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  Introduction 

The microbiome refers to the complex community of microorganisms that inhabit a particular environment, 

such as the human body. These microorganisms, including bacteria, fungi, and viruses, can have a significant 

impact on the health and well-being of their hosts (Methé et al., 2012; Shreiner et al., 2015). Within the 

microbiome, the virome, which comprises the collection of viruses, has also been identified as playing an 

important role in human health (Wylie et al., 2012). 

There are several different types of microbiomes found in the human body, including the gut, oral, and skin 

microbiomes (Li et al., 2012). Each of these microbiomes plays a unique role in maintaining host health. For 

example, the gut microbiome aids in the digestion of food, synthesis of vitamins, and protection against 

pathogenic bacteria. The oral microbiome helps to prevent tooth decay and gum disease, whereas the skin 

microbiome helps to protect against infection and maintain skin integrity (Huttenhower et al., 2012). 

Recent studies have shown that the virome may play a role in a variety of diseases and conditions. For example, 

human papillomavirus (HPV) and hepatitis B and C have been linked to certain types of cancer (Broecker and 

Moelling, 2021). Additionally, viruses have also been associated with neurological disorders such as multiple 

sclerosis and Alzheimer's disease (Wouk et al., 2021). 

This growing body of evidence suggests that the microbiome and virome may play a role in the development 

and progression of a wide range of diseases and conditions. However, more research is needed to fully 

understand the role of these microorganisms in human health. Further studies are required to uncover the 

underlying mechanisms and interactions between microorganisms and host, and how it may impact the health 

outcomes. Thus, the microbiome and virome are important area of study and have the potential to lead to new 

diagnostic and therapeutic approaches for various diseases. 

Human Microbiome 

The human microbiome is a collection of microbes, their genetic material, and the substances they produce 

that live on or inside the human body. The combination of microorganisms within our bodies is unique to each 

individual, just like fingerprints, and even distinctive to each body site (Mousa et al., 2022). These 

microorganisms, including bacteria, viruses, fungi, and protozoa, are found in various parts of the body such 

as the skin, mouth, gut, and respiratory tract. Microbial diversity and abundance are influenced by a variety of 

variables, such as nutrition, host genetics, diseases, medications, and lifestyle (Shreiner et al., 2015). These 

elements come together to play a crucial role in maintaining a balanced and diverse healthy microbiota.  

Evidence suggests that microbial dysbiosis is associated with several health conditions such as obesity, 

diabetes, inflammatory bowel disease (IBD), metabolic and mental disorders. Some studies finding suggests 

that changes in the microbiome are linked with conditions such as depression and anxiety (Doelman et al., 

2021; Mousa et al., 2022; Ogunrinola et al., 2020). Numerous studies have linked microbiome dysbiosis to a 

specific disease, but the exact mechanisms behind this relationship are not well understood. It is thought that 

changes in the types and abundance of microorganisms may alter their interactions and the substances they 

produce, leading to changes in the host's metabolism and other bodily functions (Yadav et al., 2018).  
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Many factors can influence the relationship between the microbiome and the host, including environmental, 

epigenetic, and genetic factors. One example can be overuse of antibiotics, use of antibiotics can disrupt the 

microbiome balance, leading to the overgrowth of certain microorganisms and suppression of others. This can 

lead to the development of conditions such as Clostridioides difficile infection (CDI), a serious and potentially 

life-threatening condition that can occur after antibiotic treatment (Dilnessa et al., 2022). 

It is well known that antibiotics, particularly broad-spectrum ones, can change the composition of the gut 

microbiota. However, research has also shown that other non-antibiotic substances, such as oral steroids, 

antidepressants, vitamin D supplements and platelet aggregation inhibitors can also impact the composition 

and diversity of the gut microbiota in certain populations (Vila et al., 2020; Weersma et al., 2020). For example, 

the prevalence of Haemophilus parainfluenzae, a bacterium that is more prevalent in people with irritable 

bowel syndrome, has been connected to the usage of benzodiazepines (Vila et al., 2020). Bifidobacterium 

dentium is preferentially more prevalent when using proton pump inhibitors. While tricyclic antidepressants 

increase the abundance of Clostridium leptum, Selective serotonin reuptake inhibitors (SSRIs) antidepressants 

enhance the abundance of Eubacterium ramulus (Vila et al., 2020). 

Diet, microbiota, and host interactions are complex and multifaceted. The composition of the microbiome 

changes when the diet is altered. Due to differences in how food is metabolised, each person's microbiome 

reacts to diet differently and the composition of the microbiome influences the host's metabolic capacities 

(Johnson et al., 2019). The microbiome is increasingly thought to play a role in how diet affects the 

development and progression of some disorders, including celiac disease and inflammatory bowel syndrome 

(Glassner et al., 2020; Krishnareddy, 2019). Similar to diet, the composition of the microbiome is influenced 

by dietary supplements such as vitamins and minerals (Zimmer et al., 2012). 

Exposure to stress can alter the makeup of the gut microbiota, which can increase the likelihood of developing 

certain diseases. Research has demonstrated that social stress can decrease the number of anti-inflammatory 

microbes, such as para Bacteroides taxa, in the gut, leading to a decrease in anti-inflammatory substances 

produced by the microbiota, such as short-chain fatty acids (SCFAs). This decrease in anti-inflammatory 

substances can contribute to an increase in inflammation (Maltz et al., 2019, 2018). 

The role of host genetics in shaping the microbiota is not fully understood (Gaulke and Sharpton, 2018). 

However, it has been observed that individuals living in low-income countries tend to have a more diverse 

microbiome compared to those in Western countries. Interestingly, research has shown that immigrants from 

Southeast Asia who move to the United States experience a 15% loss in microbiome diversity immediately. 

This reduction in microbiome diversity has been linked to an increased risk of certain conditions, such as 

obesity and cardiovascular disorders. It is believed that this loss of diversity may be due to a combination of 

factors, such as a shift to a high-calorie Western diet, changes in drinking water, and the use of drugs and 

antibiotics (Vangay et al., 2018). 

The changes in the microbiome structure that often occur in older individuals have been attributed to a variety 

of factors, such as changes in lifestyle and diet, reduced mobility and intestinal function, decreased immune 
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function, altered gut morphology, recurrent infections and increased use of medications and drugs (Kim and 

Benayoun, 2020). In the gut microbiomes, age-related patterns of association have been found. In three 

separate studies involving a total of 9,000 individuals, researchers identified a trend of healthy ageing marked 

by a reduction of key gut microbial taxa, specifically Bacteroides. Healthier individuals had increasingly 

distinct microbiome compositions in comparison to other study participants (Lau et al., 2021; Wilmanski et 

al., 2021). 

The microbiome is greatly impacted by various aspects of an individual's lifestyle, such as their level of 

physical activity, smoking habits, drug use, and the environment in which they live. These factors can all play 

a role in determining microbiome diversity (Mousa et al., 2022). For example, exercise has been shown to 

increase microbiome diversity and can also affect the communication between the gut and brain (Dalton et al., 

2019; Kim et al., 2018). Physically active people typically have more diverse microbiomes, which are 

frequently distinguished by an abundance of healthy bacteria including Roseburia hominis, Faecalibacterium 

prausnitzii and Akkermansia muciniphila (Bressa et al., 2017). 

The composition of the microbiome is altered by the environment, which therefore influences disease 

susceptibility (Littleford-Colquhoun et al., 2019). Westernization, for example, is thought to reduce 

microbiome diversity and raise the risk of illnesses like obesity and infections (Winglee et al., 2017). 

Additionally, industrialization appears to be associated with higher levels of antibiotic resistance in the 

microbiome, as compared to the pre-antibiotic era. The industrialization era is also associated with a higher 

rate of horizontal gene transfer, which could enable the acquisition of new capabilities and an increased ability 

to adapt to changing conditions (Groussin et al., 2021; Lau et al., 2021). 

Recent breakthroughs in microbiome research have expanded our knowledge of how the microbiome 

influences both the development and prevention of various diseases. While the specific mechanisms behind 

these effects are not yet fully understood, further research is needed to fully understand the role of the 

microbiome in shaping human health (Mousa et al., 2022). 

Cancer and Microbiome 

Cancer is a complex and devastating disease that affects millions of people worldwide. It is caused by the 

uncontrolled growth and spread of abnormal cells in the body, leading to the formation of tumors and other 

complications. According to the World Health Organization (WHO), cancer is one of the leading causes of 

death globally, accounting for an estimated 10 million deaths in 2020 (WHO, 2022). Cancer can occur in any 

part of the body and can take many different forms, each with its unique set of symptoms, causes, and 

treatments. Some of the most common types of cancer include lung cancer, breast cancer, prostate cancer, 

colon cancer, and skin cancer.  

The causes of cancer can be genetic, environmental, or a combination of both. Some risk factors for cancer 

include smoking, exposure to radiation, a poor diet, lack of exercise, and certain infections such as human 

papillomavirus (HPV) and hepatitis B and C (American Cancer Society, 2022). The treatment of cancer often 
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involves a combination of different therapies, including surgery, radiation therapy, chemotherapy, targeted 

therapy, and immunotherapy. The choice of treatment depends on the type and stage of cancer, as well as the 

patient's overall health and personal preferences. Advances in medical research and technology have improved 

the prognosis for many people with cancer, with early detection and appropriate treatment leading to better 

outcomes (National Cancer Institute, 2021). 

Each year, around 880,000 patients worldwide are diagnosed with head and neck cancer, resulting in 

approximately 440,000 deaths. In 2020, head and neck cancer ranked as the eighth most common tumor 

globally, with oral squamous cell carcinoma (OSCC) being the most prevalent malignant tumor in the oral and 

maxillofacial area. OSCC differs from other types of head and neck cancers in terms of epidemiology, clinical 

characteristics, and treatment therapy. OSCC can arise from various parts of the oral cavity, such as the alveolar 

ridge, buccal mucosa, floor of the mouth, upper jaw, and tongue. The risk factors for OSCC include tobacco 

use, alcohol consumption, and exposure to the human papillomavirus (HPV). While there is a high correlation 

between head and neck cancer and HPV infection, only around 25% of OSCC patients are HPV positive (Zou 

et al., 2022).  

The global incidence of OSCC is 3.90 per 100,000, while the global mortality rate for oral cancer is 1.94 per 

100,000. The 5-year overall survival rate for OSCC linked to carcinogens is no more than 60%. Treatment of 

OSCC typically involves surgery to remove the cancerous tissue, followed by radiation therapy or 

chemotherapy to kill any remaining cancer cells. The choice of treatment depends on the stage of the cancer, 

as well as the patient's overall health and personal preferences (Zou et al., 2022; Dolens et al., 2021). 

Epidemiological studies consistently report increased risks of cancers in men and women with periodontal 

disease or tooth loss, conditions caused by oral bacteria. It is well established that oral bacteria are critical to 

the development of oral diseases and are linked in a number of studies to the risk of oral and gastrointestinal 

cancers, with the most consistent increased risks noted in studies of oral and oesophageal cancers, followed by 

evidence for pancreatic and gastric cancer (Ahn et al., 2012). 

Establishing the association of the oral microbiome with cancer may lead to significant advances in 

understanding of cancer aetiology, potentially opening a new research paradigm for these diseases. Multi-

disciplinary collaborations in epidemiology, microbiology, genetics, immunology, and bioinformatics are 

needed to broaden our understanding of the relationship of oral bacteria to cancer risk (Ahn et al., 2012). 

Eubiosis is a state of balance within the microbial ecosystem of the human body, while dysbiosis is 

characterized by a lack of diversity and an overabundance of harmful bacteria. Microbes can play a role in the 

development of cancer through various mechanisms such as the production of toxins, changes in metabolic 

compounds, hormonal imbalances, chronic inflammation, changes in the immune system, and genetic damage 

and mutations. These microbes can also become a part of the environment around tumors in the respiratory 

and digestive tracts and can impact the growth of cancerous cells. Dysbiosis in the gut can not only affect the 

levels of nutrients and other compounds in the body but can also produce toxins that can influence the 
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progression of cancer. Additionally, the defensive mechanisms of certain bacteria can lead to genetic mutations 

that contribute to the formation of tumors (Parida and Sharma, 2021). 

Helicobacter pylori, a type of bacteria that colonizes the stomach, is believed to be linked to around 60% of 

stomach cancer cases. It has also been associated with other types of cancer such as laryngeal carcinoma, 

hepatobiliary cancer, prostate and colon cancer (Li et al., 2020; Parida and Sharma, 2021). Chlamydia 

trachomatis, a gram-negative bacterium, has been linked to cervical cancer, and Salmonella typhi has been 

associated with gallbladder cancer. Fusobacterium nucleatum and enterotoxigenic Bacteroides fragilis (ETBF) 

have been linked to colorectal cancer (Kordahi et al., 2021). Additionally, a subtype of Escherichia coli that 

produces a compound called colibactin has been shown to increase the risk of tumor formation in the intestines 

in mice model. Both colibactin and another toxin called cytolethal distending toxin (CDT) can cause double-

stranded DNA damage in mammalian cells (Rajagopala et al., 2017; Schwabe and Jobin, 2013). 

Several bacteria have been identified as potential biomarkers for colorectal cancer, including Fusobacterium 

nucleatum, Streptococcus gallolyticus, Grp B2 E. coli, Enterococcus faecalis and Enterotoxigenic Bacteroides 

fragilis. F. nucleatum, which is associated with colon cancer, has been found to activate a signalling pathway 

called NF-kB, which is a key regulator of cancer-associated inflammation. It also directly suppresses the ability 

of the immune system to kill tumor cells by binding to a receptor called T cell immunoglobulin and ITIM 

domain (TIGIT), which is expressed on some T cells and natural killer cells (Rajagopala et al., 2017). 

Furthermore, F. nucleatum produces a bacterial cell surface adhesion component called FadA, which binds to 

host E-cadherin and leads to the activation of β-catenin, leading to cancer development (Cullin et al., 2021; 

Garrett, 2015). BFT (B. fragilis) cleaves E-cadherin, disrupt catenin-cadherin complexes and activate the β-

catenin-cMyc hyperproliferative pathway to affect colonic epithelial cells (Cullin et al., 2021). Additionally, 

members of the nucleotide-binding oligomerization domain-like receptor (NLR) family may also play a role 

in the development of colorectal cancer (Garrett, 2015; Schwabe and Jobin, 2013). 

Pancreatic cancer has been linked to certain changes in the composition of gut bacteria, specifically an increase 

in Bacteroidetes and a decrease in Firmicutes. A higher presence of certain bacteria in the oral cavity, such as 

Enterobacteriaceae, Lachnospiraceae G7, Bacteroidaceae, or Staphylococcaceae, has also been associated 

with an increased risk of pancreatic cancer (Wong-Rolle et al., 2021). Similarly, patients with liver cancer and 

cirrhosis have been found to have a higher ratio of Bacteroides to Prevotella, along with increased levels of 

Erysipelotrichaceae and decreased levels of Leuconostocaceae and Fusobacterium in their gut microbiome.  

Pathogens and Infections 

Bacterial pathogens are microorganisms that can cause disease in humans, animals, and plants. These bacteria 

can be transmitted through various means, including through food, water, contact with infected individuals, 

and insect bites. These pathogens can enter the body through various routes, including the respiratory, 

gastrointestinal, and genitourinary tracts (Doron and Gorbach, 2008). Some common examples of bacterial 

pathogens include: 
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• Salmonella: This group of bacteria causes food poisoning, with symptoms such as abdominal cramps, 

diarrhea, and fever. Salmonella is commonly transmitted through contaminated food (Doron and 

Gorbach, 2008). 

• Escherichia coli (E. coli): A type of bacteria that lives in the intestinal tract of humans and animals. 

Some strains of E. coli can cause diarrhoea, urinary tract infections, and respiratory illness. E. coli 

infections can be transmitted through contaminated food or water, as well as through contact with 

infected individuals (Fleckenstein and Kuhlmann, 2019). 

• Staphylococcus aureus (S. aureus): This type of bacteria is found on the skin and in the nasal passages 

of humans and animals. It can cause a range of infections, including skin infections, pneumonia, and 

toxic shock syndrome. S. aureus can be transmitted through skin-to-skin contact or through contact 

with contaminated surfaces (Cheung et al., 2021). 

• Streptococcus pneumoniae (S. pneumoniae): This bacterium is a common cause of pneumonia, as well 

as other respiratory infections such as bronchitis and sinusitis. It can also cause meningitis and sepsis. 

S. pneumoniae is transmitted through respiratory droplets or close contact with infected individuals 

(Feldman and Anderson, 2020). 

• Mycobacterium tuberculosis (M. tuberculosis): This bacterium is the cause of tuberculosis, a serious 

and potentially deadly lung infection. It is transmitted through the air when an infected individual 

coughs or sneezes (Roberts and Buikstra, 2019). 

Infections caused by bacterial pathogens can range from mild to severe and can be treated with antibiotics. 

However, overuse and misuse of antibiotics has led to the development of antibiotic-resistant strains of 

bacteria, making it more difficult to treat infections (Lim et al., 2016). To prevent the spread of bacterial 

infections, it is important to practice good hygiene. Vaccines are also available for some bacterial pathogens, 

such as Streptococcus pneumoniae and Haemophilus influenzae type B (CDC, 2022b). 

It is also important to note that not all bacteria are harmful and many are beneficial for the host, such as gut 

bacteria that aid in digestion. 

Antimicrobial Resistance 

Antimicrobial resistance (AMR) is the ability of microorganisms to resist the effects of antimicrobial drugs, 

such as antibiotics, antivirals and antifungals. This can occur naturally or because of the overuse and misuse 

of these drugs. When microorganisms are repeatedly exposed to antimicrobial drugs, they can develop 

mechanisms to evade the drugs' effects (CDC, 2021). This can happen through genetic mutations, the transfer 

of resistance genes between microorganisms, or the expression of previously dormant genes. Once a 

microorganism becomes resistant to a drug, it can pass on its resistance to other microorganisms through 

genetic transfer (Blair et al., 2015). 

AMR is a major public health concern as it can lead to the spread of infections that are difficult to treat, 

resulting in prolonged illness, disability, and death. It also increases the cost of healthcare and can lead to the 

development of new, more virulent strains of microorganisms (Woolhouse et al., 2016). 
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Antibiotic resistance, a subcategory of AMR, is particularly concerning as it can lead to the spread of antibiotic-

resistant bacteria. These bacteria can cause infections that are difficult or impossible to treat, leading to 

increased morbidity and mortality. 

The World Health Organization (WHO) (World Health Organization, 2021) has identified a number of key 

areas for action to combat AMR, including: 

1. Surveillance: monitoring the spread of resistant microorganisms and tracking changes in resistance 

patterns. 

2. Infection prevention and control: implementing measures to reduce the spread of infections, such as 

hand hygiene and the use of personal protective equipment. 

3. Rational use of antimicrobials: promoting the appropriate use of antimicrobial drugs in human and 

animal health to slow the development of resistance. 

4. Research and development: investing in research to develop new antimicrobial drugs, diagnostic tools, 

and vaccination strategies. 

5. International cooperation: working with other countries and international organizations to coordinate 

efforts to combat AMR. 

In conclusion, antimicrobial resistance is a growing public health concern that requires a multifaceted approach 

to combat. This includes surveillance, infection prevention and control, rational use of antimicrobials, research 

and development, and international cooperation. It is also important for individuals to take responsibility for 

their own health and to use antimicrobial drugs appropriately. 

Emerging Pathogens 

SARS-CoV-2 is the novel coronavirus responsible for the ongoing pandemic of COVID-19, which began in 

Wuhan, China in December 2019 and has since spread to become a global public health crisis. The virus is a 

member of the coronavirus family, which also includes the viruses responsible for SARS (severe acute 

respiratory syndrome) and MERS (Middle East respiratory syndrome) (Geanta et al., 2022; World Health 

Organization, 2019). 

SARS-CoV-2 is primarily spread through respiratory droplets from an infected person, and can cause a range 

of symptoms, from mild to severe. The most common symptoms include fever, cough, and difficulty breathing, 

and the virus can lead to severe respiratory illness and even death, particularly in older adults and individuals 

with underlying health conditions (CDC, 2022a; World Health Organization, 2019). 

The World Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2020, due to the rapid 

spread of the virus and the large number of confirmed cases and deaths reported globally. As of January 2022, 

there have been over 100 million confirmed cases and more than 2 million deaths worldwide. To control the 

spread of the virus, many countries have implemented measures such as social distancing, quarantine, and 

travel restrictions, as well as widespread testing and contact tracing (World Health Organization, 2022b). 
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Vaccines have also been developed and distributed globally, with several shown to be highly effective in 

preventing severe illness and death (World Health Organization, 2022a). 

However, the pandemic has also led to significant economic and social impacts, including widespread job loss 

and disruption to education and other essential services. Additionally, there have been concerns about the 

disproportionate impact of the virus on marginalized communities and the potential long-term effects of the 

pandemic on mental health and well-being. 

Application of Omics 

Microbial genomics is the study of the genomic content of microorganisms, including bacteria, archaea, and 

viruses. It involves the sequencing, assembly, and analysis of microbial genomes, as well as the identification 

and functional annotation of their genes. Microbial genomics has revolutionized our understanding of the 

diversity and evolution of microorganisms, as well as their roles in various ecological and biomedical contexts 

(Aguiar-Pulido et al., 2016). 

One major application of microbial genomics is in the field of biotechnology, where it has been used to identify 

and exploit microbial genes with industrial or medicinal value. For example, genomic studies have led to the 

discovery of enzymes that are used in the production of biofuels, detergents, and industrial chemicals (Lorenz 

and Eck, 2005). In the pharmaceutical industry, microbial genomics has been used to identify new drug targets 

and to develop antibiotics and other therapies (Bashir et al., 2014). 

Microbial genomics has also had a significant impact on our understanding of the human microbiome, which 

refers to the collective genomes of the microorganisms that inhabit the human body. These microorganisms 

play important roles in maintaining human health and are involved in a variety of physiological processes, 

including digestion, immunity, and metabolism (Peterson et al., 2009). The study of the human microbiome 

has led to the development of probiotics, which are live microorganisms that are consumed to promote health, 

and to the identification of potential connections between the microbiome and diseases such as obesity, 

diabetes, and cancer (Chopra et al., 2020). 

Another important application of microbial genomics is in the field of environmental microbiology, where it 

has been used to study the diversity and function of microorganisms in various ecosystems. This includes the 

study of microorganisms in the soil, water, and air, as well as in extreme environments such as polar regions 

and deep-sea vents (Aguiar-Pulido et al., 2016). Microbial genomics has helped us to better understand the 

role of microorganisms in nutrient cycling and the impact of human activities on microbial communities. 

Microbial genomics has also had an impact on our understanding of the evolution of microorganisms, as it has 

allowed us to study the evolutionary relationships between different species and trace their evolutionary 

history. This has led to the identification of new species and the discovery of horizontal gene transfer, which 

is the process by which microorganisms acquire genes from other species (Aguiar-Pulido et al., 2016). 



17 
 

  Introduction 

Overall, microbial genomics has had a significant impact on our understanding of microorganisms and their 

roles in various ecological and biomedical contexts. It has led to numerous technological and medical advances 

and will continue to be an important area of study in the future. 

Global Cloud Platforms 

The use of cloud computing in healthcare has grown rapidly in recent years, as healthcare organizations seek 

to improve patient care and reduce costs. One specific application of cloud computing in healthcare is the use 

of global healthcare data cloud platforms. These platforms allow for the storage, sharing, and analysis of 

healthcare data on a global scale, enabling improved research and collaboration among healthcare 

organizations (Tanwar et al., 2021). 

One example of a global healthcare data cloud platform is the Global Health Data Exchange (GHDx, 2019). 

Developed by the Institute for Health Metrics and Evaluation (IHME) at the University of Washington, the 

GHDx is a platform for sharing and analyzing global health data. The platform currently contains over 2 billion 

data points from more than 190 countries, including data on mortality, cause of death, and risk factors for 

disease. The GHDx allows researchers and policymakers to access and analyze this data to inform public health 

policy and improve global health outcomes. 

Another example of a global healthcare data cloud platform is the International Cancer Genome Consortium 

(ICGC) Data Portal (Zhang et al., 2019). The ICGC is a global effort to collect and share genomic data on 

cancer, intending to improve the understanding of the disease and develop new treatments. The ICGC Data 

Portal provides access to genomic and clinical data on cancer patients from institutions around the world. This 

data is available to researchers in order to support cancer research and improve patient care. 

A third example of a global healthcare data cloud platform is the National Institutes of Health (NIH) Genomic 

Data Commons (GDC, 2016). The GDC is a platform for storing, sharing, and analyzing cancer genomics 

data. The platform currently contains data from over 17,000 cancer patients and allows researchers to access 

and analyze this data to improve their understanding of cancer and develop new treatments. 

All these platforms are examples of how healthcare organizations are leveraging cloud computing to improve 

patient care and reduce costs by sharing and analyzing data on a global scale. While these platforms are 

designed to support research and collaboration in specific areas of healthcare, they also demonstrate the 

potential of global healthcare data cloud platforms to improve global health outcomes (Tanwar et al., 2021). 

Aim of the thesis 

The thesis aims to: 

I. Describe the importance of human microbiome-associated health data to understand microbial 

diversity and its role in shaping human health.  

II. Explain the importance of genomic surveillance to identify emerging pathogens and predict future 

pandemics. 



18 
 

  Introduction 

III. Illustrate the significance of a global health data cloud platform to unifying research by collaborating 

on a global scale.  

Outline of the thesis 

The dissertation has nine chapters, starting with a general introduction, followed by seven chapters underlining 

the key areas of research. The final chapter provides a general discussion on the outcomes of mentioned seven 

chapters followed by impact paragraph to draw conclusions for future research and final summary of the 

dissertation. In total, seven scientific articles published in peer-reviewed impact factor journals form the core 

body of this dissertation. The graphical summary and major checkpoints of this dissertation are highlighted in 

figure 1. 

 

Figure 1: Highlighting major levels and checkpoints of the thesis. Illustrate applications of human 

microbiome, health data and genomic surveillance. 
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Chapter 2: “Human microbiome: Microbes shaping human health” 

In this chapter the association between Ayurveda prakriti’s and microbial diversity for 272 healthy individuals 

has been drawn. Gut and oral microbiomes of healthy individual were utilized to study the relationship between 

prakriti type and microbial composition. Microbial composition plays a vital role in shaping human health and 

considered as a reliable indicator of health. 

Chapter 3: “Cancer insights: A pathway and network analysis to understand oral cancer” 

In this chapter complex networks and molecular mechanisms involved in pathogenesis of oral submucous 

fibrosis (OSF) and oral squamous cell carcinoma (OSCC) are described. A pathway analysis to identify 

signature genes that affect epithelial-mesenchymal transition (EMT) that play a crucial role in the advancement 

of oral cancer are highlighted in this study. 

Chapter 4: “Emerging pathogens: Comparative genome analysis of Clostridia species”  

This chapter discuss about the pathogenic potential of Clostridia strains when the genomes were compared to 

a known pathogen. It highlights the application of comparative genome analysis and how it can help to identify 

emerging pathogens. This study describes the virulence factors encoded in bacterial genome and how genomic 

analysis can help one to differentiate non-pathogens and pathogenic strains. 

Chapter 5: “Antimicrobial resistance and virulence: Genome comparison of Staphylococcus aureus 

strains” 

In this chapter, four strains of Staphylococcus aureus (S. aureus) isolated from diabetic foot ulcer patients were 

compared on genome scale. Minor genomic differences provide evidence for change in phenotypic 

characteristics. Four S. aureus strains were compared to distinguish them based on their antimicrobial 

properties and virulence capabilities. This work, which used whole-genome sequence analysis, was focused 

on finding potential virulence factors, genes that cause antibiotic resistance, mobile genetic elements, biofilm-

forming ability, and sporulation factors that contribute to the pathogenicity of bacterial strains. 

Chapter 6: “Microbial genomics: A comprehensive guide for microbial genome research” 

In this chapter our aim was to emphasize the widely recognized and extensively utilized tools and references 

for different aspects of microbial research, including genome assembly and annotation, profiling antibiotic 

genes, identifying virulence factors, and studying drug interactions. Furthermore, we explored the 

recommended methodologies in computer-based research on microbial genomes, current developments in the 

analysis of microbial genomic data, the integration of multi-omics data, the proper utilization of machine 

learning algorithms, and the availability of open-source bioinformatics resources for genome data analytics. 

Chapter 7: “Genomic surveillance: Linking omics data for pandemic preparedness” 

This chapter highlights the recent COVID-19 pandemic as a planetary health concern and necessary steps to 

be taken to prepare for future pandemics. This chapter describe the importance of omics data and how high-
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throughput technologies are changing the face and pace of science. Multiomics technologies played a very 

crucial role in COVID-19 pandemic by providing huge amount of genomic information in such a short time. 

This chapter also discuss on employing omics systems to monitor new pathogens and conduct genomic 

surveillance. 

Chapter 8: “Global health data cloud: Laying new directions for collaborative science” 

To facilitate international research and development, we suggest the Global Open Health Data Cooperatives 

Cloud (GOHDCC), a platform for exchanging health data on a worldwide scale. This platform is advantageous 

for all stakeholders involved in the healthcare system since it is citizen-led and jointly governed. The concept 

emphasises on the importance of big data management by integrating cloud computing to manage enormous 

amount of data. Additionally, it introduces the Open Science Data Cloud (OSDC) and European Open Science 

Cloud (EOSC), two current cloud-based health data systems. 
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Exploring the Signature Gut and Oral Microbiome in Individuals of Specific 

Ayurveda Prakriti 

Abstract 

Diagnosis and treatment of various diseases in Ayurveda, the Indian system of medicine, relies on ‘prakriti’ 

phenotyping of individuals into predominantly three constitutions, kapha, pitta and vata. Recent studies 

propose that microbiome play an integral role in precision medicine. A study of the relationship between 

prakriti – the basis of personalized medicine in Ayurveda and that of gut microbiome, and possible biomarker 

of an individual’s health, would vastly improve precision therapy. Towards this, we analyzed bacterial 

metagenomes from buccal (oral microbiome) and fecal (gut microbiome) samples of 272 healthy individuals 

of various predominant prakritis. Major bacterial genera from gut microbiome included Prevotella, 

Bacteroides and Dialister while oral microbiome included Streptococcus, Neisseria, Veilonella, Haemophilus, 

Porphyromonas and Prevotella. Though the core microbiome was shared across all individuals, we found 

prakriti specific signatures such as preferential presence of Paraprevotella and Christensenellaceae in vata 

individuals. A comparison of core gut microbiome of each prakriti with a database of ‘healthy’ microbes 

identified microbes unique to each prakriti with functional roles similar to the physiological characteristics of 

various prakritis as described in Ayurveda. Our findings provide evidence to Ayurvedic interventions based on 

prakriti phenotyping and possible microbial biomarkers that can stratify the heterogenous population and aid 

in precision therapy. 

Keywords 

Ayurveda; gut microbiome; oral microbiome; prakriti; precision medicine 

 

1. Introduction 

Ayurveda, the Indian system of medicine, has an established and unique approach towards the diagnosis and 

treatment of various diseases. Doshas are the biological, functional units described in Ayurveda for 

understanding of both prakriti and vikruti in an individual. The three doshas are Vata (kinetic) – representing 

the movements in the body, Pitta (metabolic) – representing metabolism and transformation in the body, and 

Kapha (potential) – representing the growth and maintenance in the body (Prasher et al. 2016). The body–

mind constitution of an individual, termed as ‘prakriti’ plays a pivotal role in the management of diseases and 

selection of formulations and different dosage forms of treatment in Ayurveda. Though prakriti is claimed as 

a genetic determinant influenced by the nature of male and female gametes (Shukra shonita), it is additionally 

influenced by several factors such as Rutu (season), Matu Ahara Vihara (maternal diet and lifestyle), Kala-

Garbhashaya (age of parents and female reproductive system), Matruja (maternal factors), Pitruja (paternal 

factors), Aatmaja (actions of soul), Sattvaja (psychological factors), Saatmyaja (congenious factors) and 

Kaalaja (time of conception and the seasonal influence) (Sharma and Dash 2009). In Ayurveda system of 

medicine, an individual is classified into one of the seven prakriti types based on the constitution which is 

determined at the stage of conception. Further, dosha (bio humors), dhatu (body tissues) and the mala 

(metabolic waste) form the core of the body (Murthy 2009), and the combination of the three doshas (vata, 
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pitta and kapha) help in determining the prakriti of an individual. The proportions of vata, pitta and kapha 

govern the functional attributes such as kinetic energy, metabolism and potential energy and any disturbance 

to this equilibrium can lead to vikruti or disease condition. Hence, it is of significance to understand the basic 

constitutional type and the need for personalized treatment for disease management. Predominance of a single 

dosha prakriti is seen in only about 10% of the individuals and genome analysis performed on these individuals 

clearly indicate distinct genome wide differences providing genetic basis for the prakriti phenotyping in 

Ayurveda (Aggarwal et al. 2010; Rotti et al. 2014). In addition, striking differences at the molecular level, in 

biochemical and hematological parameters, and genome wide gene expression were discovered in few studies 

conducted on the single dosha prakriti types (Govindaraj et al. 2015; Prasher et al. 2008, 2016; Rotti et al. 

2015). 

The human gut microbiome hosts abundant, highly diverse and metabolically active microorganisms known 

to influence physiology and metabolism of an individual. It is linked with energy metabolism, modulation of 

immune system and inflammation (Nicholson et al. 2012). Advances in sequencing technologies have 

facilitated in understanding and appreciating the significant diversity and functional interrelationships between 

microbial communities that determine the health status of an individual. The structure and function of these 

microbial communities play an indispensable role in maintaining the homeostasis and any perturbations to this 

stable community structure can lead to disease states (Liu et al. 2012). Studies clearly indicate that the gut 

microbiome of individuals can be used as reliable predictors of health status with gut microbiome of healthy 

individuals having a dominance of bacterial phyla such as Bacteroidetes, Firmicutes along with lesser 

abundance of Proteobacteria, Actinobacteria, Verrucomicrobia and Fusobacteria irrespective of the diet or 

population considered (Durack and Lynch 2019; Gupta et al. 2020). 

Hence, we designed to explore the relationship between prakriti, the basis of personalized medicine in 

Ayurveda and that of gut microbiome, which is increasingly being contemplated as a reliable biomarker to 

assess health of an individual. Towards this objective, we have analyzed the bacterial metagenomes from saliva 

and stool samples representing oral and gut microbiome respectively of 272 healthy individuals and their 

relationship with prakriti so as to correlate microbial diversity patterns with the prakriti identity. 

2. Materials and methods 

2.1 Recruitment of subjects 

Screening and recruitment of the subjects were done in Institutions within the campus of Ramaiah Indic 

Specialty Ayurveda Restoration hospital and two Ayurveda colleges in Bangalore. A total of 2000 volunteers 

were screened and of these, 272 healthy volunteers with all the biochemical and haematological parameters 

within normal limits were included in the study. The study protocol was approved by the ethics committee of 

M.S. Ramaiah Medical College and Hospitals and informed consent was obtained from all the participants. 

The tests included complete blood count, lipid profile test, liver function test, serum creatinine, blood urea 

nitrogen, serum TSH, fasting blood sugar and urine routine to ensure their values are within defined, 

physiological limits. Subjects of both gender in the ratio of 102:170 (Male:Female) were recruited and the 
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participants had an average age of 21 years, height of 163.51 cm, weight of 70.04 kg and BMI of 22.30 kg/m2. 

We excluded subjects with history of smoking, alcohol consumption, any form of drug addictions, diabetes, 

hypertension and other chronic diseases from the study. In addition, subjects who had taken antibiotics 6 

months prior to sample collection were also excluded from the study. 

2.2 Assessment of Prakriti 

The prakriti of the volunteers were ascertained by 3 different modes: (a) TNMC questionnaire designed on the 

basis of literature in Ayurveda texts comprising 37 objective questions related to the person’s physical 

characteristics, psychological make-up and physiological habits (Bhalerao et al. 2012), (b) assessment by a 

senior Ayurveda physician using classical method of interview and physical examination to assess physical, 

physiological and psychological characteristics as described in Ayurveda literature and (c) assessment using 

‘Ayusoft’ (http://ayusoft.cdac.in), a software developed based on information from Ayurveda literature. For 

the first 50 subjects, prakriti was assessed by the senior physician, TNMC and the software to check for 

concordance and remaining volunteers were assessed using TNMC and Ayusoft (table 1). 

Table 1: Classification of prakriti types in the current study. 

 

2.3 Library preparation and metagenomic sequencing 

The stool and saliva samples of 272 recruited volunteers were collected as per standard protocols (Qiagen, 

2010, 2016). Samples were stored at 4°C until processed after which they were stored at -20°C. This was 

chosen to be the most feasible method available which would not alter the concentration and composition of 

the DNA (Ribeiro et al. 2018). The bacterial DNA from the samples were isolated using the Qiagen kits (cat 

No. 51304 and 51504). The extracted DNA samples were stored in -80°C till further processing. Sequencing 

libraries were prepared as per the Illumina MiSeq Metagenomics workflow. Briefly, variable V3 and V4 

regions of the 16S rRNA gene were amplified with 16S rRNA universal primers fused with Illumina adapters 

(Illumina 2013; Klindworth et al. 2013). Primers were 5’ TCGTCGGCAGCGTCAGATGTGTA-

TAAGAGACAGCCTACGGGNGGCWGCAG and 5’GTCTCGTGGGCTCGGAGATGTGTATAAGAGA- 

CAGGACTACHVGGGTATCTAATCC. PCR was carried out in 25 µl volume containing 10.5 µl of microbial 

DNA (12.5 ng), 1 µl of each primer (5 µM), and 12.5 µl of 2X KAPA Hifi HotStart Ready Mix and cycling 

conditions were 95°C for 3 min, 25 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 30 s, and 72°C for 5 min. 
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The resulting PCR products were run on an Agilent 2100 Bioanalyzer and then purified using 0.9X Agencourt 

AMPure XP beads. The index PCRs were carried out in 50 µl reactions containing 5 µl of purified DNA, 5 µl 

each of Nextera XT Index Primer 1 and 2, 25 µl of 2x KAPA Hifi HotStart Ready Mix and 10 µl of nuclease-

free water. The PCR conditions were as follows: 95°C for 3 min, 8 cycles of 95°C for 30 s, 55°C for 30 s, 

72°C for 30 s, and 72°C for 5 min. The libraries were then cleaned up using 1X AMPure XP beads and the 

size of amplicons were verified on Agilent 2100 Bioanalyzer. Equal Volume of normalized 2 nM libraries were 

pooled, denatured and diluted to 4 pM before loading onto the MiSeq flow cell and sequenced on Illumina 

MiSeq platform using a 2 x 300 bp paired end protocol. 

2.4 Raw data processing and taxonomy analysis 

Raw sequence data was analyzed and processed separately for fecal (n = 232) and buccal (n = 256) samples 

using Quantitative Insights into Microbial Ecology (QIIME 2) software version 2020.2.0 (Bolyen et al.2019). 

Paired-end raw sequencing data for a total of 488 samples were demultiplexed and sequences with a quality 

score (q-score of ≥28) were selected for further processing. Sequences were trimmed (440 base for buccal 

samples; 439 bases for fecal samples) and selected for OTU (operational taxonomic unit) clustering using 

Deblur (Amir et al. 2017). Using Deblur, sequences were clustered into OTUs by aligning sequences locally 

using SortMeRNA (Kopylova et al.2012) against Greengenes (DeSantis et al. 2006) 16SrRNA database 

(version 13_8) and filtered at 88% sequence similarity. Chimeric sequences were identified using de novo 

(vsearch) method (Edgar et al. 2011; Rognes et al. 2016). After identification and removal of chimeric reads, 

OTUs were further clustered at 97% sequence similarity using closed reference clustering workflow (Caporaso 

et al. 2010). To explore the taxonomic composition in all samples, taxonomy was assigned to all the sequences 

identified as OTUs/features after closed-reference clustering using q2-feature-classifier plugin in QIIME 2. 

