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Abstract. We consider multiplayer stochastic games with finitely many players and actions, 
and countably many states, in which the payoff of each player is a bounded and Borel- 
measurable function of the infinite play. By using a generalization of the technique of Martin 
[Martin DA (1998) The determinacy of Blackwell games. J. Symb. Log. 63(4):1565–1581] and 
Maitra and Sudderth [Maitra A, Sudderth W (1998) Finitely additive stochastic games with 
Borel measurable payoffs. Internat. J. Game Theory 27:257–267], we show four different exis
tence results. In each stochastic game, it holds for every ε > 0 that (i) each player has a strat
egy that guarantees in each subgame that this player’s payoff is at least his or her maxmin 
value up to ε, (ii) there exists a strategy profile under which in each subgame each player’s 
payoff is at least his or her minmax value up to ε, (iii) the game admits an extensive-form 
correlated ε-equilibrium, and (iv) there exists a subgame that admits an ε-equilibrium.

Funding: This work was supported by the Israel Science Foundation (Nos. 217/17 and 211/22). 

Keywords: stochastic game • equilibrium • general payoff • Martin’s function • subgame maxmin strategy • acceptable strategy profile •
extensive-form correlated equilibrium • easy initial state

1. Introduction
Stochastic games, introduced by Shapley [32], are dynamic games where the players’ actions affect the evolution of 
a state variable. These games have been studied extensively over the past 70 years both under the discounted payoff 
(see, e.g., Fink [11], Takahashi [42], Nowak [28], Mertens and Parthasarathy [26], Duggan [9], Levy [18], and Levy 
and McLennan [19]) and the long-run average payoff and the uniform approach (see, e.g., Mertens and Neyman 
[25], Vrieze and Thuijsman [48], Vieille [46, 47], Solan and Vieille [39], Sorin and Vigeral [41], Venel [44], and 
Renault and Ziliotto [29]). For an overview, we refer to Filar and Vrieze [10], Solan and Vieille [40], Jaśkiewicz and 
Nowak [17], Levy and Solan [20], and Solan [38].

Stochastic games with general payoffs, introduced by Blackwell [5], have also received attention in the literature. In 
these games, the payoff of a player is usually defined as a bounded and Borel-measurable function of the infinite play. 
Naturally, the techniques used for these payoff functions have been quite different from those employed for the dis
counted and the long-run average payoffs. Martin [23], as well as Maitra and Sudderth [22], introduced a powerful tech
nique for studying two-player zero-sum stochastic games with a general payoff function. They used the determinacy of 
alternating-move games to show that, in each two-player zero-sum stochastic game with finite action spaces and count
able state space, to each history one can associate a certain auxiliary one-shot game, with the same action spaces as the sto
chastic game, such that a player can play well in the stochastic game by playing well in the one-shot game at each history.

These auxiliary one-shot games associated with the histories are induced by a single function assigning a real 
number to each history, which we term the Martin function. This function has been generalized to multiplayer sto
chastic games in Ashkenazi-Golan et al. [3], who used it to prove the existence of an ε-equilibrium in multiplayer 
repeated games with tail-measuarable payoffs. This generalization of the Martin function was further applied in 
Ashkenazi-Golan et al. [4] to study regularity properties of the minmax and maxmin values and by using them to 
prove the existence of an ε-equilibrium in multiplayer repeated games under some conditions on the minmax 
values, in Ashkenazi-Golan et al. [2] to prove the existence of an ε-equilibrium in two-player absorbing games with 
tail-measurable payoffs, and in Flesch and Solan [12] to prove the existence of an ε-equilibrium in two-player sto
chastic games with a finite state space and shift-invariant payoffs.

In the papers mentioned in the previous paragraph, the use of the Martin function is hidden within the proofs, 
and the existence results are proven for specific families of games: repeated games with tail-measurable payoffs, 
repeated games under some conditions on the minmax values, or two-player stochastic games with a finite state 
space and shift-invariant payoffs. The goal of this paper is to emphasize the significance of the Martin function for 
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stochastic games and derive four different existence results for all stochastic games with finitely many players and 
actions, countably many states, and bounded and Borel-measurable payoffs, each proven by the use of the Martin 
function. 

[1] We prove that each player has a subgame ε-maxmin strategy for every ε > 0. This is a strategy that guarantees, 
regardless of the opponents’ strategies, that in each subgame this player’s payoff is at least his or her maxmin value 
up to ε.

This result was already proven, albeit not explicitly stated, in Mashiah-Yaakovi [24]. Unlike the proof in 
Mashiah-Yaakovi [24], our proof is straightforward, based on the Martin function. We also refer to Flesch et al. [14] 
for the case of only two players.

[2] We prove the existence of a minmax ε-acceptable strategy profile for every ε > 0. This is a strategy profile under 
which in each subgame each player’s payoff is at least her minmax value up to ε. Thus, such a strategy profile 
induces individually rational payoffs in all subgames up to ε.

A weaker version of the concept of minmax ε-acceptable strategy profiles was defined in Solan [37] in the context 
of the long-run average payoff, where the expected payoffs are only required to be individually rational, up to ε, 
from the initial state of the game. As Solan argued, the existence of such a strategy profile follows from Solan and 
Vieille [39].

A priori, it is not clear that a minmax ε-acceptable strategy profile always exists. Indeed, it is not easy to find tech
niques, other than the Martin function, as in our paper, that are suited for the study of minmax ε-acceptable strat
egy profiles. For example, whereas one-shot games admit minmax 0-acceptable strategy profiles, we are not aware 
of a proof for their existence, except by resorting to the stronger notion of 0-equilibrium and using the fact that each 
0-equilibrium is automatically minmax 0-acceptable. In stochastic games, one cannot use a similar reasoning; 
although every subgame-perfect ε-equilibrium would be automatically minmax ε-acceptable, a subgame-perfect 
ε-equilibrium does not always exist. For a counterexample, see Flesch et al. [15].

Simon [35, page 202] asked whether there can be a three-player stochastic game in which the sum of the payoffs 
is zero for every infinite play, yet each player’s minmax value is strictly positive. Our result answers this question; 
such a game cannot exist.

[3] We prove the existence of an extensive-form correlated ε-equilibrium for every ε > 0.
This result was already shown by Mashiah-Yaakovi [24]. Our proof based on the Martin function is, once again, 

short and straightforward.
[4] We prove the existence of an ε-solvable subgame for every ε > 0. That is, for every ε > 0 there is a history such 

that, in the subgame defined by that history, an ε-equilibrium exists.
In the specific case of the long-run average payoff, it is only the current state that matters when one considers a 

subgame. Therefore, for a finite state space, only finitely many essentially different subgames can arise for the long- 
run average payoff, and hence, the existence of an ε-solvable subgame is equivalent to the existence of an initial 
state at which an ε-equilibrium exists for every ε > 0. Using this property, among others, the corresponding exis
tence result for the long-run average payoff was shown by Thuijsman and Vrieze [43] when there are only two 
players (they used the term easy initial state) and by Vieille [45] for more than two players (who introduced the term 
solvable state).

Our proof, in addition to using the Martin function, requires techniques to detect deviations of the players from 
nonstationary strategies. To this end, we use a recent result by Alon et al. [1], which was also used in Flesch and 
Solan [13] in an alternative proof of the existence of an ε-equilibrium in multiplayer repeated games with tail- 
measurable payoffs. As far as we know, the existence of ε-solvable subgames is the first theorem where the use of 
the result of Alon et al. [1] is imperative for a proof.

Our result connects with and gives a very partial answer to the long-standing open problem of whether every mul
tiplayer stochastic game with finite action spaces, finite or countably infinite state space, and bounded and Borel- 
measurable payoffs admits an ε-equilibrium for every ε > 0. As mentioned earlier, a subgame-perfect ε-equilibrium 
does not always exist, so in some stochastic games there is no strategy profile that would induce an ε-equilibrium 
simultaneously in all subgames.

We remark that none of our existence results (Alon et al. [1], Ashkenazi-Golan et al. [2–4]) hold for ε � 0; there are 
various counterexamples even in the context of two-player zero-sum stochastic games with the long-run average 
payoffs.

The paper is organized as follows: The model of stochastic games is described in Section 2. The concept of the 
Martin function is defined in Section 3. The four existence results are presented and proven, by applying the Martin 
function, in Section 4. Section 5 concludes the paper.
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2. The Model
In our paper, we assume the axiom of choice.1 Let N � {1, 2, : : : }. For a nonempty finite or countably infinite set X, 
let ∆(X) denote the set of probability distributions on X.

Definition 1. A stochastic game2 is a tuple Γ � (I, S, (Ai)i∈I, p, ( fi)i∈I), where 
• I is a nonempty finite set of players;
• S is a nonempty finite or countably infinite set of states;
• Ai is a nonempty finite set of actions of player i for each i ∈ I; let A :�

Q
i∈IAi denote the set of action profiles;

• p : S × A→ ∆(S) is the transition function; for states s, s′ ∈ S and action profile a ∈ A, we denote by p(s′ |s, a) the 
probability of state s′ under p(s, a).

Let R denote the set of runs, that is, the set of all sequences (s1, a1, s2, a2, : : : ) ∈ (S × A)∞ such that p(sn+1 |sn, an) > 0 
for all n ∈ N. We endow the set (S × A)∞ with the product topology, where the sets S and A have their natural dis
crete topologies, and then we endow R, which is a closed subset of (S × A)∞, with the subspace topology. We 
denote by B(R) the corresponding Borel sigma-algebra on R.
• fi : R→ R is a bounded and Borel-measurable payoff function for player i for each i ∈ I.
The game is played in stages in N. The play starts in a given initial state s1 ∈ S. In each stage n ∈ N the play is in 

some state sn ∈ S, and the players simultaneously choose actions; denote by an
i ∈ Ai the action selected by player i. 

This induces an action profile an � (an
i )i∈I, which is observed by all players. Then, the state sn+1 for stage n+1 is 

drawn from the distribution p(· |sn, an) and is observed by all players.

Remark 1. In our model, the action spaces (Ai)i∈I are independent of the state. This assumption is used to sim
plify the exposition, and all of the statements and proofs in the paper can be extended to stochastic games in 
which the action spaces are finite yet depend on the state.

Remark 2. In the literature, several payoff functions are derived from rewards that the players receive in each 
stage of the game. One of the most studied such payoff functions is the long-run average payoff. Given a function 
zi : S × A→ R for player i that assigns a reward zi(s, a) to each state s ∈ S and each action profile a ∈ A, player i’s 
long-run average payoff is defined as

fi(s1, a1, : : : ) :� lim sup
n→∞

1
n
Xn

k�1
zi(sk, ak):

2.1. Histories
A history in stage n ∈ N is a sequence (s1, a1, : : : , sn�1, an�1, sn) ∈ (S × A)n�1

× S such that p(sk+1 |sk, ak) > 0 for each 
k � 1, : : : , n� 1. The set of histories in stage n is denoted by Hn and the set of histories is denoted by H :� ∪∞n�1 Hn.

The current stage (or length) of a history h ∈Hn is denoted by stage(h) :� n, and the final state of h is denoted by 
sh. For two histories h, h′ ∈H, we write h≼h′ if h′ extends h (with possibly h � h′), and we write h ⋏ h′ if h≼h′ and 
h ≠ h′. If the final state sh of h coincides with the first state of h′, then we write hh′ for the concatenation of h with h′. 
Similarly, for a history h ∈H and a run r ∈R, we write h ⋏ r if r extends h, and if the final state sh of h coincides with 
the first state of r, then we write hr for the concatenation of h with r.

For every run r � (s1, a1, s2, a2, : : : ) ∈R and every stage n ∈ N, we denote by rn :� (s1, a1, s2, a2, : : : , sn) ∈H the prefix 
of r in stage n.

2.2. Subgames
Each history induces a subgame of Γ. Given h ∈H, the subgame that starts at h is the game Γh � (I, S, (Ai)i∈I, p, (fi, h)i∈I)

having sh as the initial state, where fi, h(r) :� fi(hr) for each run r ∈R that starts in state sh. Note that, although the sto
chastic game Γ can have any state as the initial state, the subgame Γh can only start in the state sh.

