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Abstract

There are many situations in which policymakers are primarily concerned with the avail-
ability and accessibility of goods or services. Examples include electricity, food, housing,
medical supplies, et cetera. In such cases, the social goal may be to maximize the number of
transactions, which we refer to as a maximal matching. This paper presents a mechanism
that implements this objective. The mechanism satisfies the incentive and participation
constraints, but requires external funding.
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“It is the greatest happiness of the greatest number that is the measure of right and wrong.”

(Bentham, 1776)

1 Introduction

Economics is often described as a social science that studies the production, distribution, and

consumption of wealth.1 Throughout its history, a good number of criteria have been developed

to judge levels and distributions of welfare. Perhaps the most popular one is the so-called

utilitarian rule. Roughly speaking, this rule says that goods and services should be produced

and allocated in such a way that the combined utility of all agents involved is maximal.

The utilitarian rule has been criticized on many grounds, with the most common one being its

neglect regarding issues of distributive justice.2 Indeed, abiding by this principle may result in

situations where most, if not all, wealth ends up in the hands of a few. This can be particularly

problematic when the goods or services are considered ‘essential’ such as electricity, food, housing,

medical supplies, et cetera. In such cases, one can imagine policymakers to be more concerned

with the availability and accessibility of wealth rather than with its aggregate value. That is,

instead of maximizing total utility, it may be preferred to have supplies produced and allocated

in such a way that it serves as many parties as possible.

To fix ideas, consider the following example of two families looking for a house. Suppose there

are two property owners, each of whom has an apartment available for sale. The apartments are

virtually identical, but the costs of selling the place differ. After attending the open house, both

families learn their valuation for the accommodation. Table 1 gives an overview of the valuations

(v) and costs (c), which can be thought of as reservation prices. Family 1 values the apartment

v1 v2
10 5
c1 c2
2 6

Table 1: A market with 2 consumers and 2 producers.

at 10, whereas family 2 values it at 5. The homeowners’ costs are 2 and 6, respectively. Note

that if the policymaker’s goal is to maximize total surplus, it would like owner 1 to sell to family

1Definitions along these lines date back to A Treatise on Political Economy; or the Production, Distribution,
and Consumption of Wealth by Jean-Baptiste Say (1803). For a detailed discussion, see Backhouse and Medema
(2009).

2See, e.g., Feldman (1987), Mandler (1999) and, more recently, Graafland (2022).
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1. This, however, implies that family 2 is left empty-handed, because owner 2’s minimum price

(c2 = 6) exceeds this family’s valuation (v2 = 5). In this scenario, total surplus is 10 − 2 = 8.

Yet, if the policymaker’s goal is to have housing for as many people as possible, then it would

like owner 1 to trade with family 2 and owner 2 to sell to family 1. This yields a total surplus of

(10− 6) + (5− 2) = 7 and a maximal number of matches, namely 2.

In this paper, we suppose that the social goal is to maximize the number of buyer-seller matches.3

We coin such a matching-maximizing outcome a maximal matching. It is assumed that participa-

tion is voluntary, i.e., neither consumers nor producers can be forced to engage in a transaction.

What makes this problem challenging is that costs and valuations are private information. Fol-

lowing the above example, a family’s actual valuation for a house is unknown to the owner as

well as to competing buyers. Similarly, an owner often has a pretty good idea about the (oppor-

tunity) cost of selling his property, but that information is typically not available to any of the

other market players. Moreover, both buyers and sellers are likely to pursue goals other than

maximizing the total number of deals between them. This raises the question of whether one

can design a mechanism that achieves a maximal matching. In what follows, we show that the

answer to this question is affirmative.

We start our analysis by introducing an algorithm that enables the identification of a maximal

matching. More specifically, as will become clear in the ensuing analysis, it selects the optimal

matching-maximizing outcome in the sense that it yields the maximal matching with the highest

total surplus. We then proceed by considering implementability. The key issue here is to specify

a pricing rule that incentivizes all agents involved to reveal their actual valuations or costs. In

other words, what price(s) do consumers have to pay and what payment(s) do producers need

to receive to make truth-telling a dominant strategy? To answer this question, we show how one

can apply the pricing rule as specified in Myerson’s Lemma to both sides of the market.

In terms of desirable properties, the proposed mechanism yields a Pareto-efficient allocation with

agents engaging in a transaction only when they find it in their interest to do so. That is, the

mechanism satisfies the participation constraints. It also satisfies the incentive-compatibility con-

straints. Truth-telling thus constitutes an equilibrium and the objective of matching maximiza-

tion is implementable. A notable drawback of the mechanism is that it is not budget balanced.

3It is worth emphasizing that the goal of matching maximization is not only applicable within the context
of essential goods provision. In digital markets, for example, a platform owner may be primarily interested
in maximizing the number of transactions or ‘clicks’ as this gives valuable information that can be exploited
elsewhere.
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A policymaker thus has to look for outside funds when it aims for a maximal matching.4

Our analysis touches upon the classic efficiency-equity trade-off. While the utilitarian approach

yields an efficient allocation of goods or services, matching maximization carries an egalitarian

flavor. Indeed, as we show formally in Appendix A, the proposed mechanism with an equal-

split of surpluses gives an outcome similar to what one would obtain by applying the egalitarian

rule. This naturally relates to a growing body of recent work that shows how one may use

market design to reach redistributive objectives when there is heterogeneity in marginal values

for money.5

By maximizing the number of buyer-seller matches, the proposed mechanism achieves the social

goal ‘directly’. A policymaker, in principle, can achieve a comparable outcome also ‘indirectly’

through an appropriate (re-)distribution of agents’ (initial) endowments. This, however, may

prove problematic for at least two reasons. First, the information required to determine the

preferred allocation is typically lacking and cannot be elicited truthfully. Second, redistribution

methods (e.g., taxes and subsidies) are in themselves inefficient. Apart from this, experimental

research suggests free market competition to converge to a competitive equilibrium under plau-

sible conditions, which commonly implies a less than maximal matching.6 To achieve the latter

then requires a central authority to provide the appropriate incentives. Finally, it is worth noting

that indirect routes to maximal matchings may simply not be available due to technical limi-

tations. For example, storing energy still proves challenging in many situations so that energy

suppliers may have to serve their customers instantly and directly.