2.5 Microbiome diversity analysis 

Microbiome diversity analysis was performed with OTUs that were classified up to genera level. Analysis at 

species level was performed for identification of Prakriti specific taxa. Alpha diversity (Chao1 index) was 

calculated using MicrobiomeAnalyst (Chong et al.2020) to estimate species richness and diversity. Beta 

diversity was assessed by principal coordinate analysis on weighted UniFrac distances via q2-diversity plugin 

of QIIME 2. Relative abundance (reads corresponding to an OTU/total number of reads of the sample) and 

average relative abundance (ARA; relative abundance in all samples/total number of samples) was calculated 

to assess the contribution of each OTU at phylum and genera level towards the gut and oral microbiome. 

Shared and unique bacterial genera were analyzed with a web-based tool InteractiVenn (Heberle et al. 2015). 

BugBase web server was used to predict the functional traits of the microbiome from each prakriti types based 

on OTU abundance data using default parameters (Ward et al. 2017). Kruskal Wallis test was used to find 

whether the functional traits differed significantly across different prakriti types. 

2.6 Detection of microbial enterotypes 
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Microbial enterotypes were determined via ‘between class analysis’ which performs a principal component 

analysis with partitioning around medoids clustering using R package ‘ade4’. It involves identification of 

inherent clusters in the data based on a distance matrix of Jensen-Shannon divergence indices. Optimum 

number of clusters was determined by Calinski-Harabasz index and validated by Silhouette index (Arumugam 

et al. 2011). Spearman’s correlation test was performed to assess the correlation of the major drivers of the 

clusters. 

2.7 Analysis of ‘healthy’ core gut microbiome 

Core microbiome was defined as OTUs present in at least 50% of the samples in each prakriti (kapha, pitta, 

vata) irrespective of their abundance. Data from GutFeeling KB (GFKB https://hive.biochemistry.gwu. 

edu/gfkb), a healthy human reference microbiome database, was used as a ‘healthy control’ dataset and 

compared with microbes identified in the current study. Genera from each prakriti’s core microbiome that 

were absent in GFKB were checked for their presence in other prakritis and the resulting unique genera for 

each prakriti was analyzed based on its relative abundance (King et al. 2019). 

2.8 Identification of prakriti specific signatures 

Prakriti specific signatures were identified using LEfSe (Segata et al. 2011) which identifies biomarkers based 

on linear discriminant analysis (LDA). LefSe was performed with OTUs that were classified to genera level 

using default parameters (effect size 2) (Goecks et al. 2010). Strict parameters (multiclass analysis all against 

all) were used for identification of species-specific signatures. The male and female datasets of gut and oral 

microbiome respectively were processed independently. Significant biomarkers were annotated to their species 

level via manual BLAST (highest scoring hits were retained). Only non-redundant OTUs with highest LDA 

scores in each prakriti were considered for analysis. 

3. Results 

3.1 Microbiome of healthy individuals belonging to different prakriti 

In this study, we obtained a total of 32,750,999 and 36,023,626 16S rRNA sequence reads from fecal and 

buccal samples respectively. After quality filtering using QIIME, 8,127,407 reads from stool samples and 

9,092,545 reads from buccal samples were taken up for identification of OTUs and further analysis. A total of 

836 features (trim length of 439) representing 232 samples from gut microbiome were selected after closed 

reference OTU clustering at 97% identity while 589 features (trim length of 440) representing 255 samples 

were selected for oral microbiome analysis. Further, p-sampling depth was chosen as 2500 for gut microbiome 

samples and at 3000 for oral microbiome samples based on a rarefaction analysis. The final dataset included 

1,448,987 sequences from 209 stool samples and 1,873,939 sequences from 200 buccal samples for overall 

analysis. The gut microbiome dataset included samples from 46, 52 and 35 females and 35, 12 and 29 males 

of kapha, pitta and vata prakritis respectively. The oral microbiome dataset included samples from 41, 48 and 

34 females and 36, 10 and 31 males belonging to kapha, pitta and vata prakritis respectively. 

3.2 Microbial diversity patterns 
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3.2.1 Gut microbiome: A total of 109 OTUs representing 12 different phyla were identified in gut microbiome 

from a total of 209 samples from healthy individuals. Irrespective of the prakriti or gender, Bacteroidetes and 

Firmicutes were the dominant phyla and accounted for more than 90% of the gut microbiome, while 

Proteobacteria and Actinobacteria contributed <10% to the overall microbiome (figure 1a). Chao1 diversity 

index was used to calculate the diversity of gut microbiome based on age, gender and BMI values (figure 1b). 

We found that the microbiome was more diverse in aged individuals and male samples were more 

heterogeneous than female samples but with lower diversity index. With increase in BMI values, we found 

lower diversity values. When the samples were grouped based on prakritis, a higher median species diversity 

was observed in individuals belonging to vata prakriti (figure 1c). 

Major bacterial genera from the gut microbiome included Prevotella, Bacteroides and Dialister (figure 1d). 

Sutterella was less abundant in vata prakriti individuals when compared to individuals from other prakritis. 

We found 13 OTUs out of the 109 OTUs to be highly prevalent across our samples (presence in more than 

90% of samples) with only one OTU (Roseburia) shared across all the 209 samples studied. Only two OTUs 

(Prevotella and Bacteroides) had ARA >10%, while several OTUs with high prevalence across all samples 

showed low ARA of less than 5% indicating enormous diversity of the gut microbiome. Only 34 of the 109 

OTUs were present in more than 50% of the samples while 38 OTUs were present in less than 10% of samples. 

Out of the 109 OTUs considered, 91 OTUs or 83% of the OTUs were shared among all the three prakritis 

(figure 1e). Only 10 OTUs were unique to any of the three prakriti types but these OTUs had very low 

prevalence. A Principal Component Analysis of gut microbiome samples performed using Bray-Curtis 

measure of distances showed that the samples could be grouped into two major clusters based on the presence 

of two major genera – Prevotella and Bacteroides; but no clusters were seen based on prakritis (figure 1f). 

Similarly, when we performed a between-class analysis based on Jensen Shannon Divergence distances to 

decipher gut enterotypes (Arumugam et al. 2011), two enterotypes based on abundance of Prevotella and 

Bacteroides were observed (figure 1g). We found a negative correlation between relative abundance of 

Prevotella and Bacteroides in the gut microbiome samples (P < 0.001; r = 0.7671) wherein samples which 

showed higher abundance of Prevotella had lower abundance of Bacteroides and vice versa (figure 1h). 
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Figure 1: Gut microbiome: (a) Phylum plot showing average relative abundance (ARA) of major phyla in 

different cohorts. (b) Alpha diversity values for microbiome based on age, gender, BMI. (c) Alpha diversity 

values based on prakriti. (d) Box plot for the 10 most abundant OTUs (Pr – Prevotella, B – Bacteroides, D – 

Dialister, R – Roseburia, F – Faecalibacterium, Me – Megasphaera, S – Sutterella, E – Enterobacteriaceae, 
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Po – Porphyromonas, Mi – Mitsuokella) as determined by ARA. Boxes represent the interquartile range (IQR) 

and the line represents the median. Whiskers denote the lowest and highest values within 1.5 x IQR. Circles 

represent outliers beyond the whiskers. (e) Venn diagram showing unique and shared genera between the 

prakriti types. (f) PCoA with weighted unifrac distances. Each dot represents a sample while grey circles 

represent major OTUs. Sizes of the grey circles represent their ARA. (g) Clustering of gut microbial taxa into 

enterotypes based on between-class analysis using Jensen- Shannon distance. X axis shows cluster number 

and Y axis shows silhouette width (a measure of cluster separation) (Wu et al. 2011). Each dot represents a 

sample. (h) Relative abundance of Prevotella and Bacteroides in different samples. Dots represent relative 

abundance in each sample and dotted lines represent the trendline. The two species showed an inverse 

relationship with reference to their relative abundance in different samples (h). 

3.2.2 Oral microbiome: With respect to buccal samples, a total of 132 OTUs representing 12 different phyla 

were associated with oral microbiome from a total of 200 samples screened from healthy individuals. The 

dominant phyla were Firmicutes and Proteobacteria, while Bacteroidetes, Actinobacteria and Fusobacteria 

were also found to contribute to the overall diversity in the oral microbiome (figure 2a). Similar to the gut 

microbiome, the oral microbiome was significantly more diverse (Chao1) in aged individuals (P < 0.05, T test) 

and the diversity index of the oral microbiome in males was slightly lower than that of females. Higher 

diversity values were found in individuals with lower BMI values as was observed in gut microbiome (figure 

2b). The median species diversity was found to be slightly higher in samples from individuals belonging to 

pitta prakriti among the three prakriti types (figure 2c). 

Major bacterial genera in the oral microbiome included Streptococcus, Neisseria, Veilonella, Haemophilus, 

Porphyromonas and Prevotella which were consistently present across all prakriti types (figure 2d). We found 

28 OTUs to be highly prevalent with presence in 180 or more samples (90% prevalence); of these, 9 OTUs 

were found in all the 200 samples studied. Only four OTUs (Streptococcus, Neisseria, Veilonella and 

Haemophilus) had ARA >10% across all samples while Prevotella and Porphyromonas had ARA >5% when 

all samples from different prakritis were pooled together; Bulleidia which was present in all the samples had 

an ARA value of only 0.89 across all samples. Only 41 of the 132 OTUs were present in more than 50% of 

the samples while 62 OTUs were present in less than 10% of the samples. Out of 132 OTUs considered for the 

oral microbiome, 99 OTUs (75%) were shared among the three prakritis, while only 21 OTUs were unique to 

either one of the three prakritis. Of these 21 OTUs, 8 were unique to kapha prakriti,5 to pitta and 8 to vata 

prakriti (figure 2e). But none of these OTUs were found in more than 4 samples, indicating that the core 

microbiome was indeed truly shared among all prakritis. However, certain species were found to be 

preferentially associated with specific prakritis. Actinobacillus was found with slightly higher ARA (>3%) in 

males with pitta prakriti but was relatively less abundant in all other prakriti types. Similarly, TM7-3 was 

found more abundantly in vata females and Capnocytophaga was found more abundantly in female samples 

belonging to kapha and pitta prakritis. A Principal Component Analysis with weighted unifrac distance 

measures could not cluster the samples into prakriti types based on the abundance of major genera (figure 2f). 
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Figure 2: Oral microbiome: (a) Phylum plot showing average relative abundance (ARA) of major phyla in 

different cohorts. (b) Alpha diversity values for microbiome based on age, gender, BMI. (c) Alpha diversity 

values based on prakriti. (d) Box plot for the 10 most abundant OTUs (S – Streptococcus, N – Neisseria, V – 

Veillonella, H – Haemophilus, Po – Porphyromonas, Pr – Prevotella, G – Granulicatella, R – Rothia, F – 

Fusobacterium, C – Capnocytophaga) as determined by ARA. Boxes represent the interquartile range (IQR) 

and the line represents the median. Whiskers denote the lowest and highest values within 1.5 x IQR. Circles 

represent outliers beyond the whiskers. (e) Venn diagram showing unique and shared genera between the 

prakriti types. (f) PCoA with weighted unifrac distances. Each dot represents a sample while grey circles 

represent major OTUs. Sizes of the grey circles represent their ARA. 
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3.3 Characterization of the healthy gut microbiome 

A comparison of core gut microbiome (present in >50% of the samples in each cohort) from our study with 

GFKB database of microbiome of healthy individuals was performed and OTUs missing from this list were 

analyzed for possible correlation with specific prakriti phenotype. We found Butyricoccus to be dominantly 

present in kapha prakriti, Turicibacter in pitta prakriti, and Para Prevotella, Christensenellaceae, Mitsuokella, 

S24-7 and Barnesiellaceae enriched in vata prakriti based on this classification (figure 3). 

 

Figure 3: Comparison of ‘core’ gut microbiome of each prakriti with GFKB microbiome database of healthy 

individuals: Butyricicoccus was dominantly present in kapha prakriti, Turicibacter in pitta prakriti, and 

Paraprevotella, Christensenellaceae, Mitsuokella, S24-7 and Barnesiellaceae were enriched in vata prakriti as 

measured by one-way ANOVA followed by a post-hoc analysis with Tukey’s test. *P <0.05 

3.4 Microbial features specific to prakriti 

Analysis of the OTUs from gut and oral microbiome using BugBase showed that facultative anaerobes were 

higher in individuals belonging to kapha prakriti (in both gut and oral microbiome). Interestingly, there was 

discordance in the pattern of potentially pathogenic microbes between gut and oral microbiome. While in the 

gut, potentially pathogenic organisms were found to be higher in kapha prakriti and lowest in pitta prakriti, in 

the oral microbiome, potential pathogens were higher in vata prakriti and least abundant in pitta prakriti (figure 

4a,b). 
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3.4.1 Gut microbiome: A linear discriminant effect size (LEfSe) analysis showed that more bacterial groups 

were preferentially associated with individuals of vata prakriti (figure 5). Further to this, we identified 

signature species associated with specific gender in each prakriti. This showed several species such as 

Prevotella copri (vata females) and Blautia wexlerae (vata males) to be preferentially associated with specific 

prakriti phenotypes (table 2). In addition, we found more bacterial species to be specifically associated with 

female subjects. 
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Figure 5: LEfSe analysis of gut microbiome: Cladogram showing OTUs that are significantly different among 

the three prakritis based on LEfSe analysis. The taxonomic levels are represented by rings with phyla at the 

outermost ring and genera at the innermost ring. Each circle is a member within that level. Coloured circles 

denote significant enrichment in their respective prakritis (p<0.05, LDA > 2). 

Table 2:  Bacterial species specific to prakriti and gender in gut microbiome (LDA score > 2.5) and their 

physiological relevance 
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3.4.2 Oral microbiome: A LEfSe analysis of the oral microbiome at the genera level did not show any 

significant differentially abundant features (data not shown). However, at the species level, several species of 

Prevotella and Fusobacterium nucleatum were found to be preferentially associated with specific prakritis. 

We found more number of bacterial species that were differentially abundant to be associated with male 

subjects compared to females (table 3). 

Table 3: Bacterial species specific to prakriti and gender in oral microbiome (LDA score > 2.5) and their 

physiological relevance 
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4. Discussion 

In the current study, an attempt was made to understand the influence of Ayurvedic prakriti phenotypes on the 

diversity of the gut/oral microbiome in healthy individuals. With this aim, healthy individuals belonging to 

three different prakriti phenotypes were studied for their oral and gut microbiome. Volunteers from different 

ethnicity and race residing in a single geographical area were considered to minimize location-based 

heterogeneity in the results (Mobeen et al. 2019). 

We refrained from including subjects with habits like smoking and alcohol consumption as it is known to alter 

the gut microbiome. Subjects who had taken antibiotics 6 months prior to sample collection were excluded as 

it is also known to influence the gut microbiome. Antibiotics cause large disturbances in the microbiome 

composition and species-species interactions and thus disrupt the community structure (Modi et al. 2014). 

The composition of the gut microbiome, though relatively simple at birth, undergoes series of changes in its 

composition and functions by the early age of 3 to 5 years, due to the influence of various genetic and 

environmental factors such as diet, lifestyle, age, geography, mode of delivery, infection, infant feeding 

modality (formula versus breastfed), maternal diet, diseases and medication (Rodríguez et al. 2015; Schmidt 

et al. 2018; Wen and Duffy 2017). It has been reported that the gut microbiota of infants delivered through 

caesarean section did not resemble their mother’s gut profile (Arboleya et al. 2018; Backhed et al. 2015). 

Exercise and high fiber diet, such as fruits, vegetables, legumes, and whole-wheat grain products have also 

been shown to increase the microbial diversity (Clarke et al. 2014; Flint et al. 2012). In fact, diet directly 

regulates the gut microbial ecosystem and has a profound effect on the colonization of the gut thereby shaping 

the gut microbial ecosystem in the early stages of life (Rodríguez et al. 2015). Carbohydrates, proteins and fats 

are the macronutrients known to influence the gut microbial system (Rowland et al. 2018). For instance, 

Bacteroides have been shown to be predominant in the gut associated with western diet while, Prevotella 

enterotype was found to be associated with the plant based polysaccharides and non-western diet 
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(Gorvitovskaia et al. 2016). In another study, feces samples of people who consume coffee was shown to have 

increased presence of Bifidobacterium (Jaquet et al. 2009). 

The fecal microbiome has been shown to be influenced by the type of diet consumed by the healthy subjects 

on previous few days. The animal-based diet is known to alter the microbiome which may be due to fecal bile 

acid profiles and the growth of microorganisms capable of triggering inflammatory bowel disease. These 

results suggest that dysbiosis of gut microbiome can be caused by the high fat diet which may lead to influence 

several diseases (Wen and Duffy 2017). 

Similar to earlier studies on gut microbiome from Indian population (Arumugam et al. 2011; Chaudhari et al. 

2020; Chauhan et al. 2018), we found Bacteroidetes and Firmicutes phyla to be the major component of the 

gut microbiome irrespective of the prakriti type or gender (figure 1a) suggesting their importance in 

maintaining the general wellbeing of the individual. However, in spite of this general similarity, certain subtle 

differences were discerned with respect to the composition of the gut microbiome between healthy individuals. 

Interestingly, the major factors such as age, diet, lifestyle, stress and environment that can influence and cause 

alterations in the three doshas in an individual (Lakhotia 2014) are also known to affect the microbiome 

composition and function. This suggests a possible link between prakriti constitution and the microbiome 

assemblage and how subtle physiological or lifestyle changes can lead to disequilibrium and diseased state in 

healthy individuals. In our study, we found that the overall species diversity was significantly higher in aged 

individuals for both gut and oral microbiome (figure 1b, 2b). Other studies from India have reported Prevotella, 

Bacteroides and Dialister to be the major bacteria genera associated with gut microbiome (Chaudhari et al. 

2019, 2020). We found these three genera as major contributors to the gut microbiome in all prakriti types 

(figure 1d) irrespective of the gender. Reports suggest Prevotella to be a major gut microbe associated with 

plant-rich diet since it plays an important role in metabolism of plant-based products (Chaudhari et al. 2020; 

Chen et al. 2017). Earlier studies on gut microbiome of western African population with diet rich in 

carbohydrates and fibres were also shown to be enriched with Prevotella (Bhute et al. 2016; De Filippo et al. 

2010). Similarly, Bacteroides is reported to be associated with a non-vegetarian diet (Chaudhari et al. 2020). 

We found a negative correlation between relative abundance of Prevotella and Bacteroides suggesting 

enrichment of bacterial species based on the diet of the individuals. Das et al. (2018) in their study based on 

fecal microbiome of 84 healthy individuals from three Indian communities concluded that diet can significantly 

influence the gut microbiome. Interestingly, they found Prevotella to be more abundant in gut microbiome of 

individuals with non-vegetarian diet. However, Nishijima et al. (2016) compared the gut microbiome from 

healthy individuals from 12 different countries and found Bacteroides to be the most abundant genus reported 

from gut microbiome from different countries including China, Spain, Denmark and concluded that diet might 

not be the only factor that determines gut microbial diversity. We did not discern a clear clustering of samples 

based on gut microbiome composition of the three prakriti phenotypes. In a similar study, Mobeen et al. (2020) 

also did not observe a distinct clustering specific to the three prakriti types. This could be explained by the fact 

that the core microbiome of these prakriti phenotypes shared most of the bacterial species while very few 

unique species were associated with each type. Studies also indicate that gut microbiome of dizygotic twins is 
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much less similar compared to that of monozygotic twins indicating the importance of genetic factors in 

determining the gut microbiome (Goodrich et al. 2016a). Tschop et al. (2009) suggested that the core 

microbiome was shared among individuals albeit with differences in abundance of different organisms. In fact, 

Arumugam et al. (2011) opined that the presence of a few dominant species along with several low abundance 

species might contribute to homeostasis of the gut microbiome in healthy individuals. It could be argued that 

the less abundant species that form the core microbiome might play a crucial role in determining the functional 

attributes characteristic of each prakriti phenotype in healthy individuals and their perturbations due to internal 

and external factors might lead to diseased state. 

It is an interesting and powerful hypothesis that despite being healthy, Ayurveda can discern individuals based 

on their constitution type and offer prognostic value in terms of predicting disease susceptibility. One could 

then wonder if this would have a scientific basis in terms of differences in the corresponding microbial 

assemblage. With this in mind, we compared the core microbiome from the three prakriti phenotypes (present 

in >50% of the samples in each cohort) and compared it with GFKB database which lists the microbiome 

typical of healthy individuals. GFKB database provides a baseline microbiome data from healthy individuals 

consisting of more than 150 organisms belonging to 59 bacterial genera (King et al. 2019). The OTU elements 

forming the core microbiome of each prakriti, that were not included in the GFKB database were taken further 

ahead to identify the unique OTUs characteristic of each prakriti (figure 3) and their functional roles were 

assessed from literature. Butyricicoccus which was enriched in kapha prakriti is a widely established 

commensal butyrate, short chain fatty acid (SCFA) producer that is known to suppress inflammatory bowel 

disorder (Wang et al. 2019a) and ulcerative colitis (Devriese et al. 2017). It is considered as a probiotic that 

can protect intestinal barriers from potentially harmful microbes (Ma et al. 2020). This correlates well with the 

kapha phenotype which relates to strength, stability (Sharma 2016) and functionally to disease resistance (Dey 

and Pahwa 2014). Turicibacter found in pitta prakriti individuals has been linked to host genetics (Kemis et 

al. 2019), host immunity and is associated with inflammation and cancer (Goodrich et al. 2016a, b). 

Turicibacter sanguinis, a common gut commensal, is involved in signalling intestinal cells to release serotonin, 

thereby playing a crucial role in altering immune and metabolic conditions (Fung et al. 2019). This correlates 

with the phenotype of pitta prakriti, which is associated with digestion, metabolism and transformation 

(processes involving energy exchange) (Sharma 2016). In a balanced state, these individuals are capable of 

quick metabolism of toxic substances and a good amount of disease resistance; while in an imbalanced state, 

pitta individuals are more prone to metabolism and digestion disorders such as coronary disease, ulcer, cancer 

of stomach, inflammation of lymph system and others (Dey and Pahwa 2014; Mishra et al. 2001). 

Vata prakriti individuals had a higher number of bacteria absent in the GFKB database such as Paraprevotella, 

Mitsuokella, Barnesiellaceae, Christensenellaceae and S24-7 (figure 3). Paraprevotella is usually found to be 

negatively correlated with BMI, percentage body fat, adiposity index and estimated visceral fat, which fits the 

description of vata phenotype. A study by Bressa et al. (2017) found Paraprevotella to be significantly higher 

in active women. Christensenellaceae is reported to have ‘inverse relationship’ with BMI (Waters and Ley 

2019) and aligns well with the vata phenotype (lower BMI). Mitsuokella is an anti-inflammatory, 
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polysaccharide degrading, short chain fatty acid producer. This genus has been found to be uniquely enriched 

in Indian gut populations as opposed to US and Chinese populations (Jain et al. 2018) and in individuals who 

consume a plant-based diet (Jayasudha et al. 2018; Shankar et al. 2017). S24-7, unique to vata phenotype, is 

reported to offer protection from type 2 diabetes (Hansen et al. 2015), while few other studies have reported it 

as an opportunistic pathogen (Ormerod et al. 2016) and to increase with onset of arthritis (Liu et al. 2016; 

Rogier et al. 2017). Though widely reported from animal studies (Lagkouvardos et al. 2019), their relative 

significance in human gut microbiome remains largely unexplored in spite of their wide prevalence. Ayurveda 

texts attribute rheumatoid arthritis to an accumulation of ama in the joints and vata imbalance (Gupta et al. 

2015). Barnesiellaceae has been reported as a significant biomarker for high fiber diet (Ong et al. 2018), while 

Bressa et al. (2017) correlated it with sedentary lifestyle. The presence of these ‘unique’ genera in specific 

prakritis can provide these constitutions with adaptable genomes which when perturbed by external factors 

can shift the balance from healthy to diseased state in individuals. 

Oral microbiome is considered to be extremely diverse with more than 600 bacterial species occupying 

different niches with varying abundances in the oral cavity (Dewhirst et al. 2010). The overall diversity of oral 

microbiome is considered to be second only to the gut microbiome (Verma et al. 2018). Increasing evidence 

suggest that oral microbiome not only plays a major factor in infections leading to periodontitis and tonsillitis 

but also other systemic diseases such as diabetes, stroke, etc. (Genco et al. 2005; Joshipura et al. 2003). Phyla 

Firmicutes, Proteobacteria and Bacteroidetes have been reported to be major contributors to the oral 

microbiome (Dewhirst et al. 2010) as has been reported here (figure 2a). In our study, we also found TM7 as 

a component of oral microbiome in males of vata prakriti. Initially reported from peat bogs, TM7 consists of 

unculturable group of bacterial organisms reported to occur with high prevalence but low abundance in oral 

microbiome (Brinig et al. 2003; Podar et al. 2007; Rheims et al. 1996). The presence of division TM7 in the 

oral microbiome of apparently healthy individuals is interesting considering the fact that TM7 members are 

considered to be associated with sub-gingival plaques leading to periodontitis (Liu et al. 2012). Chaudhari et 

al. (2020) found significant difference in the alpha diversity estimates including Chao1 in the skin microbiome 

across different age groups. We also observed higher diversity in slightly higher aged individuals with 

reference to the oral microbiome but no significant difference was observed with reference to gender or BMI 

(figure 2b). 

The major bacterial genera associated with oral microbiome in our study were found to be Streptococcus and 

Neisseria which agrees with earlier studies carried out on Indian population (Chaudhari et al. 2019). Chaudhari 

et al. (2020) reported that five genera namely Neisseria, Streptococcus, Prevotella, Porphyromonas, and 

Haemophilus contributed to more than two-third of the oral microbiome from 54 healthy individuals belonging 

to six joint families. In our study, we found members of the genus Streptococcus to be the most abundant 

species in the oral cavity (figure 2d). In addition to the 5 dominant genera, we found Veilonella which was 

consistently present across all prakritis to be another major contributor to the oral microbiome. Both 

Haemophilus and Veilonella are reported to occupy distinct habitats in the mouth (Welch et al. 2016). Though 

Mycoplasma is considered to be extremely common in human saliva, we found this species in very few 
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samples. However, the presence of Porphyromonas and Fusobacterium, two common genera implicated in 

periodontitis, with high prevalence and abundance in healthy samples was intriguing. 

Using BugBase, we found that anaerobes contributed more than 80% of the gut microbiome while in case of 

oral microbiome, aerobes, anaerobes and facultative anaerobes were found to contribute more or less equally 

to the overall diversity (figure 4a,b). In both oral and gut microbiome, majority of the organisms were found 

to be Gram negative in nature. Interestingly, a larger proportion of microbes identified from oral microbiome 

were reported to be biofilm formers. Though, some species were identified as potential pathogens in both oral 

and gut microbiome, the proportion of potentially pathogenic organisms were least abundant in individuals 

belonging to pitta prakriti in both cases (figure 4a,b). 

A linear discriminant effect size analysis showed preferential association of several bacterial species in 

different prakritis and gender (tables 2 and 3). Fusobacterium nucleatum which is reported as a biomarker for 

gastric cancer (Hsieh et al. 2018) was preferentially associated with oral microbiome of healthy kapha males. 

Further studies in this regard would provide valuable information on utilizing these microbes as prognostic 

and diagnostic biomarkers for specific disease states. 

Recent studies propose that microbiome might play an integral role in precision medicine approach as 

prognostic, diagnostic and therapeutic biomarkers considering their role in disease pathogenesis and response 

to treatment. Gut microbiome is considered to be a better choice for personalized medicine due to their subtle 

heterogeneity among different individuals and their ability to respond to therapeutic interventions (Kashyap et 

al. 2017). While reduction in microbial diversity and their concomitant functional roles in elderly individuals 

is associated with higher chronic intake of drugs (Ticinesi et al. 2017), enrichment of certain bacteria such as 

Akkermansia, Bifidobacterium and Christensenellaceae have shown to be associated with increased life 

expectancy (Biagi et al. 2016). The prakriti concept of Ayurveda system places great emphasis on differences 

in functional attributes (prakritis) among individuals which can be used for personalized treatment. Similarly, 

functional omics which display much clear variations when perturbed are known to succinctly reflect these 

changes than overall alterations in microbial community structure (Heintz- Buschart and Wilmes 2018). 

However, the subtle differences in the microbiome in healthy individuals of different prakriti types clearly 

indicate that sudden variations in microbiome can also provide us valuable clues on predisposition to disease 

state. Hence, it becomes imperative to build information related to the baseline levels of the microbiome from 

healthy individuals so that any changes to these ‘normal’ microbiome levels can provide us with clues that can 

help in predicting the disease outcome and tailoring the treatment modalities to specific needs by suitable 

alterations to gut microbiome. 

In our current study, a large number of bacterial genera were shared among all prakriti types. It is possible that 

the assessment of biochemical parameters alone does not suffice to classify an individual as healthy. In 

addition, we have sampled from a cosmopolitan city (Bangalore) which has individuals of multi-ethnic 

backgrounds with wide variation in diet, lifestyle and other factors that can influence the gut microbiome. To 

establish a better correlation that can capture subtle differences among the prakriti types, several factors such 



 43 
 

  Chapter 2 

as lifestyle, diet, drugs, age and stress need to be accounted for as these can influence the microbial diversity 

even in healthy individuals leading to heterogeneous data within the various prakriti types thus making it 

difficult to discern specific patterns. 

Further studies to explore the association of prakriti with gut microbiome should involve sampling of a broad 

population of healthy individuals over time and account for all factors that can influence the microbial diversity 

patterns such as age, gender, geography, food habits and cultural traditions, in order to discover features of gut 

microbiome that are unique to different geographical areas/lifestyles and aid discovery of statistically enriched 

biomarkers for each prakriti. Further, studies of the microbial diversity patterns while accounting for 

parameters mentioned can enable exploration of how westernization (mainly in terms of diet and lifestyle) of 

the Indian population might have influenced shifts in microbial landscape – changes that potentially mediate 

the suite of pathophysiological states correlated with Westernization. 
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  Chapter 3 

Signaling Pathways Promoting Epithelial Mesenchymal Transition in Oral 

Submucous Fibrosis and Oral Squamous Cell Carcinoma 

Summary 

Epithelial-mesenchymal transition (EMT) is a critical process that occurs during the embryonic development, 

wound healing, organ fibrosis and the onset of malignancy. Emerging evidence suggests that the EMT is 

involved in the invasion and metastasis of cancers. The inflammatory reaction antecedent to fibrosis in the 

onset of oral submucous fibrosis (OSF) and the role of EMT in its malignant transformation indicates a hitherto 

unexplored involvement of EMT. This review focuses on the role of EMT markers which are regulators of the 

EMT mediated complex network of molecular mechanisms involved in the pathogenesis of OSF and OSCC. 

Further the gene enrichment analysis and pathway analysis support the association of the upregulated and 

downregulated genes in various EMT regulating pathways. 

1. Introduction 

Oral submucous fibrosis (OSF) is a chronic mucosal condition occurring predominantly among the Indians, 

possibly due to prolonged use of areca nut, leading to marked rigidity and inability to open the mouth 

(Ekanayaka and Tilakaratne, 2013). The pathogenesis of OSF is not clearly understood, but there is compelling 

evidence to suggest that OSF is a result of collagen deregulation (Rajalalitha and Vali, 2005). Therefore, an 

increase in collagen formation concomitant with reduced collagen degradation is one of the plausible 

explanations for the onset of this condition (Rajalalitha and Vali, 2005). An alarming complication associated 

with OSF is the higher risk of transforming to oral squamous cell carcinoma (OSCC). It has been described 

that the pathological changes in the connective tissue of OSF are likely to affect the overlying epithelium and 

induce EMT (Ekanayaka and Tilakaratne, 2013). 

OSCC is the most common type of oral cancer, which accounts for 3.8% of all the cancers and 3.6% of cancer 

deaths (Shield et al, 2017). Despite its ease of access for diagnosis and treatment, the mortality rate remains 

high because of the increased risk of developing second primary malignancy, which is the leading cause of 

death in patients with head and neck cancer (Krisanaprakornkit and Iamaroon, 2012). It is well-established that 

EMT contributes to the acquisition of invasive behavior, essential for metastasis and invasion (Gonzalez and 

Medici, 2014). Although the experimental evidence points to the association of EMT in the mechanism of 

metastasis, its specific role in human cancer needs to be further explored (Zidar et al, 2018). Identification of 

signature genes influencing EMT may unravel novel pathways, which are critical to the progression of oral 

cancer. These markers of EMT may prove to be efficient targets to control the further spread and improve the 

prognosis of OSCC. With this background, this review focuses on the mechanisms and signaling pathways 

that direct the change in the gene expression signatures inducing EMT in OSF and OSCC. 

2. Epithelial to mesenchymal transition (EMT) 
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Epithelial to mesenchymal transition (EMT) is a biological process involving the transition of a polarized 

epithelial cell into a cell that has the characteristics of a mesenchymal phenotype (Kalluri and Weinberg, 2009). 

EMT is crucial for developmental milestones such as gastrulation of the metazoans, neural crest formation, 

and heart morphogenesis (Larue and Bellacosa, 2005). EMT is shown to be elicited following chronic 

inflammation and during wound healing (Yanjia and Xinchun, 2007). The role of EMT has increasingly gained 

significance as an essential process in fibrosis and carcinogenesis. Considering the involvement of EMT in 

various physiological and pathological mechanisms, three types of EMTs have been described (Kalluri and 

Weinberg, 2009). 

Type 1 EMT is associated with implantation, embryo formation and organ development. This type of EMT 

generates mesenchymal cells that have the ability to undergo a further transition to form secondary epithelia 

(Kalluri and Weinberg, 2009). Type II EMT is associated with inflammation related to wound healing, organ 

fibrosis and tissue regeneration. Type III EMT is associated with tumor formation, progression and metastasis 

(Kalluri and Weinberg, 2009). Although the molecular basis for all the three types of EMT remains the same, 

the type I EMT is a physiological process during organogenesis, which further undergoes MET (Mesenchymal 

to epithelial transition) to form the secondary epithelia, hence reversal in the expression of EMT inducing 

genes may be seen. Type II EMT presents with upregulation of ECM proteins and transcription factors bring 

about the phenotypic switch to induce fibrosis. Type III EMT exhibits change in the phenotype with the 

upregulation of EMT associated genes to promote tissue invasion and metastasis of cancer cells (Zeisberg and 

Neilson, 2009).  

EMT is a process in which there is a reduced expression of epithelial genes (E-cadherin) and an increase in the 

expression of mesenchymal genes (N-cadherin) and EMT transcription fac-tors. Together with an altered 

localization of the β-catenin, the epithelial cells lose their phenotype and intercellular adhesions (Das et al, 

2013). Besides, there is an increased expression of Vimentin (Mendez et al, 2016) signifying a mesenchymal 

change in the cytoskeleton. An increase in Tenascin (Tak et al, 2015) implies that the matrix deposition enables 

the migration of cells. Significantly, the matrix metalloproteinase 9 (MMP9) (Das et al, 2013) overexpression 

demonstrates the disruption of the basement membrane and the proneness of cells to infiltrate the underlying 

stroma (Lee and Nelson, 2012; Scanlon et al, 2013). 

The inflammatory reaction antecedent to fibrosis and the role of EMT in fibrogenesis and malignant 

transformation in other organs (Kriz et al, 2011; Hyun et al, 2016; Horowitz and Thannickal, 2006), points to 

the involvement of EMT in the pathogenesis of OSF and its malignant transformation. The inflammatory 

cytokines produced in response to the inflammation may mediate the progression of OSF via various EMT 

pathways (Sharma et al, 2018). The membranous loss of E-cadherin (Pal et al, 2010), β-catenin (Das et al, 

2013), Cytokeratin 5(CK5), and Cytokeratin 14(CK14) (Ranganathan et al, 2006) with an overwhelming 

expression of vimentin (Nayak et al, 2013), N-cadherin (Das et al, 2013), and α-Smooth muscle actin (α-SMA) 

(Chang et al, 2014; Angadi et al, 2011) seen in OSF further confirms the role of EMT in OSF (Table 1). 

Table 1: Molecular events regulating EMT in the pathogenesis of OSF and OSCC. 
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3. Transcription factors inducing EMT 

Several transcription factors have been shown to induce EMT by repressing the transcription of cell adhesion 

molecules and driving epithelial cell reprogramming. These transcription factors bind to the promoter region 

of the CDH1 gene encoding E-cadherin and thus initiate EMT (Gonzalez and Medici, 2014). An important 

attribute of EMT is the loss of expression of cell-cell adhesion molecule, E-cadherin. Among the transcription 

factors directly contributing to this process includes snail super family of zinc-finger transcription factors, 

Snail1 and Snail2 (also known as Slug) (Wang et al, 2013), zinc finger E-box–binding homeobox (ZEB) family 

with the ZF (zinc finger) class of homeodomain transcription factors ZEB1 (Liu et al, 2008), ZEB2 (Hanrahan 

et al, 2017) and TWIST1 gene, which encodes a basic helix-loop-helix (bHLH) transcription factor (Wang et 

al, 2016) and lymphoid enhancer binding factor-1 (LEF-1) (Sun et al, 2017) (Table 1). 

The Snail1 and Snail2 (Slug) belong to the snail superfamily consisting of highly conserved C terminal domain 

with zinc fingers that bind to the E-box motif in the target gene promoters (Wang et al, 2013). The transcription 

factors of the Snail family plays an important role in EMT through the functional inhibition and suppression 

of E-cadherin expression by binding to the promoter region of the E-cadherin gene (Batlle et al, 2000). 

However, in the fibrotic buccal mucosa fibroblasts, snail binds to the E-box in the α-SMA promoter and brings 

about upregulation of myofibroblasts expression, thus perpetuating fibrosis (Yang et al, 2018). Stromal Snail 

positivity has been reported in OSCC due to the presence of fibro-/myofibroblasts generated from the 

dedifferentiated carcinoma cells (Franz et al, 2009). An inverse correlation between the E-cadherin and snail 

expression has been observed in OSCC cells in vitro (Yokoyama et al, 2001). The cells lines that exhibit 

upregulated Snail expression along with the downregulation of E-cadherin and desmoglein 2 show higher 

invasive potential implicating the role of Snail transcription factor in driving the epithelial cell reprogramming 

(Yokoyama et al, 2001; Kume et al, 2013). TGF-β was shown to upregulate Snail (SNAI1) and Slug (SNAI2) 

expression in OSCCs and thereby promote chemo- resistance to anti-cancer drugs (Nakamura et al, 2018). The 

upregulation of both Snail and Slug in OSCC cells showed decreased sensitivity to anti-cancer drugs. Hence 

knock down of Slug and Snail would suppress its chemo-resistance to anti-cancer drugs (Nakamura et al, 

2018). 

