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ARTIFICIAL INTELLIGENCEoriginal
reports
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by a Validated Deep Learning Model From Lung
Cancer Radiotherapy Planning Scans
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Katelyn M. Atkins, MD, PhD1,2; Jakob Weiss, MD2,3,4; Roman Zeleznik, MSc2,3; Danielle S. Bitterman, MD2,3;

Tafadzwa L. Chaunzwa, MD, MS2,3; Elizabeth Huynh, PhD2; Christian Guthier, PhD2; David E. Kozono, MD, PhD2; John H. Lewis, PhD1;

Balaji K. Tamarappoo, MD, PhD5; Anju Nohria, MD6; Udo Hoffmann, MD7,3; Hugo J. W. L. Aerts, PhD2,3,8; and Raymond H. Mak, MD2,3

abstract

PURPOSE Coronary artery calcium (CAC) quantified on computed tomography (CT) scans is a robust predictor of
atherosclerotic coronary disease; however, the feasibility and relevance of quantitating CAC from lung cancer
radiotherapy planning CT scans is unknown. We used a previously validated deep learning (DL) model to assess
whether CAC is a predictor of all-cause mortality and major adverse cardiac events (MACEs).

METHODS Retrospective analysis of non–contrast-enhanced radiotherapy planning CT scans from 428 patients
with locally advanced lung cancer is performed. The DL-CAC algorithm was previously trained on 1,636 cardiac-
gated CT scans and tested on four clinical trial cohorts. Plaques≥ 1 cubic millimeter were measured to generate
an Agatston-like DL-CAC score and grouped as DL-CAC = 0 (very low risk) and DL-CAC ≥ 1 (elevated risk). Cox
and Fine and Gray regressions were adjusted for lung cancer and cardiovascular factors.

RESULTS The median follow-up was 18.1 months. The majority (61.4%) had a DL-CAC ≥ 1. There was an
increased risk of all-cause mortality with DL-CAC ≥ 1 versus DL-CAC = 0 (adjusted hazard ratio, 1.51; 95% CI,
1.01 to 2.26; P = .04), with 2-year estimates of 56.2% versus 45.4%, respectively. There was a trend toward
increased risk of major adverse cardiac events with DL-CAC ≥ 1 versus DL-CAC = 0 (hazard ratio, 1.80; 95% CI,
0.87 to 3.74; P = .11), with 2-year estimates of 7.3% versus 1.2%, respectively.

CONCLUSION In this proof-of-concept study,CACwaseffectivelymeasured from routinely acquired radiotherapyplanning
CT scans using an automatedmodel. Elevated CAC, as predicted by theDLmodel, was associatedwith an increased risk
of mortality, suggesting a potential benefit for automated cardiac risk screening before cancer therapy begins.

JCO Clin Cancer Inform 6:e2100095. © 2022 by American Society of Clinical Oncology

INTRODUCTION

Individuals with lung cancer represent a high cardio-
vascular risk group, with more than 40% harboring pre-
existing cardiovascular disease and shared risk profiles
existing between cardiovascular disease and cancer-
related mortality.1,2 However, these patients are often
incompletely medically optimized, with only half of high-
risk patients treated with guideline-directed cardio-
vascular medical therapy, including statins, at the time
of diagnosis.1,3 Moreover, most patients with locally
advanced disease are ultimately treated with thoracic
radiotherapy, which has been associated with in-
creased risk of cardiac events and mortality.4-7 These
findings highlight the need for comprehensive cardiac
risk assessment at the time of lung cancer diagnosis
and improved cardiac risk mitigation strategies.

Coronary artery calcium (CAC), which is routinely
quantified from cardiac-gated computed tomography

(CT) scans, is one of the strongest predictors of ath-
erosclerotic coronary vascular disease and major
adverse cardiac events (MACEs).8-10 The Agatston
score is the gold standard method for quantifying CAC,
which generates a summed score of all calcified
coronary lesions, reflecting the product of each lesion
area and a density (peak attenuation) weighting
factor.11 CAC is embedded in the current American
College of Cardiology and American Heart Association
primary prevention guidelines and frequently used to
improve clinical risk prediction,12,13 and deeper
analysis of CAC features, such as volume, mass,
density, number of involved segments and arteries,
and even radiomics-based assessment of complex
radiographic features, have been shown to further
improve the predictive value of CAC.14-18 However, the
measurement of CAC has traditionally been limited to
specialized, ECG-gated cardiac CT scans, requiring
considerable radiologic expertise and manual effort,
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and the feasibility and utility of automated CAC quantitation
from non–ECG-gated, nonrespiratory-gated (free breath-
ing) radiotherapy planning CT scans is unknown.