The next section introduces the modeling framework. Section 3 offers a formal definition of a

maximal matching and presents an algorithm to identify such an allocation. We take up the

issue of implementability in Section 4. Section 5 is devoted to the costs of matching maximiza-

tion. Section 6 concludes. The link to egalitarianism is provided in Appendix A. All proofs are

relegated to Appendix B.

4A similar finding is obtained by Myerson and Satterthwaite (1983) in the context of bilateral trade. More
generally, the mechanism design literature is rich in ‘impossibility results’ showing that it is typically impossible
to design a mechanism that meets all desirable properties.

5See Dworczak, Kominers and Akbarpour (2021), Akbarpour, Dworczak and Kominers (2022) and Groh and
Reuter (2023).

6See, e.g., Smith (1962), Gode and Sunder (1993), Bosch-Domenech and Sunder (2000) and Lin et al. (2020).
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2 The Model

Consider a market comprising a set of M = {1, . . . ,m} consumers and a set of N = {1, . . . , n}

producers. Each consumer i ∈ M attempts to purchase one unit of a good, which it values at

vi ≥ 0. Each producer j ∈ N can produce one unit of this good at a cost of cj ≥ 0. There is a

social planner which has the objective to meet society’s aggregate preferences regarding welfare

and its distribution. Since information is incomplete, the planner employs a direct mechanism

to reach its goal.7 To that end, it asks all consumers and producers to report their valuations

and costs. Let r = (r1, r2, . . . , rm) and s = (s1, s2, . . . , sn) be the vectors of reported valuations

and costs, respectively. Without loss of generality, it is assumed that r1 ≥ r2 ≥ . . . ≥ rm and

s1 ≤ s2 ≤ . . . ≤ sn. The vector r−i indicates the reported valuations of all consumers other than

i and the vector s−j denotes the reported costs of all producers other than j. Let R and S be

the corresponding sets of all possible reported valuation and cost profiles, respectively. Generic

elements are represented by r,w ∈ R and s, t ∈ S.

A direct mechanism, M = (A, p), consists of an allocation rule A and a payment rule p. An

allocation rule A : (r, s) 7→ A(r, s) = (K,L) takes the profiles of communicated values as input

and produces output A(r, s) = (K,L), where K ⊆ M and L ⊆ N indicate the buyers and sellers

that are involved in a transaction.8 For each individual consumer and individual producer, the

outcome of the market interaction is then, respectively, given by:

ai(r, s) =

{
1 if i ∈ K

0 if i /∈ K,

and

aj(r, s) =

{
1 if j ∈ L

0 if j /∈ L.

For A = (K,L), total utility is defined as the difference between the reported valuations of all

matched consumers and the reported costs of all matched producers. Formally,

TU(r, s) =
∑
i∈K

ri −
∑
j∈L

sj , where A(r, s) = (K,L).

The payment rule also takes all reported values and costs as an input and uses this information

to specify the amount pi that consumer i has to pay and the amount pj that producer j receives.

7If information would be complete, then all valuations and costs are common priors. In that case, it is
straightforward to select a mechanism that serves the social planner’s goal. The adjective ‘direct’ refers to the
revelation principle (see, e.g., Gibbard (1973)), which states that for any mechanism equilibrium there exists an
equivalent incentive-compatible direct revelation mechanism.

8Note that feasibility requires |K| ≤ |L|.
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In what follows, let T ⊆ M ×N be a matching, where for every i ∈ M , |{j|(i, j) ∈ T}| ≤ 1, and

for every j ∈ N , |{i|(i, j) ∈ T}| ≤ 1. Note that an allocation rule only indicates which market

players are involved in a trade, whereas a matching additionally specifies which consumers and

producers are linked together.

We consider voluntary matchings only, i.e., neither consumers nor producers can be forced to take

part in a transaction. To make this concrete, we now introduce three closely related concepts.

Definition 2.1 A match (i, j) ∈ T is value-creating if ri ≥ sj.
9

Definition 2.2 A matching T is bilaterally rational if all (i, j) ∈ T are value-creating.

Let TBR be the set of all bilaterally rational matchings.

Definition 2.3 A mechanism (A, p) is individually rational if for all i ∈ M , j ∈ N , for

all r = (r1, . . . , rm) ∈ R and s = (s1, . . . , sn) ∈ S, ri(ai(ri)) ≥ pi(ai(ri)) and sj(aj(sj)) ≤

pj(aj(sj)).

Note that bilateral rationality is a necessary condition for a matching to be voluntary. To see this,

suppose there is a matching that is not bilaterally rational. In that case, there is a pair (i, j) for

which it holds that ri < sj . If pi > ri, then consumer i does not want to buy. When pi ≤ ri < sj ,

however, producer j does not want to sell since the payment is insufficient to cover its cost.

Absent bilateral rationality, there is thus no price that allows for voluntary participation by both

buyer i and seller j simultaneously. Finally, individual rationality implies that an agent’s gain

of participating weakly exceeds its gain of not participating for all realizations. An individually

rational mechanism thus induces voluntary participation.

3 Matching Maximization

We now employ the above model to examine matching maximization. We start by offering a

precise definition of a matching-maximizing outcome, which we refer to as a maximal matching.

We then present an algorithm to identify such an outcome. We conclude this section by showing

that the proposed algorithm is optimal in the sense that it selects the utility-maximizing matching

among all maximal matchings.

Definition 3.1 A matching T ∈ TBR is maximal when

|T | = max
Q∈TBR

|Q|.

9Strictly speaking, a match (i, j) ∈ T is value-creating when vi ≥ cj . This is implied when ri ≤ vi and sj ≥ cj ,
which holds in the ensuing analysis.
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The set of all maximal matchings is given by TM .