Twist, a basic helix-loop-helix domain-containing transcription factor functions as a transcription repressor to 

activate EMT (Yang et al, 2006; Lee et al, 2016). Ectopic expression of Twist has resulted in the loss of E-

cadherin mediated cell-cell adhesion, activation of mesenchymal markers, and gain of cell motility (Yang et 

al, 2006). Twist was shown to be upregulated in fibroblasts of lung tissue in idiopathic pulmonary fibrosis 

patients (Tan et al, 2017). Further, the arecoline treated cells show enhanced expression of Twist and 
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myofibroblast transdifferentiation, with the silencing of Twist being able to reverse this phenomenon (Lee et 

al, 2016). The role of Twist playing a critical role in the progression and metastasis of head and neck 

carcinomas (Zhuo et al, 2015), including OSCC, has been demonstrated (Wushou et al, 2012; de Freitas et al, 

2012). Twist overexpression has been associated with clinical outcomes such as advanced clinical stage, 

presence of lymph node metastasis, distant metastasis and local recurrence (Zhuo et al, 2015). 

Zinc finger E-box binding homeobox 1 (ZEB1) is a well-known activator of the EMT programme (Chang et 

al, 2014). ZEB1 functions as a transcription repressor that negatively regulates the expression of polarity 

markers, such as E-cadherin, MucI and Pkp3 (Franz et al, 2009). ZEB1 plays a pathogenic role in the induction 

of the myofibroblast activity of buccal mucosal fibroblasts (BMFs) by binding to the promoter region of α-

SMA and hence inducing myofibroblasts transdifferentiation and promoting fibrosis (Chang et al, 2016). In 

OSCC, a negative correlation exists between ZEB1 and E- cadherin expression (Yao et al, 2017). 

Overexpression of ZEB1 and loss of E-cadherin expression is shown to be associated with local recurrence, 

lymph node metastasis and advanced pathological grading (Yao et al, 2017). ZEB-1 promotes EMT by 

interacting with acetyltransferases p300/pCAF and SMADs to activate the target genes that contribute to 

mesenchymal differentiation (Schmalhofer et al, 2009). Upregulated of ZEB1 has been noted in recurrent 

OSCC cases compared to primary lesions, indicating its role as marker of tumor recurrence (Ho et al, 2015). 

Lymphoid enhancer-binding factor 1 (LEF1), a member of the T-cell Factor (TCF)/LEF1 family of 

transcription factors, is a down- stream mediator of the Wnt/β-catenin signaling pathway that promotes the 

transcription of the Wnt target genes (Santiago et al, 2017). It has an essential role in EMT by activating the 

transcription of N-cadherin, Vimentin and Snail (Santiago et al, 2017). During embryogenesis, EMT is 

executed by the binding of SMAD2-P-SMAD4-LEF1 complex to three binding regions in the E- cadherin 

promoter leading to its transcriptional silencing (Nawshad et al, 2007). Activation of the Wnt-β catenin 

pathway promotes the transcription of downstream target genes such as c-myc, LBH, Oct4, Nanog and LEF1 

in various carcinomas (Santiago et al, 2017). In OSCC, LEF1 is over expressed in the moderate and poorly 

differentiated carcinomas (Su et al, 2014). Overexpressed LEF1 maintains the cancer cells in undifferentiated 

embryonic stem cell morphology. This may be the mechanism by which LEF1 promotes tumor invasion and 

its overexpression is associated with poor prognosis (Su et al, 2014). 

4. Signaling pathways in EMT 

4.1. TGF-β activated Smad signaling in EMT 

The canonical signaling pathway for TGF-β involves the Smad transcription activators. TGF- β pathway is the 

most common pathway that induces EMT. The signaling pathway is activated by TGF-β superfamily of 

ligands, which includes the 3 isoforms for TGF- β and 6 isoforms of Bone morphogenetic protein (BMP2−7). 

Binding of TGF-β to the cell membrane receptor TGF βR, activates type II TGF-βR to Trans phosphorylate 

and activate the type I TGF- βR. This recruits the receptor-activated Smads, the R- Smads (Smad2/3), which 

are phosphorylated to form a complex with Smad4. In the BMP signaling, Smad 1/Smad 5 form complex with 
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Smad4. This trimeric Smad complex translocates into the nucleus and bind to the promoter region of the target 

genes and thus activates or represses the transcription of regulatory genes (Lamouille et al, 2014). 

The inhibitory Smads (I-Smads), Smad6 and Smad7 are negative regulators. They negatively regulate the 

Smad activation by competing with Smad2 and Smad3 or Smad1 and Smad5 for binding to the type I TGF- 

βR (Derynck et al, 2003). I- Smads also recruits the E3 ubiquitin- protein ligases Smurf1 and Smurf2 for 

proteasomal degradation of Smad proteins. It acts by forming complexes with smurfs in the nucleus, 

translocates to the plasma membrane and induces ubiquitination and proteasomal degradation of the TGFβ 

receptors hence terminating Smad-mediated signaling (Biernacka et al, 2011) (Fig. 1). 

TGF-β induces EMT through transcription factors like Snail1 and ZEB1. The downstream mediator Smad3-

Smad4 complex translocate into the nucleus and interacts with the transcriptional repressor Snail1 to form a 

complex which then targets the promoters of genes encoding E-cadherin and Occludin (Albanel et al, 2009). 

Several feedback loops between transcription factors and microRNAs also regulate the TGF-β induced EMT. 

A Double-negative feedback loop exists between Snail1/miR-34 and ZEB1/miR-200 and an autocrine 

feedback loop between TGF-β /miR-200, which brings about EMT changes (Yan et al, 2014). 

TGF-β is upregulated in OSF tissues (Rai et al, 2020; Pant et al, 2016; Kamath et al, 2015) and its activation 

is shown by the nuclear localization of p-SMAD2 (Khan et al, 2011). The extracts of areca nut induce TGF-β 

signaling in epithelial cells with increased levels of p-SMAD2, indicating the induction of TGF-β ligand (TGF- 

2) and its activator Thrombospondin1 (THBS-1) leading to activation of TGF-β pathway (Khan et al, 2012). 

Thus, there is a pro fibrotic cascade involving TGF-β pathway triggered in epithelium that influences the 

underlying submucosa for a fibrotic response (Pant et al, 2015). Also there is down regulation of BMP7 in 

OSF as induced by TGF-β, suppressing the antifibrotic effect of BMP7 (Khan et al, 2011). In OSCCs, BMP 7, 

2 (Titidej et al, 2018) expression is associated with the tumor differentiation and lymph node metastasis and 

hence indicative of poor prognosis (Titidej et al, 2018). 

Defective TGF-β Smad signaling pathway may lead to loss of proliferation inhibitory effect of TGF-β. Loss 

or decreased expression of the TGF-β receptors effect the regulatory function of TGF-β, hence is associated 

with carcinogenesis and tumor progression (Peng et al, 2006). TGF-β treated OSCC cell lines showed EMT 

changes characterized by transformation to fibroblasts like cells with downregulation of E-cadherin and 

upregulation of Vimentin (Meng et al, 2011). TGF-β also induces THBS-1 in OSCC, which promotes the 

migration of cancer cells and upregulates the MMPs thereby favoring the OSCC invasion (Titidej et al, 2018) 

(Table 2). 

Table 2: Signaling pathways regulating EMT in OSF and OSCC. 
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4.2. Non-Smad signaling in TGF-β-induced EMT 

TGF-β induces EMT alternatively by initiating non-Smad signaling, which leads to the activation of pathways 

that are more commonly considered as the effectors pathways of receptor tyrosine kinase (RTK) signaling, 

such as PI3K/Akt, Erk, and p38 (Mitogen-activated protein kinase) MAPK, and Rho-GTPases path- ways 

(Zhang et al, 2017). Activation of non-Smad pathways can occur as an indirect response to Smad-mediated 

gene expression induced by TGF-β. Direct activation of non-Smad signaling can occur through the interaction 

of signaling mediators directly with the TGF-β receptors or through other adopter proteins (Derynck et al, 

2003). 

4.3. PI3 kinase/Akt /mTOR signaling in EMT 

Activation of PI3 kinase/Akt signaling by TGF-β plays a significant role in inducing EMT. TGF-β activates 

phosphoinositide 3-kinase (PI3K) through its receptors or trans-activation through epidermal growth factor 

(EGF) and platelet –derived growth factor (PDGF) receptors. PI3K on activation phosphorylates 

phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5- trisphosphate (PIP3), a 

phospholipid membrane protein that binds Akt. Upon binding, Akt is phosphorylated and activated by 

phosphoinositide- dependent kinase 1 (PDK1). Phosphatase and tensin homolog (PTEN) facilitate the 

dephosphorylation of PIP3 (Gonzalez and Medici, 2015). Loss of function and mutation of PTEN is observed 

in various carcinomas (Carracedo and Pandolfi, 2008). Integrin-linked kinase (ILK) on activation may 

alternatively mediate the phosphorylation of Akt through integrins. Akt induces EMT in SCCs by promoting 

the transcription of snail through nuclear factor-kB (NF-kB) (Julien et al, 2007). TGF-β brings about the 

change in cell size and protein content during EMT by activation of mammalian target of rapamycin complex 

1 (mTORC1) and mTORC2 through Akt to bring about cell migration and invasion (Lamouille et al, 2007; 

Lamouille et al, 2012) (Fig. 1). 

Arecoline, the major active ingredient in the betel nut is involved in the pathogenesis of OSF. Downregulation 

of Akt/mTOR pathway in HacaT cells is seen on treatment with arecoline, executed through suppression in 
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phosphorylation of AKT, mTOR and eukaryotic initiation factor 4E–binding protein 1(4E-BP1) (Gu et al, 

2019). The arecoline induced downregulation of the Akt/mTOR pathway is mediated through the upregulation 

of PH domain Leucine-rich repeat Protein Phosphatase 2 (PHLPP2), an upstream target of Akt. siRNA-

mediated knockdown of PHLPP2 recovered the phosphorylation state of Akt, as well as attenuated the effect 

of arecoline on cell viability (Gu et al, 2019). Inverse correlation between p-Akt and E-cadherin expression is 

observed in OSCC. Akt activation represses E-cadherin gene transcription by upregulation of the transcription 

repressors SNAIL, TWIST (de Freitas et al, 2012) and Smad interacting protein 1 (SIP1) (Grille et al, 2003). 

Akt is associated with invasiveness, enhancement of proliferation, growth and anti-apoptosis, hence 

upregulation of Akt was associated with poor prognosis in patient with OSCC (Lim et al, 2004). Upregulation 

of Akt and PI3K with inactivation of PTEN is reported to be induced by tobacco components such as nicotine 

(West et al, 2003). Progressive decrease in expression of PTEN is observed in OSF, suggesting TGF-β 

mediated loss of PTEN that results in decreased apoptosis, increased survival of fibroblast leading to fibrosis 

(Angadi and Krishnapillai, 2012). The genes associated with the PI3K/AKT pathway, including PI3K, Akt, 

RAS and PTEN, are infrequently found to be mutated in Head and neck squamous cell carcinoma (HNSCC) 

and are rarely reported in OSCC cases (Cohen et al, 2011) (Table 2).  

4.4. MAPK/ERK pathway in EMT 

MAP kinases represent the cytoplasmic components of the signaling pathway that are activated by tyrosine 

kinases and the G protein-coupled receptors. The activation of the MAPK pathway by the family of TGF-β 

proteins are weaker than those induced by the receptor tyrosine kinase (RTK) ligands. Erk1/2 MAPK signaling 

is activated by TGF-β through the association of ShcA (Src homology and collagen A adaptor protein A) with 

TGF-βRI and subsequent phosphorylation at tyrosine and serine, which provides a docking site for the growth 

factor receptor-bound protein 2 (Grb2) and the son of sevenless (SOS) proteins hence initiating the MAPK 

pathway (Lamouille et al, 2014; Lee et al, 2007). The ShcA/Grb2/SOS complex converts G protein, such as 

Ras into its active GTP-bound form, which binds Raf kinase. The MAP kinase pathway is composed of three 

consecutive kinases (MAPKKK, MAPKK, and MAPK) leading to its phosphorylation to MEK (MAPKK), 

which on further phosphorylation forms MAPK (ERK). MAPK now functions as an enzyme and translocate 

into the nucleus to bring about phosphorylation and activation of various transcription factors to induce EMT 

(McCain, 2012; Zhang and Liu, 2006). The TGFβ induced pathway stabilizes SNAIL1 by inhibiting GSK3, 

thus increasing SNAIL1 activity, and repression of E- cadherin (Lamouille et al, 2014) (Fig. 1). 

Areca nut and arecoline induce the activation of the ERK/JNK/p38 MAPK pathways, through phosphorylation 

of p-Akt, p-ERK and p-p38 and activation of these pathways play an important role in OSF and OSCC (Dai et 

al, 2014; Chang et al, 2004). These pathways regulate the expression of matrix metalloproteinases (MMPs) 

and tissue inhibitors of metalloproteinases (TIMPs) to promote wound healing and fibrosis (Dai et al, 2014). 

Upregulation of the downstream targets like c-myc has also been reported in OSF, where the expression of c-

myc may be correlated with the progressive cellular transformation in these precancerous conditions (Eversole 

and Philip, 1955; Srinivasan and Jewell, 2001). Induction of Ras/ERK pathways by EGF reduces the 
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interferon-α mediated apoptosis of epidermoid carcinoma cells, indicating the survival of DNA damaged cells 

via this pathway (Caraglia et al, 2003). 

Mutation in Ras or Raf oncogenes leads to the activation of ERK1/ERK2 pathways in many cancers (Schreck 

and Rapp, 2006). But there have been discrepancies pertaining to ERK1/ERK2 expression in oral cancer and 

HNSCC (Aguzzi et al, 2009), however, this may be due to the differentiation stage of the tumor, where poorly 

differentiated tumors present with decreased phosphorylation of ERK leading to increase in cell proliferation 

and cancer progression (Uzgare et al, 2003). 

4.5. Receptor tyrosine kinase (RTK) signaling in EMT 

RTK signaling pathway can be activated by various growth factors such as epidermal growth factor (EGF), 

vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth factor 

(FGF) and insulin-like growth factor (IGF). These growth factors bind to the external domain of RTK, inducing 

the dimerization and subsequent auto phosphorylation of the tyrosine residue in the receptor. Hence activating 

the downstream signaling pathways such as PI3K/Akt/mTOR and ERK/MAPK pathway (Gonzalez and 

Medici, 2014; Lamouille et al, 2014) (Fig. 1). 

Basic Fibroblast growth factor-2 (bFGF-2) induces EMT by decreasing the expression of cytokeratin and E-

cadherin and inducing the expression of vimentin, FSP-1 and αSMA (Strutz et al, 2002). bFGF is upregulated 

in the early stages of OSF (Bishen et al, 2008), with increased expression in fibroblasts and endothelial cells. 

The expression in fibroblasts may be due to the heparan sulfate, which shows enrichment of bFGF-binding 

domains in fibrotic lesions, and these regions may play an important role in the fibrogenesis through their 

interaction with endogenous bFGF (Baird et al, 1988). The increased bFGF expressivity in endothelial cells 

along with fibroblasts may potentiate the leukocyte recruitment to inflammation by enhancing endothelial 

adhesion molecule expression (Zittermann and Issekutz, 2006). OSCCs showed the increased intensity of 

bFGF staining in the invasive fonts indicating the role of cancer cells in producing the bFGF. However, the 

expression was regardless of its clinical characteristics. bFGF promotes the production of proteinases and 

enhances the invasive capabilities of the cancer cells (Hase et al, 2006). 

While increased expression of EGFR was noted in the stratum spinosum of the epithelium, TGF-α was 

restricted to stratum germinativum, indicating an upregulation of TGF-α initially and then exerting a paracrine 

effect of the non-proliferative cells to increase the expression of cell surface receptor (Srinivasan and Jewell, 

2001). There was an upregulation of both the TGF-α and EGF in the precancerous lesions like OSF and oral 

leukoplakia, seen with the increase in the degree of dysplasia, implying the activation of RTK pathways and 

activation of oncogenes such as c-fos and c-myc subsequently (Srinivasan and Jewell, 2001). Areca nut extract 

(ANE) induces activation of RTK signaling by activating the upstream epidermal growth factor receptor 

(EGFR), Src and Ras signaling pathways (Chang et al, 2014). Increased expression of EGFR has been reported 

in OSCC (Bernardes et al, 2010) and is usually associated with poor prognosis and outcome (Temam et al, 

2007). 
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IGF-1 is a profibrogenic growth factor which is overexpressed in fibroblasts derived from OSF (Tsai et al, 

2005) similar to that seen in lung fibrosis (Uh et al, 1998) and systemic sclerosis (Harrison et al, 1994). This 

induces excessive production of collagen and ECM in OSF (Tsai et al, 2005). The OSCC cell lines express 

high levels of IGF-2 and IGF-1R, while the normal mucosa expresses IGF-1. Thus IGF-2 has a significant role 

in controlling the proliferation of oral carcinoma cells (Brady et al, 2007). Studies on head and neck cancer 

have shown no alteration in the level of expression of IGF2, E2F3 and IGF1 but there is an evidence of the 

upregulation of pro-apoptotic IGF1 binding protein 3 (IGFBP3) (Zhi et al, 2014). IGFBP3 regulates the IGF1 

by blocking its anti-apoptotic function and increasing its half –life. IGFBP3 may also effect activation of IGF1 

signaling in these carcinomas (Zhi et al, 2014) (Table 2). 

Angiogenesis is an important phenomenon in precancerous conditions as it favors the nutrition and growth of 

the dysplastic cells, usually initiated through angiogenic stimulants such as Vascular endothelial growth factor 

(VEGF) (Hunasgi et al, 2018). Neovascularization induced by VEGF is important for tumor growth and 

metastasis (Hunasgi et al, 2018). OSF demonstrated increased expression of VEGF, indicative of hypoxia- 

induced angiogenesis in fibrous connective tissue stroma (Desai et al, 2012). VEGF expression by epithelial 

cells in OSF may promote growth via an autocrine proliferative effect on the atrophic epithelium supporting 

its survival and potential to undergo malignant change (Desai et al, 2012). In OSCCs, higher co-localisation 

of VEGF was seen in tumoral blood microvessels in the invasive fronts, while few studies showed an 

association with tumor differentiation (Pirici et al, 2010; Margaritescu et al, 2009). 

4.6. Wnt signaling in EMT 

Wnt signals are transduced through the binding of Wnt proteins to the extracellular domain of Fizzled (Fz) 

protein, in the presence of co-factors such as low-density-lipoprotein-related pro- tein5/6 (LRP5/6) which is 

required to mediate the canonical Wnt signal (Komiya and Habas, 2008). In the absence of signaling, β-catenin 

is degraded by the β-catenin destruction complex, which includes Axin, tumor suppressor adenomatosis 

polyposis coli (APC), glycogen synthase kinase 3β (GSK- 3β) and casein kinase 1 (CK1α) (Komiya and Habas, 

2008). Phosphorylation of β-catenin by this complex drives it for ubiquitination and subsequent proteolytic 

degradation (Komiya and Habas, 2008). In case of Wnt signaling, the binding of Wnt protein to the receptor 

complex will result in the phosphorylation of LRP5/6 by glycogen synthase kinase 3β and recruitment of 

cytoplsmic phosphoprotein Dishevelled (Dsh/Dvl) and Axin, which prevents the formation destruction 

complex unable to phosphorylate β-catenin thereby leading to its accumulation in the cytoplasm and 

translocation into the nucleus. The nuclear β-catenin interacts with transcription factors T-cell 

factor/lymphocyte enhancer factor (TCF/LEF) and inhibits the transcription of E-cadherin to bring about EMT 

(Gonzalez and Medici, 2014) (Fig. 1). 
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Figure 1: Signaling pathways promoting epithelial mesenchymal transition (EMT) in oral submucous fibrosis. 

A group of secreted Wnt antagonists has been implicated in the regulation of the Wnt/β-catenin-signaling 

pathway, including Wnt inhibitory factor 1, secreted frizzled-related protein (SFRP), and the Dickkopf families 

(Zhou et al, 2015). The expression of SERP1 and SERP5 was seen to reduce in OSF undergoing malignant 

change and was associated with the loss of membranous β-catenin expression. The loss of SERP1 and SERP 

5 expression was due to promoter methylation (Zhou et al, 2015). Dickkopf WNT signaling pathway inhibitor 

3 (DKK3) showed upregulation in OSF progressing to OSCC and a rare mutation of DKK3 was observed in 

OSCC, along with increased copy numbers (Mashrah et al, 2016). However, in OSF there was decrease in 

DKK3 expression seen with further decline with progression in disease (Mashrah et al, 2016). The expression 

of Wnt Inhibitory factor (WIF1), an antagonist of the Wnt signaling is downregulated in OSF and OSCC due 

to methylation (Zhou et al, 2015). WIF1 methylation is associated with a poorer prognosis in OSCC patients 

(Sarbak et al, 2015). WIF1 is considered a potential epigenetic biomarker indicative of early changes in OSCC 

(Zhou et al, 2015). 4-Nitroquinoline carcinogen used to generate premalignant lesions and OSCC in Axin2-

CreER; YFP mice. Tamoxifen was applied to induce Cre activity, which leads to the labeling of cancer-

initiating cells (CICs). Immunohistochemical studies revealed co-expression of catenin and LEF1 in OSCC, 

suggesting activation of Wnt/β-catenin signaling. Increased Axin2 fluorescence was visualized in basal cells 

in OSCC, thus being able to confirm that Wnt-responsive CICs in OSCC contribute its malignant progression 

(Menon et al, 2017). 
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The downstream signaling molecules such as Wnt3a, β-catenin, secreted frizzled-related proteins sFRP-1, 

sFRP-2, sFRP-4, sFRP-5, Wnt inhibitory factor 1, dickkopf-1, c-myc, and cyclin-D1 studied in OSCC did not 

show significant expression except for c-myc (Marimuthu et al, 2018). Aberrant expression of β-catenin in 

OSCC was considered not to be due to mutation or epigenetic changes but due to focal or transient expression 

of β-catenin in OSCC due to various underlying mechanisms (Muzio et al, 2005) (Table 2). 

4.7. Matrix signaling in EMT 

The signaling pathways initiated in ECM is the result of its interaction with epithelium and it may facilitate 

the motility of the cells exhibiting migratory phenotype in the connective tissue through the remodeling of 

matrix (Gonzalez and Medici, 2014). EMT signaling pathways induces various MMPs such as MMP-2 and 

MMP-9 which cleaves the type IV collagen in the basal lamina and also has a role in weakening the adherens 

junctions of the epithelial cells and thereby promoting the phenotypic change and tumor invasion (Radisky 

and Radisky, 2010). In OSF, the upregulation of MMP-2 and MMP-9 has resulted in the decrease in type IV 

collagen on the progression of the disease, however the subsequent accumulation of type I collagen was evident 

(Katarkar et al, 2018). Further, the overexpression of MMP9 may result in complete destruction of the 

basement membrane (BM) due to degradation of collagen type-IV, which may stimulate the OSF towards 

malignancy (Katarkar et al, 2018). However, the expression of MMP1 was decreased in OSF, favoring the 

condition of fibrosis (Mishra and Ranganathan, 2010). In OSCC, upregulation of MMP1, MMP2, MMP7 and 

MMP9 is seen, owing to their role in the degradation of BM and ECM and association with the clinical outcome 

such as regional lymph node and/or distant metastasis (de Vicente et al, 2007; Katayama et al, 2004) (Table 

2). 

Integrin binding to ECM proteins will activate intercellular cascades that induce EMT. The importance of type 

I collagen in matrix signaling inducing metastasis has been reported in carcinomas of lungs, breast and 

esophagus (Heino, 2014; Fang et al, 2019). Binding of type I collagen to integrin activates intercellular 

cascades causing phosphorylation of IkB (inhibitor of kB) in an ILK- dependent manner. This, in turn increases 

the nuclear translocation of active NF- κB, which promotes the expression of SNAI1 and LEF1 to induce EMT 

(Medicia and Nawshad, 2011). Similarly, the binding of type I collagen to Discoidin domain receptor 1/2 

(DDR1/2) increases NF- κB and activation of transcription factor LEF-1 to initiate EMT (Walsha et al, 2011). 

Abundance of collagen activates JNK pathways (Shintani et al, 2006) and also canonical and noncanonical 

TGF-β signaling pathways (Garamszegi et al, 2010) (Fig. 1). 

ECM remodeling is noted in OSF and significant alteration in the expression of ECM molecules is 

demonstrable as the disease progresses. With the progression of OSF from early to advanced stages, Type III 

collagen and type IV (Reichart et al, 1994) are replaced with type I collagen leading to the accumulation of 

type I collagen in the connective tissue (Utsunomiya et al, 2005). Upregulation of v 6 in oral keratinocytes 

induced by arecoline promotes the invasive and migratory characteristics. 80% of the OSF transformed to 

OSCC shows a higher αvβ6 expression suggestive of an underlying EMT change promoting malignant 

transformation in OSF (Moutasim et al, 2011). Arecoline induces the upregulation of αvβ6, promoting the 
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trans-differentiation of oral fibroblasts into myofibroblasts (Moutasim et al, 2011). β1 integrin is has also 

shown to be upregulated in OSF (Veeravarmal et al, 2018). Activation of integrin by type I collagen to induce 

EMT changes in OSF needs to be studied further. The binding of integrin αvβ8 with type I collagen activates 

the downstream MEK/ERK signaling pathway, thereby facilitating the proliferation and invasion of OSCC 

cells in vivo (Hayashido et al, 2014). The expression of αvβ6 essentially has a role in cell proliferation, 

adhesion and migration in the progression of OSCC (Hayashido et al, 2014). The downstream NF- κB is 

upregulated in epithelial cells, fibroblasts and inflammatory cells in OSF. NF- κB overexpression is associated 

with persistent chronic inflammation indicating the role of inflammation in inducing fibrosis (Ni et al, 2007). 

The invasive and metastatic potential of OSCC cells is enhanced by Tumor necrosis factor (TNFα) via the NF-

κB signaling pathway. NF-κB regulates the expression of MMPs especially MMP9 which degrades the ECM 

to enhance the tumor invasion (Tang et al, 2017). 

4.8. Hypoxia signaling in EMT 

Fibrosis and cancerous tissues are triggered by hypoxia resulting in a phenotypic change promoting EMT 

(Gonzalez and Medici, 2014). Hypoxia-inducible factor-1α (HIF-1α) is one such transcription factor that 

regulates oxygen homeostasis. Normally, it undergoes ubiquitination and subsequent proteasomal degradation 

with a short half-life of 5 min (Masoud and Li, 2015). Under hypoxic condition it stabilizes and interacts with 

coactivators such as p300/CBP to modulate its transcriptional activity (Masoud and Li, 2015). HIF-1α induces 

EMT by binding to the promoter region of ZEB1 (Zhang et al, 2015), SNAIL1 (Zhu et al, 2016) and hence 

increasing its trans activity and expression (Fig. 1). 

OSF exhibits the upregulation of HIF-1α, which further progresses with dysplastic changes. Functional HIF-

1α helps in cell survival and proliferation during the early stages of carcinogenesis under hypoxic conditions 

(Tilakaratna et al, 2008; Chaudhary et al, 2015). There is an increase in HIF-1α in OSCC which is attributed 

to the genetic changes in the tumor cells as well the tumor hypoxia which results in the stabilization of HIF-

1α (Chaudhary et al, 2015). HIF-1α regulates various angiogenic-stimulating cytokines, growth factors and 

genes regulating angiogenesis (Liang et al, 2014). (Table 2). 

5. Gene enrichment analysis 

Gene enrichment analysis to analyze the molecular functions, biological processes and cellular components of 

the upregulated and downregulated genes was performed with the g:Profiler (Kull et al, 2007). Association of 

gene with disease and protein-protein interaction was identified by Metascape tool (Zhou et al, 2019). Pathway 

enrichment on wikiPathway cancer was performed by WebGestalt (Zhou et al, 2019). 

Gene enrichment and pathway analysis identified the upregulated genes to be involved in 47 molecular 

functions, 885 biological process, 24 cellular components significantly (FDR < 0.05 (Fig. 2A). The 

downregulated genes were involved in 2 Molecular functions, 56 Biological process, 24 cellular components 

significantly (FDR < 0.05) (Fig. 2B). Top 20 gene ontology features based on FDR is represented in Fig. 3. 
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Gene ontology exposed that the genes were commonly involved in growth factor activity, signaling receptor 

binding, regulation of cell differentiation, cadherin binding and epithelial cell differentiation. 

 

Figure 2: Gene Ontology covering three domains showing top 20 biological processes, molecular functions 

and cellular components among (A) Upregulated gene sets (B) Downregulated gene sets. 

 

Evaluation of the association of differentially expressed genes with disease showed the involvement of 

upregulated genes with oral submucous fibrosis (OSF) and squamous cell carcinoma (SCC) (Fig. 3A). The 

genes are also seen to be associated with neoplasm metastasis, neoplasm invasiveness etc. Protein-protein 

interaction (PPI) network was constructed with Molecular Complex Detection (MCODE) algorithm. For 

upregulated genes, the interaction of ITGB1, MMP2, COL1A1, THBS1, and TGFB1 was significant. 

(Indicated in red, Fig. 3C). In downregulated genes, CDH1, CTNNB1, KRT14, KRT18, PTEN were seen to 

be interacting significantly (Indicated in red, Fig. 3D). The pathway analysis revealed the participation of 

overexpressed genes in TGF-β signaling pathway and Epithelial-Mesenchymal Transition pathways. 

Downregulated genes were mainly involved in Wnt Signaling Pathway, DNA Damage Response and CDK-β 

catenin activity (Table 3). 
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Figure 3: Gene Ontology and Protein–Protein Interactions showing (A) Bar graph of enriched Gene ontology 

for overexpressed list of genes (B) Bar graph of enriched Gene ontology for downregulated list of genes. (C) 

Protein–Protein Interaction of overexpressed genes, (D) Protein- Protein Interaction of downregulated genes. 

 

 

Table 3: The pathways involved in upregulated genes (A) downregulated genes (B). 

 

 

6. Conclusions 

Transcription factors act synergistically to bring about the epithelial cell reprogramming. Regulation of these 

factors control the expression of critical genes and identification of the downstream targets. Evidence suggests 
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a cross talk between various signaling pathways and some studies suggest the inhibition of single transcription 

factor is enough to block EMT (Xie et al, 2004). EMT has detrimental role in the progression of fibrosis and 

cancer metastasis. Poor prognosis clinical outcomes of oral cancer combined with the development of drug 

resistance makes it critical to identify suitable targets to prevent the induction of EMT. A thorough 

understanding of signaling pathways involved in EMT and the tumor microenvironment in OSF and OSCC 

paves for newer therapeutic strategies. Whilst the systematic analysis of the association of genes with disease 

showed its involvement in OSF and SCC, pathway analysis showed the participation of upregulated and 

downregulated genes with various EMT regulating pathways. 
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Emerging Pathogens in Planetary Health and Lessons from Comparative Genome 

Analyses of Three Clostridia Species 

Abstract: 

Clostridioides difficile (CD) is a major planetary health burden. A gram-positive opportunistic pathogen, CD 

colonizes the large intestine and is implicated in sepsis, pseudomembranous colitis and colorectal cancer. C. 

difficile infections typically following antibiotic exposure, result in dysbiosis of the gut microbiome, and is 

one of the leading causes of diarrhoea in the elderly population. While several studies have focused on the 

toxigenic strains of CD, gut commensals such as Clostridium butyricum (CB) and Clostridium tertium (CT) 

could harbour toxin/virulence genes and thus, pose a threat to human health. In this study, we sequenced and 

characterized three isolates, namely, C. tertium (MALS001), C. butyricum (MALS002) and C. difficile 

(MALS003) for their antimicrobial, cytotoxic, antiproliferative, genomic and proteomic profiles. Although in 

vitro cytotoxic and antiproliferative potential was observed predominantly in CD MALS003, genome analysis 

revealed pathogenic potential of CB MALS002 and CT MALS001. Pangenome analysis revealed the presence 

of several accessory genes typically involved in fitness, virulence and resistance characteristics in the core 

genomes of sequenced strains. The presence of an array of virulence and antimicrobial resistance genes in CB 

MALS002 and CT MALS001 suggests their potential role as emerging pathogens with significant impact on 

planetary health. 

 

Keywords: planetary health, whole genome sequencing, omics, antimicrobial resistance, virulence, 

pangenome analysis 

 

Introduction: 

Clostridioides difficile is a Gram-positive opportunistic pathogen that resides in the human gut. It causes severe 

gastrointestinal diseases such as diarrhoea, pseudomembranous colitis, as well as sepsis and multiple organ 

dysfunction with major outbreaks worldwide and is the most significant cause of diarrhoea in the elderly 

population (Leffler and Lamont, 2015; Jin et al, 2017). Treatment with broad spectrum antibiotics and longer 

periods of hospitalization result in dysbiosis of normal gastrointestinal flora and creates a niche suitable for 

overgrowth of C. difficile (Rineh et al, 2014). Continued use of broad-spectrum antibiotics and old age are 

major risk factors for C. difficile infections (CDI).  

Reports suggest at least 1-3% of hospitalized patients acquire CDI while 25% of these patients experience 

recurrent infections due to high antibiotic resistance among these strains. Approximately, half-a-million CDI 

cases are reported every year from USA alone, with health care costs for treatment approaching US$1.5 billion 

(Chen et al, 2017), while all-cause mortality within a month of infection is reported to be 20% (Smits et al, 

2016). However, most individuals with C. difficile remain asymptomatic and only few exhibits severe disease 

symptoms. C. difficile spores are highly resistant and upon exposure to bile salts in the gastrointestinal tract, 

germinate to form vegetative cells which colonize the colon (Edwards et al, 2016).  
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In clinical settings, CDI is generally diagnosed by culture-based methods that involve faecal material, testing 

for non-specific antigens such as glutamate dehydrogenase (GDH) and/or specific toxins (toxins A and B) by 

cytotoxicity or immunoassays, which are time consuming, technically demanding and show low sensitivity 

and specificity (Bartlett and Gerding, 2008). The gold standard assays take longer time to diagnose the 

infection while severe cases might require immediate surgical intervention. Molecular techniques such as 

polymerase chain reaction (to detect toxin genes such as tcdA, tcdB) (Chen et al, 2017), 16S rRNA ribotyping 

(Bidet et al, 1999), pulsed field gel electrophoresis and microarray analysis (Al-Khaldi et al, 2012) have been 

used for the diagnosis and delineating different species of Clostridioides. Molecular assays provide a 

distinctive advantage over culture-based methods with their rapid turn-around time in addition to identifying 

asymptomatic carriers often missed by culture assays.  

However, exclusive reliance on molecular tests without detecting the presence of toxins can lead to false 

positives (Smits et al, 2016). Asymptomatic carriage has also been reported which further complicates 

detection of pathogenic Clostridia (Cassir et al, 2016a). The presence of asymptomatic carriers in the hospital 

settings is one of the major reasons for epidemic outbreaks and the nosocomial nature of CDI (Riggs et al, 

2007). In addition, the severity of CDI cannot be explained merely by the genetic factors of C. difficile alone. 

CDI is often associated with dysbiosis of gut microbiome which exponentially worsens the infection (Abbas 

and Zackular, 2020). Hence, it is critical to study the interactions of C. difficile with co-occurring pathogens 

such as C. butyricum and C. tertium (Ferraris et al, 2012). In addition, study of the genomes of co-occurring 

pathogens may offer insights into pathogen evolution and improve our understanding of the genetic basis of 

various process critical for pathogenesis such as virulence and resistance. It will be interesting to explore 

genomes of C. butyricum, a probiotic producing human gut commensal with reports of being both beneficial 

and harmful (Cassir et al, 2016b, Kanai et al, 2015) and C. tertium, a largely non-toxigenic strain occasionally 

associated with cases of bacteremia, meningitis and several others (Moore and Lacey, 2019, Shah et al, 2016, 

Kourtis et al, 1997) for pathogenic elements. This can provide insights into emergence of pathogens with 

improved virulence, antimicrobial resistance and overall pathogenic potential. The goal of the current work 

was to study the genomes of C. tertium (MALS001), C. butyricum (MALS002) and compare it with that of C. 

difficile (MALS003) for genomic surveillance to uncover virulence-associated factors and their potential role 

as emerging pathogens. Emerging pathogens have the capacity to spread, infect large populations, devastate 

health systems, raise morbidity and mortality rates and add to the economic burden, making them a serious 

planetary health concern. 

 

Materials and Methods 

This study was approved by the Kasturba Medical College and Kasturba Hospital Institutional Ethics 

committee in Manipal, India. Informed consent was obtained from all individuals included in the study. 

Culturing of Clostridia isolates 

For this study, a clinical isolate of C. tertium (CT MALS001) and C. butyricum (CB MALS002) were isolated 

from stool samples of patients visiting Kasturba Hospital, Manipal (Enteric Diseases Division, Department of 

Microbiology, Kasturba Medical College, Manipal) and C. difficile CD MALS003 (from C. difficile ATCC 
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9689) was included. The strains were revived in Brain Heart Infusion agar (BHIA) (HiMedia, India) and 

incubated anaerobically at 37°C in a GasPak EZ Anaerobe system (Becton Dickinson, USA) for 48 hours. 

Starch hydrolysis assay 

Cultures of isolates CB MALS002, CD MALS003, and CT MALS001 (OD600 - 0.1) were streaked onto BHIA 

plates supplemented with 2% starch (HiMedia, India) and incubated at 37°C for 16 hours. Culture plates were 

flooded with Gram’s iodine solution and examined for the presence of clear zones (Mahon and Manuselis, 

1995).  

Motility test 

The single colonies of CB MALS002, CD MALS003, and CT MALS001 grown on BHIA, were picked using 

straight wire and stab inoculated into 0.175% BHI agar in a glass vial. Following incubation at 37°C for 16 

hours, vials were removed from the anaerobic chamber and photographed to record the swimming motility 

(Dingle et al., 2011, Chen et al., 2019).  

Minimal inhibitory concentration assay 

Minimal inhibitory concentration (MIC) testing was performed using the gradient method wherein plastic 

strips with predefined concentrations of antibiotic are employed to determine the exact MIC for chosen 

antibiotics (Kowalska-Krochmal and Dudeck-Wicher, 2021). In this study, MIC assay was done for 

ciprofloxacin and vancomycin based on the corresponding presence of resistance genes in the genomes of 

isolates sequenced in the current study. Towards this, following revival of CB MALS002, CD MALS003, and 

CT MALS001 as described before, isolates were streaked (OD600 - 0.1) onto Mueller Hinton Agar plates. 

HiComb gradient MIC strips (HiMedia, Mumbai, India) of vancomycin (0.016 µg to 256 µg gradient) and 

ciprofloxacin (0.001 µg to 240 µg gradient) were placed at the centre of the inoculated plates which were 

subsequently incubated at 37°C in a GasPak EZ Anaerobe system (Becton Dickinson, USA) for 48 hours. 

Average MIC values obtained from triplicates for each strain was assessed for antimicrobial resistance. 

Interpretation of antimicrobial resistance was performed as per CLSI and EUCAST guidelines where 

applicable. For ciprofloxacin, interpretation was done with breakpoints assigned for moxifloxacin defined by 

CLSI (30th edition, 2020) since neither CLSI nor EUCAST had interpretation criteria for ciprofloxacin 

(Büchler et al, 2014). MIC values of ≤ 2 µg, 4 µg and ≥8 µg of ciprofloxacin indicates sensitivity, intermediate 

resistance and resistance accordingly (CLSI guidelines for moxifloxacin were considered). For vancomycin, 

MIC values of ≤ 2 µg and > 2 µg indicate sensitivity and resistance accordingly (EUCAST, 2023; Büchler et 

al., 2014). 

