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KNOTOIDS, PSEUDO KNOTOIDS, BRAIDOIDS AND

PSEUDO BRAIDOIDS ON THE TORUS

Ioannis Diamantis

Abstract. In this paper we study the theory of knotoids and braidoids

and the theory of pseudo knotoids and pseudo braidoids on the torus
T . In particular, we introduce the notion of mixed knotoids in S2, that

generalizes the notion of mixed links in S3, and we present an isotopy
theorem for mixed knotoids. We then generalize the Kauffman bracket

polynomial, <;>, for mixed knotoids and we present a state sum formula

for <;>. We also introduce the notion of mixed pseudo knotoids, that
is, multi-knotoids on two components with some missing crossing infor-

mation. More precisely, we present an isotopy theorem for mixed pseudo

knotoids and we extend the Kauffman bracket polynomial for pseudo
mixed knotoids. Finally, we introduce the theories of mixed braidoids

and mixed pseudo braidoids as counterpart theories of mixed knotoids

and mixed pseudo knotoids, respectively. With the use of the L-moves,
that we also introduce here for mixed braidoid equivalence, we formu-

late and prove the analogue of the Alexander and the Markov theorems

for mixed knotoids. We also formulate and prove the analogue of the
Alexander theorem for mixed pseudo knotoids.

1. Introduction

Knotoids were introduced by Turaev in [29] as a generalization of 1-1 tangles
by allowing the endpoints to be in different regions of the diagram. Equiva-
lently, knotoids may be considered as open knotted curves in oriented surfaces
Σ, generalizing the theory of classical knots. We call a knotoid in Σ, the equiv-
alence class of knotoid diagrams in Σ up to the equivalence relation induced
by the standard Reidemeister moves that take place away from the endpoints
of the knotoid diagram. Similar to the notion of classical links, we may extend
knotoids to multi-knotoids, that is, a union of a knotoid diagram and a finite
number of knot diagrams. In this paper we study the theory of knotoids on the
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torus T , by introducing the theory of mixed knotoids, that is, multi-knotoids
that consist of two parts: the fixed part that forms the unknot and represents
the complementary solid torus in S3, and the moving part of the multi-knotoid,
that represents the knotoid on T . Mixed knotoids may also be considered as
dichromatic multi-knotoids, that is, multiknotoids on two components, the one
forming the (fixed) unknot and the other forming a standard knotoid. We
present an isotopy theorem for mixed-knotoids and we extend the Kauffman
bracket polynomial for mixed-knotoids.

Pseudo knots were introduced by Hanaki in [19] as projections on the 2-
sphere with over/under information at some of the double points and pseudo
knotoids were then introduced in [5] as standard knotoids with some missing
crossing information, generalizing the notion of pseudo knots. In this paper
we introduce and study the theory of mixed pseudo knotoids in order to study
pseudo knotoid diagrams on the torus. In particular, we present an isotopy
theorem for mixed pseudo knotoids in S2 and we then pass on the counterpart
analogue of mixed knotoids and mixed pseudo knotoids, namely, the theories
of mixed braidoids and mixed pseudo braidoids, respectively.

Braidoids were introduced by Gűgűmcű and Lambropoulouin in [18] where
the authors present a braidoiding algorithm, as well as braidoid equivalence
moves (see also [17]). In this paper we present mixed braidoid equivalence
moves and we formulate and prove the analogue of the Alexander theorem for
mixed knotoids (see Theorem 4.5). We also extend the notion of L-moves on
mixed braidoids, with the use of which, we state and prove a geometric ana-
logue of the Markov theorem for mixed braidoids (see Theorem 4.8). Similarly
to pseudo braids, pseudo braidoids were introduced by the author of this pa-
per in [5] where the author presents pseudo braidoid equivalence moves and
the analogue of the Alexander theorem for pseudo knotoids. With the use of
L-moves on pseudo braidoids, the author also states and proves the analogue
of the Markov theorem for pseudo braidoids. We conclude this paper by for-
mulating and proving the analogue of the Alexander theorem for mixed pseudo
knotoids.

Pseudo knots comprise a relatively new and important model for DNA knots,
since there exist cases of DNA knots that, after studying them by electron
microscopes, it is hard to say a positive from a negative crossing. On the other
hand, the theory of knotoids has become an important tool in the study of open
proteins, and in particular, it has been used to classify entanglement in proteins,
which are long chains of amino acids that sometimes form open ended knots
[14,16]. We believe that the results of this paper will find applications in various
aspects of molecular biology, such as in the classification of entanglement in
long chains of amino acids that may form mixed knotoids (see also [14,16]).

