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Summary

While the benefits of technological progress are undeniable, it also
brings forth numerous challenges, such as environmental degradation,
political polarization, and inequality. Empirical studies have shown
that technology has been a critical ingredient of economic growth and
a key driver of productivity differences across firms and countries.
However, there is a pressing need for more empirical studies focused
on understanding the dynamics behind technology adoption and its
impact on the labor market, especially in the context of developing
and emerging economies.

This dissertation addresses this need by investigating the drivers of
technology adoption and the links between technology and the labor
market in developing economies. Chapter 2 comprehensively exam-
ines the interconnections between technology and employment in the
context of developing and emerging economies, with a particular em-
phasis on job polarization - the relative decline of jobs in the middle
of the wage and skill distribution. The results suggest that job po-
larization in emerging economies is only incipient compared to other
advanced economies, which I argue is related to differences in technol-
ogy adoption, structural change, and countries’ participation in global
value chains.

Despite the lack of job polarization, recent analysis suggests that there
is a decline in the demand for routine jobs in emerging and developing
economies. Chapter 3 empirically tests the hypothesis that, as a result
of this reduced demand, the negative effect of job displacement runs
differently for workers in routine-intensive occupations. We use firms’
mass layoffs and bankruptcy as an external shock to workers’ careers
and apply a difference-in-differences model to estimate the effect of
job displacement on workers’ careers. Consistent with our hypothesis,
the results suggest that workers in routine-intensive occupations face
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Summary

a more significant decline in wages and longer periods of unemploy-
ment and that the effects are larger for older and long-tenured individ-
uals.

Older and long-tenured workers encounter more difficulties in the
labor market as they find it more difficult to move to different sectors
and occupations. Chapter 4 studies labor market mobility from a
worker’s set of occupational skills and its transferability to other
occupations. We build an occupational skills commonality index and
apply a difference-in-differences model taking firms’ layoffs and
closure as the critical event in workers’ employment trajectory. The
results indicate that a higher occupational commonality index leads
to shorter periods of unemployment and increases the probability of
switching to another occupation. In addition, we explore how skill
mismatch affects workers’ wages upon reemployment and find that
movements to similar occupations lead to higher wages.

Chapter 5 focuses on the adoption of advanced technologies and
their drivers and examines the effects of entering exporting markets
on firms’ adoption of more sophisticated technologies in Brazil. We
combine a novel dataset on firms’ adoption of specific advanced
technologies with a dataset on the year they start to export. Using
a difference-in-differences model, we find that starting to export
is linked to a larger probability of adopting specialized software
or ERP for business administration and a larger probability of
adopting statistical process control with software monitoring and
data management for inspection in quality control. On the one hand,
the findings are consistent with a model in which exporting increases
firms’ complexity, and they adopt sophisticated technologies to
cope with it. On the other hand, it also underlines the role of firms’
interactions with buyers in reducing information asymmetries and
spurring technology adoption.

In conclusion, this dissertation contributes to our understanding of
the complex relationship between technology, employment, and labor
market outcomes in developing economies. It underscores the need
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for policymakers to foster technology adoption and design effective
policies that mitigate the adverse effects of technology adoption and
ensure a more equitable distribution of its benefits. The empirical ev-
idence presented in this dissertation provides a solid foundation for
policymakers to make informed decisions and design policies that pro-
mote inclusive growth and development.
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Samenvatting

Hoewel de voordelen van technologische vooruitgang onmiskenbaar
zijn, brengt het ook tal van uitdagingen met zich mee, zoals aantasting
van het milieu, politieke polarisatie en ongelijkheid. Empirische stud-
ies hebben aangetoond dat technologie een cruciaal ingrediënt is van
economische groei en een belangrijke motor van productiviteitsver-
schillen tussen bedrijven en landen. Er is echter dringend behoefte
aan meer empirische studies die zich richten op het begrijpen van de
dynamiek achter de toepassing van technologie en de invloed ervan
op de arbeidsmarkt, vooral in de context van zich ontwikkelende en
opkomende economieën.

Dit proefschrift voorziet in deze behoefte door de drijvende
krachten achter technologie-adoptie en de verbanden tussen
technologie en de arbeidsmarkt in zich ontwikkelende economieën
te onderzoeken. Hoofdstuk 2 onderzoekt uitgebreid de onderlinge
verbanden tussen technologie en werkgelegenheid in de context
van ontwikkelingslanden en opkomende economieën, met een
bijzondere nadruk op baanpolarisatie - de relatieve afname van banen
in het midden van de loon- en vaardigheidsverdeling. De resultaten
suggereren dat baanpolarisatie in opkomende economieën slechts
beginnend is in vergelijking met andere geavanceerde economieën,
wat volgens mij te maken heeft met verschillen in het gebruik van
technologie, structurele verandering en de deelname van landen aan
wereldwijde waardeketens.

Ondanks het gebrek aan baanpolarisatie, suggereert recente
analyse dat er een afname is in de vraag naar routinefuncties
in opkomende en ontwikkelende economieën. In hoofdstuk 3
wordt empirisch de hypothese getest dat, als gevolg van deze
verminderde vraag, het negatieve effect van baanverschuiving
anders uitpakt voor werknemers in routine-intensieve beroepen.
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Samenvatting

We gebruiken massaontslagen en faillissementen van bedrijven als
een externe schok voor de loopbaan van werknemers en passen een
difference-in-differences model toe om het effect van baanverplaatsing
op de loopbaan van werknemers te schatten. In overeenstemming
met onze hypothese wijzen de resultaten erop dat werknemers in
routine-intensieve beroepen geconfronteerd worden met een sterkere
daling van de lonen en langere perioden van werkloosheid en dat de
effecten groter zijn voor oudere werknemers en werknemers met een
lange anciënniteit.

Oudere werknemers en werknemers met een lange anciënniteit
ondervinden meer problemen op de arbeidsmarkt omdat het voor
hen moeilijker is om naar andere sectoren en beroepen over te
stappen. Hoofdstuk 4 bestudeert de mobiliteit op de arbeidsmarkt
op basis van de beroepsvaardigheden van een werknemer
en de overdraagbaarheid daarvan naar andere beroepen. We
stellen een gemeenschappelijke index van beroepsvaardigheden
op en passen een difference-in-differences model toe waarbij
ontslagen en bedrijfssluitingen de kritieke gebeurtenis zijn in het
werkgelegenheidstraject van werknemers. De resultaten geven aan
dat een hogere gemeenschappelijke beroepsvaardigheidsindex leidt
tot kortere perioden van werkloosheid en de kans op een overstap
naar een ander beroep vergroot. Daarnaast onderzoeken we hoe de
onaangepastheid van vaardigheden van invloed is op de lonen van
werknemers bij herintreding en stellen we vast dat een overstap naar
een vergelijkbaar beroep tot hogere lonen leidt.

Hoofdstuk 5 richt zich op de toepassing van geavanceerde technolo-
gieën en de drijvende krachten daarachter en onderzoekt de effecten
van het betreden van exportmarkten op de toepassing van meer gea-
vanceerde technologieën door bedrijven in Brazilië. We combineren
een nieuwe dataset over de toepassing van specifieke geavanceerde
technologieën door bedrijven met een dataset over het jaar waarin ze
beginnen te exporteren. Met behulp van een difference-in-differences
model vinden we dat het starten met exporteren samenhangt met een
grotere waarschijnlijkheid van het invoeren van gespecialiseerde soft-
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ware of ERP voor bedrijfsadministratie en een grotere waarschijnli-
jkheid van het invoeren van statistische procescontrole met software
monitoring en datamanagement voor inspectie bij kwaliteitscontrole.
Aan de ene kant zijn de bevindingen consistent met een model waarin
exporteren de complexiteit van bedrijven vergroot en zij geavanceerde
technologieën gebruiken om hiermee om te gaan. Anderzijds wordt
ook de rol onderstreept van de interacties van bedrijven met afnemers
bij het verminderen van informatieasymmetrieën en het stimuleren
van de toepassing van technologie.

Concluderend draagt dit proefschrift bij aan ons begrip van de com-
plexe relatie tussen technologie, werkgelegenheid en arbeidsmarktre-
sultaten in ontwikkelingseconomieën. Het onderstreept de noodzaak
voor beleidsmakers om de invoering van technologie te bevorderen en
effectief beleid te ontwerpen dat de nadelige effecten van de invoering
van technologie vermindert en zorgt voor een rechtvaardigere verdel-
ing van de voordelen ervan. Het empirisch bewijs dat in dit proef-
schrift wordt gepresenteerd biedt een solide basis voor beleidsmakers
om weloverwogen beslissingen te nemen en beleid te ontwerpen dat
inclusieve groei en ontwikkeling bevordert.
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1
Introduction

Technology is an integral part of our lives, constantly transforming
how we live and interact with those around us. Even before the his-
tory of our own species began, sharp innovative tools made of stone
have eased our ancestors’ lives. As time progressed, other significant
technological advancements revolutionized our lives. Agriculture has
changed humankind’s ways of organizing, enabling settled communi-
ties to flourish. Sailing ships and the compass opened up new trans-
portation avenues and expanded horizons, leading to the exploration
of distant lands and the exchange of cultures. The printing press has
transformed communication by spreading ideas and increasing liter-
acy, antibiotics saved millions of lives, and the internet has completely
modified how we interact and access information.

Many of these technologies have undoubtedly improved our lives to
the extent that it is not an overstatement to say that technology and
progress are closely intertwined. However, while the benefits of tech-
nological progress are undeniable, it also brings forth numerous chal-
lenges. Technological change may lead to detrimental consequences,
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Chapter 1. Introduction

including environmental degradation, political polarization, and in-
equality (Coad et al., 2021). Such progress may also disrupt existing in-
dustries and institutions, reshape firms’ organizational structures, and
completely modify existing occupations.

Since the 19th-century Luddite movement, economists have been par-
ticularly concerned with examining the negative impacts of technol-
ogy on the labor market and the potential for widespread unemploy-
ment. As far back as 1930, Keynes (2010, p.325) highlighted that “we
are being afflicted with a new disease of which some readers may not
yet have heard the name, but of which they will hear a great deal
in the years to come — namely, technological unemployment”. In-
deed, Keynes was correct in pointing out that we would frequently
hear about technological unemployment in the coming years. As new
waves of technological change hit the global economy, the fear of mas-
sive waves of unemployment also took place (see Vivarelli, 2007 and
Vivarelli, 2014 for a review on the effects of technology on aggregate
employment).

Nevertheless, rather than causing widespread joblessness, technology
has more directly influenced specific groups by reshaping the demand
for certain skills. Technology has exerted varying effects on different
forms of labor, creating new industries and jobs, making other jobs
obsolete, and significantly transforming the nature of established oc-
cupations (Buyst et al., 2018; Chin et al., 2006; Katz & Murphy, 1992;
O’Rourke et al., 2013). From skilled artisans losing their jobs due to the
mechanization brought by the Industrial Revolution to routine work-
ers seeing the replacement of their jobs due to automation, technol-
ogy’s benefits have yet to be shared among all.

Empirically, a large literature has shown that technology has been
a critical ingredient of economic growth (Aghion & Howitt, 1992;
Romer, 1990) and a key driver of productivity differences across
firms (Giorcelli, 2019; Juhász et al., 2020) and, consequently, across
countries (Comin & Hobijn, 2010; Comin & Mestieri, 2018; Easterly
& Levine, 2001). However, although the prowess of technological

2



change is relatively well-studied, there is a need for more empirical
studies focused on understanding the dynamics behind technology
adoption and the labor market, and that can effectively help
policymakers design better policies. As once stated by Case and
Deaton (2020, p.222), “if technological change and globalization have
been responsible for hurting the working class, it is not because that is
what technological change and globalization must do; it is because
policy was neither wise nor imaginative”.

Using a series of novel datasets and applying robust methodologies,
this dissertation contributes to this task by investigating some drivers
of technology adoption and the links between technology and the la-
bor market, with a particular focus on developing economies. The dis-
sertation presents four distinct chapters, each focusing on different as-
pects of technology and with various policy implications.

Chapter 2 addresses an important gap in the literature and comprehen-
sively examines the interconnections between technology and employ-
ment in the context of developing and emerging economies, with a par-
ticular emphasis on job polarization – the relative decline of middle-
wage jobs in comparison to employment at the upper and lower ends
of the distribution. I extensively review the existing empirical litera-
ture, study the primary drivers of job polarization, and examine the
main gaps in the empirical literature. The synthesis of results suggests
that job polarization in emerging economies is only incipient compared
to other advanced economies. I then examine the possible moderat-
ing aspects preventing job polarization, discussing the main theoretical
channels.

Overall, the lack of polarization is a natural consequence of
limited technology adoption, structural change, and changes in
the global value chains. Developing and emerging economies lag
in incorporating cutting-edge technologies into their industries,
resulting in a reduced scope for job polarization within their
labor markets. Similarly, many developing economies continue to
industrialize and are at the receiving end of routine jobs offshored
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by developed economies. Consequently, industrialization and the
influx of routine jobs in these regions helped mitigate the degree of
job polarization within their respective labor markets.

Furthermore, the chapter identifies a number of gaps in the literature,
which I address in the third chapter. Specifically, the literature re-
view reveals that few studies have explored how individuals in more
routine occupations may still face the adverse effects of technological
progress, irrespective of the lack of job polarization. The necessity for
more focused studies on the individual-level consequences of technol-
ogy adoption on workers’ careers is the focus of the third chapter.

In Chapter 3, I investigate whether, following a layoff, workers previ-
ously employed in routine-intensive occupations suffer a more signif-
icant decline in wages and extended periods of unemployment. Ex-
tensive literature has focused on the costs of displacements on wages
and unemployment duration, suggesting that workers face a signif-
icant salary decline following a layoff. The likelihood of finding a
job is also significantly diminished after a job loss, increasing work-
ers’ unemployment duration and reinforcing the topic’s importance
for policymakers (Couch & Placzek, 2010; Hijzen et al., 2010; Jacob-
son et al., 1993; Raposo et al., 2019). However, although job loss is a
common threat, recent technological advances have spurred particular
anxiety.

If recent technology advancements have shifted the demand for rou-
tine workers, they would be more prone to face longer periods of un-
employment and lower wages due to displacement. Therefore, the
chapter’s main contribution is to empirically test the hypothesis that
displacement’s negative effect runs differently for workers in routine-
intensive occupations. In doing so, I use a rich Brazilian employer-
employee dataset and an occupation-task mapping to investigate the
impact of job displacement in different groups, classified according to
their tasks.

Methodologically, I estimate the dynamic treatment effects of job
displacement by comparing the labor market outcomes of workers
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displaced by mass layoffs and firm closures, before and after
displacement, with a matched control group of workers. The results
suggest that workers in routine-intensive occupations face a larger
decline in wages and longer periods of unemployment. Furthermore,
our results indicate that individuals in routine-intensive occupations
are more likely to change occupations after the shock, but those who
remain in the same occupation face a more substantial decline in
wages. Lastly, the loss of employer-specific wage premiums does not
explain routine-intensive workers’ more substantial losses.

In Chapter 4, I study labor market mobility from a worker’s set of occu-
pational skills and its transferability to other occupations. When jobs
are lost due to technological change or recessions, workers are forced
to reallocate and find new jobs based on their skills. Existing research
recognizes the critical role played by skill transferability, highlighting
its impacts on workers’ movements between occupations, wages upon
re-employment, and response to shocks. For example, there is accu-
mulating evidence that workers are more likely to switch to occupa-
tions with similar tasks (Gathmann & Schönberg, 2010; Poletaev &
Robinson, 2008) and similar industries (Neffke et al., 2018) and that
movements to more distant occupations are associated with lower re-
employment wages (Lyshol, 2022; Nedelkoska et al., 2015).

Looking at the bundle of skills associated with an occupation and how
it relates to others provides a more dynamic analysis to examine labor
market transitions and their impact on workers’ outcomes. Therefore,
this chapter’s first contribution is to derive an occupational common-
ality index based on workers’ skills and tasks based on the O*NET
database. Then, using a large employer-employee dataset from Brazil
and a sample of displaced workers, I apply an event-study analysis to
estimate the relationship between the commonality of skills between
occupations and labor outcomes following displacement. The findings
reveal that a higher occupational commonality leads to shorter periods
of unemployment and increases the probability of switching to another
occupation. However, I find no evidence that a higher index is associ-
ated with higher wages after re-employment. Additionally, I examine
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the effect of skills mismatch on wages and discover that transitioning
to similar occupations is associated with higher wages.

In the last chapter, I focus on understanding technology adoption pat-
terns in Brazil. While a considerable body of literature explores the
relationship between trade and productivity, little evidence exists re-
garding how participating in international trade influences the dif-
fusion of technologies, especially at the firm level. Specifically, it is
unclear whether more technologically advanced firms self-select into
trade or if engaging in trade leads to the adoption of more sophisti-
cated technologies.

To address this gap in the literature, I combine data from the Firm-level
Adoption of Technology (FAT) survey on the adoption of advanced
technologies at the business function level with data from Brazil’s Min-
istry of Trade on exporting firms to understand whether entering ex-
porting markets affects firms’ likelihood of adopting more sophisti-
cated technologies. Methodologically, I take advantage of recent devel-
opments in the literature and apply a difference-in-differences model
with multiple periods to examine the effects of entering export markets
on technology adoption.

The main results identify one of the potential channels through which
exporting activities could have an impact on firms’ performance – the
adoption of more sophisticated technologies. Specifically, starting to
export is linked to a larger probability of adopting specialized software
or ERP for business administration and a larger probability of adopting
statistical process control with software monitoring and data manage-
ment for inspection in quality control. The results align with the scale
effect channel, which posits that greater demand prompts the adoption
of new technologies (Bustos, 2011). Furthermore, the findings are con-
sistent with the existing literature highlighting how firms tend to im-
prove their product quality when entering international markets (Al-
varez et al., 2018). In response to the higher quality requirements of ex-
port markets, these firms enhance the quality of their inputs and tailor
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their product quality based on the specific demands of different desti-
nations (A. D. Kugler et al., 2020; Manova & Zhang, 2012). The results
indicate that as firms adapt to more demanding quality standards, they
adopt more advanced technologies linked to quality control.

In summary, this dissertation contributes to understanding the com-
plex relationship between technology, employment, and labor market
outcomes in developing economies. On the country level, it provides
evidence of the extent of job polarization in developing and emerging
economies and an assessment of the main drivers of job polarization.
On the individual level, it offers detailed evidence of the individual-
level consequences of technological progress and the roles of skills
commonality in explaining individuals’ outcomes. Overall, it under-
scores the need for policymakers to design effective and imaginative
policies that mitigate the adverse effects of technology adoption and
ensure a more equitable distribution of its benefits. Furthermore, it
provides evidence of the relationship between entering exporting mar-
kets and the adoption of more sophisticated technologies.
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Chapter 2. Is There Job Polarization in Developing Economies? A
Review and Outlook

Abstract
This paper analyses the evidence of job polarization - the relative de-
cline of mid-wage jobs - in developing and emerging economies. We
carry out an extensive literature review, revealing that job polarization
in these countries is only incipient compared to advanced economies.
We then examine the possible moderating aspects explaining this lack
of job polarization. We distinguish three groups of explanations: lim-
ited technology adoption, structural change, and changes in the global
value chains. Finally, we suggest new microeconomic data and em-
pirical analyses that should be developed in order to guide evidence-
based policymaking addressing those issues in developing and emerg-
ing economies.

JEL: J24, J63, O33, E24
Keywords: Job polarization; Technology adoption; Tasks; Developing
countries
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2.1 Introduction

The economic discipline has dedicated a great deal to the possible
harmful effects of technological progress on the labor market (Card
& DiNardo, 2002; Katz & Murphy, 1992; Katz & Summers, 1989; Levy
& Murnane, 1992). Throughout recent history, and more famously af-
ter the Luddite movement, “technological unemployment” has been
a persistent debate topic among economists, which have constantly
been deliberating whether massive waves of unemployment could be
around the corner.

However, the pessimistic predictions of technological unemployment
have yet to come about. Technical progress didn’t pave its way
through unemployment but rather through changes in the demand
and composition of employment. For instance, steam power led
to a significant substitution of artisans for unskilled workers,
favoring the transition of low-skilled workers moving out of
the farms to better-paid jobs in the cities (Buyst et al., 2018).1

In contrast, subsequent technological waves were skill-using
rather than skill-saving. The Digital Revolution in the early 1980s
disproportionately and positively impacted the need for skilled
workers, increasing the ratio of skilled to unskilled labor in most
industries (Katz & Murphy, 1992).

Not surprisingly, when most developed countries experienced
increasing wage inequality in the past 40 years (Alvaredo et al., 2018),
technology-related arguments were at the forefront of explaining these
labor market dynamics. The skill-biased technological change (SBTC)
hypothesis suggested that technology, precisely the widespread
adoption of Information and Communication Technologies (ICT),
increased the demand for skilled workers, as those are more capable
of using these new technologies (see the review by Card & DiNardo,

1Chin et al. (2006) show that, in addition to skill-replacing dynamics, steam power
also had some elements that were skill-biased, causing a rise in the demand for en-
gineers. Nevertheless, as pointed out by O’Rourke et al. (2013), novel technologies
were, on average, skill-saving in the early nineteenth century.
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2002), and thereby causing earnings inequality to rise (Acemoglu &
Autor, 2011; Goos & Manning, 2007).

For a couple of decades, the SBTC hypothesis worked well in explain-
ing the patterns observed in the data (Machin & Van Reenen, 1998).
However, it failed to explain another important labor market dynamic:
in recent years, the share of high-skill, high-wage, and low-skill, low-
wage occupations grew relative to those in the middle of the distri-
bution, resulting in the so-called job polarization (Goos et al., 2009).
To account for the “hollowing out” of the occupational distribution,
a more nuanced analysis focused on the tasks commonly performed
by each occupation to explain the so-called job polarization in devel-
oped economies. The routine-biased technological change (RBTC) hy-
pothesis argues that computers and robots have diminished the de-
mand for routine, repetitive tasks in production, which are more com-
monly concentrated among middle-earning workers. On the other
hand, tasks performed by unskilled workers, such as waiters or clean-
ers, and skilled workers, such as managers, are not easily codified and
performed by computers (Autor & Dorn, 2013; Goos et al., 2014).

Evidence of job polarization has been extensively portrayed in
developed economies. In the U.S., it was first observed in Acemoglu
(1999) and later rigorously analyzed in Autor et al. (2003). Beyond this
first application, Goos et al. (2009) show a disproportionate increase
in high-paid and low-paid employment relative to middle-paid
jobs over the period 1993–2006 for 16 European countries, using
harmonized data from the European Union Labour Force Survey
(ELFS). Moreover, in addition to Michaels et al. (2014) and Goos et al.
(2009, 2014), who find evidence of polarization for several OECD
and European countries, similar results have also been individually
estimated for Germany (Dustmann et al., 2009; Spitz-Oener, 2006), the
UK (Montresor, 2019; Salvatori, 2018), Portugal (Fonseca et al., 2018),
and Japan (Ikenaga & Kambayashi, 2016).

The observed trends in advanced economies indicate that although
technological change has not induced a surge in unemployment, it
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threatens to raise inequality and displace routine workers. However,
beyond the context of developed economies, the literature on
RBTC and its consequences on labor outcomes remain relatively
limited. Understanding the labor market effects of technological
change also in emerging and developing economies is important, as
inequality and unemployment are already exceptionally high in these
contexts. The displacement of routine workers would be particularly
harmful to less-educated and vulnerable groups who face more
difficulties in finding another job and are more likely to transition
towards low-stability, low-wage, and high-turnover occupations
(Autor & Dorn, 2013; Zago, 2020). Furthermore, a growing demand
for non-routine cognitive tasks would put further pressure on
educational systems. In addition to fostering educational attainment,
policy-makers in developing and emerging economies would need to
respond quickly to the rapid changes in the demand for skills.2

This paper attempts to provide a broad survey of job polarization in
emerging and developing countries, giving special attention to the the-
oretical channels that could prevent or slow down job polarization dy-
namics. Specifically, we stress the roles of technology adoption, struc-
tural change, and global value chain (GVCs) participation in explain-
ing differences across countries. Finally, we highlight policy implica-
tions that arise throughout the discussion, particularly the need for
better data and empirical evidence supporting policy design.3 Our re-
view suggests a slower pace of job polarization in most developing and

2Job polarization and the decline in the middle-class could also have important po-
litical implications. For instance, Birdsall (2010) suggests that the middle class is
an “indispensable” force to achieve more sensible economic policy, robust and re-
sponsive political institutions, and thus more sustained growth.

3We restrict our analysis to the impacts of digital technologies and automation
(robots) on the labor market. Automation refers to computer-assisted machines,
robotics, and artificial intelligence, such that robots are a subset of automation.
Recent developments in artificial intelligence (AI) make it likely that they will
replace more tasks in production, with estimations suggesting that high-paying,
non-routine occupations are at particular risk of displacement (Webb, 2019). Yet,
due to the short evaluation time, we do not discuss the possible implications of the
more recent and advanced technologies such as AI and the internet of things (IoT).
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emerging economies, likely related to a significant gap in technology
adoption and (or) different paths of structural change. Nevertheless,
most of the literature also finds a decline in routine intensity in devel-
oping economies (a precondition for job polarization), thus indicating
relevant changes in the demand for skills. In addition, we find sub-
stantial gaps in the literature, especially micro-level studies, that could
significantly improve our understanding of the subject and facilitate
the implementation of evidence-based policies.

The rest of this paper is organized as follows. Section 2.2 describes
the empirical literature on job polarization in developing economies.
Next, Section 2.3 describes possible factors moderating the effect of
automation in developing economies and investigates the interactions
between technology adoption in advanced economies and the labor
market implications in emerging countries. Section 2.4 explores the
need for more micro-level studies and discusses policy implications of
job polarization in developing countries. The last section concludes.

2.2 Is there job polarization in developing
economies?

Focusing on different regions and countries, as well as various mea-
sures of tasks and skills, the literature on job polarization in devel-
oping economies is gaining momentum (see Table 2.1 for a detailed
summary of this literature).4 For instance, Maloney and Molina (2019)
use global census data for 67 developing countries and 13 developed

4Despite the growing discussion around job polarization in developing economies,
one of our research’s main challenges was the initial search for articles on the topic.
Searching on the Web of Science and Scopus, using different keywords related to
job polarization and developing economies, we identified only a few articles, for
which fewer were actually about developing and emerging economies. To over-
come this challenge, we have extensively relied on citations and Google Scholar to
find working papers, articles, and reports, which has resulted in about 20 articles
focusing on job polarization in developing and emerging economies.
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economies and, although the results corroborate labor market polar-
ization and labor-displacing automation in developed economies, the
authors find little evidence of either effect on developing economies,
except for Mexico and China. Das and Hilgenstock (2022) use data
on 85 countries since 1990 and observe similar results. In addition, the
authors propose a measure of exposure to routinization based on occu-
pations’ risk of displacement by information technologies. Using this
measure, the authors show that developing economies are significantly
less exposed to routinization and that initial exposure to routinization
is a strong predictor of the long-run exposure.