The next example illustrates these concepts.

Example 3.2 Consider a market with 4 consumers and 4 producers. Table 2 presents their

reported valuations and costs in an ordered fashion.

r1 r2 r3 r4
9 8 6 3
s1 s2 s3 s4
4 5 7 11

Table 2: A market with 4 consumers and 4 producers.

Observe that consumer 4 and producer 4 cannot engage in a value-creating transaction and that

this market has a maximum of 3 value-creating pairs. Therefore, |T | = 3 for any maximal

matching T and A = ({1, 2, 3}, {1, 2, 3}). Notice, however, that A need not yield 3 value-creating

matches. For example, T1 = {(1, 3), (2, 2), (3, 1)} or T2 = {(1, 1), (2, 3), (3, 2)} does, but T3 =

{(1, 1), (2, 2), (3, 3)} does not. As a result, T1, T2 ∈ TM and T3 /∈ TM .

Flip Algorithm

Knowing what maximal matchings look like, a natural next question is how to find them. To

that end, we now introduce the Flip Algorithm, which is an algorithm that identifies a matching

with a maximal number of value-creating pairs.

Recall that the consumers’ reported valuations are in decreasing order, i.e., r1 ≥ r2 ≥ . . . ≥ rm,

and that the producers’ reported costs are in increasing order, i.e., s1 ≤ s2 ≤ . . . ≤ sn. The

Flip Algorithm then computes the following matching. Let k̄ be the largest index k such that

ri ≥ sk+1−i for all 1 ≤ i ≤ k. Match k̄ pairs {(i, k̄ + 1− i) | 1 ≤ i ≤ k̄}. We denote the resulting

matching by TF .

The next example gives an illustration.

Example 3.3 We apply the Flip Algorithm to the market as described in Example 3.2 above.

Starting with k = 1, one compares the valuation of the first consumer with the cost of the first

producer. Since r1 ≥ s1, we proceed with k = 2. We then reverse the order of the first two

producers in Table 2 and obtain Table 3 below. Since r1 ≥ s2 and r2 ≥ s1, we proceed with k = 3.

Reversing the order of the first three producers in Table 2 gives the situation as presented in Table

4. Also in this case, the first three pairs are value-creating so that we proceed with k = 4. This
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results in the situation as presented in Table 5. Note that with k = 4 valuations fall short of costs

for the first and the forth pair. The Flip Algorithm, therefore, yields A = ({1, 2, 3}, {1, 2, 3}) and

TF = {(1, 3), (2, 2), (3, 1)}.

r1 r2 r3 r4
9 8 6 3
s2 s1 s3 s4
5 4 7 11

Table 3: Valuations and costs when k = 2.

r1 r2 r3 r4
9 8 6 3
s3 s2 s1 s4
7 5 4 11

Table 4: Valuations and costs when k = 3.

r1 r2 r3 r4
9 8 6 3
s4 s3 s2 s1
11 7 5 4

Table 5: Valuations and costs when k = 4.

The following result establishes a general property of a matching, which is useful in showing that

the Flip Algorithm yields a matching-maximizing outcome.

Lemma 3.4 Let T be a matching with k matches. If there is a pair (i, j) ∈ T with i+ j < k+1,

then there is a pair (i′, j′) ∈ T with i′ > i and i+ j′ ≥ k + 1.

To see that the matching resulting from the Flip Algorithm is indeed maximal, suppose there is

another maximal matching T consisting of k̄ matches. If consumer i is matched with some

producer j > k̄ + 1 − i under T , then it can be matched with seller j = k̄ + 1 − i since

ri ≥ sj ≥ sk̄+1−i. If consumer i is matched with some producer j < k̄+1− i under T , then there

is a consumer i′ > i that is matched with a producer j′ ≥ k̄ + 1 − i (Lemma 3.4). Therefore,

ri ≥ ri′ ≥ sj′ ≥ sk̄+1−i so that consumer i can be matched with seller j = k̄+1− i. This implies

that it is possible to construct the situation resulting from the Flip Algorithm without reducing

the number of matches. Since T is a maximal matching, so is the matching induced by the Flip

Algorithm. The next theorem summarizes this finding.

Theorem 3.5 The Flip Algorithm yields a matching in TM .

Optimal Maximal Matching

The above theorem shows that the Flip Algorithm identifies a matching-maximizing outcome.

This algorithm does not just select any such matching, however. Indeed, it identifies the optimal
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maximal matching in the sense that it selects the matching-maximizing outcome with the highest

total utility.

Theorem 3.6 The Flip Algorithm maximizes total utility over TM .

4 Implementability

The preceding section explains how one can identify an optimal matching-maximizing outcome.

A key question is then whether there exists an incentive-compatible mechanism to attain such

a matching. Is it implementable, that is? In this section, we show that the answer is in the

affirmative.

4.1 Preliminaries

Let us first introduce some concepts that we use to establish implementability. As a starter, we

explain what it means for a mechanism to be dominant strategy incentive compatible (DSIC) in

our setting.

Definition 4.1 A mechanism is DSIC if, for all i ∈ N , ri, wi ∈ R+ and r−i ∈ Rm−1
+ , it holds

that:

ri(ai(ri, r−i))− pi(ri, r−i) ≥ ri(ai(wi, r−i))− pi(wi, r−i).

And, for all j ∈ M , sj , tj ∈ R+ and s−j ∈ Rn−1
+ , it holds that:

pj(sj , s−j)− sj(aj(sj , s−j)) ≥ pj(tj , s−j)− sj(aj(tj , s−j)).

If a mechanism is DSIC, then the net gain of reporting the actual valuation or cost weakly exceeds

the net gain of reporting anything else. This makes reporting truthfully a dominant strategy for

both buyers and sellers. Using this concept, implementability is then defined as follows:

Definition 4.2 An allocation rule A is implementable if there exists a payment rule p such

that (A, p) is DSIC.