Recently, deep learning (DL) has demonstrated significant
progress in image recognition tasks, enhancing automated
evaluation of complex patterns and allowing more unbiased
extraction of quantitative imaging features. Convolutional
neural networks, frequently trained on millions of photo-
graphic images, have been successfully implemented
through transfer learning to oncology images to analyze
disease states and predict outcomes.19-22 Indeed, DL in
medical imaging can perform complex tasks, which have
only been feasible in the past few years. Notably, patients
with lung cancer undergo a multitude of high-resolution
imaging studies as part of oncologic standard of care, which
can be repurposed for biometric measurements, including
cardiovascular risk assessment.

The primary objective of the current study was to quantify
CAC from non–ECG-gated, nonrespiratory-gated (free
breathing) radiotherapy planning CT scans in patients with
locally advanced non–small-cell lung cancer using a pre-
viously validated automated DL model trained on ECG-
gated cardiovascular medical imaging and validated in
non-ECG, respiratory-gated low-dose lung cancer screen-
ing CT scans.23 Our goal was to quantify CAC and assess
whether elevated DL-CAC at the time of radiotherapy
planning is a predictor of all-cause mortality (ACM) and
MACEs, adjusting for traditional lung cancer and cardio-
vascular prognostic factors.

METHODS

Patient Population

This was a retrospective study of 748 consecutive patients
with locally advanced lung cancer treated with thoracic
radiotherapy at Dana-Farber Cancer Institute (DFCI),
Brigham and Women’s Hospital (BWH), and DFCI/BWH at
Milford Regional Medical Center between November 1998

and January 2014. Eligible patients included those with an
available nonintravenous contrast radiotherapy planning
CT and verified dose-volume histogram. Participants with
missing CT data, intravenous contrast enhancement, in-
compatible slice thickness, or scans in which heart auto-
segmentation failed were excluded, resulting in 428 eligible
participants (Fig 1). This study was approved by the DFCI/
Harvard Cancer Center Institutional Review Board with a
waiver of consent.

CONTEXT

Key Objective
To quantify coronary artery calcium (CAC) from radiotherapy planning computed tomography (CT) scans in patients with

locally advanced lung cancer using a previously validated automated deep learning model and assess whether elevated
CAC at the time of radiotherapy is associated with increased risk of mortality.

Knowledge Generated
In this proof-of-concept study, CAC was effectively measured from routinely acquired radiotherapy planning CT scans in

patients with locally advanced lung cancer using an automated deep learning model. Elevated CAC, as predicted by the
model, was associated with an increased risk of mortality, adjusting for lung cancer and cardiovascular prognostic factors.

Relevance
These findings support further validation of applying this approach to routinely acquired radiotherapy planning CT scans to

take full advantage of the potentially valuable, but currently untapped, imaging information for automated cardiac risk
stratification in patients with cancer.

Patients with LA-NSCLC 
treated with radiotherapy 

(n = 748)

Radiotherapy planning CT 
and DVH available 

(n = 701)

Radiotherapy planning CT 
unavailable (n = 47)

Noncontrast planning CT 
(n = 464)

Planning CT with IV contrast 
(n = 237)

Final cohort with high- 
quality noncontrast 

planning CT (n = 428)

Planning CT with failed 
segmentation and/or incompatible 

slice thickness (n = 36)

FIG 1. Patient selection criteria. Schematic showing eligible
patients included for deep learning coronary artery calcium
analysis. CT, computed tomography; DVH, dose-volume
histogram; IV, intravenous; LA-NSCLC, locally advanced
non-small cell lung cancer.
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Treatment and Clinical Outcomes