Biofilm formation analysis 

Biofilm formation is a key ability that enhances the pathogenesis of C. difficile (Vuotto et al., 2018). CB 

MALS002, CD MALS003 and CT MALS001 strains were assessed for biofilm formations in anaerobic static 

condition at 24 and 48 hours post incubation. Tissue culture plate method was used to determine the static 

biofilm by staining with 0.1% crystal violet. Interspecies interactions have been reported to enhance C. difficile 

virulence and resistance (Abbas and Zackular, 2020). Hence, polymicrobial biofilms (pairwise combinations 

of the three isolates (CB+CD, CT+CD, CB+CT) and multiple combinations (CB+CD+CT)) were also assessed 

by tissue culture method. Briefly, following culturing as before in BHI broth, 100 µl of each isolate was 
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combined with the other at an OD600 of 0.05 for pairwise and multiple interactions. 200 µl of each combination 

was seeded into a 96 well plate. Following seeding, plates were incubated for 24h and 48h followed by staining 

with 0.1% crystal violet (Prasad et al, 2020). 

Cytotoxicity assay 

Cultures were grown to a concentration of 1 × 107 cells/mL and the culture supernatant was syringe filtered 

with the (0.2m pore size) (Sartorius Stedim). SiHa cells were seeded in 96-well tissue culture plates 

containing Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS) 

at a density of 1 × 104 cells/mL. Following adherence, cells were treated with 10 μl of bacterial supernatant in 

90 μl of DMEM medium with 10% FBS and cell survival was measured at 24, 48 and 72 h. After treatment, 

1/10th volume of Cell Counting Kit-8 (CCK-8) was added to the cells, incubated for 4 hours and absorbance 

was measured at 450 nm using a plate reader (VarioskanTM Thermo Scientific, USA) (Prasad et al, 2020). 

Mitomycin (5 μg/μl) was used as positive control while peptone water was used as vehicle control.  

Transfection and TCF reporter assay 

We tested for the antiproliferative activity of toxins A and B via Polyethylenimine (PEI) transfection and TCF 

reporter assay. The reporter plasmids (TOPflash and FOPflash) were transfected to SiHa cells (6 x 105 cells) 

using PEI mediated transfection. After 12 hours of transfection, cells were treated with 200 µL of bacterial 

crude extracts corresponding to 106 CFU/mL and luciferase activities were measured after 36 hours. SiHa cells 

co-transfected with pRL-TK (thymidine kinase basal promoter) were used as control (Roehl et al, 1990). Dual 

luciferase reporter system (Promega) was used to quantify the Luciferase and Renilla by luminescence signal 

measurements (Lima et al, 2014).  

Whole genome sequencing 

Genomic DNA of CB MALS002, CD MALS003, and CT MALS001 were extracted using the standard phenol-

chloroform protocol (Green and Sambrook, 2017) with some slight modifications. Cells were grown in 

anaerobic conditions as mentioned earlier for a period of 48 hours and the cell pellets were lysed with 1.5 ml 

of pre-lytic buffer (20mM Tris, 2mM EDTA, 1% Triton X-100, 60µg/ml of lysozyme) and incubated overnight 

at 37°C before genomic DNA was extracted. Quality and quantity of DNA was assessed with a Qubit 2.0 

fluorometer (Thermo Fisher Scientific, USA). Whole genome sequencing was performed on ION torrent PGM 

(Thermo Fisher Scientific, USA). 100ng of genomic DNA was fragmented to 400bp using Ion Shear Plus 

Reagents followed by clean up with Agencourt™ AMPure™ XP (Beckman Coulter, USA). Further, the 

prepared libraries (100pM) were amplified with Ion One Touch 2, enriched with Ion One Touch ES and 

sequenced on an Ion Torrent Personal Genome Machine using a 318v2 chip following standard protocol 

(Utturkar et al, 2015). 

Genome assembly, annotation and comparison 

After read quality check and trimming using FASTQC (Andrews, 2010) and FASTX toolkit (Gordon and 

Hannon, 2010), a reference-based assembly using SPAdes v3.13.0 (Prjibelski et al, 2020) was performed. 

References utilized for genome assembly are listed in Supplementary Table S1. Genome annotation was 

performed using NCBI Prokaryotic Genome Annotation Pipeline (PGAP, v6.1) (Tatusova et al, 2016). 
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Assembled contig sequences were used as input for functional annotation using eggNOG-mapper (Huerta-

Cepas et al, 2017) and Rapid Annotation using Subsystem Technology (RAST) (Aziz et al, 2008). 

A maximum-likelihood based phylogenetic tree was constructed with bootstrap support of 1000 replicates 

using MEGA (Kumar et al, 2018). Nucleotide sequence level comparison between the clinical isolates and 

their respective reference genomes (Supplementary Table S1) was performed using Mauve (v20150226) 

(Darling et al, 2004). Annotation of raw sequences was performed using prokka v1.14.6 (Seemann, 2014) 

followed by pangenome analysis using roary v3.13.0 (Page et al, 2015) to obtain core and accessory genes. To 

predict single copy gene content, BUSCO v4.1.2 (Seppey et al, 2019) analysis was done using lineage-specific 

(Clostridia class level) dataset. Reference genomes used for BUSCO and pangenome analysis are listed in 

Supplementary Table S1. 

Functional profiling 

Genes coding for antimicrobial resistance was identified using AMRFinderPlus v3.10.5 (Feldgarden et al, 

2019) and ABRicate v1.0.1 (Seemann, 2021). Unique hits across two approaches were identified and filtered 

(≥75% query cover and ≥70% identity). Virulence genes were predicted with ABRicate tool compared to core 

and full data set of Virulence Factor Database (VFDB) (Chen et al, 2016) and visualized with CGView 

(Stothard and Wishart 2005). Genes corresponding to sporulation process were extracted from functional 

annotation (eggNOG-mapper) files manually. A blastp alignment was performed for common sporulation 

proteins between three strains to find sequence similarity. 

 

Results 

Biochemical and antimicrobial characterization 

CB MALS002, CD MALS003 and CT MALS001 were revived and tested for their starch degradation and 

motility characteristics. Clostridia species have been shown to have differential starch degradation abilities. 

We observed saccharolytic activity (zones of clearance around bacterial growth) among CB MALS002 and 

CT MALS001 in decreasing order respectively, while CD MALS003 did not display saccharolytic activity 

(Figure 1a). CB MALS002, CD MALS003 and CT MALS001 displayed differential rates of swimming 

motility (Figure 1b). In stab culture, the isolates showed varying degrees of motility with CD MALS003 

showing the highest swimming motility with vastly diffuse growth followed by CB MALS002 and CT 

MALS001. In terms of antimicrobial profiles, CD MALS003 was resistant to vancomycin while CB MALS002 

and CT MALS001 were sensitive.  For ciprofloxacin, CB MALS002 was found to be resistant, while CD 

MALS003 and CT MALS001 was sensitive to the antibiotic (Supplementary Table S2). 

Biofilm formation analysis 

Biofilm formation in the three strains was measured with crystal violet staining. CD MALS003 showed 

enhanced biofilm production compared to CB MALS002 and CT MALS001. While dual cultures of CD 

MALS003 and CT MALS001 showed significantly higher levels of biofilm production compared to 

monocultures, CB MALS002 and CT MALS001 dual cultures showed similar levels of biofilm production as 

their respective individual cultures. Biofilm levels were higher in combined cultures having the presence of all 

the three strains at 24 and 48 hours post incubation (Figure 2a). 
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FIG. 1. Biochemical characterization. (a) Starch hydrolysis assay for CB MALS002, CD MALS003 and CT 

MALS001. Clear zones indicate ability of bacteria to hydrolyse starch. “+/-” indicate presence and absence of 

clear zones respectively.  (b) Motility test for CB MALS002, CD MALS003 and CT MALS001. Spreading 

phenotype was visually assessed to determine degree of motility. Diffuse spreading phenotype from the line 

of stab inoculum was considered as visual confirmation of swimming motility.  Experiments were performed 

in triplicates. 

 

Cytotoxic effect of Clostridia secretome on SiHa cells 

Cytotoxic effect of the culture supernatants of CB MALS002, CD MALS003 and CT MALS001 on SiHa cells 

were tested by CCK-8 assay. Different concentrations of the culture supernatant (crude secretome, 1:5, 1:10 

dilutions) were tested. The crude secretome of all three bacterial strains showed significant cytotoxic effect at 

24h, 48h and 72h (Figure 2b) while the diluted extracts did not show significant difference in cytotoxicity 

compared to control (Supplementary Figure S1).  

Effects on Wnt pathway reporter gene expression by Clostridia toxins 

The antiproliferative effect of CB MALS002, CD MALS003 and CT MALS001 secretome was investigated 

by β-catenin reporter assay using SiHa cells. The comparison of the ratio of TOPFlash to FOPFlash luciferase 
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activity in SiHa cells treated with CD MALS003 secretome showed a significant downregulation in the -

catenin transcriptional regulatory response compared to control. However, there was no significant difference 

in expression in cells treated with CB MALS002 and CT MALS001 when compared to control (Figure 2c). 

 

FIG. 2. Biofilm, Cytotoxicity and antiproliferative assay of CB MALS002, CD MALS003, and CT MALS001. 

(a) Detection of biofilm produced by three Clostridia in static condition using crystal violet assay at 24 and 48 

hours. CD MALS003 showed enhanced biofilm production compared to other strains. Combination of CB 

MALS002, CD MALS003, and CT MALS001 promoted biofilm formation compared to biofilm of mono and 

co-cultured species. Data presented as mean ± SE of n=3 independent experiment. Statistical significance was 

analysed by student t test, b - P = < 0.01 (b) Cytotoxicity of Clostridia crude supernatant on cell survival of 

SiHa cells was tested by CCK-8 assay at 24, 48 and 72 hours. a - P = < 0.001 compared to control. (c) 

Antiproliferative effect of Clostridia crude extracts on SiHa cells was tested by TCF reporter assay SiHa cells 

were co-transfected with either TOPFlash or FOPFlash luciferase reporter constructs to assess 

decrease/increase in proliferation of SiHa cells via changes in luciferase expression. Data presented as 

mean ± SE of n=3 independent experiment. Statistical significance was analysed by student t test, a - P = < 

0.001 
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Genome assembly, annotation and whole genome comparison 

Reference based genome assembly and refining resulted in a genome size of 4.5 Mb for CB MALS002 with 

125 contigs, 4.4 Mb for CD MALS003 with 132 contigs and 4.5 Mb for CT MALS001 with 169 contigs. 

Phylogenetic analysis of our sequences with related sequences confirmed that the strains belonged to CB, CD 

and CT genomes (Supplementary Figure S2). CT MALS001 genome harboured 4332 genes followed by CB 

MALS002 (4330) and CD MALS003 (4138). Sequence annotation identified 4186 proteins in CT MALS001, 

followed by CB MALS002 (4131) and CD MALS003 (3973). Strain CB MALS002 had the highest number 

of tRNA (83) sequences followed by CD MALS003 (77) and CT MALS001 (53). CB MALS002 also had the 

highest number of rRNA (23) sequences followed by CT MALS001 (7) and CD MALS003 (5) (Table 1). 

 

Table 1. Genome assembly and annotation features of sequenced strains. 

Strain 
Clostridium butyricum 

MALS002 

Clostridioides difficile 

MALS003 

Clostridium tertium 

MALS001 

Total length (bp) 4551027 4403852 4532340 

No. of contigs 125 132 169 

N50 (bp) 107911 187823 70613 

GC content (%) 28.7 28.7 27.8 

Genes 4330 4138 4332 

Proteins 4131 3973 4186 

rRNA 23 5 7 

tRNA 83 77 53 

 

The most abundant RAST SEED subsystem (functionally related protein families) across all Clostridia species 

belonged to ‘carbohydrates’, ‘amino acids and its derivatives’ and ‘protein metabolism’ categories with an 

average of 16.85%, 15.57% and 11.25% respectively. Relative contribution of protein families involved in 

‘dormancy and sporulation’ was higher in CB MALS002 (4.1%) compared to CD MALS003 (2.1%, 2-fold 

decrease) and CT MALS001 (1.3%, 3-fold decrease). A 3-fold increase of protein families involved in 

‘phosphorus metabolism’ and ‘nitrogen metabolism’ was observed in CB MALS002 and CT MALS001 when 

compared with CD MALS003 (Supplementary Figure 3a). Comparison of annotated genes using PGAP, 

RAST and eggNOG-mapper showed that eggNOG could annotate higher number of genes (Supplementary 

Figure 3b). A total of 757 protein encoding genes were identified as "core proteome" while a total of 167, 234 

and 97 unique protein encoding genes were found in CB MALS002, CD MALS003, and CT MALS001 

genomes respectively (Supplementary Figure 3c). CD MALS003 shared 72.6% and 71.9% of genes with CB 

MALS002 and CT MALS001 respectively while CB MALS002 and CT MALS001 shared higher number of 

protein-encoding genes. 

Multiple genome alignment using Mauve highlighted several genomic rearrangements including inversions, 

shifts, deletions and gaps in assembled genomes relative to reference genomes. CD MALS003 had an average 

of 99.67% identity with its reference genomes followed by CB MALS002 (99.35% identity) while the CT 

MALS001 genomes showed less identity (99.18%) (Supplementary Figure S4). 

Pangenome analysis 
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Pangenome analysis of three isolates with respective references showed 3228 core genes that were shared 

among five different CD genomes while CB (2836 among 5 taxa) and CT (2741 among 4 taxa) genomes shared 

fewer core genes. Presence of accessory genes was highest among CT MALS001 genome with 1311 unique 

genes out of which 884 genes were hypothetical while 39 encoded putative proteins. CB MALS002 genome 

had 552 (331 hypothetical + 18 putative) unique genes. CD reference genomes had fewer unique genes with 

strain FDAARGOS 267 having no unique gene while ATCC 9689 strain had only one unique gene (Figure 

3a). Among our strains, CD MALS003 had fewer unique genes in comparison with CB MALS002 and CT 

MALS001 (110 of which 92 were hypothetical). After removing hypothetical and putative genes from core 

genome, CD MALS003 assembly contained 1840 genes followed by CT MALS001 (1697genes) and CB 

MALS002 (1594 genes). The core genome in individual strains ranged from 67-82% in CB genomes, 80-90% 

in CD genomes and 65-77% in CT genomes (Figure 3b).  

Based on BUSCO analysis of 247 single copy genes from 385 Clostridia genomes, strains MALS001, 

MALS002 and MALS003 were found to have 244, 244 and 245 single copy genes respectively (Figure 3c). 

This included DHHA1 domain protein, which was absent in CD MALS003 and ATCC 9689 compared to the 

R20291 strain; pyridoxal phosphate homeostasis protein, which was absent in CB MALS002 compared to 

NBRC 13949 strain, and cytidine deaminase enzyme, which was absent in CT MALS001 when compared to 

Src5 strain. A total of 5 fragmented genes coding for helicase-exonuclease AddAB subunit addA in CD 

MALS003, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase and Dephospho-CoA kinase in 

CB, recN and Phosphohydrolase in CT MALS001 were identified. 

 

 



86 
 

  Chapter 4 

FIG. 3. Pangenome analysis of CB MALS002, CD MALS003, and CT MALS001. (a,b) Pangenome analysis 

for Clostridia genomes as performed with Roary. Parameters for selection: Core genes: 99% ≤ strains ≤ 100% 

-accessory genes (15% ≤ strains < 95%). NUG: Number of unique genes (c) Genomic data completeness was 

analysed with prediction of Clostridia single copy genes with BUSCO. Split of complete genes (single copy 

and duplicate), fragmented and missing genes are shown in the bar graphs  

 

Antimicrobial resistance profile 

A total of 9 unique genes coding for antimicrobial resistance (AMR) were predicted from all three strains. A 

variety of antibiotic resistance genes conferring resistance to glycopeptide, fluoroquinolone, streptogramin, 

beta-lactam and phenicol were recorded (Supplementary Table S3). Highest number of resistance genes were 

found in CD MALS003 (7), followed by CT MALS001 and CB MALS002 with one AMR gene each. No 

common AMR genes were found across all three strains.  

Antimicrobial resistance predicted for two antibiotic classes, fluoroquinolone and glycopeptide, were selected 

for phenotypic confirmation by minimum inhibitory concentration assay. Strain CB MALS002 showed 

phenotypic resistance to ciprofloxacin despite no resistance genes being predicted for these drug classes 

(Supplementary Table S2 and S3). Strain CD MALS003 showed phenotypic resistance to vancomycin. 

Concurrent with in-silico analysis 5 genes (vanG, vanR, vanS, vanT, and vanZ1) encoding resistance to 

vancomycin (Stogios and Savchenko et al., 2020) were predicted in CD MALS003 genome (Supplementary 

Table S2 and S3). 

Toxin/virulence profile 

Sixty-six unique toxin or virulence genes were predicted across all three strains with groEL, plr and fbpA being 

common among all three strains. Toxin genes were highest in CD MALS003 (54) followed by CT MALS001 

(14) and CB MALS002 (13). In CD MALS003, a large cluster consisting of 31 toxin genes were identified 

that coded for flagellar proteins and few cell adhesion proteins (Supplementary Table S4). Two exotoxin 

coding sequences located in pathogenicity locus (PaLoc) coding for toxin A (tcdA) and toxin B (tcdB), which 

are implicated in pathogenicity of CD, as well as three other accessory genes tcdC, tcdE and tcdR were present 

in our CD MALS003 strain. Toxin genes unique to CB MALS002 were Cbei_1707, Cbei_0023, pfoA, ureB, 

rmlA and ZP_02950902, while toxin genes unique to CT MALS001 were nagK, pilT, CLL_A2400, and 

SSP0068. A hyaluronidase exoenzyme (nagK) and hemolysin A (CLL_A2400) were major predicted toxins 

along with few flagellar proteins (cheY, flhA, flip, fliS2, flil, pilT) in CT MALS001 genome. In CB MALS002, 

perfringolysin O (pfoA) an exotoxin, two hemolysins (Cbei_1707 and Cbei_0023) were predicted along with 

very few flagellar proteins (fliS1, flil, cheY). Genomic locations of core and full toxins, AMR genes and genes 

coding for flagellar assembly of all three strains were plotted (Figure 4). 
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FIG. 4. Genomic locations of genes encoding antimicrobial resistance and virulence/toxins. Details of 

antimicrobial genes and virulence genes obtained using AMRFinderPlus, ABRicate and Virulence Factor 

Database (VFDB) (query coverage ≥75%, percentage identity ≥70%) respectively were visualized as different 

tracks onto the assembled genome sequences of (a) CB MALS002, (b) CD MALS003 and (c) CT MALS001 

 

Sporulation genes 

From functional annotation files obtained using eggNOG-mapper, a total of 105 genes corresponding to 

sporulation process were extracted (Supplementary Table S5). Following removal of duplicates based on 

gene copies in each isolate, 53 genes were retained, of which, 26 genes were shared among all the three isolates 

(Supplementary Figure 5a). Highest number of sporulation genes were present in CB MALS002 (48) 

followed by CT MALS001 (47) and CD MALS003 (32). A comparison of twenty-six common sporulation 

proteins using protein blast (blastp) identified spoIIE to have the maximum sequence dissimilarity across the 

three strains while RNA polymerase sporulation specific sigma factors (sigG, sigE, sigA and sigK) shared the 

highest sequence similarity (Supplementary Figure 5b). 

 

Discussion 

The class Clostridia comprises of heterogeneous species which are phylogenetically distantly related. The 

major human pathogens include C. difficile, C. botulinum, C. tetani, and C. perfringens while several other 

species such as C. tertium and C. butyricum are emerging as new pathogens and can cause human infections. 

In the current study, C. butyricum MALS002, C. difficile MALS003 and C. tertium MALS001 strains were 

characterized by culture-based and genomic methods. CB is a predominantly saccharolytic bacterium that 
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plays a crucial role in regulation of intestinal homeostasis and conversion of dietary fibre to beneficial short 

chain fatty acids (SCFAs) (Zhang et al, 2018). Contrary to current literature, CD MALS003 from our study 

did not display any saccharolytic activity. However, CD has a diverse metabolic capacity and has been known 

to exhibit varying patterns of carbohydrate fermentation (Neumann-Schaal et al, 2019). Biofilm production 

which significantly contributes to virulence potential was found to be higher in CD MALS003 strain compared 

to CB MALS002 and CT MALS001 (Figure 2a). In addition, combined cultures of CT MALS001 and CD 

MALS003 produced significantly higher levels of biofilm when compared to their monocultures. However, 

biofilm levels of CD MALS003 on co-culture with CB MALS002 did not show any significant variation. 

While all three strains displayed varied motility, CT MALS001 displayed limited motility in comparison to 

the diffuse phenotype observed in CB MALS002 and CD MALS003. In addition to biofilm production and 

flagellar motility that are critical for host colonization (Chen et al, 2019), antimicrobial resistance is a 

significant factor in determining pathogen epidemiology (Spigaglia et al, 2018). Our genomic data showed 

that CD MALS003 harboured 5 genes encoding vancomycin resistance (vanG, vanR, vanS, vanT, and vanZ1) 

(Stogios and Savchenko et al, 2020) while no such genes were detected in CT MALS001 and CB MALS002. 

This was concurrent with an observation of phenotypic resistance (Table S2). However, despite possessing 

cdeA gene which is known to encode resistance to ciprofloxacin and other fluoroquinolone drugs (Saxton et 

al, 2009), CD MALS003 displayed phenotypic susceptibility. This phenotypic susceptibility despite the 

presence of corresponding resistance genes may be explained by presence of compensatory mutations (Melnyk 

et al, 2015) or by gene silencing via transcriptional control (Enne et al, 2015). However, these genes can get 

activated by metabolites produced by co-occurring bacteria such as C. butyricum and C. tertium (Schmidt et 

al, 2015; Ferraris et al, 2012). Of note, genome analysis did not predict any resistance genes encoding 

fluoroquinolone resistance in CB MALS002 (Table S3). However, it demonstrated a high degree of 

phenotypic resistance towards the same. This phenotypic resistance in the absence of genotypic evidence in 

the form of presence of genes encoding antimicrobial resistance could hint towards the presence on “non-

inherited antibiotic resistance” (Levin and Rozen, 2006). This finding also emphasizes the need to explore 

emergence of antimicrobial resistance in relation with microbial communities (Bottery et al, 2020). CT 

MALS001 exhibited genomic and phenotypic susceptibility to both ciprofloxacin and vancomycin. This is 

concordant with the pathogenic profile of C. tertium which is largely considered as a non-pathogenic strain 

that is occasionally found in clinical cases (Moore and Lacey, 2019; Steensma et al, 2011). 

We found a total of 66 different toxin genes in the three isolates, with CD MALS003 harbouring maximum 

number of toxin-coding genes (54) while CB MALS002 (13) and CT MALS001 (14) showed fewer toxin-

coding genes. Based on genomic analysis, CD MALS003 was characterized as a toxigenic strain with the 

presence of tcdA, tcdB (encoding toxins A and B), cdtA and cdtB (encoding binary toxin) while these toxin 

genes were absent in CB MALS002 and CT MALS001. Accordingly, CD MALS003 exhibited significant 

cytotoxicity in vitro compared to other tested strains. Studies indicate that C. butyricum strains can be used to 

prevent CDI as well as in improving gastric ulcers and other bacterial infections due to their ability to produce 

bacteriocins and SCFAs. However, some toxigenic strains of C. butyricum have been implicated in botulism 

and necrotizing enterocolitis (Cassir et al. 2016a). In the current study, even though CB MALS002 and CT 



89 
 

  Chapter 4 

MALS001 did not have any of the toxin genes commonly implied in the pathogenicity of CDI, we detected 

other toxin coding genes coding for hemolysins such as pfoA (cholesterol-dependent cytolysin) which have 

been previously reported in C. perfringens (Verherstraeten et al, 2015). GroEL has been reported to play an 

important role in stimulating inflammatory response and is known to contribute to bacterial infections (Ranford 

and Henderson, 2002). The presence of various genes coding for toxins and virulence factors along with reports 

on their ability to produce bacteriocins and butyric acid highlight the confusion in categorising C. butyricum 

as a pathogen or a beneficial gut microbe (Cassir et al., 2016b).  

C. tertium which was long considered a non-toxin producer; occasionally found in clinical cases such as 

bacteremia and necrotizing fasciitis associated septicemia in patients with neutropenia and hematological 

malignancies (Shah et al, 2016), brain abscess (Lew et al, 1990) and meningitis (Kourtis et al, 1997) among 

others. However, recent reports indicate that C. tertium isolated from stool samples of patients with diarrhoea 

harboured sequences homologous to tcdA, tcdB and other toxin coding genes (Muñoz et al, 2019) suggesting 

their importance in disease outbreaks and pathogen emergence. The presence of nagK, a bacterial 

hyaluronidase reported earlier from C. perfringens (Geier et al, 2021) in CT MALS001, demonstrates the 

extent of dynamic mobility among the Clostridial genomes. Though bacterial hyaluronidase such as nagH have 

been reported in C. tertium (Muñoz et al, 2019), to the best of our knowledge, nagK has only been reported 

from C. perfringens and CD but not from CT strains (Low et al, 2018).  

The importance of spore differentiation in pathogenesis of enteric pathogens cannot be underestimated. For 

instance, spo0A gene codes for a master regulator that turns on several downstream RNA polymerase sigma 

factors including sigG suggesting their role in persistence and transmission of highly resistant endospores 

thereby providing the bacteria with high resistance and resilience to survive in the gut environment (Pereira et 

al, 2013). Interestingly the highest number of sporulation genes were present in CB MALS002 followed by 

CT MALS001 and CD MALS003.  

In summary, surveillance of infectious diseases, even those with a predominant single pathogen such as CDI 

may be severely limited if performed without considering microbial interaction with co-occurring pathogens 

such as C. butyricum and C. tertium (Ferraris et al., 2012, Bottery et al., 2020). Several elements of microbial 

interactions such as extracellular vesicles and microbial volatiles have been known to influence gene 

expression of microbial partners leading to enhanced antimicrobial resistance, biofilm production, stress 

defence, immunomodulation and pathogenic colonization among several other roles that favour pathogen 

emergence and increase in disease severity (Tarashi et al., 2022, Schmidt et al., 2015). Hence, it is critical to 

study the genomes of microbes known to co-occur with C. difficile such as C. butyricum and C. tertium to 

assess their genomic potential so as to offer insights into preventing epidemic outbreaks and study the evolution 

of pathogens. Towards this, our study based on whole-genome sequence analysis of bacteria frequently 

associated with CDI (C. difficile – known pathogen (Dawson et al., 2009), C. butyricum – known to be both 

beneficial and pathogenic (Cassir et al., 2016b), C. tertium – generally considered as non-toxigenic (Moore 

and Lacey, 2019) was performed to identify potential virulence factors, antimicrobial resistance genes, mobile 

genetic elements, and sporulation factors, which can provide insights into emergence of pathogens with 

improved virulence, antimicrobial  resistance and overall pathogenic potential. Such studies will further 
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improve our understanding of development of antimicrobial resistance, provide new avenues in genomic 

monitoring of emerging pathogens and offer better treatment strategies for crippling infectious diseases 

worsened by multidrug resistance such as CDI that threaten planetary health. 

 

Data availability: 

Genomes of C. butyricum strain MALS002 (CB), C. difficile strain MALS003 (CD) and C. tertium strain 

MALS001 (CT) are submitted to NCBI genome database under BioProject ID PRJNA820142 and with 

following Genome accession numbers, JALGRX000000000 (CB), JALGRY000000000 (CD) and 

JALGRW000000000 (CT). 
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Supplementary Data 
 

Table S1: Reference strains utilized for different analysis for all three assembled genomes. 

 

 

 

Table S2: MIC values of all three species of Clostridia against select antibiotics. 

Drug Class Antibiotics CB MALS002 (µg) CD MALS003 (µg) CT MALS001 (µg) 

Glycopeptide Vancomycin S R S 

Fluoroquinolone Ciprofloxacin R S S 

 

R – Resistant; S – Sensitive; I – Intermediate 

 

Strain Reference Genome Analysis 

C. butyricum 

MALS002 
C. butyricum strain NBRC 13949 (AP019716) 

Genome Assembly 
C. difficile 

MALS003 
C. difficile strain R20291 (CP029423) 

C. tertium 

MALS001 
C. tertium isolate src5 (OAOE01) 

C. butyricum 

MALS002 

1. C. butyricum strain NBRC 13949 (AP019716) 

2. C. butyricum strain DSM 10702 (CP040626) 

Whole Genome 

Alignment using 

Mauve 

C. difficile 

MALS003 

1. C. difficile strain R20291 (CP029423) 

2. C. difficile strain ATCC 9689 (CP011968) 

C. tertium 

MALS001 

1. C. tertium isolate src5 (OAOE01) 

2. C. tertium strain MGYG-HGUT-01328 (CABKOG01) 

C. butyricum 

MALS002 

1. C. butyricum strain 16-3 (CP053292) 

2. C. butyricum strain DSM 10702 (CP040626) 

3. C. butyricum strain NBRC 13949 (AP019716) 

4. C. butyricum strain S-45-5 (CP030775) 

Pangenome 
C. difficile 

MALS003 

1. C. difficile strain ATCC 9689 (CP011968) 

2. C. difficile strain DSM 29745 (CP019857) 

3. C. difficile strain FDAARGOS 267 (CP020424) 

4. C. difficile strain R20291 (CP029423) 

C. tertium 

MALS001 

1. C. tertium strain src5 (OAOE01) 

2. C. tertium strain MGYG-HGUT-01328 (CABKOG01) 

3. C. tertium strain BSD2780120875b 170604 A12 (JADPEJ01) 

C. butyricum 

MALS002 

1. C. butyricum strain NBRC 13949 (AP019716) 

2. C. butyricum strain DSM 10702 (CP040626) 

BUSCO 
C. difficile 

MALS003 

1. C. difficile strain R20291 (CP029423) 

2. C. difficile strain ATCC 9689 (CP011968) 

C. tertium 

MALS001 

1. C. tertium strain src5 (OAOE01) 

2. C. tertium strain MGYG-HGUT-01328 (CABKOG01) 
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Table S3: Antimicrobial resistance genes predicted in all three strains are listed with respective drug classes they belong 

to, and number of gene copies predicted. 

Drug Class AMR gene 
CB MALS002 

% Identity 

CD MALS003 

% Identity 

CT MALS001 

% Identity 

Acridine dye cdeA  99.77  

Beta-lactam blaCDD  94.95  

Fluoroquinolone cdeA  99.77  

Glycopeptide 

vanG  99.73  

vanR  100  

vanS  99.65  

vanT  99.58  

vanZ1  99.22  

Phenicol catP 70.05   

Streptogramin vatB   76.16 

 

 

 

Table S4: Toxin genes predicted using VFDB core and full dataset resources for all three strains. 

Strains Category Core toxins Full dataset toxins 

Clostridium 

butyricum 

MALS002 

Adherence groEL fbpA 

Exotoxin pfoA  

Hemolysin  
Cbei_0023, Cbei_1707, 

ZP_02950902 

Flagellar assembly / 

Chemotaxis 
 fliS1, flil, cheY 

Putative  rmlA, plr 

Other  ureB, ureG 

Clostridioides 

difficile 

MALS003 

Adherence 
groEL, CD0873, CD2831, 

CD3246, cwp66, cwp84, tufA 
fbpA 

Exotoxin iap, ibp, toxA, toxB  

Binary toxin cdtA, cdtB  

Exoenzyme Zmp1  

Flagellar assembly / 

Chemotaxis 
 

motA, motB, fleN, flgB, 

flgC, flgD, flgE, flgG, flgK, 

flgL, flgM, flhB, flhF, fliA, 

fliC, fliD, fliE, fliF, fliG, 

fliH, fliI, fliJ, fliK, fliM, 

fliQ, flhA, fliP, fliN, fliS1, 

fliS2, flil 
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Putative  

plr, CD0233, CD0230, 

CD0255A, CD0259, 

CD0240, CD1546, CD1208 

Clostridium 

tertium 

MALS001 

Adherence groEL, tufA fbpA 

Exoenzyme nagK  

Hemolysin  CLL_A2400 

Flagellar assembly / 

Chemotaxis 
 

cheY, flhA, flip, fliS2, flil, 

pilT 

Putative  plr, SSP0068 

Other  ureG 

 

 

 

Table S5: Sporulation genes present in three strains with their functions and stages of sporulation process in which they 

play a role. 

No. Gene Stage Function 

Clostridium 

butyricum 

MALS002 

Clostridioides 
difficile MALS003 

Clostridium 

tertium 

MALS001 

1 disA  The rise in c-di-AMP level generated by DisA while scanning the 
chromosome, operates as a positive signal that advances sporulation 

+ + + 

2 ftsX  Part of the ABC transporter FtsEX involved in asymmetric cellular 

division facilitating the initiation of sporulation 
+ - + 

3 soj  sporulation initiation inhibitor protein Soj + - + 

4 spo0A 0 
Spo0A may act in concert with spo0H (a sigma factor) to control the 

expression of some genes that are critical to the sporulation process 
+ + + 

5 spoIID 2 stage II sporulation protein D + + + 

6 spoIIE 2 stage II sporulation protein E + + + 

7 spoIIGA 2 
aspartic protease, responsible for the proteolytic cleavage of the RNA 
polymerase sigma E factor (SigE spoIIGB) to yield the active peptide 

in the mother cell during sporulation. 

+ - + 

8 spoIIM 2 Stage II sporulation protein M + - + 

9 spoIIP 2 Stage II sporulation protein P (SpoIIP) + + + 

10 spoIIR 2 stage II sporulation protein R + + + 

11 spoIIIAA 3 stage III sporulation protein AA + - + 

12 spoIIIAB 3 Stage III sporulation protein AB + + + 

13 spoIIIAC 3 Stage III sporulation protein AC/AD protein family + + - 

14 spoIIIAD 3 Stage III sporulation protein AD + + + 

15 spoIIIAE 3 stage III sporulation protein AE + + + 

16 spoIIIAF 3 Stage III sporulation protein af + - + 

17 spoIIIAG 3 stage III sporulation protein AG + + + 

18 spoIIIAH 3 Stage III sporulation protein + - + 

19 spoIIID 3 Stage III sporulation protein D + + + 

20 spoiIIIAF 3 Stage III sporulation protein AF (Spore_III_AF) - + - 

21 spoIVB 4 Stage IV sporulation protein B + - + 

22 spoVAC 5 stage V sporulation protein AC + + + 

23 spoVAD 5 Stage V sporulation protein AD + + + 
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24 spoVAE 5 stage V sporulation protein + + + 

25 spoVAEB 5 stage V sporulation protein - - + 

26 spoVB 5 Stage V sporulation protein B + + + 

27 spoVD 5 stage V sporulation protein D + - + 

28 spoVK 5 stage V sporulation protein K + - + 

29 spoVR 5 stage V sporulation protein R + - + 

30 spoVS 5 Stage V sporulation protein S + + + 

31 spoVT 5 stage V sporulation protein T + - + 

32 whiA  May be required for sporulation + + + 

33 yabG  sporulation peptidase YabG + - + 

34 yabP  Sporulation protein YabP + - + 

35 ylbJ  Sporulation integral membrane protein YlbJ + + + 

36 ylmC  Sporulation protein, YlmC YmxH + - + 

37 yqfC  sporulation protein YqfC + - + 

38 yqfD 4 Putative stage IV sporulation protein YqfD + + - 

39 yteA  TIGRFAM Sporulation protein YteA - - + 

40 ytfJ  Sporulation protein YtfJ + + + 

41 ytvI  sporulation integral membrane protein YtvI - + + 

42 ytxC  sporulation protein YtxC + - + 

43 yunB  sporulation protein YunB + + + 

44 yyaC  Sporulation protein YyaC + - + 

45 sigK 3 RNA polymerase sporulation specific sigma factor SigK + + + 

46 sigE 2 RNA polymerase sporulation specific sigma factor SigE + + + 

47 sigG 3 RNA polymerase sporulation specific sigma factor SigG + + + 

48 sigF 2 RNA polymerase sporulation specific sigma factor SigF + + + 

49 sigH 0 RNA polymerase sporulation specific sigma factor SigH + + + 

50 sigA  RNA polymerase sporulation specific sigma factor SigA + + + 

51 sigB  RNA polymerase sporulation specific sigma factor SigB - + - 

52 sigI  RNA polymerase sporulation specific sigma factor SigI + - - 

53 sigV  RNA polymerase sporulation specific sigma factor SigV + + - 

 

(+) Present  

(-) Absent 
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Figure S1: Cytotoxicity of CB MALS002, CD MALS003, and CT MALS001. Cytotoxicity of Clostridia supernatant 

(at different dilutions) on cell survival of SiHa cells was tested by CCK-8 assay at 24, 48 and 72 hours 
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Figure S2: 16S rRNA phylogeny. Extracted 16S rRNA sequences of CB MALS002, CD MALS003 and CT MALS001 

were blasted against rRNA/ITS databases to retrieve homologs. BlastN results with default parameters were filtered 

based on query coverage ≥ 97% and percentage identity ≥ 95%. Sequences that matched these criteria were used to 

construct a phylogenetic tree using MEGA X (Kumar et al., 2018) with maximum-likelihood method and 1000 

bootstrap replicates.  

 

 

 

Figure S3: Functional annotation of CB MALS002, CD MALS003, and CT MALS001. (a) Subsytem category 

distribution as obtained by RAST. (b) Annotated CDS, mapped genes, hypothetical genes and enzyme count 

distribution across three strains for PGAP, RAST and eggNOG (c) EggNOG annotations indicating “core” and strain 

specific protein coding genes 
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Figure S4: Whole genome alignment of CB MALS002, CD MALS003 and CT MALS001 with their respective 

reference genomes using Mauve. Coloured blocks and the respective connecting lines indicate regions of alignment. 

Alignments in reverse orientation are indicated by placement of the blocks below the central line. Similarity profiles 

within the blocks indicate level of conservation within the alignment. 
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Figure S5: Sporulation proteins in CB MALS002, CD MALS003, and CT MALS001. (a) Distribution of core and 

unique genes encoding sporulation in the three Clostridia (b) Blastp comparison of sporulation proteins across the three 

Clostridia visualized by BRIG tool. Regions of high dissimilarity are indicated by gaps 
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How Can Omics Inform Diabetic Foot Ulcer Clinical Management? A Whole 

Genome Comparison of Four Clinical Strains of Staphylococcus aureus 

 

Abstract  

Foot ulcers and associated infections significantly contribute to morbidity and mortality in diabetes. While 

diverse pathogens are found in the diabetes-related infected ulcers, Staphylococcus aureus remains one of the 

most virulent and widely prevalent pathogens. The high prevalence of S. aureus in chronic wound infections, 

especially in clinical settings, is attributed to its ability to evolve and acquire resistance against common 

antibiotics and to elicit an array of virulence factors. In this study, whole genome comparison of four strains 

of Staphylococcus aureus (MUF168, MUF256, MUM270 and MUM475) isolated from diabetic foot ulcer 

infections showing varying resistance patterns was carried out to study the genomic similarity, antibiotic 

resistance profiling, associated virulence factors and sequence variations in drug targets. The comparative 

genome analysis showed strains MUM475 and MUM270 to be highly resistant, MUF256 with moderate levels 

of resistance, and MUF168 to be the least resistant. Strain MUF256 and MUM475 harboured more virulence 

factors compared to other two strains. Deleterious sequence variants were observed suggesting potential role 

in altering drug targets and drug efficacy. This comparative whole genome study offers new molecular insights 

that may potentially inform evidence-based diagnosis and treatment of diabetic foot ulcers in the clinic. 