The lack of polarization is further corroborated in Gasparini et al.
(2021), who find similar conclusions for Latin America’s six largest
economies (Argentina, Brazil, Chile, Colombia, Mexico, and Peru),
arguing that although automation has largely impacted workers in
routine-intensive occupations, there is no evidence for polarization
in the labor market. Messina et al. (2016) employ the Skills Toward
Employment and Productivity (STEP) Surveys conducted in Bolivia
and Colombia as a proxy to measure the task content of jobs in
Chile and Mexico. They find few signs of job polarization, except
for Chile. In fact, Brazil, Mexico, and Peru present positive growth
rates for workers in the middle of the wage distribution. Beylis et al.
(2020) study the labor market of 11 Latin American countries (LAC)
from 2000 to 2014. Applying the methodology proposed by Autor
et al. (2003) and Acemoglu and Autor (2011), the analysis shows
substantial changes in the composition of occupations. Although at
a different intensity, the demand for routine manual intensive tasks
has declined for the entire sample, coupled with a clear and marked
increase in the demand for non-routine intensive occupations. Yet,
these changes in the labor composition have not resulted in polarized
markets. In Central and Eastern European economies, Nchor and
Rozmahel (2020) find that despite an increase in the demand for
high-skill workers and a decline in middle-skill employment, the rise
in low-skill employment is minimal to lead to a U-shape employment
distribution which indicates labor polarization.
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Even among developing and emerging economies, the evidence is not
homogeneous. Hardy et al. (2016) study 10 Central and Eastern Euro-
pean (CEE) countries and point to an increase in non-routine cognitive
tasks and a decrease in manual tasks. Nevertheless, contrary to other
developed countries and at odds with RBTC, the authors also find that
routine cognitive tasks increased in six CEE countries, remained stable
in two, and declined in the remaining countries. Helmy (2015) studies
the Egyptian labor market over the period 2000–2009 and finds sug-
gestive evidence of job polarization, with a decline of 5.9% in the share
of employment of middle-skilled occupations compared to a growth of
4.5% and 1.4% for low- and high-skilled occupations. Ge et al. (2021)
use census data from China and find that the share of employment
in routine manual occupations declined by 25 percentage points from
1990 to 2015. Similarly, Firpo et al. (2021) find evidence of wage po-
larization in Brazil, but not with respect to employment. In contrast,
Fleisher et al. (2018) show that middle-skilled jobs are increasingly
transitioning to work in the unskilled and self-employment job cate-
gories in China, consistent with the RBTC hypothesis. Similarly, using
data from the National Sample Survey Organization from India, Sarkar
(2019) also observes increasing job polarization during the 1990s and
2000s. In the period 1984–94, the author finds an upgrading pattern,
with a substantial increase in the employment of high-skilled occupa-
tions. In contrast, the following periods show a polarized U-shaped
employment growth, with a decline of almost 20% for occupations in
the 40th percentile of the skill distribution.

Table 2.1 summarizes the main findings of this section, highlighting the
context of the study: the unit of analysis, the data sources, the coun-
tries, the task measurements, and the impact of technological change
on two outcomes of interest, the existence or not of job polarization
and the increase of decline in the intensity of routine tasks. Except
for the cases of India, Egypt, and China, most papers fail to observe
job polarization in emerging and developing economies. However, as
previously discussed, many articles already observe a decline in the
routine intensity across low- and middle-income countries - a precon-
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dition for job polarization. For the group of papers exploring the im-
pact on task content, all results are negative, suggesting that devel-
oping countries are less intensive in non-routine cognitive skills than
advanced economies. We will explore in more detail these differences
in subsection 2.4.2 and highlight the need for better measures of tasks
across occupations in emerging and developing economies.
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2.3 The missing job polarization

The literature has identified three main channels driving job polar-
ization - technology adoption, structural change, and participation in
global value chains (GVCs). This section discusses how developing
economies may differ from advanced ones in each of these aspects and,
in turn, how that difference may explain the absence of job polariza-
tion in developing and emerging economies. For each channel, we first
present the general theoretical mechanisms and then discuss the main
differences observed in developing and emerging economies vis-à-vis
advanced ones.

We begin by examining the role of technology adoption, focusing on
why firms may have lower rates of adoption and exploring potential
explanations for differences in technology choice. We then move from
a micro-level to a macro-level discussion, illustrating the role of struc-
tural change and regional differences as key drivers of job polarization.
Finally, we open our economy to international trade and discuss how
both the micro and macro aspects of a given economy are affected by
a country’s participation in GVCs. Although we present each mech-
anism separately for the sake of simplicity, we emphasize that all of
them are interacting forces. For instance, structural change and differ-
ences across sectors and regions are to a large extent a combination of
firms’ decisions either at the local level or a result of a country’s partic-
ipation in GVCs.

2.3.1 Technology Adoption

The “routinization” hypothesis argues that firms combine a
continuum of tasks to produce, which can be performed either by
capital or labor (Acemoglu & Autor, 2011; Autor et al., 2003). Firms
will allocate more capital or labor in a given task depending on
their relative cost and the degree to which tasks can be automated
(repetitive and replaceable by code and machines). In the past
decades, not only did the quality-adjusted ICT and robots prices fall
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considerably, but these technologies have been particularly successful
in carrying tasks that follow explicit rules (routines) (Graetz &
Michaels, 2018; Michaels et al., 2014). As a result, firms spurred the
substitution of labor in routine tasks, so workers in routine-intensive
occupations were suddenly at high risk of displacement. Traditionally,
many routine tasks are concentrated in middle-wage, middle-skill
white-collar jobs such as bank clerks, or are carried out by blue-collar
less-educated workers, performing, for example, assembly tasks. As
firms increase the share of capital in production, the demand for
middle-earning jobs should contract, and the labor market should
polarize. Yet, while ICT and other automated technologies are
expected to be widespread in advanced economies, lower adoption
rates can be found in developing and emerging economies. The slow
pace of technological adoption in these economies may reflect many
aspects, including firms’ capabilities, the extent of informality, and
countries’ human capital endowments.

Firm behavior and capabilities

Firms’ ability and willingness to adopt digital technologies are hetero-
geneous across and within countries. For instance, in the specific cases
of Brazil and Vietnam, recent evidence suggests that most firms still
rely on pre-digital technologies to perform daily tasks (Cirera, Comin,
Vargas Da Cruz, Lee, & Soares Martins Neto, 2021a, 2021b). How-
ever, more than a sign of backwardness, firms’ decision to not adopt
more advanced technologies may be an optimal response to their small
scale, local competition, and the relative price of labor and capital. La-
bor is substantially cheaper in developing economies, and the number
of small and informal establishments with a small production scale
is larger (we discuss the role of informality below). As Banerjee and
Duflo (2005) point out, one reason for the lag in technology adoption
could be that the firms are too small to profit from the best technolo-
gies.
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Similarly, when wages are low, the relative price of investment is rela-
tively higher (Hsieh & Klenow, 2007) and deters technology adoption.
In the context of developed economies, Shim and Yang (2018) show
that, in the U.S., in high-paying sectors (where therefore, the relative
cost of wages compared to capital is higher), there are incentives to
replace routine employment. This is confirmed by Lordan and Neu-
mark (2018), who show that minimum wage increases are associated
with a higher probability of replacing routine occupations. In other
words, lower wages disincentivize firms in developing countries to
adopt more sophisticated technologies.

Yet, decisions are not always optimal, and firms may simply not be
aware of the available technologies. Due to restricted technological
diffusion, advanced technologies have limited diffusion in developing
economies - a classic example of information failure. Acquiring this
knowledge can be very costly, and companies may think that adopt-
ing new practices would not be profitable (Jensen, 1988). Finally, even
when managers are aware of best practices, there is a final process of
acceptance and implementation. As once stated by Rosenberg (1972,
p.191), “in the history of diffusion of many innovations, one cannot
help being struck by two characteristics of the diffusion process: its
apparent overall slowness on the one hand, and the wide variations in
the rates of acceptance of different inventions, on the other”.

Technology adoption also depends on firms’ dynamic capabilities
(D. J. Teece et al., 1997), that is, their ability to “integrate, build and
reconfigure internal and external competencies to address rapidly
changing environments”. Therefore, the diffusion of (foreign) new
technologies within developing economies also relates to firms’
absorptive capacity (Cohen, Levinthal, et al., 1990) and can explain
differences in knowledge spillovers and adoption behavior in firms
(Fagerberg, 1994). Because of institutional and resource constraints in
developing economies, firms’ low absorptive capacity could be critical
to explain limited technology adoption.
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Informal sector

The sizeable informal sector in emerging and developing economies
could also impact the patterns of job polarization. The informal sector,
which accounts for 90% of the economy in developing (low-income)
countries and 67% in emerging (upper-middle and lower-middle)
countries (Bonnet et al., 2019), typically lags in adopting the latest
technologies (Cirera, Comin, Vargas Da Cruz, & Lee, 2021), is
labor-intensive and has lower productivity compared to the formal
sector (La Porta & Shleifer, 2014), and most of its workers are engaged
in low-skilled services and artisanal production (Falco et al., 2015).
Therefore, the potential of technology-driven job displacement is
likely less severe in countries with a high share of the informal
economy.5

Moreover, technology adoption in the formal sector displaces
workers toward the informal sector and, through this channel, may
also affect wages there (Chacaltana Janampa et al., 2018). Using a
general equilibrium model, Gomez (2021) finds that an increase in
technology adoption in the formal sector results in a larger informal
sector and lower wage inequality at the bottom of the skill distribution.

Availability of human capital

Human capital is an essential factor in explaining the adoption of
advanced technologies within firms. For instance, using a large
cross-country sample of developed and developing economies,
Benhabib and Spiegel (1994) show that human capital affects the
speed at which countries absorb technological developments. Comin
and Hobijn (2004) examine the diffusion of more than twenty

5The considerable presence of informal firms in low-income countries relates to
countries’ capabilities and is due to the inadequate access to education but also
corruption, regulation, and the lack of proactive policies to embrace the informal
economy (Etim & Daramola, 2020).
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technologies across developed economies and find that countries’
human capital endowment is the most crucial determinant of the
pace of technology adoption. As clearly stated by Boothby et al.
(2010, p.621), “firms embracing new technology have to obtain new
skills and/or to upgrade the skill level of their existing workforce
because the attributes of new technology could be significantly
different from old technologies”. The literature has largely stressed
the lack of managerial capabilities (Bloom & Van Reenen, 2010) and
workers’ skills in developing economies, which in turn are a critical
constraint to innovation and technology adoption (Cirera & Maloney,
2017). Educated managers may have a greater understanding about
sophisticated technologies and be favorably disposed to adopt them.
For instance, using data on digital technology usage, Nicoletti et al.
(2020) find empirical evidence that low managerial quality and
the lack of ICT skills are negatively associated with technological
adoption in 25 European economies.

2.3.2 Structural explanations: sectors, regions, and
demographic change

Job polarization is a combination of within-industry and
between-industry changes in employment shares, which are, in turn,
affected by demographic changes and their effect on the demand
for goods and services across firms, sectors and regions. In what
follows, we detail how the characteristics of developing and emerging
economies in terms of these different dimensions may affect their
employment structure and dynamics.

Structural change

On the one hand, as technological change replaces routine tasks, a
given industry will use less routine employment even while maintain-
ing the same output levels. On the other hand, occupations’ inten-
sity in such routine tasks differs across industries, such that sectoral
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employment shifts also explain aggregate occupational share changes
(Goos et al., 2014). In fact, Foster-McGregor et al. (2021) suggest that
the risk of automation (or routine intensity) shows only modest varia-
tion within sectors and between countries, but a considerably greater
variation between industries within countries. Specifically, manufac-
turing sectors generally demand relatively larger shares of middle-
skilled, routine occupations than agriculture and services. For exam-
ple, Lee and Shin (2019) find that polarization is faster in manufac-
turing than in services, and Bárány and Siegel (2018) indicate that job
polarization in the U.S. is directly linked to the decline of manufac-
turing employment since the early 1950-1960s. Therefore, the level of
aggregate routine intensity depends on the sectoral structure of em-
ployment — for example, we may expect that the higher the share of
manufacturing, the higher the routine intensity for a given country.

What do these findings imply regarding employment dynamics
in developing and emerging economies? The answer lies in the
countries’ trajectories. Often, low-income countries have a significant
share of employment in agriculture and a small percentage of workers
engaged in routine tasks in the first place. As countries become
more productive in agriculture and start industrializing, they also
increase their share of routine occupations. As clearly stated in Das
and Hilgenstock (2022, p.100), “the observed increase in the exposure
of routinization in developing economies indicates that structural
transformation was greater than the offsetting impact from the
declining in the price of ICT capital”. Industrialization thus moderates
the effects of technological change on the demand for routine labor.
Overall, Das and Hilgenstock (2022) show that labor markets in
low- and middle-income countries are significantly less exposed to
routinization (lower share of routine-intensive occupations), reflecting
the larger share of agriculture in developing economies. In contrast,
in more advanced stages of development, countries transition from
manufacturing to services and job polarization accelerates.6

6A similar explanation relates to the wage structure. The decline in the demand for
routine-intensive occupations only leads to job polarization if these occupations
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Heterogeneity across sectors and regions

Much of the literature presented above has relied primarily on aggre-
gate measures, and thus somewhat overlooked job polarization’s re-
gional and sectoral heterogeneities. It remains unclear if the slow pace
of polarization in most developing and emerging economies is a gen-
eral trend or is confined to a few sectors or regions within countries.
Some related evidence can be found for developed economies. Us-
ing individual-level data from Statistics Sweden from 2002 to 2012,
Henning and Eriksson (2020) find that the decline in manufacturing
employment in clusters of previously manufacturing-dominated mu-
nicipalities drives polarization in the country. In contrast, areas with
fast-growing firms in sectors with larger shares of routine workers (ex-
traction industries and lower manufacturing) exhibit the opposite pat-
terns, indicating a greater tendency towards job upgrading.

Regional and sectoral differences, and more specifically, the role of
extractive industries, could therefore help to explain the modest
evidence of job polarization in some emerging economies.7 The

are in the middle of the wage distribution and if the wage distribution reflects the
skills structure. Nevertheless, routine occupations in emerging economies could
be ranked differently, given the sizeable informal sector and wage-setting institu-
tions. For example, using data from 10 OECD countries, Haslberger (2021) doc-
uments that RBTC can lead to occupational upgrading rather than polarization,
as countries differ in terms of the occupational routine-wage hierarchies. In other
words, given that in many developing countries, the number of workers engaged
in codified tasks is small and, in some cases, concentrated in low-wage occupa-
tions, routinization could lead to occupational upgrading.

7Besides differences across sectors, firms of the same industry also present consider-
able heterogeneity in their employment and wage structures (see Helpman et al.,
2017 for Brazil and Domini et al., 2022b; Harrigan et al., 2020 in the case of France).
In the context of developing countries, it could be the case that there is a polariza-
tion process within firms, but it is compensated by the fact that large and growing
firms are more intensive in middle-earning occupations. Therefore, reallocation
dynamics (i.e., changes in the market shares of firms within sectors) among firms
with different occupational structures may explain why occupational shares at the
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commodity boom in the early 2000s led to a significant expansion
of the extractive sector in many countries, which is likely to offset
the decline in middle-earning jobs across other sectors. Indeed, in
many Latin American and African economies, the commodity boom
experienced during the 2000s mainly favored low-skilled workers,
potentially overshadowing the impacts of ICT adoption (Maloney &
Molina, 2019).

Demography

Finally, differences in demographic dynamics across developed and
developing economies affect changes in the demand for goods and
services as well as the supply of work, therefore resulting in diverging
patterns of overall employment. Moreno-Galbis and Sopraseuth (2014)
show that population aging in developed economies leads to a rise in
the demand for personal services, causing an increase in the employ-
ment share of low-paid positions. For instance, population aging leads
to a rise in the demand for jobs such as cleaners, transportation services
in the health industry, and housework employees in private homes. In
addition, Acemoglu and Restrepo (2021) find that population aging re-
sults in a shortage of middle-skilled workers, thus increasing the adop-
tion of automation technologies. However, this pattern contrasts with
the demography in most emerging economies. Especially in Africa,
countries are experiencing significant growth in the working-age pop-
ulation, resulting in a less intense demand for low-paid occupations
and an abundance of middle-skilled workers.

2.3.3 Employment dynamics in open economies

Most of the literature on job polarization in developing countries has
relied on isolated analysis at the country level without considering

aggregate level do not change.
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possible effects stemming from changes in global value chains. The
effects of GVCs on job polarization in developing economies are not
straightforward. Technological development has drastically reduced
the costs of offshoring jobs to locations with lower labor costs, such
that firms in developed economies have off-shored routine-intensive
occupations (Acemoglu & Autor, 2011; Blinder & Krueger, 2013; Goos
et al., 2014). In turn, the inflow of routine jobs from advanced countries
has likely reduced polarization forces in some host countries (Maloney
& Molina, 2019).

At the same time, new advancements in robotics have reduced the
prices of these technologies substantially, resulting in developed
economies re-shoring part of their production. The rapid spread of
robots in advanced economies could thus have the opposite effect,
likely reducing the share of routine workers and accelerating job
polarization in developing economies. Krenz et al. (2021) develop
a theoretical model to account for these interactions in which
automation in advanced countries increases productivity and reduces
the costs of producing in-shore. As a result, part of the production
that was previously off-shored to host areas in developing regions
may return, although not leading to an improvement in wages for
low-skilled workers or the creation of new jobs in the receiving
economies.

Below, we examine these two contrasting forces affecting
job polarization in developing economies. We first highlight
the initial findings pointing to the role of offshoring in
mitigating job polarization in developing economies. We then
point to more recent evidence about the effects of re-shoring
and conclude by discussing the specific case of multinationals (MNEs).

Global Value Chains and the routinization of tasks

Early studies on the interactions between global value chains
(GVCs) and job polarization pointed to different trajectories
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between developed and developing economies. For instance,
Das and Hilgenstock (2022) show that the participation in GVCs
might have played a role in the rising number of routine jobs in
developing economies while reducing it in advanced economies.
Similarly, Reijnders and de Vries (2018) explore the impacts of
both technological change and offshoring on the labor market for
several developed and emerging economies. Although the results
corroborate an increasing share of non-routine occupations in the
labor market of both groups, the authors find that the effect of task
reallocation via offshoring reinforces the decline in routine jobs for
advanced economies and mitigates it for developing countries. In
addition, Lewandowski et al. (2019) test the association between
the routine-intensity of occupations and technology (computer
use), globalization (specialization in global value chains), structural
change, and supply of skills in 42 countries at different stages of
development. The results generally corroborate the main drivers of
job polarization. On the one hand, technology, structural change, and
the supply of skilled workers are positively correlated with routine
intensity. On the other hand, globalization is positively associated
with routine intensity in developing countries and negatively in
developed countries, reinforcing the argument that developed
countries are offshoring routine occupations to host countries. Finally,
Lo Bello et al. (2019) study both supply (e.g., education, age, and age
structure) and demand (growth, sector structure, technology, and
trade) factors in explaining differences in the skill content of jobs and
find that technology adoption is related to de-routinization and trade
is an offsetting force in developing economies.

New trends: Reshoring, robot adoption, and job polarization

Recent findings show that automation may be linked to reshoring or
decreased offshoring, implying decreasing employment in developing
economies.8 Krenz et al. (2021) explore 43 countries and nine manu-

8Although some evidence suggests that automation in advanced economies is yet to

28



facturing sectors and provide evidence that robot adoption increases
re-shoring activity. Similarly, Kinkel et al. (2015) analyze 3,313 man-
ufacturing firms in seven European countries and find empirical evi-
dence that firms using industrial robots are less likely to off-shore their
production outside the region.

Without focusing on offshoring per se, a recent strand of the literature
also shows that robot adoption in developed economies negatively im-
pacts wages and employment in developing economies. Using data
from Mexican local labor markets between 1990 and 2015 and the In-
ternational Federation of Robotics (IFR), Faber (2020) shows a negative
impact of robot adoption on Mexican employment, with a more sub-
stantial effect for women and low-educated machine operators in the
manufacturing sector. Also exploring the Mexican labor market, Artuc
et al. (2019) show that an increase of one robot per thousand work-
ers in the U.S. lowers growth in exports per worker from Mexico to
the U.S. by 6.7 percent. However, the authors didn’t find evidence of
an impact on wage employment or manufacturing wage employment.
A. D. Kugler et al. (2020) use data from the International Federation of
Robotics (IFR) to measure automation in the U.S. and microdata from
the Colombian Social Security records to examine the effects of robot
adoption in the U.S. in the Colombian labor market. The results indi-
cate a negative impact on the employment and wages of Colombian
workers, especially for women, older and middle-aged workers, and
workers employed by SMEs.9

The role of MNEs

The literature has yet to examine the role of MNEs as drivers of job

impact FDI flows (Hallward-Driemeier & Nayyar, 2019).
9In addition to changes in world trade, the COVID-19 pandemic may also have had

an impact on the pace of digital adoption in developing economies. While initial
evidence suggests that the pandemic has accelerated the digital transformation
of businesses, it also indicates widening the digital divide(Avalos Almanza et al.,
2023).
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polarization in emerging economies. An extensive literature has al-
ready provided evidence that MNEs are more productive (Helpman
et al., 2004), pay higher wages (Hijzen et al., 2013), and employ a
higher share of non-routine jobs (Hakkala et al., 2014). In this context,
an increase in foreign direct investment (FDI) could have implications
for job polarization in host economies. For instance, Olsson and Tåg
(2017) examine the impacts of private equity acquisition on the em-
ployment composition of recently acquired firms in Sweden and finds
that workers in less productive firms in routine-intensive occupations
are twice more likely to be displaced after buyouts. In the specific case
of FDI, Hakkala et al. (2014) rely on Swedish data to study changes in
firms’ ownership and find that MNEs demand more non-routine tasks
or tasks requiring personal interactions compared to their local coun-
terparts. In addition, Amoroso and Moncada-Paternò-Castello (2018)
use data on greenfield FDI for several European economies to examine
the extent to which different types of FDI are related to job polariza-
tion. They find that low-skill FDI investments are associated with skill
downgrading, while skill-intensive FDI is more commonly associated
with skill upgrading. Only investments in ICT are related to job polar-
ization.

Yet, as for developing economies, the overall impact on the labor mar-
ket will depend on many factors. In addition to the current economic
structure and the target sectors (either low-skill or skill-intensive), the
impacts of FDI also rely on foreign firms’ ability to spur technology
adoption. Changes in ownership and the increasing share of MNEs in
already established sectors could have different impacts. For instance,
extensive literature has pointed out MNEs’ role in transferring technol-
ogy and managerial skills (for example, D. Teece, 1977). In this context,
if MNEs catalyze technology adoption across local firms, job polariza-
tion could emerge as an overall effect of more extensive technology
diffusion. In contrast, a different strand of the literature stresses that
MNEs are more likely to crowd out local firms, use technology that
is inappropriate for local circumstances, and limit technology transfer
(Oetzel & Doh, 2009). As a result, job polarization would be limited to
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a few MNEs, and the extent of polarization would depend on MNEs’
share in total employment.

Taking stock

Our literature review indicated a significant decline in routine
intensity in many developing economies, although with little
evidence of job polarization. In addition, section 2.3 has explored
the reasons for such a lack of polarization in (most) emerging and
developing economies and has highlighted some of the main gaps in
the literature. We have stressed the need for empirically examining
the main drivers of the slow pace of polarization, including countries’
participation in GVCs.

A critical argument in our discussion is that structural change and
GVC participation can counterbalance the effects of technology adop-
tion on labor demand for routine tasks in emerging and developing
countries. Yet, we do not have empirical evidence on this particular
process. Also, the observed differences across countries, also at a sim-
ilar level of income or technological knowledge, raise many questions
and suggest that further evidence should explore more disaggregated
information. For instance, is there within-sector polarization in low-
and middle-income countries? Has the process of industrialization
curbed the aggregate routine intensity among those economies? Did
occupations become less intense in routine tasks over time? Lastly, has
the falling demand for routine tasks negatively impacted workers?

Answering these questions (and many others) can significantly impact
the development of better-adapted technological, educational, and la-
bor market policies. The following section discusses the opportunities
and challenges associated with technology policies in developing and
emerging economies and the implications in terms of employment pat-
terns and policies.
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2.4 The need for more studies based on microdata
to guide policymaking

As mentioned by Case and Deaton (2020, p.261), “[G]lobalization and
automation are ultimately beneficial, but they create disruption, espe-
cially in the short run, and many less skilled workers lose out.” This
conflicting impact of technology poses additional challenges to pol-
icymakers, highlighting the need for complementarity in public poli-
cies. For instance, while encouraging and facilitating technology adop-
tion, labor market de-routinization calls for robust social protection
systems to help workers with low job mobility, especially more dis-
advantaged groups. For instance, Lewandowski et al., 2017 study the
intergenerational disparities in the de-routinization of jobs in 12 Euro-
pean countries and find a significant relationship between age groups
and shifts in the task composition. The decreasing demand for routine
occupations also challenges existing education and training systems to
respond to changing skill demands, especially given the fact that low-
educated workers are commonly more affected by the routinization
process (Martins-Neto et al., 2022). It is crucial to adequately equip
the labor force with the necessary skills to guarantee maximum bene-
fits from recent technological advancements, stimulating the develop-
ment of competencies with increasing demand - an excellent example
of this is the soft-skills training for employees in the hotels and accom-
modation industry (for instance, the training from Quality Assurance
Agency, 2015 in the UK).

Ultimately, designing better-fitted policies for skill development, such
as programs up-scaling digital skills, vocational training, and better-
adapted social protection systems, requires detailed microeconomic
studies. Researchers need to move from aggregate measurements of
polarization into micro-level information to examine differences across
firms and workers, including assessing workers’ ability to transition
from displacement to re-employment in high-paying jobs in differ-
ent institutional contexts. This calls for more systematic and frequent
micro-level data collection in developing economies to better under-
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stand the task content of occupations specific to each country as well
as constraints and patterns of technology adoption at the firm level.

The remainder of this section presents the main shortcomings that limit
a more detailed overview of the effects of technology adoption in low-
and middle-income countries. First, we discuss the available mea-
sures of technology adoption (section 2.4.1) and tasks (section 2.4.2)
and highlight the need for longitudinal and micro-level data. Follow-
ing this discussion, we point out some of the main gaps in the (empiri-
cal) literature, focusing on those that could vastly improve our under-
standing and facilitate the development of appropriate public policies
(section 2.4.3).

2.4.1 Measuring firm-level technology adoption

Emerging and developing economies lack information on technology
adoption at disaggregated levels. Efforts to expand our knowledge
in this direction would facilitate a finer understanding of the compo-
sition effects of technology adoption and expand our knowledge of
the main barriers preventing the adoption of more advanced technolo-
gies among those economies. Some recent efforts have provided new
evidence and data in this direction. For instance, a new survey by
the World Bank offers granular information on the adoption (exten-
sive margin) and use (intensive margin) of technologies for both general
business functions and sector-specific business functions for several
emerging and developing economies. Even though there is significant
heterogeneity across firms, the results indicate that, on average, firms
are adopting manual, pre-digital technologies (Cirera, Comin, Vargas
Da Cruz, Lee, & Soares Martins Neto, 2021b). In addition, a novel
database from UNIDO offers detailed information on the adoption of
production technology in developing economies (see, for instance, Del-
era et al., 2022). The results also point to few firms adopting very ad-
vanced technologies and large heterogeneity among firms.

33



Chapter 2. Is There Job Polarization in Developing Economies? A
Review and Outlook

However, the continuous evolution of technologies (Dosi, 1982) makes
it challenging to measure their adoption. Indeed, firms may need to
maintain, upgrade or adapt the technologies embedded in their pro-
duction processes over time - then, which of these decisions should
be considered as technology adoption per se? The study of such dy-
namic systems, i.e. how technologies and their adoption evolve and
how firms, workers and their skills coevolve, requires longitudinal
data that allows tracking firms over time. Further data and research
on this would allow improving our understanding of the relation be-
tween firm characteristics, local availability of skills, and technological
paradigms in emerging and developing economies.

2.4.2 Measuring the task content of jobs across countries

Data collection and integration at a decentralized level with a detailed
skill mapping system will help local economies to shape policies to
foster skill upgrading and place themselves in a better position to
respond to the threats and opportunities brought by technological
change.