Given the reported valuations of all consumers other than i, we write ai(ri, r−i) as ai(ri) and

ai(wi, r−i) as ai(wi), for all ri, wi ∈ R+. We then have the following basic observation.

Lemma 4.3 Fix r−i. If a mechanism (A, p) is DSIC, then

wi(ai(wi))− wi(ai(ri)) ≥ pi(ai(wi))− pi(ai(ri)) ≥ ri(ai(wi))− ri(ai(ri)).
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This result reveals that when a mechanism is DSIC, the associated allocation rule is monotonic.

Definition 4.4 An allocation rule A is monotonic if for all i, ri, wi ∈ R+ and r−i ∈ Rm−1
+ , it

holds that:

wi(ai(wi))− wi(ai(ri)) ≥ ri(ai(wi))− ri(ai(ri)).

If an allocation rule is monotonic, then a consumer does not receive less when it would raise

its reported valuation. In a similar vein, a producer does not sell less when it would reduce its

reported cost.

We now have all the ingredients available to (re-)state Myerson’s Lemma.

Lemma 4.5 (Myerson’s Lemma (1981)) For a single-parameter environment, the following

three properties hold:

1. An allocation rule A is implementable if, and only if, A is monotonic.

2. If A is monotonic, then there is a unique payment rule such that the mechanism (A, p) is

DSIC.

3. The payment rule in 2 is given by an explicit formula. For each consumer i:

pi(ri, r−i, s) =

∫ ri

0

zdA(z).

Intuitively, consumers pay their ‘switch point’ where they go from ‘not being matched’ to

‘being matched’.

4.2 Findings

In the following, we apply Myerson’s Lemma to both sides of the market. To facilitate the

analysis, let AF be the allocation that one obtains by applying the Flip Algorithm and let pF be

the corresponding payment rule. We refer to (AF , pF ) as the Flip Mechanism. Using the above

introduced concepts and definitions, we will now: (i) prove that the allocation rule associated

with the Flip Algorithm is implementable, (ii) determine the actual payments, and (iii) show

that the Flip Mechanism is individually rational.

To begin, Proposition 4.6 establishes implementability.

Proposition 4.6 The allocation rule AF is monotonic and, therefore, implementable.

Knowing that AF is implementable, we now apply Myerson’s lemma to determine the actual

payments. Proposition 4.7 specifies the prices.
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Proposition 4.7 The payment rule pF is given by:

1. If |TF (r, s)| = |TF (r−i, s)| = k̄, then pi = rk̄+1.

2. If |TF (r, s)| = |TF (r−i, s)|+ 1 and |TF (r−i, s)| = |TF (r−i, s−1)|, then pi = s1.

3. If |TF (r, s)| = |TF (r−i, s)|+ 1 = k̄ and |TF (r−i, s)| = |TF (r−i, s−1)|+ 1, then pi = rk̄.

4. If |TF (r, s)| = |TF (r, s−j)| = k̄, then pj = sk̄+1.

5. If |TF (r, s)| = |TF (r, s−j)|+ 1 and |TF (r, s−j)| = |TF (r−1, s−j)|, then pj = r1.

6. If |TF (r, s)| = |TF (r, s−j)|+ 1 = k̄ and |TF (r, s−j)| = |TF (r−1, s−j)|+ 1, then pj = sk̄.

The next result is implied by the preceding analysis.

Corollary 4.8 The Flip Mechanism (AF , pF ) is individually rational.

Let us conclude this section with an example that illustrates the payment rule.

Example 4.9 Imagine a market with 6 consumers and 6 producers. The communicated valua-

tions and costs are presented in Table 6 below. Notice that |TF | = 5 with and without consumer

1. When this consumer would indeed leave the market, it is replaced by consumer 6 which reports

a valuation of 1.5. Consequently, consumer 1 goes from ‘not being matched’ to ‘being matched’

when reporting a valuation of 1.5, which constitutes its ‘switch point’. In this case, therefore,

consumer 1 pays 1.5.

r1 r2 r3 r4 r5 r6
9 8 7 5 4 1.5
s1 s2 s3 s4 s5 s6
1 2 3 6 7 10

Table 6: A market where consumer 1 pays rk̄+1 = 1.5.

Now consider the same market with one notable difference; consumer 6 communicates a valuation

of 0.5 instead of 1.5. Table 7 contains the reported valuations and costs. Notice that |TF | = 5,

but that |TF | = 4 without consumer 1. Moreover, |TF | = 4 without consumer 1 and producer 1.

Since producer 1 has the lowest reported cost among all vacant producers, consumer 1 goes from

‘not being matched’ to ‘being matched’ when reporting a valuation of s1. In this case, therefore,

consumer 1 pays 1.
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r1 r2 r3 r4 r5 r6
9 8 7 5 4 0.5
s1 s2 s3 s4 s5 s6
1 2 3 6 7 10

Table 7: A market where consumer 1 pays s1 = 1.

Finally, consider the same market as depicted in Table 7, but again with one difference; producer

5 now reports a cost of 8.5 instead of 7. Table 8 contains the communicated valuations and costs.

As before, |TF | = 5, whereas |TF | = 4 when consumer 1 would leave the market. Moreover,

|TF | = 3 without consumer 1 and producer 1. Absent consumer 1, the result of the Flip Algorithm

would be such that consumer 5 is matched with producer 1. Hence, consumer 1 goes from ‘not

being matched’ to ‘being matched’ when reporting a valuation of r5. In this case, therefore,

consumer 1 pays 4.

r1 r2 r3 r4 r5 r6
9 8 7 5 4 0.5
s1 s2 s3 s4 s5 s6
1 2 3 6 8.5 10

Table 8: Market where consumer 1 pays rk̄ = 4.

5 Cost of Matching Maximization

Thus far, we have introduced an algorithm to identify the optimal maximal matching and shown

implementability of the associated allocation rule. One may then wonder what it costs to actually

implement it. It is this question that we now turn to.