The paper is organized as follows: In §2 we recall all necessary results for
knotoids and braidoids from [29] and [17, 18], and results concerning pseudo
knotoids and pseudo braidoids from [5]. More precisely, we recall the defini-
tion of knotoid diagrams in S2 and the analogue of the Reidemeister theorem
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for knotoids. We then recall the definition of standard braidoids, the braidoid
equivalence moves and we also recall a braidoiding algorithm that is useful for
the case of mixed knotoids. Then, using the L-moves, we state a geometric ana-
logue of the Markov theorem for knotoids. Finally, we recall the definition of
pseudo knotoids and pseudo braidoids from [5] and we present the analogue of
the Reidemeister theorem for pseudo knotoids in S2. We conclude this section
with the analogues of the Alexander and Markov theorems for pseudo kno-
toids. In §3 we introduce the notion of mixed knotoids in S2 and we present
the equivalence moves for mixed knotoids. As mentioned above, mixed kno-
toids generalize the notion of mixed links in S3, which is a way of visualizing
knots and links in arbitrary c.c.o. 3-manifolds. The theory of mixed knotoids
in S2 maybe considered as the theory of torus-knotoids, that is, knotoids in
S2 with a 1-handle attached, similar to the spherical knotoids, i.e., knotoids
in S2 and planar knotoids, i.e., knotoids in R2. In §3.2 we consider the torus
as a punctured torus (see Figure 23) and we generalize the Kauffman bracket
polynomial <;> for mixed knotoids (Theorem 3.3). We also present a state
sum formula for <;> (Eq. 1) which is easier to be applied on a mixed knotoid
diagram. In §3.4 we introduce the mixed pseudo knotoids as a generalization
of pseudo links in S3 and we present the analogue of the Reidemeister theorem
for mixed pseudo knotoids. We also extend the Kauffman bracket polynomial
for the case of mixed pseudo knotoids. Finally, in §4 we present the theory of
mixed braidoids, that is, the counterpart theory of mixed knotoids, and which
generalize the notion of mixed braids of [26]. More precisely, we start by trans-
lating the equivalence moves on mixed knotoids on the level of mixed braidoids
and we introduce a (well-defined) closure operation on mixed braidoids. We
show that the braidoiding algorithm of [17] may be applied in the case of
mixed braidoids, obtaining in that way the analogue of the Alexander theorem
for mixed knotoids in S2. We finally define L-moves on mixed braidoids, with
the use of which, we formulate and prove a geometric analogue of the Markov
theorem for mixed braidoids (Theorem 4.8). We conclude this paper by intro-
ducing the theory of mixed pseudo braidoids and by stating and proving the
analogue of the Alexander theorem for mixed pseudo braidoids.

Acknowledgments. I would like to acknowledge several discussions with Dr.
Nikolaos Koutsogoulas MD, which inspired and motivated me to write this
paper.

2. Preliminaries

In this section we recall all necessary results for knotoids, braidoids, pseudo
knotoids and pseudo braidoids from [29], [17, 18] and [5], respectively. More
precisely, we recall the definition of knotoid diagrams in S2 and the analogue of
the Reidemeister theorem for knotoids. We then pass on the level of standard
braidoids and we present the braidoid equivalence moves and we also recall a
braidoiding algorithm that is useful for the case of mixed knotoids. Moreover,
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and using the L-moves, we present a geometric analogue of the Markov theorem
for knotoids. We finally recall analogous results on pseudo knotoids and pseudo
braidoids from [5].

2.1. Knotoids

Knotoids were introduced by Turaev in [29] as open knotted curves in ori-
ented surfaces Σ, that is, generic immersions of the unit interval [0, 1] into Σ.
The images of 0 and 1 under these immersions are called the endpoints of K
(leg and head of K, respectively), they are allowed to be in different regions of
the diagram and they are distinct from each other and from the double points,
i.e., the crossings. Note that a knotoid diagram has a natural orientation from
its leg to its head. For an illustration is Figure 1(a).

Knotoids can be extended to linkoids and to multi-knotoids. In particular,
a linkoid diagram is a collection of knotoids which may be linked together,
while a multi-knotoid diagram is the union of finitely many knot diagrams and
a knotoid diagram. For an illustration of a multi-knotoid see Figure 1(b).
Finally, it is worth mentioning that knotoid equivalence extends naturally to
both linkoid diagrams and multi-knotoid diagrams, leading to the theory of
linkoids and multi-knotoids.

Figure 1. (a) A knotoid and (b) a multi-knotoid.

As already noted, a knotoid in Σ is an equivalence class of knotoid diagrams
in Σ up to the equivalence relation induced by the standard Reidemeister moves
RI, RII & RIII (see Figure 2) and planar isotopy, that take place away from
the endpoints. It is crucial to note that pulling a strand that is adjacent to
an endpoint, over or under a tranversal arc, is not allowed, since this always
results into trivial knotoid diagrams. These moves are illustrated in Figure 3,
and they are called forbidden moves of knotoids.

Figure 4 illustrates two situations where superficially, forbidden moves are
performed. In the first case, an RI move is followed by planar isotopy, while in
the second case an RII move is followed by planar isotopy. We shall call these
moves fake forbidden moves.

To conclude this subsection, we recall the closure operations on knotoid
diagrams. This is defined as the connection of the endpoints of a knotoid
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Figure 2. The Reidemeister moves.

Figure 3. The forbidden moves.

Figure 4. Fake forbidden moves.

diagram with an arc that goes under or over each arc that it meets, and the
result is a classical knot that is called the underpass closure and the overpass
closure of the knotoid, respectively. For an illustration of an underpass closure
see left-hand side of Figure 9. As noted in [29], different closures of a knotoid
may result in different knots. Thus, in order to represent knots via knotoid
diagrams, we need to fix the closure type first. Then, assuming a specific
closure type, there is a well-defined surjective map from knotoid diagrams to
classical knots.

2.2. Pseudo knotoids

In this subsection we recall basic results on pseudo knotoids, introduced and
studied in [5], as a generalization of pseudo knots (see also [8, 21]).