2.3. Mixed Actions
A mixed action for player i ∈ I is a probability distribution xi on Ai. The set of mixed actions for player i in state s is 
thus ∆(Ai). The probability that xi assigns to the action ai ∈ Ai is denoted by xi(ai).

A mixed action profile is a collection x � (xi)i∈I ∈
Q

i∈I∆(Ai) of mixed actions, one for each player. For a player i ∈ I, a 
mixed action profile of the player’s opponents is a collection x�i � (xj)j∈I\{i} ∈

Q
j∈I\{i}∆(Aj) of mixed actions.

The support of the mixed action xi is supp(xi) :� {ai ∈ Ai : xi(ai) > 0} ⊆ Ai. The support of a mixed action profile x �
(xi)i∈I is supp(x) :�

Q
i∈I supp(xi) ⊆ A.

Flesch and Solan: Stochastic Games with General Payoff Functions 
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For a mixed action profile x � (xi)i∈I, we denote the probability of moving from state s to state s′ under x by

p(s′ |s, x) :�
X

a�(ai)i∈I∈A
p(s′ |s, a) ·

Y

i∈I
xi(ai)

 !

:

2.4. Strategies
A (behavior) strategy of player i is a function σi : H→ ∆(Ai). We denote by σi(ai |h) the probability assigned to the 
action ai ∈ Ai under σi(h). The interpretation of σi is that if history h arises, then σi recommends selecting an action 
according to the mixed action σi(h). We denote by Σi the set of strategies of player i.

The continuation of a strategy σi in the subgame that starts at a history h ∈H is denoted by σi, h; this is a function 
that maps each history h′ having sh as its first state to the mixed action σi, h(h′) :� σi(hh′) ∈ ∆(Ai).

A strategy profile is a collection σ � (σi)i∈I of strategies, one for each player. We denote by Σ :�
Q

i∈IΣi the set of 
strategy profiles. For a player i ∈ I, the strategy profile of her opponents is a collection σ�i � (σj)j∈I\{i} of strategies. 
We denote by σ�i(a�i |h) :�

Q
j∈I\{i}σj(aj |h) the probability of the action profile a�i � (aj)j∈I\{i} under the strategy pro

file σ�i at the history h. We denote by Σ�i :�
Q

j∈I\{i}Σj the set of strategy profiles of player i’s opponents.

2.5. Expected Payoffs
By Kolmogorov’s extension theorem, each strategy profile σ together with an initial state s induces a unique proba
bility measure Ps,σ on (R,B(R)). The corresponding expectation operator is denoted by Es,σ. Player i’s expected payoff 
under the strategy profile σ is

Es,σ[fi] �
Z

r∈R
fi(r)Ps,σ(dr):

Given a history h ∈H, in the subgame Γh, each strategy profile σ similarly induces a unique probability measure 
Ph,σ on (R,B(R)). The corresponding expectation operator is denoted by Eh,σ. Player i’s expected payoff under strat
egy profile σ in Γh is

Eh,σ[fi] �
Z

r∈R
fi, h(r)Ph,σ(dr):

2.6. Minmax Value and Maxmin Value
Given a history h ∈H, the minmax value of player i ∈ I in the subgame that starts at history h is the quantity

vi(h) :� inf
σ�i∈Σ�i

sup
σi∈Σi

Eh,σi,σ�i[fi]: (1) 

Intuitively, vi(h) is the highest payoff that player i can defend against any strategy profile of his or her opponents in 
the subgame that starts at history h. When h � (s) is the history that contains only the initial state s, we denote this 
quantity by vi(s).

The maxmin value of player i ∈ I in the subgame that starts at history h is the quantity

vi (h) :� sup
σi∈Σi

inf
σ�i∈Σ�i

Eh,σi,σ�i[fi]: (2) 

Intuitively, vi(h) is the highest payoff that player i can guarantee to receive regardless of the strategy profile of the 
player’s opponents in the subgame that starts at history h. When h � (s) is the history that contains only the initial 
state s, we denote this quantity by vi(s).

Note that both the minmax value and the maxmin value in the subgame that starts at history h generally depend 
on the whole history and not only on the current state sh. Note also that vi(h) ≥ vi(h) for each player i ∈ I and each 
history h ∈H.

2.7. Equilibrium
Let ε ≥ 0. A strategy profile σ∗ is called an ε-equilibrium for the initial state s ∈ S if we have Es,σ∗ [fi] ≥ Es,σi ,σ∗�i

[fi]� ε for 
each player i ∈ I and each strategy σi ∈ Σi. It follows from the definitions that if σ∗ is an ε-equilibrium for the initial state 
s ∈ S, then Es,σ∗ [fi] ≥ vi(s)� ε for each player i ∈ I. A strategy profile σ is called an ε-equilibrium if it is an ε-equilibrium 
for each initial state s ∈ S.
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3. Martin’s Function
Martin [23] and Maitra and Sudderth [22] showed that, in every two-player zero-sum stochastic game with count
ably many states and a bounded and Borel-measurable payoff function, it is possible to assign an auxiliary one-shot 
zero-sum game to each history, with the action spaces A1 and A2 for the players, in such a way that if at all histories 
a player plays well in the corresponding one-shot game, then he or she plays well in the stochastic game, too. This 
is a powerful result because it shows how to play well in the zero-sum stochastic game, by decomposing the infinite 
duration game into suitable one-shot games. The purpose of this section is to extend this result to multiplayer sto
chastic games.

Let Γ � (I, S, (Ai)i∈I, p, (fi)i∈I) be a stochastic game. Suppose that we are given a function D � (Di)i∈I : H→ R | I | . 
That is, at each history h ∈H, the function D specifies a number Di(h) for each player i ∈ I.

The function D induces the following one-shot3 game GO(D, h) at each history h ∈H. The set of players is I, the 
action space of each player i ∈ I is Ai, and the payoff of each player i ∈ I under each action profile a ∈ A is equal to 
the expectation of Di at the next history:

E[Di |h, a] :�
X

s∈S
(p(s |sh, a) ·Di(h, a, s)):

For each mixed action profile x ∈
Q

i∈I∆(Ai), we denote by E[Di |h, x] the expectation of player i’s payoff under x:

E[Di |h, x] :�
X

a�(aj)j∈I∈A
E[Di |h, a] ·

Y

j∈I
xj(aj)

0

@

1

A:

In the one-shot game GO(D, h), player i’s minmax value is the quantity

vO, i(D, h) :� min
x�i∈
Q

j≠i∆(Aj)

max
xi∈∆(Ai)

E[Di |h, xi, x�i], 

and player i’s maxmin value is the quantity

vO, i (D, h) :� max
xi∈∆(Ai)

min
x�i∈
Q

j≠i∆(Aj)

E[Di |h, xi, x�i]: (3) 

Note that vO, i(D, h) and vO, i(D, h) are independent of Dj with j ≠ i. Therefore, when only the payoffs of player i mat
ter, we will only define Di, write vO, i(Di, h) and vO, i(Di, h), and speak of the one-shot game GO(Di, h).

We now state the main theorem of the section.

Theorem 1. Let ε > 0. In every stochastic game, for each player i ∈ I there is a bounded function Dεi : H→ R, called a Mar
tin function for the parameter ε and player i, with the following properties: 

(M.1) vi(h)� ε ≤Dεi (h) ≤ vi(h) for every h ∈H.
(M.2) Dεi (h) ≤ vO, i(Dεi , h) for every h ∈H.
(M.3) Let h′ ∈H be a history. If a strategy profile σ ∈ Σ satisfies

vO, i(Dεi , h) ≤ E[Dεi |h,σ(h)], ∀h ∈H with h′≼h, (4) 

then

vO, i(Dεi , h) ≤ Eh,σ[fi], ∀h ∈H with h′≼h: (5) 

The result also holds when all instances of the minmax value (both of the one-shot game and the stochastic game) are 
replaced by the maxmin value.

Theorem 1 states that, for each ε > 0 and each player i, there is a Martin function Dεi that assigns a real number 
Dεi (h) to each history h with the following properties: (M.1) Dεi (h) is no larger than player i’s minmax value vi(h) at 
history h, and no smaller than this quantity up to ε, (M.2) the minmax value vO, i(Dεi , h) of the one-shot game 
GO(Dεi , h), which is induced by Dεi at history h, is at least Dεi (h), and (M.3) any strategy profile σ that is good locally 
is also good globally; namely, if for every h that extends h′, in the one-shot game GO(Dεi , h) the mixed action profile 
σ(h) yields to player i an expected payoff of at least vO, i(Dεi , h), then, in the stochastic game, for each history h 
extending h′, player i’s expected payoff in the subgame that starts at h is also at least vO, i(Dεi , h). This last property is 
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remarkably useful; if a player plays well in the one-shot game at each history, then he or she plays well in the sto
chastic game, too.

Martin [23] and Maitra and Sudderth [22] proved the existence of a function Dεi that satisfies the second inequal
ity in (M.1), (M.2), and (M.3) for the case of two-player games (where the minmax value and the maxmin value coin
cide). Ashkenazi-Golan et al. [3] showed how to extend the same properties to multiplayer games with a single 
state. The further extension to any finite or countably infinite state space can be done following how Maitra and 
Sudderth [22] extended the result of Martin [23] from a single state to such a state space. The main difficulty is to 
ensure that the function Dεi satisfies the first inequality in (M.1). We will show that the function that, for every his
tory h, is the maximum between vi(h)� ε and the function constructed in the earlier papers satisfies this inequality.

Remark 3. If we set Dεi (h) � vi(h), then properties (M.1) and (M.2) hold, yet property (M.3) does not necessarily 
hold. Indeed, consider the one-player game where A1 � {a, b}, and the payoff is 1 if the player selects action b at 
least once along the run and 0 if the player always selects action a. The minmax value in all subgames is 1, yet 
the strategy that always selects action a with probability 1 satisfies Equation (4) (for the function Dεi (h) � 1 for all 
h) but not Equation (5). To ensure that property (M.3) holds as well, we have to set Dεi (h) slightly lower than 
vi(h), as permitted by property (M.1). Indeed, for example, if for each history h ∈H we set Dεi (h) � 1� ε if only 
action a was selected along h and Dεi (h) � 1 if action b was selected at least once along h, then property (M.3) 
holds as well.

Example 1. Suppose that |I | � 2, and the payoff function is the long-run average payoff, cf. Remark 2. In their 
study of the uniform value in two-player zero-sum stochastic games, Mertens and Neyman [25] constructed, for 
each ε > 0 and i ∈ I, a function Dεi that satisfies the properties of Theorem 1; this is the function that they denote 
by Yi on page 56 of their paper.

When |I | > 2, yet the payoff function was still the long-run average payoff, Neyman [27] provided an analo
gous construction for the function Dεi , which he denoted by Yk on page 184 of his paper. �

Proof of Theorem 1. We provide the proof for the version with the minmax value; the proof for the maxmin 
value follows a similar line of arguments. The proof relies on a combination of results and techniques from Mar
tin [23], Maitra and Sudderth [22], and Ashkenazi-Golan et al. [3].

Fix an ε > 0 and a player i ∈ I. The desired function Dεi can be constructed for each initial state separately. 
Thus, we fix an initial state s1 ∈ S, let Hs1 ⊆H denote the set of histories that start in state s1, and let Rs1 ⊆R 

denote the set of runs that start in state s1. Because player i’s payoff function fi is assumed to be bounded, we 
may assume without loss of generality that fi takes values in the interval [0, 1]. Our goal is then to construct a 
function Dεi : Hs1 → [0, 1] having properties (M.1), (M.2), and (M.3), with H replaced by Hs1 . We construct the 
function Dεi in four steps. In the first three steps we obtain auxiliary functions from (subsets of) Hs1 to [0, 1], and 
in the last step we define the desired function Dεi : Hs1 → [0, 1], which for the ease of notation will be denoted 
by D∗. 