5.1 Total Utility Maximization: A Benchmark

To evaluate the cost of matching maximization, we use total utility maximization as a bench-

mark. The TU-maximizing Algorithm finds a matching such that the total utility of all agents

is maximal. It works as follows.

Recall that the reports of all consumers are in decreasing order, i.e., r1 ≥ r2 ≥ . . . rm, and that

the reports of all producers are in increasing order, i.e., s1 ≤ s2 ≤ . . . sn. Let k be an index such

that rl > sl implies l ≤ k and rl < sl implies l > k. Match k pairs {(i, i) | 1 ≤ i ≤ k}.

To see that this rule indeed maximizes total utility, note that rl ≤ sl for any l > k so that

matching k pairs generates (weakly) more utility than matching more than k pairs. Moreover,
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rl ≥ sl for any l ≤ k so that matching up to k pairs (weakly) increases the total value-created.

Note further that the TU-maximizing Algorithm yields a matching that is bilaterally rational.

Indeed, since r1 ≥ r2 ≥ . . . ≥ rm and s1 ≤ s2 ≤ . . . ≤ sn and the first k pairs are matched, it

holds that ri ≥ rk ≥ sk ≥ sj , for all i ≤ k and j ≤ k.

Example 5.1 To illustrate, consider the market as described in Example 3.2 above. The reported

valuations and costs are presented in Table 9, which is the same as Table 2. Note that the ‘break-

r1 r2 r3 r4
9 8 6 3
s1 s2 s3 s4
4 5 7 11

Table 9: A market with 4 consumers and 4 producers.

even point’ is at k = 2 since the reported cost s3 = 7 exceeds the reported valuation r3 = 6 for

the third pair. In this example, therefore, A = ({1, 2}, {1, 2}) and the TU-maximizing Algorithm

yields 2 pairs.

It can be easily verified that a TU-maximizing allocation rule is monotonic and, therefore, imple-

mentable. Hence, it is possible to apply the payment rule as given by Myerson’s Lemma. In fact,

as is well-known, one can use a VCG-mechanism to achieve an allocatively efficient outcome.10

Yet, this type of mechanism is typically not budget-balanced.11 The next two results confirm

that a VCG-mechanism indeed (almost) always creates a deficit, also in our setting.

Proposition 5.2 If the policymaker adopts a VCG-mechanism, then
∑n

i=1 pi ≤
∑m

j=1 pj.

Proposition 5.3 The VCG-mechanism yields a deficit if, and only if, the allocation rule is

unique.

Taken together, this means that total utility maximization more often than not requires external

funding (e.g., a subsidy).12

5.2 How (In)efficient is Matching Maximization?

Using the TU maximization results as reference, we now address the question of what it costs to

maximize the number of value-creating matches. We consider two measures of efficiency: (i) the

amount of deficit, and (ii) the number of matches. Let us discuss each in turn.

10VCG-mechanisms are named after the contributions of Vickrey (1961), Clarke (1971) and Groves (1973).
11See, e.g., Vickrey (1961) and Myerson and Satterthwaite (1983).
12As shown by McAfee (1992), one way to achieve budget balance is by sacrificing one value-creating match.
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5.2.1 Amount of Deficit

How (in)efficient is matching maximization in monetary terms? The following theorem sheds

some first light on this question.

Theorem 5.4 Consider two implementable allocation rules A and A′ where K ⊇ K ′ and L ⊇ L′,

for all r ∈ R and s ∈ S. Denote the corresponding payment rules by p and p′, respectively. Then,

pi ≤ p′i for all consumers i and pj ≥ p′j for all producers j.

The implication of this result is that the amount of deficit is (weakly) larger in case of matching

maximization. This is so because an implementable matching-maximizing allocation rule yields

at least the same number of matches as the TU-maximizing allocation rule. Therefore, each

consumer pays less, whereas each producer gets more. The following corollary summarizes this

finding.

Corollary 5.5 The deficit under an implementable matching-maximizing mechanism is at least

as large as under a VCG-mechanism.

It is worth emphasizing that this may hold even when the number of matches is the same under

both mechanisms. This is illustrated by the next example.

Example 5.6 Consider a market with 4 consumers and 4 producers. Table 10 contains the

reported valuations and costs. Note that both the VCG Mechanism and the Flip Mechanism yield

r1 r2 r3 r4
9 8 7 1
s1 s2 s3 s4
2 3 4 10

Table 10: A market with 4 consumers and 4 producers.

3 matches. Under VCG, the deficit is 9 since each matched consumer pays 4 and each matched

producer obtains 7. Under the Flip Mechanism, the deficit is 21 since each matched consumer

pays 2 and each matched producer obtains 9. Hence, the deficit under the Flip Mechanism is

larger than under the VCG Mechanism even though both give rise to 3 matches.

Knowing that matching maximization creates a (larger) deficit, one may wonder about its mag-

nitude. How big can it be? The next proposition provides an upper bound.

Proposition 5.7 Suppose that |TF | = k. The deficit is at most k · (r1 − s1).
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5.2.2 Number of Matches

An alternative way to assess the (in)efficiency of matching maximization is by analyzing the

difference in the amount of transactions. To that end, define the price of efficiency as the ratio

of the number of matched pairs under matching maximization to the number of matched pairs

under TU maximization. We refer to this ratio as the price of efficiency, because it reflects the

relative amount of transactions lost when focusing on the efficient TU-maximizing outcome.

As the example in the introduction of this paper illustrates, the price of efficiency can be as high

as 2. That is, matching maximization may yield twice the number of transactions in comparison

to TU maximization. As the next proposition shows, however, this is also the maximum price of

efficiency.

Proposition 5.8 The price of efficiency is at most 2.

It is worth noting that this finding extends to an incomplete bipartite graph. To see this, suppose

that potential trading partners face some constraints. For example, a buyer and seller located

far away from each other should perhaps not be matched since transportation costs would be too

high. Imagine, then, an incomplete bipartite graph that indicates all feasible matches. To identify

a maximal matching, one can proceed as follows. Assign flow 1 to each edge between consumer

i’s vertex and producer j’s vertex when ri − sj ≥ 0 and remove the edge when ri − sj < 0.