Definition 2.1. A pseudo knotoid diagram in a surface Σ is a knotoid diagram
in Σ where some crossing information may be missing. The undetermined
crossings are called pre-crossings (for an illustration see Figure 5).
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Figure 5. A pseudo knotoid.

A pseudo knotoid in Σ is then an equivalence class of pseudo knotoid di-
agrams in Σ up to the equivalence relation induced by moves illustrated in
Figure 6 and planar isotopy.

Figure 6. Reidemeister moves for pseudo knots.

Remark 2.2. It is worth mentioning that the theory of pseudo knotoids is close
related to the theory of singular knotoids, that is, knotoids with finite many
singularities.

In the theory of pseudo knotoids, there exists an extra forbidden move,
similar to the first forbidden move in the case of knotoids, that we call pseudo
forbidden move (see Figure 7). Note that there is also one more case of a fake
forbidden move, involving the pre-crossings and that is illustrated in Figure 8.

Figure 7. The pseudo forbidden move.
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Figure 8. The fake pseudo forbidden move.

Finally, it is worth mentioning that in [5], the pseudo closure of knotoids is
defined, that is, the arc used to connect the endpoints of a knotoid diagram is
missing all crossing information. For an illustration see Figure 9.

Figure 9. The underpass closure and the pseudo closure of a knotoid.

2.3. Braidoids

In [17], Gűgűmcű and Lambropoulou define the braidoid diagrams similarly
to classical braid diagrams. More precisely, a braidoid diagram is a system
of finite descending strands that involves one or two strands starting with or
terminating at an endpoint that is not necessarily at the top or bottom lines
of the defining region of the diagram. These strands are called free strands
and they involve the endpoints of the knotoid, that we now call braidoid ends.
The rest of the strands are classical strands. For an illustration see Figure 10.
Moreover, there are only finitely many intersection points among the strands,
which are transversal double points endowed with over/under data, and are
called crossings of B. For more details and examples the reader is referred to
[17].

We now present braidoid isotopy:

Definition 2.3. Two braidoid diagrams are said to be isotopic if one can be
obtained from the other by a finite sequence of the following moves, that we
call braidoid isotopy moves:
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Figure 10. A braidoid diagram.

• Braidoid ∆-moves illustrated in the left part of Figure 11: a ∆-move
replaces a segment of a strand with two segments in a triangular disk
free of endpoints, passing only over or under the arcs intersecting the
triangular region of the move whilst the downward orientation of the
strands is preserved.
• Vertical moves as illustrated in the right part of Figure 11: the end-

points of a braidoid diagram can be pulled up or down in the vertical
direction but without letting an endpoint of a braidoid diagram to be
pushed/pulled over or under a strand (recall the forbidden moves).

Figure 11. A ∆-move and a vertical move on a braidoid.

• Swing moves as illustrated in Figure 12: the endpoints are allowed to
swing to the right or the left like a pendulum as long as the downward
orientation on the moving arc is preserved, and the forbidden moves
are not violated.

Figure 12. The swing moves on braidoids.
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An isotopy class of braidoid diagrams is called a braidoid. Moreover, a labeled
braidoid diagram is a braidoid diagram with a label over or under assigned to
each pair of corresponding ends.

We define a closure operation on labeled braidoids, which is similar to that
of mixed braids in handlebodies [20].

Definition 2.4. A labeled braidoid diagram is a braidoid diagram whose cor-
responding ends are labeled either with “o” or “u” in pairs. The closure of
a labeled braidoid is realized by joining each pair of corresponding ends by a
vertical segment, either over or under the rest of the braidoid and according to
the label attached to these braidoid ends (see Figure 13).

Figure 13. The closure of a labeled braidoid.

Remark 2.5. It is crucial to note that different labels on the endpoints of a
braidoid may yield non-equivalent closures. For more details the reader is
referred to [17, 20]. Moreover, it is worth mentioning that in [17] the authors
prove that any knotoid diagram may be isotoped to be the closure of some
labeled braidoid diagram whose labels are all “u” ([17, Corollary 1]), and they
define a uniform braidoid to be a labeled braidoid with all labels “u”.

We now recall the analogue of the Alexander theorem for knotoids. In [17,
18], Gűgűmcű and Lambropoulou present a braidoiding algorithm for knotoids,
with the use of which, they obtain the following result:

Theorem 2.6 (The analogue of the Alexander theorem for knotoids). Any
(multi)-knotoid diagram is isotopic to the closure of a (labeled) braidoid dia-
gram.

It is worth mentioning that the braidoiding algorithm in [17] is identical to
the braiding algorithm presented in [26] for the classical strands of the braidoid,
and very similar for the free strands of the braidoid. We recall this braidoiding
algorithm, since it will play a crucial role for obtaining the analogue of the
Alexander theorem for mixed-knotoids that we introduce in the next section.

The main idea of the braidoiding algorithm is to keep the arcs of the (ori-
ented) knotoid diagram that go downwards with respect to the height function
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unaffected, and replace arcs that go upwards with braid strands. These arcs
are called up-arcs and are illustrated in Figure 14. Note that by small per-
turbations in a knotoid diagram we may cancel horizontal or vertical arcs and
thus, a knotoid diagram may be assumed to consist of a finite number of arcs
that are oriented downwards or upwards. When/If we run along an up-arc,
we subdivide it into smaller arcs, each containing crossings of one type only as
shown in Figure 14.

Figure 14. Up-arcs.

