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Abstract
Patients with chronic kidney disease (CKD) have an increased risk for cardiovascular morbidity and mortality. Capillary 
rarefaction may be both one of the causes as well as a consequence of CKD and cardiovascular disease. We reviewed the 
published literature on human biopsy studies and conclude that renal capillary rarefaction occurs independently of the cause 
of renal function decline. Moreover, glomerular hypertrophy may be an early sign of generalized endothelial dysfunction, 
while peritubular capillary loss occurs in advanced renal disease. Recent studies with non-invasive measurements show 
that capillary rarefaction is detected systemically (e.g., in the skin) in individuals with albuminuria, as sign of early CKD 
and/or generalized endothelial dysfunction. Decreased capillary density is found in omental fat, muscle and heart biopsies 
of patients with advanced CKD as well as in skin, fat, muscle, brain and heart biopsies of individuals with cardiovascular 
risk factors. No biopsy studies have yet been performed on capillary rarefaction in individuals with early CKD. At present 
it is unknown whether individuals with CKD and cardiovascular disease merely share the same risk factors for capillary 
rarefaction, or whether there is a causal relationship between rarefaction in renal and systemic capillaries. Further studies 
on renal and systemic capillary rarefaction, including their temporal relationship and underlying mechanisms are needed. 
This review stresses the importance of preserving and maintaining capillary integrity and homeostasis in the prevention and 
management of renal and cardiovascular disease.

Keywords Chronic kidney disease · Cardiovascular disease · Capillary rarefaction · Endothelial dysfunction

Introduction

Chronic kidney disease (CKD) affects 10–15% of the popu-
lation worldwide, and its incidence rises with the increased 
global prevalence of hypertension, diabetes and obesity [1, 

2]. CKD is divided into five stages based on the extent of 
albuminuria and/or renal function decline for a period longer 
than 3 months [3]. In CKD stage 1 glomerular hyperfiltration 
and mild albuminuria occurs, while in CKD stage 5 there is 
end stage renal disease (ESRD). Patients with CKD have 
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an increased risk for cardiovascular morbidity and mortal-
ity [2], and the underlying pathophysiological mechanisms 
are incompletely understood [1]. Capillary rarefaction may 
be both a cause and a consequence of CKD [4]. In experi-
mental animal models a decrease in peritubular capillary 
density precedes interstitial fibrosis and tubular atrophy (IF/
TA) development, which is a final common pathway in renal 
function decline [5]. We hypothesize that capillary rarefac-
tion, i.e., a loss of capillary density, occurs in both human 
renal and cardiovascular disease, and thus may be a missing 
link bridging renal and cardiovascular pathology.

The microvasculature is composed of arterioles, capillar-
ies and venules, and plays a major role in the maintenance 
of tissue homeostasis by bringing oxygen and nutrients and 
removing waste products [6]. Microvascular function can 
be assessed non-invasively in skin, bulbar conjunctiva, sub-
lingual mucosa, and retina, using video-microscopy, laser-
Doppler flowmetry, and/or fundus photography [7]. Capil-
lary rarefaction, i.e., a decrease in capillary density, is found 
using multiple of these non-invasive techniques in individu-
als with hypertension, obesity, diabetes, low birth weight, 
and CKD (reviewed in [6, 7]), which all are risk factors for 
cardiovascular and renal disease. Both functional and struc-
tural capillary rarefaction are discerned, and they can also 
occur concomitantly [4, 6]. Functional rarefaction is seen 
as a reversible state with arteriolar vasoconstriction lead-
ing to mal-perfusion and eventually non-perfusion of capil-
laries. Structural rarefaction is characterized by anatomi-
cally absent vessels and irreversible vessel regression [6]. 
Carmeliet et al. reviewed how a disturbance in the balance 
between angiogenic and angiostatic factors can lead to cap-
illary instability and regression [8, 9]. In brief, vessels are 
composed of endothelial cells, a basement membrane and 
supporting mural cells, and have a large phenotypic plastic-
ity in different organs and tissues. After injury, endothelial 
cells can contribute to vessel growth in a pro-angiogenic 
milieu, which is followed by stabilization of newly formed 
vessels, with coverage of endothelial cells by extracellular 
matrix and mural cells. When angiogenic factors are not 
sufficient, or when there is an increase in angiostatic factors, 
endothelial channels are not covered by mural cells, leading 
to fragile instable vessels [8, 9].