Step 1: We claim the following. Suppose that 0 < vi(s1), and let w ∈ (0, vi(s1)). Then, there is a function d : Hs1 →

[0, 1]with the following properties: 
(a) For the history h1 � (s1) in stage 1, we have d(h1) � w.
(b) For every history h ∈Hs1 , we have d(h) ≤ vO, i(d, h) and d(h) ≤ vi(h).
(c) For every run r ∈Rs1 , we have limsupn→∞d(rn) ≤ fi(r); recall that rn denotes the prefix of r in stage n 

(cf. Section 2.1).
We explain the intuition behind these properties. Property (a) is an initialization. Property (b) requires that at any 

history h, the current value of d is at most player i’s minmax value in the one-shot game GO(d, h) and also at most 
player i’s minmax value in the subgame of the stochastic game that starts at h. Property (c) states that, for any run, 
player i’s actual payoff is at least the limsup of the values of d along this run.

We turn to the proof of the statement in Step 1. When there is only one state (i.e., |S | � 1), the statement for two 
players is proven in Martin [23] and for any number of players is proven in Ashkenazi-Golan et al. [3].4 Indeed, 
Lemma 3.1 in Ashkenazi-Golan et al. [3] specifically states properties (a) and (c) and the first inequality in property 
(b), whereas claim 3.1 in Ashkenazi-Golan et al. [3] implies the second inequality in property (b). The extension to 
any finite or countably infinite state space can be done analogously to the way Maitra and Sudderth [22] extended 
the result of Martin [23] from a single state to such a state space.5

Step 2: For each history h ∈Hs1 , we define an auxiliary function bDh. To this end, consider an arbitrary history 
h ∈Hs1 . Let Hh ⊆Hs1 be the set of all histories that extend h (including h itself). We define the function bDh : Hh→

[0, 1] by distinguishing between two cases.

Flesch and Solan: Stochastic Games with General Payoff Functions 
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Suppose first that vi(h) > ε=2. Apply Step 1 to the subgame Γh and w � vi(h)� ε=2. This yields a function bDh :

Hh→ [0, 1]with the following properties: 
• At the history h,

bDh(h) � vi(h)�
ε

2 : (6) 

• For every history g ∈Hh,
bDh(g) ≤ vO, i( bDh, g)and bDh(g) ≤ vi(g): (7) 

• For every run r that extends h,

limsup
n→∞

bDh(rn) ≤ fi(r): (8) 

Suppose next that vi(h) ≤ ε=2. Then, we let bDh be the constant zero function. This definition satisfies Equations 
(7) and (8), whereas Equation (6) has to be replaced by

vi(h)�
ε

2 ≤ 0 � bDh(h): (9) 

Step 3: We recursively define a function D : Hs1 → [0, 1] and, simultaneously, an auxiliary function α : Hs1 →Hs1 , 
which assigns to each history h a prefix α(h) of h. In Step 4, we will define a slight modification of this function D, 
denoted by D∗, and show that D∗ is the desired function that satisfies properties (M.1), (M.2), and (M.3) of Theorem 1. 

• At the history h1 � (s1) in stage 1: 
— Set α(h1) :� h1.
— Set D(h1) :� bDα(h1)(h1) � bDh1(h1).

• Consider a history h ∈Hs1 such that h ≠ h1, and suppose that α(g) and D(g) are already defined for each 
strict prefix g of h. Let h– denote the prefix of h in the previous stage: stage(h�) � stage(h)� 1. 

— Set D(h) :� bDα(h�)(h).
— If D(h) ≥ vi(h)� ε, set α(h) :� α(h�). Otherwise, set α(h) :� h; in this case we say that reinitiation occurs 

at h.

The intuition behind the definition is the following. The function D starts at h1 � (s1) with the function bDh1 and 
sticks with it until a history h2 ≻ h1 is encountered such that bDh1(h2) < vi(h2)� ε. From this point on, the function 
bDh1 is no longer useful, and reinitiation occurs, which takes effect only from the next stage, stage(h2) + 1. As of that 
stage, D follows the function bDh2 until encountering a history h3 ≻ h2 such that bDh2(h3) < vi(h3)� ε. Then, reinitia
tion occurs again, and as of the next stage, stage(h3) + 1, the function D follows the function bDh3 , and so on. The con
struction of D with reinitiation has its origins in Rosenberg et al. [30, Section 5.2].

Step 4: We define a function D∗ : Hs1 → [0, 1] by

D∗(h) :�max{D(h), vi(h)� ε}, ∀h ∈Hs1 :

We will now show that D∗ satisfies properties (M.1), (M.2), and (M.3) in Theorem 1 (when H is replaced with 
Hs1 ).

By the definition of the function D, for each history h ∈Hs1 , each action profile a ∈ A, and each state s ∈ S, we 
have D(h, a, s) � bDα(h)(h, a, s), where (h, a, s) is the history that arises when at history h the players play the 
action profile a and, subsequently, state s is reached. Hence, for each h ∈Hs1 ,

bDα(h)(h) ≤ vO, i( bDα(h), h) � vO, i(D, h) ≤ vO, i(D∗, h), (10) 

where the first inequality holds by Equation (7) and the last inequality holds because D ≤D∗. 
Step 4.1: Verifying property (M1). By the definition of D∗, we have vi(h)� ε ≤D∗(h) for every h ∈Hs1 , which 

proves the first inequality in (M.1).
Using the definition of D and Equation (7), we obtain D(h) ≤ vi(h) for every h ∈Hs1 . By the definition of D∗, this 

implies D∗(h) ≤ vi(h) for every h ∈Hs1 , which proves the second inequality in (M.1).
Step 4.2: Verifying property (M.2). 
Step 4.2.1: In this step, we consider the history h1 � (s1) in stage 1. We have

vi(s1)� ε < vi(s1)�
ε

2 ≤
bDh1(h1) �D(h1) ≤ vO, i(D∗, h1), (11) 
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where the second inequality holds by Equations (6) and (9), the equality holds by the definition of D, and the last 
inequality holds by Equation (10). By the definition of D∗, this implies that D∗(h1) �D(h1). Hence, Equation (11) 
proves property (M.2) for h1.

Step 4.2.2: In this step, we consider a history h ∈Hs1 \ {h1} at which no reinitiation occurs. Then α(h) � α(h�), 
and therefore,

vi(h)� ε ≤D(h) � bDα(h�)(h) � bDα(h)(h) ≤ vO, i(D∗, h), (12) 

where the first inequality holds because there is no reinitiation at h, the two equalities hold by definition, and the 
last inequality holds by Equation (10). By the definition of D∗, this implies that D∗(h) �D(h). Hence, Equation (12) 
proves property (M.2) for h.

Step 4.2.3: In this step, we consider a history h ∈Hs1 \ {h1} at which reinitiation does occur. In this case, 
α(h) � h, and therefore,

D(h) < vi(h)� ε < vi(h)�
ε

2 ≤
bDh(h) � bDα(h)(h) ≤ vO, i(D∗, h), (13) 

where the first inequality holds because there is reinitiation at h, the third inequality holds by Equations (6) and (9), 
and the last inequality holds by Equation (10). By the definition of D∗, this implies that D∗(h) � vi(h)� ε. Hence, 
Equation (13) proves property (M.2) for h.

Step 4.3: Verifying property (M3). Fix a strategy profile σ that satisfies Equation (4) for D∗, that is,

vO, i(D∗, h) ≤ E[D∗ |h,σ(h)], ∀h ∈Hh′ : (14) 

Because D∗ satisfies property (M.2), Equation (14) implies that D∗(h) ≤ E[D∗ |h,σ(h)] for all histories h ∈Hh′ , and 
thus the process (D∗(h))h is a bounded submartingale under Ph′,σ. Hence, in particular, (D∗(h))h converges with 
probability 1 under Ph′,σ. 

At every history h ∈Hh′ where reinitiation occurs, we have

D∗(h) + ε2 ≤ vO, i(D∗, h) ≤ E[D∗ |h,σ(h)], 

where the first inequality holds by Equation (13) and because D∗(h) � vi(h)� ε (cf. Step 4.2.3), and the second 
inequality holds by Equation (14). Because the process (D∗(h))h is a bounded submartingale under Ph′,σ, this implies 
that under Ph′,σ the expected number of reinitiations is bounded in any subgame. In particular,

Ph,σ(the number of re-initiations is finite) � 1, 

for every history h ∈Hh′ .
We need to show that Equation (5) holds for D∗, that is, vO, i(D∗, h) ≤ Eh,σ[fi] for every history h ∈Hh′ . To this 

end, fix a history h ∈Hh′ and ρ > 0. Let n0 ≥ stage(h) be a sufficiently large stage such that

Ph,σ(no re-initiation occurs after stage n0) ≥ 1� ρ:

Note that if no reiteration occurs at a history g ∈Hh, then D∗(g) �D(g) � bDα(g�)(g) (cf. Step 4.2.2). Hence,

Ph,σ(D∗(rn) � bDα(rn0 )(rn) for all n ≥ n0) ≥ 1� ρ; (15) 

recall that rn denotes the prefix of the run r in stage n (cf. Section 2.1). Hence,

vO, i(D∗, h) ≤ E[D∗ |h,σ(h)]

≤ Eh,σ limsup
n→∞

D∗(rn)

� �

≤ Eh,σ limsup
n→∞

bDα(rn0 )(rn)

� �

+ ρ

≤ Eh,σ[fi] + ρ, 

where the first inequality holds by Equation (14), the second inequality holds because (D∗(h))h is a bounded sub
martingale under Ph′,σ (and thus also under Ph,σ), the third inequality holds by Equation (15) and because D∗ takes 
values in [0, 1], and the last inequality follows from Equation (8). Because ρ > 0 is arbitrary, property (M.3) holds as 
well. w
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4. Applications
In this section, we present four applications of Theorem 1. In Section 4.1 we show that each player has a subgame 
ε-maxmin strategy for every ε > 0, providing a short proof for a result due to Mashiah-Yaakovi [24]; see also Flesch 
et al. [14] for the case of two-player games. In Section 4.2, we show that there is an ε-acceptable strategy profile for 
every ε > 0, extending an implication of Solan and Vieille [39] to general Borel-measurable payoff functions. In Sec
tion 4.3, we establish the existence of an extensive-form correlated ε-equilibrium for every ε > 0, providing a short 
proof for a result due to Mashiah-Yaakovi [24], which itself extends a result of Solan and Vieille [39] to general 
Borel-measurable payoff functions. Finally, in Section 4.4, we show that for every ε > 0 there is a subgame of the sto
chastic game in which there is an ε-equilibrium, extending a result of Vieille [45] to general Borel-measurable payoff 
functions.

4.1. Subgame «-Maxmin Strategies
A strategy of player i ∈ I is called subgame ε-maxmin if in each subgame it guarantees that player i’s expected pay
off is at least his or her maxmin value up to ε.

Definition 2. Let ε ≥ 0. A strategy σ∗i ∈ Σi for player i ∈ I is subgame ε-maxmin if for every history h ∈H and every 
strategy profile σ�i ∈ Σ�i,

Eh,σ∗i ,σ�i[fi] ≥ vi (h)� ε:

The following theorem, although not explicitly stated, is proven in Mashiah-Yaakovi [24]; see also Flesch et al. 
[14] for the case of only two players.

Theorem 2. In every stochastic game, for every ε > 0, every player i ∈ I has a subgame ε-maxmin strategy.

Proof. Fix ε > 0 and i ∈ I. Consider the version of Theorem 1 for the maxmin value, and let Dεi be the function for 
player i given by this variation. By Equation (3), for each history h ∈H, player i has a mixed action xi(h) in the 
one-shot game GO(Dεi , h) such that for every mixed action profile x�i of player i’s opponents, we have

E[Dεi |h, xi(h), x�i] ≥ vO, i (Dεi , h): (16) 

Define a strategy σ∗i ∈ Σi for player i by letting σ∗i (h) � xi(h) for each history h ∈H. We will prove that σ∗i is sub
game ε-maxmin.