We now label every up-arc with an “o”or a “u”, according to the crossings it
contains. If it contains no crossings, then the choice is arbitrary and the arc is
called a free up-arc. We perform an o-braiding move on all up-arcs which were
labeled with an “o” and u-braiding moves on all up-arcs which were labeled
with a “u” (see Figure 15).

Figure 15. Braiding moves for up-arcs.

The result is a braidoid whose closure is isotopic to the initial knotoid. For
more details the reader is referred to [17].

Moreover, in [18], the authors present a geometric analogue of the Markov’s
theorem for knotoids, with the use of the L-moves. More precisely, an L-
move on a labeled braidoid β, consists in cutting an arc of β open and pulling
the upper cutpoint downward and the lower upward, so as to create a new
pair of braid strands with corresponding endpoints (on the vertical line of the
cutpoint), and such that both strands cross the rest of the braid all over in the
case of an Lo-move or all under in the case of an Lu-move. We finally assign
to the new pair of corresponding strands the label “o” or “u” according to
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the type of L-move that was applied. At this point it is crucial to observe the
similarity between the L-moves and the “braidoiding” moves on the braidoiding
algorithm. This similarity allow us to formulate the analogue of the Markov
theorem for knotoids.

In [18] the authors also define the fake forbidden moves on a labeled braidoid
diagram B, as forbidden moves on B which upon closure induce a sequence of
fake forbidden moves on the resulting (multi-)knotoid diagram. Moreover, a
fake swing move is defined as a swing move which is not restricted, in the sense
that the endpoint surpasses the vertical line of a pair of corresponding ends
but in the closure it gives rise to a sequence of swing and fake forbidden moves
on the resulting (multi-)knotoid diagram. See Figure 16 for an example of a
fake swing move and a fake forbidden move on a labeled braidoid diagram.

Figure 16. A fake swing move and a fake forbidden move.

As proved in [18, Lemma 8], a fake forbidden move can be generated by
a sequence of L-moves, together with planar isotopy and fake swing moves.
Define now L-equivalence on labeled braidoid diagrams to be the equivalence
relation on labeled braidoid diagrams generated by the L-moves together with
labeled braidoid isotopy moves and fake swing moves. L-equivalence turns out
to be especially useful for formulating a braidoid equivalence since there is no
algebraic structure for braidoids. Indeed, we have the following result [18]:

Theorem 2.7 (An analogue of the Markov theorem for braidoids). The clo-
sures of two labeled braidoid diagrams are isotopic (multi)-knotoids in Σ if and
only if the labeled braidoid diagrams are related to each other via L-equivalence
moves.

2.4. Pseudo braidoids

In the same way that braidoids are defined, we may define pseudo braidoids
as the counterpart theory of pseudo knotoids. Pseudo braidoids are (labeled)
braidoids with some crossing information missing. In order to obtain pseudo
(labeled) braidoid isotopy, we allow the analogue of the vertical move on pseudo
braidoids, that we call pseudo vertical move, illustrated in Figure 17.
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Figure 17. The pseudo vertical move.

Note also that, as illustrated in Figure 18, a new type of forbidden move
appears whenever an endpoint is to be pushed or be pulled away from a pre-
crossing. We call such a move, a pseudo forbidden move.

Figure 18. The pseudo forbidden move on pseudo braidoids.

If we define the closure operation of pseudo braidoids in the same way as in
the case of classical braidoids, we obtain the following result:

Theorem 2.8 (The analogue of the Alexander theorem for pseudo knotoids).
Every pseudo (multi)-knotoid can be obtained by closing a pseudo braidoid.

We define pseudo braidoid equivalence as follows:

Definition 2.9. Two pseudo braidoid diagrams are said to be isotopic if one
can be obtained from the other by a finite sequence of the moves of Defini-
tion 2.3 together with the pseudo vertical move. An isotopy class of pseudo
braidoid diagrams is called a pseudo braidoid and a labeled pseudo braidoid di-
agram is a pseudo braidoid diagram with a label over or under assigned to each
pair of corresponding ends.

Let now pseudo L-moves on labeled pseudo braidoids, be L-moves on labeled
braidoids, that is, the two strands that appear after the performance of a pseudo
L-move will cross the rest of the braid only with real crossings and in particular,
all over the rest of the braidoid in the case of an Lo-move or all under the rest of
the braidoid in the case of an Lu-move. Moreover, define a fake swing move to
be a swing move which is not restricted, in the sense that the endpoint surpasses
the vertical line of a pair of corresponding ends, but in the closure it gives rise to
a sequence of swing and fake pseudo forbidden moves on the resulting pseudo
(multi-)knotoid diagram. Then, in [5], the pseudo L-equivalence on pseudo
braidoid diagrams is defined as follows:
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Definition 2.10. The pseudo L-moves together with labeled pseudo braidoid
isotopy moves and fake swing moves, generate an equivalence relation on labeled
pseudo braidoid diagrams that is called pseudo L-equivalence.

Finally, using the pseudo L-equivalence, the analogue of the Markov theorem
for pseudo braidoids is obtained [5]. More precisely, we have the following
result:

Theorem 2.11 (An analogue of the Markov theorem for pseudo braidoids).
The closures of two labeled pseudo braidoid diagrams are isotopic pseudo (multi)-
knotoids in Σ if and only if the labeled pseudo braidoid diagrams are related to
each other via pseudo L-equivalence moves.