Pathological investigation of tissue enables the use 
of technical platforms that can analyze both known and 
unknown alterations in tissue, however studies on capil-
lary rarefaction are scarce. Therefore we summarize cur-
rent human pathology data (till March 1, 2023) on capillary 
rarefaction in both the renal and non-renal microvasculature 
in relation to CKD and cardiovascular disease. In the kidney 
there are two capillary beds, the glomerular capillary bed 
located behind the afferent arteriole, and the peritubular cap-
illary (PTC) bed which originates from the efferent arteriole. 
First, we separately summarize studies on the glomerular 

and PTC beds, according to a four phase model describ-
ing development of capillary rarefaction: from the normal 
“physiological” state (A) going to capillary hypertrophy (B), 
which may progress to a decreased capillary density (C) and 
subsequent capillary regression with fibrosis (D). Secondly, 
we review data from human pathology studies on capillary 
rarefaction in other tissues than the kidney (i.e., systemi-
cally) in patients with cardiovascular risk factors and/or 
disease. We postulate that studies are urgently needed to 
determine their temporal and causal relationship to facilitate 
the detection, prevention and treatment of the progression of 
CKD and its related cardiovascular disease.

Glomerular capillary hypertrophy and loss

Both kidneys contain between 600,000 and 3,000,000 glo-
meruli, that are capillary beds functioning under arterial 
blood pressure. Glomerular capillaries maintain a constant 
blood pressure, i.e., in case of high blood pressure there 
is vasoconstriction of the afferent arteriole and vasodilata-
tion of the efferent arteriole, while the reverse occurs under 
conditions of low arterial blood pressure. The “Brenner 
hypothesis” explains why chronic renal injury progresses 
to scarring once there is sufficient renal damage (reviewed 
in [10]). In the setting of a decreased number of functioning 
glomeruli, there is loss of autoregulation with failure of the 
physiological constriction of the afferent arteriole leading to 
increased intraglomerular pressure and hyperfiltration. This 
results in glomerular hypertrophy and is associated with 
efferent arteriolar vasoconstriction and angiotensin II gen-
eration. Subsequently, there is denudation of the glomerular 
basement membrane with detachment of podocytes, adhe-
sions with Bowmans’ capsule and involution with obso-
lescence of the glomerulus [11]. As explained below, we 
hypothesize that in the glomerular hyperfiltration phase of 
early CKD hypertrophy of glomerular capillaries occurs, 
advancing to glomerular capillary rarefaction and/or focal 
and segmental glomerulosclerosis (see Fig. 1, phases A–D).

Human pathology studies show that a larger glomerular 
volume, i.e., glomerular hypertrophy (phase B), is found in 
individuals with hypertension [12–17] and low birth weight 
[13, 18], and is regarded as a compensatory response to 
lower nephron endowment at birth. Larger glomerular vol-
ume is also associated with an increased body mass index 
(BMI) [13, 15], and/or older age [15, 19, 20], which is 
thought to be secondary to a relative nephron shortage due 
to a higher metabolic demand or age-related nephron loss 
respectively. In individuals undergoing a nephrectomy for a 
malignancy or as a living kidney donor [21, 22], increased 
glomerular volume is related to CKD progression. Quanti-
fication studies confirm our hypothesis that in hypertrophic 



25Angiogenesis (2024) 27:23–35 

1 3

phase B glomeruli there is an increase in the number of 
glomerular capillary cross-sections [23].

 We hypothesize that in a later stage of glomerular injury, 
capillary rarefaction occurs with presence of smaller glo-
meruli (phase C). These ischemic-appearing glomeruli 
morphologically show wrinkling of the glomerular capillary 
wall and lamellation of Bowman’s capsule in association 
with a decrease in capillary numbers [24]. At older age the 
percentage of ischemic-appearing glomeruli increases [15]. 
Podocyte detachment is found in glomeruli with wrinkling 
of glomerular capillaries, tuft collapse and periglomerular 
fibrosis [25]. Whether capillary rarefaction plays a central 
pathophysiological role in development of ischemic-appear-
ing glomeruli remains to be established.