 

Keywords: diabetes, antimicrobial resistance, biofilm, virulence factors, pangenome, drug targets 

 

Introduction 

Diabetic foot ulcer (DFU) is a serious comorbid condition associated with Type 2 diabetes and high mortality 

rates among the older population (Brennan et al, 2017). About 4-10% of diabetic patients are affected by foot 

ulceration and the elderly population are more susceptible to the DFU. The incidence of lower limb amputation 

is 155 times higher in diabetic individuals with foot ulcers compared to those without infection (Lavery et al, 

2006). Management of chronic, non-healing foot ulcers is a major challenge due to the presence of microbiome 

communities at the site of infection (Percival et al, 2018).  

Although Gram-negative bacilli (such as Pseudomonas aeruginosa) and obligate anaerobic bacteria (such as 

Veillonella spp.) are common, Staphylococcus aureus, an aerobic, Gram-positive coccus has been found to be 

one of the major pathogens reported from infected diabetic foot ulcers (Murali et al, 2014a; Shettigar et al, 

2016). It has been shown that biofilm-forming S. aureus are capable of specifically inhibiting wound healing 

and worsening the wound infection (Bowling et al, 2009). The effective colonization and invasion of wound 

tissues by S. aureus is facilitated by the presence of ica-AB gene which confers the ability to produce biofilm 

and the ability to produce several toxins including pore-forming toxins that lyse the host cells, exfoliative toxin 

which facilitate bacterial skin invasion, enterotoxins that contribute to emetic and pyrogenic effects and 

epidermal cell differentiation inhibitors that promote their distribution in tissues (Dunyach-Remy et al, 2016; 
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Shettigar et al, 2016). In addition to its high virulence capabilities, high levels of antibiotic resistance to 

common antibiotics makes this pathogen highly successful in pathobiome wound environments. 

The standard practices in treatment of diabetic foot ulcer involves the removal of the necrotic tissues, 

management of the infection and offloading of the ulcer. However, the recent widespread occurrence of 

multidrug-resistant bacteria can severely restrict devising proper wound management strategies. The key to 

combating the current antibiotic resistance crisis lies in the development of specific and sensitive methods to 

detect antibiotic resistance in clinical strains. Comparative genomics is a widely used computational approach 

to explore the mechanisms of evolution of virulence and drug resistance from clinically important bacterial 

species (Coll et al, 2015; Holden et al, 2004). The reduced costs associated with whole genome sequencing 

(WGS) has made it a viable alternative in understanding strain level differences at genome level (Price et al, 

2013). Analysis of Whole Genome Sequence (WGS) data can be used as a primary tool for the detection of 

multidrug resistance, virulence capabilities, disruptive targets, candidate drug compounds, mechanisms and 

evolution of pathogenicity (Punina et al, 2015).  

The current study focuses on whole genome comparative analysis of four S. aureus strains (MUF168, 

MUF256, MUM270, and MUM475) isolated from diabetic foot ulcer patients to understand their microbial 

resistance and virulence profiles. We also studied the presence of potential drug targets and their degree of 

sequence variation (nucleotide and corresponding amino acid changes) between four strains to explore altered 

drug binding mechanisms. The whole genome comparative studies of extremely close strains can highlight 

key genomic characteristics which can differentiate pathogens from nonpathogens. 

 

Materials and Methods 

Bacterial strains and isolation of genomic DNA 

The four S. aureus strains were obtained in an earlier study from diabetic patients with infected foot ulcer 

visiting Kasturba Hospital, Manipal, a tertiary care hospital in southern India, over a period of three years 

between 2010 and 2012 (Murali et al, 2014b). Wound swabs were collected following debridement of 

superficial exudates from infected ulcers and cultured for bacteria in Blood agar and MacConkey agar. The 

present study was conducted under the full research ethics oversight of the authors institutions. The bacterial 

strains were revived in peptone water and kept in shaker incubator overnight at 37° C. The overnight grown 

cultures were streaked onto MacConkey Agar plates. The revived bacterial cultures were grown in 2X YT 

medium to get a concentration of 10^8 cells/ml. The cells were centrifuged to obtain a pellet and DNA was 

extracted by phenol-chloroform method. The quality of the DNA was checked in a 0.8% agarose gel (Green 

and Sambrook, 2017). 

 

Antibiotic resistance profiling  

The minimum inhibitory concentration of antibiotics against the four strains were determined by using E-strips 

(HiMedia, India). 107 CFU/ml of bacterial culture were grown in Muller Hinton Agar (MHA) and the antibiotic 

strips were placed on the lawn culture and incubated overnight at 37 C and checked for the zone of inhibition 
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and the results were interpreted as per the Clinical and Laboratory Standard Institute guidelines (CLSI, 2011). 

The following nine antibiotics were studied for their MIC values: amikacin, amoxicillin/clavulanate, 

ampicillin, linezolid, chloramphenicol, ciprofloxacin, erythromycin, teicoplanin and vancomycin.  

 

Genome data extraction and annotation 

The present study used genome assemblies and annotation data of four S. aureus strains MUF168, MUF256, 

MUM270 and MUM475 isolated from four different individuals affected with diabetic foot ulcer (Murali et 

al, 2014b).  The genome assemblies of these four S. aureus strains are available at the NCBI Genome database 

with accession numbers AZQR00000000 (MUF168), AZSE00000000 (MUF256), AZSF00000000 

(MUM270), and AZSG00000000 (MUM475). The quality of these four genome assemblies were assessed 

using Quast v5.0.2 (Gurevich et al, 2013). Whole genome of all four strains were submitted to RAST (Aziz et 

al, 2008) to obtain subsystem category distribution and NCBI annotated protein sequences were submitted to 

eggNOG-mapper (Huerta-Cepas et al, 2019) for taxa-level (family level: Staphylococcaceae) specific gene 

annotations. 

 

Genome comparison and pangenome analysis 

Whole-genome sequence comparison of four S. aureus strains with respect to the reference genome (S. 

aureus NCTC 8325 [accession: CP000253]) was performed using megablast (Altschul et al, 1990). The 

DNA–DNA hybridization (DDH) values of these genomes were calculated by using the GGDC (Genome-

to-Genome Distance Calculator) v2.0 (Meier-Kolthoff et al, 2013) for genome-to-genome comparison. Raw 

fasta sequences from genome assembly data were annotated using Prokka v1.14.6 (Seemann, 2014) and 

were used for pangenome analysis with Roary v3.13.0 (Page et al, 2015) against reference S. aureus strains 

NCTC 83225, ATCC-12600 and WBG8287. To predict single-copy gene content and conservation along 

with the orthology status of predicted genes across four S. aureus strains, BUSCO v4.1.2 (Manni et al, 

2021) tool was utilized with a lineage-specific (bacillales: order-level) dataset. 

 

Antimicrobial resistance gene and virulence factor identification 

Antibiotic resistance gene profiling was done using Abricate v1.0.1 (Seemann, 2021) and AMRFinder v3.10.5 

(Feldgarden et al, 2019) tools. For Abricate, CARD (Alcock et al, 2020) and MEGARes (Doster et al, 2020) 

database resources were utilized while AMRfinder uses BARRGD (Bacterial Antimicrobial Resistance 

Reference Gene Database) for screening antimicrobial resistance genes. Antimicrobial resistance genes with a 

query coverage of ≥80% and sequence identity of ≥70% were taken into consideration. Validation of antibiotic 

resistance genes presence was done by single target PCR amplification for genes mecA, ant(4’)-Ib and ermC 

and PCR products were visualized on 1.2% agarose gel.  

To check the presence of virulence factors in four S. aureus strains, VFDB (Chen et al, 2016) resources using 

Abricate tool was applied. The nucleotide core dataset of VFDB was used to obtain experimentally verified 

virulence factors with the following filter criteria: minimum coverage of 85% and minimum identity of 70%. 

Also, a total of 95 virulence-associated protein sequences reported for S. aureus in VFDB protein core dataset 
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were extracted and aligned using protein-blast (blastp) against all four strains to obtain sequence identity at 

protein level.  

 

Biofilm formation analysis 

MUF168, MUF256, MUM270, and MUM475 strains were assessed for biofilm formations in dynamic and 

static condition. Dynamic biofilm formation ability was checked using BioFlux TM microfluidic system 

(Fluxion Bioscience Inc., Alameda, CA, USA) (Pouget et al, 2021). Tissue culture plate method was used to 

determine the static biofilm formation using crystal violet (0.1%) staining (Prasad et al, 2020).  

 

Drug target study 

The nucleotide and protein sequences of approved drug targets reported for S. aureus were downloaded from 

the DrugBank database (Wishart et al, 2018). A BLAST sequence similarity search between the approved drug 

targets and S. aureus strains was performed to confirm drug target presence in genomes of four strains. Further, 

bowtie2 aligner was used to align raw fastq reads against approved drug target sequences to verify blast results. 

The variation in drug targets at the nucleotide level were identified using UnifiedGenotyper of Genome 

Analysis Toolkit (GATK, version=3.8-1-0-gf15c1c3ef) pipeline (McKenna et al, 2010). 

 

To identify variations at the protein level, the variants in VCF format were converted to fasta format using 

FastaAlternateReferenceMaker (GATK) and translated into proteins sequences using Transeq (Madeira et al, 

2019). Multiple sequence alignment of translated protein sequences was performed using ClustalOmega 

(Sievers et al, 2011) and PROVEAN (Choi and Chan, 2015) tool was utilized to predict protein variant impact 

on the biological function of protein. Different online tools were utilized to summarize and visualize results 

obtained from above analysis (Heberle et al, 2015; Stothard and Wishart, 2005; Petkau et al, 2010).   

 

Results 

Genome annotation  

The draft genome of MUF168, MUF256, MUM270, and MUM475 strains consisted of 59 (2.75 mb), 58 (2.78 

mb), 125 (2.83 mb) and 74 (2.85 mb) contigs, respectively. The protein-coding density of MUM270 was found 

to be the highest with 2728 total proteins followed by MUM475 (2620 proteins) and the two MUF strains 

(2433 proteins each). The average number of ribosomal RNA genes predicted across four strains was sixteen. 

GenBank annotation details and other genomic characteristics are provided in Supplementary Table S1.  

 

Functional annotations and subsystem category distribution of genes using RAST identified 97 (MUF168), 

114 (MUF256), 100 (MUM270) and 97 (MUM475) genes in the virulence category. A total of 72 genes for 

MUF168 and MUM475 strains and 77 genes for MUF256 and MUM270 were categorized as stress response 

genes. A maximum number of genes involved in membrane transport was predicted for MUF strains, 101 

(MUF256) and 100 (MUF168) followed by 88 genes in MUM475 and 58 genes in MUM270. All subsystem 

categories are summarized in Figure 1a along with subsystem coverage provided in Figure 1b. Highest 
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number of genes mapped to any subsystem were 1618 genes for strain MUF256 followed by MUF168 (1554 

genes), MUM270 (1542 genes) and MUM475 (1524 genes). Taxa-level specific gene annotations by eggNOG-

mapper mapped 979, 975, 1041 and 1044 genes for MUF168, MUF256, MUM270 and MUM475. A total of 

888 genes from eggNOG plus GenBank annotations were shared between the four strains (Figure 1c).  

 

Both Cluster of Orthologues (COG) database and RAST functional annotation yielded similar results with 

majority of genes mapped to the amino acid transport and metabolism category while least number of genes 

were mapped to cell motility category (Supplementary Figure S1). Higher abundance of genes in ‘function 

unknown’ category based on COG database and presence of many hypothetical genes in RAST indicated that 

a considerable amount of S. aureus genome function is unknown and remains to be explored.  

 

Sequence comparison and pangenome analysis 

Whole-genome sequence comparison using GGDC and megablast (Supplementary Table S2) identified high 

similarity between MUF256 and MUM475 strains with a query coverage of 99% and sequence identity of 

99.91%. Sequence similarity between MUF256 and MUM270 strains was predicted to be the lowest with a 

query coverage of 93% and identity of 99.09%. A blastn comparison of nucleotide sequences revealed regions 

of high similarity and unique regions (Supplementary Figure S2) present in four strains compared to the 

reference sequence. Coding sequence (CDS) blast identified 185 unique CDS present in the reference genome 

(strain NCTC-8325). Out of these 185 unique CDS, 165 CDS were found to be hypothetical proteins and the 

description of the remaining 20 coding sequences is listed in Supplementary Table S3. 
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Figure 1: Gene annotation summary. (a) RAST subsystem category distribution of annotated genes in all four 

S. aureus strains. (b) Subsystem coverage summary with hypothetical gene count. (c) Core and unique genes 

shared across four strains. 

 

Pangenome analysis of all four S. aureus strains along with three reference genomes (strain: NCTC-8325, 

ATCC-12600 and WBG8287) identified a core genome (genes that shared more than 99% similarity across 

genomes) of 1951 (45.5%) genes and accessory genome (genes with less than 99% similarity across genomes) 

of 2332 (54.5%) genes (Supplementary Figure 3a). The highest number of unique genes were present in 

strain MUM270 (410) and only 12 unique genes were found in strain WBG8287. Highest number of accessory 

genes were also identified for strain MUM270 (966) followed by MUF256 (942), MUF168 (855) and 

MUM475 (850). Phylogenetic distance based on pangenome analysis clustered strains MUF256 and MUM475 

in one clade while strain MUF168 and MUM270 clustered together in one clade.  

BUSCO analysis using bacillales (order-level) lineage dataset which contains 450 single-copy orthologs from 

412 species showed the presence of all 450 complete single-copy genes in strain ATCC-12600. Strain MUF256 

had 14 single-copy genes missing followed by MUF168 (12 genes), MUM270 (10 genes) and MUM475 (8 

genes). Both MUF strains had seven common genes (adk, infC, dnaK, rplU, bfmBAA_2, uppS and pdhD) that 

were absent from their genomes while MUM strains had three common genes (cmk, rpll and whiA) that were 

absent. Also, 31 genes were fragmented for strain MUF256 followed by MUF168 (26 genes), MUM270 (26 

genes) and MUM475 (18 genes). Single copy ortholog status of 450 genes in all four strains along with 

reference strains is represented in Supplementary Figure 3b. 

 

Antimicrobial resistance gene and virulence factor identification 

All four strains displayed varying degrees of resistance to the nine antibiotics tested (Supplementary Table 

S4) and showed sensitivity against most of the tested drugs. MUF168 and MUM475 tested resistant for 

ciprofloxacin and MUF256 showed resistance against erythromycin while strain MUM270 showed sensitivity 

to all nine antibiotics.  

 

A total of 34 different antimicrobial resistance (AMR) genes conferring resistance to 23 antibiotics were 

predicted to be present in the four S. aureus strains (Supplementary Table S5). Out of the 34 antibiotic 

resistance genes, MUF168 harbored 17 genes, MUF256 had 20 genes, MUM270 had 27 genes, MUM475 had 

26 genes and 14 genes were common to all four strains (Figure 2a). AMR genes unique to different strains 

included fosB (MUF168), dfrG (MUF256), 23S_C2220T, aadD1, ant(4')-Ib, bleO, and ermC (MUM270) and 

mphC, msrA, and sat4 (MUM475). AMR genes blaI, blaR and blaZ that confer resistance to beta-lactams were 

found in MUF256, MUM270 and MUM475 strains (Figure 2b). Presence of antibiotic resistance genes in four 

strains were validated by single-plex PCR for a panel of three antibiotic resistance genes, mecA, ant(4')-Ib and 

ermC and the results were identical to the bioinformatic analysis (Figure 2c).  
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A total of 76 virulence factors, divided into eleven broad categories were identified across four strains, with 

the maximum number of virulence genes identified for MUF256 (71) followed by MUM475 (69), MUF168 

(67) and MUM270 (60) (Supplementary Figure S4). A total of 13 toxin-coding genes were identified out of 

which 12 were present in MUF256, 10 in MUM475, 9 in MUM270 and 8 in MUF168 (Supplementary Figure 

S4). One of the major S. aureus virulence factors, α-toxin, which is encoded by hla was present in all four 

strains along with three γ-hemolysins (hlgA, hlgB and hlgC) and δ-hemolysin (hld). Virulence genes from 

enterotoxin superfamily were present across four strains – for instance, sea and seh in MUF256 and MUM475, 

seb in MUF256, while staphylococcal enterotoxin-like (SELs) proteins selk and selq were present in all. 

Bicomponent pore-forming toxin lukF-PV, also known as leukocidin (luk) was identified in all four strains 

while lukS-PV was found in MUM270 only. Fibronectin-binding proteins fnbA and fnbB that play an important 

role in host cell attachment were found in all four strains while clfA and clfB involved in clumping were present 

only in strains MUF168 and MUM475. 

  

Figure 2: Antimicrobial resistance profiling. (a) Common and unique AMR genes shared across four S. aureus 

strains. (b) Genomic coordinates of identified AMR genes in all four strains. (c) Antibiotic resistance gene 

profiling for (i) mecA, (ii) ant(4')-Ib and (iii) ermC.  Lane M: 100bp ladder, Lane 1: Negative control, Lane 2: 

MUF168, Lane 3: MUF256, Lane 4: MUM270 and Lane 5: MUF475. 

 

The S. aureus gene regulatory network highlighted major virulence-associated regulatory systems (Figure 3a). 

The genes in this network play an important role in S. aureus virulence by regulating major S. aureus toxins 

thereby overcoming host defense systems and increasing survival time. Among these, genes involved in agr 

quorum-sensing system (agrB, agrC, agrA and hld) were present in all the four strains but agrD (ribosomal 

peptide precursor of autoinducing peptide) was not found in any strains. Two-component system genes (arlR, 
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arlS, srrA, srrB, saeR and saeS) were present in the four strains while saeP and saeQ were absent from all 

four. All three major cytoplasmic sarA-family regulators (sarA, mgrA and rot) were found across four strains 

along with alternative sigma factors sigB and sigH. Blastp identity between S. aureus specific virulence factors 

(VFDB core protein dataset) and four strains is represented in Figure 3b. A total of 56 toxin genes were present 

in all the four strains (Figure 3c), and a nucleotide blast of these 56 toxin genes among VFDB reference and 

four S. aureus strains showed a high similarity score (Supplementary Figure S5). 

 

Figure 3: Virulence genes and regulation. (a) Represents virulence gene regulatory network of S. aureus. (b) 

Toxin protein identity (blastp) comparison against VFDB dataset. (c) Common and unique toxin genes shared 

across four strains. 

 

Biofilm formation analysis  

Biofilm production in bacterial strains were measured following crystal violet staining and monitoring the 

attachment of bacteria under sheared force. The bacterial strains were divided into three groups – high (>0.6), 

moderate (0.3-0.6) or low (<0.3) biofilm producers based on their absorbance values. Among the four strains 

of S. aureus, MUM475 was found to be a high biofilm producer, MUF168 and MUF256 as moderate biofilm 

producers and MUM270 as low biofilm forming organism (Figure 4a). Thick and dense layer of biofilm was 

observed in MUM475 compared to other stains of S. aureus (Figure 4b). 
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Drug target and variant analysis 

A total of 16 drug targets were found in the DrugBank database for S. aureus out of which 15 targets showed 

significant sequence similarity to sequence contigs of four strains. Ten drug targets were found to be common 

among the four strains while gene coding for kanamycin nucleotidyltransferase (knt) was present in strain 

MUM270 only (Supplementary Table S6). 

 

All 15 drug targets across four strains displayed more variation at the nucleotide level compared to the protein 

level (Supplementary Figure S6). Strain MUM270 contained 39, the highest number of nucleotide variations 

for beta-lactamase. Predicted deleterious amino acid changes were high for gyrA while no amino acid changes 

were predicted as deleterious for penicillin-binding proteins (pbp2a, pbp3 and pbp4), murB, mecA, ileS and 

topA. No variations were predicted at the protein level for drug targets, fabI, knt, pbp2 and trxB. Predicted 

single amino acid variation in gyrB for strains MUF168, MUM270 and MUM475 was identified to have a 

deleterious effect (Table 1).  

 

Figure 4: Biofilm formation assay. (a) Detection of biofilm produced by MUF168, MUF256, MUM270 and 

MUM475 strains in static condition using crystal violet assay. (b) Detection of biofilm in dynamic condition 

using bioflux. 

Data availability 

The whole genome sequences of four Staphylococcus aureus strains utilized in this study are available at NCBI 

Genome database with accession numbers AZQR00000000 (MUF168), AZSE00000000 (MUF256), 

AZSF00000000 (MUM270), and AZSG00000000 (MUM475). 
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Table 1: Variants in approved drug targets at nucleotide and protein levels. 

 

 

Discussion 

Reports suggest that the lifetime incidence of foot ulcers in diabetic patients to be as high as 25% while diabetic 

individuals are at higher risk of developing foot ulcers and lower extremity amputation compared to non-

diabetic individuals (Lavery et al, 2006; Singh et al, 2005). The current infection management strategies 

adopted for diabetic foot ulcers are often insufficient, resulting in delayed healing and ultimately lower limb 

amputation (Leung, 2007). Infections in diabetic foot ulcers are among the major comorbid conditions leading 

to higher mortality in diabetic individuals. The pathogenesis of foot ulceration is complex with varied clinical 

presentation, and hence management requires early expert assessment (Jeffcoate and Harding, 2003). Among 

all the pathogens causing foot ulcer infections, Staphylococcus aureus is considered a major pathogen due to 

its high virulence capabilities (Murali et al, 2014a).  

Antimicrobial resistance gene profiling of the four strains included in the present study revealed that none of 

the strains carried any resistance genes against vancomycin, though several resistance genes (parC, norA, 

norB, gyrA, arlR, arlS and mgrA) for fluoroquinolones (Redgrave et al, 2014) were present across all four 

strains. Fosfomycin resistance protein, encoded by gene fosB (Cao et al, 2001) was found specifically in strain 

MUF168 while its prevalence in other S. aureus genomes (available in NCBI database) was found to be 

approximately 70%. Gene dfrG (coding for dihydrofolate reductase) that confers resistance to trimethoprime 

(Nurjadi et al, 2014) was found in strain MUF256 only, while the prevalence of this gene in other strains 

(NCBI genomes) was found to be only 9%. Macrolide resistance genes (msrA, mphC and sat4) (Otarigho and 

Falade, 2018) were present in MUM475 and gene ermC in MUM270, indicating high resistance to macrolide, 

lincosamide and streptogramin class antibiotics. In all three strains, MUF256, MUM270 and MUM475, genes 

(mecA, blaI, blaR and blaZ) coding for resistance against beta-lactams (Hackbarth and Chambers, 1993) were 

present while in strain MUF168 none of these genes were present. Gene bleO that confers resistance to 
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glycopeptide bleomycin (Scholar, 2007) was found in strain MUM270 only. All four strains encoded mgrA 

gene, a major global regulator in S. aureus which can act as a repressor or activator of multiple genes involved 

in antibiotic resistance and autolysis. MgrA is an important member of the marR/sarA protein family and acts 

as a transcriptional regulator by directly binding to the promoter sites of certain target genes (Luong et al, 

2006) and plays a significant role in biofilm production and in the regulation of resistance and virulence genes. 

Staphylococcus aureus is an opportunistic pathogen with a complex regulatory network to control its virulence 

potency. Using its virulence network, S. aureus can manipulate the host’s innate and adaptive immune response 

by various mechanisms including inducing cytolysis, triggering a major inflammatory response, hijacking 

host’s coagulation system, disrupting cell membrane and producing a host of exoenzymes that are involved in 

proteolytic activity (Jenul and Horswill, 2019; Tam and Torres, 2019; Zhang et al, 2017). Tam and Torres 

(2019) classified S. aureus exotoxins that cause immense damage to host cells further into three broad 

categories namely, cytotoxins, superantigens and cytotoxic enzymes. In the current study, major exotoxin genes 

(hla, hlb, hld, hlgA, hlgB, hlgC, lukS, lukF, sea, seb, seh and spa) were present across all the four strains 

investigated. Pore-forming cytotoxins (hla, hlgA, hlgB, hlgC, lukS, and lukF) and cytotoxic enzymes (hlb) act 

on host cell membrane, resulting in cell lysis and inflammation. Superantigens (sea, seb, seh, sek and seq) 

trigger B and T cell proliferation by mediating cytokine production and are commonly resistant to proteolysis, 

heat and desiccation. Interestingly, cytotoxic enzyme hlb and superantigen seb were only found in the strain 

MUF256. None of the exfoliative toxins were found in any of the strains studied but exoenzymes such as 

proteases (aur, sspA, sspB and sspC), lipase (geh and lip), lyase (hysA) and other associated cofactors (coa, 

vWbp and sak) were present across the four strains (Jenul and Horswill, 2019; Tam and Torres, 2019).   

Based on in-silico analysis, we identified nucleotide and protein variants present in approved drug targets in 

the four strains studied and predicted whether those variants have a neutral or deleterious effect on their fitness. 

The maximum number of nucleotide variants were obtained for beta-lactamase (blaZ) and Isoleucine-tRNA 

ligase (ileS). Surprisingly protein variants for ileS were low while blaZ in strain MUM270 had the highest (11) 

number of variants at the protein level. Recent studies in Mycobacterium tuberculosis have identified molecular 

targets that contribute to drug resistance mechanisms (Dookie et al, 2018; Hameed et al, 2018). Similarly, rare 

genetic variants in human drug-related genes are known to contribute to complex diseases (Schärfe et al, 2017; 

Verma et al, 2018). Sequence variations in drug targets may lead to sub-optimal binding of drugs to their targets 

and therefore might contribute to the development of antibiotic resistance in bacterial communities. 

In this comparative genome analysis study, we compared four S. aureus strains for carriage of genes involved 

in conferring multidrug resistance and virulence potential, biofilm forming potential and variants of potential 

drug targets that can contribute to antibiotic resistance development. We found that strains MUM270 and 

MUM475 coded for a greater number of antibiotic resistance genes (ARGs) compared to MUF strains based 

on our in-silico analysis. Strain MUM270 was sensitive to all nine antibiotics tested suggesting that the 

presence of ARGs alone does not necessarily contribute to increased resistance to antibiotics. Strain MUF256 

coded for highest number of virulence genes followed by strains MUM475, MUF168 and MUM270, while 

strain MUM475 was found to be a high biofilm producer. We also found that both the MUM strains had a 
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higher number of deleterious variants than MUF strains. Further studies using omics approach can provide 

critical clues on key regulators of microbial virulence and factors that contribute to antimicrobial resistance in 

clinically relevant pathogenic isolates. 
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Supplementary Data 

Table S1: Genome assembly and annotation features of all four S. aureus strains. 

Strain MUF168 MUF256 MUM270 MUM475 

Total length (bp) 2,752,244 2,783,966 2,834,436 2,852,107 

No. of contigs 59 58 125 74 

N50 (bp) 96843 87410 52369 124901 

GC content (%) 32.8 32.7 32.8 32.7 

Genes 2770 2825 2991 2852 

Proteins 2433 2433 2728 2620 

rRNA 13 15 19 17 

tRNA 60 59 59 59 

 

 

Table S2: Nucleotide sequence identity comparison using GGDC and Blast. 

 
Formula 

1 (D0) 

Formula 

2 (D4) 

Formula 

3 (D6) 

Blast 

(megablast) 

Reference Query 
Prob. 

DDH 

>=70% 

Prob. 

DDH 

>=70% 

Prob. 

DDH 

>=70% 

Query 

Coverage (%) 

Percentage 

Identity (%) 

MUF168 MUF256 98.65 95.76 99.88 95 99.42 

MUF168 MUM270 98.63 92.17 99.84 95 98.97 

MUF168 MUM475 98.38 95.61 99.85 95 99.40 

MUF256 MUM270 98.06 92.38 99.74 93 99.09 

MUF256 MUM475 99.4 98.14 99.97 99 99.91 

MUM270 MUM475 98.22 91.87 99.77 94 99.09 

 

 

Table S3: Coding sequences in unique regions of CDS blast.  

Locus Tag Gene Length Protein Name 
SAOUHSC_00001 dnaA 453 chromosomal replication initiation protein 
SAOUHSC_00009 

 
428 seryl-tRNA synthetase 

SAOUHSC_00352 
 

103 integrase-like protein 
SAOUHSC_01523 

 
527 SLT orf 527-like protein 

SAOUHSC_01524 
 

274 holin-like protein 
SAOUHSC_01528 

 
151 bacteriophage L54aIg-like domain-containing protein 

SAOUHSC_01529 
 

213 major tail protein 
SAOUHSC_01532 

 
110 SLT orf 110-like protein 

SAOUHSC_01542 
 

455 SNF2 family protein 
SAOUHSC_01543 

 
96 phi-like protein 
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SAOUHSC_01563  650 phage encoded DNA polymerase I 

SAOUHSC_01566  388 phi APSE P51-like protein 

SAOUHSC_01615 recN 559 DNA repair protein RecN 

SAOUHSC_01649  336 rhomboid family protein 

SAOUHSC_01759 mreC 280 rod shape-determining protein MreC 

SAOUHSC_01952  997 lantibiotic epidermin biosynthesis protein EpiB 

SAOUHSC_01972  320 protein export protein PrsA 

SAOUHSC_01993  400 transposase, putative 

SAOUHSC_02392  67 truncated resolvase 

SAOUHSC_02410  400 transposase, putative 

 

Table S4: Antibiotic resistance profile of the four S. aureus strains against 9 different antibiotics based on 

Minimum Inhibitory Concentration results. 

Antibiotics tested MUF168 MUF256 MUM270 MUM475 

Amikacin (AK) S S S S 

Amoxicillin Clavulanate (AMC) S S S I 

Ampicillin (AMP) S S S S 

Chloramphenicol (C) S S S S 

Ciprofloxacin (CIP) R S S R 

Erythromycin (E) S R S S 

Linezolid (LZ) S S S S 

Teicoplanin (TEI) S S S S 

Vancomycin (VA) S S S S 

S = Sensitive, I = Intermediate, R = Resistant. 

 

Table S5: Antimicrobial resistance gene presence/absence summary for all four strains. 

Sl. 

No 
AMR gene 

Length 

(bp) 
Antibiotic Present in strains 

1 
aac(6')-

Ie/aph(2'')-Ia 
1440 

Aminoglycoside 

MUM270, MUM475 

2 aac3 444 
MUF168, MUF256, 

MUM270, MUM475 

3 aadD1 962 MUM270 

4 ant(4')-Ib 762 MUM270 

5 aph(3')-IIIa 795 MUM475, MUM270 

6 aph3' 801 
MUF168, MUF256, 

MUM270, MUM475 

7 lmrS 1443 

Aminoglycoside; 

Diaminopyrimidine; Macrolide; 

Oxazolidinone; Phenicol 

MUF168, MUF256, 

MUM270, MUM475 

8 blaI 381 

Beta-lactam 

MUF256, MUM270, 

MUM475 

9 blaR 1758 
MUF256, MUM270, 

MUM475 
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10 blaZ 888 
MUF256, MUM270, 

MUM475 

11 mecA 2007 MUM270, MUM475 

12 bleO 405 Bleomycin MUM270 

13 gyrA 2661 

Fluoroquinolone 

MUF168, MUF256, 

MUM270, MUM475 

14 norA 1167 
MUF168, MUF256, 

MUM270, MUM475 

15 norB 1392 
MUF168, MUF256, 

MUM270, MUM475 

16 parC 2400 MUM270, MUM475 

17 arlR 660 

Fluoroquinolone; Acridine Dye 

MUF168, MUF256, 

MUM270, MUM475 

18 arlS 1356 
MUF168, MUF256, 

MUM270, MUM475 

19 mgrA 444 

Fluoroquinolone; Penam; Peptide; 

Tetracycline; Acridine Dye; 

Cephalosporin 

MUF168, MUF256, 

MUM270, MUM475 

20 fosB 420 Fosfomycin MUF168 

21 fusC 639 Fusidic Acid MUF256, MUM475 

22 mepA 1356 

Glycycline; Tetracycline 

MUF168, MUF256, 

MUM270, MUM475 

23 mepR 420 
MUF168, MUF256, 

MUM270, MUM475 

24 msrA 1467 

Lincosamide; Macrolide; 

Oxazolidinone; Phenicol; 

Pleuromutilin; Streptogramin; 

Tetracycline 

MUM475 

25 ermC 735 
Lincosamide; Macrolide; 

Streptogramin 

MUM270 

26 rlmH 480 
MUF168, MUF256, 

MUM270, MUM475 

27 mphC 900 Macrolide MUM475 

28 mepB 441 Multi-Drug MATE Efflux Pump 
MUF168, MUF256, 

MUM270, MUM475 

29 23S_C2220T 2926 Oxazolidinone MUM270 

30 dhaP 1188 Phenicol 
MUF168, MUF256, 

MUM270, MUM475 

31 sat4 543 Streptothricin; Nucleoside MUM475 

32 tet38 1353 Tetracycline 
MUF168, MUF256, 

MUM270, MUM475 

33 dfrC 486 
Trimethoprim; Diaminopyrimidine 

MUM270, MUF168, 

MUF256, MUM475 

34 dfrG 498 MUF256 
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Table S6: Sequence similarity and number of raw reads aligned between approved drug targets and S. aureus 

strains. 

Drug Targets 

Length (bp/aa) 

Gene 

Symbol 
Drugs 

Percentage Identity / Number of Reads Aligned 

MUF168 MUF256 MUM270 MUM475 

Beta-lactamase 

(846/281) 
blaZ 

Sulbactam, Clavulanate, 

Imipenem 
- 98 / 292 95 / 497 98 / 814 

DNA gyrase subunit A 

(2667/889) 
gyrA Ciprofloxacin 99 / 2254 99 / 2501 99 / 2495 99 / 1623 

DNA gyrase subunit B 

(1935/644) 
gyrB Novobiocin 99 / 1634 99 / 1704 99 / 1787 99 / 1191 

DNA topoisomerase 1 

(2067/689) 
topA Pefloxacin, Novobiocin 99 / 1226 99 / 1451 99 / 1485 99 / 903 

DNA topoisomerase 4 subunit A 

(2400/800) 
parC Ciprofloxacin 99 / 1432 99 / 1534 99 / 1641 99 / 1007 

Enoyl-[acyl-carrier-protein] 

reductase [nadph] fabi (771/256) 
fabI Triclosan, Triclocarban 98 / 444 99 / 549 98 / 529 99 / 340 

Hth-type transcriptional regulator 

qacr 

(567/188) 

qacR Proflavine - - - - 

Isoleucine-tRNA ligase 

(2754/917) 
ileS Mupirocin 99 / 1713 99 / 2094 99 / 2065 99 / 1353 

Kanamycin 

nucleotidyltransferase (708/253) 
knt Kanamycin - - 99 / 587 - 

mecA 

(2007/668) 
mecA 

Phenoxymethylpenicillin, 

Meticillin, Ceftizoxime, 

Ceftobiprole 

- - 100 / 1463 99 / 1030 

Penicillin binding protein 2a 

(1458/486) 
pbp2a 

Cefpiramide, Cyclacillin, 

Cefmetazole, Ticarcillin 
- - 99 / 1064 99 / 764 

Penicillin-binding protein 2  

(285/95) 
pbp2 Oxacillin - - 99 / 252 100 / 167 

Penicillin-binding protein 3 

(2076/691) 
pbp3 Benzylpenicillin 99 / 1315 99 / 1457 99 / 1503 99 / 912 

Penicillin-binding protein 4 

(1293/431) 
pbp4 Doripenem 99 / 885 99 / 871 99 / 973 99 / 629 

Thioredoxin reductase 

(936/311) 
trxB Azelaic Acid 99 / 609 99 / 650 99 / 762 99 / 447 

Udp-n-

acetylenolpyruvoylglucosamine 

reductase 

(924/307) 

murB Flavin adenine dinucleotide 99 / 629 99 / 641 100 / 749 100 / 471 
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Supplementary Figures 

 

Figure S1: Clusters of Orthologous Genes (COGs) database categories distribution across four strains. 

 

 

Figure S2: Blast sequence comparison. (a) Highly conserved regions across four strains compared to 

reference genome (strain NCTC-8325). (b) Unique regions present across four strains compared to strain 

NCTC-8325. 
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Figure S3: Pangenome analysis. (a) Roary pangenome analysis highlighting core, accessory and unique gene 

abundance across four strains compared to three reference strains (NCTC-8325, ATCC-12600 and 

WBG8287). (b) Single copy orthology status of 450 genes across tested and reference strains to visualize 

gene conservation. 
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Figure S4: Total number of toxin genes predicted for all strains are categorized in figure. Red square 

represents gene present with 100% identity. Blue square represents gene present with <100% identity. Aqua 

square represents gene absent for that strain. 
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Figure S5: Blast similarity scores are represented for 56 common toxin genes against their reference toxin 

gene in VFDB. Height and colour of the blocks represent regions of high similarity. 
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Figure S6: Variant analysis. Nucleotide variants present across selected drug targets in all four strains. 
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A Comprehensive Bioinformatics Resource Guide for Genome-Based 

Antimicrobial Resistance Studies 

 

Abstract 

High-throughput sequencing technologies and bioinformatic tools have revolutionized the microbial genome 

research and, with several sophisticated computational tools, has facilitated whole genome assembly, advanced 

genome-based species identification, comparative genomics, and the identification or prediction of genes that 

code for proteins, antimicrobial resistance (AMR), and toxins. These bioinformatics resources are likely to 

continuously improve in quality, become more user-friendly to analyze the multiple genomic data, efficient in 

generating information and translating it into meaningful knowledge, and enhance our understanding of the 

genetic mechanism of AMR. In this manuscript, we provide an essential guide for selecting the popular 

resources for microbial research, such as genome assembly and annotation, antibiotic resistance gene profiling, 

identification of virulence factors, and drug interaction studies. Additionally, we discuss the best practises in 

computer-oriented microbial genome research, emerging trends in microbial genomic data analysis, integration 

of multi-omics data, the appropriate use of machine learning algorithms, and open-source bioinformatics 

resources for genome data analytics. 

 

Keywords: Antibiotic resistance, microbial genomics, computational biology, next generation sequencing. 

 

Introduction 

Advancements in genome sequencing have revolutionized microbial genome research and generated a large 

number of whole genome sequences, and this information is publicly available in the Genome database 

(www.ncbi.nlm.nih.gov/genome/). Currently, the Genome database has more than 510,000 bacterial genome 

assemblies available for scientific data analysis. However, only 6.9% of these genome assemblies are in the 

'complete' stage, while most of the genome assemblies are in the contig stage (62.08%), scaffold stage 

(29.86%) or at chromosome level (1.15%). The genomes in the 'complete' category and listed as reference 

sequences are more appropriate for analysis for research studies. The genome sequence data can be used for 

comparative genomics studies such as classifying an organism, profiling antimicrobial resistance, identifying 

potential drug targets, and determining genetic relatedness. While this is extremely useful information for 

researchers, the inclusion of genome assemblies with cross-species contamination or those belonging to 

taxonomically misclassified isolates remains a major problem. Therefore, it is important to select the proper 

genome assemblies for downstream analysis. Considering the high bacterial diversity, only a fraction of the 

global bacterial population is sequenced and assembled with whole genome sequences of 1882 different genera 

belonging to 3732 distinct species.  

Antimicrobial resistance (AMR) is a major global problem, particularly in low-and middle-income 

countries (Wangai et al., 2019). Microbial species can develop antimicrobial resistance mechanisms and play 

a critical role in spread of resistance genes across bacterial populations (Woolhouse et al., 2015). Antibiotic 
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resistance alone contributed to more than 35,000 deaths in the United States of America (Solomon and Oliver, 

2014), and AMR might cause for yearly death of 10 million people in the United Kingdom (O’Neill, 2016). 