Oncologic treatment included curative-intent radiotherapy
plus chemotherapy and/or surgery for patients with 2010
American Joint Committee on Cancer stage II (medically
inoperable or unresectable) or III non–small-cell lung can-
cer. Radiotherapy was planned using Varian Eclipse (Varian
Medical Systems Inc, Palo Alto, CA) using 3-dimensional
conformal radiotherapy or intensity-modulated radiotherapy
techniques (excluding patients treatedwith stereotactic body
radiotherapy). Radiotherapy dose to the heart was deter-
mined on the basis of heart volumes delineated manually as
previously reported.4,7,24 Baseline cardiac risk factors,
medical history, comorbidities, and postradiotherapy MACEs
and death were assessed by detailedmanual medical record
review as previously described.4 MACE included the cate-
gories of cardiac death, unstable angina, myocardial in-
farction, heart failure hospitalization or urgent visit, and
coronary revascularization25 and was defined as occurring
after the start of radiotherapy or ≥ 30 days postoperatively
(when applicable).

Deep Learning–Based Coronary Calcium Measurement

Eligible patients underwent non–ECG-gated, nonrespiratory-
gated (free breathing) helical CT simulation (General Electric
Medical Systems, Milwaukee, WI) with slice distances ≤
3.0 mm. The DL convolutional neural network CAC algo-
rithm was previously trained and tuned on 1,636 ECG-
gated CT scans from the Framingham Heart Study,
manually segmented by expert readers, and consisted of
three consecutive DL networks for segmentation.23 Inde-
pendent testing and validation was performed on 20,084
CT scans from four different clinical trial cohorts, including
the Framingham Heart Study (without overlap with the
training cohort; n = 663), the National Lung Screening Trial
(n = 14,959), the ProspectiveMulticenter Imaging Study for
Evaluation of Chest Pain (PROMISE) trial (n = 4,021), and
the Rule out Myocardial Infarction using Computer-
Assisted Tomography II (ROMICAT-II) trial (n = 441).
Plaques≥ 1 cubic millimeter were volumetrically measured
and multiplied by a maximum plaque density factor to
generate an Agatston-like DL-CAC score in a fully auto-
mated fashion.11,24 Risk groups were assigned on the basis
of DL-CAC score, defined as DL-CAC = 0 (very low risk) and
DL-CAC ≥ 1 (elevated risk).

Statistical Analysis

The distribution of clinical characteristics was reported and
compared using descriptive statistics. Although continuous
covariates were evaluated using a Wilcoxon rank-sum test,
categorical covariates were compared using a Fisher’s exact
test. Kaplan-Meier estimates of ACM were calculated and
graphically displayed, stratified by DL-CAC risk group, with
survival estimates compared using a two-sided log-rank
P value. The cumulative incidence estimates of MACEs
were calculated, accounting for noncardiac death as a
competing risk and compared using a two-sided Gray’s

P value.26 Univariable and multivariable Cox regressions27

were performed to assess whether DL-CAC was associated
with ACM and MACE, adjusting for lung cancer and car-
diovascular factors. For these models, time zero was the start
of radiotherapy and concluded at the date of death. For the
above analyses, a two-sided P ≤ .05 was considered sta-
tistically significant. Stata version 16.1 (StataCorp LLC, Col-
lege Station, TX) statistical software was used for all analyses.

RESULTS

Clinical Characteristics

By DL-CAC risk group, 38.6% (n = 165) had very low risk
(DL-CAC = 0) and 61.5% (n = 263) had elevated risk (DL-
CAC ≥ 1). Patients with elevated DL-CAC (≥ 1 v 0) were
more likely to be older (median age 69 v 59 years; P ,
.001), male (56.3% v 43.6%; P = .007), with greater
smoking history (50 v 40 pack-years; P , .001), and more
likely to harbor cardiovascular disease risk factors such as
hypertension (62.7% v 33.9%; P , .001), hyperlipidemia
(56.3% v 31.5%; P, .001), and diabetes mellitus (17.5%
v 5.5%; P , .001; Table 1). Half (50.2%) of patients with
DL-CAC ≥ 1 had known coronary heart disease (CHD) or
CHD equivalent (eg, peripheral vascular disease, stroke)
versus 15.8% of those with DL-CAC = 0. Of those without
known CHD, the median 10-year Framingham cardiovas-
cular risk score was higher in patients with DL-CAC ≥ 1
versus DL-CAC = 0 (23.1% v 11.9%; P , .001), respec-
tively. There was no difference in mean heart radiotherapy
dose delivered between DL-CAC ≥ 1 versus DL-CAC = 0
(11.9 Gy v 11.5 Gy; P = .83).