In phase D glomeruli glomerulosclerosis is present with a 
collapse of the glomerular capillary tuft. Focal and segmen-
tal glomerulosclerosis (FSGS) is found secondary to severe 
hypertensive and/or diabetic renal disease, oligonephronia 
and inflammatory glomerulonephritis [26], but also in kid-
neys from individuals with low birth weight [27]. A decrease 
in glomerular vascular endothelial growth factor (VEGF) 

expression is associated with decreased endothelial and 
podocyte markers in advanced diabetic nephropathy [28]. 
FSGS has been reported in conjunction with PTC loss in two 
prematurely born adolescents [29]. In global glomeruloscle-
rosis no opened glomerular capillaries can be discerned, and 
presence of global glomerulosclerosis, regarded as sign of 
nephron loss, increases with higher age [30]. FSGS and focal 
global glomerulosclerosis (FGGS) may result from separate 
pathways and have glomerular capillary tuft collapse and 
podocyte loss as common denominator [25].

All parts of the glomerular capillary wall (i.e., podocytes, 
glomerular basement membrane (GBM) and endothelial 
cells) are involved in the different stages leading to capil-
lary rarefaction as shown by electron microscopical (EM) 
studies. For instance, in glomerular hypertrophy, there is an 
expansion of the capillary loops with hypertrophy of podo-
cytes (i.e., a relative decrease in podocyte number [31]), 
and podocyte foot process effacement [26]. Patients that are 
treated with anti-VEGF for metastasized carcinoma, have 
an increased risk to develop albuminuria and hypertension 
[32], and biopsies of these patients show swollen endothelial 
cells (“endotheliosis”) and glomerular basement membrane 
alterations [33]. In individuals with type 1 diabetes there is 
a decrease in capillary filtration area, with an increase in 
the mesangial cell and matrix area compared to glomeru-
lar volume, next to thickening of the GBM [34]. At present 
abnormalities in the glomerular capillary wall by EM in 
the ischemic-appearing glomeruli of phase C are not well 
known, and merit further investigation.

Peritubular capillary (PTC) loss

The peritubular capillary network forms a coalescing vas-
cular plexus surrounding tubuli that actively reabsorb water 
and solutes. In contrast to the glomerular capillary bed, 
PTCs function under a lower blood pressure, and the tub-
ulo–interstitium has a steep decrease in oxygen gradient [35, 
36]. In analogy to glomerular capillary rarefaction, PTC rar-
efaction can theoretically be divided in 4 phases (see Fig. 2).

After acute injury a pro-angiogenic phase might occur 
with increased capillary density (phase B), and this phase 
may become stable and silent upon proper restoration. 
However, when there are more angiostatic than angiogenic 
factors, endothelial dysfunction and disrupted endothelial-
pericyte crosstalk can lead to vascular regression with 
inflammation and fibrosis (IF/TA) formation (phase C). 
In the final phase, there is more severe cortical PTC loss 
and IF/TA (phase D). Evidence for the occurrence of these 
stages from human pathology studies is summarized below. 
Of note, most studies focus on PTCs located in the cortex. 
Farris et al. also studied medullary PTCs and found a cor-
relation between cortical and medullary PTC numbers [37].

Fig. 1  Hypothetical pathway of glomerular capillary rarefaction dur-
ing chronic kidney disease (CKD) development. In a glomerulus of 
a normal adult (A) the glomerular capillaries are lined by fenestrated 
endothelium, with podocytes covering the glomerular basement 
membrane with intact foot processes. Glomerular capillary hypertro-
phy (B) occurs in patients with microvascular endothelial dysfunc-
tion, with enlarged surface area of the glomerular capillary wall, and 
increased number of capillary cross-sections. Persistent injury, in 
conjunction with, e.g., aging and/or advanced hypertension, may lead 
to ischemic-appearing glomeruli (C), which are smaller and show 
wrinkling and thickening of the glomerular basement membrane. 
Podocyte foot process effacement and an altered composition of the 
glomerular basement membrane (GBM) might occur. Ultimately glo-
merulosclerosis (D) develops with loss of glomerular capillaries and 
sclerosis, and adhesions of visceral to parietal glomerular epithelial 
cells, resulting in glomerular sclerosis
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Unlike for phase B of glomerular hypertrophy, there is 
no clear evidence from human pathology studies that PTC 
hypertrophy occurs. Only Konda R et al. [38] found a het-
erogenous increase in PTC density, presumably in the col-
lecting duct area of end-stage kidneys removed because of 
scarring after urinary tract disease. A pro-angiogenic switch 
in phase B is suggested by studies on VEGF expression. In 
early CKD, the pro-angiogenic VEGF is increased in mor-
phologically intact and hypertrophic tubules in patients with 
CKD, while there is decreased VEGF expression in atrophic 
tubuli [39, 40]. An increased VEGF expression in conjunc-
tion with more inflammation is also seen after transplanta-
tion [41], and in a subset of patients with lupus nephritis 
[42]. However, the majority of studies reports PTC loss only.