To this end, fix a strategy profile σ�i ∈ Σ�i of player i’s opponents. By the choice of σ∗i , for every history h ∈H,

E[Dεi |h,σ∗i (h),σ�i(h)] � E[Dεi |h, xi(h),σ�i(h)] ≥ vO, i (Dεi , h):

Thus, by properties (M.3), (M.2), and (M.1) of Theorem 1, for every history h ∈H,

Eh,σ∗i ,σ�i[fi] ≥ vO, i (Dεi , h) ≥Dεi (h) ≥ vi(h)� ε:

Hence, σ∗i is subgame ε-maxmin, as claimed. w

4.2. Minmax «-Acceptable Strategy Profiles
A minimal requirement from a reasonable strategy profile is that every player obtains, up to a small error term, an 
expected payoff of at least his or her minmax value. Indeed, such a strategy profile then induces, up to a small error 
term, individually rational payoffs to the players. In the context of stochastic games with the long-run average pay
off, Solan [37] proved that such a strategy profile exists by applying the results of Solan and Vieille [39].

In this section, we consider a stronger version of this concept, where this minimal condition is required to hold in 
all subgames.

Definition 3. A strategy profile σ∗ ∈ Σ is minmax ε-acceptable if for every player i ∈ I and every history h ∈H,

Eh,σ∗ [fi] ≥ vi(h)� ε:

A priori, it is not clear whether every stochastic game admits a minmax ε-acceptable strategy profile. Indeed, as 
discussed in Section 1, every subgame-perfect ε-equilibrium in the game is automatically minmax ε-acceptable, 
but a subgame-perfect ε-equilibrium does not always exist, as was shown in Flesch et al. [15].

Theorem 3. Let ε > 0. For each player i ∈ I, let Dεi be a Martin function as in Theorem 1 (for the version with the minmax 
value). Let Dε � (Dεi )i∈I. For each history h ∈H, let x(h) ∈

Q
i∈I∆(Ai) be an equilibrium in the one-shot game GO(Dε, h).

Define a strategy profile σ∗ by letting σ∗(h) � x(h) for each history h ∈H. Then, the strategy profile σ∗ is minmax 
ε-acceptable.
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Consequently, in every stochastic game, for every ε > 0, there exists a minmax ε-acceptable strategy profile.

Proof. Because σ∗(h) � x(h) is an equilibrium in the one-shot game GO(Dε, h) for each history h ∈H, we have

E[Dεi |h,σ∗(h)] ≥ vO, i(Dεi , h), ∀h ∈H, ∀i ∈ I:

Hence,

Eh,σ∗ [fi] ≥ vO, i(Dεi , h) ≥ Dεi (h) ≥ vi(h)� ε, ∀h ∈ H, ∀i ∈ I (17) 

where the inequalities hold respectively by properties (M.3), (M.2), and (M.1) of Theorem 1. w

4.3. Extensive-Form Correlated «-Equilibria
An extensive-form correlated ε-equilibrium is an ε-equilibrium in an extended game, which includes a mediator, 
who sends a private message to each player at every stage. Solan and Vieille [39] proved the existence of an 
extensive-form correlated ε-equilibrium, for every ε > 0, in all stochastic games with finitely many states and the 
long-run average payoff. Mashiah-Yaakovi [24] extended this result to all stochastic games with countable many 
states and payoff functions that are bounded and Borel-measurable. In this section, we show how the result of 
Mashiah-Yaakovi [24] follows from Theorem 1.

Definition 4. A stochastic game with a mediator is a triple ΓM,µ � (Γ, (Mi)i∈I, (µi)i∈I), where 
• Γ � (I, S, (Ai)i∈I, p, (fi)i∈I) is a stochastic game as in Definition 1.
• Mi is a nonempty finite6 set of messages for player i ∈ I for each i ∈ I.
Let M :�

Q
i∈IMi denote the set of message profiles, let

HM :� ∪
n∈N
(S × (M × A × S)n�1

)

denote the set of histories for the mediator, and for each i ∈ I let

HMi :� ∪
n∈N
(S × (Mi × A × S)n�1

×Mi)

denote the set of private histories for player i.
• µi : HM→ ∆(Mi) is a function for each i ∈ I. The collection µ � (µi)i∈I is called the (strategy of the) mediator.7
The interpretation of a mediator is as follows. In each stage n ∈ N, given the past history of play (s1, a1, s2, a2, 

: : : , sn) and given the past messages m1, m2, : : : , mn�1 that the mediator already sent to the players, the mediator 
uses µi to randomly select a private message mn

i to each player i ∈ I and sends it to that player.
A (behavior) strategy of player i in ΓM,µ is a function τi : HMi→ ∆(Ai). Let T i denote the set of strategies for 

player i ∈ I in ΓM,µ. A strategy profile τ � (τi)i∈I in ΓM,µ and a history h ∈HM induce a probability distribution 
Ph,µ,τ on the space

HM∞ :� S × (M × A × S)∞:

This is the probability distribution induced by τ and µ in the subgame of ΓM,µ that starts at h. Denote by Eh,µ,τ[ · ]

the corresponding expectation operator.
Let ε ≥ 0. In a stochastic game with a mediator ΓM,µ, a strategy profile τ∗ is an ε-equilibrium if

Es1,µ,τ∗ [fi] ≥ Es1,µ,τi,τ∗�i
[fi]� ε, ∀s1 ∈ S, ∀i ∈ I, ∀τi ∈ T i:

Definition 5. In a stochastic game Γ, an extensive-form correlated ε-equilibrium8 is a triple (M,µ,τ∗) where τ∗ is an 
ε-equilibrium in the game with mediator ΓM,µ.

Theorem 4. In every stochastic game, for every ε > 0, there exists an extensive-form correlated ε-equilibrium.

Proof. The idea of the proof is as follows. The players are supposed to follow an (ε=2)-acceptable strategy profile. 
To ensure that no player deviates, the mediator performs the lotteries for the players and tells each player at 
every stage what action was chosen for him or her. In addition, the mediator reveals to all players the actions he 
or she selected to everyone in the previous stage. This mechanism ensures that a deviation is detected immedi
ately and can be punished at the minmax level.

We turn to the formal proof. Fix ε > 0 and set δ :� ε=2. For each player i ∈ I, let Dδi be the function given by The
orem 1 (for the minmax value), and let Dδ � (Dδi )i∈I. For each h ∈H, let x(h) ∈

Q
i∈I∆(Ai) be an equilibrium in the 

one-shot game GO(Dδ, h).
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For each player i ∈ I, let Mi :� A × Ai. Thus, the message sent to each player i at every stage will be a pair con
sisting of an action profile and an action for player i.

We turn to define µ � (µi)i∈I. Suppose that the current history is

h̃ � (s1, m1, a1, s2, m2, a2, : : : , sn) ∈HM:

At this history h̃, the mediator randomly selects for each player i ∈ I an action ban
i ∈ Ai according to the mixed 

action xi(s1, a1, s2, a2, : : : , sn). Then, the mediator sends to player i the message mn
i � ((ba

n�1
j )j∈I, ba

n
i ) ∈Mi; for stage 

n�1, the first coordinate is irrelevant and is just some fixed action profile ba0
∈ A. The interpretation of ban

i is that 
the mediator recommends to player i to play action ban

i . That is, the message mn
i to player i consists of the actions 

that were recommended in the previous stage, and a recommended action for player i in the current stage. For
mally, we define for each i ∈ I the function µi : HM→ ∆(Mi) as follows; given a history h̃ � (s1, m1, a1, s2, m2, a2, 
: : : , sn) ∈HM in ΓM,µ, and denoting mn�1

i � ((ban�2
j )j∈I, ba

n�1
i ) and ban�1

:� (ban�1
j )j∈I, we let

µi(h̃) :� 1ân�1 ⊗ xi(s1, ba1, s2, ba2, : : : , sn):

At the private history h̃i � (s1, m1
i , a1, s2, m2

i , a2, : : : , sn, mn
i ) ∈HMi, if ak

j � ba
k
j for every player j ∈ I and every stage 

k ∈ {1, 2, : : : , n� 1}, then all players followed the actions recommended to them by the mediator. If this condition 
does not hold, denote by k∗ the first stage in which some player did not follow the action recommended by the 
mediator. Among the players i who did not follow the recommendation in stage k∗, let i∗ be the minimal index. 
Denote by h∗ :� (s1, a1, : : : , sk∗ , ak∗ , sk∗+1) ∈H the history in the stage after the deviation occurs. Note that k∗, i∗, and 
h∗ are all random variables that depend on the play of the game.

For each player i ∈ I, let τ∗i : HMi→ ∆(Ai) be the strategy in the game with mediator that follows the recom
mendation of the mediator, unless some player deviates, whereupon the deviator is punished at his or her min
max value. That is: 
• For every private history h̃i � (s1, m1

i , a1, s2, m2
i , a2, : : : , sn, mn

i ) ∈HMi, along which no deviation from the recom
mendation of the mediator was made, τ∗i (h̃i) follows the recommendation of the mediator; τ∗i (h̃i) places probability 
1 on the action ban

i where mn
i � ((ba

n�1
j )j∈I, ba

n
i ).

• Once a private history h̃i � (s1, m1
i , a1, s2, m2

i , a2, : : : , sn, mn
i ) ∈HMi occurs in which, based on the message mn

i , 
player i (and the other players too) notices a deviation in stage k∗ � n� 1 from the recommendation of the mediator, 
then all players i ≠ i∗ switch to a punishment strategy profile against player i∗, namely, a strategy profile that lowers 
player i∗’s payoff to vi∗ (s1, a1, s2, : : : , sn) + δ in the subgame that starts at history h∗.

We argue that τ∗ � (τ∗i )i∈I is an ε-equilibrium in the game with mediator ΓM,µ. Notice that when all players fol
low their recommendations, namely, they adopt the strategy profile τ∗, the players in fact implement the minmax 
δ-acceptable strategy profile σ∗ given in Theorem 3.

To prove that τ∗ � (τ∗i )i∈I is an ε-equilibrium in ΓM,µ, it is sufficient to prove that no player can profit more than 
ε by deviating to a pure strategy in ΓM,µ. Fix then a player i ∈ I and a pure strategy τi ∈ T i. Let θ be the stopping 
time that indicates the first stage in which τi deviates from τ∗i . Formally, for each run r̃ ∈HM∞, denote by r̃i 
player i’s private run in HM∞i � S × (Mi × A × S)∞. Then, we have θ(r̃) � n if τi(r̃k

i ) � τ
∗
i (r̃

k
i ) for every k<n and 

τi(r̃n
i )≠ τ∗i (r̃

n
i ), and θ(r̃) � ∞ if τi(r̃k

i ) � τ
∗
i (r̃

k
i ) for every k ∈ N. To prove that Es1,µ,τ∗ [fi] ≥ Es1,µ,τi,τ∗�i

[fi]� ε, we will 
show that on the event {θ <∞}, we have Erθ(r) ,µ,τ∗ [fi] ≥ Erθ(r) ,µ,τi,τ∗�i

[fi]� ε.
To this end, fix a run r̃ ∈HM∞ with n :� θ(r̃) <∞. Denote by h̃i � (s1, m1

i , a1, s2, m2
i , a2, : : : , sn, mn

i ) ∈HMi player i’s 
private history at stage n, just before τi deviates from τ∗i , and by h � (s1, a1, s2, a2, : : : , sn) the corresponding history 
in the stochastic game.

If at the history h̃i player i decides not to deviate, and thus follows τ∗i , then the strategy profile σ∗ will be imple
mented, and hence, player i’s expected payoff will be Eh,σ∗ [fi]. By Equation (17),

Eh,σ∗ [fi] ≥Dδi (h): (18) 

Suppose now that player i deviates at h̃i from the mediator’s recommendation to τi and selects the action 
bai :� τi(r̃n

i ) ∈ Ai. According to τ∗, from the following stage and on, the player will be punished at his or her min
max value plus δ. That is, the player’s payoff will be at most

Eσ∗
�i(h)[vi(h, bai, a�i, s)] + δ ≤ Eσ∗

�i(h)[D
δ
i (h, bai, a�i, s)] + 2δ

≤ Eσ∗(h)[Dδi (h, ai, a�i, s)] + 2δ
≤ Eh,σ∗ [fi] + 2δ, 
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where the first inequality holds by property (M.1) of Theorem 1, the second inequality holds because the mixed 
action σ∗(h) is an equilibrium of the one-shot game GO(Dδ, h), and the third inequality holds because σ∗ chooses the 
mixed action σ∗(h) at history h, and if the action profile (ai, a�i) is chosen at history h and the state s is reached, then 
from the history (h, ai, a�i, s) in the next period, σ∗ gives a payoff of at least Dδi (h, ai, a�i, s) by Equation (18).

