ zð Þ¼D2 sin λnzð Þ: ð63Þ

Similarly, the non-dimensional time problem remains unchanged as well as Equation (52) is still a solution of
Equation (48b). Consequently,

p z, tð Þ¼
X∞
n¼1

Dn sin λnzð Þyn tð Þ ð64Þ

FIGURE 5 Three-dimensional representation of non-dimensional pressure field p for various β values in the fully drained case,

particularly: β¼ 0 in (A), β¼ 0:5 in figure (B), β¼ 0:75 in (C), and β¼ 1 in (D).
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is still a solution of Equation (46). Moreover, as done before, the orthogonality relations has been used to determine the
coefficients Dn:

Dn ¼ 2
Z 1

0
sin λnzð Þdz¼ 4 �1ð Þ2n

π 2n�1ð Þ : ð65Þ

Therefore, the general solution of the dimensionless problem is:

p z, tð Þ¼ 4
π

X∞
n¼1

�1ð Þ2n
2n�1

sin λnzð Þ
X∞
k¼0

� λ2n
Cβ

� 	k
tk βþ1ð Þ

k!
Ek
β,k βþ1ð Þþ1 � Cα

τcCβ
tβ

� 	
þ

þ Cα

τcCβ

X∞
k¼0

� λ2n
Cβ

� 	k
tk βþ1ð Þþβ

k!
Ek
β,k βþ1ð Þþ1þβ � Cα

τcCβ
tβ

� 	
:

ð66Þ

FIGURE 6 Non-dimensional pressure field p for different values of β in the confined compression test in the fully drained case, in

detail: β¼ 0 (A), β¼ 0:25 (B), β¼ 0:5 (C), β¼ 0:75 (D), β¼ 0:9 (E), and β¼ 1 (F). Each curve represents the pressure field for a specific value

of non-dimensional time t, particularly the red line represents the confined compression test at the initial time that is, t¼ 0.
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Looking Equations (66) and (59), it can be seen that these solutions are very similar. The only significant difference
is related to the coefficients Dn and to the non-dimensional space solution ϕ zð Þ. Particularly, there is the cosine function
of z in the first case, and the sine function in the second one. Anyway, the non-dimensional time solution yn tð Þ is still
the same in both cases.

As done before, Equation (66) has been implemented into Wolfram Mathematica, using Equation (67a) for interme-
diate value of β, and Equation (67b) and Equation (67c) for beta equals to zero and one, respectively.

f 2 β, t,zð Þ¼ 4
π

XN
n¼1

�1ð Þ2n
2n�1

sin 2n�1ð Þπz½ �
X100
k¼0

� 2n�1ð Þπzð Þ2τcβ
Cβ

 !k
t βþ1ð Þk

k!
Γ kþ1½ �

Γ k βþ1ð Þþ1½ ��
Cατcβ�1tβΓ kþ2½ �

CβΓ βþk βþ1ð Þþ1½ �
� 	

þ � 2n�1ð Þπzð Þ2τcβ
Cβ

 !k
Cατcβ�1tβþ βþ1ð Þk

Cβk!
Γ kþ1½ �

Γ βþk βþ1ð Þþ1½ ��
Cατcβ�1tβΓ kþ2½ �

CβΓ 2βþk βþ1ð Þþ1½ �
� 	

,

ð67aÞ

p2 t,zð Þ¼ 4
π

XN
n¼1

�1ð Þ2n
2n�1

sin 2n�1ð Þπz½ �e�
2n�1ð Þπzð Þ2 tτc
CαþCβτc , ð67bÞ

FIGURE 7 Comparison of the non-dimensional pressure field p for β¼ 1 between the confined case (A) and the fully drained case (B),

fixing the t value. In detail, dotted line is related to t¼ 1, while continuous line is related to the time when pressure reach the opposite value

that is, pressure reaches the negative value when t¼ 1:9 in the confined compression test, while pressure is still positive when t¼ 0:6 in the

fully drained test.

FIGURE 8 Comparison of the non-dimensional pressure field p between the confined case (A) and the fully drained case (B), fixing the

value of non-dimensional time t¼ 0:75.
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Their numerical applications for various value of β are shown into Figure 5. Meanwhile, Figure 6 shows the trend
of non-dimensional pressure p for fixing non-dimensional time t.

It can be seen that the time evolution of the pressure is strongly influenced by the order of Caputo's fractional derivative.
The deviation from elastic behavior that is, β¼ 0, has been revealed in the rapid pressure reduction in both time and
space: this effect becomes more pronounced as the deviation from elastic behavior increases that is, limβ!1. In all cases,
as time increases the pressure value decreases, but anomalous porous media require shorter non-dimensional times than
classical one (Figures 4A, 5A) to reach stability. In addition, observing the confined compression test (see Section 4.1), it is
interesting to note that the non-dimensional pressure gradually decreases when β<0:5; on the other side, when β≥ 0:5, a
fast pressure drop is observed from 1 to 0 (see Figure 4). Moreover, in the last case, the pressure moves to negative
values, too (Figure 3D–F). As β increase, the z value of which it occurs decrease due to the fact that the hereditary mate-
rial drives far and far from the elasticity. On the other hand, observing the fully drained test (see Section 4.2), the pres-
sure just moves to negative values for a smaller value of β that is, β¼ 0:25 (see Figure 6B). Moreover, when β¼ 1 and
t≥ 0:60, the non-dimensional pressure returns to positive values, but lower than initial values (see Figure 6F). In the
confined compression test, it happens for a greater value of t that is, only when t≥ 1:9, as shown in Figure 7.

In general, the solution's dependence on the β value is greater in the drained case than in the confined case. As fur-
ther confirmation, if we compare the pressure trend for the same value of t, a greater part of porous medium has a neg-
ative value of p in the fully drained test, as shown in Figure 8.

5 | CONCLUSIONS

In this paper, the authors investigated the poromechanics of an hereditary porous media completely filled by a fluid
modelling the biomechanics of the meniscus in the articular knee joint. The effects of the material hereditariness has
been accounted for with the aid of fractional differential calculus extending the three axial constitutive equation of
fractional-order hereditariness to include the fluid pressure field effect to describe the phenomenon of fluid diffusion in
porous media.

The main result of this study, the effect of overpressure caused by the beta-order variability of the constitutive equa-
tion has been reported. It has been shown that overpressure in the tissue due to loading condition is strongly dependent
on the order of Caputo's fractional derivative: higher is the order of β, faster has the pressure decreased. This aspect
may be a leading issue in prediction of damages of menisci that may be favored by a slow release of the overpressure in
presence of repetitive loads. Indeed the phenomenon of swelling and consolidation occurs when β≥ 0:5 in the confined
compression test, and for β≥ 0:25 in the fully drained test.

In addition, as β≠ 0, it has been shown that the overpressure reaches negative values and then returns to positive
values when the value of non-dimensional time increases. This effect is interesting since no literature evidence of an
oscillating pressure field has been uncovered by the use of classical mathematical modelling to represent the material
hereditariness.

Experimental campaign reporting data on the hereditary behavior of the menisci as well as on pressure drops in
confined compression tests is underway and it will be reported elsewhere.

The model lays the foundations for a more accurate analysis of the poromechanical modeling of the meniscus. In
fact, the fractional derivative, as well known in the literature,3,13,36 is able to well describe the highly viscoelastic behav-
ior of biological tissues and the effects due to the aqueous matrix. The model should be implemented and integrated
into subroutines in finite element software. It would become a predictive model of the behavior of the meniscus over
time and would provide an additional tool for the creation of a meniscus prosthesis, which is still not a solution avail-
able to orthopedic surgeons today.
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