ACM Analysis

Themedian follow-up was 18.1 months (interquartile range
[IQR], 7.9-45.1 months) overall and 53.0 months (IQR,
33.1-80.3 months) in patients alive. There were 323
deaths, of which 72.1% (n = 233) were from lung cancer,
8.4% (n = 27) from known noncancer causes, 5.0% (n =
16) from known cardiac-specific causes, and 22.9% (n =
74) from unknown causes. The median time to death was
20.8 months (IQR, 9.0-46.4 months), with an overall 2-year
ACM estimate of 51.8% (95% CI, 47.2 to 56.7).

Adjusting for lung and cardiovascular prognostic factors,
including age, sex, performance status, smoking, unin-
tentional weight loss, cancer stage, histology, hypertension,
hyperlipidemia, and diabetes, as well as mean heart ra-
diotherapy dose, there was an increased risk of ACM with
DL-CAC≥ 1 versus DL-CAC = 0 (209 v 114 deaths; hazard
ratio [HR], 1.51; 95% CI, 1.01 to 2.26; P = .04) (Table 2),
with 2-year estimates of 56.2% (95% CI, 50.3 to 62.3)
versus 45.4% (95% CI, 38.2 to 53.4), respectively (Fig 2).
There was no statistically significant interaction between
DL-CAC and mean heart radiotherapy dose (P = .31).

MACE Analysis

The median time to first MACE was 19.4 months (IQR, 8.2-
44.3 months) with a 2-year cumulative incidence estimate

Deep Learning Coronary Calcium in Lung Cancer
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TABLE 1. Patient and Treatment Characteristics
Characteristic CAC = 0 (n = 165) CAC ‡ 1 (n = 263) P

Age, median (IQR, years) 59.0 (54.0-65.0) 69.0 (61.0-76.0) ,.001

Sex

Female 93 (56.4) 115 (43.7)

Male 72 (43.6) 148 (56.3) .007

ECOG performance status

0-1 148 (89.7) 221 (84.0)

2 14 (8.5) 31 (11.8)

3-4 3 (1.8) 11 (4.2) .23

Unintentional weight loss 57 (34.6) 87 (33.1) .75

Tobacco

Never 22 (13.3) 15 (5.7)

Current 76 (46.1) 94 (35.7)

Former 67 (40.6) 154 (58.6) ,.001

Pack-years, median (IQR) 40.0 (27.0-50.0) 50.0 (32.5-75.0) ,.001

Medical comorbidities

Hypertension 56 (33.9) 165 (62.7) ,.001

Hyperlipidemia 52 (31.5) 148 (56.3) ,.001

Diabetes mellitus 9 (5.5) 46 (17.5) ,.001

Peripheral vascular disease 5 (3.0) 31 (11.8) .001

Stroke 3 (1.8) 5 (1.9) .63

Coronary artery disease 19 (11.5) 108 (41.1) ,.001

Myocardial infarction 8 (4.9) 43 (16.4) ,.001

Congestive heart failure 3 (1.8) 32 (12.2) ,.001

CHD 26 (15.8) 132 (50.2) ,.001

Framingham Riska n = 139 CHD nega n = 131 CHD nega

Median, % (IQR) 11.9 (7.7-21.8) 23.1 (12.7-32.1) ,.001

Low (, 10%) 55 (39.57) 20 (15.3)

Moderate (10%-20%) 39 (28.1) 21 (16.0)

High-risk (. 20%) 45 (32.4) 90 (68.7) ,.001

NSCLC clinical overall stage

II 8 (4.9) 38 (14.5)

IIIA 91 (55.2) 144 (54.8)

IIIB 66 (40.0) 81 (30.8) .003

NSCLC clinical nodal stage

N0-1 27 (16.4) 83 (31.6)

N2-3 138 (83.6) 180 (68.4) ,.001

NSCLC histology

Adenocarcinoma 80 (48.5) 109 (41.1)

Squamous cell carcinoma 40 (24.2) 95 (36.1)

Others 45 (27.3) 59 (22.4) .06

Radiotherapy dose (Gy)