Recent global research on antimicrobial resistance data from 204 countries reported that 4.95 million deaths 

were due to AMR in 2019 and 1.27 million deaths attributable to AMR, and also stated that AMR-related 

deaths are much higher than HIV-AIDS or malaria-associated deaths (Murray et al., 2022). Therefore, it is 

crucial to examine the bacterial genomes from a wider perspective, covering all aspects including genome 

sequencing and assembly, genome annotation and gene prediction, identification of bacterial communities in 

an environment, and genetic variations on drug targets. For this, reliable and effective bioinformatics tools for 

whole genome sequence data analysis and proper interpretation of results is essential. Hence, in this review, 

we intend to provide an overview of sophisticated bioinformatics resources for microbial genome research, 

exclusively for predicting AMR. All major steps are outlined in figure 1 along with popular tools involved at 

each of these processes. 

 

Review methodology: 

Search strategy 

The two literature databases Scopus and Google Scholar were searched in February 2023. During the search, 

five search keywords were used: AMR, databases, tools, NGS, analysis, and annotation in the fields of title, 

keywords, and abstract. Book chapters, letters, reports, conference proceedings, and articles in other languages 

were excluded using the "Advanced search" settings. For databases and tools, the year was not limited, 

however the search was only allowed to include articles published between 2014 and 2022, with certain 

exceptions. 

Inclusion criteria 

Original research publications that discuss AMR resistance genes, databases, tools, and servers needed for 

bioinformatics analysis, annotation, and designing of bacterial genomic data were taken into consideration.  

Exclusion criteria 

Using the "Advanced search" criteria in databases, Scopus, Google Scholar, and PubMed, book chapters, 

letters, reports, conference proceedings, and articles written in other languages were removed. To exclude out 

papers that did not fit the inclusion criteria, the title, keywords, abstracts, and complete texts were once again 

examined. Additionally, papers that did not provide a thorough explanation of the bioinformatics techniques 

that was utilised, especially for their analysis, annotation, or design, were also excluded. 

Study selection  

The authors reviewed the title and abstract of the studies followed by a full-text screening to identify the studies 

based on the inclusion criteria. Initially, 390 studies (223 studies from Scopus and 167 studies from PubMed 

and Google Scholar) were identified by searching the above-mentioned databases based on the search 

keywords. A total of 89 duplicates were removed following which 210 studies were shortlisted. Further, from 

the 210 studies, 12 studies were excluded based on the exclusion criteria, and 198 studies were shortlisted by 

screening and analysing the title, keyword, and abstracts of the articles. Finally, 151 studies that met the 

inclusion criteria with the required data were selected and systematically reviewed.  
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FIG. 1. A basic workflow highlighting major steps and tools involved in microbial genome research. 

Functional URLs of tools and databases mentioned above are provided in Table 1-7.  ARGs, Antibiotic 

Resistance Genes. 

High-throughput genome sequencing technologies 
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The evolution of DNA sequencing began in 1970, when Sanger and co-workers introduced nucleotide 

identification using chain termination. Over the years, innovations in sequencing chemistry and automation in 

technologies have drastically reduced the cost of sequencing, and at the same time improved the sequencing 

output in order to generate a few hundred to kilobases of long DNA molecules with gigabases of data per run. 

Advancements in sequencing technologies have revolutionized microbial genome research by enabling 

scientists to obtain high-quality sequencing data from a large number of samples in a relatively short time and, 

reduced cost. This breakthrough has led to the discovery of novel genomic features and molecular mechanisms 

underlying complex biological processes (Krehenwinkel et al., 2019). 

Applications of high-throughput sequencing in microbial genomics include understanding the genetic 

mechanism of an organism, identification and classification of microbial populations from different 

environments, prediction of virulence factors and antibiotic resistance genes (ARGs), development of 

diagnostic assays and vaccines (Deurenberg et al., 2017; Besser et al., 2018). The data generated through next 

generation sequencing (NGS) can be used for more accurate pathogen identification and characterization, as 

well as identifying genetic mutations, and predicting pathogenicity (Varshney et al., 2009). Further, high-

throughput sequencing has transformed many areas of genomics research, such as genotyping, epigenomics, 

transcriptomics, and metagenomics. Integration of high-throughput sequencing with other omics technologies, 

such as proteomics and metabolomics, has the potential to provide a more comprehensive understanding of 

complex biological systems (Ariey et al., 2013; Schmidt et al., 2016; Berry et al., 2019). 

High-throughput sequencing has rapidly become an essential tool in microbial research due to its 

unprecedented speed, accuracy, cost-effectiveness, and capability to deliver tens of thousands of genomes in 

a short span of time. However, high-throughput sequencing faces certain challenges in widespread usage, data 

analysis, and interpretation of results. Although many research institutions can purchase high-throughput 

sequencing equipment, they need more high-performance computational resources and staffing to analyze and 

clinically interpret the analyzed data. Choosing the best sequencing platform is essential, as there are a couple 

of high-throughput technologies with different sequencing chemistry. A combination of short and long read 

sequencing is more appropriate to cover the whole genome of an organism. 

 

Computational tools for genome assembly 

Whole genome assembly refers to the computational process of placing the raw sequence data generated 

through high-throughput sequencing technologies in correct order. The quality of the genome assembly 

determines the success rate of the genome assembly and downstream genome data analysis. High quality 

genome assembly is required for accurate genome annotation, predicting the genes accurately and analysing 

their copy numbers encoded in the genome. The success of genome assembly process depends on the quality 

of the sequencing data, the choice of assembly algorithms, and the availability of appropriate bioinformatics 

tools and pipelines.  

The whole genome assembly process consists of mainly three steps: i) quality check of the raw 

sequence reads, ii) genome assembly either by de novo or mapping approach, iii) post-genome assembly 

assessment. Each step requires a specific bioinformatic tool, and the choice of the tool may affect the accuracy 
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and completeness of the assembly. The abundance of bioinformatics tools available today for various stages 

of data analysis is another challenge. Pre-assembly quality check of raw sequence data and trimming of low-

quality reads are essential. Tools like FastQC (Andrews, 2010) and Trimmomatic (Bolger et al., 2014) can be 

used for quality control and trimming the raw data sequence, respectively. 

The genome assembly process consists of error correction, read alignment, scaffolding or mapping. 

Over the years, several de novo and reference-based assemblers have been derived (Table 1). De novo genome 

assemblers are very specific on the raw data type and their backend algorithm; few assemblers prefer short-

read data while others excel in assembly of long read sequencing data. Further, these tools are very specific 

for sequencing technologies, and parameters are very sensitive. De novo genome assembly approach is time-

consuming and requires high performance computing facilities; however, it is more appropriate for every 

strain. Reference-based mapping requires high quality reference genomes and is easier to assemble. The 

approach can be utilised for the assembly of the same strains, post de novo assembly improvements, and variant 

calling. Tools like St. Petersburg genome assembler SPAdes (Bankevich et al., 2012) and Canu (Koren et al., 

2017) can be used for de novo genome assembly and scaffolding. Reference-based mapping or identifying the 

mutations on drug targets can be easily employed with the Bowtie2 aligner (Langmead, 2012) followed by 

variant calling pipelines such as Samtools/BCFtools (Li, 2011), and GATK pipeline (DePristo et al., 2011). 

Finally, potential single nucleotide variations can be reviewed by visualization of the sample reads mapped 

against the reference genome with Integrative Genome Viewer (Thorvaldsdóttir et al., 2013). 

Genome assembly at the draft level or inaccurate assembly may result in partial genes or pseudogenes, 

which will compromise the genome quality (Didelot et al., 2012; Wattam et al., 2017). Hence, post genome 

assembly assessment is crucial and needs to follow the recent guidelines for genome submission to the public 

domain (https://www.ncbi.nlm.nih.gov/genbank/genomesubmit). Many scientific journals require newly 

assembled genome sequence data to be deposited in the International Nucleotide Sequence Database 

Collaboration. However, submitting genomes to public databases in a prescribed format remains a burden for 

many data science and comparative genome researchers. The QUAST tool can be utilized for post assembly 

genome assessment (Gurevich et al., 2013). The Pilon tool (Walker et al., 2014) can be used for post assembly 

genome improvement while DDBJ Fast Annotation and Submission Tool (DFAST) (Tanizawa et al., 2018) 

supports genome submission to public sequence databases. 

 

Table 1: Computational resources available for microbial genome assembly. 

Sl. No. Software 
Supporting 

Platform 
Description URL & Reference 

1 A5 Illumina 
An integrated automated pipeline for cleaning reads 

and assembling. 

https://bio.tools/a5 

(Tritt et al., 2012) 

2 ABySS 
Illumina 

Ion Torrent 

A tool for de novo genome assembly using short 

read data. It implements a distributed representation 

of de Bruijn graphs, which enables parallel 

computation of the assembly algorithm. 

https://github.com/bcgsc/abyss 

(Jackman et al., 2017) 

3 
ALLPATH

S-LG 
Illumina A tool for assembling both small and large genomes. 

http://www.broadinstitute.org/scien

ce/programs/genome-biology/crd. 

(Gnerre et al., 2011) 

https://bio.tools/a5
https://github.com/bcgsc/abyss
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4 Bambus 2 

Illumina 

PacBio 

Oxford 

Nanopore 

The program orders and orients contigs into 

scaffolds based on various types of linking 

information. 

http://www.cbcb.umd.edu/software/

bambus 

(Koren et al., 2011) 

5 CANU 

PacBio 

Oxford 

Nanopore 

Derived from Celera Assembler, mainly for long 

read assembly. 

https://github.com/marbl/canu 

(Koren et al., 2017) 

6 CAP3 

PacBio 

Oxford 

Nanopore 

Sanger 

To assemble a set of contiguous sequences (contigs) 

or long reads sequence data. 

https://sourceforge.net/projects/stad

en/ 

(Huang and Madan et al., 1999) 

7 Edena Illumina 
A de novo assembly framework that can be used for 

extremely short reads. 

https://mybiosoftware.com/edena-

de-novo-short-reads-assembler.html 

(Hernandez et al., 2008) 

8 FALCON PacBio De novo assembler for long read sequencing data. 

https://github.com/PacificBioscienc

es/FALCON/ 

(Chin et al., 2016) 

9 HIFIASM PacBio 

A de novo assembler that uses long high-fidelity 

sequence reads to represent the haplotype 

information in an assembly. 

https://github.com/chhylp123/hifias

m 

(Cheng et al., 2021) 

10 MaSuRCA 

Illumina 

Ion Torrent 

PacBio 

Oxford 

Nanopore 

Assemble data sets containing only short reads or a 

mixture of short reads and long reads. 

https://github.com/alekseyzimin/ma

surca 

(Zimin et al., 2013) 

 

11 MECAT 

PacBio 

Oxford 

Nanopore 

A tool enables reference mapping and de novo 

assembly of large genomes. 

https://github.com/xiaochuanle/ME

CAT 

(Xiao et al., 2017) 

12 MEGAHIT Illumina 
De novo assembler for large and complex 

metagenomics data. 

https://github.com/voutcn/megahit 

(Li et al., 2015) 

13 metAMOS 

Illumina 

PacBio 

Oxford 

Nanopore 

An integrated assembly and analysis pipeline for 

metagenomic data. 

https://github.com/marbl/metAMO

S 

(Treangen et al., 2013) 

14 Minia Illumina 
A short-read assembler based on a de Bruijn graph 

method. 

http://minia.genouest.org/ 

(Chikhi and Rizk, 2013) 

15 Miniasm 

PacBio 

Oxford 

Nanopore 

An ultrafast de novo assembler for noisy long reads. 
https://github.com/lh3/miniasm 

(Li, 2016) 

16 MIRA 
Illumina 

Ion Torrent 

De novo genome and transcriptome assembler and 

can be used for mapping and genome polishing. 

https://sourceforge.net/projects/mir

a-assembler/ 

(Chevreux et al., 2004) 

17 
PBcR 

pipeline 
PacBio A pipeline for read correction and assembly. 

http://www.cbcb.umd.edu/software/

PBcR/ (Koren et al., 2012) 

18 Racon 

PacBio 

Oxford 

Nanopore 

An intensive error-correction tool for long reads to 

obtain high-quality assemblies. 

https://github.com/lbcb-sci/racon 

(Vaser et al., 2017) 

19 Ray Meta Illumina 
A tool for de novo assembly of metagenome 

sequence data. 

https://denovoassembler.sourceforg

e.net/ 

(Boisvert et al., 2012) 

20 Redundans 
Illumina 

Roche 454 

A pipeline that improves the genome assembly of 

heterozygous genomes. 

https://github.com/Gabaldonlab/red

undans 

(Pryszcz and Gabaldón, 2016) 

21 SGA Illumina 
Performs contig assembly using SGA and builds 

scaffolds using BESST. 

https://github.com/jts/sga 

(Simpson and Durbin, 2012) 

22 SHORTY SOLiD A tool for de novo genome assembly of short reads. 
https://www3.cs.stonybrook.edu/~s

kiena/shorty/ 

https://github.com/chhylp123/hifiasm
https://github.com/chhylp123/hifiasm
https://github.com/xiaochuanle/MECAT
https://github.com/xiaochuanle/MECAT
https://github.com/lh3/miniasm
https://github.com/lbcb-sci/racon
https://denovoassembler.sourceforge.net/
https://denovoassembler.sourceforge.net/
https://github.com/Gabaldonlab/redundans
https://github.com/Gabaldonlab/redundans
https://www3.cs.stonybrook.edu/~skiena/shorty/
https://www3.cs.stonybrook.edu/~skiena/shorty/
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(Hossain et al., 2009) 

23 
Smart 

denovo 

PacBio 

Oxford 

Nanopore 

A rapid assembler for long reds from single-

molecule sequencing platforms. 

https://github.com/ruanjue/smartde

novo 

(Liu et al., 2021) 

24 
SOAPdeno

vo2 
Illumina 

A short-read assembly method that can build a de 

novo draft assembly for large plant and animal 

genomes, also works well on bacteria and fungi 

genomes. 

https://sourceforge.net/projects/soa

pdenovo2/ 

(Luo et al., 2012) 

25 SPAdes 

Illumina 

Ion Torrent 

PacBio 

Oxford 

Nanopore 

Sanger 

A novel assembly toolkit containing various 

assembly pipelines and it support hybrid genome 

assembly. 

https://cab.spbu.ru/software/spades/ 

(Prjibelski et al., 2020) 

26 SSAKE Illumina A de novo assembler for short DNA sequence reads. 

https://www.bcgsc.ca/resources/soft

ware/ssake/ 

(Warren et al., 2007) 

27 SSPACE Illumina 
A tool for scaffolding contigs using paired-end 

reads. 

https://github.com/nsoranzo/sspace

_basic 

(Boetzer and Pirovano, 2014) 

28 
SSPACE-

LongRead 

PacBio 

Oxford 

Nanopore 

A tool to upgrade incomplete draft genomes using 

long reads. 

http://www.baseclear.com/bioinfor

matics-tools/ 

(Boetzer and Pirovano, 2014) 

29 Velvet Illumina 
A De Bruijn graph assembler works fairly rapidly on 

short (microbial) genomes. 

https://github.com/dzerbino/velvet 

(Zerbino and Birney, 2008) 

30 wtdbg2 

PacBio 

Oxford 

Nanopore 

A long-read de novo assembler essentially uses an 

all-versus-all read alignment procedure to progress 

the overlap-layout-consensus method. 

https://github.com/ruanjue/wtdbg2 

(Ruan and Li, 2019) 

 

Bioinformatics resources for genome annotation 

Genome annotation consists of several computational processes to deliver the structural and functional 

information from genome assembly using differential analysis, comparison, estimation, precision, prediction, 

and other data mining techniques. The process involves identifying and classifying functional components 

such as genes that code for proteins, non-coding RNAs, genetic signatures that regulate gene expression, and 

conserved and non-conserved genomic regions. Genome annotation can shed light on pathogenicity, 

metabolism, antibiotic resistance, evolutionary relationships, microbial adaptations in host and other 

environments. Bacterial genome annotation also aids in carriage of genes coding for toxins which can 

distinguish pathogenic strains from non-pathogens, and more importantly in identifying strains with desired 

genetic characteristics for an industrial application.  

Genome annotation is time-consuming and a multi-step process and requires skills in high 

performance computing. Genome annotation pipelines are well equipped to analyse large amounts of genomic 

data by automating crucial steps that are much faster, more efficient, and more accurate. Automated pipelines 

for various genome annotation processes are listed in Table 2. Web-based and automated pipelines are 

intended to reduce manual errors, which helps in file format conversion, makes the data presentable, and helps 

prepare the data to be submit into the public domain. 

 

Table 2: Computational resources available for genome annotation. 

https://www.bcgsc.ca/resources/software/ssake/
https://www.bcgsc.ca/resources/software/ssake/
https://github.com/ruanjue/wtdbg2
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Sl.No. Tool Description URL 

1 DFAST 
A pipeline for annotating bacterial genomes that incorporates 

techniques for taxonomy and quality evaluation. 

https://dfast.ddbj.nig.ac.jp/ 

(Tanizawa et al., 2018) 

2 
eggNOG-

Mapper 
A tool for fast functional annotation of novel genomes. 

http://eggnog-mapper.embl.de/ 

(Huerta-Cepas et al., 2019) 

3 Eugene 
An integrative gene finder applicable to both prokaryotic and 

eukaryotic genomes 

http://eugene.toulouse.inra.fr/C

onfiguration 

(Sallet et al., 2019) 

4 FlaGs 

A flexible tool for sensitive detection of flanking gene 

conservation at any evolutionary distance, and displays results in 

an intuitive, publication-quality vector graphics format. 

https://github.com/GCA-VH-

lab/FlaGs 

(Saha et al., 2021) 

5 FunGeCo 
A web-based platform for gene-context-based functional 

inference in microbial genomes and metagenomes. 

https://web.rniapps.net/fungeco 

(Anand et al., 2020) 

6 GeneMark 
A fully automatic integrated tool use Bayesian formalism for gene 

prediction. 

http://opal.biology.gatech.edu/

GeneMark/ 

(Besemer et al., 2005) 

7 GhostKOALA 
Web server designed with KEGG Orthology for functional 

characterization of genome and metagenome sequences. 

http://www.kegg.jp/blastkoala/ 

(Kanehisa et al., 2016) 

8 Glimmer A system for finding genes in microbial genome. 

http://www.cbcb.umd.edu/softw

are/glimmer/ 

(Delcher et al., 1999) 

9 InterProScan 

A server that integrates various protein signature recognition 

methods from multiple member databases of the InterPro for 

protein analysis and annotation. 

http://www.ebi.ac.uk/InterProS

can/ 

(Quevillon et al., 2005) 

10 MAKER2 
An automated pipeline for comprehensive functional annotation 

and data management. 

http://www.yandell-

lab.org/software/maker.html 

(Holt and Yandell, 2011) 

11 MG-RAST API 
Web application server that suggests automatic phylogenetic and 

functional analysis of metagenomes. 

http://api.metagenomics.anl.gov

/api.html 

(Keegan et al., 2016) 

12 
MicrobeAnnotat

or 

An easy-to-use pipeline coupled with several reference protein 

databases for the annotation of microbial genomes. 

https://github.com/cruizperez/M

icrobeAnnotator 

(Ruiz-Perez et al., 2021) 

13 NCBI - PGAP 
NCBI Prokaryotic Genome Annotation Pipeline is designed to 

annotate bacterial and archaeal genomes. 

https://github.com/ncbi/pgap 

(Tatusova et al., 2016) 

14 PANNZER2 
A web server designed for fast Gene Ontology (GO) annotations 

and predictions 

http://ekhidna2.biocenter.helsin

ki.fi/sanspanz/ 

(Törönen et al., 2018) 

15 Prokka 

A command line tool to fully annotate bacterial genome and 

generate standards-compliant output files for further analysis or 

viewing in genome browsers. 

https://github.com/tseemann/pr

okka 

(Seemann, 2014) 

16 RAST 
A webserver with fully automated annotation service for archaeal 

and bacterial genomes. 

https://rast.nmpdr.org/ 

(Aziz et al., 2008) 

17 
REPET/ 
PASTEC 

An automated pipeline for the identification and classification of 

transposable elements. 

https://urgi.versailles.inrae.fr/T

ools/REPET 

(Quesneville et al., 2005; Hoede 

et al., 2014) 

18 tRNAscan 
A widely used tool for predicting transfer RNA (tRNA) genes in 

genomic sequences. 

http://lowelab.ucsc.edu/tRNAsc

an-SE/ 

(Chan et al., 2021) 

 

Resources for antimicrobial resistance gene profiling 

The genomes of bacterial species are comparatively small in size, and with simple structural organization, 

though, they have a remarkable genetic mechanism that allows them to respond to a wide array of 

https://github.com/GCA-VH-lab/FlaGs
https://github.com/GCA-VH-lab/FlaGs
https://web.rniapps.net/fungeco
http://opal.biology.gatech.edu/GeneMark/
http://opal.biology.gatech.edu/GeneMark/
http://www.kegg.jp/blastkoala/
http://www.cbcb.umd.edu/software/glimmer/
http://www.cbcb.umd.edu/software/glimmer/
http://www.ebi.ac.uk/InterProScan/
http://www.ebi.ac.uk/InterProScan/
http://api.metagenomics.anl.gov/api.html
http://api.metagenomics.anl.gov/api.html
http://ekhidna2.biocenter.helsinki.fi/sanspanz/
http://ekhidna2.biocenter.helsinki.fi/sanspanz/
http://lowelab.ucsc.edu/tRNAscan-SE/
http://lowelab.ucsc.edu/tRNAscan-SE/
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environmental threats, including antibiotics. Antimicrobial resistance (AMR) is a major public health threat 

worldwide that can lead to longer hospital stays, higher healthcare costs, and increased mortality and morbidity 

rates. Most pathogenic bacterial species have genetic mechanisms to develop resistance to at least a few 

antibiotics. The main mechanisms of antimicrobial resistance are: i) restricting the uptake of drug molecules, 

ii) structural modification of the drug and target, iii) inactivation of drug, and iv) active efflux system. Bacteria 

acquire resistance to antibiotics via the transfer of AMR genes from other organisms through genetic exchange 

mechanisms such as conjugation, transduction, or transformation. Examples of these mechanisms include the 

acquisition of the mecA gene encoding methicillin resistance in Staphylococcus aureus and the various van 

genes in Enterococcus encoding resistance to glycopeptides (Tunstall et al., 2020). 

The quest for rapid and effective AMR diagnosis and testing is of paramount relevance in the current 

global context. Traditional antimicrobial susceptibility testing (AST or WGS-AST) is labour-intensive, low 

throughput, and limited to bacteria that can be cultured in a lab. The present emphasis in AMR prediction is 

on enhancing technologies and methodologies that enable prompt identification of resistant strains. With the 

aid of bioinformatics tools, researchers can analyze the large amount of whole genome sequence data 

generated, in order to implement certain strategies, improve prevention, control and treatment measures for 

infections caused by antibiotic resistant pathogens. 

Artificial intelligence and machine learning methods are being used more frequently to predict AMR 

genes. By predicting the AMR resistance profile of a pathogen, clinicians can select the most appropriate 

treatment and reduce the risk of treatment failure or the spread of AMR. For example, some systems are now 

able to predict phenotypic resistance based on genomic sequencing data, enabling faster and more accurate 

diagnosis and treatment. In addition, accurate AMR prediction can help healthcare systems optimize their use 

of antibiotics and reduce the incidence of healthcare-associated infections (Eschlböck et al., 2017; Walker et 

al., 2019). Nevertheless, there are still obstacles to overcome, such as ensuring data sharing, standardizing 

methods, and regulating oversight to guarantee the precision and dependability of predictive models (Fanelli 

et al., 2020; Shankarnarayan et al., 2022; Wang et al., 2022). 

Several computational tools and web servers are available to predict AMR genes, ranging from simple 

rule-based algorithms to complex machine learning models. These tools use various types of data such as 

whole genome sequence information, phenotypic characteristics, and epidemiological information to predict 

AMR patterns (Table 3). Some of the commonly used AMR prediction tools and databases include ResFinder, 

a web-based tool that uses genome sequence data to predict the presence of antimicrobial resistance genes 

(Zankari et al., 2012), KmerResistance, that uses k-mer frequencies to predict antimicrobial resistance from 

genome sequences (Rowe and Winn, 2018), Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT), a 

database that contains information on antimicrobial resistance genes and mutations responsible for AMR from 

bacterial genomes (Gupta et al., 2014), The Comprehensive Antibiotic Resistance Database (CARD), or 

comprehensive database of antibiotic resistance genes, mutations, and associated metadata (Alcock et al., 

2020), and AMRmap, a platform that provides information on the prevalence and patterns of antimicrobial 

resistance worldwide. These tools provide interactive data analysis, and visualization tools are continuously 

updated with information from multiple sources (Kuzmenkov et al., 2021). 
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Table 3: Computational resources available for antimicrobial resistance profiling 

Sl. No. Resource Description URL 

1 ABRES Finder 
A webserver to predict 36467 antibiotic resistance genes 

belonging to 37 antibiotics. 

http://scbt.sastra.edu/ABRES/ 

(Xavier et al., 2016) 

2 ABRICATE 
Pipeline coupled with multiple databases to screen contigs 

for antimicrobial resistance or virulence genes. 

https://github.com/tseemann/abricat

e 

(Seemann, 2018) 

3 AMRFinderPlus 
A tool that identifies AMR genes, resistance-associated 

point mutations from assembled genome sequence. 

https://github.com/ncbi/amr 

(Feldgarden et al., 2019) 

4 AMRmap 
A web platform for analysis of antimicrobial resistance 

surveillance data. 

https://amrmap.net/ 

(Kuzmenkov et al., 2021) 

5 ARG-ANNOT 
A tool to detect existing and putative new ARGs in 

bacterial genomes. 

https://www.mediterranee-

infection.com/acces-

ressources/base-de-donnees/arg-

annot-2/ 

(Gupta et al., 2014) 

6 ARGDIT 

A toolkit to minimize the efforts in validating, curating and 

merging multiple ARG protein or coding sequence 

databases. 

https://github.com/phglab/ARGDIT 

(Chiu and Ong, 2019) 

7 ARIBA 

A standalone tool to identify AMR-associated genes and 

single nucleotide polymorphisms directly from short reads 

with respect to the reference genome. 

https://github.com/sanger-

pathogens/ariba 

(Hunt et al., 2017) 

8 BacMet 
A tool for identification of biocide and metal-resistance 

genes from genomes. 

http://bacmet.biomedicine.gu.se/ 

(Pal et al., 2014) 

9 
β-lactamases 

Database 

A specialized manually curated public resource providing 

up-to-date structural and functional information focused on 

β-lactamase with a great impact on antibiotic resistance. 

http://bldb.eu 

(Naas et al., 2017) 

10 CARD 

A database of ARGs that are peer-reviewed. It includes 

software to predict resistome from protein, genome, or 

metagenomics datasets. 

https://card.mcmaster.ca/ 

(Alcock et al., 2020) 

11 DRAGdb 
A manually curated, repository of mutational data of drug 

resistance associated genes. 

http://bicresources.jcbose.ac.in/ssah

a4/drag/ 

(Ghosh et al., 2020) 

12 FARMEDB 

A database of publically available DNA sequences and 

predicted protein sequences conferring antibiotic resistance 

as well as regulatory elements, mobile genetic elements. 

http://staff.washington.edu/jwallace

/farme 

(Wallace et al., 2017) 

13 IRIDA 
A pipeline makes use of the RGI/CARD and staramr tools 

for detection of antimicrobial resistance genes. 

https://github.com/phac-nml/irida-

plugin-amr-detection 

(Matthews et al., 2018) 

14 LREfinder 

A web tool to detect mutations in 23S rRNA, optrA, cfr, 

cfr(B), and poxtA genes encoding linezolid resistance from 

enterococci. 

https://bitbucket.org/genomicepide

miology/lre-finder/src/master/ 

(Hasman et al., 2019) 

15 MARA 

A database includes antibiotic resistance genes and 

selected mobile elements from Gram-negative bacteria, 

distinguishing important variants. 

https://galileoamr.arcbio.com/mara/ 

(Partridge and Tsafnat, 2018) 

16 MEGARes 

An antimicrobial resistance database for high-throughput 

sequencing: A database that includes ARGs as well as a 

biocide and heavy metal resistance genes. 

https://github.com/cdeanj/resistome

analyzer 

(Lakin et al., 2017) 

17 Mustard 
A tool to predict resistome by a three-dimensional 

structure-based approach. 

http://mgps.eu/Mustard/ 

(Ruppé et al., 2018) 

18 Mykrobe 
An ultrafast search tool for predicting resistance genes 

from bacterial and viral genomic data. 

https://www.mykrobe.com/ 

(Bradley et al., 2015) 

19 PARGT 
A software tool for predicting antimicrobial resistance in 

Gram-negative bacteria. 

https://github.com/abu034004/PAR

GT 

https://amrmap.net/
https://www.mediterranee-infection.com/acces-ressources/base-de-donnees/arg-annot-2/
https://www.mediterranee-infection.com/acces-ressources/base-de-donnees/arg-annot-2/
https://www.mediterranee-infection.com/acces-ressources/base-de-donnees/arg-annot-2/
https://www.mediterranee-infection.com/acces-ressources/base-de-donnees/arg-annot-2/
https://github.com/phglab/ARGDIT
http://tinyurl.com/lp463fl
http://tinyurl.com/lp463fl
https://bitbucket.org/genomicepidemiology/lre-finder/src/master/
https://bitbucket.org/genomicepidemiology/lre-finder/src/master/
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Tools for virulence profiling 

Toxins are potent virulence factors produced by organisms such as bacteria, fungi, plants, and animals that can 

cause harm or death to other organisms (Greenfield et al., 2002). Surprisingly, bacterial toxins were the first 

substances to be attributed to acute bacterial infections in both humans and animals. These toxins can act on a 

variety of targets within the host, including the nervous system, immune system, and various organs. While 

some toxins damage cellular membranes, others prevent the creation of proteins or interfere with cellular 

signalling pathways (Blanco, 2018; Kim, 2010; Zhang et al., 2019). Certain bacterial toxins are created locally 

and predominantly affect cells close to the site of infection, while others are released by the bacterium and 

have an effect far from the site of infection.  

There are several bacterial species that produce toxins, like Clostridium botulinum, which produces 

the potent neurotoxin botulinum, causing the disease botulism. Botulinum toxin acts by inhibiting the release 

of acetylcholine, a neurotransmitter that is necessary for muscle contraction (Guzmán-Gómez et al., 2013). 

Vibrio cholerae produces cholera toxin, which causes the disease cholera. The toxin acts by causing the 

secretion of large amounts of water and electrolytes into the intestinal lumen, leading to severe diarrhea and 

dehydration (Chowdhury et al., 2011). Staphylococcus aureus produces several toxins, including 

staphylococcal enterotoxins and toxic shock syndrome toxin-1 (TSST-1), which can cause food poisoning, 

toxic shock syndrome, and other diseases (Chakraborty et al., 2022). 

Understanding the mechanisms of these toxins and the organisms that produce them is crucial for 

developing effective treatments and preventing the spread of these diseases. So, the bioinformatic approaches 

are essential for analysing toxins and predicting their properties. These approaches include sequence analysis, 

structure-based modelling, and functional analysis. Sequence analysis involves identifying genes and proteins 

involved in toxin production and studying their evolution and diversity. Structure-based modelling involves 

(Chowdhury et al., 2020) 

20 Patric 
A comprehensive bioinformatics resource to analyse 

genomes for AMR prediction. 

https://www.patricbrc.org/ 

(Wattam et al., 2017) 

21 PointFinder 
A web tool to predict antimicrobial resistance associated 

point mutations from bacterial pathogens. 

https://bitbucket.org/genomicepide

miology/pointfinder_db/src/master/ 

(Zankari et al., 2017) 

22 ResFams 
A curated database of protein families for profiling 

antibiotic resistance function and ontology. 

http://www.dantaslab.org/resfams 

(Gibson et al., 2015) 

23 ResFinder 
A web based antimicrobial susceptibility testing identifies 

AMR phenotypes. 

http://www.genomicepidemiology.

org/ 

(Zankari et al., 2012) 

24 SRST2 

A read mapping-based tool for fast and accurate detection 

of genes, alleles and multi-locus sequence types from 

whole genome sequence data. 

https://github.com/katholt/srst2 

(Inouye et al., 2014) 

25 SSTAR 

A pipeline to identify known antimicrobial resistance genes 

and detect putative new variants from whole genome 

sequencing data. 

https://github.com/tomdeman-

bio/Sequence-Search-Tool-for-

Antimicrobial-Resistance-SSTAR- 

(de Man and Limbago, 2016) 

26 VAMPr 
A tool for mapping and variant prediction using machine 

learning approaches. 

https://github.com/jiwoongbio/VA

MPr 

(Kim et al., 2020) 

http://www.genomicepidemiology.org/
http://www.genomicepidemiology.org/
https://github.com/katholt/srst2
https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-
https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-
https://github.com/tomdeman-bio/Sequence-Search-Tool-for-Antimicrobial-Resistance-SSTAR-
https://github.com/jiwoongbio/VAMPr
https://github.com/jiwoongbio/VAMPr
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predicting the three-dimensional structure of toxins and their interactions with target molecules. Functional 

analysis involves studying the biological activity and toxicity of toxins and their mechanisms of action. 

We have listed the various toxin prediction tools and database resources available (Table 4). Some of 

the popular toxin databases include the Toxin and Toxin-Target Database (T3DB) (Lim et al., 2010) and the 

Comparative Toxicogenomics Database (CTD) (Davis et al., 2023). Toxin databases are important resources 

for researchers studying and gaining knowledge on toxins. These databases provide valuable information on 

toxins, including their mechanisms of action, targets, potential health effects, the structure of the toxin 

molecule, biological activity, and level of toxicity. Various algorithms are used to predict the presence of toxins 

based on the organism's genome or proteome. Some of the popular toxin prediction tools include virulence 

factor database VFDB (Chen et al., 2005), TASmania (Akarsu et al., 2019) which are useful for identifying 

potential toxins in new organisms and understanding the diversity and evolution of toxin-producing organisms. 

 

Table 4: Computational resources available for toxins or virulence factor prediction. 

Sl. No. Resource Description URL 

1 DBETH 

A database of bacterial exotoxins sequences, 

structures, interaction networks, and analytical 

results for 229 exotoxins, representing 26 distinct 

bacterial genera that are pathogenic to human. 

http://www.hpppi.iicb.res.in/btox/ 

(Chakraborty et al., 2012) 

2 HyperVR 
A pipeline for accurately predict virulence factors, 

antibiotic resistant and negative genes. 

https://github.com/jiboyalab/HyperV

R 

(Ji et al., 2023) 

3 RASTA-Bacteria 
A web-based tool for identifying toxin and antitoxin 

genes prediction in prokaryotic genomes. 

http://genoweb1.irisa.fr/duals/RAST

A-Bacteria/ 

(Sevin and Barloy-Hubler, 2007) 

4 T1TAdb 

A web database of type I toxin-antitoxin which 

contains1894 toxin-antitoxin loci from 493 bacterial 

strains. 

https://d-lab.arna.cnrs.fr/t1tadb 

(Tourasse and Darfeuille, 2021) 

5 TADB 
A database to predict type II toxin-antitoxin from 

bacterial genomes. 

http://bioinfo-

mml.sjtu.edu.cn/TADB2/ 

(Xie et al., 2018) 

6 TASmania 
A database system for predicting bacterial toxin-

antitoxins. 

https://shiny.bioinformatics.unibe.ch

/apps/tasmania/ 

(Akarsu et al., 2019) 

7 VFDB 

An integrated and comprehensive online resource for 

curating information about virulence factors of 

bacterial pathogens. 

http://www.mgc.ac.cn/VFs/ 

(Chen et al., 2005) 

 

Drug target interaction studies 

Genetic mutation in the target sites of drugs is a common mechanism of AMR. Drug-target site alterations 

often result from spontaneous mutation on the target gene in the presence of antibiotics. Examples include 

structural alteration in RNA polymerase and DNA gyrase, resulting in resistance to rifamycin and quinolones, 

respectively (Tunstall et al., 2020). Advancements in bioinformatic have provided different tools to describe 

the effect of mutation on drug targets induced antimicrobial resistance. While a few predict functional effects 

based on the amino acid substitution, other algorithms consider the variation within the protein structure 

https://github.com/jiboyalab/HyperVR
https://github.com/jiboyalab/HyperVR
http://www.mgc.ac.cn/VFs/
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exclusively on the drug binding site. Therefore, when analysing specific mutations on drug targets, it is better 

to use multiple tools with different methodologies, which may give complementary information. Several tools 

are available for analysing the effects of mutation in AMR genes (Table 5) and are very useful in identifying 

the known AMR phenotypes and explaining the cause of resistance. 

 

 

 

Table 5: Computational tools available for prediction of effect of mutation. 

Sl. No. Database/Tools Description URL 

1 DeepDDG 
A neural network-based tool for predicting the 

stability change of protein point mutations. 

http://protein.org.cn/ddg.html 

(Cao et al., 2019) 

2 DUET 
A web server for an integrated computational 

approach to study missense mutations in proteins. 

http://biosig.unimelb.edu.au/duet/ 

(Pires et al., 2014) 

3 DynaMut 
A web server for predicting the impact of mutations 

on protein conformation, flexibility and stability. 

http://biosig.unimelb.edu.au/dynamut/ 

(Rodrigues et al., 2018) 

4 ELASPIC 
A webserver to predict stability effects of mutations 

on protein folding and interactions 

http://elaspic.kimlab.org/ 

(Witvliet et al., 2016) 

5 I-Mutant 

An automatic prediction tool for predicting stability 

changes upon mutation from the protein sequence 

or structure. 

https://bio.tools/i-mutant_suite 

(Capriotti et al., 2005) 

6 INPS-MD 
A web server to predict stability of protein variants 

from sequence and structure. 

https://inpsmd.biocomp.unibo.it/inpsSuit

e 

(Savojardo et al., 2016) 

7 MAESTRO 
A versatile tool in the field of stability change 

prediction upon point mutations. 

https://pbwww.che.sbg.ac.at/maestro/we

b 

(Laimer et al., 2016) 

8 PROVEAN 

A web server tool to predict the functional effect of 

single or multiple amino acid substitutions, 

insertions and deletions. 

http://provean.jcvi.org/seq_submit.php 

(Choi et al., 2012) 

9 SIFT 
An online tool to predict the effects of non-

synonymous variants on protein function. 

https://sift.bii.a-star.edu.sg/ 

(Kumar et al., 2009) 

10 SNAP2 

A neural network-based classifier to forecast how 

changes in single amino acid would affect the 

protein's functionality. 

https://www.rostlab.org/services/SNAP/ 

(Hecht et al., 2015) 

11 STRUM 
A web tool for structure-based prediction of protein 

stability changes upon single-point mutation. 

https://zhanglab.ccmb.med.umich.edu/S

TRUM/ 

(Quan et al., 2016) 

 

Predicting novel drug targets is a crucial task in the drug discovery process. There are several phases 

involved in predicting drug targets, including identifying potential targets, estimating the binding affinity 

between a drug and those targets, and determining how well the drug inhibits the activity of the target. While 

there are many different approaches to predict drug targets, from experimental methods to computational 

techniques, the latter relies on the use of algorithms and machine learning models to predict drug targets. It 

involves the analysis of data from various sources, including genomics, proteomics, and metabolomics, to 

identify potential drug targets. Further, computational techniques have the potential to greatly accelerate the 

drug discovery process and provide important insights into the mechanism of action of drugs. One of the major 

advantages of using computational techniques for predicting drug targets is that they can help identify potential 

targets much more quickly and in a cost-effective manner than experimental methods. 

http://biosig.unimelb.edu.au/duet/
http://biosig.unimelb.edu.au/dynamut/
http://elaspic.kimlab.org/
https://inpsmd.biocomp.unibo.it/inpsSuite
https://inpsmd.biocomp.unibo.it/inpsSuite
https://pbwww.che.sbg.ac.at/maestro/web
https://pbwww.che.sbg.ac.at/maestro/web
https://zhanglab.ccmb.med.umich.edu/STRUM/
https://zhanglab.ccmb.med.umich.edu/STRUM/
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In recent years, a large number of tools and databases have been developed to aid in the prediction of 

drug targets. There are also many databases that are designed to aid in the prediction of drug targets. These 

databases include resources such as DrugBank (Wishart et al., 2008), which provides information on drug-

target interactions and drug metabolism, and STITCH (Kuhn et al., 2014), which integrates information on 

protein interactions, chemical structures, and genomic data to predict drug-target interactions. Other databases, 

such as ChEMBL (Gaulton et al., 2012) provide information on chemical compounds and their biological 

activities and can be used to identify potential drug targets based on chemical structure and activity data. A 

comprehensive list of all resources available for drug-target interaction studies are provided (Table 6). Overall, 

the availability of these tools and databases has greatly facilitated the prediction of drug targets and has 

accelerated the drug discovery process. While these resources have limitations, such as reliance on the quality 

and availability of data, they represent important tools for researchers in the field of drug discovery. 