Seron et al. first described a decreased number of PTCs 
(phases C and D) in renal biopsies of patients with IF/TA 
and decreased renal function in 1990 [43], which was con-
firmed in a more extensive study by Bohle et al. in 1996 
[44]. After renal transplantation, the extent of PTC rarefac-
tion correlates with severity of IF/TA [45]. Therefore, we 
suggest that in phase C a relatively smaller area of the cor-
tex is affected by PTC loss than in phase D. After the first 
studies with seminal observations, multiple studies found a 
decrease in PTC numbers. PTC loss is found in patients with 
renal failure, independent of the underlying cause, i.e., in 
CKD in association with hypertension or diabetes, autoim-
mune diseases, and congenital nephropathy (Table 1).

In PTC rarefaction a disturbed angiogenic/angio-
static balance has been found. In advanced CKD there is 
decreased VEGF expression, increased hypoxia induced 
factor (HIF) and/or a more angiostatic phenotype [28, 
39, 41, 46]. Also, in experimental studies a diminished 
VEGF expression is found in advanced disease (reviewed 
in [4, 10]). In post-stenotic kidneys a decrease in PTCs is 
associated with greater expression of angiopoietin-1 [47]. 

Although in experimental models interventions with, e.g., 
the angiogenic/angiostatic cascade have shown decreased 
renal capillary rarefaction in conjunction with diminished 
renal disease [4], studies pointing to a causal relationship 
have not yet been performed in humans. Interestingly, we 
observed more PTC loss after transplantation of grafts 
from deceased after cardiac death (DCD) donors as com-
pared to kidneys from living donors [48], indicating that 
acute ischemic injury can accelerate progression between 
phases of PTC rarefaction. Thus, in line with experimen-
tal studies, PTC rarefaction may be an important path-
way in the transition of acute kidney injury (AKI) to CKD 
(reviewed in [49]).

All components of the capillary wall, i.e., endothelial 
cells, basement membrane and pericytes, are involved 
in PTC rarefaction. EM analysis in experimental models 
shows reduced number of endothelial fenestrations with 
focal widening of the subendothelial space with thickening 
of the PTC basement membrane, although no difference in 
EM structure between human control and fibrotic kidneys 
was found [50]. In advanced human kidney disease altera-
tions in composition of the PTC wall are visible ultrastruc-
turally as summarized in [50]. Pericytes play an important 
role in interstitial fibrosis development via endothelial to 
mesenchymal transition [51]. An increase in pericyte den-
sity, with presumed pericyte detachment, was seen in the 
context of enhanced fibrosis and diminished PTC density 
in human post-stenotic kidneys [47]. Experimental stud-
ies show that upon renal injury pericytes can migrate away 
from PTCs, and dedifferentiate into myofibroblasts [52–54]. 
Tubulo–vascular crosstalk is important for maintenance of 
PTC stability [55], and further pathology research is needed 
to investigate both capillary and tubular density in relation 
to functional and structural rarefaction. We hypothesize that 
structural rarefaction occurs in cases where there already is 

Fig. 2  Immunohistochemical CD31/CD34 staining illustrating PTC 
density in protocol renal biopsies taken before (A), 3 months (B and 
C), and 12  months (D) after kidney transplantation (examples from 
Steegh et al. [48]). In a normal state (A) PTCs are present in a regular 
pattern and surround tubuli that are oriented ‘dos a dos’, with small 
distance between tubuli and PTCs facilitating easy fluid and solute 
exchange. After renal transplantation without additional injury, for 
instance of living kidney donors, hypertrophy of the remaining kid-
ney may occur with (mild) increase in numbers of PTCs per tubule 