A maximal matching on the resulting graph can then be found by applying Ford-Fulkerson’s

algorithm.

To identify a matching that maximizes total utility, one can proceed in a similar fashion. Assign

flow fij = ri−sj to each edge between consumer i’s vertex and producer j’s vertex when ri−sj ≥

0 and remove the edge when ri − sj < 0. One can then select the weighted maximum matching

for the resulting graph. Now consider the resulting graph under matching maximization. To add

one more match that maximizes the weight, one has to eliminate at most two matched pairs.

Matching maximization will therefore not yield more than twice the number of matches under

TU maximization.
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6 Concluding Remarks

In the same year that Adam Smith launched his Wealth of Nations (1776), the prominent British

scholar Jeremy Bentham published A Fragment on Government (1776). It is in this essay that

Bentham formulated what became the fundamental maxim of utilitarianism, namely: “it is

the greatest happiness of the greatest number that is the measure of right and wrong”. Of

course, when taken literally, the constructs ‘greatest happiness’ and ‘greatest number’ need not

be reconcilable and pursuing one may well come at the cost of the other. While welfare economics

has been predominantly concerned with the first by exploring traits and conditions that maximize

the ‘size of the pie’, we focused on the second by asking how to maximize ‘the number of pie

bakers’.

Under the assumption that no market player can be forced to trade, we introduced an algorithm

that identifies a matching with the maximum number of transactions. More specifically, we

showed that this algorithm selects the optimal maximal matching in the sense that it creates the

greatest happiness conditional on the greatest number. Importantly, the objective of matching

maximization is implementable and we presented a mechanism that implements it. Doing so

literally comes at a price, however, because the mechanism does not satisfy the property of

budget balance. A policymaker thus needs to find external funding if it seeks to maximize the

number of matches.
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Appendix A: Maximal Matchings and the Egalitarian Rule

With its focus on maximizing the number of traded goods or services, matching maximization

has an egalitarian flavor. The goal of this appendix is to make this more precise. In what

follows, we consider and compare matchings’ surplus distributions. It is shown that one obtains

the most egalitarian outcome by applying the Flip Algorithm and have each matched pair divide

its value-created equally.

To facilitate the analysis, we start with the following definition.

Definition A.1: Consider a matching T . For each match (i, j) ∈ T , let ri − sj = ai + bj, where

ai and bj are the surplus shares allocated to consumer i and producer j, respectively. Moreover,

ai = 0 for any unmatched consumer and bj = 0 for any unmatched producer.

Clearly, there are potentially many ways in which the value-created can be allocated. In what

follows, let d = (a1, . . . , am, b1, . . . , bn) be the surplus distribution vector. The ordered surplus

distribution vector of d is d̂ = (d1, . . . , dm+n), where di ≤ dj for all 1 ≤ i ≤ j ≤ m+ n. Hence,

the elements of d̂ are organized in a nondecreasing order.

To compare ordered surplus distributions, we use the following definition.

Definition A.2: Consider two vectors d, e ∈ Rm+n. The vector d is lexicographically equal

to e when d = e. The vector d is lexicographically larger than e when di > ei for i = min{j ∈

{1, . . . ,m+ n} | dj ̸= ej}. That is, d is lexicographically larger than e when the first coordinate

that differs is higher under d.

Let us now establish the link between matching maximization and the egalitarian rule. Specifi-

cally, we show that the ordered surplus distribution that one obtains by maximizing the minimum

utility is the same as the ordered surplus distribution that one obtains by applying the Flip Al-

gorithm and allocating the resulting surpluses equally.

Proposition A.3 Suppose that ri > sj for all (i, j) ∈ TF . The ordered surplus distribution that

results from the Flip Algorithm TF (r, s), with ai = bj =
ri−sj

2 for any (i, j) ∈ TF , is lexicograph-

ically larger or equal than the ordered surplus distribution of any other matching T (r, s).
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Appendix B: Proofs

Proof of Lemma 3.4

Let T be a matching with k matches. Suppose that there is a match (i, j) ∈ T with i+ j < k+1

and no match (i′, j′) ∈ T with i′ > i and i+ j′ ≥ k+1. We show that |T | ≤ k = 1. Since there is

no match (i′, j′) ∈ T with i′ > i and i+ j′ ≥ k+1, any consumer i′ ≥ i is matched to a producer

j′ where j′ < k − i+ 1. So, j′ ≤ k − i. Hence, there are at most k − i matches. Moreover, there

are at most i − 1 matches from the first i − 1 consumers. Taken together, this implies at most

k − i+ i− 1 = k − 1 matches.

Proof of Theorem 3.6

Given (r, s), consider some maximal matching T ∈ TM other than TF , i.e., T ̸= TF . Then, there

is a consumer i such that (i, j) /∈ TF , for all j, but there is a producer j such that (i, j) ∈ T . As

the Flip Algorithm matches the first k̄ pairs, this implies i > k̄. Moreover, since |TF | = |T |, there

is a consumer i′ such that (i′, j) /∈ T , for all j, but there is a producer j′ such that (i′, j′) ∈ TF .

As the Flip Algorithm matches the first k̄ pairs, this implies i′ ≤ k̄. Since i′ ≤ k̄ < i, it follows

that ri′ ≥ ri. A similar argument applies when there is a producer j that is matched under T ,

but not under TF . We conclude that the total utility with TF is weakly larger than with T .

Proof of Lemma 4.3

If the true valuation is ri and the mechanism is DSIC, then it holds that:

ri(ai(ri))− pi(ai(ri)) ≥ ri(ai(wi))− pi(ai(wi))

⇐⇒ pi(ai(wi))− pi(ai(ri)) ≥ ri(ai(wi))− ri(ai(ri)). (1)

Likewise, if the true valuation is wi, then:

pi(ai(wi))− pi(ai(ri)) ≤ wi(ai(wi))− wi(ai(ri)). (2)

Combining (1) and (2), one obtains Lemma 4.3.