 

Table 6: Computational resources available for Drug Designing and other medical databases. 

Sl. No. Resource Description URL 

1 DDR 

A computational method to predict drug–target 

interactions using graph mining and machine learning 

approaches. 

https://bitbucket.org/RSO24/ddr/src/

master/ 

(Olayan et al., 2018) 

2 DrugBank 

A richly annotated resource that combines detailed drug 

data with comprehensive drug target and drug action 

information. 

http://www.drugbank.ca 

(Wishart et al., 2008) 

3 
IUPHAR/BPS 

Guide 

An open knowledgebase that provides the information 

of approved targets and experimental drugs. 

http://www.guidetopharmacology.or

g/ 

(Pawson et al., 2014) 

4 Matador 
A database for drug–target interactions and identifying 

potential drug targets. 

https://www.hsls.pitt.edu/obrc/index

.php?page=URL1209757429 

(Günther et al., 2008) 

5 SuperPred 
A machine learning approach for identifying drug 

targets. 

http://prediction.charite.de/ 

(Nickel et al., 2014) 

6 TDR Targets 
A web tool facilitates the identification and 

prioritization of candidate drug targets for pathogens. 

http://tdrtargets.org 

(Agüero et al., 2008) 

7 TTD 
A web tool to facilitate information on known and 

undiscovered therapeutic proteins. 

https://db.idrblab.net/ttd/ 

(Qin et al., 2014) 

 

Computational tools for metagenome based global resistome profiling  

As a culture independent method, the metagenome approach has several advantages in the global profiling of 

AMRs. Many reports on AMR profiling using the metagenome approach have been published. A study 

identified ARGs against 53 antibiotics from 275 individuals belonging to eight countries (Ghosh et al., 2013). 

Metagenome based resistome profile of 207 fecal samples from three different countries identified 50 AMR 

genes covering 68 classes of antibiotics (Forslund et al., 2013). Another study identified 1625 different ARGs 

belonging to 408 groups from 1546 genera (Hendriksen et al., 2019). Despite numerous advantages, 

metagenome-based approach still poses quite a few challenges such as sequencing errors, lack of advanced 

computing facilities for data analysis, improper interpretation of results, and taxonomic assignments. 

Moreover, analysis of metagenome sequence data requires sophisticated statistical and computational tools, as 
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well as domain-specific knowledge of microbial ecology and physiology. The computational tools for 

metagenome based antimicrobial gene profiling is listed in Table 7. 

 

Table 7: Databases for identifying potential ARGs in metagenomic data. 

Sl. No. Database/Tools Description URL 

1 AgroSeek 

A computational tool for comparing and analysing 

metagenomic data from agriculture sector in 

monitoring and reducing the spread of antibiotic 

resistance genes. 

https://agroseek.cs.vt.edu/ 

(Liang et al., 2021) 

2 ARG Analyzer 

A pipeline designed to identify, and annotate 

antibiotic resistance genes from environmental 

metagenomes. 

http://mem.rcees.ac.cn:8083/ 

(Wei et al., 2019) 

3 ARGpore2 
A pipeline for predicting antibiotic resistance 

genes from metagenome data. 

https://github.com/sustc-

xylab/ARGpore2 

(Wu et al., 2018) 

4 ARGs-OAP 

An online pipeline that was developed to 

efficiently annotate and categorise antibiotic 

resistance genes from metagenomic data. 

http://smile.hku.hk/SARGs 

(Yin et al., 2018)s 

5 GROOT 
A pipeline for antibiotic resistance gene profiling 

from metagenomic datasets. 

https://github.com/will-rowe/groot 

(Rowe and Winn, 2018) 

6 HMD-ARG 
A web tool to find possible antimicrobial 

resistance gene from metagenomic contigs. 

http://www.cbrc.kaust.edu.sa/HMD

ARG/ 

(Li et al., 2021) 

7 NanoARG 

A pipeline to detect the antibiotic resistance genes 

from the Oxford Nanopore sequenced 

metagenome data. 

https://github.com/gaarangoa/nano

ARG 

(Arango-Argoty et al., 2019) 

8 PathoFact 

A simple-to-use, modular, and repeatable 

programme that can accurately predict virulence 

factors, bacterial toxins, and antibiotic resistance 

genes from metagenomic data. 

https://git-

r3lab.uni.lu/laura.denies/PathoFact/ 

(de Nies et al., 2021) 

9 ResCap 
A pipeline for in-depth resistome profiling from 

targeted metagenomics data. 

https://github.com/valflanza/ResCa

p 

(Lanza et al., 2018) 

10 ShortBRED 

A system for profiling protein families of interest 

at very high specificity in shotgun metagenomics 

sequencing data. 

https://huttenhower.sph.harvard.edu

/shortbred/ 

(Kaminski et al., 2015) 

 

Conclusion 

Advancements in whole genome sequencing and bioinformatics has revolutionized the way of genome 

assembly, annotations, and drug discovery process. Numerous bioinformatics tools with its strengths and 

weaknesses are available for genome bacterial antimicrobial resistance profiling. This review provides a 

comprehensive list of widely used bioinformatics tools and databases, covering a wide range of techniques 

starting from genome assembly to drug designing. An overview of computational approaches to predict 

antimicrobial resistance and pros and cons will help the researchers to plan their research, analyse the genomic 

data, interpret their findings, and form valid conclusions.  
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Horizon Scanning: Rise of Planetary Health Genomics and Digital Twins for 

Pandemic Preparedness 

Abstract 

The Covid-19 pandemic accelerated research and development not only in infectious diseases but also in digital 

technologies to improve monitoring, forecasting, and intervening on planetary and ecological risks. In the 

European Commission, the Destination Earth (DestinE) is a current major initiative to develop a digital model 

of the Earth (a ‘‘digital twin’’) with high precision. Moreover, omics systems science is undergoing digital 

transformation impacting nearly all dimensions of the field, including real-time phenotype capture to data 

analytics using machine learning and artificial intelligence, to name but a few emerging frontiers. We discuss 

the ways in which the current ongoing digital transformation in omics offers synergies with digital twins/- 

DestinE. Importantly, we note here the rise of a new field of scholarship, planetary health genomics. We 

conclude that digital transformation in public and private sectors, digital twins/DestinE, and their convergence 

with omics systems science are poised to build robust capacities for pandemic preparedness and resilient 

societies in the 21st century. 

Keywords:  

Digital transformation, digital twins, public health genomics, SARS-CoV-2 sequencing, pandemic 

preparedness, genomic surveillance. 

Introduction 

Over the past decade, digital transformation in public health have evolved into a broader, planetary scale, 

scope, and relevance. The COVID-19 pandemic has further catapulted digital transformation around the world 

that is now taking off in a variety of large-scale planetary health initiatives. In the European Commission, the 

Destination Earth (DestinE) is a current and major initiative to develop a digital model of the Earth (a ‘‘digital 

twin’’) with a very high precision (https://digital-strategy.ec.europa.eu/en/library/destination-earth) (Fig. 1). 

DestinE is part of a broader vision and growing awareness that the COVID-19 pandemic is a kind reminder 

for future planetary health crises looming on the horizon. Omics systems science offers veritable prospects for 

genomic surveillance of emerging pathogens, including new zoonosis threats. Omics is itself undergoing 

digital transformation impacting nearly all dimensions of the field, including realtime phenotype capture to 

data analytics using machine learning and artificial intelligence, to name but a few emerging frontiers. 

We discuss the digital transformation in omics and the ways in which this offers synergies with digital twins. 

In addition, the present article introduces and highlights the rise of a new field of scholarship, planetary health 

genomics. 
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Figure 1: DestinE milestones—the road to digital twins of the Earth. Source of information: European 

Commission, 2021. DestinE, Destination Earth. 

Digital Transformation in Omics from Phenomics to Data-to-Knowledge Trajectory 

The Covid-19 pandemic is the most important public health crisis in the last century and one of the three major 

infectious outbreaks in the first decades of this century (World Health Organization, 2021a). An important 

characteristic of the Covid-19 pandemic was the early and widespread use of digital health technologies such 

as telemedicine platforms, contact tracing apps, wearables, genome sequencing, artificial intelligence and 

machine learning, genomic data sharing platforms, data dashboards, real-time and real-world data from mobile 

devices (including global positioning systems), electronic health records, disease and vaccination registries, e-

prescriptions, and Internet of Things. These developments, in part, built on earlier efforts to incorporate digital 

technologies in public health (Evangelatos et al., 2020a). 

Digital health technologies and extensive use of data have been incorporated into several layers of the health 

systems: implementation of public health measures for containment and mitigation, planning and tracking of 

the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, clinical management, and 

political and administrative decision. The implementation of digital health technologies was different from one 

country to another, ‘‘countries that have quickly deployed digital technologies to facilitate planning, 

surveillance, testing, contact tracing, quarantine, and clinical management have remained front-runners in 

managing disease burden’’ (Van Spall et al., 2020). 

During the Covid-19 pandemic, the access to digital technologies has emerged as a fundamental determinant 

of access to health and care (Evangelatos et al., 2020b). Across the Globe, health systems and societies are in 

different stages of digital transformation, and those health systems already advanced in terms of digital health 

technologies implementation have had a prompt and efficient response. The risk of digital divide in the context 
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of Covid-19 should be discussed even more in relationship to omics and other emerging technologies (digital 

twins, machine learning). 

Omics is impacting nearly all dimensions of the response to the Covid-19 pandemic, including single-cell 

multiomics analysis of the immune response in COVID-19 (Stephenson et al., 2021), large-scale multiomics 

analysis of COVID-19 severity, and multiomics approach in the identification of potential therapeutic 

biomolecule for COVID-19 (Singh et al., 2021). 

From the public health perspective, the most important benefits of the omics systems science are related to the 

implementation of genomic surveillance of the SARS-CoV-2 aiming to early identify potential variants of 

interest or variants of concern of the virus. From the medical practice perspective, one of the most challenging 

but promising applications of the omics sciences is the real-time phenotype capture by Internet of Things 

followed by data analytics using machine learning and artificial intelligence.  

The measurement of the phenotype for Covid-19 by multilevel proteomics analysis reveals the perturbations 

produced in the human body through the interaction of SARS-CoV-2 proteins and the host proteome, profiling 

the interactome of the virus as well as the influence of the SARS-CoV-2 on the transcriptome, proteome, 

ubiquitinome and phosphoproteome of a lung-derived human cell line (Stukalov et al., 2021). 

Assessment of the proteome (a measure of phenome, the interaction between the human genome and the 

environment, including the viral proteins) of the Covid-19 patients and the use of machine learning led to the 

identification of disease progression and prognostic biomarkers and risk adapted treatment strategies, as well 

as a map linking clinical parameters usually used for diagnostic to proteome and their dynamics in an infectious 

disease (Demichev et al., 2021). 

Real-world data are meant to capture in real-time different sets of characteristics of an individual (phenotypes). 

Traditionally, the real-world data included registries, electronic medical records, and self-reported individual 

data, but the current understanding of the real-world data incorporate more real-time objective measurement 

provided by wearable devices and other Internet of Things as well. The challenge is to transform the real-world 

real-time data in real-world realtime evidence and knowledge. 

Digital transformation in omics began with the exponential development of next generation sequencing and 

other emerging technologies, which will increasingly be incorporated into Internet of Things (IoT) devices, 

allowing real-time and precise monitoring of parameters that currently can be measured rather in hospitals and 

specialized clinics. 

‘‘Digital transformation is impacting every facet of science and society, not least because there is a growing need for 

digital services and products with the COVID-19 pandemic.’’ (Lin and Wu, 2021). 

Digital transformation in omics has the potential to transform the doctor-patient relationship and to increase 

the inequalities. The response to the Covid-19 pandemic was and is still different from continent to continent, 

from country to country, and sometimes within the same country. Lack of a common response and the limited 

use of innovative tool such as omics and digital technologies contributed to the poor control of the pandemic 
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around the globe. Digital determinants of health have emerged over the past 2 years in particular as important 

pillars of preparedness for current and future ecological threats (Moon and Kickbusch, 2021; Özdemir, 2021). 

Planetary Health in the Age of Pandemic 

Planetary health is a concept focused on the interconnections and interdependence of human health, animal 

health, and environment (Haines, 2016). Planetary health has a marked emphasis on ecological determinants 

of health (Seltenrich, 2018). 

Climate change is a trademark of the 21st century. For infectious diseases, climate change is a threat multiplier 

(Chan, 2017). Climate change expands the distribution of the existing infectious disease pathogens and creates 

the conditions for other pathogens to emerge. Disruption of forests, rapid urbanization, and population growth 

are driving zoonotic events simply by increasing close contact between people and animals (Waugh et al., 

2020). 

At least 30 new infectious agents affecting human population have emerged over the last 40 years, with 44% 

involving RNA viruses (Nii-Trebi, 2017). Between 631,000 and 827,000 unknown viruses might be zoonotic 

and thus have the potential to infect humans after spill over from host animal populations (Jonas and Seifman, 

2019). Most of these new pathogens are zoonotic, significantly correlated to socioeconomic, environmental, 

and ecological factors. Some of these new pathogens, apart from the current SARS-CoV-2 virus causing 

Covid-19 pandemic, have demonstrated in the last 20 years the capacity to spread, infect large populations, 

overwhelm health systems, create economic difficulties, and increase morbidity and mortality. 

In 2003, SARS (the coronavirus causing acute respiratory syndrome) emerged in China, spread to around 30 

countries, and caused more than 8000 cases and around 774 deaths, with an economic impact of more than 40 

billion dollars worldwide in only 6 months (Council on Foreign Relations, 2020). In 2012, Middle East 

respiratory syndrome coronavirus (MERS-CoV) (the virus causing Middle East Respiratory Syndrome) 

emerged in Saudi Arabia and spread to 27 countries in the region, caused 2519 cases and 866 deaths, with a 

very high mortality rate (33%) (National Institute of Allergy and Infectious Diseases, 2020). 

Data suggested that both SARS-CoV and MERS-CoV originated in bats. SARS-CoV then spread from civets 

to people, while MERS-CoV spread from dromedary camels to humans. 

Research indicated for many years that bats host a significantly higher proportion of dangerous viruses than 

other mammals (Olival et al., 2017). This scientific data should have already led to the development of 

extensive viral surveillance programs of bats populations in the hotspot areas with the objective to contribute 

to the development of predictive models and to prevent future emergence of the virus. Established before the 

emergence of Covid-19 pandemic, the initiatives in biodiversity genomics as Bioscan, Earth Biogenome 

Project, and Global Virome Project had a limited role for Covid-19 prediction but could reach the potential of 

genomic and data-driven surveillance to prevent future pandemics. 

Pandemic Preparedness 
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Established in 2005 by the World Health Organization, the International Health Regulations (IHR) provide the 

legal framework that defines the countries’ rights and obligations in the context of public health emergencies 

such as pandemics. The IHR are an instrument of international law in the field of health. One hundred ninety-

six countries, including 194 WHO Member States, are part of the IHR. WHO has the coordinating role in the 

implementation of IHR and help countries to build capacities to have the adequate response if a public health 

crisis arrives. States are responsible for implementing the IHR at national level. The IHR has required all the 

countries to build the capacities able to detect (surveillance systems), assess, report, and respond in a timely 

matter to any public health emergency of international concern. The goal of country implementation of IHR is 

to limit the spread of health risks to other countries and to prevent travel and trade restrictions. 

WHO recommended that all Member States update their pandemic preparedness plans based on the lessons 

learnt from 2009 pandemic (H1N1), new evidence on the effectiveness of public health measures that has 

become available in the meantime, and an ongoing risk assessment (World Health Organization, 2019a). At 

the beginning of Covid-19 pandemic, only 15 out of 53 countries from the European Region of WHO have 

published revised national pandemic plans. None of the 15 revised national pandemic plans refers to the role 

of genomics in public health surveillance. The only ‘‘omic’’ mentioned in some pandemic plans was 

‘‘economic.’’ (World Health Organization, 2019b). 

Published jointly by WHO and European Centre for Disease Prevention and Control (ECDC), the document 

‘‘Key changes to pandemic plans by Member States of the WHO European Region based on lessons learnt 

from the 2009 pandemic’’ include no reference to the genomics or other omics as a potential tool to be used in 

the pandemics control. 

The IHR Review Committee declared in 2011: ‘‘The world is ill-prepared to respond to a severe influenza 

pandemic or to any similarly global, sustained and threatening public-health emergency.’’ According to World 

Health Organization, ‘‘pandemic preparedness is a continuous process of planning, exercising, revising, and 

translating into action national and subnational pandemic preparedness and response plans. A pandemic plan 

is thus a living document, which is reviewed regularly and revised if necessary, for example, based on the 

lessons learnt from outbreaks or a pandemic, or from a simulation exercise.’’ (World Health Organisation, 

2019a). 

The ‘‘Interim progress report of the Review Committee on the functioning of the IHR (2005) during the 

COVID-19 response’’ recognize that ‘‘the COVID-19 pandemic has revealed significant gaps in pandemic 

preparedness in countries across the world, including in the areas of: surveillance, health systems, equipment 

and training, essential public health functions, and the role of national IHR focal points, emergency legislation, 

risk communication, and coordination.’’ (World Health Organization, 2021b). 

The Interim Progress report recognize the role of the genomics for pandemic response and public health 

surveillance: ‘‘In order to engage the global scientific community in these response efforts, it is critical that 

pathogens, their genomic sequence, and relevant clinical samples be rapidly made available to the global 

medical research community.’’ (World Health Organization [2021a]). 
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The Use of Genomics to Control the Infectious Diseases Outbreaks 

SARS-CoV-2 represent the third emergence of a coronavirus outbreak in the last 20 years, after SARS-CoV 

and MERS-CoV, both have been known to cause lung disease in humans. To control the previous pandemics 

and to prevent future outbreaks with SARS-CoV and MERS, WHO provided recommendations on the 

surveillance systems both for animal and human health. 

In 2018, the Interim Guidance of WHO on MERS-CoV specifies: ‘‘Specimens testing positive for MERS-

CoV should be genetically sequenced, and the data uploaded to publicly accessible databases. If the laboratory 

doing the initial test does not have the capacity for genetic sequencing, an aliquot of the specimen should be 

forwarded to a reference centre. Such centres should attempt to isolate viruses from all cases so that whole 

genome sequencing can be performed, either in the national or international reference laboratory.’’ (World 

Health Organization, 2018). 

Genomic sequencing is used to determine if the dromedary camels from North Africa and the Middle East, 

who are the natural reservoirs of MERS-CoV, are infected with the virus and enable a more precise approach 

on understanding the epidemiology and the viral dynamics (Kandeil et al., 2019). The use of genomic data 

could help to have a better understanding of the transmission history, of the hosts (animals and humans), natural 

reservoirs, and viral transmission enabling effective public health interventions, and prevention of future 

outbreaks. 

Africa has to face a complicated landscape when it comes to infectious diseases (World Health Organization, 

2020). Over the past decade, Africa experienced two Ebola virus epidemics (Delamou et al., 2017), and overall 

more than 140 infectious diseases outbreaks are reported every year (WHO, 2018). In this context, in some 

African countries, genomic surveillance systems for Lassa fever (Nigeria—Siddle et al., 2018) or Ebola virus 

(Democratic Republic of Congo— Mbala-Kingebeni et al., 2019) were implemented. For the implementation 

of the genomic surveillance of the HIV and subsequent data-driven strategies, the Phylogenetic and Networks 

for Generalized Epidemics in Africa (PANGEA— Abeler-Dörner et al., 2019) aiming to ‘‘guide targeted 

prevention efforts through characterizing transmission dynamics and identifying unrecognized clusters and 

untreated individuals who are probable drivers of HIV transmission’’ (Inzaule et al., 2021) was built. 

The Role of Genomics in the Covid-19 Pandemic 

According to the European Centre for Disease Prevention and Control, ‘‘sequencing of (partial) genes and 

whole genomes (WGS) has been proven as a powerful method to investigate viral pathogen genomes, 

understand outbreak transmission dynamics and spill-over events and screen for mutations that potentially 

have an impact on transmissibility, pathogenicity, and/or countermeasures (e.g., diagnostics, antiviral drugs 

and vaccines). The results are key to informing outbreak control decisions in public health’’ (European Center 

for Disease Control, 2021). 

In the Covid-19 pandemics, genomics has been used so far for rapid identification and initial characterization 

of the virus, for the development of diagnostic tests and the development of the vaccines (Table 1). The 
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genomic surveillance leads also to the identification of new concerning strains of SARS-CoV-2 such as 

B.1.1.7, B.1.351, or P.1. Within a year of the initial identification of SARS-CoV-2, more than 450,000 full 

genome sequences have been shared through public database GISAID (van Noorden, 2021). The world leader 

in the area of genomic surveillance of SARS-CoV-2 is United Kingdom with a total of more than 350,000 

samples sequenced (COG Consortium UK). 

Table 1: European Centre for Disease Prevention and Control—Objectives of SARS-CoV-2 Genomic 

Sequencing 

 

The Use of Genomic Information to Inform Public Health Decisions at EU Level 

Published in 2012 as part of the Public Health Genomics Network Europe II Project (Brand, 2012). The 

European Best Practice Guidelines for Quality Assurance, Provision, and Use of Genome-based Information 

and Technologies (GBIT) provided concrete recommendations to the European Commission and Member 

States for the best use of Genome-Based Information and Technologies (Table 2). 

Table 2: The European Best Practice Guidelines for Quality Assurance, Provision, and Use of Genome-Based 

Information and Technologies (Part of the Recommendations) 

 

Despite this conceptual framework, the use of genomics in the Covid-19 pandemic differs from one Member 

State to another, with Denmark as European leader. Most of the EU Member States did not implement genomic 
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surveillance systems for infectious diseases. Denmark increased the surveillance and analytics capacity to 

sequence all the samples at the beginning of 2021 when the new variant B.117 threatened to become dominant. 

As a consequence, both in Denmark and in United Kingdom, the genomic data informed in real-time the public 

health interventions implemented by the Governments to control the outbreak at the beginning of 2021. 

To control the Covid-19 pandemic, European Union must be ready and prepared for the possibility of future 

variants being more or fully resistant to existing vaccines. European Commission announced the launch of 

‘‘HERA Incubator: Anticipating together the threat of COVID-19 variants,’’ ‘‘a new bio-defence preparedness 

plan, to access and mobilize all means and resources necessary to prevent, mitigate, and respond to the potential 

impact of variants.’’ HERA Incubator ‘‘will serve as the vanguard for the European Health Emergency 

Preparedness and Response Authority. HERA Incubator will work closely with the European Centre for 

Disease Prevention and Control (ECDC) to ensure that Member States have sufficient sequencing capacities 

and access to sequencing support services. HERA Incubator and ECDC will standardize sequencing 

procedures so that the data are comparable.’’ (European Commission, 2021a). 

SARS-CoV-2 genome sequencing, data sharing, and analytics should become a priority for public health 

policies at EU level and beyond. The free movement of citizens in the European Union is followed by the free 

movement of different variants of SARS-CoV-2. In this context, a common approach of all EU Member States 

on the genomic surveillance of SARS-CoV-2 could contribute to a better control and finally to a shortening of 

the Covid-19 pandemic. 

The European Health Data Space, one of the top priorities of the European Commission for 2019-2025, should 

include a Centre for SARS-CoV-2 Genomics Data and Analytics to collect, standardize and analyze sequencing 

data from all the EU Member States and to provide regular public health reports aiming to inform the decision-

makers on the evolution of the Covid-19 pandemic. This pan-EU data-driven public health initiative will pave 

the way to more precise and coordinated public health interventions and could shorten the course of the Covid-

19 pandemic. In addition to the sequencing of the samples collected from the Covid-19 patients, the regular 

surveillance of wastewater could also add value. 

Public health genomics, as we move forward for pandemic preparedness, will likely expand toward planetary 

health genomics, signalling a broadening in scope of public health genomics from public to planetary health, 

and emphasis on ecological determinants of health. 

Digital Twin of the Earth to Prevent Future Pandemics 

DestinE will be launched in 2021 by the European Commission in the context of Green Deal and Digital 

Strategy aiming to ‘‘unlock the potential of digital modelling of the Earth’s physical resources and related 

phenomena such as climate change, water/marine environments, polar areas and the cryosphere, etc. on a 

global scale to speed up the green transition and help plan for major environmental degradation and disasters. 

At the heart of Destination Earth will be a federated cloud-based modelling and simulation platform, providing 

access to data, advanced computing infrastructure (including high-performance computing), software, AI 
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applications, and analytics. It will integrate digital twins—digital replicas of various aspects of the Earth 

system, such as weather forecasting and climate change, food and water security, global ocean circulation and 

the biogeochemistry of the oceans, and more– giving users access to thematic information, services, models, 

scenarios, simulations, forecasts, and visualizations. The platform will enable application development and the 

integration of users’ own data’’ (European Commission, 2021b). 

A high-precision digital model of the Earth is aimed to be developed by the DestinE to monitor and simulate 

natural and human activity. A digital twin is a digital replica of a living or nonliving physical entity. Digital 

twins use multiple data sources and rely on the integration of continuous observation, modeling and high-

performance simulation, resulting in highly accurate predictions of future developments (Fig. 2). 

‘‘The digital twins created in DestinE will give expert and non-expert users tailored access to high-quality information, 

services, models, scenarios, forecasts and visualisations. This includes models of the climate, weather forecasting, 

hurricane evolution and more. Digital twins rely on the integration of continuous observation, modelling and high-

performance simulation, resulting in highly accurate predictions of future developments.’’ (European Commission, 

2021b). 

From the planetary health, pandemic preparedness, and omics perspective, a planetary digital twin based on 

omics data generated through the continuous monitoring of high-risk animals (e.g., bats) and human 

populations, and also other types of real-world real-time data, could enable the prediction of future events, 

early warnings, and precision planetary health interventions. Big data in both the public domain and the health 

care industry are growing rapidly, for example, with broad availability of next-generation sequencing and 

large-scale phenomics datasets on patient reported outcomes (Tanwar et al., 2021). 

 

Figure 2: Digital twin of the Earth—potential sources of data. Source of information: European Commission, 

2021. 

Conclusions and Outlook 
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The Covid-19 pandemic is a planetary health issue and requires a global action based on data and new and 

efficient technologies. Planetary health needs to adopt a ‘‘one health’’ type approach that moves beyond an 

anthropocentric framework and considers the interdependencies among human, animal, and plant health. 

Genomic surveillance of the SARS-CoV-2 should become a key part of the pandemic response and planetary 

health genomics allowing the tracking of the new variants and implementation of precision planetary health 

interventions. For the future, the planetary digital twin could increase the resolution of the pandemic 

preparedness process and the capacity to predict and react to the next pandemics. 
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Global Open Health Data Cooperatives Cloud in an Era of COVID-19 and 

Planetary Health 

Abstract 

Big data in both the public domain and the health care industry are growing rapidly, for example, with broad 

availability of next-generation sequencing and large-scale phenomics datasets on patient-reported outcomes. 

In parallel, we are witnessing new research approaches that demand sharing of data for the benefit of planetary 

society. Health data cooperatives (HDCs) is one such approach, where health data are owned and governed 

collectively by citizens who take part in the HDCs. Data stored in HDCs should remain readily available for 

translation to public health practice but at the same time, governed in a critically informed manner to ensure 

data integrity, veracity, and privacy, to name a few pressing concerns. As a solution, we suggest that data 

generated from high-throughput omics research and phenomics can be stored in an open cloud platform so that 

researchers around the globe can share health data and work collaboratively. We describe here the Global Open 

Health Data Cooperatives Cloud (GOHDCC) as a proposed cloud platform-based model for the sharing of 

health data between different HDCCs around the globe. GOHDCC’s main objective is to share health data on 

a global scale for robust and responsible global science, research, and development. GOHDCC is a citizen-

oriented model cooperatively governed by citizens. The model essentially represents a global sharing platform 

that could benefit all stakeholders along the health care value chain. 

Keywords:  

cloud computing, big data, health data cooperatives, health data, health data cooperatives cloud 

Introduction 

The availability of health data due to the emergence of high-throughput technologies is growing rapidly, and 

the proper management of health data becomes ever more important. Moreover, data sharing is becoming a 

vital element in the healthcare industry, and it is important that health data are shared across different 

geographical areas for better research outputs (Taichman et al., 2016). On the other hand, the storage and 

processing of such a huge amount of data with variability in data formats pose many challenges. A computer 

model that can store, run and analyze the massive amount of data simultaneously is required to overcome these 

technical challenges. It has been advocated by many that an open-access health data platform on a global scale 

is required to store, manage and share citizen-owned health data by taking a transparent and protected 

approach. 

Big Data and its Management 

When a massive amount of heterogeneous data is collected, stored, processed and analyzed at high speed, it 

can be referred as big data. Big data in any field is identified by its attributes such as Volume, Velocity, Variety, 

Variability, Veracity and Value (Assunção et al., 2014; Andreu-Perez et al., 2015; De Mauro et al., 2015). Big 

data in healthcare can be defined as data generated from hospitals, clinics, research centers, public sector, 

diagnostic labs as well as the healthcare-related industries, such as the biopharmaceutical industry. Hospitals 

and clinics generate data related to the diagnosis and treatment of patients also named patient-generated health 
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data (PGHD). PGHD contains data such as patient information, electronic health records (EHRs), diagnosis, 

prescribed medicines and on-going treatment methods. Research centers generate a large amount of data 

especially due to the emergence of advanced high-throughput techniques, such as Next Generation Sequencing 

(NGS), Microarrays, Whole Exome Sequencing and RNA sequencing. Advances in high-throughput 

techniques provided a faster approach to analyze biological samples, and it also enables the extraction of 

information at different levels (DNA, RNA and Protein) of the ‘-omics' cascade between the genome and the 

phenome. Indeed, a major contribution of big data in healthcare is from multi-omics studies, which generate 

and integrate data from fields such as genomics, proteomics, transcriptomics, metabolomics, metagenomics 

and epigenomics (Evangelatos et al., 2016; Mählmann et al., 2018). Healthcare or pharmaceutical industries 

generate a large amount of data related to novel drug discoveries and drug trials. Adaption of big data by the 

healthcare systems is a slow process because of the involvement of many stakeholders, providers, facilities 

and, importantly, their inability to share data due to different data formats and the restrictions posed by 

concerns on legal issues such as data protection and privacy (Mählmann et al., 2018). 

Cloud Computing 

Cloud computing is a modern way of current computing, which enables users to perform heavy computational 

tasks or store a large amount of data using a low configuration machine. To access data and run tasks on the 

cloud, the user needs a device (e.g., mobile phone, laptop, computer or tablet) connected to the internet. 

According to the National Institute of Standards and Technology (NIST), cloud computing is a model for 

enabling convenient, on-demand network access to a shared pool of configurable computing resources that can 

be rapidly provisioned and released with minimal management effort or service provider interaction. With 

numerous applications in different fields, a cloud model is a computing structure with three service models, 

four deployment models and five key characteristics, as displayed in figure 1 (Mell and Grance, 2012). Out of 

its three-service models, Software as a Service (SaaS) is the most common service model used by consumers 

around the world for applications such as e-mails, processing of word documents, social media apps, and data 

storage. The Platform as a Service (PaaS) model allows consumers to deploy and control applications created 

with the use of programming languages, tools and services supported by the provider. Whereas PaaS restricts 

control of underlying cloud infrastructure, the Infrastructure as a Service (IaaS) model enables consumers to 

have control over storage, operating systems, installed applications and certain networking components (Mell 

and Grance, 2012; Weber, 2013). 

Among the top cloud service providers currently around the globe are the Amazon web service, Microsoft 

Azure, IBM Cloud, Salesforce, Google Cloud, Oracle Cloud and VMware (Armbrust et al., 2010; Zhang et 

al., 2010; Evans, 2017). Cloud computing platforms provide optimal solutions for the storage and processing 

of big data. Along with providing huge storage capacity, cloud computing also supports platforms such as 

Hadoop, MapReduce, Hive, Zookeeper and HBase for big data analytics (Raghupathi and Raghupathi, 2014; 

Ware et al., 2017). 
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Figure 1: Structure of cloud computing. IaaS, Infrastructure as a Service; PaaS, Platform as a Service; SaaS, 

Software as a Service. 

Challenges in Cloud Computing 

Security issues and challenges in a cloud platform can arise at different levels, and these challenges, if not 

addressed properly and in time, can lead to dire consequences such as data theft, application run errors, system 

crash, low storage capacity and loss of data. A few of these major challenges are briefly described below.  

Security Issues: security issues in a cloud platform can be divided into six sub-categories which include the 

need to (a) develop safety mechanisms to monitor the activities of the cloud server, (b) keep sensitive data 

confidential, (c) avoid illegal operations inside the cloud server, (d) avoid service hijacking, (e) develop 

protocols to prevent attackers from gaining full access to the host system, (f) provide statements of appropriate 

law, and implement legal jurisdiction which can help users in case of any exploitation by providers (Sun et al., 

2011; Singh et al., 2016).  

Application Issues: application issues can arise at different levels such as (a) attacks on user front end and back 

end applications, (b) compatibility and security of application on launched platform, (c) on framework level, 

(d) licensing of applications, as unauthorized pirated software is more prone to cyber-attacks, (e) service 

availability and scalability, (f) system optimization to run parallel applications (Sun et al., 2011; Singh et al., 

2016). 

Privacy Issues: includes (a) user control over data stored and processed in cloud and avoidance of unauthorized 

access to personal data, (b) replication of data to multiple location without data loss and identification of any 

unauthorized modification and fabrication of data, (c) level of control of cloud sub-contractors on sensitive or 

personal information (Sun et al., 2011; Singh et al., 2016). 
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Data Storage: Along with its capacity to store such huge amounts of data, any cloud platform should be capable 

of maintaining anonymity, 24x7 data availability (access data from any device at any time), to provide security 

and maintenance of data warehouse, and to prevent data loss and leakage (Puthal et al., 2015; Singh et al., 

2016). 

A few more challenges can be added to the above list, such as operating system compatibility issues between 

the cloud platform and the access devices, client management issues, and cluster computing. 

Open Science Clouds 

The amount of health data generated worldwide is huge and requires proper handling, storage, processing, and 

security. Cloud computing has the potential to store and process huge datasets generated globally in different 

scientific disciplines. It is important to keep access to these scientific datasets open, and the security of datasets 

should be a priority. 

Open Science Data Cloud (OSDC): OSDC first started in 2010. It is a cloud platform, designed to store, 

analyze, manage and share scientific data. The OSDC is a hosted cloud platform operated by a single entity, 

the Open Cloud Consortium (OCC). OSDC is different from existing cloud resource in the way it is designed. 

OSDC architecture enables this platform to provide long term persistent storage of medium to very large 

scientific datasets. The OSDC also utilizes high-performance research networks, which enable data sharing 

over wide areas. OSDC supports a balanced architecture that utilize data locality to provide efficient execution 

of submitted queries and analysis (Grossman et al., 2010, 2012). 

European Open Science Cloud (EOSC): The EOSC provides a federated, globally accessible environment 

where researchers, innovators, companies and citizens can publish, find and re-use each other’s data and tools 

for research, innovation and educational purposes. Within the perspective of the digital single market, the 

EOSC aims to accelerate the process of an open science cloud and render it more effective by removing 

legislative and technical barriers. Furthermore, to accelerate its open science cloud platform, EOSC provides 

support access to systems and services and allows smooth flow of digital data across social, disciplinary and 

geographical borders (Ayris et al., 2016). 

Health Data Cooperatives 

A Health Data Cooperatives (HDC) is an ecosystem, which combines heterogeneous health data of 

citizens/patients with knowledge available in databases. These heterogeneous health data are used to create an 

integrated cloud-based analytical platform, which aims to study three major analytical models: descriptive, 

predictive and prescriptive (Mählmann et al., 2018). HDCs are primarily based on metadata and structured in 

a way that keeps citizens at the center of the stage. As a health data governance model, HDCs offer a trusted 

framework for overcoming ethical, societal, political, and technical challenges.  

The HDCs represent unified data systems that promote data access to and linkage of heterogeneous data from 

a variety of sources within and outside a health domain. Heterogeneous data components include data sources 
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such as ‘-omics’ data, data from electronic health records and non-electronic systems, patient m-health data, 

repositories of biological samples, drug data, environmental data, insurance record data, social media data, etc. 

HDCs aim to provide full control of health data to citizens, who should be the main beneficiaries of this health 

data integrated framework. This framework should be based on trust, which implies that data processing should 

be executed in a secure and transparent manner. A not-for-profit HDC model is required to make the potential 

benefits of HDC available to platform services and research projects that serve a common good and benefit 

society. 

The applications of HDCs are manifold including, but not limited to, (a) data-driven and evidence based 

policymaking, (b) provision of prevention-oriented and cost-effective healthcare, since HDCs can evaluate 

patient pathway management systems at primary care level, (c) a surveillance system, which combines 

information of big data and advanced simulation methods for early detection of public health problems, (d) 

evidence-based prevention strategies to evaluate the effectiveness and efficiency of implemented strategies, 

(e) a real-time view of current state of health of citizens that helps to evaluate individual risk estimation (risk-

based preventive interventions), (f) development of innovative approaches, such as personalized medicine, to 

overcome the ‘one-size-fits-all’ treatments, (g) serving as a basis to facilitate cross-border cooperation, which 

will allow data sharing and access across borders, and (h) reduction of the burden of collecting and managing 

raw data for analysis (Mählmann et al., 2018). 

A HDC on a global scale could be an excellent citizen health monitoring system, which would integrate 

heterogeneous health data to provide a better understanding of disease mechanisms, thus guiding healthcare 

and public health policies towards preventive healthcare systems. A global level HDC would require a huge 

amount of computational power and resources. Cloud computing strikes as a promising tool to take a HDC on 

a global scale. Indeed, cloud computing offers high-performance computing coupled with techniques such as 

parallel and cluster computing that can easily overcome the computational challenges associated with 

evidence-based datasets analysis.  

Integration of big data to form an HDC and use of cloud computing resources to take a HDC on a global scale 

would provide a global health data governance system that could advance science to the benefit of both the 

citizens, who control their health data and other stakeholders, who make use of citizen’s health data, in a 

transparent and secure way (Hafen et al., 2014; Mählmann et al., 2018). 