Measuring tasks with the O*NET database

The literature on RBTC explicitly explores differences in the task com-
position across occupations to study the labor market consequences
of technological development. Within this approach, two main meth-
ods were developed, as also illustrated in column 4 of Table 2.2: the
first one using the O*NET database, and the second one building on
information about tasks from the PIAAC and/or STEP surveys (see
also Table 2.2 for a general comparison of these measures). The first
approach focuses on occupational level tasks, which provide informa-
tion on job characteristics only at the occupational level but not at the
worker level. Specifically, authors have used the Dictionary of Occupa-
tional Titles (DOT) survey and its updated version, the O*NET. Using
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the O*NET dataset, Autor et al. (2003) developed a “routine task in-
tensity” index based on the routine, abstract, and manual task content
for each occupation.10 The use of the O*NET database allowed for a
significant transition in the literature, as we are now able to measure
the tasks performed in jobs rather than simply the educational level of
workers performing them.11

This measure has been adopted also in the case of studies on
developing countries, under the assumption that the task content
across occupations is similar across countries.12 However, the
assumption that the task content of occupations is similar between
countries is obviously a strong one. Differences in technology use
are likely to result in different job tasks performed by a machine
operator in the U.S. and those performed by a machine operator in a
low-income country.

Measuring tasks with the PIAAC and STEP surveys

10The O*NET database covers nearly 1,000 occupations in the U.S. and provides oc-
cupational level task indexes estimated by experts, who rank occupations based
on workers’ interviews. Autor et al. (2003) selected a number of relevant variables
for each of the five conceptual categories: non-routine analytic tasks, non-routine
interactive tasks, routine cognitive tasks, routine manual tasks, and non-routine
manual tasks. For instance, in measuring routine manual activity, the authors use
the variable FINGDEX, an abbreviation of Finger Dextery.

11The literature on developed economies has also explored the survey of employees
carried out by the German Federal Institute for Vocational Training (Bundesinstitut
für Berufsbildung; BIBB) and the Research Institute of the Federal Employment
Service (Institut für Arbeitsmarkt- und Berufsforschung; IAB) (see, for instance,
Spitz-Oener, 2006, for additional details). However, the database only includes
binary information on whether the worker either performs a specific task or not,
and aggregate measures are based on the share of each category of tasks (abstract,
routine and manual). In our review in section 2.2, authors have opted for using the
O*NET database when studying job polarization in developing economies.

12For example, World Bank (2016) and Maloney and Molina (2019) follow Autor and
Dorn (2013)’s classification and define 9 groups of occupations coded according
to the major categories in the International Standard Classification of Occupations
(ISCO) to study job polarization (see also Aedo et al., 2013 and Arias et al., 2014).
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In response to this caveat, a second approach has used worker-level
information provided by new household surveys such as the Program
for International Assessment of Adult Competencies (PIAAC) by the
Organisation for Economic Co-operation and Development (OECD)
and the Skills Toward Employment and Productivity (STEP) by the
World Bank. Both surveys attempt to measure tasks and skills across
the developing world.13

Dicarlo et al. (2016) construct a measure of the skill content of occu-
pations for ten low and middle-income countries using the STEP skill
measurement surveys and compare it with that of the United States.
A number of exciting facts result from this comparison: (i) first, along
the skill dimension, occupations are ranked similarly across countries;
(i) second, workers in higher-income countries use analytical and in-
terpersonal skills more frequently; (iii) lastly, there are significant dif-
ferences in the skill content across countries, so that assuming that the
U.S. skill content is a good proxy for developing countries is wrong
and likely to impact the estimates. Messina et al. (2016) also employ
the STEP Surveys conducted in Bolivia and Colombia as a proxy for
the routine/abstract/manual content of jobs in Latin America. They
show that Latin American occupations exhibit a higher manual con-
tent than similar occupations in the United States. Similar results are
discussed in Lo Bello et al. (2019), who apply the STEP survey for a
more significant number of developing countries. The authors argue
that indexes based on U.S. data do not provide a fair approximation of
routine cognitive and non-routine manual skill content of jobs in de-
veloping countries. Lo Bello et al. (2019) also point out two caveats in
using the STEP Surveys. First, as estimates are based on workers’ re-
sponses, it is assumed that workers do not differ in their view of tasks
performed at work. However, this assumption may not hold as most
questions are subjective. Second, the survey focuses on urban areas,
thus under-representing the agricultural sector.

13The use of direct worker-level information on the specific tasks performed on the
job was pioneered by Handel (2008), who developed the STAMP survey.
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Lewandowski et al. (2019) combine the STEP and PIAAC surveys and
develop a harmonized measure of the task content of occupations
based on Acemoglu and Autor (2011).14 The authors find that
workers in developed economies perform mostly non-routine
cognitive analytical and non-routine cognitive interpersonal tasks. In
contrast, workers in developing economies perform routine tasks
more intensively. Moreover, Lewandowski et al. (2020) explore the
PIAAC survey for several countries and develop a regression-based
methodology to predict the country-specific routine task intensity
of occupations, thus overcoming the lack of survey data for several
large developing economies, such as Brazil and India. Besides
corroborating that occupations in developing countries are more
routine intensive, the authors also find that from 2000 to 2017, the gap
in average routine-task intensity with respect to developed countries
has increased. In contrast, Gasparini et al. (2021) use harmonized
national household surveys for Latin America’s six largest economies
combined with task content based on information from the PIAAC
surveys conducted in Chile, Mexico, Peru, and Ecuador. Applying
the mean results derived from these four economies, the authors
find a strong linear correlation between their measure of routine
intensity and the routine task index developed by Autor and
Dorn (2013). Finally, Caunedo et al. (2021) construct a measure of
occupational task content using the PIAAC and STEP surveys from
2006 to 2015 and find that developed countries use non-routine
analytical and interpersonal tasks more intensively than developing
countries. In contrast, developing countries use routine cognitive
and routine-manual tasks more intensively. In addition, the authors
show that countries are converging to similar task intensities over this
period.

Within-occupations variance

14Lewandowski et al. (2020) also present different task measures based on STEP and
PIAAC data from other authors.
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Another important aspect besides differences in task intensity across
occupations is the extent of within-occupations variance in tasks. As
discussed above, both DOT and O*NET provide information only at
the level of occupations, not workers. Therefore, the implementation
of worker-level surveys, including the PIAAC and STEP surveys
discussed above, allow us to study within-occupations differences.
For example, Autor and Handel (2013) explore data from the
Princeton Data Improvement Initiative (PDII) survey (former STAMP)
and document that tasks vary substantially within occupations in the
U.S. Stinebrickner et al. (2019) take advantage of data from the Berea
Panel Study and explore the contribution of task content to wage
growth, finding that high-skilled tasks pay substantially more than
low-skilled tasks. In the context of developing economies and to the
best of our knowledge, Saltiel (2019) is the only paper to consider the
returns to worker-level task measures. The author explores work-level
data from the STEP survey for 10 low- and middle-income countries,
finding substantial variance in task intensity within occupations and
suggesting that non-routine analytic and interpersonal tasks are
associated with sizable wage premiums. In addition, the empirical
findings suggest that more educated workers sort into occupations
with higher non-routine task content.

Evolution of tasks over time

Despite the recent developments in task measurement across the de-
veloping world, the literature still lacks information on the evolution
of tasks. Not only do occupations differ across countries, but they also
evolve over time. For instance, using data from job ads from the Boston
Globe, the New York Times, and The Wall Street Journal, Atalay et al.
(2020) demonstrate that words related to routine tasks have declined in
frequency over the period from 1950 to 2000 in the U.S. Furthermore,
Garcia-Couto (2020) harmonizes data from three different rounds of
the Dictionary of Occupation Title (DOT) and the Occupational Infor-
mation Network (O*NET) and finds that the cognitive intensity of oc-
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cupations has increased during the last decades and that a significant
share of changes in wages is due to increases in the return and the in-
tensity of cognitive tasks. Similar trends are also observed by Cassidy
(2017) and Spitz-Oener (2006), who use the German Qualification and
Career Survey conducted by Federal Institute for Vocational Education
and Training (BIBB) and the Institute for Employment (IAB).

As for developing economies, it remains unclear whether (and to what
extent) changes in tasks within occupations are similar to what we ob-
serve in advanced economies. Most analyses still rely on occupational
and sector composition information to determine the extent of polar-
ization without a clear understanding of changes in task requirements
over time. An obvious reason for this gap is the lack of longitudi-
nal data sources, which subsequent rounds of the STEP and PIAAC
surveys could overcome. Thus, in addition to expanding the num-
ber of countries covered in the study, especially emerging economies,
it is also critical to gather information on worker-level tasks within
countries over time. Another way forward would be to use job ads
from job platforms to study the demand for digital skills and non-
routine tasks in developing countries. Following the methodology
proposed by Atalay et al. (2020), researchers could explore other plat-
forms to study the evolution of tasks demanded in some emerging
economies. Yet, researchers should also be aware of some issues in
using job ads data, particularly that they under-represent certain sec-
tors and occupations, for instance, the construction sector and occu-
pations related to the production and transportation of goods. In ad-
dition, these job ads might not capture jobs from the informal sector,
which represents a significant share of the workforce in developing
and emerging economies.15

15Note, however, that some statistical offices from these countries make an important
effort to record informal work and related occupations. For instance, Firpo et al.
(2021) explores Brazil’s formal and informal sectors when discussing job polariza-
tion.
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2.4.3 Future research directions

As discussed in section 2.3, there is little evidence of the underlying
mechanisms explaining the slow polarization pace in low- and
middle-income countries. Geographical, sectoral, and firm
heterogeneities have largely been overlooked, as most studies have
focused on aggregate measures. In many cases, the lack of research
stems from appropriate information. In this context, firm-level details
on the adoption of more advanced technologies and longitudinal
measures of tasks as described above will enable a significant leap in
the literature.

In addition, tracking workers’ transitions across occupations and in
and out of unemployment could improve public policies and help de-
sign or improve a safety net minimizing the harms of technological
change. For instance, the literature has not explored the extent to
which the declining demand for routine occupations takes place within
worker categories or through changes in the composition of workers.
If workers can easily transition between routine and non-routine occu-
pations, technological unemployment becomes less of an issue.

Public policies can play a crucial role if job polarization occurs through
workers’ composition changes. For instance, Cortes et al. (2020) show
that most of the decline in routine occupations in the U.S. is linked
to the inflow rates to routine employment (from unemployment and
non-participation, i.e. less workers starting a routine job) rather than
the outflow rates (more routine workers losing their job). Moreover,
Maczulskij (2019) explores Finnish data and shows that most of the rel-
ative increase in non-routine occupations compared to mid-level rou-
tine occupations is a within-worker phenomenon in the decomposition
analysis. In contrast, the share of low-skilled non-routine manual tasks
has increased mainly through entry dynamics.

Additionally, we need a more detailed analysis of the effects of labor-
displacing automation on workers’ labor prospects, especially in the
context of increasing digitalization. One crucial empirical question
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concerns which types of workers have a more pronounced decline in
wages and increase in unemployment duration following the event of
displacement. Despite the long-term drop in demand for routine tasks,
little is known about the short-term impacts of technological change at
the individual level, and less so in the context of developing coun-
tries. Although most empirical results point to a lack of polarization
among those economies, it is still unclear whether workers previously
employed in routine-intensive occupations are already facing the neg-
ative implications of automation.

In the context of advanced economies, a number of studies show that
automation increases the probability of incumbent workers separating
from their employers (Bessen et al., 2019), and that displaced workers
in routine-intensive occupations are more likely to face long-term
unemployment and a decrease in wages and number of days worked
(Bessen et al., 2019; Blien et al., 2021; Goos et al., 2021). However,
the literature on developing economies is much thinner. Expect for
Martins-Neto et al. (2022), who finds that displaced individuals in
routine-intensive occupations face longer unemployment rates in
Brazil, no other study has sought to investigate the implications of
routinization at the individual level in the context of developing
countries. A detailed account of the effects of displacement on
different kinds of workers could help in assessing the differential
impacts on employment and income distribution. This in turn will
help to categorize more disadvantaged workers, thereby formulating
specific policies for various categories (including unemployment
benefits).

Therefore, while the literature on job polarization in developing
countries is relatively new, the research agenda should concentrate on
understanding the factors behind the slow pace of job polarization and
examining the heterogeneities of this process, especially those related
to firm-level differences in technology adoption and the adverse
impacts at the worker level. As discussed in this section, researchers
could expand our understanding of the many heterogeneities
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surrounding labor market trends in emerging economies while
exploring matched employer-employee databases.16

Two other dimensions that require further research are the roles of
the type of technology and the way technology adoption affects
firms’ internal organization. First, employment dynamics depend
on the nature of technologies, i.e., which skills they complement
or substitute. This has been the focus of several recent works
highlighting the new patterns linking digital technologies and
demand for skills in advanced economies (Acemoglu & Restrepo,
2020; Frey & Osborne, 2017). However, such a relationship is also
mediated by firms’ own organizational routines and adaptations,
which affect how technologies remodel production and workers’ tasks
within firms (Ciarli et al., 2021; Dosi & Nelson, 2010; Dosi & Virgillito,
2019). Firms intentionally invest in organizational arrangements,
practices, and routines to create new business models in response
to the changing and increasingly complex technological landscape
(Colfer & Baldwin, 2016). The employment effects of technology in
developing and emerging economies could therefore be significantly
related to the complex interplay between technologies, innovation,
and skills driven by organizational restructuring, highlighting the
need for urgent attention and more research in this area.

2.5 Conclusions

While studying the impact of technological change on jobs and how
it affects economies and societies, one must recognize the existing dif-
ferences among countries that emerge from different socioeconomic
systems, levels and distributions of income, institutional contexts, and
industrial structures. The nature and long-term impact of technologies
created and adopted in different economies very much relate to the
existing institutional and political contexts.

16Such data is available in several developing economies, including Brazil, Mexico,
South Africa, Morocco, and Tunisia.
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In this review, we have highlighted the impacts of technology adop-
tion on the labor market, focusing on the extent of job polarization in
developing and emerging economies. The evidence synthesis suggests
that, in advanced economies, the rapid spread of ICTs and robots has
resulted in increasing inequality and the “hollowing out” of the occu-
pational distribution, with a significant decline in the demand for rou-
tine occupations (Acemoglu & Autor, 2011; Spitz-Oener, 2006). Yet,
in economies at lower levels of income per capita, the pace is con-
siderably slower, with little evidence of labor market polarization or
labor-displacing automation (Firpo et al., 2021; Gasparini et al., 2021;
Maloney & Molina, 2019).

In section section 2.3, we explored the possible mechanisms slowing
job polarization in developing economies, suggesting the critical
role of firms’ and workers’ capabilities in slowing technology
adoption and the off-shoring of routine-intensive jobs from advanced
economies to some host developing countries. Other moderating
aspects include lower wages and different economic structures
in emerging economies. We also highlighted the need for more
research on the moderating sources, especially those associated
with differences in the relative cost of inputs (lower wages in
developing countries) and the role of MNEs in slowing or spurring
job polarization.

Finally, in section 2.4, we have stressed the need for micro-level
studies and the exploration of the different mechanisms preventing
job polarization in those economies. These studies would enhance our
understanding of the main barriers to technology adoption and the
adverse effects at the worker level, thus allowing for the development
and implementation of better-adapted policies fitted to developing
and emerging economies’ specific contexts.
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nological change and employee outcomes after mass layoffs: Evidence from Brazil.
Industrial and Corporate Change, forthcoming.
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Abstract
We investigate the impact of “routinization” on the labor outcomes
of displaced workers. We use a rich Brazilian panel dataset and an
occupation-task mapping to examine the effect of job displacement in
different groups, classified according to their tasks. Our main result
is that following a layoff, workers previously employed in routine-
intensive occupations suffer a more significant decline in wages and
more extended periods of unemployment. As expected, job displace-
ment has a negative and lasting impact on wages. Still, workers in
routine-intensive occupations are more impacted than those in non-
routine occupations in terms of wages (an increase of one point in the
routine-intensity index results in a further decline of 2 percent in work-
ers’ relative wages) and employment. Furthermore, our results indi-
cate that workers in routine-intensive occupations are more likely to
change occupations after the shock, and those who do not switch oc-
cupational fields suffer a more significant decline in wages. Lastly,
even though the loss of employer-specific wage premiums explains
13 percent of displaced workers’ drop in wages, it does not explain
routine-intensive workers’ more substantial losses.

JEL: J24, J63, O54
Keywords: routine task intensity; Job displacement; Mass layoffs; Oc-
cupational mobility; Brazil

46



3.1 Introduction
Creative destruction has been referred to as the engine of modern
economic growth (Aghion et al., 2021; Aghion & Howitt, 1992; Romer,
1990; Schumpeter, 1942) and a key driver of productivity differences
across countries (Comin & Hobijn, 2010; Comin & Mestieri, 2018;
Easterly & Levine, 2001). Central to the process of creative destruction
is technological change and how resources are reallocated to firms
that are able to disrupt markets with new technologies. Technological
change has profound effects on labour markets (Barbieri et al., 2019;
Piva & Vivarelli, 2018; Van Roy et al., 2018), and furthermore these
effects are not homogenous. In recent decades, a significant amount of
evidence has documented the increasing polarization and inequality
in the labor markets, especially in developed economies, with the
share of high-skill, high-wage, and low-skill, low-wage occupations
growing relative to those in the middle of the distribution. This
“hollowing out” of the middle of the wage distribution has been
commonly associated with automation and changes in the task
requirements in production. The routine-biased technological change
(RBTC) hypothesis argues that computers and robots have diminished
the demand for routine, repetitive tasks in production, which usually
concentrates among middle-earning workers (Acemoglu & Autor,
2011; Autor et al., 2003; Goos et al., 2009).

The phenomenon of job polarization and its association with technol-
ogy adoption has been largely tested and confirmed in the context of
advanced economies (see, for instance Acemoglu & Autor, 2011; Autor
et al., 2003; de Vries et al., 2020; Dustmann et al., 2009; Fonseca et al.,
2018; Goos et al., 2009; Michaels et al., 2014; Spitz-Oener, 2006). The
picture is less clear in developing economies, however, where indica-
tions of job polarization are considerably weaker.1

1Maloney and Molina (2019) and Das and Hilgenstock (2022) find little evidence of
labor market polarization or increased inequality in developing countries, either
in absolute employment levels or workforce share. Gasparini et al. (2021) find
similar results for Latin America’s six largest economies, showing no evidence for
polarization in the labor market. Martins-Neto et al. (2021) offer a literature review
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Figure 3.1: Evolution of routine task intensity in Brazil

Source: Own elaboration. The routine task intensity (RTI) index is based on Goos
et al. (2014) and measures the relative importance of routine tasks among all tasks
associated with a given occupation. The following occupations are dropped: leg-
islators and senior officials (ISCO 11); teaching professionals and teaching as-
sociate professionals (ISCO 23 and 33); skilled agricultural and fishery workers
(ISCO 61); and agricultural, fishery and related laborers (ISCO 92).

Despite this lack of apparent “hollowing out” in the middle of the dis-
tribution consistent with job polarization, the empirical literature sug-
gests a decline in routine task intensity across countries and that tech-
nological progress has diminished the demand for routine-intensive
occupations in developing countries – which is a crucial precondition
for polarization. For instance, Gasparini et al. (2021) shows a decline in
job growth in routine-intensive occupations in Latin America’s largest
economies, and Reijnders and de Vries (2018) document an increasing

of job polarization in developing economies.

48



share of non-routine occupations in developing countries’ labor forces.
In Brazil, Firpo et al. (2021) shows that despite the lack of job polariza-
tion, the routine task intensity of occupations declined considerably.
Figure 3.1 highlights this result, displaying the decline of routine tasks
in Brazil from 2006 to 2018.

Regardless of polarization, a critical question for developing countries
is the implications of this decline in routine-intensive occupations in
labor outcomes, where the extent of job insecurity and informality is
larger, and wages are critical for the income distribution. It remains
unclear whether workers employed in routine-intensive occupations
are already facing the adverse effects of this process, which groups of
workers are experiencing the adverse effects more strongly, and how
large this effect is. So far, most studies in developing economies have
focused primarily on aggregate outcomes such as changes in occupa-
tional employment and the extent of job polarization, thus failing to
observe workers’ transitions across occupations and the effects on in-
dividuals’ wages and unemployment duration. This paper helps fill
this gap.

One challenge when measuring the impact of exogenous changes in
the demand for routine tasks on labor outcomes is the fact that it is dif-
ficult to disentangle the effects of “routinization” from endogenous de-
cisions and responses from workers. Therefore, we employ an event-
study approach (Blien et al., 2021; Couch & Placzek, 2010; Jacobson
et al., 1993; Raposo et al., 2019), treating mass layoffs as an exogenous
shock. Specifically, to better identify the role of “routinization” on em-
ployment outcomes, we use this exogenous sizable negative shock -
mass layoffs - and explore how re-employment probabilities and wage
dynamics vary by the level of occupations’ routine task intensity.

We contribute to the labor economics literature on outcomes across
displaced workers. Following the seminal work of Jacobson et al.
(1993), studies have found that workers face a significant decline in
salaries after displacements, with sustained effects ranging from
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3%-25% depending on the region and methodology.2 Using Brazil’s
matched employer-employee data set (RAIS) in the mid-1990s,
Menezes-Filho (2004) finds that high-tenure workers suffer a
long-term loss in monthly wages of about 20% per year. Saltiel
(2018) found similar results for Brazilian labor market outcomes over
2002-2012: affected workers suffer annual earnings losses exceeding
15-20%, and the effect persists through the medium term. We
contribute to this literature by examining a number of heterogeneities
across workers’ groups, while also exploring a larger and more recent
sample. For instance, Menezes-Filho (2004) focuses on male workers
in the state of São Paulo and Saltiel (2018) includes only displaced
workers that do not face longer periods of unemployment, thus
underestimating the impacts of displacement. In addition, following
Lachowska et al. (2020), Fallick et al. (2021), and Bertheau et al. (2022),
we estimate the loss of employer-specific wage premia.

We also contribute to the recent literature in labor economics that in-
vestigates the effects of technological change and occupational differ-
ences across displaced workers. Bessen et al. (2019) explore the direct
impact of technology adoption at the firm level on workers’ probability
of separation from their current jobs and their future labor prospects.3

They find that automation at the firms increases workers’ separation
risk, and that displaced workers are more likely to work fewer days in
subsequent years. However, unlike our analysis, they do not explore
differences between workers previously employed in different occupa-
tions. Goos et al. (2021) examined survey data of workers previously
employed in a large Belgian automotive plant. After the plant closed,
and in line with RBTC, workers in routine-intensive occupations were
less likely to find a job 1.5 years later. Additionally, for those work-
ers who found a job, the non-routine content of job tasks was higher,
wages were lower, and permanent jobs were less frequent. In line with

2See e.g. Couch and Placzek (2010), Eliason and Storrie (2006), Hijzen et al. (2010),
Huttunen et al. (2006), Ichino et al. (2017), Kaplan et al. (2005), Menezes-Filho
(2004), and Raposo et al. (2019).

3See also Domini et al. (2021, 2022a).
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our results, they find a more significant impact on wages and employ-
ment for displaced workers previously employed in routine-intensive
occupations (compared to their non-routine-intensive counterparts).
However, they focus on a case study of one firm, which raises ques-
tions about possible selection bias, endogeneity, and generalizability
of the results. Closest to our paper is Blien et al. (2021)’s analysis of
German displaced workers (1980-2010), which tests whether workers
in routine intensive occupations are disproportionately affected by job
separation. They find evidence that workers in routine occupations
undergo more considerable and more persistent wage losses and that
the difference compared to non-routine workers increased over time.

An important contribution of this study is to examine the impact of
RBTC in the context of a middle-income country (i.e. Brazil). Brazil
presents an interesting case for comparison for various reasons be-
sides the previously-mentioned weaker evidence of job polarization.
First, labor market institutions have exacerbated labor market frictions
and mismatches. For instance, hiring costs and firms’ entry costs in
the form of taxes and bureaucracy burden are large in Brazil (Ulyssea,
2010), such that workers are more likely to bear the brunt of adjust-
ment costs associated with shocks (Hollweg et al., 2014). Second, mini-
mum wage policies have helped decrease wage inequality significantly
in the last decade, and the wage gap between low and high skilled
workers narrowed significantly (Alvarez et al., 2018; Firpo et al., 2021).
Third, productivity growth has remained stagnant, suggesting weak
technological change. Fourth, in many developed economies, partic-
ipation in GVCs spurred “routinization”. However, Brazil remained
relatively isolated from global offshoring, with low participation in
GVCs and services trade due to restrictive trade policies and lack of
skills. This combination of labor institutions and the lack of interna-
tionalization of Brazilian companies makes the country an interesting
case study to explore “routinization.”

An additional contribution is the heterogeneity analysis, including dif-
ferences by gender, tenure, and firms’ size. These dimensions seem to
play a critical role in explaining the adverse effects of displacement.
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Also, we explore some possible mechanisms explaining the larger de-
cline in wages, especially the roles of demand, job switchers, and firms’
heterogeneity.

We observe a significant and long-lasting negative impact of job dis-
placement on workers’ wages and employment. Based on Jacobson
et al. (1993)’s methodology, there is a large and statistically significant
wage loss associated with job displacement. Workers in the treated
arm see their relative monthly earnings decline over 20% in the year
following the layoff and up to 5% five years after the event. The shock
also affects workers’ relative employment, as displaced individuals
work over 15% less in t + 1 and 3% less five years after the layoff.
We also find that the loss of employer-specific wage premiums ex-
plains 13% of the decline in wages for the treated group. We then
test for differences between routine and non-routine workers. First,
we find strong evidence that workers in routine-intensive occupations
are more impacted than those in non-routine occupations. An increase
of one point in the routine-intensity index results in a further decline
of 2% in workers’ relative wages and an increase of 1% in the chance of
unemployment. Second, heterogeneity analysis suggests a more sig-
nificant decline in wages for male, less educated, and long-tenured
individuals in routine intensive occupations. In addition, our find-
ings suggest that the negative impact is larger in sectors with a larger
decline in the demand for routine tasks. Third, workers in routine-
intensive occupations are more likely to change occupations after the
shock. However, those unable to switch fields experience a more sig-
nificant decline in wages. Lastly, we find that the loss of employer-
specific wage premia does not explain routine-intensive workers’ more
substantial reduction in wages.

The paper is structured as follows. Section 2 describes the data sources
and defines involuntary displacement events. Section 3 describes the
empirical strategy. Section 4 estimates the impact of job displacement
in Brazil and examines the heterogeneity across occupational groups,
especially routine-intensive occupations. Section 5 examines the het-
erogeneity across occupational groups and investigates the importance
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of the demand for routine occupations in explaining labor outcomes
from displacement. Section 6 concludes.

3.2 Data and sample construction

3.2.1 Data

To estimate the impact of displacement on wages in Brazil, we use the
RAIS database (Relação Anual de Informações Sociais) from 2006 to
2018. This is an administrative database from the Brazilian Ministry of
Economy considered a high-quality census of the Brazilian formal la-
bor market. The census includes all establishments nationwide with at
least one registered worker — even though we carry our analysis at the
establishment level, we refer to firms and establishments interchange-
ably. The data includes over 40 million employees per year, matched
with firm information, including location and industry, and workers’
gender, age, education, employment status, wages, type of contract,
tenure, and hiring date. RAIS reports compensation as the monthly
average wage received by each worker (including regular salary pay-
ments, holiday bonuses, performance-based and commission bonuses,
tips, and profit-sharing agreements).

We restrict our analysis to employees in private establishments, and fo-
cus on workers displaced in 2009-2013 due to establishments’ closure
or mass layoffs (see definition below). We observe workers’ outputs
three years before displacement and five years following the event.
This period includes both a moment of fast national economic growth
(2009-2012) and a period of economic stagnation with recessions in
2015 and 2016 when GDP dropped by 3.5% and 3.2%, respectively.
Thus, for workers displaced in 2009, the booming labor market should
have facilitated their reinsertion. In contrast, for workers displaced in
2013, the entire period following the shock is a period of wage stagna-
tion and increased unemployment.
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The database includes information on each worker’s occupation,
coded according to the Brazilian Code of Occupations (CBO). To
measure the task content of occupations, we map information from
the O*NET database to the CBO. Despite the increased availability
of surveys collecting information on tasks performed by individual
workers, including the Program for International Assessment of
Adult Competencies (PIAAC) by the Organisation for Economic
Co-operation and Development (OECD) and the Skills Toward
Employment and Productivity (STEP) by the World Bank, information
is not available for the case of Brazil. Therefore, to explore routine
task intensity in developing economies, many authors have opted
to use the O*NET database, assuming that the task content across
occupations is similar across countries (e.g., Aedo et al., 2013; Arias
et al., 2014; Maloney & Molina, 2019; World Bank, 2016).