Prescribed dose, median (IQR) 64.0 (54.0-66.0) 66.0 (60.0-66.0) .49

Mean whole heart dose, median 11.0 (5.5-17.0) 12.2 (5.0-19.4) .45

Mean lung dose, median 14.4 (10.9-17.0) 14.2 (10.6-17.0) .85

NOTE. Values are listed as No. (%) unless otherwise specified. The distributions of categorical covariates were compared using the Fisher’s exact test,
whereas continuous variables were compared using the Wilcoxon rank-sum test.
Abbreviations: CAC, coronary artery calcium; CHD, coronary heart disease; ECOG, Eastern Cooperative Oncology Group; IQR, interquartile range; NSCLC,

non–small-cell lung cancer.
aFramingham Risk assessed only among the n = 270 CHD-negative patients.
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of 5.0% (95%CI, 3.2 to 7.3). In total, 43 patients developed
at least oneMACE, includingmyocardial infarction (n = 18),
heart failure hospitalization or urgent visit (n = 13), coronary
revascularization (n = 12), unstable angina (n = 2), and
cardiac death (n = 16).

Adjusting for age, sex, unintentional weight loss, and his-
tology, there was a trend toward increased risk of MACE in
patients with DL-CAC ≥ 1 versus DL-CAC = 0 (32 v 11
MACE; HR, 1.80; 95% CI, 0.87 to 3.74; P = .11), with 2-
year MACE estimates of 7.3% (95% CI, 4.6 to 10.9) versus
1.2% (0.2 to 4.0), respectively (Appendix Table A1, Fig 3).
Among patients without baseline CHD, adjusting for age,
sex, histology, and mean heart radiotherapy dose, there
was no significant difference in the risk of MACE in patients
with DL-CAC ≥ 1 versus DL-CAC = 0 (7 v 9 MACEs; HR,
0.90; 95% CI, 0.37 to 2.24; P = .83), although MACE
numbers were limited (n = 16; Appendix Table A2).

DISCUSSION

In this proof-of-concept study, DL-CAC was effectively mea-
sured from routinely acquired, non-ECG and nonrespiratory-
gated (free breathing) radiotherapy planning CT scans in
patients with locally advanced lung cancer using an au-
tomated DL model. This model was trained on ECG-gated
cardiovascular imaging and previously validated in more
than 20,000 patients from four independent clinical trial
cohorts,23 including 14,959 participants from the low-dose
chest CT arm of the National Lung Screening Trial with
respiratory-gated (single, maximal breath-hold), non–ECG-
gated CT scans.28,29 We observed that elevated DL-CAC
was associated with an increased risk of ACM, adjusting for
lung cancer and cardiovascular prognostic factors. There
was a trend toward increased risk of MACEs with elevated
DL-CAC, although this did not reach statistical significance
in the setting of limited events. Together, these findings

support further validation of applying this approach to
routinely acquired radiotherapy planning CT scans to take
full advantage of the potentially valuable, but currently
untapped, imaging information for automated cardiac risk
stratification in patients with cancer.

Strengths of this study are that it represents, to our best
knowledge, the first report of opportunistic quantitation of
CAC in a high-risk population using a validated DL system
and the first study observing that elevated DL-predicted
CAC is associated with an increased risk of mortality in
patients with lung cancer. Notably, the application of au-
tomated DL methods to routine clinical imaging for car-
diovascular risk prediction has been demonstrated from
images such as retinal fundus photographs and lung
cancer screening CT scans.23,30-32 However, the use of
routine oncologic imaging, such as radiotherapy planning
CT scans, for cardiovascular risk prediction has been less
well characterized. Importantly, DL studies analyzing CAC
from various cardiac CT and chest CT protocols have
demonstrated success,33 including DL models specifically
measuring CAC from breast cancer radiotherapy CT
scans.34 For example, the ongoing Bragatston multicenter
cohort study from the Netherlands uses automated DL-CAC
measurement to assess cardiovascular risk prediction.35

Together, these studies support the feasibility of applying
DL methods to automate complex assessments of medical
imaging, such as CAC quantitation, highlighting the po-
tential to improve upon existing cardiac risk stratification
methods from standard-of-care imaging.