A Health Data Cooperatives Cloud (HDCC) model shown in figure 2 consists of health data sources, users, 

and cooperatives. Health data sources like healthcare providers (hospitals and clinics), research centers, 

diagnostic labs, industries etc., generate health data. Generated health data are provided back to citizens, 

citizens store or upload all their data on HDCC, where they have full control rights to manage (read and write 

permissions) their health data. 
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Figure 2: HDC cloud. HDCs, health data cooperatives. 

When health data users need health data, they can approach an HDC. After obtaining individual consent from 

the members of a HDC, the health data stored in the cloud are shared with these specific users. In return for 

gained access to citizen's health data, health data users provide or offer benefits/incentives/services to the 

members of the HDC. Citizens or HDC members can decide whether they want to share only a part of their 

health data or all health data. HDC members decide who can access their data under what conditions, for how 

long (definitive period), for what purposes, and these decisions/choices are made each time the purpose of use 

of their personal data changes. They are fully informed about how the data will be stored and used. They also 

have the right to remove data from the HDCC. 

The type of health data stored in the HDCC can be divided into two categories: 1) personal data and 2) 

environmental/ecosystem data. For example, personal data include data generated from fitness trackers and 

health monitoring apps. Environmental/ecosystem data include data generated from healthcare services 

(hospitals, clinics, primary care centers), public health services, economy and sensor (housing, education, 

energy, taxes, etc.), sport/fitness/physical activity, nutrition and diet, social services and private healthcare 

centers. 

The control of cloud service providers over the data should be very limited. Cloud services should only be 

concerned with the data structure, data type, data size and data properties, but data content should always be 

confidential. The cloud service's job is to maintain data integrity, manage space and provide application 

support to process data. The government also plays a supportive role in this model by ensuring things run 

smoothly and by encouraging citizens to become members of HDCs. 

Global Open Health Data Cooperatives Cloud (GOHDCC) 

Many different cloud models already exist, and they all aim to store health data. Different entities regulate 

these health data cloud models; for example, private or governmental organizations. Furthermore, the cloud 

models also vary in terms of standards. While health data collection, storage and utilization are essential 
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components of the clouds, the health data cloud models widely differ in executing the key steps involved in 

health data collection, storage and utilization. 

Big corporations or companies like Google, Samsung, Microsoft, and Apple are collecting citizen health data 

using health apps provided on electronic devices. For instance, Google launched the Google Fit program to 

track the fitness of its service users. Samsung uses Sami, a biometric data platform that obtains health data 

from electronic devices and apps. Microsoft launched a web-based platform in 2010 called HealthVault to 

store health and fitness information. HealthVault was officially shut down in November 2019 and deleted all 

user data stored on the platform.  

Apple is using its HealthKit framework and its default Health app provided in all its mobile devices (Olson 

and Spence, 2014). All these above-mentioned models acquire and accumulate data from fitness trackers and 

health associated apps. These models raise concerns over privacy and how to process information as sensitive 

as health data. They all lack data standards and strict regulations on data collection, processing and utilization 

(Olson and Spence, 2014). Moreover, all these models are business driven. 

In addition to the business-driven models mentioned earlier, few models with the same aim but driven by 

entirely different purposes and objectives exist. Two such examples already mentioned above are the European 

Open Science Cloud (EOSC) (Ayris et al., 2016) and the Open Science Data Cloud (OSDC) (Grossman et al., 

2010, 2012). 

These two models aim to collect and utilize health data for scientific purposes only; hence they are science 

driven. In November 2018 the European Commission announced the launch of a cloud for research data, the 

‘research open science cloud’ (i.e. the EOSC). To support European science in its global leading role, EOSC 

aims to establish a trusted environment for hosting and processing research data. Both, the EOSC as well as 

the OSDC, aim to go global so that health data can be shared on a wider scale for better science and research. 

On a global scale, these models can merge to form Global Open Science Clouds (GOSC), a platform that 

collects and stores data related to scientific fields. One of the major drawbacks of these open science clouds is 

that they lack good governance of all kinds of health data. 

As a solution to this problem, we propose the Global Open Health Data Cooperatives Cloud (GOHDCC) 

(figure 3), a model that can overcome the above-mentioned limitations regarding regulation and data 

governance. GOHDCC is a citizen-oriented model and is formed when different health data cooperatives 

clouds join, sharing the same core principles regarding data collection, storage, processing and distribution. 

GOHDCC’s core element is the health data cooperative, which empowers citizens by providing full authority 

of their health data in their own hands. Citizens control how their health data should be shared with other 

entities. In other words, citizens hold the right to choose whether they would like to share their personal health 

data with private industries, hospitals, clinics, research centers, health policymakers, for clinical trial and 

academic purposes.  
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The GOHDCC overlaps with other science clouds like EOSC and OSDC in the field of health sciences. Thus, 

the GOHDCC can also provide health data to the already existing science clouds. Also, the GOHDCC’s 

primary focus is health sciences, but it is not only limited to citizens’ health data, but it also goes broader in 

terms of storing data related to non-scientific fields e.g., insurance, income, expenses, taxes etc. The GOHDCC 

provides a secure ecosystem build on trust and transparency as citizens control how the data are shared and as 

their personal data are always secure in their own hands. 

 

Figure 3: GOHDCC model. GOHDCC, global open health data cooperatives cloud. 

 

GOHDCC’s Role in a Pandemic and Future Health 

A newly discovered coronavirus is causing the COVID-19 infectious disease that has already infected more 

than 23.7 million people and caused more than 814,000 deaths globally (https://www.coronatracker.com). The 

COVID-19 pandemic is a public health problem, and to tackle it countries are combining resources to develop 

a vaccine that is safe and efficient. Scientists, researchers, and physicians are generating and collecting a vast 

amount of data, including viral genome data, gene and protein expression data of both viral and host genomes, 

data from clinical trials, and literature data. COVID-19 databases and data portals are being set up around the 

globe to combine all the information and to provide researchers with easy access to these datasets. 

Examples of COVID-19 resources are the COVID-19 database by the World Health Organization (WHO) 

(https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-

2019-ncov) and Centers for Disease Control and Prevention (https://www.cdc.gov), the COVID-19 data portal 

(https://www.covid19 dataportal.org) by the European Bioinformatics Institute (EMBL-EBI), and the COVID-

evidence database (https://covid-evidence.org) by the University of Basel, to name but a few. 

The GOHDCC can provide a similar infrastructure that facilitates global action by combining local inputs. As 

the GOHDCC is not regulated or governed by any authority and is citizen-oriented, citizens have a right to 
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share their health data, such as symptoms, medication course, and their immune response to treatments. 

Citizens participating in any ongoing clinical trials could upload their data, depending on the terms of 

agreement of the trial, which can lead to a better understanding of viral response in different populations. 

Due to genomic differences, the mechanism by which the virus infects one’s body varies in such a 

heterogeneous population. As a result, to develop a safe and effective vaccine, it is essential to understand the 

viral mechanism in different communities. The GOHDCC can function as a data platform to provide 

heterogeneous health data from different geographical locations to extract vital clinical features that can help 

to develop a safer and effective vaccine for all. 

The COVID-19 pandemic qualifies as a planetary health issue, as it is a public health problem, and it also 

impacts our natural systems. In simple terms, planetary health is the health of human civilization and the state 

of the biological systems on which it depends (Whitmee et al., 2015). Human society faces environmental 

threats that require vital and transformative actions to safeguard present and future generations. COVID-19 is 

a threat to human health and the natural systems that human life depends on, as it destabilizes crucial ecological 

pathways (Whitmee et al., 2015). 

The interaction between humans and nature shifted significantly during the past few months. The COVID-19 

pandemic has caused a series of lockdowns in different parts of the world, which have resulted in the 

minimization of human activities and have bought our ecosystem some time to stabilize to a certain extent. 

Planetary health aims at promoting health, at preventing disease and disability, at eradicating conditions that 

harm human health, and at fostering resilience and adaptation (Horton et al., 2014). Planetary health demands 

a broader governance frame that recognizes and respects other sentient life on the planet (Özdemir, 2019). To 

deliver planetary health and to support sustainable human development, it urges to start a social movement 

based on collective action at every level of society (Horton et al., 2014). 

The GOHDCC can serve as an excellent communication platform to update citizens with planetary health 

issues; a forum to educate citizens with necessary measures to be taken to conserve, sustain, and make resilient 

the planetary and human systems on which health depends. Planetary health is future health; if social activities 

continue to stay on the current path, it will cause a collapse of human civilization. The overconsumption 

patterns and harm to our planet’s biodiversity are unsustainable and a threat to human existence as species 

(Horton et al., 2014). The GOHDCC, as a global platform, can do its part by educating people on these crucial 

facts and assist in developing an improved understanding connection between human health and natural 

systems. 

Conclusion 

The amount of data in the healthcare industry is growing rapidly and needs to be properly stored, processed 

and shared across the globe. Global open health data sharing platforms provide researchers with access to 

citizen's health data to enable high-quality research. Open health data sharing platforms are exposed to different 

kind of threats, require proper security and guidelines to process data which can be shared across different 
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open health data platforms. Cloud computing serves as a perfect platform to build an open health data 

cooperatives cloud. Global Open Health Data Cooperatives Cloud (GOHDCC) is a model that allows the 

sharing of health data between health data cooperatives clouds and other stakeholders such as global open 

science clouds, private industries, healthcare and research centers. GOHDCC integrated with the HDCs 

ecosystem provides citizens with full control over their health data. 

The COVID-19 pandemic is a public health problem that concerns all around the globe and qualifies as a 

planetary health issue. Under the umbrella of the WHO, countries are trying to combine resources to develop 

a vaccine. A global action is required in such a pandemic and the GOHDCC can provide an infrastructure that 

facilitates global actions by combining health data information. 
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  Discussion 

The thesis starts with the description of human microbiome and microbial diversity in human body which plays 

a vital role in building and regulating human health. The balance in microbiome diversity is important to 

maintain quality health and emergence of pathogens can break this crucial balance. The thesis also highlights 

the relationship between human microbiome and associated cancers. Microbiome in cancers play a dual role 

and it is important to understand their mechanism to differentiate pathogens and non-pathogens to develop 

targeted therapeutic strategies. Application of omics, such as in field of microbial genomics can be utilized to 

screen pathogens and determine their virulence potential. It can assist in understanding the underlying 

mechanisms of antibiotic resistance and aid in identifying new therapeutic targets to combat antimicrobial 

resistance. 

Amount of multiomics data generated from microbial studies can provide a genomic surveillance system to 

identify emerging pathogens and predict future pandemics. Anticipating pandemics can provide governments 

sufficient time to take necessary precautions and equip themselves with the resources they need to deal with 

these circumstances. Applications of multiomics studies can also significantly contribute towards planetary 

health genomics. 

The thesis explains the significance and need of a global health data platform to collaborate and unify research 

to support planetary health. A cloud platform to share health data on a global scale for robust and responsible 

global science, research, and development. 

Chapter 2 (Human Microbiome): This study was conducted to investigate the impact of Ayurvedic prakriti 

phenotypes on the diversity of the gut/oral microbiome in healthy individuals. The aim was to understand 

human-microbe interactions and identify microbial signatures that can serve as biomarkers for personalized 

and community health. The gut and oral microbiome of individuals grouped into three prakriti categories were 

analyzed for microbial diversity. Microbial signatures and composition are unique to each individual and can 

be impacted by factors such as age, diet, lifestyle, stress, and environment. The study found that overall species 

diversity was significantly higher in older individuals for both the gut and oral microbiome. 

We found that Prevotella, Bacteroides, and Dialister were the predominant genera in the gut microbiome 

across all prakriti types and genders. We discovered a negative correlation between the relative abundance of 

Prevotella and Bacteroides, suggesting that diet plays a role in the enrichment of certain bacterial species. In 

the oral microbiome, the major genera identified were Streptococcus and Neisseria, which is in agreement with 

previous studies conducted on the Indian population (Chaudhari et al. 2019). 

Most of the organisms in both oral and gut microbiomes were found to be gram-negative. A higher proportion 

of biofilm-forming microbes were identified in the oral microbiome. Although some species were identified 

as potential pathogens in both microbiomes, the least amount of potentially pathogenic organisms were present 

in individuals of pitta prakriti phenotype in both cases. 

Overall aim was to examine the connection between prakriti, the foundation of personalized medicine in 

Ayurveda, and gut microbiome, which is increasingly considered as a reliable indicator of an individual's 
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health. To achieve this goal, we analyzed the bacterial metagenomes in saliva and stool samples, which 

represent the oral and gut microbiome respectively, from 272 healthy individuals, and studied their relationship 

with prakriti to see if there is a correlation between microbial diversity and prakriti identity. 

Chapter 3 (Cancer): This review focuses on the markers that regulate epithelial-mesenchymal transition 

(EMT) and the complex network of molecular mechanisms involved in the pathogenesis of oral submucous 

fibrosis (OSF) and oral squamous cell carcinoma (OSCC). Epithelial-mesenchymal transition (EMT) plays a 

crucial role in various physiological and pathological events, including embryonic development, wound 

healing, organ fibrosis, and the development of cancer. Recent studies have shown that EMT also plays a 

significant role in the invasion and metastasis of cancer cells. Additionally, EMT's involvement in the onset of 

oral submucous fibrosis (OSF) and its malignant transformation, as well as the inflammatory reaction leading 

to fibrosis, has not been extensively explored. 

There is evidence to suggest that different signalling pathways engage in crosstalk, and some studies indicate 

that the inhibition of a single transcription factor is sufficient to block EMT. The detrimental role of EMT in 

fibrosis progression and cancer metastasis highlights the need to identify suitable targets for preventing EMT 

induction, particularly given the poor prognosis of oral cancer and the development of drug resistance. 

This review centres on the signalling pathways and mechanisms that induce changes in gene expression 

signatures, resulting in EMT in both OSF and OSCC. The discovery of signature genes that affect EMT could 

reveal new pathways that play a crucial role in the advancement of oral cancer. These EMT markers might 

serve as effective targets for controlling the disease's spread and enhancing the prognosis of OSCC. In this 

study, a systematic analysis of gene-disease associations has demonstrated their involvement in OSF and SCC. 

A pathway analysis has also revealed the involvement of upregulated and downregulated genes in various 

EMT regulating pathways. 

Chapter 4 and 5 (Pathogens and AMR): Two comparative genome analysis studies were done to identify 

antimicrobial resistance and virulence potential of studied strains. The presence of an array of virulence and 

antimicrobial resistance genes in studied strains suggests their potential role as emerging pathogens with 

significant impact on public health. 

The first research focuses on analyzing the genomes of three Clostridia strains. The study compared two 

Clostridium strains that have been sequenced (C. butyricum and C. tertium) to the sequenced pathogenic strain 

Clostridioides difficile (CD). CD is a Gram-positive bacterium that can cause illness and is linked to diseases 

such as sepsis, pseudomembranous colitis, and colorectal cancer. C. difficile infections (CDI), typically 

following antibiotic exposure that result in dysbiosis of the gut microbiome, is one of the leading causes of 

diarrhoea in the elderly population. In the study, three isolates (C. tertium [CT MALS001], C. butyricum [CB 

MALS002], and C. difficile [CD MALS003]) were sequenced and evaluated for their antimicrobial, cytotoxic, 

antiproliferative, genomic, and proteomic profiles.  
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The goal of the current work was to study the genomes of CT MALS001, CB MALS002 and compare it with 

that of CD MALS003 for genomic surveillance to uncover virulence-associated factors and their potential role 

as emerging pathogens. We found a total of 66 different toxin genes in the three isolates, with CD MALS003 

harbouring maximum number of toxin-coding genes (54) while CB MALS002 (13) and CT MALS001 (14) 

showed fewer toxin-coding genes. We identified major exotoxin genes (tcdA and tcdB) along with binary 

toxins cdtA and cdtB in CD MALS003 genome. In CT MALS001 one toxin gene each from category 

exoenzyme and hemolysin were predicted while in CB MALS002, two hemolysins and one exotoxin was 

predicted. A maximum number of flagellar and cell adhesion genes were predicted for CD MALS003 (31 

genes) followed by CT MALS001 (6 genes) and CB MALS002 (3 genes). 

The second study focuses on the examination of Staphylococcus aureus (S. aureus), which is a highly virulent 

and widely prevalent pathogen in diabetic foot ulcer infections. In this comparative genome analysis study, we 

compared four S. aureus strains (MUF168, MUF256, MUM270, and MUM475) in terms of the presence of 

genes involved in antibiotic resistance and virulence potential, biofilm formation, and variants of potential 

drug targets that may contribute to antibiotic resistance development. Our in-silico analysis revealed that 

strains MUM270 and MUM475 had a higher number of antibiotic resistance genes (ARGs) compared to the 

MUF strains. However, strain MUM270 was found to be sensitive to all nine antibiotics tested, indicating that 

the presence of ARGs does not necessarily result in increased antibiotic resistance. Strain MUF256 was found 

to have the highest number of virulence genes, followed by strains MUM475, MUF168, and MUM270. 

Additionally, strain MUM475 was determined to be a high biofilm producer. Finally, our analysis showed that 

the MUM strains had a higher number of deleterious variants compared to the MUF strains. 

In summary, our study based on whole-genome sequence analysis was aimed at identifying potential virulence 

factors, antimicrobial resistance genes, mobile genetic elements, biofilm-forming capabilities and sporulation 

factors, which contribute to pathogenic potential of microbes. Further studies using omics approach can 

provide critical clues on key regulators of microbial virulence and factors that contribute to antimicrobial 

resistance in clinically relevant pathogenic isolates. 

Chapter 6 (Microbial Genomics): The content provided in this chapter serves as a vital reference for selecting 

the most pertinent and appropriate computational tool(s) for genome assembly and genetic signature 

identification. The realm of genomics has brought about a transformative approach to genome assembly, 

annotation and drug discovery. Through the utilization of high-throughput sequencing technologies, scientists 

can now assemble complete genome sequences and pinpoint potential drug targets contained within them. 

Progress made in the field of genomics has led to a deeper comprehension of the genome, unveiling fresh 

prospects.  

Key stages in this process encompass genome assembly, annotation, and the identification of AMR resistance, 

virulence effects, and drug-target interactions. Fortunately, numerous resources exist to aid researchers in these 

endeavours, despite the intricate and challenging nature caused by the genome's abundance of repetitive 

sequences. A multitude of software/tools are available at researchers' disposal, each possessing its own 
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strengths and weaknesses. In this review, our objective was to emphasize the widely recognized and 

extensively utilized resources for different aspects of microbial research, including genome assembly and 

annotation, profiling antibiotic genes, identifying virulence factors, and studying drug interactions. 

Chapter 7 (Genomic Surveillance): The Covid-19 pandemic is a critical global health crisis, and one of the 

three most significant outbreaks of infectious diseases in the early decades of the current century. It has spurred 

advances not only in the field of infectious diseases, but also in digital technology to enhance the capability to 

monitor, predict, and address planetary and ecological hazards. The field of omics systems science holds great 

promise for monitoring emerging pathogens through genomic surveillance, including new zoonotic threats. 

From a public health perspective, the most significant advantage of this field is the ability to implement 

genomic surveillance of SARS-CoV-2, which can help detect potential variants of interest or concern early on. 

The transformation of omics through digital means started with the rapid advancements in next generation 

sequencing and other cutting-edge technologies. These developments will be increasingly integrated into 

Internet of Things (IoT) devices, enabling real-time and accurate monitoring of parameters that are currently 

only measured in hospitals and specialized clinics. The European Centre for Disease Prevention and Control 

states that sequencing partial genes and complete genomes (WGS) is an effective approach for studying the 

genomes of viral pathogens, comprehending the spread of outbreaks and spillover events, and identifying 

mutations that might affect transmissibility, pathogenicity, and countermeasures such as diagnostics, antiviral 

drugs, and vaccines. The results are key to informing outbreak control decisions in public health’’ (European 

Center for Disease Control, 2021). 

Chapter 8 (Global Health Data Cloud): We propose the Global Open Health Data Cooperatives Cloud 

(GOHDCC), a global platform for sharing health data that can support global research and development. This 

platform is citizen-led and cooperatively governed, making it beneficial for all stakeholders involved in the 

healthcare system. The model integrates cloud computing to manage large amounts of data and highlights the 

significance of big data management. It also highlights existing cloud-based health data platforms such as the 

Open Science Data Cloud (OSDC) and European Open Science Cloud (EOSC). 

The GOHDCC model is centred around the Health Data Cooperatives ecosystem, which combines diverse 

health data from citizens/patients and databases to form an integrated cloud-based analytical platform. This 

platform is designed to study three major analytical models: descriptive, predictive, and prescriptive 

(Mählmann et al., 2018). The goal of the HDCs is to give citizens full control over their health data and make 

them the primary beneficiaries of the integrated framework. 

A global HDC has the potential to serve as an excellent citizen health monitoring system by integrating diverse 

health data to enhance understanding of disease mechanisms. This, in turn, could steer healthcare and public 

health policies towards preventive systems. GOHDCC is a citizen-focused model, created by the collaboration 

of various health data cooperative clouds that share common principles for data collection, storage, processing, 

and distribution. 
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In pandemics like COVID-19, GOHDCC can act as a data platform to gather heterogeneous health data from 

various geographical locations and identify crucial clinical features to create a safer and effective vaccine for 

all. The COVID-19 pandemic is a public health problem that concerns all around the globe and qualifies as a 

planetary health issue. A global action is required in such a pandemic and GOHDCC provides the infrastructure 

needed to facilitate global collaboration by integrating health data information. 
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  Valorisation 

Understanding the relationship between host and microbes is crucial for maintaining human health, and it is 

imperative to investigate this intricate association in greater depth. Microbes that reside within the human body 

can have both positive and negative effects, making it vital to differentiate between pathogenic and beneficial 

microbes in disease conditions. With the advancement of high-throughput technologies, our understanding of 

host-microbe interactions is improving each day. By analysing the vast amounts of data generated from 

microbial genomics research, we can better comprehend these interactions, manage diseases and infections, 

create vaccines and therapeutic targets, and promote the health of both host and microbes. 

The main objective of this thesis was to delve into the intricate dynamics of the host-microbe relationship and 

shed light on the significance of the human microbiome. In Chapter 2, a comprehensive examination is 

conducted to examine the diverse microbial signatures and compositions observed among individuals. It 

becomes evident that these microbial profiles are susceptible to various influencing factors, including age, diet, 

lifestyle, stress, and environment. By studying these fluctuations, it is possible to identify microbial signatures 

that hold great potential as biomarkers for personalized health management and the overall well-being of 

communities. These insights pave the way for a deeper understanding of the intricate interplay between the 

human body and its microbial inhabitants, opening up new avenues for personalized healthcare approaches. 

Chapters 4 and 5 of this thesis focus on the use of comparative genomics to assess the virulence potential of 

sequenced strains. Utilizing genomics data and computational resources, these chapters identify factors that 

contribute to virulence and antimicrobial resistance. Comparative genomic studies are a valuable tool in the 

fight against antibiotic resistance, as they can detect emerging pathogens and help determine the pathogenicity 

of closely related strains within a species. The evolution of emerging pathogens is a significant global health 

concern, and monitoring this evolution allows for the identification of potential molecular drug targets to 

combat future infections. Furthermore, comparative genomic studies can reveal novel regions encoded in 

microbial genomes that allow them to adapt and survive in exposed environment. 

Chapter 6 of this thesis lists all major computational tools and resources that play a crucial role in the field of 

microbial genomics, aiding researchers in the analysis and interpretation of genomics data. This chapter 

compile most important tools together to provide a resource guide for key steps involved in microbial research. 

In this chapter tools and databases are listed for genome assembly, genome annotation, metagenomics, 

antibiotic resistance prediction, virulence factor and potential drug target identification. The purpose of this 

chapter is to function as a valuable reference guide for researchers facing challenges in finding and selecting 

the most suitable tools for their analysis. 

Chapter 7 of the thesis emphasizes on the significance of genomic surveillance, using the COVID-19 pandemic 

as a prime example of why monitoring emerging pathogens is crucial. Outbreaks of infectious diseases lead to 

significant losses in human life and cause socio-economic damages. Modern technologies can produce copious 

amounts of data that enable us to prepare for and control such outbreaks. However, merely generating data is 

insufficient; it is vital to store this data in global repositories to facilitate research and report new scientific 

findings. 



187 
 

  Valorisation 

Chapter 8 of the thesis provides an exemplary instance of a global cloud repository for storing and sharing 

health data worldwide. The model proposed in this chapter is founded on a health data cooperative ecosystem 

that is primarily citizen-oriented ("For the people by the people"). This model represents an exceptional 

platform for predictive studies in various scientific fields. The availability of data enables its usability, which, 

in turn, provides significance to the raw data. The platform aims to integrate data from existing science clouds 

to facilitate global scientific collaboration and provide solutions for planetary health concerns. 

Using the research discussed above, I have endeavoured to contribute novel information to the realm of human 

microbiome. However, additional experimental validations are necessary to make definitive assertions 

regarding the host-microbe interactions, as the in-silico studies are limited in their scope. It is crucial to 

investigate the molecular level of human microbiome relationships beyond the microbial abundance to gain a 

deeper understanding of this complex system. While the comparative genomic analysis conducted in this thesis 

provides valuable insights, experimental validation is still required to ensure that the phenotypic characteristics 

of the sequenced strains align with the genomic data. It is important to note that the mere presence of 

antimicrobial resistance genes or virulence factors does not necessarily indicate a pathogenic phenotype of a 

particular strain.  

Like any other scientific work, it is impossible to fully encapsulate the complexity of a topic within a limited 

number of pages. Nonetheless, I believe the results of my research, which was carried out as part of this 

dissertation, have made a valuable contribution to the scientific community. 
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  Summary 

The human microbiome is a complex ecosystem that resides within our bodies. It consists of trillions of 

microorganisms that inhabit various niches, such as the gut, skin, oral, and reproductive organs. The human 

microbiome has been extensively studied in recent years and has been found to influence numerous aspects of 

our health, including digestion, metabolism, immune function, and even mental health. Imbalances or 

disruptions in the microbiome have been linked to a wide range of diseases and conditions, such as obesity, 

autoimmune disorders, allergies, and mood disorders. 

Beyond the human microbiome, the microbiomes of other organisms, such as plants, animals, and even the 

environment itself, also play critical roles in maintaining planetary health. For example, plant-associated 

microbiomes help plants extract nutrients from the soil, protect them from pathogens, and enhance their 

resilience to environmental stresses. In turn, healthy plants contribute to the overall stability and productivity 

of ecosystems, including food production, carbon sequestration, and biodiversity conservation. 

Similarly, animal microbiomes are essential for their digestion, immune function, and overall health. In natural 

ecosystems, animals interact with their environments and exchange microbes, influencing the microbial 

diversity and dynamics at a broader scale. This interconnectedness between animals, plants, and the 

environment forms a complex web of interactions, with the microbiome at its core. 

The planetary health perspective emphasizes the interdependence of human health, animal health, and the 

environment. By recognizing the importance of the microbiome in maintaining these connections, we can 

develop strategies to promote global health and sustainability. For instance, understanding the microbiome's 

role in nutrient cycling and disease resistance can lead to more sustainable agricultural practices, reduced 

dependence on chemical fertilizers and pesticides, and improved soil health. 

Furthermore, the microbiome has implications for infectious disease prevention and control. Research on 

microbial communities can help us better understand the transmission dynamics of pathogens and develop 

targeted interventions. By manipulating the microbiome, we may be able to enhance disease resistance and 

reduce the spread of infections. 

Additionally, the microbiome has the potential to revolutionize medicine and healthcare. Advancements in 

microbiome research have led to the development of novel therapies, such as fecal microbiota transplantation 

(FMT), which involves transferring healthy microbial communities to restore the balance in individuals with 

disrupted microbiomes. Furthermore, probiotics and prebiotics are being explored for their potential in 

promoting a healthy microbiome and preventing or treating various diseases. 

In conclusion, the microbiome plays a crucial role in shaping planetary health. From influencing human health 

to maintaining the balance of ecosystems, the microbial communities that surround us have a profound impact 

on the well-being of our planet. By understanding and harnessing the power of the microbiome, we can work 

towards a more sustainable, resilient, and healthier future for ourselves and the planet. 

 

  



190 
 

  Summary 

Part 1 

First part of this dissertation, chapter 2, 3, 4 and 5 outline the host-microbe relationship and its crucial role in 

maintaining human health. Host-microbe interactions are complex and multifaced and can have both positive 

and negative impacts on human body. It is vital to distinguish between pathogenic (disease-causing) and 

beneficial microbes and with the advent of high-throughput technologies, our understanding of host-microbe 

interactions is constantly improving. These technologies allow us to generate vast amounts of data and by 

analyzing this wealth of data, we can gain a better comprehension of how microbes interact with their hosts at 

the molecular, cellular, and systemic levels. 

Understanding the mechanisms by which pathogenic microbes interact with the human body can aid in the 

development of targeted therapies and the design of vaccines to prevent infections. Additionally, studying 

host-microbe interactions can help identify beneficial microbes that promote health and well-being. 

Furthermore, investigating host-microbe interactions can also provide insights into the development of 

microbial drug resistance. By studying how microbes adapt and evolve in response to therapeutic interventions, 

we can design more effective strategies to combat drug-resistant infections. 

Part 2 

The second part of this dissertation delves into the field of microbial genomics, specifically focusing on the 

significant amount of multiomics data generated from various techniques. The dissertation briefly explores the 

wide range of applications of microbial genomics. These applications can include studying microbial diversity, 

investigating the role of microorganisms in various ecosystems, understanding their interactions with hosts 

(such as in human microbiota research), and exploring their potential in biotechnology, agriculture, and 

medicine. 

One crucial aspect discussed in this part of the dissertation is the proper storage of the vast amount of 

healthcare-associated multiomics data in cloud platforms. Cloud platforms provide scalable and cost-effective 

solutions for managing and storing large volumes of multiomics data, allowing researchers to efficiently store, 

analyze, and share their data with the scientific community. Managing and preserving this data is essential 

because it ensures that the information is readily available to the scientific community for further exploration 

and analysis. Availability of data is crucial for researchers to investigate key areas of research and make 

important discoveries. 

To assist researchers in their microbial genome studies, this part of the dissertation highlights key resources 

that are available for microbial genome research. These resources can include databases, software/tools, 

computational platforms, and other relevant sources of information. By providing a guide to these resources, 

the dissertation helps researchers select the most appropriate computational tools and resources that best suit 

their microbial study. 

Additionally, the dissertation emphasizes the importance of genomic surveillance, particularly in the context 

of detecting emerging pathogens. Genomic surveillance involves the systematic monitoring and analysis of 
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pathogen genomes to identify and track the spread of infectious diseases. By detecting and studying the 

genomic variations of pathogens, scientists can gain insights into their transmission patterns, virulence factors, 

and potential treatment strategies. This part of the dissertation underscores the significance of genomic 

surveillance as a proactive approach to public health, allowing for early detection and response to emerging 

infectious diseases. 

Overall, this section of the dissertation provides an overview of microbial genomics, emphasizes the need for 

open health data clouds for proper data storage and availability, underline microbial research associated 

computational resources, and highlights the importance of genomic surveillance in detecting and addressing 

emerging pathogens. 

  



192 
 

  Summary 

Samenvatting 

Het menselijk microbioom is een complex ecosysteem dat zich in ons lichaam bevindt. Het bestaat uit 

triljoenen micro-organismen die in verschillende niches leven, zoals de darmen, de huid, de mond en de 

voortplantingsorganen. Het menselijk microbioom is de afgelopen jaren uitgebreid bestudeerd en blijkt van 

invloed te zijn op tal van aspecten van onze gezondheid, zoals spijsvertering, stofwisseling, immuunfunctie en 

zelfs geestelijke gezondheid. Onevenwichtigheden of verstoringen in het microbioom zijn in verband gebracht 

met een groot aantal ziekten en aandoeningen, zoals obesitas, auto-immuunziekten, allergieën en 

stemmingsstoornissen. 

Naast het menselijke microbioom speelt ook het microbioom van andere organismen, zoals planten, dieren en 

zelfs het milieu zelf, een cruciale rol bij het behoud van de gezondheid op aarde. Het plantgebonden 

microbioom helpt planten bijvoorbeeld om voedingsstoffen uit de bodem te halen, beschermt ze tegen 

ziekteverwekkers en vergroot hun veerkracht bij stress in het milieu. Op hun beurt dragen gezonde planten bij 

aan de algehele stabiliteit en productiviteit van ecosystemen, waaronder voedselproductie, koolstofvastlegging 

en behoud van biodiversiteit. 

Ook dierlijke microbiomen zijn essentieel voor hun spijsvertering, immuunfunctie en algehele gezondheid. In 

natuurlijke ecosystemen interageren dieren met hun omgeving en wisselen ze microben uit, waardoor ze de 

microbiële diversiteit en dynamiek op grotere schaal beïnvloeden. Deze onderlinge verbondenheid tussen 

dieren, planten en het milieu vormt een complex web van interacties, met het microbioom als kern. 

Het planetaire gezondheidsperspectief benadrukt de onderlinge afhankelijkheid van menselijke gezondheid, 

diergezondheid en het milieu. Door het belang van het microbioom in het onderhouden van deze verbanden te 

erkennen, kunnen we strategieën ontwikkelen om wereldwijde gezondheid en duurzaamheid te bevorderen. 

Zo kan inzicht in de rol van het microbioom in de nutriëntencyclus en ziekteresistentie leiden tot duurzamere 

landbouwpraktijken, minder afhankelijkheid van kunstmest en pesticiden en een gezondere bodem. 

Bovendien heeft het microbioom implicaties voor de preventie en bestrijding van infectieziekten. Onderzoek 

naar microbiële gemeenschappen kan ons helpen de transmissiedynamiek van ziekteverwekkers beter te 

begrijpen en gerichte interventies te ontwikkelen. Door het microbioom te manipuleren, kunnen we mogelijk 

de weerstand tegen ziekten verhogen en de verspreiding van infecties verminderen. 

Bovendien heeft het microbioom het potentieel om een revolutie teweeg te brengen in de geneeskunde en de 

gezondheidszorg. Vooruitgang in het microbioomonderzoek heeft geleid tot de ontwikkeling van nieuwe 

therapieën, zoals fecale microbiotatransplantatie (FMT), waarbij gezonde microbiële gemeenschappen worden 

overgebracht om het evenwicht te herstellen bij personen met een verstoord microbioom. Bovendien worden 

probiotica en prebiotica onderzocht op hun potentieel om een gezond microbioom te bevorderen en 

verschillende ziekten te voorkomen of te behandelen. 

Concluderend kan worden gesteld dat het microbioom een cruciale rol speelt bij het vormgeven van de 

gezondheid van onze planeet. Van het beïnvloeden van de menselijke gezondheid tot het in stand houden van 
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het evenwicht van ecosystemen, de microbiële gemeenschappen om ons heen hebben een diepgaande invloed 

op het welzijn van onze planeet. Door de kracht van het microbioom te begrijpen en te benutten, kunnen we 

werken aan een duurzamere, veerkrachtigere en gezondere toekomst voor onszelf en onze planeet. 

Deel 1 

Het eerste deel van dit proefschrift, hoofdstuk 2, 3, 4 en 5, schetst de relatie tussen gastheer en microbe en de 

cruciale rol ervan bij het behoud van de gezondheid van de mens. Gastheer-microbiële interacties zijn complex 

en veelzijdig en kunnen zowel positieve als negatieve gevolgen hebben voor het menselijk lichaam. Het is van 

vitaal belang om onderscheid te maken tussen pathogene (ziekteveroorzakende) en nuttige microben en met 

de komst van high-throughput technologieën wordt ons begrip van gastheer-microbiële interacties steeds beter. 

Met deze technologieën kunnen we enorme hoeveelheden gegevens genereren en door deze schat aan gegevens 

te analyseren, kunnen we beter begrijpen hoe microben op moleculair, cellulair en systemisch niveau met hun 

gastheer interageren. 

Inzicht in de mechanismen waarmee pathogene microben interageren met het menselijk lichaam kan helpen 

bij de ontwikkeling van doelgerichte therapieën en het ontwerp van vaccins om infecties te voorkomen. 

Daarnaast kan het bestuderen van gastheer-microbiële interacties helpen bij het identificeren van nuttige 

microben die de gezondheid en het welzijn bevorderen. Verder kan het bestuderen van gastheer-microbiële 

interacties ook inzicht verschaffen in de ontwikkeling van microbiële geneesmiddelenresistentie. Door te 

bestuderen hoe microben zich aanpassen en evolueren in reactie op therapeutische interventies, kunnen we 

effectievere strategieën ontwerpen om geneesmiddelresistente infecties te bestrijden. 

Deel 2 

Het tweede deel van dit proefschrift gaat in op het gebied van microbiële genomics, waarbij specifiek wordt 

ingegaan op de significante hoeveelheid multiomics data die door verschillende technieken wordt gegenereerd. 

Het proefschrift verkent kort het brede scala aan toepassingen van microbiële genomics. Deze toepassingen 

kunnen bestaan uit het bestuderen van microbiële diversiteit, het onderzoeken van de rol van micro-organismen 

in verschillende ecosystemen, het begrijpen van hun interacties met gastheren (zoals in onderzoek naar de 

menselijke microbiota) en het verkennen van hun potentieel in de biotechnologie, landbouw en geneeskunde. 

Een cruciaal aspect dat in dit deel van het proefschrift wordt besproken, is de juiste opslag van de enorme 

hoeveelheid multiomics-gegevens uit de gezondheidszorg in cloudplatforms. Cloudplatforms bieden 

schaalbare en kosteneffectieve oplossingen voor het beheren en opslaan van grote hoeveelheden multiomics-

gegevens, waardoor onderzoekers hun gegevens efficiënt kunnen opslaan, analyseren en delen met de 

wetenschappelijke gemeenschap. Het beheren en bewaren van deze gegevens is essentieel omdat het ervoor 

zorgt dat de informatie direct beschikbaar is voor de wetenschappelijke gemeenschap voor verdere exploratie 

en analyse. De beschikbaarheid van gegevens is cruciaal voor onderzoekers om belangrijke 

onderzoeksgebieden te onderzoeken en belangrijke ontdekkingen te doen. 
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Om onderzoekers te helpen bij hun onderzoek naar het microbiële genoom, belicht dit deel van het proefschrift 

de belangrijkste bronnen die beschikbaar zijn voor onderzoek naar het microbiële genoom. Deze bronnen 

kunnen databases, software/tools, computationele platforms en andere relevante informatiebronnen omvatten. 

Door een gids te bieden voor deze bronnen, helpt het proefschrift onderzoekers bij het selecteren van de meest 

geschikte computationele tools en bronnen die het beste passen bij hun microbiële studie. 

Daarnaast benadrukt het proefschrift het belang van genomische surveillance, vooral in de context van het 

opsporen van opkomende pathogenen. Genomische surveillance omvat het systematisch monitoren en 

analyseren van genomen van ziekteverwekkers om de verspreiding van infectieziekten te identificeren en te 

volgen. Door de genoomvariaties van ziekteverwekkers te detecteren en te bestuderen, kunnen wetenschappers 

inzicht krijgen in hun transmissiepatronen, virulentiefactoren en mogelijke behandelingsstrategieën. Dit deel 

van het proefschrift onderstreept het belang van genomische surveillance als een proactieve benadering van de 

volksgezondheid, die vroegtijdige detectie en reactie op opkomende infectieziekten mogelijk maakt. 

Over het algemeen geeft dit deel van het proefschrift een overzicht van microbiële genomica, benadrukt het 

de noodzaak van open gezondheidsgegevenswolken voor goede gegevensopslag en beschikbaarheid, 

onderstreept het microbiële onderzoek geassocieerde computationele bronnen, en benadrukt het het belang van 

genomische surveillance bij het opsporen en aanpakken van opkomende ziekteverwekkers. 
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