Nevertheless, recent research has indicated that the task content may
differ across countries and is notably correlated with income per capita
(Lewandowski et al., 2019). For a given occupation, workers in high-
income countries perform fewer routine tasks than those in poorer
economies. Although we agree that country-specific measures of rou-
tine task intensity would improve the estimates, using O* NET is a
reasonable approximation for Brazil for two main reasons. First, the
central assumption in our paper is that the ranking of occupations in
terms of routine task intensity may not vary significantly across coun-
tries. In other words, if technology adoption reduces the routine con-
tent of occupations, we assume that it equally affects all occupations,
resulting in a similar ranking across countries - a manager will per-
form fewer routine tasks than an office clerk, irrespective of the coun-
try. This assumption is empirically confirmed by Dicarlo et al. (2016),
who indicates that rankings of occupations along the skill dimensions
are quite stable across countries. Moreover, Brazil is an upper-middle-
income country. As a result, differences in routine task intensity for a
given occupation would not be as significant.

Therefore, we follow Goos et al. (2014), who mapped the routine task
intensity index (RTI) to ISCO-88 occupations. The RTI measure is
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based on Autor et al. (2003) and combines five task measures from
the US Dictionary of Occupational Titles (DOT) to produce three
aggregate measures: Manual, Routine, and Abstract task measures.4

The RTI index takes the difference between the log of Routine tasks
and the sum of the log of Abstract and the log of Manual tasks. We
map these occupations to the Brazilian Code of Occupations. Table 3.1
describes the occupations ranked by the level of routine tasks; RTI is
highest at 2.24 for office clerks (41) and lowest at -1.52 for managers of
small enterprises (13).

4Specifically, Manual tasks relate to the occupation’s demand for “eye-hand-foot co-
ordination” (EYEHAND), and Abstract tasks refer to the simple average of oc-
cupations’ managerial and interactive tasks (DCP) and mathematical and formal
reasoning requirements (GED-MATH). In contrast, the Routine task measure is a
simple average of the following variables: “set limits, tolerances and standards”
(STS), which measures an occupation’s demand for routine cognitive tasks; and
“finger dexterity” (FINGDEX), which measures an occupation’s use of routine mo-
tor tasks.
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Table 3.1: Routine-intensity by occupation

Occupation RTI Index

Managers of small enterprises -1.52
Drivers and mobile plant operators -1.50
Life science and health professionals -1.00
Physical, mathematical and engineering professionals -0.82
Corporate managers -0.75
Other professionals -0.73
Personal and protective service workers -0.60
Other associate professionals -0.44
Physical, mathematical and engineering associate professionals -0.40
Life science and health associate professionals -0.33
Extraction and building trades workers -0.19
Sales and service elementary occupations 0.03
Models, salespersons and demonstrators 0.05
Stationary plant and related operators 0.32
Laborers in mining, construction, manufacturing and transport 0.45
Metal, machinery and related trade work 0.46
Machine operators and assemblers 0.49
Other craft and related trade workers 1.24
Customer service clerks 1.41
Precision, handicraft, craft printing and related trade workers 1.59
Office clerks 2.24

Source: Own elaboration. The following occupations are dropped: legislators and
senior officials (ISCO 11); teaching professionals and teaching associate profes-
sionals (ISCO 23 and 33); skilled agricultural and fishery workers (ISCO 61); and
agricultural, fishery and related laborers (ISCO 92). The routine-intensity (RTI) in-
dex is based on Goos et al. (2014).

56



3.2.2 Sample construction and matching

Our identification strategy rests in examining the impacts of a sudden
exogenous shock on workers’ career prospects. Specifically, we look at
individuals displaced due to establishments’ closures or mass layoffs.
Yet, the RAIS database does not carry information on the year an es-
tablishment closes. Instead, as is commonly done in the literature, we
use the establishment’s unique identifier and define exits when the em-
ployer identifier ceases to exist (see, for instance Schwerdt et al., 2010).
For example, we assign an establishment in 2010 as closed if it appears
in our database in the years preceding 2010 and disappears afterward.
Furthermore, we define mass layoffs when 30% or more workers are
laid off between t − 1 and t. We impose an additional restriction to
avoid capturing seasonal changes in employment and exclude cases
in which employment fluctuated by 20% in the two years before the
mass layoff, or the firm size went above 150% compared to the year of
the layoff. To put it simply, we exclude cases in which the trend was
already perceived in the years before or when employment recovers
in the years following. In addition, some of these events might not be
actual closures. Establishments can change their identifier in time or
spin-off into different companies. We impose an additional restriction
to capture these cases and exclude cases in which more than 50% of the
employees continue under a new employer identifier.5

As it is commonly done in the mass layoff literature, we restrict our
sample to full-time prime-age workers, focusing on individuals older
than 25 or younger than 50 years in the first year of analysis (for in-
stance, for workers displaced in 2010, the first year of study is 2007).
The reason to restrict workers’ age is that younger workers can be
working as apprentices or interns, while older workers can opt to leave
the market and retire. We also restrict establishments’ size, focusing on

5One downside in using RAIS database is that it only covers formal workers. In this
scenario, if a worker becomes unemployed or moves to the informal sector, which
comprises about 40% of the Brazilian labor market, we will not be able to track
her. Therefore, transitions from the formal to the informal are not captured in our
analysis, being thus treated as movements to unemployment.
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establishments with at least 30 employees in the first year before the
event. We also limited our sample to one observation per worker-year
by choosing the highest-paying in any given year for those workers
with multiple full-time employment. We also excluded observations
where the data were miscoded or missing. Furthermore, we impose
that displaced individuals work in the same company for at least three
years before the layoff. By setting this restriction, we focus on workers
in stable positions, who would have likely continued had the closure
not occurred.

To estimate the effects of displacement, we include a control group
with workers who continue to work at firms that had no mass layoff
during the period of analysis. For this control group, we also impose
at least three years of tenure before the “potential displacement”. In
our analysis, displacement affects workers at different times (i.e., there
is variation in treatment timing, Roth et al., 2022), and therefore to
ensure the validity of the difference-in-difference setup, we guarantee
that the control group includes only workers that will never be part of
a mass layoff in subsequent years (de Chaisemartin & D’Haultfœuille,
2020), hence avoiding the problem of “forbidden” comparisons (Roth
et al., 2022). However, other than that, we do not include any addi-
tional restriction in the years following the “potential displacement”.
In other words, we aim to compare long-tenured workers with a con-
trol group of individuals that are as similar as possible in all domains,
except for the displacement.

To identify a set of control workers, we implement a two-stage match-
ing procedure in t − 2. First, we perform exact matching on workers’
occupations (2-digits), gender, and on Brazil’s 27 states. In the second
step, we implement the coarsened exact matching (CEM) algorithm
(Iacus et al., 2012). Then, we apply the CEM algorithm on a series
of covariates at both worker-level (wage, wage growth, age, tenure,
and education) and establishment-level (number of workers, average
salary, and sector (2-digits)).6 By including workers’ wage growth, we

6We have not to imposed any bins in our matching strategy and have used the bin-
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ensure that workers display similar trends in salaries before the shock,
a key identification restriction of the difference-in-difference estima-
tor.

This matching procedure yields a sample of about 135 thousand
treated workers and 135 thousand workers in the control group.
Table 3.2 shows the descriptive statistics of various workers’ and
establishments’ characteristics for workers in the treatment and
control arms two years before the layoff. The last column shows the
difference between the means. Workers in the treatment group earn
slightly more than treated individuals, although the difference is
not statistically significant. Displaced workers have similar age and
tenure as the control group and work in larger firms. In contrast,
firms’ average wage is not statistically different between displaced
and control workers. As expected, most individuals in our sample are
placed in the Southeast of Brazil. This is the most populous region in
the country and includes the state of São Paulo, the wealthiest state in
Brazil. In addition, about one-third is employed in the manufacturing
sector, and about one-third of workers in the sample are female. Less
than 10% of our sample has a college degree. In contrast, 49% has
only a high-school diploma (Figure 3.12 shows the histogram of the
routine-intensity index for the matched sample).

ning algorithm autocuts proposed in the CEM command in Stata.
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Table 3.2: Comparison of treated and control groups after matching
Control Treated

Mean Standard Deviation Mean Standard Deviation Difference
Wage 1478 1498.46 1487 1508.68 9.442
Wage Growth .11 0.26 .1 0.26 -0.005***
Worker’s age 35 6.34 35 6.34 -0.002
Gender .32 0.47 .32 0.47 —
Illiterate or primary school .026 0.16 .026 0.16 0.000
Primary school graduate .16 0.37 .16 0.37 0.000
Middle school graduate .24 0.43 .24 0.43 -0.000
High-school graduate .49 0.50 .49 0.50 -0.000
College degree .081 0.27 .081 0.27 0.000
Tenure 63 43.24 63 43.25 -0.282**
Size (30-49) .15 0.35 .12 0.33 -0.025***
Size (50 - 99) .17 0.38 .17 0.37 -0.008*
Size (100-499) .38 0.49 .4 0.49 0.011
Size (500+) .29 0.46 .32 0.46 0.022***
Firm’s average wage 1533 1201.26 1548 1225.56 15.328
Agriculture and Extractive .025 0.16 .025 0.15 -0.001
Manufacturing .36 0.48 .36 0.48 -0.000
Services .61 0.49 .61 0.49 0.001
North .02 0.14 .02 0.14 —
Northeast .12 0.32 .12 0.32 —
Southeast .71 0.46 .71 0.46 —
South .12 0.33 .12 0.33 —
Central-West .036 0.19 .036 0.19 —
Observations 135,566 — 135,566 — —

Note: Table shows averages for baseline. The last column is the coefficient of a
simple regression of treatment status on the variable, with robust standard errors.
The groups are perfectly matched for gender, occupation, and state. Stars indicate
whether this difference is significant. * p < 0.10, ** p < 0.05, *** p < 0.01.

3.3 Empirical strategy

We are interested in exploring how workers in different occupational
groups respond to a sudden shock in their careers. In doing so, we fol-
low extensive literature and employ an event-study approach (Blien
et al., 2021; Couch & Placzek, 2010; Jacobson et al., 1993; Raposo et
al., 2019). Mass layoffs are taken as external shocks to estimate the ef-
fect of an involuntary job loss on earnings and employment prospects.
In essence, we aim to compare the wage and employment changes of
treated individuals over the medium-run with the wage changes that
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would have occurred if they had not lost their jobs. Given that we
aren’t able to observe the latter, we build a control group. In doing
so, a robust methodology is the use of matching techniques in com-
bination with difference-in-differences (DiD) methods (see Blien et al.,
2021; Cunningham, 2021; Heckman et al., 1997). Following the match-
ing procedure described in the previous section, we follow Jacobson
et al. (1993) and estimate:

yit = α0 +

5∑
k=−3,k ̸=−2

[νkt + νkt Tiβk] + λi + θt + δs + σj + ϵijst (3.1)

where yit is the outcome of interest (relative monthly salary or employ-
ment). Relative wages are measured compared to worker’s compensa-
tion in t− 2, while employment is a dummy equal to one is the worker
has any positive labor earnings in a given year. Wages are taken as zero
whenever the individuals are unemployed. Ti is a treatment indicator
that is equal to one if the worker faced a layoff and zero otherwise, and
νt represents time-to-event dummies, from 3 years before the event to
five years after it (t− 2 is the baseline). The coefficients βk are our out-
come of interest and measure the differences in relative earnings or rel-
ative employment for displaced and non-displaced workers from three
years before the shock to five years after. λi and θt represent individual
and time fixed effects and capture permanent unobserved individual
characteristics and general patterns in the economy, respectively. In
contrast, σj and δs represent common region and sector effects. To es-
timate the difference between routine and non-routine occupations, we
follow Blien et al. (2021) and modify Equation 3.1 such that:

yit = α0+
5∑

k=−3,k ̸=−2

[νkt +νkt Tiβk+νkt RTIiαk+νkt TiRTIiρk]+λi+θt+δs+σj+ϵijst

(3.2)
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where RTIi is the routine task intensity index described in Table 3.1.
In addition to worker fixed effects, time-to-event dummies, and reg-
ular year, region, and sector dummies, Equation 3.2 also includes in-
teractions between time-to-event dummies and routine task intensity
(αkν

k
t RTIi) and the triple interaction between routine task intensity,

treatment, and time to event dummies (
∑5

k=−3 ν
k
t TiRTIiρk). The inter-

action between time-to-event dummies and routine task intensity cap-
tures common trends in the occupational groups irrespective of treat-
ment, while the triple interaction term measures the additional effect
in a specific year due to an increase in the routine task intensity index.
The latter is our main outcome of interest.

3.4 The adverse effects of job displacement

We start by first exploring the impact of job displacement on wages
and employment in Brazil. Figure 3.2 plots the coefficients from
Equation 3.1 and shows as expected that displaced individuals face a
substantial decline in relative wages in t + 1 compared to the control
group, which is only partially recovered in the following years. For
instance, in t + 5, treated individuals earn over 5% less than the
control group. The identifying restriction rests on whether displaced
and non-displaced workers have parallel trends in the outcome
variables before the event. In the years before the displacement, the
coefficients were not statistically different from zero, which implies
that the earnings profiles of workers were the same up to the shock.
However, following the shock, treated workers earn substantially
less (about 20%) than two years before the event. Our results are
larger than those in Saltiel (2018) but much smaller than those from
Menezes-Filho (2004), who found salary losses of up to 30%. The
differences in our results are likely related to differences in our
sample. For instance, Saltiel (2018) focuses on displaced workers that
find a job in the year of displacement, thus resulting in estimates
that are biased towards smaller negative effect sizes. On the other
hand, in addition to focusing exclusively on the state of São Paulo,
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Menezes-Filho (2004) does not perform a matching between control
and treated workers, thus likely resulting in larger negative results.

Figure 3.2: Effect of displacement on relative wages

Note: The figure shows the estimates of time-to-event dummies interacted with
a displacement indicator from a regression including individual, region, sector,
time-to-event dummies, and year fixed effects. The dependent variables is relative
wages. Relative wages are measured dividing worker’s monthly average wage by
the worker’s average wage in year t− 2. Year t− 2 is the base year. Vertical bars
show estimated 95% confidence interval based on standard errors clustered at the
individual level.

Figure 3.3 presents the effect on the other outcome of interest, work-
ers’ employment. In years preceding the shock, given that workers
were employed full-time, the coefficients are equal to zero. However,
following the displacement, treated workers are 18% less likely to be
in formal jobs than the control group. In the following years, the im-
pact on employment declines to 5%, with the impact lasting over the
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medium-run. For instance, in year t+5, displaced individuals are 3.4%
less likely to be in formal employment than the control group (Table 3.9
in the Appendix presents the coefficients for each year).

Figure 3.3: Effect of displacement on employment

Note: The figure shows the estimates of time-to-event dummies interacted with
a displacement indicator from a regression including individual, region, sector,
time-to-event dummies, and year fixed effects. The dependent variables is em-
ployment. Employment is a dummy equal to one is the worker has any positive
labor earnings in a given year. Year t − 2 is the base year. Vertical bars show
estimated 95% confidence interval based on standard errors clustered at the indi-
vidual level.

We further explore the heterogeneity of our results and group workers
into different categories to examine some of the drivers of the adverse
effects of displacement. Table 3.3 shows the baseline estimates of the
averages of the estimates over the 6 years from the shock (from t to t+
5) of time-to-event dummies interacted with a displacement indicator
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from a regression including individual, region, sector, time-to-event
dummies, and year fixed effects.

Table 3.3: Effect of displacement on relative wages and employment by group

Relative wages Relative employment
Mean effect Stand. Errors Mean effect Stand. Errors Observations

Age
31 years or younger -0.0744*** (0.00386) -0.0510*** (0.00182) 697,329
32 to 41 years -0.0717*** (0.00272) -0.0542*** (0.00140) 1,133,379
42 years or older -0.0682*** (0.00339) -0.0667*** (0.00199) 606,050
Tenure
48 months or less -0.0642*** (0.00367) -0.0501*** (0.00185) 708,183
49 to 84 months -0.0675*** (0.00284) -0.0495*** (0.00147) 1,065,123
85 months or more -0.0871*** (0.00346) -0.0741*** (0.00179) 663,452
Education
Without high-school -0.0536*** (0.00269) -0.0557*** (0.00149) 1,027,583
High-school -0.0819*** (0.00276) -0.0550*** (0.00138) 1,201,266
College graduate -0.101*** (0.00757) -0.0689*** (0.00339) 207,909
Gender
Female -0.0886*** (0.00347) -0.0756*** (0.00190) 779,831
Male -0.0635*** (0.00224) -0.0473*** (0.00110) 1,656,927
Firm size
100 or less employees -0.104*** (0.00368) -0.0799*** (0.00185) 735,912
101 or more employees -0.0579*** (0.00219) -0.0476*** (0.00114) 1,700,846

Note: The table shows averages of the estimates over the 6 years from the shock
(from t to t + 5) of time-to-event dummies interacted with a displacement indica-
tor from a regression including individual, region, sector, time-to-event dummies,
and year fixed effects. In other words, the table shows the “average over years”
obtained from a single dummy variable for the entire period t:t+5. The depen-
dent variables are relative wages and employment. Relative wages is measured
dividing worker’s monthly average wage by the worker’s average wage in year
t − 2. Employment is a dummy equal to one is the worker has any positive labor
earnings in a given year. Year t − 2 is the base year. Standard errors clustered at
the individual level are reported in parentheses. ***, **, and * respectively indicate
0.01, 0.05, and 0.1 levels of significance.

Several interesting facts emerge. First, in terms of employment, and
consistent with the literature (Deelen et al., 2018), the adverse effects
are more significant for older workers. 42 years or older workers face
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a decline in employment about 1.5 percentage points larger than
younger individuals. In contrast, older workers are less affected
in terms of relative wages. In addition, similar to Saltiel (2018),
the impact is more significant for long-tenured workers, reflecting
the importance of breaking employer-employee matching and the
destruction of firm-specific human capital for explaining sustained
wage losses. Workers with over 85 months of experience in the same
firm see their wages declining on average 8.7% relative to two years
before the displacement, while short-tenured individuals see a decline
of 6%. Long-tenured workers are also more impacted by a decrease
in relative employment (7.4%) than short-tenured workers (5%). We
also find that male workers are less impacted than female individuals
in terms of relative wages and employment. The results are different
from those observed in Carneiro and Portugal (2006), who use
Portuguese matched employer-employee database and find that the
effects of displacement are larger for men (12%) than women (9%). In
addition, we find that high-educated workers are more significantly
affected both in terms of wages and employment. Furthermore,
workers in smaller companies see a more substantial decline in wages
and employment than those in larger companies.

3.5 routine task intensity and the cost of
displacement

3.5.1 The role of tasks

Mass layoffs are a natural experiment to explore the role of routine task
intensity in the impact on workers, given that they represent an exoge-
nous and often unexpected shock to workers. If wages solely reflect
workers’ observable characteristics, pre- and post-displacement wages
should show minor variation. However, some factors external to the
worker can affect the labor outcomes of the displaced. Critical among
these factors are those that affect routine task intensity of those tasks.
A first element that suggests that the type of tasks carried out by the
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worker matters is technology. Technological progress does not equally
affect all occupations. For example, a well-known fact is that automa-
tion diminishes the demand for routine tasks (Autor & Dorn, 2013),
so that workers in routine-intensive occupations suddenly find them-
selves in a less favorable market, making it a challenge to recover from
losing their jobs. Arnoud (2018) shows that even under low technology
adoption, the threat of automation can lower wage growth of occupa-
tions more susceptible to automation. Second, structural transforma-
tion and the decreasing share of manufacturing in the economy can
also reduce the demand for routine intensive occupations and worsen
the outcomes of displaced workers in those sectors (Bárány & Siegel,
2018).

67



Chapter 3. Routine-biased Technological Change and Employee
Outcomes after Mass Layoffs: Evidence from Brazil

Figure 3.4: Effect of displacement on relative wages by occupational group

Note: The figure shows the estimates of time-to-event dummies interacted with
a displacement indicator from a regression including individual, region, sector,
time-to-event dummies, and year fixed effects. The dependent variables is relative
wages. Relative wages is measured dividing worker’s monthly average wage
by the worker’s average wage in year t − 2. Year t − 2 is the base year. Low-
routine are workers in the first quartile of the routine-intensity index, while high-
routine indicates workers in the fourth quartile. Vertical bars show estimated 95%
confidence interval based on standard errors clustered at the individual level.

Figure 3.4 provides a first glance at the impact of job displacement
on workers’ wages for different occupational groups. Using the
routine-intensity index described in Table 3.1, we group workers into
low-routine occupations (first quartile) and high-routine occupations
(fourth quartile). The figure compares both groups and shows that
workers in high-routine occupations are substantially more harmed
than those at the bottom of the routine distribution. The decline in
wages in t + 1 is over 5% larger for workers in the fourth quartile,
with the effect persisting over the medium run.

Table 3.10 shows the results of a similar exercise than in Table 3.3, and
reinforces the fact that workers in high-routine occupations are more
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impacted in terms of wages. In addition, Figure 3.5 shows that workers
in the fourth quartile are 2% more likely to face unemployment in the
years following the shock.

Figure 3.5: Effect of displacement on employment by occupational group

Note: The figure shows the estimates of time-to-event dummies interacted with
a displacement indicator from a regression including individual, region, sector,
time-to-event dummies, and year fixed effects. The dependent variables is em-
ployment. Employment is a dummy equal to one is the worker has any positive
labor earnings in a given year. Year t − 2 is the base year. Low-routine are work-
ers in the first quartile of the routine-intensity index, while high-routine indicates
workers in the fourth quartile. Vertical bars show estimated 95% confidence in-
terval based on standard errors clustered at the individual level.

These initial results, however, do not account for some critical differ-
ences between occupational groups; especially the fact that trends in
wages might differ between occupational groups. A more formal esti-
mate is presented in Figure 3.6, which offers the estimates from Equa-
tion 3.2 and presents the coefficient of the triple interaction term (ρk)
taking relative wages as the dependent variable. Table 3.13 in the Ap-
pendix show the coefficients for both wages and employment. The
interpretation of these estimates is by how many percentage points the
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earnings loss in a specific year is magnified due to an increase in 1 point
in the routine task intensity index, which in turn varies from -1.52 to
2.24.

Figure 3.6: Routine task intensity and the effect of displacement on relative
wages

Note: The figure shows the estimates of the triple interactions between time-to-
event dummies interacted with a displacement indicator and a routine task inten-
sity measure from a regression including individual, region, sector, time-to-event
dummies, time-to-event dummies interacted with the routine task intensity mea-
sure, and year fixed effects. The dependent variables is relative wages. Relative
wages is measured dividing worker’s monthly average wage by the worker’s av-
erage wage in year t − 2. Year t − 2 is therefore the base year. Vertical bars show
estimated 95% confidence intervals based on standard errors clustered at the in-
dividual level.

The results suggest that an increase of 1 point in the RTI results in a fur-
ther decline of about 2% in relative wages across the years and up to
five years following the shock. For instance, a worker previously em-
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ployed in metal and machinery (RTI equals 0.46) would face a decline
2% lower than a worker once hired as precision, handicraft, and craft
printing (RTI equals 1.59). In addition, Figure 3.7 shows that work-
ers in routine-intensive occupations are also more likely to face more
extended periods of unemployment – a 1 point increase in the RTI in-
creases the chance of unemployment by 1%. Our findings are similar to
those in Blien et al. (2021) and Goos et al. (2021), who also find a nega-
tive impact of being previously employed in routine-intensive occupa-
tions. In addition, the results are somewhat consistent with Firpo et al.
(2021), who find some evidence of earnings polarization in Brazil.7

7Regarding the more significant adverse effect of displacement for workers in high
routine occupations, Table 3.11 suggests that these workers are less likely to be
part of a mass layoff (compared to a firm closure). Workers experiencing a mass
layoff are significantly less routine intensive on average than workers experiencing
a firm closure (RTIs of 0.17 vs 0.31 respectively, p-value < 10%).
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Figure 3.7: Routine task intensity and the effect of displacement on employ-
ment

Note: The figure shows the estimates of the triple interactions between time-to-
event dummies interacted with a displacement indicator and a routine task inten-
sity measure from a regression including individual, region, sector, time-to-event
dummies, time-to-event dummies interacted with the routine task intensity mea-
sure, and year fixed effects. The dependent variables is employment. Employ-
ment is a dummy equal to one is the worker has any positive labor earnings in a
given year. Year t− 2 is therefore the base year. Vertical bars show estimated 95%
confidence intervals based on standard errors clustered at the individual level.

Keeping our focus on job displacement and routine task intensity, we
investigate the robustness of our findings according to heterogeneity
in individuals’ characteristics.8 Table 3.4 examines the heterogeneity

8We cannot rule out that our estimates for RTI and displacement outcomes may not
correspond to causal estimates of RTI on displacement outcomes, because of po-
tential correlations between RTI and workers’ characteristics (such as gender, ed-
ucation, or other variables that remain unobserved). While a detailed analysis of
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of these findings, as in Table 3.3, while estimating Equation 3.2. Some
interesting findings emerge in the analysis of relative wages. First, as
in the previous results, the effect of routine-intensity is larger for long-
tenured individuals. Second, we observe that the impact is more sig-
nificant for male and less-educated individuals. Lastly, the impact is
larger for workers previously employed in larger establishments. As
for employment, we observe similar results. Older and long-tenure in-
dividuals face more extended periods of unemployment. In addition,
female and college graduate workers don’t show statistically signifi-
cant results. In the following section, we try to account for these sig-
nificant impacts, considering differences across sectors, the role of job
switchers, and firm heterogeneity.

Our main finding suggests that workers in routine-intensive
occupations face a more considerable decline in wages and
employment following a mass layoff. In other words there is evidence
of non-routinization affecting workers outcomes in Brazil, given that
the falling demand for routine workers has impacted their ability to
find similar, good-paying jobs. As a result, a critical question is to
understand what are the main the mechanisms that could explain
these effects on workers.

workers’ characteristics is beyond the scope of the current paper, further work on
different samples would be welcome.
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Table 3.4: Effect of routine task intensity on relative wages and employment
by group

Relative wages Relative employment
Mean effect Stand. Errors Mean effect Stand. Errors Observations

Age
31years or younger -0.0102*** (0.00368) -0.00430*** (0.00167) 680,508
32 to 41 years -0.0182*** (0.00266) -0.00869*** (0.00130)) 1,099,836
42 years or older -0.0241*** (0.00333) -0.0129*** (0.00188) 584,099
Tenure
48 months or less -0.00903*** (0.00358) -0.00261*** (0.00172) 687,816
49 to 84 months -0.0185*** (0.00275) -0.00901*** (0.00136) 1,034,622
85 months or more -0.0228*** (0.00334) -0.0102*** (0.00162) 642,005
Education
Without high-school -0.0284*** (0.00286) -0.0153*** (0.00151) 976,112
High-school -0.0119*** (0.00257) -0.00586*** (0.00123) 1,193,220
College graduate -0.00236 (0.00658) 0.00187 (0.00293) 195,111
Gender
Female -0.00973*** (0.00349) 0.00186 (0.00175) 758,996
Male -0.0187*** (0.00217) -0.00930*** (0.00104) 1,605,447
Firm size
100 or less employees -0.00307 (0.00356) 0.000296 (0.00168) 706,671
101 or more employees -0.0212*** (0.00213) -0.00941*** (0.00106) 1,657,772

Note: The table shows averages of the estimates over the 6 years from the shock
(from t to t + 5) of the triple interactions between time-to-event dummies inter-
acted with a displacement indicator and a routine task intensity measure from a
regression including individual, region, sector, time-to-event dummies, time-to-
event dummies interacted with the routine task intensity measure, and year fixed
effects. In other words, the table shows the “average over years” obtained from
a single dummy variable for the entire period t:t+5. The dependent variables are
relative wages and employment. Relative wages is measured by dividing work-
ers’ monthly average wage by the average wage in year t − 2. Employment is a
dummy equal to one is the worker has any positive labor earnings in a given year.
Standard errors clustered at the individual level are reported in parentheses. ***,
**, and * respectively indicate 0.01, 0.05, and 0.1 levels of significance.