Practically, our observations support the assessment of
CAC from radiotherapy planning CT scans in patients with
lung cancer to improve cardiac risk stratification. Indeed,
we previously reported that these high cardiovascular
risk patients are often incompletely medically optimized
with guideline-based antilipid therapy,3 suggesting that
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FIG 2. ACM estimates stratified by the DL-CAC group. ACM es-
timates stratified by DL-CAC score ≥ 1 versus DL-CAC 0 (log-rank
P = .006). ACM, all-cause mortality; DL-CAC, deep learning cor-
onary artery calcium; RT, radiation therapy.
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FIG 3. MACE estimates stratified by the DL-CAC group.MACE estimates
stratified by DL-CAC ≥ 1 versus DL-CAC 0 (Gray’s P = .055). DL-CAC,
deep learning coronary artery calcium; MACE, major adverse cardiac
event; RT, radiation therapy.
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identification of CAC on lung cancer workup or radiotherapy
planning imaging in the absence of known CAD should alert
the treating clinicians to prompt a cardiovascular workup,
including calculation of the 10-year risk of atherosclerotic
cardiovascular disease and determination of statin therapy
and optimized medical management.36 Furthermore, car-
diac radiotherapy dose,4 particularly dose exposure to the
left anterior descending coronary artery,7,24 is associated
with increased risk of MACE and mortality and is a po-
tentially modifiable risk factor during the radiotherapy
planning process. Therefore, cardiovascular risk stratifi-
cation via automated CAC calculation at the point of care
(eg, at the time of radiotherapy planning) may facilitate

multidisciplinary medical management and personalized
radiotherapy planning to optimize cardiac risk reduction in
high-risk patients.

The application of advanced machine learning methods,
such as DL, to analyze CT data beyond the initial clinical
indication is a rich methodology with promising scientific
potential. For instance, enhanced body composition profiling,
including quantitative assessment of skeletal muscle, visceral
and subcutaneous adipose, liver fat, and bone mineral
density, has been linked with metabolic, cardiovascular, and
cancer outcomes.37-40 As CT scans are standard-of-care
imaging for lung cancer workup, radiotherapy planning

TABLE 2. Cox Regression Analysis for All-Cause Mortality

Covariable No. of Patients No. of ACD

Univariable Multivariable

HR (95% CI) P AHR (95% CI) P

Age, years 428 323 1.01 (1.00 to 1.03) .008 1.01 (1.00 to 1.02) .08

Sex

Female 208 150 1.0 (referent) 1.0 (referent)

Male 220 173 1.19 (0.96 to 1.48) .12 1.10 (0.87 to 1.38) .43

ECOG performance status

0-1 369 270 1.0 (referent) 1.0 (referent)

2-4 59 53 1.79 (1.33 to 2.41) ,.001 1.72 (1.25 to 2.37) .001

Smoking

Never 37 26 1.0 (referent) 1.0 (referent)

Ever 391 297 1.43 (0.96 to 2.14) .08 1.16 (0.77 to 1.76) .47

Unintentional weight loss 144 113 1.35 (1.07 to 1.70) .01 1.30 (1.03 to 1.65) .03

Overall stage

II 46 36 1.0 (referent) 1.0 (referent)

III 382 287 1.02 (0.72 to 1.44) .93 0.92 (0.57 to 1.49) .75

Nodal stage

0-1 110 74 1.0 (referent) 1.0 (referent)

≥ 2 318 249 1.26 (0.97 to 1.64) .08 1.59 (1.12 to 2.26) .009

Histology

Adenocarcinoma 189 142 1.0 (referent) 1.0 (referent)

Nonadenocarcinoma 239 181 1.13 (0.90 to 1.41) .29 1.01 (0.80 to 1.27) .93

Hypertension 221 170 1.08 (0.97 to 1.35) .47 0.90 (0.70 to 1.16) .41

Hyperlipidemia 200 152 1.01 (0.82 to 1.26) .90 0.92 (0.73 to 1.17) .49

Diabetes 55 45 1.17 (0.85 to 1.61) .33 1.15 (0.82 to 1.61) .42

CAC

DL-CAC = 0 165 114 1.0 (referent) 1.0 (referent)