3. Torus knotoids

In this section we introduce and study the theory of mixed knotoids in S2,
that generalizes the theory of mixed links in S3 of [26]. We present the analogue
of the Reidemeister theorem for mixed knotoids and we extend the Kauffman
bracket polynomial for mixed knotoids using the skein relations and a state
sum formula.

3.1. Mixed knotoids and isotopy

Consider S3 to be the union of two solid tori. We may consider ST to be

the complement of the other solid torus, Î, in S3. Then, we may represent a

knotoid K on T by an oriented multi-knotoid Î ∪K in S2, that consists of the

unknotted fixed part Î, that represents the complementary solid torus in S3,

and the moving part K that links with Î and that represents the knotoid on
T (see Figure 19). We will call such multi-knotoids as mixed knotoids, similar
to classical mixed links in S3 that represents links in ST and in any c.c.o. 3-
manifold (for more details the reader is referred to [9,25,26]). A mixed knotoid

diagram then is a diagram Î ∪ K̃ of Î ∪K on the plane of Î, where this plane
is equipped with the top-to-bottom direction of I.

Figure 19. A mixed knotoid.

Let now K1,K2 be two knotoids on T . It follows that K1 is isotopic to

K2 if and only if the mixed knotoids Î ∪ K̃1 and Î ∪ K̃2 are isotopic in S2

by equivalence moves that keep Î pointwise fixed. More precisely, in terms of
diagrams we have the following result for isotopy of mixed knotoids:
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Theorem 3.1 (The analogue of the Reidemeister theorem for mixed knotoids).
Two mixed knotoids diagrams are isotopic if and only if they differ by a finite
sequence of the following moves:

i. The classical Reidemeister moves that only involve the moving part of
the mixed knotoid and that take place away from the endpoints of the
mixed knotoid (recall Figure 2).

ii. The generalized Reidemeister moves GR2 and GR3, that involve both
the fixed and the moving part of the mixed knotoid, and which are
illustrated in Figure 20.

iii. The generalized (or mixed) fake forbidden moves illustrated in Fig-
ure 21.

Figure 20. The generalized Reidemeister moves.

Figure 21. The generalized fake forbidden moves.
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3.2. The Kauffman bracket polynomial for mixed knotoids

In this subsection we recall the definition of the Kauffman bracket poly-
nomial for knotoids [29] and we extend the Kauffman bracket polynomial for
mixed knotoids.

In [29] the Kauffman bracket polynomial, <;>, is defined for knotoids, ex-
tending the Kauffman bracket polynomial for classical knots presented in [22].
More precisely, we have the following:

Definition 3.2. Let L be a knotoid. The Kauffman bracket polynomial of L
is defined by means of the following relations:

As in the case of the Kauffman bracket polynomial for standard links in S3,
we may normalize the Kauffman bracket for knotoids in S2 by considering the

product of < L > by the factor
(
−A−3

)wr(L)
, where wr(L) is the writhe of

the knotoid L, defined as the number of positive crossings minus the number
of negative crossings of L (see Figure 22).

Figure 22. The sign of the crossings.

As explained in [29], the normalized Kauffman bracket polynomial for kno-
toids in S2 generalizes the Jones polynomial of classical knots in S3 under the
substitution A = t−1/4.

We now extend the definition of the Kauffman bracket polynomial for mixed
knotoids in S2. For this, it is more convenient to view T as a punctured disk
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(for an illustration of a knot in this set up see Figure 23). Note that in this
setting, two knotoids K1 and K2 are isotopic if and only if their diagrams differ
by a finite sequence of the standard three Reidemeister moves in the punctured
plane, that take place away from the endpoints of the knotoids. Moreover,
a knot that goes once around the dot and has no crossings will be called a
mixed-unknot (see Figure 23). Note also that we will still refer to knotoids in
this setting as mixed knotoids.

Figure 23. T as punctured disk and a mixed-unknot.

We are now in position to define the Kauffman bracket polynomial for mixed
knotoids.

Definition 3.3. Let L be a mixed knotoid. The Kauffman bracket polynomial
of L is defined by means of the relations in Definition 3.2 together with the
following relations:

Simple computations show that < L >, which is a Laurent polynomial in
Z
[
A±1, s

]
, is invariant under all isotopy moves except from RI:

Similarly to the case of knotoids in S2 we may normalize it and obtain an
invariant for mixed knotoids in S2. Indeed, we have the following:

Theorem 3.4. Let L be a mixed knotoid diagram. The polynomial

PL(A, s) = (−A−3)w(L) < L >,

where w(L) is the writhe of the knotoid and < L > the Kauffman bracket
polynomial of L, is an invariant of mixed knotoids.
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Proof. If L is a standard knotoid in S2, then the proof coincides with that of
[29] (or of that of [22] by replacing the unknots with trivial knotoids). Thus, it
suffices to show invariance under the generalized Reidemeister move 3, which
is illustrated in Figure 24 (by omitting the coefficients).

Figure 24. The invariance of <;> under the Mixed Reide-
meister move 3. �

An equivalent definition of < L > is obtained by using the states of a mixed
knotoid, similar to the states of knots. More precisely, let L be a mixed knotoid
with n crossings. We resolve each crossing by applying the A-smoothing when
the crossing is positive and the B-smoothing otherwise, and we obtain a single
embedded segment, several embedded unknots and several embedded mixed-
unknots. Let now S(L) denote the set of all possible states of L, σS ∈ Z denotes
the sum of ±1 of S over all crossings of L, that is, the number of A-smoothings
minus the number of B-smoothings in S, |S| denotes the number of embedded
unknots and mixed-unknots and let |M | denote the number of mixed-unknots
only. Then, the Kauffman bracket polynomial of L may be defined as:

(1) < L > =
∑

s∈S(L)

Aσs
(
−A2 −A−2

)|S|−1
s|M |.