3.5.2 The role of decreasing demand

In exploring the possible mechanisms, we first look at differences in
the demand for routine occupations across sectors and test whether
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workers initially employed in industries with falling demand for rou-
tine tasks are more considerably affected. Second, we test for the im-
portance of job switchers in explaining our results. For example, fol-
lowing a displacement and given the lower demand for these occu-
pations, workers may move to occupationally distant jobs, which is
usually associated with lower re-employment wages (Huckfeldt, 2018;
Lyshol, 2022). Therefore, we examine first whether workers in rou-
tine occupations are more likely to switch fields, and then we test for
different impacts among switchers and non-switchers. Lastly, differ-
ences in firm characteristics can help shed some light on our results.
In particular, there are significant differences in firms’ wage premiums
in Brazil (Alvarez et al., 2018). In this context, we examine whether
workers in routine occupations are more likely to move to low-paying
firms upon re-employment. Given the decline in the demand for such
occupations, displaced individuals could face more difficulties finding
a better-paying firm, thus, ending with a lower wage.

Figure 3.1 shows a constant decline in routine task intensity in Brazil
from 2006 to 2018. Yet, the aggregate measure hides significant hetero-
geneity across sectors. The decrease in the demand for routine occu-
pations combines within-industry and between-industry changes. On
the one hand, as firms adopt more sophisticated and automated tech-
nologies, a given industry will use less routine employment to produce
similar output levels. On the other hand, routine task intensity differs
across sectors, such that sectoral employment shifts also explain aggre-
gate occupational share changes (Goos et al., 2014).
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Figure 3.8: routine task intensity and Change in Industries’ Employment
Share

Note: Circles represent 87 sectors, weighted by total employment in 2006. The x-
axis is the RTI index, calculated as the weighted occupational index and ranging
from -1.52 to 2.24. The y-axis is the change in the share of employment in each
sector from 2006 to 2018, measured in percentage points. The coefficient in the
linear regression is -0.00117, with standard error equal to 0.0012.
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As a first exercise, we test for the association between initial routine
task intensity across sectors and the change in employment share from
2006 to 2018. Figure 3.8 shows a negative correlation, albeit weak, be-
tween RTI and employment change across industries in Brazil, hence
suggesting that most of the changes in the index might have occurred
within sectors. To have a better grasp of these dynamics, we decom-
pose the difference from 2006 to 2018 in the RTI index into changes
within and between industry groups:

∆RTI =
∑
i

∆RTIiSi0 +
∑
i

RTIi0∆Si +
∑
i

∆RTIi∆Si (3.3)

where i indexes industries. RTIi accounts for the routine-intensity
(measured as the occupational weighted index) of industry i and
∆RTIi accounts for the change in RTI of unit i. Si is the share of
industry i in total employment, and ∆Si is the change in the share
in total employment of industry i over the period. The first term in
the RHS is the contribution of RTI growth in each industry (within
industry), assuming that employment shares remain unchanged. The
second term in the RHS is related to changes in employment shares
(between industry), while the RTI index in each sector is kept constant.
Finally, the third term is a dynamic term, giving the contribution to the
total RTI index due to a rise in the employment share in sectors whose
RTI has increased in the period.

Table 3.5 presents the results of the shift-share decomposition. From
2006 to 2018, the RTI index in Brazil dropped 0.12 points (30%), ex-
plained mainly by changes within sectors. Specifically, 94% of the
decline is explained by within-sector variations, while between sec-
tor changes explain only 10%. Figure 3.9 presents the change in rou-
tine task intensity across sector over the period. (Table 3.14 in the Ap-
pendix shows the within-sector change in RTI for the 87 sectors over
the period, ranked according to the size of the decline). Although most
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Table 3.5: RTI decomposition, 2006-2018

Mean
RTI 2006 RTI 2018 Total Change

0.402 0.283 -0.12

Decomposition (Raw)
Within Between Dynamic
-0.112 -0.012 0.005

Decomposition (Percentage)
Within Between Dynamic

0.94 0.10 -0.04

Note: All proportions and means are weighted by occupational employment in
2006 or 2018. ∆ is the change in the average proportion or mean from 2006 to 2018.

research relates the decline in routine tasks to automation in manufac-
turing, the services industry presents a more significant decrease in
routine task intensity in Brazil. In particular, the decline in routine
task intensity in services was twice as large as that for manufacturing.
Hence, we document a significant decrease in routine occupations not
related to reallocation of workers but to within sector changes, and that
go beyond manufacturing.
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Figure 3.9: Change in Sectors’ routine task intensity

Note: The y-axis is the mean change in RTI for each sector from 2006 to 2018.

Our next step lies in using these differences across sectors. First, we
divide our sample into workers initially employed in manufacturing
and non-manufacturing and re-estimate Equation 3.2. In addition, we
look at within-industry changes in the RTI index and split our sam-
ple into individuals initially employed in sectors above the median or
below or equal the median. Table 3.6 presents the results of both exer-
cises, suggesting that workers previously employed in manufacturing
face a larger decline on wages and more extended periods of unem-
ployment. Furthermore, when focusing on the decline in RTI across
industries, the impact is more considerable for sectors with a more sig-
nificant decline in the demand for routine tasks. Therefore, demand
seems to be playing a sizable role in explaining differences across oc-
cupational groups in Brazil.
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Table 3.6: Effect of displacement on wages by sector group
Relative wages Relative employment

Mean effect Standard Errors Mean effect Standard Errors Observations

Sector
Manufacturing -0.0204*** (0.00361) -0.00954*** (0.00176) 864,288
Non-Manufacturing -0.0140*** (0.00215) -0.00609*** (0.00105) 1,500,156

Sector
Below or equal the median -0.0127*** (0.00359) -0.00260 (0.00167) 677,844
Above the median -0.0196*** (0.00211) -0.00995*** (0.00106) 1,686,600

Note: The table shows the baseline estimates of averages of the triple interactions
between time-to-event dummies interacted with a displacement indicator and a
routine intensity measure from a regression including individual, region, sector,
time-to-event dummies, time-to-event dummies interacted with the routine inten-
sity measure, and year fixed effects. The dependent variables are relative wages
and employment. Relative wages is measured dividing workers monthly average
wage by average wage in year t − 2. Employment is a dummy equal to one is the
worker has any positive labor earnings in a given year. Year t − 2 is the base year.
Rows (1) and (2) split the 87 sectors between non-manufacturing and manufactur-
ing. Rows (3) and (4) split the sample into those with a decline in the RTI index
below the median and above the median. The median is equal to -.055. Standard
errors clustered at the individual level are reported in parenthesis. ***, ** and * re-
spectively indicate 0.01, 0.05 and 0.1 levels of significance.

3.5.3 Job switchers

Within a more competitive labor market, with few opportunities,
workers in routine occupations could be more inclined (or forced) to
change fields in search for better, high-paying jobs. In this section,
we estimate whether workers in routine-intensive occupations are
more likely to move to different professions following a layoff and the
impacts of these transitions. In doing so, we create a dummy equal to
1 if individuals switch occupations (2-digits) and zero otherwise. In
our sample, switching to a different occupation is observed for 49.743
workers (about 20% of individuals) (see Table 3.12 for a descriptive
analysis of switchers and non-switchers). Columns (1)-(2) in Table 3.7
show baseline estimates that include a set of Mincerian workers’
characteristics and year, sector, and region effects. The columns differ
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in methodology, with column (1) using a ordinary least squares
model (OLS), while column (2) employs a probit model. In addition,
columns (3)-(4) show similar regressions using a different definition
of job switchers, now including only individuals that change broader
occupations (1-digit).
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Table 3.7: Routine-intensity and the probability of switching occupations
Dependent variable: dummy indicator of switching occupations

(1) (2) (3) (4)
OLS Probit OLS Probit

RTI 0.0135∗∗∗ 0.0684∗∗∗ 0.0116∗∗∗ 0.0626∗∗∗

(0.000976) (0.00412) (0.000938) (0.00426)

Treated 0.0872∗∗∗ 0.342∗∗∗ 0.0723∗∗∗ 0.309∗∗∗

(0.00149) (0.00607) (0.00142) (0.00626)

Treated × RTI 0.0158∗∗∗ 0.0249∗∗∗ 0.0130∗∗∗ 0.0216∗∗∗

(0.00136) (0.00522) (0.00130) (0.00537)

Female -0.0200∗∗∗ -0.0767∗∗∗ -0.0231∗∗∗ -0.0948∗∗∗

(0.00199) (0.00738) (0.00190) (0.00764)

Worker’s age 0.000166 -0.0315∗∗∗ -0.000406 -0.0352∗∗∗

(0.00114) (0.00414) (0.00108) (0.00421)

Squared age -0.0000685∗∗∗ 0.000150∗∗∗ -0.0000534∗∗∗ 0.000208∗∗∗

(0.0000152) (0.0000563) (0.0000143) (0.0000572)

Tenure -0.000337∗∗∗ -0.00152∗∗∗ -0.000287∗∗∗ -0.00140∗∗∗

(0.0000174) (0.0000799) (0.0000166) (0.0000826)

Primary school graduate 0.0169∗∗∗ 0.0192 0.0150∗∗∗ 0.0206
(0.00540) (0.0234) (0.00495) (0.0247)

Middle school graduate 0.0293∗∗∗ 0.0743∗∗∗ 0.0275∗∗∗ 0.0806∗∗∗

(0.00539) (0.0231) (0.00495) (0.0243)

High-school graduate 0.0281∗∗∗ 0.0718∗∗∗ 0.0293∗∗∗ 0.0893∗∗∗

(0.00536) (0.0229) (0.00494) (0.0242)

College degree 0.0515∗∗∗ 0.165∗∗∗ 0.0547∗∗∗ 0.195∗∗∗

(0.00611) (0.0252) (0.00569) (0.0264)

Log(firm size) -0.00372∗∗∗ -0.0208∗∗∗ -0.00261∗∗∗ -0.0173∗∗∗

(0.000670) (0.00258) (0.000638) (0.00268)

Year Yes Yes Yes Yes
Region Yes Yes Yes Yes
Sector Yes Yes Yes Yes
Observations 262,716 262,714 262,716 262,711

Note: The table shows the baseline estimates of switching occupations and a routine
intensity measure from a regression including individual, region, sector, and year.
In columns (1) and (2), the dependent variable is a dummy variable equals to one if
individuals switch occupations (2-digits) and zero otherwise. In columns (3) and (4)
we use a broader definition of occupation and define workers’ occupations at 1-digit
level. Therefore, the dependent variable is equal to 1 if workers transition across
occupations at 1-digit and zero otherwise. Robust standard errors are reported in
parenthesis. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of significance.

The main finding is that the routine-intensity index correlates signif-
icantly with the probability of moving to different occupations, even
if not in the treatment group. The second line in Table 3.7 shows
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that treated workers (those part of a mass layoff) are also more likely
to switch occupations, consistent with other findings in the literature
(Nedelkoska et al., 2015). We also find that treated individuals previ-
ously employed in routine occupations are more likely to transition to
different professions. In addition, we observe that male and more ed-
ucated workers are more likely to switch jobs, whereas long-tenured
individuals are less likely to follow this path. Overall, the results sug-
gest that the falling demand for routine tasks not only affects workers’
employment outcomes but also increases the likelihood to change pro-
fessions.

We further test whether displacement affects job switchers differently
compared to non-switchers. In particular, we separate our sample be-
tween job switchers and those workers that remained in the same occu-
pation (2-digits) and re-estimate Equation 3.2. Column (1) in Table 3.8
presents the results for the group of workers that switch occupations
and column (2) for the workers that have remained in the same oc-
cupational group. Interestingly, workers initially in routine-intensive
occupations and moving to different occupations are significantly less
affected than workers who do not switch occupations. This aligns
nicely with economic intuition. Falling demand for routine tasks re-
quires the reallocation of workers from declining occupations to other
more promising – workers who comply with such inter-occupational
selection dynamics should be rewarded compared to workers who
“stubbornly” linger in their original declining occupation. Similarly,
workers switching to other occupations presumably select from amid
a broader opportunity set than workers searching only within their
current occupation. Hence switching workers would be associated
with a better-matching labor market opportunity if their search space
is wider.
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Table 3.8: Effect of displacement on wages for switchers and non-switchers
Dependent variable: relative wages

(1) (2)
Switchers Non-switchers

Mean effect -0.0698∗∗∗ -0.0865∗∗∗

(0.00534) (0.00208)

RTI -0.00769 -0.0242∗∗∗

(0.00512) (0.00195)

Individual Yes Yes
Year Yes Yes
Region Yes Yes
Observations 446,886 1,917,558
R-squared 0.374 0.374

Note: The table shows averages of the estimates over the 5 years from the shock
(from t to t+4) of the triple interactions between time-to-event dummies interacted
with a displacement indicator and a routine intensity measure from a regression
including individual, region, sector, time-to-event dummies, time-to-event dum-
mies interacted with the routine intensity measure, and year fixed effects. The
dependent variable is relative wages. Relative wages is measured dividing work-
ers monthly average wage by average wage in year t−2. Year t−2 is the base year.
Job switchers are defined as workers that change occupations between the year be-
fore the shock and the first year of re-employment. Occupations are defined at the
2-digit level. Column (1) restrict the sample to switchers, while column (2) focus
on non-switchers. Standard errors clustered at the individual level are reported in
parenthesis. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels of signifi-
cance.

3.5.4 Firms fixed effects

A third and related mechanism to explain worse employment out-
comes for routine occupations is that workers in high routine intensive
occupations have to move to low-paying and worse companies to find
a job in the same field. For instance, less productive firms tend to have
lower adoption of more sophisticated technologies, thus continuing to
demand labor to perform routine tasks and being the main option for
dismissed high-routine workers.
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To test this hypothesis, we estimate whether workers in
routine-intensive occupations move to low-paying companies more
frequently. First, we estimate firms’ paying heterogeneity and
decompose earnings using an AKM decomposition. Specifically, to
calculate firms’ fixed effects, we regress the log of monthly wages
on a set of individual, firm, and year fixed effects. To ease the
computational burden, we estimate this specification for two different
periods - 2007 to 2012 and 2013 to 2018, and limit the sample to the
largest connected set within each of these samples.9

With firms fixed effects in hand, we estimate Equation 3.1 using the
fixed effects as the outcome variable and compare with the impacts
on workers’ logarithm of monthly wages. Figure 3.10 shows the re-
sults of this exercise, indicating that the loss of employer-specific wage
premium responds to about 13% of the adverse effect on wages. Our
results are closer in magnitude to those in Lachowska et al. (2020), who
finds that employer-specific premiums explain 17% of wage losses in
the state of Washington, but significantly smaller than those observed
in Germany (Fackler et al., 2021). The small effect on firm wage pre-
mium losses is likely related to a weakening pass-through from firm
characteristics to wages in Brazil. For instance, Alvarez et al. (2018)
shows the decline in firm productivity pay premium explained about
40% of the decrease in earnings inequality in Brazil between 1996 and
2012. As a result, workers are increasingly more likely to move to firms
with equal paying premiums.

9We assume that establishments’ wage premium is set at the firm level. Therefore,
we estimate establishments fixed effects at the company level.
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Figure 3.10: Job displacement and the loss of employer-specific wage pre-
mium

Note: The figure shows the estimates of time-to-event dummies interacted with
a displacement indicator from a regression including individual, region, sector,
time-to-event dummies, and year fixed effects. The dependent variables are loga-
rithm of monthly wages and firms’ fixed effects. Firms’ fixed effects are identified
using a AKM model. Year t − 2 is the base year. Low-routine are workers in the
first quartile of the routine-intensity index, while high-routine indicates workers
in the fourth quartile. Vertical bars show estimated 95% confidence interval based
on standard errors clustered at individual level.

Following this analysis, we estimate Equation 3.2 to test whether
the RTI is associated with movements to low-paying firms. On the
one hand, Figure 3.11 confirms that workers previously employed
in routine-intensive occupations face a more significant decline in
wages, even when excluding those workers that are not employed
(using the logarithm of wages exclude those workers with missing
information on wages). On the other hand, Figure 3.11 show that the
routine-intensity index is not statistically associated with a decline
in firm’s fixed effects, thus suggesting that workers previously
employed in routine-intensive occupations were not more likely to
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transition to low-paying firms.

Figure 3.11: Effect of displacement on employment by occupational group

Note: The figure shows the estimates of the triple interactions between time-to-
event dummies interacted with a displacement indicator and a routine task inten-
sity measure from a regression including individual, region, sector, time-to-event
dummies, time-to-event dummies interacted with the routine task intensity mea-
sure, and year fixed effects. The dependent variables are logarithm of monthly
wages and firms’ fixed effects. Firms’ fixed effects are identified using a AKM
model. Year t − 2 is therefore the base year. Vertical bars show estimated 95%
confidence intervals based on standard errors clustered at individual level.

3.6 Conclusion
Technological change puts pressure on certain worker groups by erod-
ing the value of their skills, threatening their job security, and mak-
ing it harder to find jobs with equivalent pay after a layoff (Braxton
& Taska, 2023). While these phenomena have been widely studied in
the US and Europe, much less is known about the potential impact on
employment dynamics in developing countries, where the pace is tech-
nological change is slower. This paper sheds some light on this issue
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for a large middle-income country, Brazil, by understanding the em-
ployment dynamics associated with routine workers and using mass
layoffs as a natural experiment to better identify these effects.

In line with other evidence in developed countries, we find that job dis-
placement has a significant impact on workers’ labor outcomes. Wages
are significantly depressed in the short run and only recover partially
in the medium run. Displaced workers are also more likely to face
extended periods of unemployment. Workers displaced see wage de-
clines of up to 5% even five years after the displacement event. In ad-
dition, consistent with most findings in the literature, we find that fe-
male, long-tenured, and older workers are more significantly affected
by displacement.

But while all workers experience a significant decline in wages and
employment opportunities following a mass layoff event, those in rou-
tine intensive occupations fare much worse – especially less-educated
workers. While we cannot measure technological progress directly, the
results show that job displacement’s adverse outcomes are worse in
sectors where the demand for routine jobs has decreased over time.
Moreover, while we do not find evidence of a necessary move towards
“worse” firms by displaced workers, those in routine occupations are
also more likely to have to switch occupations.

Several policy implications arise from these findings. First, while poli-
cies that effectively accelerate technological change have large poten-
tial returns in terms of productivity growth in developing countries,
the findings of this paper identify potential negative distributional im-
pacts on routine workers in middle-income countries as technologi-
cal change accelerates. Second, workers in routine-intensive occupa-
tions appear especially vulnerable after a mass layoff because of the
significant wage decrease and the difficulty of finding a new job re-
quiring similar skills. Thus, policies aimed to re-skill the labor force
are not only necessary, but they need to prioritize workers in routine-
intensive occupations and sectors with a larger decrease in demand
for routine-intensive occupations, supporting them in developing new

88



skills that can help offset the harmful impacts of displacement. In addi-
tion, a more nuanced understanding of the tasks these groups perform
is needed, especially of the need for soft skills that can also facilitate
job transitions. As the pace of technological change and automation
shows no sign of slowing down, policy interventions for training and
re-skilling displaced workers can only be expected to grow in impor-
tance, also in developing countries.

Some important gaps in understanding the impact of technological
change on workers’ dynamics in developing countries still remain.
More granular evidence is needed linking direct events of technol-
ogy upgrading with changes in the skill composition at the firm and
workers’ levels. Rather than inferring technological trends based on
the changes in occupation skills demand within sectors, more detailed
data is needed to identify how specific technologies affect the employ-
ment outcomes of different types of workers. This requires more avail-
ability of surveys that measure technology use in establishments, and
that can be linked with large labor censuses and other administrative
data.
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3.7 Appendix

Figure 3.12: Histogram routine-intensity index
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Table 3.9: Effect of displacement on wages and employment
Dependent variables

(1) (2)
Relative wage Relative employment

Time-to-event (t− 3) 0.00533∗∗∗ -0.0000887∗∗∗

(0.000569) (0.0000261)

Time-to-event (t− 2) — —
— —

Time-to-event (t− 1) -0.00527∗∗∗ 0.000123∗∗∗

(0.000776) (0.0000243)

Time-to-event (t) -0.00108 0.000111∗∗∗

(0.00197) (0.0000273)

Time-to-event (t+ 1) -0.198∗∗∗ -0.179∗∗∗

(0.00253) (0.00134)

Time-to-event (t+ 2) -0.0652∗∗∗ -0.0494∗∗∗

(0.00274) (0.00134)

Time-to-event (t+ 3) -0.0554∗∗∗ -0.0409∗∗∗

(0.00297) (0.00145)

Time-to-event (t+ 4) -0.0536∗∗∗ -0.0364∗∗∗

(0.00302) (0.00155)

Time-to-event (t+ 5) -0.0572∗∗∗ -0.0344∗∗∗

(0.00312) (0.00163)

Individual Yes Yes
Year Yes Yes
Region Yes Yes
Sector Yes Yes
Observations 2,436,759 2,436,759
R-squared 0.379 0.420

Note: The table shows the baseline estimates of the estimates of time-to-event dum-
mies interacted with a displacement indicator from a regression including individ-
ual, region, sector, time-to-event dummies, and year fixed effects. The dependent
variables are relative wages and employment. Relative wages is measured divid-
ing worker’s monthly average wage by the worker’s average wage in year t − 2.
Employment is a dummy equal to one is the worker has any positive labor earn-
ings in a given year. Year t− 2 is the base year. Heteroskedasticity robust standard
errors clustered at individual level are reported in parenthesis. ***, ** and * respec-
tively indicate 0.01, 0.05 and 0.1 levels of significance.
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Table 3.10: Effect of displacement on relative wages and employment by oc-
cupational group

Low-Routine High-Routine

Relative wages -0.0531*** -0.102***
(0.00353) (0.00426)

Relative employment -0.0438*** -0.0664***
(0.00184) (0.00210)

Individual Yes Yes
Year Yes Yes
Region Yes Yes
Sector Yes Yes
Clus. individual Yes Yes
Observations 659,277 537,543

Note: The table shows the baseline estimates of the estimates of time-to-event
dummies interacted with a displacement indicator from a regression including in-
dividual, region, sector, time-to-event dummies, and year fixed effects. The depen-
dent variables are relative wages and employment. Relative wages is measured by
dividing workers’ monthly average wage by the average wage in year t − 2. Em-
ployment is a dummy equal to one is the worker has any positive labor earnings in
a given year. Low-routine are workers in the first quartile of the routine-intensity
index, while high-routine indicates workers in the fourth quartile. Standard errors
clustered at the individual level are reported in parentheses. ***, **, and * respec-
tively indicate 0.01, 0.05, and 0.1 levels of significance.
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Table 3.11: Comparison of workers in establishment’s closure and mass layoff
Closed Mass layoff

Mean Standard Deviation Mean Standard Deviation Difference
Routine task index .31 1.09 .17 1.08 -0.143*
Wage 1683 1666.62 1309 1324.80 -370.565***
Wage Growth .1 0.27 .1 0.25 0.001
Worker’s age 35 6.30 35 6.38 0.180
Gender .34 0.47 .31 0.46 -0.027
Illiterate or primary school .018 0.13 .033 0.18 0.009**
Primary school graduate .14 0.34 .19 0.39 0.047***
Middle school graduate .21 0.41 .26 0.44 0.052***
High-school graduate .53 0.50 .46 0.50 -0.076***
College degree .1 0.30 .065 0.25 -0.032**
Tenure 65 43.51 61 42.91 -4.627**
Firm’s size 421 505.01 771 1364.19 340.591***
Size (30-49) .13 0.34 .11 0.32 -0.017
Size (50 - 99) .18 0.38 .16 0.37 -0.015
Size (100-499) .4 0.49 .39 0.49 -0.014
Size (500+) .29 0.45 .34 0.47 0.046
Firm’s average wage 1781 1377.09 1337 1025.35 -442.953***
Agriculture and Extractive .02 0.14 .028 0.17 0.001
Manufacturing .38 0.49 .34 0.47 -0.038
Services .6 0.49 .63 0.48 0.037
North .015 0.12 .024 0.15 0.009**
Northeast .081 0.27 .15 0.36 0.062***
Southeast .78 0.42 .64 0.48 -0.132***
South .11 0.31 .14 0.34 0.031*
Central-West .021 0.14 .05 0.22 0.030***
Observations 64.433 0.00 71.133 0.00 —

Note: Table shows averages for baseline. The last column is the coefficient of a
simple regression of treatment status on the variable, with robust standard errors.
Stars indicate whether this difference is significant. * p < 0.10, ** p < 0.05, *** p <
0.01.
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Table 3.12: Comparison of switchers and non-switchers
Non-switcher Switcher

Wage 1666 1705.67 1681 1706.56 15.590
Wage Growth .13 0.42 .14 0.44 0.011*
Worker’s age 37 6.37 35 6.01 -1.786***
Gender .32 0.47 .31 0.46 -0.017
Illiterate or primary school .02 0.14 .016 0.12 -0.004
Primary school graduate .16 0.37 .13 0.33 -0.034**
Middle school graduate .24 0.43 .23 0.42 -0.016
High-school graduate .5 0.50 .54 0.50 0.040
College degree .08 0.27 .094 0.29 0.014
Tenure 76 44.34 70 36.66 -6.248***
Firm’s size 605 1057.99 591 1122.36 -13.920
Size (30-49) 39 5.79 39 5.76 0.088
Size (50 - 99) 72 14.45 72 14.53 0.246
Size (100-499) 252 112.91 249 111.57 -3.288
Size (500+) 1554 1483.60 1681 1672.40 126.883
Firm’s average wage 1686 1318.80 1750 1420.57 64.250
Agriculture and Extractive .012 0.11 .0091 0.10 -0.003
Manufacturing .35 0.48 .42 0.49 0.068**
Services .64 0.48 .57 0.50 -0.065**
North .02 0.14 .021 0.14 0.002
Northeast .11 0.32 .11 0.31 -0.005
Southeast .71 0.46 .71 0.45 0.005
South .12 0.33 .13 0.33 0.006
Central-West .038 0.19 .03 0.17 -0.008***
Observations 213,404 — 49,743 — —

Note: Table shows averages for baseline. The last column is the coefficient of a
simple regression of treatment status on the variable, with robust standard errors.
Stars indicate whether this difference is significant. * p < 0.10, ** p < 0.05, *** p <
0.01.
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Table 3.13: Effect of displacement on wages and employment
Dependent variable

(1) (2)
Relative wage Relative employment

Time-to-event (t− 3) 0.000714 -0.0000184
(0.000542) (0.0000222)

Time-to-event (t− 2) — —
— —

Time-to-event (t− 1) -0.00279∗∗∗ 0.0000283
(0.000701) (0.0000196)

Time-to-event (t) -0.00269 0.0000416∗

(0.00173) (0.0000230)

Time-to-event (t+ 1) -0.0202∗∗∗ -0.0103∗∗∗

(0.00241) (0.00123)

Time-to-event (t+ 2) -0.0185∗∗∗ -0.00845∗∗∗

(0.00276) (0.00123)

Time-to-event (t+ 3) -0.0182∗∗∗ -0.00725∗∗∗

(0.00289) (0.00133)

Time-to-event (t+ 4) -0.0245∗∗∗ -0.0103∗∗∗

(0.00292) (0.00143)

Time-to-event (t+ 5) -0.0226∗∗∗ -0.00933∗∗∗

(0.00293) (0.00151)

Individual Yes Yes
Year Yes Yes
Region Yes Yes
Sector Yes Yes
Observations 2,364,444 2,364,444

Note: The table shows the baseline estimates of averages of the triple interactions
between time-to-event dummies interacted with a displacement indicator and a
routine intensity measure from a regression including individual, region, sector,
time-to-event dummies, time-to-event dummies interacted with the routine inten-
sity measure, and year fixed effects. The dependent variables are relative wages
and employment. Relative wages is measured dividing worker’s monthly average
wage by the worker’s average wage in year t− 2. Employment is a dummy equal
to one is the worker has any positive labor earnings in a given year. Year t−2 is the
base year. Heteroskedasticity robust standard errors clustered at the individual are
reported in parenthesis. ***, ** and * respectively indicate 0.01, 0.05 and 0.1 levels
of significance.
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Skills-based Approach
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Chapter 4. Forced Displacement and Occupational Mobility: a
Skills-based Approach

Abstract
We focus on mobile workers because of forced displacement and study
how their occupational skills match to skills in other occupations, and
how this commonality of skills relate to labor outcomes following dis-
placement. Using large-scale register data from Brazil, we find that a
higher occupational skills commonality shortens unemployment spells
and increases the probability of transiting to another occupation. In
addition, event-study analyses show that a one standard deviation in-
crease in our measure of occupational skills commonality leads to a
decrease of 1 to 1.2% in the probability of continuing unemployed af-
ter displacement or 10 to 20% of the overall variation in unemploy-
ment. However, although facing short periods out of the formal la-
bor market, these individuals do not experience larger wages upon
re-employment. Lastly, we explore the impact of skills mismatch on
wages and find that transiting to occupations that are more similar in
their skills content reduces the adverse effects of displacement.