DL-CAC ≥ 1 263 209 1.38 (1.09 to 1.73) .006 1.51 (1.01 to 2.26) .04

Radiotherapy dose

Mean heart dose (per Gy) 428 323 1.01 (1.00 to 1.02) .02 1.02 (1.00 to 1.04) .02

Interactiona

DL-CAC × mean heart dose 428 323 1.00 (0.97 to 1.02) .78 0.99 (0.97 to 1.01) .31

Abbreviations: ACD, all-cause death; AHR, adjusted hazard ratio; CAC, coronary artery calcium; DL, deep learning; ECOG, Eastern Cooperative Oncology
Group; HR, hazard ratio.

aInteraction term between CAC (categorical variable) and heart radiotherapy dose (continuous variable).
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and delivery, and follow-up surveillance, these patients
harbor a wealth of 3-dimensional, high-resolution volumetric
imaging, which can be used to train DL models to predict
outcomes and additionally repurposed for assessment of
biometrics (both at baseline and serially).22,41 Together, these
findings represent a unique opportunity to expand the value
of routine oncologic imaging data by adding an additional
layer of automatically extracted prognostic information. This
information has the potential to improve cardiovascular risk
prediction and help mitigate the morbidity and health care
burden of radiotherapy-associated cardiac toxicity without
increasing provider workload or health care costs. Moreover,
predictive models and methodologies such as these have the
potential to be retrained and adapted to a variety of malig-
nancies and cancer therapies, which could dramatically alter
cancer-related toxicity prediction.

Potential limitations of this study include its retrospective
nature and cohort size precluding more nuanced stratifi-
cation of CAC risk groups in both primary and secondary
prevention cohorts. Indeed, the necessity to eliminate
contrast-enhanced CT scans reduced our cohort size,
thereby limiting absolute MACE numbers and reducing
overall power for this analysis and the ability to more broadly
incorporate clinical metadata, for which a larger and ex-
panded data set is warranted. Furthermore, the exclusion of
contrast-enhanced CT scans might have introduced bias,
as there may be unaccounted clinical differences among
these patients. Together, these limitations support further
studies evaluating the feasibility of analyzing CAC from
specific phases of a respiratory 4-dimensional CT (which

are routinely obtained without contrast). In addition, the DL-
CAC algorithm was directly applied to the nonrespiratory-
gated radiotherapy planning CT scans without retraining,
which may affect performance and potentially impart bias
toward artificially high CAC scores given the added motion
artifact. Indeed, similar work in breast cancer radiotherapy
planning CT scans demonstrated good, but slightly higher
reliability and proportion of agreement of CAC scores be-
tween automated andmanual expert scoring in breath-hold
(v free breathing) scans, suggesting that respiratory-gated
scans may harbor an advantage when feasible.34 Finally, it
should be noted that the use of CAC in the general pop-
ulation is currently validated using cardiac-gated CT scans
with manual segmentation, and we do not have CAC scores
calculated in this gold standard fashion to serve as a
baseline comparator in our cohort. Finally, we did not
assess longitudinal CAC changes from baseline images in
comparison with surveillance and follow-up imaging, which
would provide additional insight into more specific
radiotherapy-associated cardiac risk assessment.

In conclusion, our proof-of-concept study strongly suggests
that a previously developed DL system trained on cardio-
vascular imaging can be repurposed and applied to cancer-
specific, radiotherapy planning CT scans to generate a
quantitative CAC score that is associated with the risk of
mortality, despite the high competing risk of lung cancer
death. Together, these observations illustrate a significant
potential to apply this approach for automated cardiac risk
stratification before the initiation of cancer therapy.
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35. EmausMJ, Išgum I, van Velzen SGM, et al: Bragatston study protocol: Amulticentre cohort study on automated quantification of cardiovascular calcifications on
radiotherapy planning CT scans for cardiovascular risk prediction in patients with breast cancer. BMJ Open 9:e028752, 2019

36. Amin NP, Kim SM, Lasio G, et al: Incidental coronary artery calcium on breast radiation therapy planning scans identifies patients for cardiac preventive therapy.
Am J Clin Oncol 43:826-831, 2020

37. Martin L, Birdsell L, Macdonald N, et al: Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body
mass index. J Clin Oncol 31:1539-1547, 2013

38. Caan BJ, Cespedes Feliciano EM, Prado CM, et al: Association of muscle and adiposity measured by computed tomography with survival in patients with
nonmetastatic breast cancer. JAMA Oncol 4:798-804, 2018