To see why this is true, consider a knotoid in T with n-crossings. Choose a
crossing and apply the A and the B-smoothings in order to obtain two knotoid
diagrams in T , each one having (n − 1)-crossings. Continuing that way, we
will eventually obtain 2n knotoids in T , called states, each one consisting of a
trivial knotoid and mixed-unknots. For a state, say Si, we have that:

(2) < Si > =
(
−A2 −A−2

)|S|−1
s|M |.

The Aσsi factor appears since the state si was obtained from the knotoid
diagram by smoothing all crossings. Thus, the sum of over all possible states
of relations of the form (1) corresponds to the Kauffman bracket polynomial of
the knotoid in T .

Example 3.5. In this example we compute the Kauffman bracket polynomial
for a mixed knotoid using the two different ways mentioned above. We first
demonstrate the procedure using the skein relations and we then use the state
sum formula. Obviously, we obtain the same result.
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3.3. A note on skein modules

Skein modules were independently introduced by Przytycki [27] and Tu-
raev [28] as generalizations of knot polynomials in S3 to knot polynomials in
arbitrary 3-manifolds. The essence is that skein modules are quotients of free
modules over ambient isotopy classes of links in 3-manifolds by properly chosen
local (skein) relations. In particular, let M be an oriented 3-manifold and Lfr

be the set of isotopy classes of unoriented framed links in M . Let R = Z[A±1]
be the Laurent polynomials in A and let RLfr be the free R-module generated
by Lfr. Let S be the ideal generated by the skein expressions L−AL∞−A−1L0

and L
⊔

O − (−A2 − A−1)L, where L∞ and L0 are represented schematically
by the illustrations in Figure 25. Note that blackboard framing is assumed.

Figure 25. The links L, L0 and L∞ locally.

Then the Kauffman bracket skein module of M , KBSM(M), is defined to be:

KBSM (M) = RL/S.

If we extend the above definition for knotoids and mixed knotoids, and with
a little abuse of notation, we may say that the Kauffman bracket skein module
of S2 is freely generated by the trivial knotoid and that the Kauffman bracket
skein module of T is freely generated by an infinite set of generators {xn}∞n=0,
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Figure 26. The basis of KBSM(T ).

Figure 27. A different basis of KBSM(T ).

where xn denotes a parallel copy of n longitudes of T and x0 is the trivial
knotoid (see Figure 26).

It is worth mentioning that in [2], a different basis for the classical Kauffman
bracket skein module of ST , elements of which are presented in Figure 27 in
terms of knotoids on T . Note that in this setting, the bold unknot represents
the complementary ST in S3.

Remark 3.6. The computation of skein modules is a difficult task in general.
The braid approach using mixed braids, mixed braid groups and appropriate
knot algebras has allowed us to compute the Kauffman bracket skein module
of the solid torus [2], of the handlebody of genus 2 [3] and of the complement
of (2, 2p + 1)-torus knots [1]. Moreover, for the case of HOMFLYPT skein
modules, which are even more difficult to compute, the braid approach has
been successfully applied so far for the case of the solid torus in [10], and
significant steps toward the computation of the HOMFLYPT skein module of
the lens spaces L(p, 1) have been done in [7, 11–13].

3.4. Mixed pseudo knotoids

In this subsection we generalize the notion of mixed knotoids to that of
mixed pseudo knotoids. More precisely, we define a mixed pseudo knotoid to
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be a mixed knotoid with some crossing information missing (for an illustration
see Figure 28).

Figure 28. A mixed pseudo knotoid.

Pseudo mixed knotoid isotopy is defined in a similar way as in Theorem 3.7,

that is, the equivalence moves involved must keep Î pointwise fixed. More
precisely, in terms of pseudo diagrams we have the following result for isotopy
of mixed pseudo knotoids:

Theorem 3.7 (The analogue of the Reidemeister theorem for mixed pseudo
knotoids). Two mixed pseudo knotoids are isotopic if and only if they differ by
a finite sequence of the following moves:

i. The classical Reidemeister moves and the pseudo-Reidemeister moves
that only involve the moving part of the mixed pseudo knotoid and that
take place away from the endpoints of the mixed pseudo knotoid (recall
Figure 6).

ii. The generalized Reidemeister moves GR2 and GR3, and the pseudo
generalized move PGR3, that involve both the fixed and the moving
part of the mixed knotoid. For an illustration of the PGR3 move see
Figure 29.

iii. The generalized (or mixed) fake forbidden moves (recall Figure 21).

Figure 29. The pseudo generalized Reidemeister 3 move.