JEL: J24, J31, J63, J65, O54
Keywords: Skills transferability; Job displacement; Occupational mo-
bility
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4.1 Introduction

When facing a significant decline in the demand for their occupational
skills that forces them into unemployment and to search for a new oc-
cupation because of technological change (Autor & Dorn, 2013; Brax-
ton & Taska, 2023; Goos et al., 2014) and macroeconomic shocks (Lamo
et al., 2011), workers with more specialized education profiles (Lamo
et al., 2011) or more specific occupational skills (Eggenberger et al.,
2022) will likely face more challenges to reallocate themselves. For ex-
ample, recent evidence by del Rio-Chanona et al. (2021) shows that
although dispatchers and pharmacy aides have a similar probability
of automation-related displacement, dispatchers face a 21% higher in-
crease in long-term unemployment upon automation. This significant
difference is related to the fact that it is relatively more straightforward
for pharmacy aides than for dispatchers to move to jobs in other occu-
pations with increasing demand.

Researchers have long recognized the critical role played by skill trans-
ferability, highlighting its impacts on workers’ movements between
occupations, wages upon re-employment, and response to shocks.1

The underlying logic is that workers can use a given set of skills to per-
form various tasks in different occupations, either because the same
tasks are part of other jobs or because a set of skills allows for per-
forming multiple tasks. In fact, the degree of transferability of this
bundle of skills between different occupations can be reflected in an
occupational commonality network (Nedelkoska et al., 2015), so that a
worker’s current occupation and the network of possible professions
she can transition to become critical in explaining labor mobility pat-
terns and outcomes.

1For example, there is accumulating evidence that workers are more likely to switch
to occupations with similar tasks (Gathmann & Schönberg, 2010; Poletaev &
Robinson, 2008) and similar industries (Neffke et al., 2018). Moreover, longer un-
employment spells result in a better match between the skills in the previous occu-
pation and those in the new occupation (Lyshol, 2022), and unemployment exits to
more distant occupations are associated with lower re-employment wages (Lyshol,
2022; Nedelkoska et al., 2015).
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This paper seeks to contribute to this literature by studying to what ex-
tent a worker’s occupation position in the occupational commonality
network reduces unemployment duration and affects wages upon re-
employment. In doing so, we use register data for the full population
of formal wage earners in Brazil and observe workers’ occupation and
wage, forced displacement, and their post-unemployment occupation
and wage. Using data from O*NET, we construct a measure for the oc-
cupational commonality network, i.e., the extent to which occupations
share similar skills to other occupations. To account for endogenous
workers’ transitions, we build on the extensive literature on job dis-
placement and use an exogenous shock resulting from firms’ closures
or mass layoffs.2

Our work relates to a growing literature studying workers’
movements across occupations and the importance of the
occupational commonality network in determining unemployment
levels. This literature has already provided empirical evidence
that specialized education reduces workers’ mobility (Lamo et al.,
2011), that different occupations may present substantially different
long-run unemployment rates depending on their occupational
commonality network (Christenko, 2022; del Rio-Chanona et al., 2021;
Eggenberger et al., 2022), and that moving to distant occupations is
commonly associated with lower wages (Nedelkoska et al., 2015).
From a policy perspective, a better understanding of how skills in one
occupation transfer to another occupation can help to support the job

2The literature on job displacement shows that displaced workers face a significant
and long-lasting decline in wages and protracted unemployment spells, with as-
sociated earning losses ranging from 3% to 25%, and that can be sustained over
the long-run despite some catching up (Couch & Placzek, 2010; Eliason & Storrie,
2006; Hijzen et al., 2010; Huttunen et al., 2006; Ichino et al., 2017; Jacobson et al.,
1993; Kaplan et al., 2005; Raposo et al., 2019). Furthermore, the literature defines
several mechanisms when explaining the adverse effects of job loss, including the
loss of firm-specific human capital that generates wage premiums (Bertheau et al.,
2022; Lachowska et al., 2020), lack of bargaining power (Forsythe, 2020), unem-
ployment stigma (Biewen & Steffes, 2010)3, and skills transferability and the loss
of occupational-specific knowledge (Becker, 1962; Gathmann & Schönberg, 2010).
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search of unemployed persons, especially when structural changes
(e.g., automation) affect their prospects and because the unemployed
narrowly focus their search activities to occupations that they are
familiar with (Belot et al., 2018; Faberman & Kudlyak, 2019).

We complement this earlier work in important ways. First, most pa-
pers have relied on theoretical models or cross-sectional data without
a clear exogenous identification strategy (Christenko, 2022; del Rio-
Chanona et al., 2021; Lamo et al., 2011). As a result, none of these stud-
ies control for workers’ unobserved characteristics and endogeneity in
workers’ transitions. In contrast, we use matched employer-employee
register data that allows us to build a sample of workers that experi-
enced displacement. Although our measure of the average distance
between occupations is similar to Eggenberger et al. (2022), we focus
on displaced workers because of mass layoffs or firm closures, which
allows us to better control for endogeneity in occupational switching
and workers’ sorting into occupations. Second, while Nedelkoska et al.
(2015) focus mainly on the effect of occupational distance on workers’
outcomes and Eggenberger et al. (2022) focus on the effects of demand
shocks on the returns to specific skills, we deepen our understanding
of workers’ ability to transition to different occupations, as a function
of how specific their skills are to their last occupation before displace-
ment. In so doing, our focus goes beyond education (Lamo et al., 2011)
as we use the O*NET database, which provides more detailed infor-
mation on the knowledge, skills, and abilities associated with different
occupations. Third, we offer new results for Brazil, population-wise
the 7th largest country in the world, thus narrowing the knowledge
gap in estimating the importance of skill mismatch and the occupa-
tional commonality network for a middle-income country.

To advance some of the main findings, our estimates suggest that
workers previously employed in occupations with a stronger
occupational commonality network suffer shorter periods of
unemployment. We also show that workers in occupations with
a stronger network to other occupations are more likely to switch
occupations following the displacement. In our preferred estimates,
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a one standard deviation increase in our measure of occupational
commonality leads to a decrease of 1 to 2.8% in the probability
of continuing unemployment after displacement. In addition, we
examine the effects of skill mismatch on wages by exploring the
similarity between occupations before and after the displacement.
Our estimates indicate that moving to more similar occupations
significantly reduces the adverse effects of displacement and that the
negative impact increases with the distance between occupations.

The structure of the remainder of the paper is as follows. Section 2 dis-
cusses our data set, the measure of occupational commonality, and the
sample restrictions. Section 3 describes the empirical strategy, while
Section 4 provides the main results. A final section concludes.

4.2 Data

4.2.1 RAIS employer-employee data

To examine the impact of workers’ occupations on moderating the ad-
verse effects of displacement, we use the RAIS database (Relação An-
ual de Informações Sociais) from 2006 to 2018. This is a high-quality
census of the Brazilian formal labor market with over 40 million con-
tracts per year.4 The census includes all establishments nationwide
with at least one registered worker. Establishment information in-
cludes fiscal identification number (which identifies the company and
the establishment across time)5, industry sector, legal nature, and full
address. At the level of individual workers, the data set includes in-
formation on workers’ gender, age, education, wage, employment sta-
tus, type of contract, tenure, hiring and end date, and the occupation

4While excluding the informal labor market may limit the conclusions of the study
given that the country has an informality rate that averaged 40.3 percent during the
period of analysis, the sample selection required to observe displacement focuses
on regions with a higher formality rate. These regions are also more dynamic, with
a broader range of industries and occupations available in the labor market.

5We refer to establishments and firms interchangeably.
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related to the contract. The occupation is registered according to the
2002 Brazilian Code of Occupations (CBO), a detailed 6-digit code that
follows a pyramid structure, with the first 2 or 4 digits representing a
higher level of aggregation. In addition, the database has an individual
identifier that allows us to follow individuals for the entire period.

4.2.2 Job Displacement and Sample-Selection Criteria

We define two types of displacement: displacement because of firm
closure and displacement because of mass layoffs. Firm closure is
identified when an establishment identifier ceases to exist. For mass
layoffs, we follow the extensive literature on job displacement (for in-
stance, Blien et al., 2021; Hijzen et al., 2013; Raposo et al., 2019) and
define mass layoffs when 30% or more workers are displaced between
t − 1 and t. We impose an additional restriction to avoid capturing
seasonal changes in employment and exclude cases in which employ-
ment fluctuated by 20% in the two years before the mass layoff, or
the firm size went above 150% compared to the year of the layoff. To
put it simply, we exploit the data to the best of our capacity to ex-
clude cases in which downward trends in employment were already
perceived in the years before, possibly leading to negative selection of
workers with few outside options, or when employment recovers in
the years following, which would be indicative of a temporary shock
and not a structural one. Additionally, some of these events might
not be actual closures. Because of mergers between firms or splits of
establishments, this procedure could fail to capture only closures and
mass layoffs. To deal with this, we impose an additional restriction to
capture these cases and exclude cases in which more than 50% of the
employees continue under a new employer identifier.

We focus on workers facing job displacement between 2009-2013 and
observe workers’ outcomes three years before and five years after the
layoff. We focus on long-tenured individuals, imposing that displaced
workers must be employed in the same firm for at least three years
before displacement. In addition, we restrict our sample to full-time
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prime-age workers, thus drawing from a sample of individuals older
than 25 or younger than 50 years in the first year of analysis.6 We also
restrict firms’ size, focusing on firms with at least 30 employees in the
first year before displacement.

Table 4.1 presents some descriptive statistics of the resulting sample.
We manage to identify 308,683 individuals that face job displacement,
of which 30% are women and 11% have a college degree (see section 5.6
for additional descriptions by state). On average, workers are 37 years
old with over 7 years of experience. In addition, most workers are
employed in the services sector and in the Southeast region of Brazil,
the country’s most populous and wealthiest region.

6Some individuals might have numerous jobs in a given year. We restrict to one
observation per worker-year by choosing the highest-paying in any given year.
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Table 4.1: Descriptive statistics

Mean SD

Average wage (BRL) 2043.39 2485.33
Worker’s age 37.00 6.38
Tenure (months) 85.80 53.76
Firm’s size 886.81 1359.82
Gender (Female = 1) 0.30 –
Illiterate or primary 0.04 –
Primary school graduate 0.16 –
Middle school graduate 0.22 –
High-school graduate 0.47 –
College degree 0.11 –
Agriculture and Extractive 0.04 –
Manufacturing 0.42 –
Services 0.54 –
North 0.04 –
Northeast 0.16 –
Southeast 0.58 –
South 0.14 –
Central-West 0.07 –

Observations 308,683

The table shows descriptive statistics for displaced individuals in the year before
displacement.
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4.2.3 O*NET data on skills

A critical part of our analyses is the use of granular information on the
use and intensity of knowledge, skills, and abilities across different oc-
cupations. To this end, and given the lack of information specific to the
Brazilian labor market, we exploit the O*NET database. The data is a
US database that aims to explain the anatomy of occupations (Peter-
son et al., 1999), and it is widely used to characterize the structure of
employment and earnings in the US (e.g., Acemoglu and Autor (2011))
and other countries (Arntz et al., 2016), as well as to explore occupa-
tional mobility in various labor markets (Huckfeldt, 2018; Lyshol, 2022;
Nedelkoska et al., 2015). In addition to other characteristics, O*NET
associates a series of tasks (332), tools (4302), and knowledge, skills,
and abilities (123) with each occupation. It is updated periodically
and is currently in its 24th version. In each round of updates, experts
(workers of a given occupation and their managers or human resource
specialists) are interviewed and asked to describe what they do, how
often, what they need to know, and how crucial it is for their job. We
focus on knowledge, skills, and abilities (or KSA), as the literature con-
siders that they are what workers apply, using tools or not, to perform
tasks in their jobs (Nedelkoska et al., 2015).

Although O*NET is based on the American labor market, the similarity
between two occupations based on O*NET’s KSA is a good predictor
of workers’ mobility in Brazil (Gukovas, 2023). Gukovas (2023) finds
that Brazilian workers are 3.1 times more likely to move between occu-
pations on the 95th percentile of similarity than on the 5th. Therefore,
we take O*NET as our instrument to identify occupations’ similarities
and match the O*NET to the Brazilian code of occupations (CBO), us-
ing a cross-walk with the US Bureau of Labor Statistics’ occupational
classification (SOC) and taking advantage of the similar structure of
both classifications (Maciente, 2012).7

7Out of the 2,320 occupations in RAIS, 2,101 can be mapped to 688 occupations in
O*NET. For occupations where there is a more than one-to-one match between
O*NET and RAIS, we take an average of each KSA dimension weighted according
to the number of workers on each in the United States labor market. Moreover,
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4.2.4 Similarity between occupations

To estimate how central a given occupation is in the network of occu-
pations, we first build a similarity measure between each pair of occu-
pations by calculating a Jackard Similarity Index (JSI)8 as follows:

JSIij =
HCi ∩HCj

HCi ∪HCj
(4.1)

where HCi is the human capital associated with occupation i and HCj

is the human capital associated with occupation j. In our case, we
consider the different dimensions of KSA from the O*NET database
as human capital in the form of dummies. The O*NET classifies each
dimension into seven levels, ranging from the most basic to the most
advanced level of knowledge. For example, suppose we aim to com-
pare mathematics knowledge between economists and rocket engi-
neers. We first breakdown this dimension into six levels ([0,1], ]1,2],
]2,3], ]3,4], ]4,5], and ]5,7]9. If economists use mathematics at level
3, we consider the first three breakdowns as 1, and the remaining as
zero. In contrast, if rocket engineers use mathematics at level 7, all the
six breakdowns will have a value of 1. In turn, if mathematics were
the only dimension relevant for both occupations, the JSI would equal
0.5.

given that several CBO at the 6-digit level are matched to the same occupation in
O*NET, we keep the final sample at the 4-digit level by taking the average among
the 6-digit level occupations that belong to the same 4-digit level group, weighted
by the number of workers in each labor market. In most of these groups, all 6-digit
level occupations corresponded to the same O*NET occupation, not changing the
values used.

8As opposed to measures based on co-occurrence, the JSI is not impacted by the
number of skills of a given occupation, while when compared to correlations, it is
more impacted by the presence, rather than the absence of skills in an occupation.

9There are very few occupations that use a skill with a level higher than 6; there-
fore we aggregate the last two levels. Furthermore, to reduce the noise caused by
dimensions used by most occupations, we exclude those used by more than 95
percent of them
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While the JSI gives the distance between each pair of occupations, we
want to observe the worker’s position concerning all other occupations
in the market in which they supply their labor. For this purpose, and
similar to Eggenberger et al. (2022), we calculate the average distance
of the worker’s occupation at the time of displacement to the others
weighted by the log of the number of contracts active at the end of the
year in the region (the mesoregion, similarly to Loyo (2016)). We call
this measure the Occupational Commonality Index (OCI):

OCIimt =

N∑
j=1

JSIij
Ljmt

Lmt
(4.2)

where OCIim is the occupational commonality index of occupation i
in the mesoregion m. JSIij is the distance between occupation i and
j, and Lijmt

Lm
is the relative employment of occupation j in mesoregion

m and year t to weight the skill distances by the number of alternative
jobs available to a worker.10 Figure 4.1 presents the resulting distri-
bution of the OCI. The left-skewed distribution ranges from around
0.06 to 0.6, which indicates that occupations share, on average, 6 to
60 percent of their skills with the other occupations available in the
mesoregion. The average OCI is 0.44, and the standard deviation is
0.06. In addition, Table 4.2 indicates that models and telemarketers are
among the most specific occupations. At the same time, construction
supervisors and packaging and labeling workers supervisors are the
occupations with the largest OCI.

10In practice, for each worker, we measure the index for the year of displacement and
the mesoregion of the previous employer. Furthermore, we calculate the relative
employment by taking the logarithm to reduce dispersion and account for occu-
pations with few (or too many) workers in the same region.
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Figure 4.1: Distribution of the OCI

The figure shows the distribution of the OCI for the year 2020 across mesoregions.

Table 4.2: Rank of occupations with low and high OCI

Occupation OCI Rank

Low OCI
Models 0,0731 1
Workers in the tasting and classification of grains and the like 0,1669 2
Telemarketers 0,1878 3
Domestic workers in general 0,2374 4
Garment sewing machines operators 0,2610 5

High OCI
Construction supervisors 0,5443 1
Packaging and labeling workers supervisor 0,5441 2
Forestry technicians 0,5410 3
Road transport technicians 0,5395 4
Pointers and lecturers 0,5394 5
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4.3 Empirical approach

Following a layoff, individuals can experience extended periods of
unemployment, which are commonly linked to differences in work-
ers’ characteristics (e.g., gender, age, education, reservation wage, and
spouse’s employment status and income) (Hoffman, 1991) and labor
market conditions (e.g., business cycle, local labor demand) (Wilke,
2004). We focus on whether the extent to which the skills in one’s
occupation before displacement link to other occupations can explain
workers’ re-insertion in the labor market. Specifically, we test the ex-
tent to which post-displacement employment is related to workers’
skills commonalities in the previous occupations (OCI), and the extent
to which the skills commonalities in one’s occupation relate to occu-
pational switches post-unemployment. In doing so, we explore firms’
mass layoffs or closure as an exogenous shock to workers’ careers and
apply a two-way fixed effects regression as follows:

yit = λi +
5∑

k=−3,k ̸=−2

[νkt βk + νkt OCIθk] + δs + σj + ϵijst (4.3)

where yit is the outcome of interest (relative employment and occu-
pational switching). Relative employment is defined as a worker’s
number of months employed compared to t − 2. In addition, occu-
pation switching is a dummy equal to 1 if the worker switches occu-
pations (defined at 2 digits level). νt represents time-to-displacement
dummies, from three years before the event to five years after it (t-2
is the baseline). λi represents individual fixed effects and capture per-
manent unobserved individual characteristics. σj and δs represent the
structural region and sector effects, and βk reflects the effect of the dis-
placement on workers’ relative employment. θk is our main outcome
of interest and measures the additional effect in a specific year due to
an increase in the occupational commonality index. The OCI is calcu-
lated at t − 1 and is, therefore, based on workers’ occupation at the
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moment of displacement. Furthermore, we standardize the OCI with
a mean of 0 and a standard deviation of 1.

Finally, we also explore the effects of occupational mismatch on work-
ers’ wages. Although the OCI is more suitable for understanding an
occupation’s position within the network, the JSI is better equipped to
measure the similarity between two occupations (A and B) and thus
provides a more suitable framework for evaluating occupational mis-
match after the transition. We assess the relationship between wages
and the JSI by estimating the following equation:

log(wage) = λi +
5∑

k=−3,k ̸=−2

[νkt βk + νkt JSIθk] + δs + σj + ϵijst (4.4)

where log(wage) is the logarithm of monthly wages, and the JSI cap-
tures the distance between the occupation before displacement and the
first job following the event.

4.4 Results
4.4.1 Employment

We now provide baseline estimates of job displacement’s impact on
relative employment. Figure 4.2 plots the coefficients of the time-to-
event dummies from Equation 4.3. In years before the layoff, given
that workers were employed full-time, the coefficients are equal to zero
by construction. However, following the event, treated individuals
worked about 10% less in t and almost 60% less in the year follow-
ing the event. This negative impact continues over the medium run,
although the negative impact on employment reduces significantly to
about 25% in t+ 2 and 35% in t+ 5 (see Table 4.8 in the Appendix).
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Figure 4.2: Effect of displacement on employment

The figure shows the estimates of time-to-displacement dummies from a regres-
sion including region, sector, and year fixed effects. The dependent variable is rel-
ative employment. Relative employment measures workers’ number of months
employed in a given year compared to full employment in t − 2. Year t − 2 is
the base year. Vertical bars show the estimated 95% confidence interval based on
standard errors clustered at the individual level.

4.4.2 Skills commonalities and employment

We are particularly interested in whether the OCI also correlates with
shorter periods of unemployment. Figure 4.3 provides the coefficients
of the interaction between time-to-displacement dummies and the
OCI. The results suggest that an increase of one standard deviation
in the OCI increases almost 1% in relative employment in t and
over 2.8% in t + 2 and up to five years following displacement (see
Table 4.8 in the Appendix). Interestingly, not only does the size of the
coefficient increases with time, but the share of relative employment
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explained by the OCIs increases too. This is consistent with the
hypothesis that workers initially search for similar occupations
before broadening the set of jobs they consider (Belot et al., 2018).
It is also interesting to note the correlation between the coefficients
in Figure 4.4 and Figure 4.3, as both the probability of switching
occupations and reducing unemployment increases with time.

Figure 4.3: Effect of occupational commonality on relative employment

The figure shows the estimates of the interactions between time-to-displacement
dummies and an occupational commonality index from a regression including
time-to-displacement dummies and individual, region, sector, and year fixed ef-
fects. The dependent variable is relative employment. Relative employment mea-
sures workers’ number of months employed in a given year compared to full em-
ployment in t − 2. Year t − 2 is the base year. Vertical bars show estimated 95%
confidence intervals based on standard errors clustered at the individual level.

The fact that workers initially search for similar occupations before
broadening their job search is illustrated by Figure 4.4. The figure
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plots the coefficients of the time-to-displacement dummies interacted
with the OCI index, taking job switching as the dependent variable.
It shows that a higher OCI is indeed associated with a higher proba-
bility of switching occupations following displacement. For instance,
an increase of one standard deviation in the index increases workers’
probability of switching occupations by over 2.5% in t + 1 and 3.5%
in t + 2 (see Table 4.8 in the Appendix). Interestingly, we find a non-
significant coefficient at time t, likely related to the fact that workers
first try to find jobs in the same occupation before broadening their
options.

To illustrate the type of occupational transitions that we observed, we
refer the reader to the Appendix, that shows most and least common
transitions between the worker’s previous and the first occupation af-
ter the displacement, based on JSI. Table 4.9 shows the most com-
mon transitions with high JSI (fourth quartile of JSI), i.e., transitions
to very similar occupations. Examples of most common transitions
include movements from accounting assistants to administrative as-
sistants and from vigilantes to doormen. Table 4.10 describes some of
the least common and more anecdotal transitions. Least common tran-
sitions are obviously related to workers moving to more distant occu-
pations (first quartile of JSI), which include movements from cooks to
electrical equipment assemblers and nutritionists and civil engineers
becoming administrative workers.

4.4.3 Occupational distance and wages

The preceding sections primarily examined the relationship between
a specific occupation and all potential labor market transitions. Now,
we focus on analyzing realized shifts in occupations, as transitioning
to distant jobs often negatively affects wages (Guvenen et al., 2020;
Huckfeldt, 2018; Lyshol, 2022; Nedelkoska et al., 2015). To assess the
impact of moving to distant occupations, we focus on the JSI and esti-
mate Equation 4.4. Figure 4.5 presents the coefficients of the interaction
between time-to-displacement dummies and the JSI.
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Figure 4.4: Effect of occupational commonality on the probability of switching
occupations

The figure shows the estimates of the interactions between time-to-displacement
dummies and an occupational commonality index from a regression including
time-to-displacement dummies and individual, region, sector, and year fixed ef-
fects. The dependent variable is a dummy equal to 1 if the worker switches oc-
cupations following the displacement. Year t − 2 is the base year. Vertical bars
show estimated 95% confidence intervals based on standard errors clustered at
the individual level.

As the JSI measures the similarity between occupations A and B, the re-
sults indeed indicate that moving to more similar occupations reduces
the adverse effects of displacement. For instance, a one standard de-
viation increase in occupations similarity increases workers’ wages by
about 2% in t + 1 (see Table 4.11 in the Appendix). It is interesting to
note that the coefficient is larger in t+ 1 and that there is some decline
over time. This is likely related to the fact that, when moving to distant
occupations, workers are more significantly impacted in the short run
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and that, through learning by doing, they are able to increase wages
over time and catch up.

Figure 4.5: Effect of skill mismatch on wages

The figure shows the estimates of time-to-displacement dummies interacted with
the JSI index from a regression including time-to-displacement dummies and in-
dividual, region, sector, and year fixed effects. The dependent variable is the log-
arithm of monthly wages. Year t − 2 is the base year. Vertical bars show esti-
mated 95% confidence intervals based on standard errors clustered at the individ-
ual level.

4.5 Conclusion
Job displacement has a significant and long-lasting negative effect on
wages and unemployment. In explaining these findings, the literature
has more recently underlined the importance of skills and occupational
distance in defining workers’ outcomes. Following a displacement,
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workers may either wait longer and move to a similar occupation or
quickly move to jobs that do not match their skills. While the first
option may not be realistic for many workers, shifting to occupation-
ally distant jobs is usually associated with lower re-employment wages
(Huckfeldt, 2018; Lyshol, 2022; Nedelkoska et al., 2015).

This paper has used a measure of occupational commonality to study
the relationship between occupations and labor outcomes in Brazil.
We explain occupational mobility from a worker’s set of skills and its
transferability to other occupations and show a positive and statisti-
cally significant effect on the likelihood of exiting unemployment. In
our preferred estimates, a one standard deviation increase in the mea-
sure of occupational commonality leads to a decrease of 1 to 1.3% in
the probability of unemployment. However, we find no significant
impact on wages. We also examine the role of occupation mismatch in
explaining labor outcomes. Using a measure of occupational distance
between pairs of occupations, we show that moving to similar occu-
pations reduces the adverse effects of displacement on wages. Specif-
ically, moving to similar occupations compared to more distant ones
results in 1 to 2% higher wages upon reemployment.

These findings suggest several courses of action for policymakers
to support displaced workers. First, for workers in more general
occupations, intermediation services could advise them to broaden
their search, thus making the best use of their less specific skill set.
Most workers are biased to look for similar occupations during
the first months after displacement, which could mitigate their
chances of finding a new job. Second, our main findings suggest
that having a specific skill set significantly increases the chances of
long-term unemployment and that moving to distant occupations
results in higher wage losses. Therefore, policymakers should target
human capital investments for workers in more specific occupations.
Nevertheless, these investments are likely more effective when
combined with intermediation services and unemployment insurance.
Further research could usefully explore if these policies have a
different impact depending on the workers existing set of skills.
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Future research may also address the main limitations of this study:
the exclusion of the informal labor market and micro and small com-
panies and the use of skills associated with occupations as a proxy for
the workers’ skills. For instance, while limiting the sample to medium
and large companies allowed this study to exclude potential biases, it
also excluded a significant part of the labor market.11 In addition, us-
ing skills related to occupations might not cover all the skills a worker
possesses, possibly underestimating their potential re-insertion in the
labor market. A dataset that links skills directly to workers and follows
them in their careers could provide a more robust conclusion. Lastly,
further research could also explore the robustness of our findings in
different contexts.