Proof of Proposition 4.6

Recall that |TF | = k̄ and suppose that ai(ri) = 1. Fixing all other valuations and costs, we show

that if consumer i reports wi ≥ ri instead, then ai(wi) = 1.

Since ai(ri) = 1, consumer i belongs to the first k̄ matched consumers. If consumer i would

report wi ≥ ri instead, then there are at least k̄ matched pairs. To see this, consider a maximal

matching T ∈ TM in which consumer i is matched with producer j. Since all other valuations
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and costs remain the same, there still are k̄ − 1 value-creating pairs when consumer i raises its

reported valuation to wi ≥ ri. As this consumer is matched when reporting ri, it holds that

ri ≥ sj . Consequently, this consumer can be matched with the same producer when reporting

wi instead, because wi ≥ ri ≥ sj . Therefore, the number of matches does not decrease when a

consumer increases its reported valuation, all else equal.

As consumer i belongs to the first k̄ matched pairs when reporting ri, it also belongs to the

first k̄ matched pairs when reporting wi ≥ ri. Therefore, ai(wi) = 1. A similar logic applies to

the supply side. We conclude that the allocation rule AF is monotonic. Implementability then

directly follows from Myerson’s Lemma.

Proof of Proposition 4.7

Suppose that TF consists of k̄ matches. In the following, we prove cases 1, 2 and 3. A similar

logic applies to the supply side, i.e., cases 4, 5 and 6.

1. A first possibility is that the Flip Algorithm would still yield k̄ transactions when some

matched consumer i leaves the market, i.e., |TF (r, s)| = |TF (r−i, s)| = k̄. Suppose that some

matched consumer i would indeed leave. In that case, it is replaced by consumer k̄ + 1, because

the Flip Algorithm yields k̄ matches both with and without consumer i. Following Myerson’s

Lemma, a consumer has to pay its ‘switch point’ where it goes from ‘not being matched’ to

‘being matched’. Hence, consumer i has to report a valuation of rk̄+1 to replace consumer k̄+1.

In this case, therefore, pi = rk̄+1.

2. A second possibility is that the Flip Algorithm yields k̄ − 1 transactions when some matched

consumer i leaves the market, i.e., |TF (r, s)| = |TF (r−i, s)| + 1, and that there are still k̄ − 1

transactions when producer 1 would not be present either, i.e., |TF (r−i, s)| = |TF (r−i, s−1)|. If

so, then producer 1 reports the lowest cost among all vacant producers. Hence, consumer i has

to report a valuation of s1 to go from ‘not being matched’ to ‘being matched’. In this case,

therefore, pi = s1.

3. A third possibility is that the Flip Algorithm yields k̄ − 1 transactions when some matched

consumer i leaves the market, i.e., |TF (r, s)| = |TF (r−i, s)| + 1, and that there are k̄ − 2 trans-

actions when producer 1 would not be present either, i.e., |TF (r−i, s)| = |TF (r−i, s−1)| + 1. If

producer 1 is in the market, then it is matched to the k̄th consumer. Hence, consumer i has
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to report a valuation of rk̄ to go from ‘not being matched’ to ‘being matched’. In this case,

therefore, pi = rk̄.

Proof of Corollary 4.8

By Myerson’s Lemma, a consumer that is involved in a transaction has to pay its ‘switch point’

when it goes from ‘not being matched’ to ‘being matched’ and zero otherwise. Consider some

consumer i with reported valuation ri and switch point wi. If ai(ri) = 0, then ri(ai(ri)) = 0 =

pi(ai(ri)). If ai(ri) = 1, then ri ≥ wi as consumer i is matched. Thus, ri(ai(ri)) = ri ≥ wi =

pi(ai(wi)). Taken together, therefore, it holds that ri(ai(ri)) ≥ pi(ai(ri)). A similar argument

applies to the supply side. We conclude that the Flip Mechanism is individually rational.

Proof of Proposition 5.2

Following the generic logic of VCG-mechanisms, consumers pay their externality. To determine

the price for some matched consumer i, suppose that the TU-maximizing Algorithm yields k

matches and is applied again without this consumer. If rk+1 ≥ sk, then the producer that was

matched with consumer i before will be matched again. In this case, there are still k matches.

If rk+1 < sk, then the exclusion of consumer i implies the exclusion of some producer j. In

this case, there are k − 1 matches. Taken together, this means that any matched consumer

pays a price pi = max{rk+1, sk}. By the same token, each matched producer obtains a price

pj = min{sk+1, rk}.

Since the TU-maximizing Algorithm yields k matches, it holds that sk ≤ rk and rk+1 < sk+1.

Hence, max{rk+1, sk} ≤ min{sk+1, rk} and therefore:

n∑
i=1

pi −
m∑
j=1

pj = k ·max{rk+1, sk} − k ·min{sk+1, rk} ≤ 0.

Consequently, if the policymaker adopts a VCG-mechanism, then
∑n

i=1 pi ≤
∑m

j=1 pj .

Proof of Proposition 5.3

Suppose that the VCG-mechanism yields k matches. Let us first show that the allocation rule

is unique when there is a deficit. To that end, assume that the allocation rule is not unique. We

derive a contradiction. If the allocation rule is not unique, then there are at least two agents with

rank k or k+1 that report the same value. Following the proof of Proposition 5.2, any matched

consumer i pays pi = max{rk+1, sk} and any matched producer j obtains pj = min{rk, sk+1}.

Using the fact that rk+1 ≤ rk, rk+1 < sk+1, sk ≤ sk+1, and sk ≤ rk, this effectively leaves two

possibilities.
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1. If sk ≤ rk = rk+1 < sk+1, then pi = max{rk+1, sk} = rk+1 and pj = min{rk, sk+1} = rk.

Hence, pi = pj for all i ∈ K and j ∈ L. In this case, therefore, there is no deficit.