We may now extend the definition of the Kauffman bracket polynomial for
mixed pseudo knotoids, in a similar way as in Definition 3.3. The main and
only difference is that the orientation of a diagram in the case of mixed pseudo
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knotoids is needed in order to define a skein relation on pre-crossings (for more
details the reader is referred to [8, 15]). More precisely, we have the following:

Definition 3.8. Let L be an oriented mixed pseudo link in S2. The pseudo
bracket polynomial of L is defined by means of the following relations:

The pseudo bracket polynomial is invariant under all isotopy moves except
from RI. We only illustrate invariance for the case of the generalized pseudo
RIII move:

As in the case of mixed knotoids in S2, we may normalize < L > using the
writhe of L and we obtain the following:

Theorem 3.9. Let K be a mixed pseudo diagram of a mixed pseudo knotoid
in S2. The polynomial

PK(A, V, s) = (−A−3)w(K) < K >,
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where w(K) is the writhe of the mixed pseudo knotoid and < K > the mixed
pseudo bracket polynomial of K, is an invariant of mixed pseudo knotoids.

4. Mixed braidoids

In this section we define mixed braidoids as a counterpart theory of mixed
knotoids, just as mixed braids comprise an (algebraic) counterpart of mixed
links. Assuming that the fixed strand I is oriented downwards we may define
a mixed braidoid diagram on n-strands, denoted by I ∪ B, to be a braidoid
diagram consisting of two disjoint sets of strands: one (fixed) strand forms the
identity braid I and it represents the complementary solid torus, and the other
set of (moving) strands represents the knotoid on T and it consists of common
braid strands and two free strands as in the case of classical braidoids (recall
the definition braidoids). For an illustration see the middle of Figure 33.

We now translate isotopy for mixed knotoids on the level of mixed braidoids.

Definition 4.1. Two mixed braidoid diagrams are said to be isotopic if one
can be obtained from the other by a finite sequence of the following moves,
that we call mixed braidoid isotopy moves:

• Moving part: We allow all moves of Definition 2.3 on the moving strands
of a mixed braidoid.

• Fixed & Moving part: We allow the endpoints of the knotoid to be
pushed or be pulled over or under the fixed strand of a mixed braidoid.
This can be realized as a special case of vertical or swing moves and
we call such moves generalized swing moves. The generalized swing
moves translate the generalized fake forbidden moves in terms of mixed
braidoids and they are illustrated in the bottom of Figure 30. More-
over, the generalized Reidemeister moves are also allowed and they
form a special case of ∆-moves (for an illustration see the top part of
Figure 30).

Figure 30. The generalized Reidemeister move MR2 and the
generalized swing moves.
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An isotopy class of mixed braidoid diagrams is called a mixed braidoid. More-
over, a labeled mixed braidoid diagram is a mixed braidoid diagram with a label
over or under assigned to each pair of corresponding ends, not including the
fixed strand.

The reason why the fixed strand remains unlabeled will become clear in the
next subsection.

4.1. The closure operation

We now define a closure operation on mixed braidoids, similar to that of
mixed braids in handlebodies. The main difference is that the closure operation
on a mixed braidoid should take into consideration the forbidden moves that
may occur after this operation is applied on a mixed braidoid. We have the
following:

Definition 4.2. The closure C(I∪B) of a mixed braidoid I∪B is an operation
that results in a (oriented) mixed knotoid in S2 and is defined as follows: each
pair of corresponding ends of the moving part of the mixed braidoid are joined
by embedded arcs that run along the right hand-side of the vertical line of the
corresponding mixed braidoid ends, either over or under the rest of the mixed
braidoid and according to the label attached to these endpoints. It is crucial
to note that in order to avoid forbidden moves on the closure of the mixed
braidoids, the embedded arcs that appear after the closure operation is applied,
lie closer to the mixed braidoid ends they connect compared to the distance
of the leg or head from the vertical line passing through the pair of the mixed
braidoid ends they connect. Note also that due to the generalized forbidden
moves, the closure of the fixed strand may be realized as in the case of classical
mixed links, that is, by an arc at infinity that identifies the two horizontal arcs
that contain the endpoints of I. For an illustration see Figure 31. For this
reason the fixed strand remains unlabeled. Finally, note that the endpoints of
the mixed braidoid do not participate in the closure operation and they form
the endpoints of the resulting mixed knotoid.

Remark 4.3. Note that we may define the closure of I as in the case of the
moving strands of the mixed braidoid, where the label used is irrelevant. This
follows from the generalized forbidden moves that allow the closing arc of the
fixed strand to slide freely to the side of the mixed braidoid over or under the
rest of the mixed braidoid as illustrated in Figure 32.

Note now that isotopy moves on (labeled) mixed braidoids can be translated
to isotopy moves on the resulting mixed knotoid diagrams, and thus, we have
the following result:

Proposition 4.4. The closure operation of Definition 4.2 is a well defined
map:

C : I ∪B → Î ∪ L,
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Figure 31. The closure of a mixed braidoid.

Figure 32. The unlabelled closure of the fixed strand.

where I ∪B denotes the set of (labeled) mixed braidoids and Î ∪ L denotes the
set mixed knotoid diagrams.

We conclude this subsection with an important theorem which comprise the
bridge between mixed knotoids and mixed braidoids, namely, the analogue of
the Alexander theorem for mixed knotoids.

Theorem 4.5 (The analogue of the Alexander theorem for mixed knotoids).
Any mixed knotoid diagram is isotopic to the closure of a (labeled) mixed
braidoid diagram.