11There could be a strong correlation between an individual worker’s abilities and the
firm’s performance or that in small companies, workers might perform more tasks
than those associated with their occupation

120



4.6 Appendix

121



Chapter 4. Forced Displacement and Occupational Mobility: a
Skills-based Approach

Ta
bl

e
4.

3:
D

es
cr

ip
ti

ve
s

by
st

at
e

in
th

e
N

or
th

re
gi

on
of

Br
az

il
Em

pl
oy

er
’s

st
at

e
11

12
13

14
15

16
17

N
21

8
(4

.1
%

)
11

6
(2

.2
%

)
1,

63
6

(3
0.

4%
)

42
(0

.8
%

)
3,

16
0

(5
8.

7%
)

10
4

(1
.9

%
)

10
4

(1
.9

%
)

Tr
ea

te
d

w
or

ke
r

0.
50

0
0.

50
0

0.
50

0
0.

50
0

0.
50

0
0.

50
0

0.
50

0
W

ag
e

90
5.

22
8

54
1.

97
7

1,
06

3.
80

0
67

5.
72

9
91

6.
83

9
82

5.
87

6
93

8.
50

8
W

ag
e

G
ro

w
th

0.
13

6
0.

07
8

0.
05

5
0.

13
1

0.
10

9
0.

06
0

0.
07

6
W

or
ke

r’
s

ag
e

32
.9

95
36

.1
12

33
.9

07
35

.2
62

34
.1

86
34

.1
73

32
.4

13
G

en
de

r
0.

40
4

0.
41

4
0.

21
8

0.
52

4
0.

22
7

0.
46

2
0.

23
1

Il
lit

er
at

e
or

pr
im

ar
y

sc
ho

ol
0.

00
0

0.
15

5
0.

00
1

0.
09

5
0.

06
0

0.
00

0
0.

01
9

Pr
im

ar
y

sc
ho

ol
gr

ad
ua

te
0.

17
4

0.
34

5
0.

04
9

0.
38

1
0.

09
6

0.
01

9
0.

09
6

M
id

dl
e

sc
ho

ol
gr

ad
ua

te
0.

20
2

0.
25

9
0.

17
0

0.
23

8
0.

27
6

0.
25

0
0.

23
1

H
ig

h-
sc

ho
ol

gr
ad

ua
te

0.
62

4
0.

24
1

0.
76

9
0.

28
6

0.
55

0
0.

73
1

0.
65

4
C

ol
le

ge
de

gr
ee

0.
00

0
0.

00
0

0.
01

1
0.

00
0

0.
01

8
0.

00
0

0.
00

0
Te

nu
re

45
.6

34
41

.9
36

47
.6

44
40

.3
07

49
.8

41
41

.4
03

52
.4

36
Fi

rm
’s

si
ze

31
1.

72
9

34
2.

10
3

55
5.

04
7

97
.5

24
30

6.
81

6
16

1.
85

6
14

0.
20

2
Si

ze
(3

0-
49

)
0.

14
2

0.
11

2
0.

07
2

0.
28

6
0.

14
8

0.
17

3
0.

30
8

Si
ze

(5
0

-9
9)

0.
22

5
0.

10
3

0.
09

7
0.

26
2

0.
18

5
0.

29
8

0.
39

4
Si

ze
(1

00
-4

99
)

0.
47

2
0.

52
6

0.
40

1
0.

45
2

0.
48

0
0.

52
9

0.
26

0
Si

ze
(5

00
+)

0.
16

1
0.

25
9

0.
43

0
0.

00
0

0.
18

6
0.

00
0

0.
03

8
Fi

rm
’s

av
er

ag
e

w
ag

e
95

8.
01

1
57

6.
33

5
1,

13
2.

75
4

65
0.

87
2

94
6.

54
9

93
5.

23
7

88
2.

11
7

A
gr

ic
ul

tu
re

an
d

Ex
tr

ac
ti

ve
0.

00
9

0.
00

0
0.

00
1

0.
00

0
0.

04
4

0.
00

0
0.

05
8

M
an

uf
ac

tu
ri

ng
0.

12
4

0.
34

5
0.

30
2

0.
40

5
0.

21
3

0.
17

3
0.

28
8

O
bs

er
va

ti
on

s
13

5,
56

6.
00

0
13

5,
56

6.
00

0
13

5,
56

6.
00

0
13

5,
56

6.
00

0
13

5,
56

6.
00

0
13

5,
56

6.
00

0
13

5,
56

6.
00

0

N
ot

e:
St

at
es

re
fe

r,
re

sp
ec

ti
ve

ly
,t

o
R

on
dô

ni
a,

A
cr

e,
A

m
az

on
as

,R
or

ai
m

a,
Pa

rá
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Table 4.8: Regression estimates
(1) (2) (3)

Employment Employment Switch

t− 3 0.000532∗∗∗ 0.000535∗∗∗ -0.0000496
(0.0000436) (0.0000435) (0.0000387)

t− 1 -0.00219∗∗∗ -0.00219∗∗∗ 0.000243∗∗∗

(0.0000851) (0.0000851) (0.0000357)

t -0.0863∗∗∗ -0.0863∗∗∗ 0.964∗∗∗

(0.000404) (0.000403) (0.00104)

t+ 1 -0.599∗∗∗ -0.599∗∗∗ 0.446∗∗∗

(0.000651) (0.000650) (0.00136)

t+ 2 -0.273∗∗∗ -0.273∗∗∗ 0.611∗∗∗

(0.000752) (0.000750) (0.00146)

t+ 3 -0.294∗∗∗ -0.294∗∗∗ 0.470∗∗∗

(0.000769) (0.000767) (0.00151)

t+ 4 -0.318∗∗∗ -0.318∗∗∗ 0.416∗∗∗

(0.000794) (0.000792) (0.00144)

t+ 5 -0.347∗∗∗ -0.347∗∗∗ 0.366∗∗∗

(0.000816) (0.000814) (0.00136)

t− 3 X OCI -0.000150∗∗∗ 0.000307∗∗∗

(0.0000520) (0.0000410)

t− 1 X OCI 0.000219∗∗ -0.000357∗∗∗

(0.0000964) (0.0000310)

t X OCI 0.0116∗∗∗ -0.000501
(0.000424) (0.00114)

t+ 1 X OCI 0.0207∗∗∗ 0.0255∗∗∗

(0.000642) (0.00127)

t+ 2 X OCI 0.0282∗∗∗ 0.0353∗∗∗

(0.000765) (0.00137)

t+ 3 X OCI 0.0283∗∗∗ 0.0303∗∗∗

(0.000777) (0.00140)

t+ 4 X OCI 0.0268∗∗∗ 0.0281∗∗∗

(0.000801) (0.00133)

t+ 5 X OCI 0.0249∗∗∗ 0.0183∗∗∗

(0.000815) (0.00128)

Individual Yes Yes Yes
Region Yes Yes Yes
Sector Yes Yes Yes
Observations 2720988 2720988 1467466
R-squared 0.507 0.508 0.576

Note: The table shows the baseline estimates for Figure 3.2, Figure 4.3, and Fig-
ure 4.4. The table shows the coefficients of time-to-event dummies (from t − 3 to
t + 5) and the coefficients of the interactions between time-to-event dummies and
an occupational commonality index from a regression including individual, region,
and sector fixed effects. The dependent variable is employment (in columns 1 and
2), which is a dummy equal to one is the worker has any positive labor earnings
in a given year, and a dummy indicator if the worker has switched occupations
(column 3). Year t − 2 is the base year. ***, ** and * respectively indicate 0.01, 0.05
and 0.1 levels of significance. Standard errors clustered at the individual level.
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Table 4.9: Most common occupation transitions in the fourth quartile of JSI

Initial occupation New occupation

Steam and utility machine operators Operators of conventional machine tools
Accounting assistants Agents, assistants and administrative assis-

tants
Electricity and electromechanical techni-
cians

Mechanical technicians in the maintenance
of machines, systems, and instruments

General cargo vehicle drivers Drivers of small and medium vehicles
Builder’s laborer Workers in waste collection services, clean-

ing and conservation of public areas
Drivers of small and medium vehicles General cargo vehicle drivers
Doormen, watchmen, etc. Vigilantes and security guards
Installers and repairers of electrical, tele-
phone, and data communication lines and
cables

Installers-repairers of telecommunications
lines and equipment

Vigilantes and security guards Doormen, watchmen, etc.
Installers-repairers of telecommunications
lines and equipment

Installers and repairers of electrical, tele-
phone, and data communication lines and
cables

Table 4.10: Least common transitions in the first quartile of JSI

Initial occupation New occupation

Cooks Electrical equipment assemblers
Electrical, electronics, and related en-
gineers

Shopkeepers

Footwear manufacturing workers Drivers of small and medium-sized vehicles
Metal and alloy molding workers Doormen, watchmen, etc.
Technicians in electronics High school teachers
Doormen, watchmen, etc. Banking service clerks
Secretarial technicians, stenographers
and stenotypists

Telemarketers

Civil engineers and the like Agents, assistants and administrative assistants
Professors of biological sciences and
higher education health

Cashiers and ticket agents (except bank tellers)

Nutritionists Agents, assistants and administrative assistants
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Table 4.11: Job switching and the OCI
Log(Wage)

t− 3 X JSI -0.00324∗∗∗

(0.000454)

t− 1 X JSI 0.000348
(0.000446)

t X JSI 0.00212∗∗∗

(0.000746)

t+ 1 X JSI 0.0187∗∗∗

(0.00126)

t+ 2 X JSI 0.0170∗∗∗

(0.00128)

t+ 3 X JSI 0.0124∗∗∗

(0.00136)

t+ 4 X JSI 0.00957∗∗∗

(0.00142)

t+ 5 X JSI 0.00762∗∗∗

(0.00148)

Individual Yes
Region Yes
Sector Yes
Observations 863601
R-squared 0.885

Note: The table shows the baseline estimates for Figure 4.4. The table shows the
coefficients of the interactions between time-to-event dummies and the JSI from a
regression including individual, region, and sector fixed effects. The dependent
variable is the logarithm of wages. Year t − 2 is the base year. ***, ** and * respec-
tively indicate 0.01, 0.05 and 0.1 levels of significance. Standard errors clustered at
the individual level.
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5
Exporting and Technology Adoption

in Brazil

This chapter is based on: Cirera, X., Comin, D., Cruz, M., Lee, K. M., & Martins-
Neto, A. (2023). Exporting and technology adoption in brazil. World Trade Review,
22(3-4), 334–347. https://doi.org/10.1017/S1474745623000186
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Chapter 5. Exporting and Technology Adoption in Brazil

Abstract
There is limited evidence about the role that participating in interna-
tional trade has on the diffusion of technologies. This paper analyzes
the impact of exporting on firms’ adoption of more sophisticated tech-
nologies, using a novel dataset, the Firm-level Adoption of Technol-
ogy (FAT) survey, that includes more than 1,500 firms from Brazil. The
survey provides detailed information about the use of more than 300
technologies, combined with data from the Brazil’s census of formal
workers (RAIS) and Brazil’s exports data from the Ministry of Trade.
To address some critical endogeneity concerns, we apply a difference-
in-differences with multiple periods to examine the effects of entering
export markets on technology adoption. We find that exporting has a
positive effects on firms’ likelihood of adopting advanced technologies
in business functions related with Business Administration, Produc-
tion Planning, Supply Chain Management and Quality Control, which
are important to manage tasks associated to export activities.

JEL Codes: D2, E23, L23, O10, O40
Keywords: Technology, International Trade, Adoption and diffusion
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5.1 Introduction

A critical question for economic development is the role of interna-
tional trade in facilitating the adoption and upgrading of technologies.
Participating in international trade can support the diffusion through
different channels. Regarding imports, the competitive pressure from
increased imports of similar goods can incentivize technology upgrad-
ing to diversify to other products but also reduce the rents and push
some producers to lower quality segments; thus, disincentivizing in-
novation and technology adoption. Easier and cheaper access to im-
ports can also facilitate the adoption of new technologies via a reduc-
tion in costs and by improving availability of such technologies. In
addition, participation in international trade and global value chains
(GVCs) can facilitate learning and access to existing technologies via
learning from customers in more contested markets or learning from
suppliers or buyers.

A rapidly growing literature has explored the links between trade and
innovation, as well as technology adoption and upgrading. This lit-
erature has explored different channels. The largest share of studies
has focused on the impact of imports. Particularly through two spe-
cific channels; the impact of imports of intermediate inputs and equip-
ment and the competitive pressure from increasing imports in similar
products, such as reductions in tariffs or, more importantly, the China
shock. The evidence of these studies is mixed1, and emphasizes that

1Regarding imports, Shu and Steinwender, 2019 summarize the empirical evidence.
The authors differentiate between the so-called “Schumpeterian” effect, through
which increased competition reduces rents and discourages technology upgrad-
ing, and the “escape competition” effect, through which some firms use technol-
ogy upgrading and innovation to upgrade their products and escape import com-
petition. Their synthesis of the evidence suggests that, in general, increases in
imports following trade liberalization tend to be positive on innovation, especially
in developing countries (Gorodnichenko et al., 2010) and regarding the imported
intermediaries channel. However, in general, the effect of import competition is
mixed, especially regarding firms in developed economies. For example, looking
at the “China shock”, Bloom et al., 2015 find for a sample of firms in 12 European
countries that the China competitive pressure positively impacted both technol-
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Chapter 5. Exporting and Technology Adoption in Brazil

the type of market and the type of firm is critical in understanding the
impact on technology adoption and innovation from imports.2

A smaller second set of studies, the focus of this paper, analyzes the
impact of exports on technology upgrading and innovation. Regard-
ing exports, two important channels are at play. First, a scale effect
increases the incentives to adopt new technologies. Bustos, 2011 show
how tariff reductions in Argentina in the context of MERCOSUR in-
centivized firms to adopt new technologies given the larger scale and
profits. This positive effect, however, concentrated on firms at the top
of the productivity distribution. Lileeva and Trefler, 2010 analyze the
impact of tariff reductions in the U.S. on Canadian plants and show
that this had a positive impact on exporters, especially on lower pro-
ductivity plants that are export entrants. Thus, the positive scale effect
can also benefit lower productivity plants, but only if they enter export
markets. A second channel is the “learning” channel. Atkin et al., 2017
conducts an experimental design with Egyptian rug producers by ran-
domly assigning export contracts and find an increase in quality and
learning for those producers that get the export contract.

In sum, this literature finds that there is a positive “learning” effect,

ogy upgrading and reallocation. In contrast, Autor et al., 2020 using a sample of
US firms, find the increased competition from China translated into a reduction of
technology patents and R&D.

2Two sources of heterogeneity are important when looking at the evidence. First,
the type of sector competition affects innovation. Aghion et al., 2005 estimate an
inverted U relationship between competition and innovation and how more likely
competition will affect firms in neck-to-neck competition sectors positively and
negatively in laggards. Second and related, more productive firms are more likely
to benefit from the impact of trade on technology adoption. Akcigit and Melitz,
2022 develop a model where firms decrease innovation investments when experi-
encing import shocks. Still, those firms that are better positioned can “escape” this
competition by innovating and upgrading. Using data on Indian firms, Bas and
Berthou, 2016 find that the trade liberalization process in the 1990s shows how
only firms in the middle-upper productivity deciles increased technology adop-
tion and the import of capital goods following tariff cuts in intermediaries. Thus,
the firm’s productivity level is important for the “escape competition channel” but
also the “learning from intermediates” channel.
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which also applies to imports of intermediates, and a “scale” effect for
exporters that increases their incentives to upgrade their technologies.
The evidence summarized in Shu and Steinwender, 2019 finds some
evidence for all these channels, with some of the positive effects con-
centrated among more productive firms.

Identifying the sign and magnitude of the effects of exporting on tech-
nology adoption is challenging for three reasons. First, disentangling
the causal direction of these effects is difficult, given that more produc-
tive firms tend to export and participate in international markets and,
accordingly, are more likely to be technologically sophisticated. In ad-
dition, in preparation for exporting, firms may upgrade their technolo-
gies to generate competitiveness gains and quality upgrades, allowing
them to export. A second challenge is the lack of data on technology
use. Most of the evidence focuses on indirect technology measures
such as patents or R&D; only Bustos, 2011 and Lileeva and Trefler,
2010 use direct technology measures. Third, the use of technology is
multidimensional in its application to different business functions. Es-
tablishments use different technologies for different tasks, and even
within the same business function. Thus, the export effects on technol-
ogy adoption may differ for different tasks and technologies.

In this paper, we aim to narrow the existing gap in the literature in
understanding the relationship between exporting and the technology
gap. We use a unique and novel database, the Firm-level Adoption
of Technology (FAT) survey, and explore the impact of exporting on
technology sophistication and the adoption of selected individual tech-
nologies. The survey includes more than 1,500 firms in Brazil and pro-
vides granular information on the adoption of more than 300 technolo-
gies for different business functions as well as participation in interna-
tional trading activities.

To address endogeneity concerns, we take advantage of the informa-
tion collected about the year of adoption of more sophisticated tech-
nologies - when adopted - and merge the data with a longitudinal
dataset that includes data on export status from Brazil’s Ministry of
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Trade by firm and year. Moreover, to capture longitudinal information
on firms’ number of employees and average wages, we combine the
dataset with the census of formal workers in Brazil (RAIS). The com-
bined dataset allows us to use a quasi-experimental design to explore
the effect of entering export markets on the adoption of sophisticated
technologies.

Advancing our key results, we find that entering export markets in-
creases firms’ likelihood of adopting advanced technologies linked to
Business Administration and production Planning (such as Enterprise
Resource Planning (ERP)), Supply Chain Management (such as SRM)
and Quality Control.

The paper is structured as follows. Section 2 describes the data. Section
3 provides some initial correlations between exporting and technology
use. Section 4 describes the methodology used to identify the impact
of exporting on technology. Section 5 shows the main results. The last
section concludes.

5.2 Data

5.2.1 The FAT Survey

The Firm-level Adoption of Technology (FAT) survey collects detailed
information for a sample of firms about the technologies each firm
adopts and uses to perform key business functions necessary to op-
erate in its respective sector (see Cirera et al., 2020). The survey is com-
posed of five modules. Module A collects information on the general
characteristics of the firm.3 Module B focus on technologies used for
general business functions regardless of the sector where they operate,

3The survey is designed, implemented, and weighted at the establishment level. For
multi-establishment firms, the survey targets the establishment randomly selected
in the sample.
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and sector-specific business functions (module C) focus on technolo-
gies that are relevant only for firms in a given sector.4 Module D fo-
cuses on barriers and drivers of technology adoption, while module E
gathers information about the firm’s balance sheet and employment.

Technology grid

A critical feature of the survey is how technology is measured. To de-
sign modules B and C, the FAT survey relies on a group of technology
experts to determine the business functions relevant to the firm and the
list of technologies that can be used to implement the key tasks in each
function, as described by Cirera et al., 2020. We call the resulting struc-
ture the Technology Grid. The grid in FAT has three characteristics. First,
it is comprehensive. It includes the main business functions and the
full array of technologies in each function, from the most basic to the
most advanced technologies available. Second, the business functions
and technologies in the grid are relevant to all firms within any given
sector. In addition to identifying the key business functions and rele-
vant technologies, technology experts also provided a ranking of the
technologies in each business function based on their sophistication.
Overall, the FAT survey covers about 300 technologies split into al-
most 60 business functions, including general business functions (GBF)
that apply to all firms, regardless of the sector, and sector-specific busi-
ness functions (SBF) applied to agriculture (crops and livestock), man-
ufacturing (food processing, wearing apparel, leather, pharmaceutical,
and automotive), and services (retail, accommodation, land transport,
banking, and health). section 5.6 shows the grid for GBF and an exam-
ple of SBF for the food processing sector.

4The twelve sectors for which we have developed sector-specific modules are: agri-
culture and livestock; manufacturing (food processing, wearing apparel, leather
and footwear, motor vehicles, and pharmaceuticals); and services (wholesale and
retail, financial services, land transport services, accommodation, and health ser-
vices).
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Technology questions

The survey contains three types of questions about the technologies
used by the firm. First, FAT asks whether the firm uses each of the
technologies in the grid to conduct the tasks of the particular business
function. After determining the technologies that are used by the firm
in a business function, the survey asks which of these technologies is
the most widely used in the business function. Third, when a firm uses
an advanced technology in a given business function, the survey asks
how many years the technology has been adopted. This allows us to
produce three types of measures of sophistication. One regarding all
the technologies that are used, extensive measure (EXT); one regard-
ing the most frequently used technology, intensive measure (INT); and
finally, the years of adoption for advanced technologies.

A Summary technology sophistication index

As an aggregate indicator to measure sophistication we use a simple
cardinal index. Based on the experts’ assessment, we order the tech-
nologies in each function f according to their sophistication, and as-
sign each a rank rf ∈ 1, 2, ..., Rf , from least to most advanced. Because
several technologies may have the same sophistication, the highest
rank in a function Rf may be smaller than the number of possible tech-
nologies Nf .5 We define the relative rank of a technology as r̂f =

rf−1
Rf−1 .

Note that r̂f ∈ [0, 1]. The technology sophistication of business func-
tion f in firm j is a monotonic increasing function of the relative rank

5In a small number of business functions, the technologies covered are used in vari-
ous subgroups of tasks. For example, in the body pressing and welding functions
of the automotive sector, the survey differentiates between technologies used for
pressing skin panels, pressing structural components and welding the main body.
In cases like this, we construct ranks of technologies for each subgroup of tasks
within the business function, and then aggregate the resulting indices by taking
simple averages across the tasks groups.
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of the most widely used technology of firm j in function f (r̂f,j). For ex-
ample, our baseline sophistication measure is

sf,j = 1 + 4 ∗ r̂f,j . (5.1)

Since our baseline sophistication measure is linear, it displays constant
increments in sophistication as we move up in the rank. For example, a
firm that uses ERP for production planning, the frontier technology has
a score of 5, while one that uses specialized planning software would
have an index of 4. A priori, the sophistication measures could also
be concave or convex in the rank, reflecting diminishing or increasing
marginal increments in sophistication as the rank increases. In Cirera
et al. (2020), we show how this simple index is robust to alternative
cardinalizations.6 but we use the index only in the descriptive statistics
section, moving to adoption of specific advanced technologies in the
empirical section.

Sample

We use an original sample of about 1,500 establishments from Brazil.
The data includes information from formal establishments in agricul-
ture, manufacturing, and services with at least five employees. Ta-
ble 5.1 contains detailed information for our sample, disaggregated at
narrowly defined industries. For instance, in manufacturing, a large
share of establishments are in food processing and wearing apparel,
whereas in the services sectors, most establishments are in wholesale
and retail. Data were collected face-to-face in 2019 for the state of

6The non-uniqueness of latent cardinal variables associated with an ordinal rank
such as r̂f is common in many economic applications such as measures of institu-
tional quality, quality of education, well-being, trust, social norms, and sophistica-
tion of management practices, to name a few. However, it is critical to demonstrate
that these indices and results are robust to alternative plausible cardinalizations of
the ordinal rankings they measure.
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Ceará. For the states of São Paulo and Paraná, interviews were car-
ried during 2022.

Table 5.1: Sample distribution by sector

Sector Frequency Share

Agriculture 65 4.2%
Livestock 31 2.0%
Food Processing 211 13.8%
Apparel 167 10.9%
Motor vehicles 77 5.0%
Pharmaceuticals 8 0.5%
Wholesale or retail 319 20.8%
Financial services 4 0.3%
Land transport 18 1.2%
Health services 15 1.0%
Other Manufact. 263 17.2%
Other Services 353 23.1%

Total 1531 100%

Note: Table shows the frequency and share of firms by sectors in Brazil in the FAT
survey. FAT = Firm-level Adoption of Technology.

In addition to detailed information on the technology used for each
business function, the FAT survey also includes information on sev-
eral firms’ characteristics, which we use to control for other covari-
ates likely to explain differences in technology adoption. For example,
other than firms’ size, region, and sector, the database includes infor-
mation on managers’ and workers’ education, the use of formal in-
centives and performance indicators, and innovation practices, among
others.

Table 5.2 offers a description of the information available in the
database and presents the main differences between exporters (1,316)
and non-exporters (215). For instance, the first four lines describe
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the gap between exporters and non-exporters for the logarithm of
the four technological indexes. Non-exporters show, on average,
11% to 22% lower indexes, are also significantly smaller, interact less
with multinational enterprises (MNEs), and receive less government
support. Moreover, fewer non-exporters use formal incentives and
performance indicators. The gap is also large for managers with a
college degree, experience in large companies, or experience abroad.
Finally, exporters are more likely to innovate and show a larger share
of R&D employees.

5.2.2 Linked longitudinal data

To address endogeneity issues from using only cross-sectional varia-
tion in the FAT data, we construct a panel data to exploit additional
time variation for the quasi-experimental design while dealing with
firm heterogeneity with firm fixed effects. We first merged the FAT
with the Relação Anual de Informações Sociais (RAIS) from 1994 to
2020, which is a linked employer-employee data of all registered firms
in Brazil. This allows us to construct the panel of firms with firm char-
acteristics that is linked to the year of the adoption of more sophisti-
cated technologies in FAT. We also link the data administrative records
from the Brazil’s Ministry of Trade to get information on export status
at the firm-level across years. The linked longitudinal data from 1994
to 2020 allows us to use a quasi-experimental design (difference-in-
differences estimator) to explore the effect of entering export markets
on adopting advanced technologies. In essence, we aim to compare the
adoption rates of treated firms over the short and medium run with the
adoption that would have occurred if they had not started to export.
The final dataset includes 215 exporting companies. Of each, 17 are in
agriculture, 163 in manufacturing, and 35 in services. Of those, only 25
were already exporters in their first year, thus not switching status.
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Table 5.2: Differences between exporters and non-exporters
Non-exporter Exporter

Mean Std. Dev. Mean Std. Dev. Difference
GBF EXT 1.10 0.26 1.30 0.19 0.18***
GBF INT 0.84 0.30 1.10 0.24 0.22***
SBF EXT 1.00 0.34 1.20 0.37 0.19***
SBF INT 0.66 0.37 0.77 0.41 0.11***
Number of employees 108.33 334.58 674.35 1480.48 566.01***
Multinational 0.03 0.17 0.15 0.36 0.13***
Interaction with MNEs 0.51 0.50 0.86 0.35 0.35***
Government support 0.14 0.35 0.32 0.47 0.17***
Financial constraints 0.19 0.39 0.20 0.40 0.01
Family company 0.097 0.30 0.15 0.36 0.05*
Formal incentives 0.54 0.50 0.62 0.49 0.08*
Performance indicators 0.40 0.37 0.66 0.36 0.26***
Manager’s with college 0.56 0.50 0.74 0.44 0.17***
Manager’s experience (years) 24.36 11.51 27.02 14.50 2.66**
Experience in large company 0.30 0.46 0.49 0.50 0.19***
Studied abroad 0.12 0.32 0.28 0.45 0.16***
Share of college-educated employees 0.12 0.15 0.18 0.23 0.07***
Share of R&D employees 0.002 0.01 0.007 0.01 0.01***
Innovation 0.26 0.44 0.60 0.49 0.34***

Note: * p < 0.10, ** p < 0.05, *** p < 0.01. Table shows descriptive statistics and
differences by exporter status. First rows present the logarithm of the technology
indexes including GBF (EXT and INT) and SBF (EXT and INT). The last column is the
coefficient of a simple regression of trade status on the variable. GBF EXT = General
Business Function Extensive Margin, GBF INT = General Business Function Intensive
Margin, SBF EXT = General Business Function Extensive Margin, SBF INT = General
Business Function Intensive Margin.
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5.3 Methodology

We begin with examining how exporting status is related to technol-
ogy adoption using using the cross-sectional variation in the FAT data.
The data allows us to examine the association between exporting and
different levels of technology sophistication across various business
functions while controlling for firm characteristics. We use the lin-
ear regressions to estimate the association with the following speci-
fications.