(B). If additional injury occurs, for instance after transplantation of 
a deceased after circulatory death kidney with ischemia/reperfusion 
injury (see [48]), PTC capillary rarefaction is found with inflam-
mation and mild IF/TA, in this case involving less than 25% of cor-
tex (C). When inciting insults are more severe, and the angiogenic/
angiostatic balance is not restored, there is a vicious circle with more 
extensive PTC loss, inflammation and IF/TA, e.g., over 50% of the 
renal cortical area (D), ultimately leading to end stage renal disease 
(ESRD) cq chronic transplant dysfunction. Magnification 400×
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IF/TA, with tubular atrophy and capillary regression occur-
ring concomitantly.

Systemic capillary rarefaction in CKD

Advanced CKD is associated with morbidity in multiple 
organs [2], and capillary rarefaction is found systemically 
in human pathology studies as recently reviewed in [56]. A 
capillary decrease of approximately 32% is found in end-
stage renal disease patients in biopsies of skeletal muscle, 
omental fat and heart. In addition, capillary alterations are 
described in biopsies of skin, and skeletal muscle, with, e.g., 
thickening of endothelial cells and basement membranes 
[56]. Capillary rarefaction was also found in the heart of 
patients with stage 3–4 CKD [57]. Thus far, no biopsy stud-
ies have been performed on capillary rarefaction in individu-
als with stage 1 or 2 CKD. In patients with CKD stages 3–5 
capillary rarefaction is detected by non-invasive measure-
ments in skin using video–microscopy and laser–Doppler 
flowmetry and in retina by fundoscopy (reviewed in [7]), 
and systemic capillary rarefaction is observed by nail-fold 
or sublingual capillaroscopy in patients with renal failure 
after transplantation [58, 59].

Albuminuria, indicative of stage 1 or stage 2 CKD is asso-
ciated with skin and retinal capillary rarefaction [60–62]. 
Albuminuria is also regarded as a sign of systemic micro-
vascular endothelial dysfunction, and it is associated with 
cardiovascular disease [63], retinopathy [64], heart failure 
[65], impaired cognitive performance [66], and depression 
[67]. Recent reports from the Maastricht Study, a popula-
tion-based cohort of individuals aged > 40 years enriched 
for diabetes, show that these conditions are all associated 
with systemic capillary rarefaction measured with multi-
ple non-invasive techniques [68]. Microalbuminuria can 
occur in individuals with type 2 diabetes with and without 
renal structural abnormalities, while von Willebrand factor 
plasma levels as sign of more severe endothelial dysfunc-
tion were only elevated in individuals with more advanced 
tubulo–interstitial and arteriolar than glomerular changes 
[69]. More tubulo–interstitial fibrosis in kidneys of patients 
undergoing a nephrectomy for a renal cell carcinoma pre-
dicted non-cancer mortality [22].

Systemic capillary rarefaction 
in cardiovascular disease

Literature was reviewed to examine whether capillary rar-
efaction is found in tissue biopsies (i.e., skin, fat and skeletal 
muscle) and organ biopsies (brain and heart) of individuals 
with cardiovascular risk factors. As summarized in Table 2, 
capillary rarefaction appears a common thread in biopsies 

taken from individuals with hypertension, obesity and/or 
glucose intolerance (without mentioning the presence or 
absence of CKD), despite differences in form and function 
of the microvasculature in the various tissues and organs 
examined.

In individuals with hypertension a decreased capillary 
density is found in skin, and skeletal muscle [70–72]. Using 
electron microscopy, endothelial in-foldings into the lumen 
were found in muscle biopsies, with vessel occlusion and 
degeneration. Sometimes the endothelial cell area covered 
by pericytes was increased, and basement membranes were 
irregularly increased in width or reduplicated, which overall 
resulted in an increased wall thickness/lumen ratio [72]. A 
decrease in capillary tortuosity was found in skeletal mus-
cle in older people with hypertension, in conjunction with 
more endomysial fibrosis and capillary rarefaction [73]. In 
individuals with obesity, insulin resistance, and/or diabe-
tes, capillary rarefaction is found in fat tissue [74–78]. EM 
revealed basement membrane thickening in visceral adipose 
tissue of individuals with diabetes type 2 [78]. A lower cap-
illary density correlates with lower fat VEGF expression 
[74]. Older age is associated with capillary rarefaction in 
skeletal muscle [79]. Pathological injury at older age is asso-
ciated with the aging process itself but is also influenced by, 
e.g., birth weight and the accumulation of diseases and/or 
cardiovascular risk factors during life.