2. If rk+1 < sk = sk+1 ≤ rk, then pi = max{rk+1, sk} = sk and pj = min{rk, sk+1} = sk+1.

Hence, pi = pj for all i ∈ K and j ∈ L. In this case, therefore, there is no deficit.

We conclude that if there is a deficit, then the allocation rule is unique.

Let us now show that there is a deficit when there is a unique allocation rule. Suppose, by

contradiction, that there is a unique allocation rule, but no deficit. By the preceding analysis,

all matched consumers pay max{rk+1, sk} and all matched producers obtain min{rk, sk+1}. If

max{rk+1, sk} = rk+1, then there is a deficit since rk > rk+1 and sk+1 > rk+1. If max{rk+1, sk} =

sk, then there is a deficit since sk < rk by uniqueness and sk < sk+1. We conclude that if the

allocation rule is unique and rk > sk, then there is a deficit.

Proof of Theorem 5.4

As A and A′ are implementable, they are monotonic (Myerson’s Lemma). Consider some con-

sumer i with ‘switch point’ ri under A(r, s) and ‘switch point’ wi under A
′(r, s). Let us now view

the allocation of consumer i with valuation wi under A(r, s). Since K ⊇ K ′ for all r ∈ R, s ∈ S,

it holds that ai(wi) ≥ a′i(wi) and, therefore, wi ≥ ri. Since A is implementable by payment

rule p, each consumer pays its ‘switch point’ where it goes from ‘not being matched’ to ‘being

matched’. Similarly for A′. Therefore, p′i = wi ≥ ri = pi.

Now consider some producer j with ‘switch point’ sj under A(r, s) and ‘switch point’ tj under

A′(r, s). Let us now view the allocation of producer j with cost tj under A(r, s). Since L ⊇ L′ for

all r ∈ R, s ∈ S, it holds that aj(tj) ≥ a′j(tj) and, therefore, tj ≤ sj . Since A is implementable by

payment rule p, each producer obtains its ‘switch point’ where it goes from ‘not being matched’

to ‘being matched’. Similarly for A′. Therefore, p′j = tj ≤ sj = pj .

Proof of Proposition 5.7

The lowest possible price for a matched consumer is s1, whereas the highest possible price for a

matched producer is r1. Since there are k matches, the greatest possible deficit is k · (r1 − s1).

Proof of Proposition 5.8

To begin, note that the example in the introduction of this paper shows that the price of efficiency

can be 2. Let us now show that it cannot be more than 2. To that end, suppose that the TU-

maximizing Algorithm yields k matches, which implies rk+m < sk+m for all m ≥ 1. Suppose

further that the Flip Algorithm yields 2k+m matches, where m ≥ 1. We derive a contradiction.



Matching-Maximizing Mechanism 22

If the Flip Algorithm leads to 2k+m matches, then consumer 1 is matched with producer 2k+m

and consumer 2 is matched with producer 2k +m − 1. Following this logic, consumer k + 1 is

matched with producer k +m, which implies rk+1 ≥ sk+m ≥ sk+1. This, however, contradicts

the fact that rk+1 < sk+1.

Proof of Proposition A.3

To begin, note that the ordered surplus distribution with any bilaterally rational matching is

lexicographically larger than the ordered surplus distribution of a matching that is not bilaterally

rational. In case of the latter, there is at least one agent that obtains a ‘negative surplus’, whereas

all agents receive a weakly positive surplus when the matching is bilaterally rational. Hence,

since the Flip Algorithm yields a bilaterally rational matching, the resulting ordered surplus

distribution is lexicographically larger than the ordered surplus distribution of any matching

that is not bilaterally rational.

Next, consider a bilateral matching T , where |T | < |TF |. Since each match has a strictly positive

surplus and unmatched agents receive zero surplus, it follows immediately that the ordered

surplus distribution that results from the Flip Algorithm is lexicographically larger than the

ordered surplus distribution of any matching with strictly fewer matches.

Finally, note that the ordered surplus distribution that results from the Flip Algorithm with an

equal division of surplus is lexicographically larger than the ordered surplus distribution that

results from the Flip Algorithm with an unequal division of surplus. It remains to be shown

that it is also lexicographically larger or equal than the ordered surplus distribution of any other

maximal matching. To that end, consider another maximal matching T ∈ TM . Since both T

and TF are maximal matchings the number of unmatched agents is the same. Consider a pair

(i∗, j∗) ∈ TF that is least positive value-creating. We claim that there exists a pair (i′, j′) ∈ T

such that either ri′ = ri∗ and sj′ = sj∗ , or ri′ − sj′ < ri∗ − sj∗ . If (i∗, j∗) ∈ T , then the claim

is true by setting i′ = i∗ and j′ = j∗. If (i∗, j) ∈ T and j > j∗, we know that sj ≤ sj∗ . Hence,

ri∗ − sj ≤ ri∗ − sj∗ . Then, take i′ = i∗ and j′ = j. If (i∗, j) ∈ T and j < j∗, then there is a pair

(i
′′
, j′′) such that i

′′
> i∗ and i∗ + j

′′ ≥ k + 1 (Lemma 3.4). Since ri∗ ≥ ri′′ and sj′′ ≥ sj∗ , it

holds that ri′′ − sj′′ ≤ ri∗ − sj∗ . Hence, take i′ = i
′′
and j′ = j

′′
.

If the inequality in the claim applies, we know that the Flip Algorithm with an equal division of

surplus lexicographically maximizes the vector of ordered surplus distributions. Otherwise, we

consider TF,1 = TF \ {(i∗, j∗)} and T1 = T \ {(i′, j′)}. We continue the procedure until there

exist a pair (i∗, j∗) ∈ TF,n and (i′, j′) ∈ Tn where ri′ − sj′ < ri∗ − sj∗ for some n ≥ 1, or
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until TF,k̄ = ∅. Hence, the Flip Algorithm with an equal division of surplus lexicographically

maximizes the vector of ordered surplus distributions.
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