Thus, the deviation can improve player i’s payoff by at most ε � 2δ. Hence, τ∗ is indeed an ε-equilibrium in the 
game with mediator ΓM,µ. w

4.4. Solvable Subgames
A state s ∈ S is called solvable (or easy) if for every ε > 0, the game has an ε-equilibrium when the initial state is s. 
Thuijsman and Vrieze [43] proved that in every two-player non-zero-sum stochastic game with finitely many states 
and the long-run average payoff there is an easy initial state. This result has been extended by Vieille [45] to multi
player stochastic games with finitely many states and the long-run average payoff. In this section, we weaken the 
concept of easy initial state and define the concept of ε-solvable subgame, which is a subgame that admits an 
ε-equilibrium. We then prove that for every ε > 0 there is an ε-solvable subgame.

Definition 6. Let ε > 0, and let h ∈H be a history. The subgame Γh is ε-solvable if there is an ε-equilibrium in Γh.

Theorem 5. In every stochastic game, for every ε > 0, there is an ε-solvable subgame.

Note that the ε-solvable subgame that is guaranteed to exist by Theorem 5 may depend on ε.
Our result connects and gives a very partial answer to the long-standing open problem of whether every multiplayer 

stochastic game with finite action spaces, finite or countably infinite state space, and bounded and Borel-measurable 
payoffs admits an ε-equilibrium for every ε > 0. As mentioned in Section 1, a subgame-perfect ε-equilibrium does not 
always exist, so there are stochastic games in which there is no single strategy profile that induces an ε-equilibrium in 
all subgames simultaneously.

We next discuss a strengthening of Theorem 5 to the case where the payoff functions of the players are bounded, 
Borel measurable, and shift-invariant (also called prefix-independent). The payoff function fi for player i ∈ I is called 
shift-invariant if for every run (s1, a1, s2, a2, s3, a3, : : : ) ∈R it holds that fi(s1, a1, s2, a2, s3, a3, : : : ) � fi(s2, a2, s3, a3, : : : ). 
Equivalently, fi is shift-invariant if whenever two runs have the form hr and h′r, that is, they differ only in the prefixes 
h and h′, then fi(hr) � fi(h′r). The set of shift-invariant functions is not included by, nor does it include, the set of Borel- 
measurable functions; see Rosenthal [31] and Blackwell and Diaconis [6]. Many evaluation functions in the literature 
of dynamic games are shift-invariant, such as the long-run average payoff (cf. Remark 2) and the limsup of stage pay
offs (see, e.g., Maitra and Sudderth [21]. Various classical winning conditions in the computer science literature, such 
as the Büchi, co-Büchi, parity, Streett, and Müller (see, e.g., Horn and Gimbert [16], Chatterjee and Henzinger [8], or 
Bruyére [7]), are also shift-invariant. The discounted payoff (see, e.g., Shapley [32]) is not shift-invariant.

When the payoff functions of the players are all shift-invariant and a subgame at some history h � (s1, a1, s2, a2, : : : , sn)

is ε-solvable, then, by shift-invariance, there is an ε-equilibrium for the initial state sn. This implies the following corol
lary of Theorem 5.

Corollary 1. Suppose that player i’s payoff function fi is bounded, Borel-measurable, and shift-invariant for each i ∈ I. 
Then, for every ε > 0, there is an initial state s ∈ S that admits an ε-equilibrium.

Because the long-run average payoff is shift-invariant, Corollary 1 implies the results of Thuijsman and Vrieze 
[43] and Vieille [45], as mentioned above.

In the proof of Theorem 5, when the players realize that one of them deviated, they will have to agree on the iden
tity of the deviator so that he or she can be punished at his or her minmax level. To this end, we present in Section 
4.4.1 a recent result due to Alon et al. [1]. The proof of Theorem 5 appears in Section 4.4.2.

4.4.1. Identifying the Deviator. A group of players are supposed to follow a prescribed strategy profile σ∗. Let ε > 0, 
and let K ⊆R be a set of runs such that Ps1,σ∗ (K) > 1� ε. Suppose that the realized run happens to be in the comple
ment of K. Can the players agree on the identity of the player who most likely deviated from σ∗? This question has 
been recently studied by Alon et al. [1] in the context of repeated games. In this section, we will present a variation 
of their result that applies to stochastic games. This variation will allow us to punish deviations in the ε-equilibrium 
that we will construct in the proof of Theorem 5.

To state the result, we need the following notation. For each history h ∈H, denote by C(h) ⊆R the cylinder set 
defined by h in the Borel sigma-algebra B(R):

C(h) :� {r ∈R : h ⋏ r}:
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For each n ∈ N, denote by Fn the sigma-algebra over R that is defined by histories in stage n; that is, Fn is the mini
mal sigma-algebra that contains, for each history h in stage n, the set C(h).

Later in the paper, we will define various functions φwhose domain is R and that satisfy the following condition; 
there is a nonempty set Z ⊆H of histories such that for every h ∈ Z, the function φ is constant on C(h). In such a case, 
we will denote by φ(h) the value of φ on C(h). Two cases that satisfy this condition are as follows: 

1. When (Yn)n∈N is a stochastic process defined on R and adapted to the filtration (F n)n∈N, for each n, k ∈ N with 
k ≥ n, the function Yn satisfies this condition with respect to the set Z that consists of all histories in stage k.

2. When θ : R→ N ∪ {∞} is a stopping time adapted to the filtration (F n)n∈N, the function θ satisfies this condi
tion with respect to the set Z that consists of all histories rθ(r), that is, the prefix of r up to stage θ(r), for all r ∈R sat
isfying θ(r) <∞.

Let Γ � (I, S, (Ai)i∈I, p, (fi)i∈I) be a stochastic game, and let s1 ∈ S be the initial state. Fix a strategy profile σ∗ ∈ Σ and 
ε > 0, and let K ⊆R be a closed set of runs such that Ps1,σ∗ (K) > 1� ε. Because K is closed, its complement Kc, which 
is open, is a union of cylinder sets. A blame function is a function g : Kc→ I that it is constant on each cylinder set that 
is contained in Kc. The interpretation of a blame function is that if the realized run r is not in K, then the player g(r) is 
announced as the deviator. Because Kc is open, and because g is constant on cylinder sets that are contained in Kc, 
the identity of the announced deviator is determined in the first period in which it is guaranteed that the run will 
not be in K.

The following result states that a blame function that correctly identifies the deviator with high probability 
always exists.

Theorem 6. Let Γ � (I, S, (Ai)i∈I, p, (fi)i∈I) be a stochastic game, let s1 ∈ S be the initial state, and let σ∗ ∈ Σ be a strategy 
profile. For any ε > 0 and any closed set of runs K ⊆R such that Ps1,σ∗ (K) > 1� ε, there is a blame function g such that

Ps1,σi ,σ∗�i
(Kc and g(r) ≠ i) ≤ 2

ffiffiffiffiffiffiffiffiffiffiffi
|I | · ε

p
, ∀i ∈ I, ∀σi ∈ Σi: (19) 

As mentioned before, Alon et al. [1] proved Theorem 6 in the context of repeated games with finite action spaces, 
yet they mentioned that their result applied to games with countable action spaces (see their Remark 4.2). We 
explain here how to reduce Theorem 6 to their setup with finitely many actions.

Proof of Theorem 6. Suppose first that the set S of states is finite. Define an auxiliary repeated game ΓR with 
|I | + 1 players: the original players of Γ and an additional player, denoted 0, who represents the transition func
tion of Γ. The action space of each player i ∈ I is Ai, and the action space of player 0 is S.

Each stage of the auxiliary game ΓR is divided into two substages. In the first substage, the players in I simulta
neously select actions. In the second substage, player 0 selects an action. Thus, each history (s1, a1, s2, : : : , sn) in Γ 
can be viewed as a history at the beginning of the first substage of stage n in ΓR, and a history at the beginning of 
the second substage of stage n in ΓR is a sequence (s1, a1, s2, : : : , sn, an).

Let bσ0 be the strategy of player 0 that is derived from the transitions of the game Γ; that is, at history 
(s1, a1, s2, : : : , sn, an) in the beginning of the second substage of stage n of ΓR, player 0 selects an action (in S) 
according to p(· |sn, an).

Every run in Γ can be viewed as a run in ΓR, and hence, the set K can be viewed as a set of runs in ΓR. By Alon 
et al. [1], there is a function bg : Kc→ I ∪ {0} that satisfies Equation (19) w.r.t. the game ΓR and the strategy profile 
(σ∗, bσ0) for every i ∈ I ∪ {0}. Fix an arbitrary player i0 ∈ I, and define a function g : Kc→ I by

g(r) :�
bg(r), if g(r) ∈ I,
i0, if g(r) � 0:

�

The function g satisfies Equation (19) w.r.t. the strategy profile σ∗ for every i ∈ I in the game Γ, completing the 
proof for a finite state space S.

Because the result of Alon et al. [1] can be extended to countable action spaces, the above argument proves 
Theorem 6 also when S is countable. For completeness, we provide an alternative argument.9

Fix ρ > 0. For each state s ∈ S, each action profile a ∈ A, and each stage n ∈ N, select a nonempty finite set of 
states bS(s, a, n) ⊆ S that satisfies p(bS(s, a, n) |s, a) ≥ 1� ρ=2n. We now change the definition of ΓR. Whereas previ
ously the action space of player 0 was S, now his or her action space is history dependent; the set of actions of 
player 0 at the history (s1, a1, : : : , sn, an) is the finite set bS(sn, an, n). We also adapt the strategy bσ0 as follows; 
bσ0(s1, a1, : : : , sn, an) is the conditional distribution of p(· |sn, an) given bS(sn, an, n).

Denote by D ⊆R the set of runs such that sn+1 ∈ bS(sn, an, n) for every n ∈ N. Denote also PR
σ∗,bσ0 

the probability 
induced by the strategy profile (σ∗, bσ0) in ΓR on R. With these notations, Ps1,σ∗ (D) ≥ 1� ρ, and the probability dis
tribution PR

σ∗,bσ0 
on R coincides with the conditional distribution Ps1,σ∗ on R given D. Therefore, we deduce that 
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there is a blame function g such that

Ps1,σi,σ∗�i
(Kc and g(r) ≠ i) ≤ 2

ffiffiffiffiffiffiffiffiffiffiffi
|I | · ε

p
+ ρ, ∀i ∈ I, ∀σi ∈ Σi: (20) 

Because ρ is arbitrary, using the construction in the proof of Theorem 2.8 in Alon et al. [1], one can in fact get rid 
of the additional term ρ in Equation (20) and derive the bound given in Equation (19). w

4.4.2. Proof of Theorem 5. In the proof, we will use quite a few notations for different quantities, sets, and func
tions; some of them have already been defined, and some will be defined as we progress with the proof. To help the 
reader, Table 1 gives a summary of some of the more important ones (in order of usage).

Assume w.l.o.g. that all payoffs are between 0 and 1, that is, fi(r) ∈ [0, 1] for each player i ∈ I and each run r ∈R.
Fix ε ∈ (0, 1], and let δ ∈ (0, 1) be sufficiently small so that

5δ+ 4( |I | + 1)δ1
4 < ε: (21) 

For each player i ∈ I, let Dδi be the function given by Theorem 1 (for the version with the minmax value). Let 
Dδ � (Dδi )i∈I. Let σ∗ be the minmax δ-acceptable strategy profile given in Theorem 3; for each history h ∈H, the 
mixed action profile σ∗(h) is an equilibrium in the one-shot game GO(Dδ, h).