Regarding end-organ disease, the focus of the search was 
on the brain and heart as these organs are highly perfused 
and affected by cardiovascular diseases, like the kidney. In 
individuals with hypertension there is a decrease in capil-
lary density in heart and brain tissue [80, 81]. A decreased 
capillary density is also found in heart biopsies of individu-
als with insulin resistance, obesity and/or diabetes [82–85], 
with a thickening of the capillary basement membrane in 
people with diabetes [82, 86], with less pericyte coverage 
[87]. In aged brain, micro–vessels have a thickened base-
ment membrane, and more basement membrane remnants 
are seen of capillaries that have lost their endothelium -so-
called string vessels (reviewed in [88]). In individuals with 
cognitive decline due to Alzheimer disease more string ves-
sels are found in brain tissue [88, 89], as well as an absence 
of endothelial staining in capillary profiles [90], and base-
ment membrane protrusions between capillary cells [91]. 
This cerebral capillary pathology is in line with recent clini-
cal insight that diabetes and hypertension are risk factors for 
dementia [92, 93], i.e., that cognitive decline may occur as 
“end organ damage” in hypertension and diabetes.

Several studies have questioned whether capillary pathol-
ogy occurs concomitantly in more than one microvascular 
bed. In older individuals with diabetes skeletal capillary 
rarefaction is found together with a sublingual reduction 
of glycocalyx on the surface of endothelial cells [94]. In 
individuals with type 1 diabetes an increased muscular 
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Table 2  Evidence for the occurrence of capillary loss in human biopsies of individuals with hypertension, diabetes, obesity or older age

In none of the studies renal function (and/or presence or absence of chronic kidney disease) is reported. In muscle tissue, data on capillary in 
relation to type II fibers is given if known
*There is large variation in reporting on cerebral capillary density in aging and Alzheimer Disease as reviewed in Brown WR 2011, hence no 
firm conclusions can be drawn, and only a recent paper is given
HT hypertension, UEA Ulex Europaeus, PAS periodic acid Schiff stain, DM diabetes mellitus type 2, n.s. non-significant, Ob obesity, IR insulin 
resistance, NIDDM non-insulin dependent DM, EM electron microscopy, AD Alzheimer Disease, MS metabolic syndrome

Authors Tissue Risk factor Population Control Capillary 
density

Decline Detection/Antibody Read-out Remarks

Paiardi S et al. 2009 
[70]

Skin HT N = 14 N = 7 ↓ 40% CD31 %CD31 stained 
area

Frozen dermal sec-
tions

Pasarica M et al. 
2009 [74]

Fat Obesity N = 12 N = 9 ↓ 44% UEAlectin Vessels per mm 
area

Abdominal subcuta-
neous fat

Pasarica M et al. 
2010 [75]

Fat DM N = 6 n = 9 ↓ 53% UEA lectin Vessels per mm 
area

Abdominal subcuta-
neous fat

Diabetic patients 
were also obese

Spencer M et al. 
2011 [76]

Fat Obesity N = 9 N = 9 ↓ 58% CD31 Capillaries/mm 
area

Abdominal subcuta-
neous fat

Goossens G et al. 
2011 [77]

Fat Obesity N = 10 N = 9  = n.s CD31/CD34 Capillaries/fat cell Abdominal subcuta-
neous fat

Belligoli A et al. 
2019 [78]

Fat Obesity
Ob + IR
Ob + DM

N = 62 N = 18 ↓  ± 20%
 ± 20%
 ± 20%

CD31 Capillaries/mm 
area

In subcutaneous and 
visceral fatN = 58N = 57

Henrich HA et al. 
1988 [120]

Muscle HT N = 15 N = 12 ↓ 37–51% Toluidine blue Capillaries/mm 
area

Quadriceps and 
pectoralis major

Marin P et al. 1994 
[71]