Si = α+ δExporti +X ′
iβ + ui (5.2)

where Si is the technology sophistication measured with technology
indices (GBF EXT, GBF INT, SBF EXT, and SBF INT) in a firm i, Exporti
is an indicator for if a firm participates in exporting market, and the
vector Xi is the set of firm characteristics including sector, size, age,
multinational and innovation status, use of formal incentives, financial
constraint, and manager’s education and experience abroad.

Although the FAT data allows to control various firm characteristics
that are correlated with both exporting status and technology sophis-
tication, the estimates from linear regressions may suffer from endo-
geneity issues due to omitted variables and reverse causality. To bet-
ter identify causality on the effect of entering international markets on
the adoption of advanced technologies, we use the linked longitudinal
data and exploit the additional time variation created by the years of
adoption of advanced technologies and exporting status. The longi-
tudinal data also permits us to control for time invariant unobserved
firm heterogeneity with the firm fixed effects.

Specifically, we use an event study and apply the difference-in-
differences with multiple periods developed in Callaway and
Sant’Anna (2021). As a dependent variable, we focus on adopting
advanced technologies for eight general business functions: business
administration, production planning, supply chain management,
marketing, sales, payment, quality control, and fabrication (only
available for firms in manufacturing). The list of technologies for
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each business function includes: (i) specialized software and ERP
for Business Administration; (ii) specialized software and ERP for
Production Planning; (iii) non-integrated and integrated Supplier
Relation Management (SRM) for Supply Chain Management;
Customer Relationship Management software (CRM) and Big data
Analytics or Machine learning algorithms for Marketing; (v) computer
numerical controlled machine, robots, and advanced manufacturing
for Fabrication; (vi) online sales and electronic orders integrated to
specialized supply chain management systems for Sales Methods;
(vii) online or electronic payment through a bank wire and online
payment through platform for Payment Methods; and, (viii) statistical
process control with software monitoring and data management and
automated systems for inspection for Quality Control. For instance, in
the case of business administration, we have information on whether
firms adopted specialized software or ERP and, more importantly, the
date on which the firm adopted it. Using the years of adoption, we
create an indicator for each business function equal to 1 from the year
the firm adopted a given advanced technology and 0 in the previous
years.

In a typical difference-in-differences setting, we are confronted with
two time periods: no firm is treated in the first period, and a group
is treated in the second. Nevertheless, in our setting, in addition to
multiple periods, firms enter exporting markets at different times, thus
creating variation in the treatment timing. Traditionally, the response
to this challenge is by estimating a model that includes dummies for
crossectional units (αi) and time periods (αt) and a treatment dummy
(Dit). For example, the basic event study model would be:

yit = αi + αt + βDDDit + ϵit (5.3)

where yit is the outcome of interest. Nevertheless, under the presence
of time-varying treatment effects, the difference-in-differences estima-
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tor has been found to be biased (Baker et al., 2022; Goodman-Bacon,
2021). In our case, entering export markets could have heterogeneous
effects on technology adoption over time, especially considering vari-
ation in costs and technology diffusion. To address this issue, we take
advantage of recent developments in the difference-in-differences liter-
ature and apply the multiple periods estimator proposed by Callaway
and Sant’Anna (2021). The method breaks down several treatment pe-
riods into group-time average treatment effects (the average treatment
effect in period t for the group of units first treated in period g) and
aggregates them into meaningful measures of the causal effects.7 The
average treatment effect on the treated (ATT) for a treatment-timing
group g is thus:

ATT (g, t) = E[Yt(g)− Yt(0)|Gg = 1], for t ≥ g (5.4)

where Gg denotes the time when unit i receives treatment and Gg = g
for all firms that receive treatment at time period g. For instance, take
the case where there are five groups, each of which gets treated in 2010,
2011, 2012, 2013, and 2014, and the panel ends in 2016. As a result, the
model estimates a total of 15 group-time ATTs – 5 ATT(g,t) for the first
group, 4 for the second, 3 for the third, 2 for the fourth, and 1 for the
last.8 In most of our discussion, we focus on a weighted average of
post-treatment average effects from t to t+5 with weights proportional

7Although data from the Ministry of Trade includes information on the first and
last year a given firm exported, the method proposed by Callaway and Sant’Anna
(2021) assumes that treated units remain treated during all subsequent periods. In
our sample, less than 25% of the firms exported for less than two years. We assume
that firms’ decision to export, even if unsucessul, already impacts their decision
to adopt advanced technologies. In addition, as a robustness check, we estimate
additional models excluding these firms and find qualitatively similar results.

8Under the no-anticipation and parallel trends assumptions, group-time average
treatment effects are identified in periods when t ≥ g (i.e., post-treatment peri-
ods for each group). In practice, we also estimate pseudo group-time pre-trend
coefficients (when t < g), which we can use to test the parallel trends assumption.
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to the group size. The model assumes parallel trends of the potential
outcome in the absence of treatment, which we relax to hold only con-
ditional on the covariates. In addition to a dummy indicating firms
in the services sector, we add the logarithm of employment and aver-
age wages as control variables so that parallel trends hold only after
conditioning on a vector of pre-treatment covariates. Finally, estimates
use the doubly robust estimator based on stabilized inverse probabil-
ity weighting and ordinary least squares proposed by Sant’Anna and
Zhao (2020).

5.4 Results
5.4.1 Cross-sectional results

Our starting point in exploring the relationship between exporting and
the adoption of advanced technologies is looking at the cross-sectional
relationship between trade status and the technology index. Figure 5.1
shows the coefficient estimates and 95% confidence intervals from the
regressions of the different aggregate technology indices on the export-
ing status, controlling for sector, dummies for firms’ size and age, and
additional control variables. The indices include the extensive measure
(EXT) and the intensive measure (INT) for both general business func-
tion (GBF) and sector specific business function (SBF). The estimates
show a positive correlation between exporter status and technology
sophistication for all indices.
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Figure 5.1: Technology adoption and participation in international trade

Note: Figure provides the coefficients of exporter status with 95% confidence in-
tervals from the regressions for technology sophistication measures. Each tech-
nology measure is regressed on a dummy equal to one if the firm exports. Linear
regressions control for sector, size, age, multinational and innovation status, use
of formal incentives, financial constraint, and manager’s education and experi-
ence abroad.

The results show positive associations between exporting status
and different technology sophistication measures. Compared to
non-exporters, exporters are likely to have 25% or more larger
technology indices in general business functions (both extensive
and intensive margin) and sector specific business functions
(extensive margin). These associations are statistically significant.
The association with intensive margin of sector specific business
functions is positive, but the magnitude of the coefficient is slightly
lower (about 15%) and insignificant. In other words, exporters not
only adopt more advanced technologies but also intensively use such
technologies to perform general business functions. They also adopt
advanced technologies for sector specific business functions, but these
technologies may not be used intensively.

To better understand if the technology gap between exporter and non-
exporter varies across different types of business functions, we focus
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on general business functions and examine the averages of both ex-
tensive and intensive margins of disaggregated business functions in
Figure 5.2. In terms of the extensive margin in Panel (a), exporters tend
to have higher levels of technology sophistication in all business func-
tions, except for payment. Particularly, the sophistication level is much
higher in administration and production planning. And the gap of the
extensive margin is the largest in quality control. Regards to the inten-
sive margin in Panel (b), the average sophistication decreases across
for both exporter and non-exporter across all business functions, par-
ticularly more in sourcing, marketing, sales, and quality control. But
the gap does not disappear. Exporters intensively use more advanced
technologies than non-exporters.

Figure 5.2: Technology Sophistication by Business Function by Exporting Sta-
tus

(a) Extensive margin (b) Intensive margin

Note: Figure presents simple averages for each group in each business function.

Finally, Figure 5.3 shows the average technology sophistication mea-
sures by sector in the sample, excluding services. Differences between
the two exporting status groups are larger in food processing and agri-
culture. These correlation results are consistent and complement other
empirical work in developed economies showing that firms that partic-
ipate in international trade concentrate a significant number of patents
(see Aghion et al., 2018 for French firms) and R&D (see Foster et al.,
2020 for US firms).
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Figure 5.3: Technology Sophistication of Exporter and Non-exporter by Sector

Note: Each technology measure is regressed on a dummy equals to one if the
firm exports. Linear regressions control for sector, size, age, multinational and
innovation status, use of formal incentives, financial constraint, and manager’s
education and experience abroad. We define the frontier as a technology sophis-
tication index higher than 3.5, representing around 5% of firms in our sample.
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5.4.2 Difference-in-differences results using linked longitudinal
data

The results in the previous sections suggest the potential impact of ex-
porting on the adoption and use of technologies. But even after con-
trolling for several key firm characteristics, the associations could be
biased due to contemporaneous shock, omitted variables, or reserve
causality. To disentangle the causal effect of trade exporting on tech-
nology sophistication, we move on the analyses of the linked longitu-
dinal data.

Table 5.3 shows the main results of estimating the impact of entering
export markets on the probability of adopting, which are based on the
average treatment effect on the treated from t to t+5. We find a positive
and significant impact of entering the international market on adopt-
ing more sophisticated technologies for most business functions, with
particularly large coefficients for Business Administration, Production
Planning, Supply Chain Management, and Quality Control. For in-
stance, after starting to export, establishments tend to have a 13.7%
larger propensity of adopting specialized software or ERP for Busi-
ness Administration, compared to those not exporting.9 Moreover,
in the case of Quality Control, the export status is associated with a
8.9% larger probability of adopting statistical process control with soft-
ware monitoring and data management or automated systems for in-
spection. It is also interesting to note that coefficients are positive for
all business functions - although not statistically significant in some
cases.

9When excluding firms that exported for less than two years, we find a coefficient of
0.126 and statistically significant at 5%.
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Table 5.3: Effect of exporting on the adoption of advanced technologies for
business functions

(1) (2) (3) (4) (5) (6) (7) (8)
Business Production Supply Marketing Sales Payment Quality Fabrication

Administration Planning Chain Control

ATT 0.137*** 0.065** 0.063** 0.035 0.043* 0.025 0.089*** 0.008
(0.043) (0.033) (0.029) (0.023) (0.026) (0.033) (0.028) (0.043)

N 19,916 19,916 19,916 19,916 19,916 19,916 19,916 2,183

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Table shows the estimates of the ATT from
the difference-in-differences with multiple time periods. In columns (1)-(7), the
sample includes all firms in the FAT data linked to trade and employer-employee
data. In column (8), the sample includes manufacturing firms in the linked data.
For each business function, the dependent variable is a dummy equal to 1 if a firm
adopts the advanced technologies from the year and 0 otherwise. Specifications
control the logarithm of wages, the logarithm of total employment, and a dummy
for the services sector. Robust standard errors are in parentheses. ATT = Average
Treatment on the Treated.

Figure 5.4.2 panel (a) shows the disaggregated coefficient estimates for
Business Administration from t − 5 to t + 5 from the event study. The
results indicate that during the years before treatment, coefficients are
not statistically different from zero, which we interpret as an indication
that the parallel trends assumption holds and that there is no anticipa-
tion effect. In contrast, following the treatment, we observe a clear pos-
itive effect, which increases over time. The results are consistent with
a model in which export increases firms’ managerial layers (Caliendo
& Rossi-Hansberg, 2012; Garicano & Rossi-Hansberg, 2014). To cope
with more complex tasks induced by trade participation, firms raise
the number of managers and adopt more sophisticated technologies
for business administration.10 Results are also consistent with the scale
effect channel, through which larger demand induces the adoption of
new technologies (Bustos, 2011).

We also find similar results for Quality Control technologies. Coeffi-

10section 5.7 shows that firms that enter exporting markets increase the number of
knowledge hierarchies, consistent with our hypothesis that technology adoption
is related to the increased complexity associated with exporting.
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cients are positive from t to t+5, without signs of preparation to export.
The findings align with the literature showing that firms raise product
quality as they enter international markets (Álvarez & Fuentes, 2011).
Export markets carry higher quality requirements, and exporting firms
produce higher-quality products by increasing the quality of their in-
puts and varying the quality of their products across destinations (M.
Kugler & Verhoogen, 2008; Manova & Zhang, 2012).11 Our results
show that as firms adapt to more restrictive quality standards, they
adopt more advanced technologies for quality control.

11In fact, Iacovone and Smarzynska Javorcik (2012) shows that firms raise out-
put prices two years before entering exporting markets, which suggests that the
quality-upgrading process takes place in preparation to export.
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Figure 5.4: Effect of exporting on the adoption of advanced technologies

(a) Business Administration (b) Production Planning

(c) Supply Chain Management (d) Quality Control

Note: The figure shows the estimates of the interaction between time-to-event
dummies and a treatment indicator from a regression including firm fixed effects,
time-to-event dummies, and year fixed effects. Estimates also include a dummy
for the services sector, the logarithm of wages, and the logarithm of total employ-
ment as controls. The dependent variable is a dummy equal to 1 if the estab-
lishment adopted a advanced technology in each business function. Vertical bars
show estimated 95% confidence intervals.

Finally, the positive effect on the adoption of advanced technologies
in Production Planning and Supply Chain Management is likely to be
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associated with the need to manage more efficiently and timely the
production process and the increasing number of buyers and suppli-
ers. For instance, availability of high-quality intermediate goods is of-
ten limited in developing countries’ local markets. As firms enter ex-
port markets, they not only engage with additional buyers but are also
likely to expand the range of suppliers to acquire better intermediate
goods and better manage risks associated to disruptions in the supply
chain, since the costs of not fulfilling export orders are higher.

5.5 Conclusions

Understanding the role that participating in international trade has in
the diffusion of advanced technologies is critical for developing coun-
tries. But while a large literature has focused on the import channels
for diffusion and adoption, much less is known on the role of enter-
ing export markets in facilitating this diffusion and adoption of new
technologies. This paper aims to fill the gap in this literature by iden-
tifying the impact of exporting on the adoption of more sophisticated
technologies in Brazil.

Using a novel dataset with longitudinal information on exporting and
technology use, and implementing a difference-in-differences estima-
tor to a sub-sample of establishments in Brazil, we find a positive and
statistically significant effect in the likelihood of adopting sophisti-
cated technologies in key business functions for exporting. For ex-
ample, starting to export is associated with a 13.7% larger probabil-
ity of adopting specialized software or ERP for Business Administra-
tion; and an 8.9% larger probability of adopting statistical process con-
trol with software monitoring and data management for inspection in
quality control. We also find positive and significant effects on the
probability of adoption in Production Planning or Supply Chain Man-
agement. The evidence presented is consistent with models that sug-
gest that exporting increases the complexity of tasks and processes
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within the firm, and these requires better technologies to aid managing
these tasks and processes.

While the evidence presented here is also aligned with other empirical
work showing a positive impact of exporting on innovation; more ev-
idence is needed to identify the key channels that explain this positive
relationship. For example, what is the role that international buyers
play in transferring these more advanced technologies, or what role
does competing in more contested international markets play in incen-
tivizing technology upgrading.
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5.6 Appendix A
Figure 5.5 shows the grid for general business functions that all firms,
regardless of the sector, respond. Figure 5.6 shows one example of
sector-specific business functions for the food processing sector.

Figure 5.5: General Business Functions and Their Technologies

Source: Cirera et al. (2020)

156



Figure 5.6: Sector Specific Business Functions and Technologies in Food Pro-
cessing

Source: Cirera et al. (2020)

5.7 Appendix B
To check for the link between exporting and firms’ complexity, we
leverage the detailed information on workers’ occupations and test
whether firms that started exporting also increased knowledge hier-
archies. We define firms’ number of knowledge hierarchies based on
Caliendo et al. (2015) and Cruz et al. (2018) (see Table 5.4).

We then apply a similar model as in Equation 5.3 and take the number
of hierarchies as the dependent variable. Figure 5.7 shows the main re-
sults, suggesting that there is an increase in the number of knowledge
hierarchies associated with firms’ exporting activities.
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Table 5.4: Classification of layers

(1) (2) (3) (4)
CBO Hierarchy Layer % College-educated

CEO and managers G1 H5 L4 42.2%
Professional G2 H4 L3 81.9%
Technicians G3 H3 L2 17.7%
Clerks and services G4 and G5 H2 L1 5.9%
Production workers G6, G7, G8, and G9 H1 L0 0.9%

Source: Authors’ elaboration based on Cruz et al. (2018). Column (4)
shows the share of college-educated workers in each group for the year
2011.

Figure 5.7: Effect of exporting on the adoption of advanced technologies

Note: The figure shows the estimates of the interaction between time-to-event
dummies and a treatment indicator from a regression including firm fixed effects,
time-to-event dummies, and year fixed effects. Estimates also include a dummy
for the services sector, the logarithm of wages, and the logarithm of total employ-
ment as controls. The dependent variable is the number of knowledge hierarchies.
Vertical bars show estimated 95% confidence intervals.
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6
Conclusion

Johnson and Acemoglu (2023, p.202) highlight that “[technology] can
generate shared prosperity or relentless inequality, depending on how
they are used and where new innovative effort is directed.” This dis-
sertation uses a series of novel datasets and applies robust methodolo-
gies to examine the intricate interplay between technology adoption,
skills, and labor market dynamics in an attempt to assist policymakers
in designing well-suited policies to address these challenges.

Chapter 2 delves into the topic of job polarization within emerging and
developing economies. I first review the existing empirical literature,
revealing that job polarization is only at an early stage in these coun-
tries. I then engage in a theoretical discussion to explain the reasons
behind this process. Firstly, it becomes apparent that the lower adop-
tion of advanced technologies in developing and emerging economies
contributes to the disparities in employment changes. Secondly, while
developed economies have seen a shift from manufacturing to service
employment, many emerging and developing economies continue to
industrialize, leading to different job demands. Lastly, the offshoring
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of routine, middle-earning jobs from advanced economies to develop-
ing ones has further reduced the rate of job polarization. These three
factors largely explain the differences between developed and devel-
oping economies.

I then discuss the main gaps in the empirical literature and stress the
importance of more systematic and frequent micro-level data collec-
tion to understand better the task content of occupations specific to
each country and the patterns of technology adoption. These studies
would enhance our understanding of the main barriers to technology
adoption and the adverse effects at the worker level, thus allowing for
the development and implementation of better-adapted policies fitted
to developing and emerging economies’ specific contexts.

Chapter 3 addresses one of these gaps and focuses on the adverse
impact of job displacement and mass layoffs for workers in routine-
intensive occupations. Despite Brazil’s lack of job polarization, the
country is one of the few developing economies that already show
signs of a relevant decline in the demand for routine-intensive occupa-
tions. More importantly, rather than focusing on aggregate measures
of polarization, it is crucial to explore the individual-level effects of this
process, examining the extent to which workers are affected and their
ability to transition to different jobs without facing prolonged periods
of unemployment and lower wages.

Using a large sample of displaced workers and applying difference-
in-differences models, the study reveals that job displacement signifi-
cantly impacts wages and employment opportunities in the short and
medium run. Displaced workers experience wage declines even five
years after the displacement event, and they are more likely to face
prolonged periods of unemployment. Due to advancements in tech-
nology adoption, particularly those that replace routine tasks, workers
in routine-intensive occupations face more severe negative outcomes.
Those in routine-intensive occupations face larger wage declines, pro-
longed unemployment, and a larger probability of switching occupa-
tions.
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The findings emphasize the vulnerability of routine workers and
the importance of reskilling initiatives to mitigate the negative
impacts of displacement. In particular, they highlight the need
for educational policies to adequately equip the labor force with
the necessary skills to guarantee maximum benefits from new
technological advancements and facilitate workers’ transitions aimed
at technology adoption. However, upskilling the labor force to
adapt to the changing requirements can only partially rely on early
education. There should be opportunities to develop competencies
beyond specific tasks, especially retraining programs for adults,
ensuring lifelong learning systems. Furthermore, policymakers can
establish effective social safety nets to protect workers adversely
affected by technological disruptions. Robust social protection
programs, such as unemployment benefits, job retraining assistance,
and income support, can help mitigate the negative consequences of
technology-induced job displacement.

In line with workers’ transitions across occupations, Chapter 4 focuses
on labor market mobility, examining the transferability of workers’ oc-
cupational skills to other occupations. To this end, I first developed
a commonality index utilizing detailed information on occupational
skills based on O*NET. Then, I use a sample of displaced workers due
to mass layoffs or firm closure and employ an event-study method-
ology to investigate the significance of occupational skills commonal-
ity on labor outcomes. The findings reveal that workers possessing a
more specialized skill set tend to experience more extended periods
of unemployment and are less inclined to switch to different occupa-
tions. Additionally, I investigate the impact of occupational mismatch
on workers’ wages. I find that transitioning to more distant occupa-
tions negatively affects salaries. However, this negative effect is some-
what mitigated by the learning efforts of workers and firms’ revision
of their expectations as workers gain experience.

A nuanced understanding of skill transferability has substantial im-
plications for policymaking. By recognizing the potential for skills
to cross occupational boundaries, policymakers can design targeted
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training programs, offer comprehensive career guidance services, and
enhance labor market information systems. These efforts empower
unemployed individuals to explore a wider range of job opportuni-
ties, align their existing skills with new occupations, and increase their
chances of successful reemployment. By leveraging this knowledge,
policymakers can foster a more resilient labor market and facilitate the
smooth transition of workers during periods of structural change.

Finally, Chapter 5 analyzes the impact of engaging in international
trade on technology adoption among firms in Brazil. I use a novel
dataset of technology adoption at the business-function level and com-
bine it with information on firms’ employment and exporting status.
Applying difference-in-differences models, I find that entering export
markets is associated with a higher probability of adopting more so-
phisticated technologies related to a number of business functions, in
particular, quality control and business administration. For instance,
firms that start to export are more likely to adopt Enterprise Resource
Planning (ERP) systems. Overall, the results suggest that exporting
enhances the complexity of tasks and processes within firms, necessi-
tating the adoption of better technologies to manage these challenges
effectively.

The results underscore the crucial role of international trade in
facilitating technology adoption and offer some important insights
for policymakers. For instance, policymakers can implement
measures to support firms’ engagement in international trade and
simultaneously enhance their technological capabilities, building
the physical, human, and institutional capacities required for
the adoption of more sophisticated technologies. For example,
streamlined export promotion policies should be complemented
with policies to reduce information asymmetries about existing and
more suitable technologies. Concurrently, investment in skills and
managerial capabilities can increase firms’ absorptive capacity and
smooth the integration and diffusion of advanced technologies.
These complementary aspects may be particularly relevant in the
context of developing economies, given that most technologies were

162



developed in high-income economies and tailored to those economies’
organizational and institutional environments. Furthermore, the
study emphasizes the need for further research to identify the key
channels that explain the positive relationship between international
trade and technology adoption.

Finally, there are numerous ways to expand the research presented
here. First, Chapter 3 assumes that the task content across occupations
is similar across countries and uses a routine-intensity task index based
on data from the U.S. Even though we argue that this issue is less prob-
lematic in the context of Brazil, future research could explore different
measures of routine task intensity that are better suited for the con-
text of developing countries. Moreover, Chapter 3 presents individual-
level evidence of how technological change has affected workers in
routine-intensive occupations. Further research may connect direct in-
stances of technology adoption at the firm level rather than relying
solely on changes in occupational skill demands. In turn, future stud-
ies could explore more in detail changes in the skill demand at the firm
level and investigate how particular technologies impact the employ-
ment outcomes of different worker groups.

As for Chapter 4, future research should explore beyond the sole def-
inition of occupation-related skills, as those may underestimate work-
ers’ full range of skills. To draw more robust conclusions, a dataset that
directly links skills to individual workers and tracks them throughout
their careers would be valuable. Finally, it would be beneficial for fur-
ther research to explore the validity of our findings in diverse contexts.
For instance, in Chapters 3 and 4, a common path for further analysis
is the introduction of the informal sector, as it represents a large share
of the labor market in developing and emerging economies.

Finally, related to Chapter 5, other studies can explore the links be-
tween trade and technology adoption more in-depth, focusing on dif-
ferences between destination and volume exported. This would allow
us to delve into the distinct role of different international buyers in
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facilitating the transfer of advanced technologies to firms. Addition-
ally, it would be valuable to investigate the direct effects of technology
adoption on firms’ performance and the extent to which new exporters
encourage technological advancements among non-exporting peers.
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7
Impact Paragraph

The impact paragraph of this doctoral dissertation is added in compliance with
article 22.5 of the “Regulations for obtaining the doctoral degree at Maas-
tricht University” decreed by resolution of the board of deans, dated 1 October
2020.

This dissertation explores the multifaceted aspects of technology
adoption, encompassing its drivers, labor market ramifications,
and the pivotal role of skills in enhancing workers’ resilience to
technological change. In particular, I focus on developing and
emerging economies and build on recent findings indicating
that technological advancements threaten to displace workers in
certain occupations and exacerbate inequality. The importance of
comprehending the labor market repercussions of technological
change is particularly pronounced in emerging and developing
economies, where inequality and unemployment are already
exceptionally high. Additionally, these economies grapple with frail
social protection systems and educational structures that lack the
capacity and agility to respond to shifts in the nature of work.
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Hence, this dissertation emphasizes the importance of policymakers’
broad and coordinated approach to promoting shared prosperity
and addressing the intricate relationship between technology and
employment and inequality in the context of developing and emerging
economies. In Chapter 2, I study the extent of job polarization in
developing and emerging economies. Through an extended literature
review, I highlight several gaps in the empirical literature and
emphasize the importance of systematically and frequently collecting
micro-level data to comprehend occupation-specific task content
and technology adoption patterns at the firm level. This data would
not only shed light on the obstacles hindering technology adoption
but also lay the groundwork for tailored policy interventions
specifically designed to address the unique challenges developing
and emerging economies face. Furthermore, this data would enable a
deeper understanding of the intricate connections between adopting
particular technologies and their impacts on the demand for specific
skill sets.

Chapter 3 provides evidence that recent technological advancements
affect workers in routine-intensive occupations, leading to prolonged
unemployment and reducing wages upon reemployment. These
findings show the necessity to implement policies focusing on
upskilling the workforce, particularly those in routine-intensive
occupations. These policies should prioritize assisting these workers
through lifelong learning initiatives and re-training programs to
mitigate the adverse consequences of job displacement. Furthermore,
a nuanced comprehension of the specific tasks undertaken by these
groups is essential, particularly recognizing the significance of soft
skills that facilitate smoother transitions between jobs.

Chapter 4 presents evidence that the commonality of workers’ skills
is pivotal in facilitating their reentry into the labor market following a
layoff. The findings emphasize the crucial roles played by both public
and private employment agencies in expediting job placement and en-
hancing the prospects of job-seekers finding positions that align more
closely with their skill sets. For workers in occupations with higher

166



commonality, intermediation services can advise them to broaden their
search. In contrast, for workers in low-commonality occupations, the
results also underscore the necessity of reskilling, ensuring they re-
main competitive and adaptable in a rapidly evolving job market.

Lastly, Chapter 5 examines the drivers of technology adoption at the
firm level, mainly focusing on the impact of international trade en-
gagement on firms’ decisions to adopt advanced technologies. No-
tably, the study finds that initiating exports enhances the likelihood of
firms adopting sophisticated technologies. These findings shed light
on the connection between trade activities and productivity growth,
with the adoption of sophisticated technologies playing an important
role in this dynamic. Moreover, the results underline the significance
of policies that combine export promotion with initiatives to mitigate
barriers to technology adoption.

In conclusion, from the importance of upskilling and lifelong learn-
ing to the role of trade in spurring technology adoption, the insights
from this dissertation provide valuable direction for public policies
promoting technology adoption while mitigating its adverse effects on
the labor market. The hope is that the findings from this dissertation
will contribute to the development of well-crafted programs and ef-
fective policies, aiding policymakers in making informed and prudent
choices.
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