General Idea: We will use the strategy profile σ∗ to identify an ε-solvable subgame and derive an ε-equilibrium in this 
subgame. The strategy profile σ∗ itself is not an ε-equilibrium, because there are some ways in which a player, say player 
i, may be able to profit by deviating from σ∗: 
• Player i’s payoff may not be constant on the support of σ∗, and hence, among the actions that receive a positive 

probability under σ∗i , player i may prefer some actions to others. We will deal with this problem as follows. The bound
edness and Borel-measurability of (fi)i∈I imply that there is a history h ∈H such that on C(h), with Ph,σ∗-probability close 
to 1, the payoffs of all players are almost constant. Because all probability measures on R are regular, there is a compact 
set K ⊆ C(h) such that K has Ph,σ∗-probability close to 1, and thus on K the payoff functions of all players are almost con
stant. We ensure that no player deviates to a play outside K by instructing the players to punish a deviator if a play out
side K is reached. Because K is closed, the fact that the realized play is outside K is known in finite time. To identify the 
deviator, we will use Theorem 6.
• Because punishment strategies are used against deviations, it is essential that the punishment is effective. This 

is the case only if player i’s minmax value at the history where the punishment starts is not much higher than his or 
her expected payoff upon following σ∗. To profit, player i may use this observation and deviate in a way that leads 

Table 1. Notations

Notation Meaning Page

δ A small quantity p. 14
Dδ � (Dδi )i∈I A given Martin function p. 14
σ∗ A given minmax δ-acceptable strategy profile p. 14
rn The prefix of a run r ∈R in stage n p. 3
Λi(h, ai) and ζi(r, n, ℓ) Quantities related to the probability that the run stays in some Q ⊆R p. 15
σ�i(a�i |h) The probability of the action profile a�i under the strategy profile σ�i

At the history h p. 4
p(s |sh, ai, a�i) the probability that the next state is s when, in the current state sh

At the history h, the action profile is (ai, a�i) p. 3
Yn

i and Yn � (Yn
i )i∈I A random variable that is equal to Dδi (rn) p. 16

Y∞i The limit of Yn
i as n→∞ p. 16

Wn
i and Wn � (Wn

i )i∈I Expectations of Yn+1
i and Yn+1 conditional on the history in stage n p. 16

n1, n2, n3, n0 n1, n2, n3 are stages with specific properties, and n0 is their maximum p. 16
bRn0 A subset of runs having three specific properties p. 16
h∗, n∗, and c A history h∗ with final stage n∗ such that we can construct an ε-equilibrium

In the subgame at h∗ with payoff close to c p. 16
Qi The set of histories where player i’s minmax value is high p. 17
mi The first stage where a history in Qi arises p. 17
νi The stopping time for the first stage after stage n∗ at which ζi becomes high p. 17
bR A subset of bRn0 where ζi remains low p. 18
K A compact subset of bR p. 18
g The blame function identifying the deviator p. 18
θK A random variable for the stage in which the run leaves K p. 18
bσ The desired ε-equilibrium in the subgame that starts at h∗ p. 19
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to a history where his or her payoff is high and his or her minmax value is high as well, so that player i improves 
his or her payoff even when punished. Theorem 1 implies that the minmax value is almost a submartingale under 
σ∗, and hence, there is a history h ∈H such that in the subgame Γh, with Ph,σ∗ -probability close to 1, the minmax 
value of all players is almost constant. We will add a test that verifies that no player i plays in a way that increases 
the probability to reach a history where his or her minmax value is high. A player who fails this test will be pun
ished in an effective way.

We now turn these ideas into a formal proof. 

Step 1: Representing the probability to reach a given set of histories.
In this step, we prove a certain formula for the probability to reach a given set of histories. Let Q ⊆H be a set of histo

ries such that no history in Q is an extension of another history in Q; there are no h, h′ ∈Q with h ⋏ h′. Let σ be a strat
egy profile, let n ∈ N, and let θ : R→ N ∪ {∞} be a stopping time. We will provide a formula for Pσ(rk ∈Q for some 
k ∈ {n, n+ 1, : : : ,θ(r)}), which is the probability under σ that the run reaches a history in Q in one of the stages between 
n and the stopping time.

Fix a player i ∈ I. For every history h ∈H and every action ai ∈ Ai, define

Λi(h, ai) :�
X

{a�i∈A�i, s∈S:(h, (ai, a�i), s)∈Q}
σ�i(a�i |h) · p(s |sh, ai, a�i) ∈ R+, (22) 

which is the probability that the history in the next stage is in Q (and then this is the first stage when the history is in 
Q), when player i selects the action ai and the other players follow σ�i. Note that Λi(h, ai) � 0 whenever a prefix of h 
lies in Q. To save cumbersome notations, we do not specifically mention the dependence of Λi(h, ai) on Q and σ�i.

For every run r � (a1, a2, : : : ) ∈R, every n ∈ N with n ≥ 2, and every ℓ ∈ N ∪ {∞}, define

ζi(r, n, ℓ) :�
Xℓ

k�n
Λi(rk�1, ak

i ) ∈ R+ (23) 

if n ≤ ℓ, and define ζi(r, n, ℓ) � 0 if n > ℓ.

Example 2. Consider a game with two states, S � {s, s′}, and a single player, player 1, who has two actions, 
A1 � {a, a′}. The transitions at state s are as follows; p(s |s, a) � 1, whereas p(s |s, a′) � p(s′ |s, a′) � 1

2. Let Q be the set 
of all histories where the play visits state s′ only at the last stage, that is, the set of all histories h � (s1, a1, : : : , sn), 
where s1 � s2 �⋯� sn�1 � s and sn � s′, for some n ∈ N. Let Z be the set of all histories that always remain in s. For 
every h ∈ Z, we have Λ1(h, a) � 0 and Λ1(h, a′) � 1

2, and for every h ∉ Z we have Λ1(h, a) � Λ1(h, a′) � 0. Therefore, 
for every history h ∈ Z, we have ζ1(r, n, ℓ) � k(h)=2, where k(h) is the number of times along h, between stages n 
and ℓ, when the player plays a′. �

Although the quantity ζi(r, n, ℓ)may be larger than 1, it can be thought of as a fictitious probability that the run could 
have reached a history in Q at any of the stages n, : : : ,ℓ, given the actual run r and assuming that player i’s opponents 
follow σ�i. A quantity similar to ζi was defined in Flesch and Solan [12] in their study of two-player stochastic games.

As we now show, the expectation of ζi is indeed the probability to reach Q. Specifically, we argue that for 
every history h∗ such that none of its prefixes (including h∗ itself) is in Q, every n ≥ stage(h∗), and every stopping 
time θ : R→ N ∪ {∞},

Eh∗,σ[ζi(r, n,θ(r))] � Ph∗,σ(rk ∈Q for some k ∈ {n, n+ 1, : : : ,θ(r)}): (24) 

For n � stage(h∗), both sides of Equation (24) vanish, and hence, the equality holds. Assume then that 
n > stage(h∗). For every history h, let θ(¬h) be a Boolean variable that is true if and only if θ does not stop along 
the history h (that is, θ(r) > stage(h) for each r ≻ h). Then,

Eh∗,σ[ζi(r, n,θ(r))] � Eh∗,σ
Xθ(r)

k�n
Λi(rk�1, ak

i )

" #

(25) 

�
X∞

k�n

X

{h∈H:stage(h)�k�1, θ(¬h)}
Ph∗,σ(h) ·

X

ai∈Ai

σi(ai |h) ·Λi(h, ai)

" #

(26) 

� Ph∗,σ(rk ∈Q for some k ∈ {n, n+ 1, : : : ,θ(r)}), (27) 

where Equation (25) follows from the definition of ζi, Equation (26) follows from changing the order of summation, 
and Equation (27) holds by the definition of Λi.
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Step 2: Identifying a history h∗, or equivalently, a subgame Γh∗ , and identifying a target equilibrium payoff c.
The process (Es1,σ∗ [fi |Fn])n∈N is a martingale that converges Ps1,σ∗-a.s. to fi for each player i ∈ I, and hence, denot

ing f � (fi)i∈I, there is n1 ∈ N such that10

Ps1,σ∗ (‖ f (r)�Ern,σ∗ [ f ]‖∞ ≤ δ, ∀n ≥ n1) >
2
3 : (28) 

Thus, under the strategy profile σ∗, with probability more than 2
3, it holds that in all stages n ≥ n1, the expected 

payoff in the subgame that starts at the history in stage n is close to the realized payoff.
For each player i ∈ I and stage n ∈ N, define a random variable Yn

i : R→ R by

Yn
i (r) :�Dδi (r

n), ∀r ∈R:

Because σ∗(h) is an equilibrium in the one-shot game GO(Dδ, h) for each history h ∈H, property (M.2) of Theo
rem 1 implies that the process (Yn

i )n∈N is a submartingale under Ps1,σ∗ :

Es1,σ∗ [Yn+1
i |F

n] ≥ Yn
i , ∀n ∈ N: (29) 

Hence, (Yn
i )n∈N converges Ps1,σ∗-a.s. to a limit Y∞i . Denote

Yn(r) :� (Yn
i (r))i∈I, ∀r ∈R, ∀n ∈ N:

Because the sequence (Yn(r))n∈N converges Ps1,σ∗-a.s., there is n2 ∈ N such that

Ps1,σ∗ (‖Yk(r)�Yn(r)‖∞ ≤ δ, ∀k ≥ n ≥ n2) >
2
3 : (30) 

For each player i ∈ I and stage n ∈ N, denote

Wn
i :� Es1,σ∗ [Yn+1

i |F
n], ∀n ∈ N:

Equation (29) implies that Wn
i ≥ Yn

i for every n ∈ N. Hence, the sequence (Wn
i )n∈N is a submartingale under 

Ps1,σ∗ . Indeed,
Es1,σ∗ [Wn+1

i |Fn] ≥ Es1,σ∗ [Yn+1
i |F

n] �Wn
i , ∀n ∈ N:

Thus, the sequence (Wn
i )n∈N converges Ps1,σ∗ -a.s. to Y∞i . Denote

Wn(r) :� (Wn
i (r))i∈I, ∀r ∈R, ∀n ∈ N:

Because the sequence (Wn(r))n∈N converges Ps1,σ∗ -a.s., there is n3 ∈ N such that

Ps1,σ∗ (‖Wk(r)�Wn(r)‖∞ ≤ δ, ∀k ≥ n ≥ n3) >
2
3 : (31) 

Set n0 :�max{n1, n2, n3}, and define

bRn0 :� r ∈R :

‖f (r)�Ern,σ∗ [f ]‖∞ ≤ δ, ∀n ≥ n0

‖Yk(r)�Yn(r)‖∞ ≤ δ, ∀k ≥ n ≥ n0

‖Wk(r)�Wn(r)‖∞ ≤ δ, ∀k ≥ n ≥ n0

8
><

>:

9
>=

>;
: (32) 

By Equations (28), (30), and (31),
Ps1,σ∗ (bRn0) > 0:

As a consequence of Lévy’s zero-one law, there is n∗ ≥ n0 and a history h∗ ∈H in stage n∗ such that

Ph∗,σ∗ (bRn0) > 1� δ: (33) 

Denote

c :� Eh∗,σ∗ [f ] ∈ R | I | : (34) 

Flesch and Solan: Stochastic Games with General Payoff Functions 
16 Mathematics of Operations Research, Articles in Advance, pp. 1–23, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

15
1.

16
5]

 o
n 

08
 A

pr
il 

20
24

, a
t 0

0:
49

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



This completes the main goal of Step 2, that is, identifying a history h∗ and a target payoff c. Note that by the defini
tions of bRn0 and c, we have

ci� δ ≤ fi(r) ≤ ci + δ, ∀i ∈ I, ∀r ∈ bRn0 ∩ C(h∗), (35) 

and by Equation (17), we have

ci � Eh∗,σ∗ [fi] ≥ vO, i(Dδi , h∗) ≥Dδi (h
∗) ≥ vi(h∗)� δ, ∀i ∈ I: (36) 

We will construct an ε-equilibrium in the subgame Γh∗ with payoff close to c. The first condition in the defini
tion of bRn0 in Equation (32) will ensure that the payoff under this ε-equilibrium is close to c, and the other two 
conditions in Equation (32) will allow us to deter deviations. 