Muscle DM N = 29 N = 70 ↓ 18% PAS-amylase Capillaries/fiber Vastus lateralis

Chilibeck PD et al. 
1997 [79]

Muscle Old age N = 9 N = 11  = n.s PAS Capillaries/mm 
area

Gastrocnemius/non-
sedentary

Hernandez N et al. 
1999 [72]

Muscle HT N = 8 N = 8  = n.s PAS-amylase Capillaries/mm 
area

Quadriceps muscle

Gavin TP et al. 
2005 [121]

Muscle Obesity N = 8 N = 8 ↓ 21% ATPase Capillaries/mm 
area

Vastus lateralis

Croley AN et al. 
2005 [122]

Muscle Older age N = 9 N = 11 ↓ 22% ATPase Capillaries/fiber Vastus lateralis/sed-
entary women

Ryan NA et al. 
2006 [123]

Muscle Older age N = 7 N = 8 ↓ 25% ATPase Capillaries/fiber Vastus lateralis/sed-
entary men

Prior SJ et al. 2009 
[124]

Muscle IR N = 15 N = 15 ↓ 16% UEA/collagen IV Capillaries/area Vastus lateralis, 
matched for stroke

Groen BB et al. 
2014 [94]

Muscle DM N = 15 N = 15 ↓ 9% CD31 Capillaries/fiber Vastus lateralis/
young control 
group

Gueugneau M et al. 
2016 [73]

Muscle Old HT N = 11 N = 7 ↓ 27% CD31 Capillaries/fiber Vastus lateralis

Rizzoni D et al. 
2009 [125]

Brain HT N = 13 N = 15 ↓ 32% CD31 Stained area Cerebral cortex next 
to tumor

De Ciuceis C et al. 
2014 [80]

Brain HT N = 10 N = 10 ↓ 34% CD31 Stained area Cerebral cortex next 
to tumor

Hunter JM et al. 
2012 [89]

Brain* Old / AD N = 6 N = 5  = n.s Collagen type IV Stained area Gray and white 
matter

Yarom R 1994 [82] Heart Diabetes N = 14 N = 18 ↓ 39% Toluidin blue Capillaries/area Right atrium (auricle)
Amann K. et al. 

1998 [81]
Heart HT N = 9 N = 10 ↓ 35% UEA Cap. Length/vol-

ume
Left ventricle at 

autopsy
Campbell DJ et al. 

2011 [83]
Heart DM/MS N = 33 N = 13  = n.s CD31 Cap Length/volume Left ventricle biopsy

Campbell DJ et al. 
2013 [84]

Heart Obesity N = 24 N = 33 ↓ 16% CD31 Cap. Length/vol-
ume

Left ventricle biopsy

Hinkel R et al. 2017 
[85]

Heart DM N = 4 N = 5 ↓ 42% CD31 Cells/area Left ventricle at 
transplantation
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basement membrane width correlated with glomerular base-
ment membrane width [95]. A capillary decrease is found in 
skin biopsies [96] and skeletal biopsies [97] of patients with 
heart failure with preserved ejection fraction (HFpEF). Myo-
cardial capillary rarefaction is also found in patients with 
heart failure, including HFpEF [98] and idiopathic dilated 
cardiomyopathy [99]. In patients with chronic heart failure, 
a decrease in sublingual vessels [100] and in skin capillaries 
[101] is found by capillaroscopy.

Capillary rarefaction in renal 
and cardiovascular disease

The studies summarized above clearly demonstrate that cap-
illary rarefaction occurs in both renal and cardiovascular 
disease. Further studies are needed to investigate whether 
this merely is because they share the same risk factors, and/
or whether there is a causal relationship between renal and 
systemic capillary rarefaction (see Fig. 3).

In individuals with cardiovascular risk factors such as 
obesity, insulin resistance, hypertension, and older age cap-
illary rarefaction occurs in the systemic circulation, as sign 
of endothelial dysfunction. In individuals with these risk 
factors glomerular hypertrophy occurs with an increased 
number of glomerular capillaries. It is well known that 
hypertension and diabetes mellitus are important causes of 
progression of CKD. In individuals with advanced CKD 
there is glomerulosclerosis and a PTC decrease, and capil-
lary loss is found systemically in fat, muscle and heart biop-
sies. The latter may be caused by endothelial apoptosis, dys-
regulated angiogenesis, hypertension and the uremic milieu 
in individuals with end stage renal failure, all factors that 
contribute to higher cardiovascular morbidity and mortality 
in patients with renal failure [56].