Proof. The proof is similar to the braidoiding algorithm presented in [17]. This
braidoiding algorithm may be applied in the case of mixed knotoids since it will

not affect their fixed part Î. This is because the up-arcs on a mixed knotoid
are arcs of its moving part. The result follows. �

Remark 4.6. It is worth mentioning that the braiding algorithm of [24] may also
be applied for the case of mixed braidoids. This is because of the definition of
the closure of a mixed braidoid. The same braiding algorithm has been applied
in [8] for the case of pseudo links and singular links in the solid torus.
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4.2. An analogue of the Markov theorem for mixed knotoids

In this subsection we formulate and prove a geometric analogue of the
Markov theorem for mixed knotoids. For this we need to introduce first the L-
moves on mixed braidoids. L-moves make up an important tool for formulating
braid equivalences in any topological setting and they prove to be particularly
useful in settings where the sets of braid analogues do not have a “nice” al-
gebraic structure. The interested reader is referred to [25, 26], where L-moves
and braid equivalence theorems are presented for different knot theories.

Definition 4.7. An L-move on a labeled mixed braidoid I∪B, is an L-move on
a moving strand of the mixed braidoid, as illustrated in Figure 33 by omitting
the labels on the moving strands of the mixed braidoid.

Figure 33. L-moves on mixed braidoids.

The L-moves allow us to formulate and prove a geometric analogue of the
Markov theorem for mixed braidoids. More precisely, we have the following
theorem:

Theorem 4.8 (Geometric analogue of the Markov theorem for mixed
braidoids). Two (oriented) mixed knotoids are isotopic if and only if any two
corresponding mixed braoidoids of theirs differ by a finite sequence of L-moves
and isotopies of mixed braidoids.

Proof. In [26] the authors prove a relative version of the analogue of the Markov
theorem for knots and links in S3 ([26, Theorem 4.7]). More precisely, they
prove that two oriented link diagrams that contain a common braided portion
B are isotopic if and only if corresponding braids of theirs, that are obtained
through the braiding algorithm of [26], differ by L-moves that do not affect the
common braided portion B. This result is due to the 1-move Markov theorem
for knots and links in S3 using the L-moves and the braiding algorithm applied.
Since now the braidoiding algorithm of [17] is similar to that in [26] and since
the braidoiding moves applied on a knotoid in the braidoiding algorithm are
similar to the L-moves, it follows that the same result holds for knotoids. That
is:
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Proposition 4.9 (Relative version of the Markov theorem for braidoids). Let
L1, L2 be knotoids in S2, both containing a common braided portion B, and let
L1 be isotopic to L2, where the isotopy involved finishes with a homeomorphism
fixed on B. Then, if B1, B2 are two braidoids obtained from the braidoiding
algorithm of [17] applied on L1, L2, respectively, both containing the braid B,
then B1 is L-equivalent to B2 by moves that do not affect the braid B.

Recall now that all mixed braidoids have a common braided part, I, which
remains fixed throughout an isotopy of two mixed knotoid diagrams (recall
Theorem 3.1). The result follows. �

4.3. Mixed pseudo braidoids

In this subsection we introduce the theory of mixed pseudo braidoids as
the counterpart theory of mixed pseudo knotoids. A mixed pseudo braidoid
is defined to be a (labeled) mixed braidoid with some crossing information
missing. The closure operation on a mixed pseudo braidoid is defined in the
same way as in the case of mixed braidoids by ignoring the pre-crossings.

The braidoiding algorithm of [17], that was also applied in the case of mixed
braidoids, may also be applied on pseudo mixed knotoids. In order to use this
algorithm on mixed pseudo knotoids we need to deal with pre-crossings in the
diagram which contain at least one up-arc first. For this we apply the idea used
in [23] for the case of virtual knots. Namely, before we apply the braidoiding
algorithm we have to isotope the mixed pseudo knotoid in such a way that the
pre-crossings will only contain down-arcs, so that the braidoiding algorithm will
not affect them. This is achieved by rotating all pre-crossings that contain at
least one up-arc, so that the two arcs are now directed downward, as illustrated
in Figure 34. Then we may apply the braidoiding algorithm of [17, 26] for the
mixed knotoid by ignoring the pre-crossings.

Figure 34. Rotating pre-crossings.

The discussion above provides a proof for the following theorem:

Theorem 4.10 (The analogue of the Alexander theorem for mixed pseudo
knotoids). Every oriented mixed pseudo knotoid is isotopic to the closure of a
mixed pseudo braidoid.
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5. Conclusions & further research

In this paper we introduce and study the theory of mixed knotoids and
mixed pseudo knotoids on S2. In particular, we study how isotopy is translated
in terms of moves on mixed (pseudo) knotoid diagrams and we also extend
the Kauffman bracket polynomial for mixed knotoids and for mixed pseudo
knotoids. We then introduce the notions of mixed braidoids and mixed pseudo
braidoids, and using a braidoiding algorithm, we relate mixed braidoids to
mixed knotoids and mixed pseudo braidoids to mixed pseudo knotoids. Finally,
we formulate and prove a geometric analogue of the Markov theorem using the
L-moves for the case of mixed braidoids. Note that a similar construction would
lead to the theory of knotoids on handlebodies, which is the subject of a sequel
paper. For pseudo links in handlebodies the interested readers are referred to
[6].

Moreover, in [5] the theory of tied pseudo links is introduced and in [4] the
theory of tied links is extended to other 3-manifolds. Tied links are classical
links equipped with ties, that is, non-embedded arcs joining some components
of the link. Our intention is to study the theories of tied knotoids and tied
pseudo knotoids in S2.
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