Step 3: Histories with high minmax value.
For each player i ∈ I denote by Qi the set of histories h ∈H such that (i) h ≽ h∗, (ii) vi(h) > ci + 3δ, and (iii) vi(h′) ≤

ci + 3δ for each h′ ∈H with h∗≼h′ ⋏ h. We interpret Qi as the set of histories in the subgame Γh∗ , where player i’s 
minmax value is high for the first time.

For each player i ∈ I and run r ∈R, let mi(r) be the entry time to Qi. If r has a prefix that belongs to Qi, then this 
prefix is unique, and mi(r) is thus the unique stage such that rmi(r) ∈Qi. If r has no prefix in Qi, then mi(r) � ∞.

For each i ∈ I, define the quantities Λi(h, ai) and ζi(r, n, ℓ) as in Equations (22) and (23) with respect to the set Qi. 
We will be interested in the case when n � n∗, that is, the stage of history h∗.

By taking θ �∞ in Equation (24), we obtain for each player i ∈ I and each strategy σi,

Eh∗,σi,σ∗�i
[ζi(r, n∗,∞)] � Ph∗,σi,σ∗�i

(rk ∈Qi for some k ∈ {n∗, n∗ + 1, : : : })

� Ph∗,σi,σ∗�i
(mi(r) <∞): (37) 

For each player i ∈ I, let νi : R→ N ∪ {∞} be the stopping time that indicates the first stage after stage n∗ at which 
ζi exceeds the threshold 

ffiffiffi
δ
√

,

νi(r) :�min
�

k ≥ n∗ : ζi(r, n∗, k) ≥
ffiffiffi
δ
√ �

, 

where the minimum of the empty set is ∞. The intuition is that, when νi(r) <∞, the probability at stage νi(r) that the 
play could have reached a history with a high minmax value for player i is higher than 

ffiffiffi
δ
√

, and so the other players 
may suspect that player i is deviating and trying to reach a state where he or she cannot be punished effectively.

Step 4: Identifying a good set of plays bR ⊆R.
Fix for the moment a player i ∈ I. We claim that the following property of the set bRn0 , which we will use later, 

holds

vi(rk) ≤ Yn∗
i (r) + 2δ ≤ ci + 2δ, ∀r ∈ bRn0 ∩ C(h∗), ∀k ≥ n∗, (38) 

which implies in particular that the minmax value of player i in the subgame Γrk is at most ci + 2δ. To see that Equa
tion (38) holds, note that for every r ∈ bRn0 ∩ C(h∗) and every k ≥ n∗,

vi(rk) ≤Dδi (r
k) + δ (39) 

� Yk
i (r) + δ (40) 

≤ Yn∗
i (r) + 2δ (41) 

�Dδi (h
∗) + 2δ (42) 

≤ ci + 2δ, (43) 

where Equation (39) holds by property (M.1) of Theorem 1, Equation (40) holds by the definition of Yk
i , Equation 

(41) holds because r ∈ bRn0 and k ≥ n∗ ≥ n0, Equation (42) holds because r ∈ C(h∗) and by the definition of Yn∗
i , and 

Equation (43) holds by Equation (36).
We next argue that

{r ∈ C(h∗) : mi(r) <∞} ⊆R \ bRn0 : (44) 

Indeed, consider a run r ∈ C(h∗) such that k :�mi(r) <∞. It follows that rk ∈Qi, and hence, vi(rk) > ci + 3δ. Thus, 
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by Equation (38), we obtain r ∈R \ bRn0 as desired.
By Equations (44) and (33),

Ph∗,σ∗ (mi(r) < ∞) ≤ Ph∗,σ∗ (R \ bRn0) < δ, (45) 

which implies that under Ph∗,σ∗ , a history in Qi is reached with only a small probability.
Substituting σi � σ∗i in Equation (37) and using Equation (45), we obtain

Eh∗,σ∗ [ζi(r, n∗,∞)] < δ: (46) 

The random variable ζi(·, n∗,∞) is nonnegative, and hence, by Markov’s inequality and Equation (46),

Ph∗,σ∗ ζi(r, n∗,∞) ≥
ffiffiffi
δ
√� �
≤

Eh∗,σ∗ [ζi(r, n∗,∞)]
ffiffiffi
δ
√ <

ffiffiffi
δ
√
: (47) 

Define
bR :� bRn0 ∩ r ∈ C(h∗) : ζi(r, n∗,∞) <

ffiffiffi
δ
√

, ∀i ∈ I
n o

: (48) 

By Equations (33) and (47), and because δ < 1,

Ph∗,σ∗ (bR) > 1� δ� |I |
ffiffiffi
δ
√

> 1� ( | I | + 1)
ffiffiffi
δ
√

> 0:

Because the probability measure Pσ∗ is regular, there is a compact set K ⊆ bR such that

Ph∗,σ∗ (K) > 1� ( |I | + 1)
ffiffiffi
δ
√

> 0: (49) 

Note that, because K ⊆ bRn0 ∩ C(h∗), Equation (35) implies that

ci� δ ≤ fi(r) ≤ ci + δ, ∀i ∈ I, ∀r ∈ K: (50) 

The set K contains only “good” runs. If r ∈ K, then by Equation (50) the payoff along r is close to the target 
equilibrium payoff c, and by Equations (48) and (44), along r no history in Qi is reached, that is, where punish
ment is not effective. Moreover, by Equation (49), under Ph∗,σ∗ , the probability of K is high.

The limits limn→∞Yn and limn→∞Wn exist and coincide with Ph∗,σ∗ -a.s. By Equation (33), we have Ph∗,σ∗ (bRn0) > 0, 
and hence, there is a run r ∈ bRn0 ∩ C(h∗) for which the limits limn→∞Yn(r) and limn→∞Wn(r) exist and coincide. 
Therefore, by the definition of bRn0 , we have |Yn∗ (r)�Y∞(r) | ≤ δ and |Wn∗ (r)�Y∞(r) | ≤ δ. It follows that

‖Yn∗ (h∗)�Wn∗ (h∗)‖∞ ≤ 2δ: (51) 

Because the set K is closed, its complement in the subgame starting at the history h∗ Kc :� C(h∗) \K is open. Hence, 
Kc � ∪h∈ZC(h) for some set Z ⊆H such that each history in Z extends h∗. We assume w.l.o.g. that Z is minimal in 
the following sense; (i) there are no histories h, h′ ∈ Z such that h ⋏ h′ (in this case, we can drop h′ from Z), and 
(ii) there is no history h ∈H such that (h, a) ∈ Z for each action profile a ∈ A (in this case, in Z we can replace all (h, 
a) for a ∈ A by the single history h).

By Theorem 6, there is a function g : Kc→ I, where g(r) depends only on the prefix of r that lies in Z, such 
that

Ph∗,σi,σ∗�i
(r ∈ Kc and g(r) ≠ i) ≤ 2

ffiffiffiffiffiffi
|I |

p
· δ1=4 �: η, ∀i ∈ I, ∀σi ∈ Σi: (52) 

The interpretation of g is as follows. For every run r ∈ Kc, the function g selects a player, who is blamed for 
the fact that the run r left the set K. In view of Equation (52), the probability that g blames an innocent 
player, that is, a player i who truthfully follows σ∗i , is at most η. The existence of such a blame function is a 
key step in our proof because it allows the players to coordinate punishment when the run leaves K.

Define the stopping time θK : R→ N ∪ {∞} as the stage in which the run leaves K,

θK(r) :�min{k ∈ N : rk ∈ Z}, 

where the minimum of the empty set is ∞. Note that

Kc � {r ∈ C(h∗) : θK(r) <∞}:
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For a history h � (s1, a1, : : : , sn�1, an�1, sn) extending h∗, we similarly define

θK(h) :�min{k ∈ {1, : : : , n} : (s1, a1, : : : , sk�1, ak�1, sk) ∈ Z}:

Step 5: Definition of a strategy profile bσ.
We are now ready to define a strategy profile bσ in the subgame Γh∗ . We will then prove that this strategy profile 

is an ε-equilibrium in this subgame.
The strategy profile bσ coincides with σ∗, with one modification that ensures that no player can profit too much by 

deviating. Suppose that the current history is h ≽ h∗. 
• If no prefix of h, including h, belongs to Z, or equivalently, if θK(h) � ∞, then bσi(h) � σ∗i (h) for each player 

i ∈ I.
• If the history h lies in Z, or equivalently, if θK(h) � stage(h), then by using the blame function g, declare 

player g(h) the deviator. From this stage and on, the opponents of player g(h) punish player g(h) at his or her 
minmax level vg(h)(h) plus δ; that is, the opponents switch to a strategy profile σ′

�g(h) that satisfies

Eh,σg(h) ,σ′�g(h)
[fg(h)] ≤ vg(h)(h) + δ, ∀σg(h) ∈ Σg(h):

Step 6: bσ is an ε-equilibrium in Γh∗ .
We start by calculating the expected payoff under bσ. By Equations (50) and (49), and because all payoffs are 

between 0 and 1,

Eh∗,bσ[fi] ≥ Ph∗,σ∗ (K) ·Eh∗,σ∗ [fi |K] + (1�Ph∗,σ∗ (K)) · 0

≥ (1� ( |I | + 1)
ffiffiffi
δ
√
) · (ci � δ)

≥ ci� ( | I | + 1)
ffiffiffi
δ
√
� δ

≥ ci� 2( |I | + 1)
ffiffiffi
δ
√
: (53) 

We next show that no player can profit more than ε by deviating. Fix then a player i ∈ I and a strategy σi. To 
calculate Eh∗,σi,bσ�i

[fi], we divide the set C(h∗) into four subsets and bound player i’s payoff from above on each 
of these sets. 

• First subset: The set E1 :� K.
On the set E1, the run does not leave the set K, and hence, according to the definition of bσ, no player is punished. 

By Equation (50),

Eh∗,σi ,bσ�i
[fi ·χE1] ≤ Ph∗,σi,bσ�i

(E1) · (ci + δ), (54) 

where χW denotes the characteristic function of the set W for every W ⊆R.
The following subsets will deal with the complement Kc � C(h∗) \K, where the player given by the blame func

tion g is punished at his or her minmax level.
• Second subset: The set E2 :� Kc ∩ {g(r)≠ i}.

On the set E2, the run leaves the set K, and the function g blames a player different from player i. Hence, on E2, 
according to the definition of bσ, a player different from player i is punished. The only upper bound we have on 
player i’s payoff is the general upper bound, which is 1. Fortunately, the event E2 occurs with small probability. 
Indeed, by Equation (52),

Eh∗,σi,bσ�i
[fi ·χE2] ≤ Ph∗,σi,bσ�i

(E2) � Ph∗,σi,σ∗�i
(E2) ≤ η: (55) 

• Third subset: The set E3 :� Kc ∩ {g(r) � i} ∩ {νi(r) � θK(r)}.
Let us explain the intuition of the set E3. On E3, the run leaves the set K, and the function g blames player i. 

Hence, on E3, according to the definition of bσ, player i is punished. Also, on E3, one has νi(r) � θK(r), which means 
that the quantity ζi becomes large (it exceeds 

ffiffiffi
δ
√

), and this happens exactly in the stage θK(r)when the run r leaves 
the set K. In other words, the past actions of player i made it likely that the run leaves K.11 Because in stage θK(r)�
1 the stopping time θK is not yet triggered, the properties of bRn0 imply that the expected value of the Martin func
tion Dδi in stage θK(r) cannot be much larger than in the beginning of the subgame Γh∗ . This implies that player i 
can be punished effectively.