Whether the kidney plays a causal role in (aggravation 
of) systemic capillary rarefaction remains to be established. 
This is suggested by the increased risk for gestational hyper-
tension and pre-eclampsia after kidney donation [102], and 
for non-cancer mortality in individuals with mild CKD 
that undergo a nephrectomy [22, 103]. In line, individu-
als with low nephron endowment more often develop pri-
mary hypertension [12, 14], and individuals with borderline 
hypertension or a familial predisposition for hypertension 
have capillary rarefaction at capillaroscopy (reviewed in [6, 
7]). Although more severe capillary rarefaction measured 
by nailfold capillaroscopy is related to worse renal function 
[104], there is little data on the prognostic value of non-
invasive microvascular measurements for CKD development 
or progression. In individuals with CKD stage 2–4, retinal 
arteriolar narrowing was associated with renal end points 
such as dialysis or a 50% reduction in renal function [105]. 
Two longitudinal population based cohort studies did not 

find associations between retinal arteriolar diameters and 
incident CKD [106, 107], while one study did [108]. At pre-
sent biopsy and mechanistic studies on systemic and renal 
capillary rarefaction in individuals with early CKD, or who 
are at risk for CKD either with or without hypertension, are 
lacking.

We hypothesize that glomerular hypertrophy with a dis-
turbed renal autoregulation in the context of a (relative) 
nephron shortage, instigates PTC loss. Experimental ani-
mals that have subtle tubulo–interstitial pathology with PTC 
rarefaction are prone to develop salt-sensitive hypertension, 
which may lead to systemic vasoconstriction to increase 
the blood volume [109]. The disturbed renal autoregulation 

Fig. 3  Potential interrelationship between renal and systemic capil-
lary rarefaction in the acceleration of cardiovascular disease. General-
ized microvascular endothelial dysfunction is driven by risk factors, 
such as aging, low birth weight and obesity, that also are associated 
with early stages of CKD. These risk factors may directly propagate 
CKD development and progression, by initiating glomerular hyper-
trophy, followed by glomerular capillary loss (i.e., the sequence 
of events depicted as stages A–D in Fig.  1). Hypertension, insulin 
resistance and/or diabetes mellitus can aggravate both renal capillary 
rarefaction with CKD development and progression, as well as sys-
temic capillary rarefaction with cardiovascular disease. In addition, 
we hypothesize that glomerular hypertrophy followed by PTC loss 
can accelerate systemic rarefaction, in line with experimental studies 
showing that subtle tubulointerstitial injury with PTC rarefaction pre-
disposes to salt-sensitive hypertension [104, 105]. Further temporal 
and mechanistic studies on renal and systemic capillary rarefaction 
are needed, hence this is depicted in dashed lines as a “gray box”. 
Abbreviations: LBW: low birth weight; CKD: chronic kidney disease; 
ESRD: end-stage renal disease
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can lead to generation of vasoactive mediators that further 
enhance hypertension and renal and systemic capillary rar-
efaction [110]. PTC rarefaction is associated with impaired 
tubulo–vascular crosstalk and development of IF/TA, result-
ing in decreased removal of waste products. The perpetu-
ating cycle of renal and systemic capillary rarefaction can 
accelerate cardiovascular disease and organ function decline 
in the heart, brain, and kidneys, and thus may play an impor-
tant role in inter-organ crosstalk.

This review aimed to give an overview of current human 
pathology investigations on capillary rarefaction and paves 
the way for more temporal and mechanistic pathology stud-
ies on renal and systemic capillary rarefaction. The urgency 
to further understand capillary rarefaction is increased by the 
recent pandemic, as corona virus induced disease (COVID-
19) appears to be a multi–systemic microvascular disease 
[111], and impaired capillary recruitment may occur dur-
ing and after corona virus infection [112]. Future studies on 
capillary rarefaction may lead to prevention and treatment of 
CKD-related cardiovascular morbidity and mortality.
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