Now, we turn to the formal argument. Let h ≽ h∗ be a history in some stage k ≥ n∗ such that none of its prefixes 
(including h itself) is in Z; that is, θK(h) � ∞. Suppose that player i plays action ai in stage k, and from stage k+1 on 
the players in I \ {i} punish player i at his or her minmax level plus δ. Because the expectation of player i’s minmax 
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value in stage k+1 is equal to E[vi |h, ai,σ∗�i(h)], we deduce that player i’s payoff is at most

E[vi |h, ai,σ∗�i(h)] + δ ≤ E[Dδi |h, ai,σ∗�i(h)] + 2δ (56) 

≤ E[Dδi |h,σ∗(h)] + 2δ (57) 

�Wk
i (h) + 2δ (58) 

≤Wn∗
i (h

∗) + 3δ (59) 

≤ Yn∗
i (h

∗) + 5δ (60) 

≤ ci + 5δ, (61) 

where Equation (56) holds by property (M.1) in Theorem 1, Equation (57) holds because σ∗(h) is an equilibrium in 
the one-shot game GO(Dδ, h), Equation (58) holds by the definition of Wk

i , Equation (59) holds because on K ⊆ bR ⊆
bRn0 we have |Wk

i (r)�Wn∗
i (r) | ≤ δ, Equation (60) holds by Equation (51), and Equation (61) holds by Equation (38).

Let now r ∈ E3 and set k :� θK(r). Denote by h :� rk the prefix of r at which the run leaves K, and write 
h � (h∗, an∗ , sn∗+1, an∗+1, : : : , sk). Because k � θK(r) � νi(r), we have ζi(r, n∗, k) ≥

ffiffiffi
δ
√

.
Denote by h′ � (h∗, an∗ , sn∗+1, an∗+1, : : : , sk�1) the history that precedes h. Because k� 1 < θK(r), at h′ the run r does 

not leave K. In particular, ζi(h′, n∗, k� 1) <
ffiffiffi
δ
√

. The definition of ζi implies that ζi(h, n∗, k) depends neither on the 
actions selected by player i’s opponents at stage k�1 nor on sk, see Equation (23). That is, for each action profile 
a�i ∈ A�i and each state s ∈ S, we have

ζi((h′, ak
i , a�i, s), n∗, k) � ζi(h, n∗, k) ≥

ffiffiffi
δ
√
:

Therefore, by Equation (48) and because K ⊆ bR, we have (h′, ak
i , a�i, s) ∉ bR for each a�i ∈ A�i and each s ∈ S. In 

particular, if at the history h′ player i selects the move ak
i , then whichever actions the other players select at 

stage k�1 and whichever state the run will reach at stage k, the run will leave K at stage k, and some player 
(not necessarily player i) will be punished. Yet by Equation (52), the probability that a player in I \ {i} will be 
punished is at most η. Using Equation (61) and the fact that the payoff is at most 1, this implies that

Eh∗,σi,bσ�i
[fi ·χE3] ≤ Ph∗,σi,bσ�i

(E3) · (ci + 5δ) + η · 1: (62) 

• Fourth subset: The set E4 :� Kc ∩ {g(r) � i} ∩ {νi(r) > θK(r)}.
Let us explain the intuition of the set E4. On E4, the run leaves the set K, and the function g blames player i. Hence, 

on E4, according to the definition of bσ, player i is punished. Also, on E4, it holds that νi(r) > θK(r), which means that 
the quantity ζi is low (it is less than 

ffiffiffi
δ
√

) in the stage θK(r) when the run r leaves the set K. Because of this property, 
with high probability, player i’s minmax value is not high (not much higher than the target payoff ci). This means 
that, with high probability, player i can be punished effectively.

We now formalize this idea. Note that E4 is the disjoint union of the sets C(h) over all h ∈ Z, where the blame func
tion g declares player i as the deviator (this does not depend on the continuation of the run after h), and ζi at h is still 
below 

ffiffiffi
δ
√

. Let Z4 ⊆ Z denote the set of these histories. At a history h ∈ Z4, punishment against player i is effective if 
player i’s minmax value is not high, that is, h ∉Qi, and thus the set of histories in Z4 where punishment is not effec
tive is Q4

i :� Z4 ∩Qi. We have
Ph∗,σi,bσ�i

(rk ∈Q4
i for some k ∈ {n∗, n∗ + 1, : : : ,θK(r)})

� Ph∗,σi,σ∗�i
(rk ∈Q4

i for some k ∈ {n∗, n∗ + 1, : : : ,θK(r)})

≤ Eh∗,σi,σ∗�i
[ζi(r, n∗,θK(r))] (63) 

≤
ffiffiffi
δ
√

, (64) 

where Equation (63) holds by Equation (24) and because the quantity ζi(r, n∗,θK(r)) that corresponds to Q4
i (and σ∗�i)

cannot be larger than the quantity ζi(r, n∗,θK(r)) that corresponds to Qi (because Q4
i ⊆Qi), and Equation (64) holds 

because on E4 we have νi > θ
K and thus ζi(r, n∗,θK(r)) <

ffiffiffi
δ
√

.
By the definition of Qi, for each history h ∈ Z4 \Qi, we have vi(h) ≤ ci + 3δ. Hence, by Equation (64),

Eh∗,σi ,bσ�i
[fi ·χE4] ≤ Ph∗,σi ,bσ�i

(E4) · (ci + 3δ) +
ffiffiffi
δ
√
· 1: (65) 
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Equations (54), (55), (62), and (65) imply that

Eh∗,σi,bσ�i
[fi] �

X4

j�1
Eh∗,σi,bσ�i

[fi · χEj] ≤ (ci + 5δ) + η +
ffiffiffi
δ
√
:

Together with Equations (53) and (21), this shows that player i’s gain by deviating is at most

Eh∗,σi,bσ�i
[fi]� Eh∗,bσ[fi] ≤ 5δ + η +

ffiffiffi
δ
√
+ 2( | I | + 1)

ffiffiffi
δ
√
≤ ε:

Hence, bσ is an ε-equilibrium in the subgame Γh∗ , as claimed.

5. Discussion
5.1. Summary
The goal of this paper is to present four different existence results for multiplayer stochastic games with general 
payoff functions: the existence of subgame ε-maxmin strategies, minmax ε-acceptable strategy profiles, extensive- 
form correlated ε-equilibria, and ε-solvable subgames.

The main tool for each proof is the Martin function, which is an auxiliary function that assigns a real number to 
each history and thereby induces a suitable one-shot game at each history of the stochastic game. This function was 
invented, and its existence was proven in Martin [23] (see also Maitra and Sudderth [22]) in the context of two- 
player zero-sum games and later was generalized to multiplayer games in Ashkenazi-Golan et al. [3]. As discussed 
in Example 1, this function is in fact also an extension of the technique developed by Mertens and Neyman [25] to 
prove the existence of the uniform value in two-player zero-sum stochastic games and by Neyman [27] to prove the 
existence of the uniform minmax and maxmin values in multiplayer stochastic games. We refer to Section 1 for 
recent papers where the Martin function was used for multiplayer repeated games and for multiplayer stochastic 
games with general payoff functions.

Our version of Theorem 1 is stronger than the analogous results in Martin [23], Maitra and Sudderth [22], and 
Ashkenazi-Golan et al. [3], because we require the first inequality in property (M.1); the function Dεi that we con
struct is not allowed to fall far below player i’s minmax value. This condition was not needed in Martin [22] and 
Maitra and Sudderth [22], who were interested in obtaining a high payoff from the beginning of the game (and not 
in every subgame), or in Ashkenazi-Golan et al. [3], where the minmax value was independent of the history. This 
condition is, however, crucial for our results in Sections 4.3 and 4.4, where the minmax value is history dependent, 
and punishment that starts at history h lowers a player i’s payoff below vi(h). Because player i’s payoff in the sub
game Γh is guaranteed to be at least Dεi (minus a small error term), to ensure that punishment is effective, Dεi must 
not be much smaller than vi(h).

We provided short and straighforward proofs, based on the Martin function, for the existence of subgame ε-maxmin 
strategies and of extensive-form correlated ε-equilibria; these statements were originally proven by Mashiah-Yaakovi 
[24] using different tools. The existence of minmax ε-acceptable strategy profiles and the existence of ε-solvable sub
games, which were proven, respectively, by Solan [37] and Vieille [45] for the case of the long-run average payoff, are 
new for general payoff functions.

The most complicated proof in this paper establishes the existence of ε-solvable subgames; cf. Theorem 5. This 
proof uses several ideas that are not needed for the specific case of finitely many states and the long-run average 
payoffs. One such idea is a test that verifies that there is only a low probability of reaching a history where the min
max value of some player is high. Such a test was already used in Flesch and Solan [12] in the context of two-player 
stochastic games with shift-invariant payoffs.

A second idea is to approximate a given set of “good” runs by a closed subset. This approximation allows us to 
identify a deviation in finite time and punish the deviator. Such an approximation was already used in various 
papers, such as in Simon [34], Shmaya [33], Ashkenazi-Golan et al. [2–4], and Flesch and Solan [12, 13].

A third idea is the identification of a deviator from the play, when the players use nonpure strategies based on 
Alon et al. [1]. This result was employed in Flesch and Solan [13] to provide an alternative proof for the existence of 
ε-equilibria in multiplayer repeated games with tail-measurable payoffs. As far as we know, Theorem 5 is the first 
result where the use of this proof technique is imperative.

We hope that the Martin function and the existence results presented in this paper will be useful in deriving 
more results for stochastic games with general payoffs.

5.2. Countably Infinite Action Spaces
We discuss here extensions of our results to games with countably infinite action spaces. The statement of Theorem 
1 remains valid in this case. Indeed, Step 1 of the proof extends to countably infinite action spaces, because the 
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underlying result in Ashkenazi-Golan et al. [3] also extends to such spaces, whereas Steps 2� 4 of the proof of Theo
rem 1 do not use the finiteness of the actions spaces.12

The benefit of such an extension to countably infinite action spaces would be rather limited for our results, 
though. Whereas Theorem 2 can be extended to countably infinite action spaces, Theorems 3–5 are no longer valid. 
Indeed, consider the two-player one-shot game13 where the action spaces of the players are A1 � A2 � N, and the 
payoff of player i ∈ {1, 2} is 1 if his or her action is strictly larger than the action of his or her opponent (i.e., ai > a3�i) 
and 0 otherwise. In this game, the minmax value of each player is 1, yet the sum of the payoffs for each action pair is 
either 1 or 0. As a consequence, for ε ∈ 0, 1

2
� �

, the statements of Theorems 3–5 are not valid for this game.
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Endnotes
1 In particular, this enables us to use the results of Martin [23] and Maitra and Sudderth [22].
2 Because the payoff function is not derived from stage payoffs, this model is also called a multi-stage stochastic game.
3 The subscript O is intended to remind the reader that the game under consideration is a one-shot game.
4 The proof in Ashkenazi-Golan et al. [3] largely follows the arguments in Martin [23] and Maitra and Sudderth [22].
5 The most important change is that, in the auxiliary perfect information game, which is denoted by Mi in AFPSa, player I’s action should be 
a “continuation” payoff that also depends on the next state, and player II’s action should be an action profile together with a state.
6 A finite set of messages will suffice for our construction, so we do not have to consider measurable sets of messages.
7 Our definition assumes that the signals to the players are conditionally independent given the history. In principle, the mediator can corre
late the signals he or she sends to the players at each history. Because we will not need such a correlation, we disregard it for the sake of 
clarity.
8 The concept of extensive-form correlated ε-equilibrium payoff was defined and studied in the context of stochastic games by Solan [36] and 
Solan and Vieille [39]. We chose the definition provided here for simplicity.
9 The same argument also applies to countable action spaces. Because Theorem 5 does not hold when the action spaces are countably infinite 
(cf. Section 5), we do not state this aspect explicitly.
10 The constant 23 in Equation (28) and in Equations (30) and (31) below can be replaced by any three constants smaller than 1 whose sum is at 
least 2.
11 Note that we do not rule out the case that νj(r) � θK(r) for some additional player j ≠ i, but the probability that g blames an innocent player 
for leaving the set K is low.
12 We refer to Ashkenazi-Golan et al. [4], where the sets of actions are also allowed to be countably infinite.
13 Each one-shot game can be seen as a special case of a stochastic game.
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