39. Brown JC, Caan BJ, Prado CM, et al: Body composition and cardiovascular events in patients with colorectal cancer: A population-based retrospective cohort
study. JAMA Oncol 5:967-972, 2019

40. Pickhardt PJ, Pooler BD, Lauder T, et al: Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications.
Ann Intern Med 158:588-595, 2013

41. Xu Y, Hosny A, Zeleznik R, et al: Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 25:3266-3275, 2019

n n n

Deep Learning Coronary Calcium in Lung Cancer

JCO Clinical Cancer Informatics 9

D
ow

nl
oa

de
d 

fr
om

 a
sc

op
ub

s.
or

g 
by

 M
aa

st
ri

ch
t U

ni
ve

rs
ity

 o
n 

A
pr

il 
2,

 2
02

4 
fr

om
 1

37
.1

20
.1

47
.1

20
C

op
yr

ig
ht

 ©
 2

02
4 

A
m

er
ic

an
 S

oc
ie

ty
 o

f 
C

lin
ic

al
 O

nc
ol

og
y.

 A
ll 

ri
gh

ts
 r

es
er

ve
d.

 

http://arxiv.org/abs/2008.06997


APPENDIX

TABLE A1. Fine and Gray Regression Analysis for MACEs

Covariable No. of Patients No. of MACEs

Univariable Multivariable

HR (95% CI) P SHR (95% CI) P

Age, years 428 43 1.02 (0.99 to 1.05) .25 1.01 (0.98 to 1.05) .50

Sex

Female 208 22 1.0 (reference) 1.0 (reference)

Male 220 21 0.90 (0.50 to 1.63) .73 1.05 (0.55 to 2.01) .87

ECOG performance status

0-1 369 37 1.0 (reference)

≥ 2 59 6 1.00 (0.42 to 2.36) 1.0

Smoking

Never 37 4 1.0 (reference)

Ever 391 39 0.94 (0.33 to 2.67)

Unintentional weight loss 144 8 0.45 (0.21 to 0.96) .039 0.45 (0.21 to 0.98) .045

Overall stage

II 46 6 1.0 (reference)

III 382 37 0.77 (0.33 to 1.79) .55

Nodal stage

0-1 110 11 1.0 (reference)

≥ 2 318 32 0.97 (0.49 to 1.92) .93

Histology

Adenocarcinoma 189 25 1.0 (reference) 1.0 (reference)

Nonadenocarcinoma 239 18 0.57 (0.31 to 1.04) .07 0.55 (0.30 to 1.03) .06

Mean heart RT dose, Gy 428 43 1.01 (0.98 to 1.03) .63

CAC

DL-CAC = 0 165 11 1.0 (reference) 1.0 (reference)

DL-CAC ≥ 1 263 32 1.93 (0.99 to 3.78) .055 1.80 (0.87 to 3.74) .11

Abbreviations: CAC, coronary artery calcium; DL, deep learning; ECOG, Eastern Cooperative Oncology Group; HR, hazard ratio; MACEs, major
adverse cardiac events; RT, radiotherapy; SHR, subdistribution hazard ratio.
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TABLE A2. Fine and Gray Regression Analysis for MACEs in Patients Without Coronary Heart Disease

Covariable No. of Patients No. of MACEs

Univariable Multivariable

HR (95% CI) P SHR (95% CI) P

Age, years 270 16 1.00 (0.95 to 1.05) .92 1.01 (0.95 to 1.07) .79

Sex

Female 139 10 1.0 (reference) 1.0 (reference)

Male 131 6 0.64 (0.24 to 1.75) .39 0.89 (0.36 to 2.20) .80

ECOG performance status .60

0-1 244 15 1.0 (reference)

≥ 2 26 1 0.59 (0.08 to 4.20)

Smoking

Never 32 2 1.0 (reference)

Ever 238 14 0.93 (0.21 to 4.07) .92

Unintentional weight loss 94 3 0.44 (0.13 to 1.54) .20

Overall stage

II 21 1 1.0 (reference)

III 249 15 1.33 (0.19 to 9.16) .78

Nodal stage

0-1 63 4 1.0 (reference)

≥ 2 207 12 0.83 (0.27 to 2.59) .75

Histology

Adenocarcinoma 126 13 1.0 (reference) 1.0 (reference)

Nonadenocarcinoma 144 3 0.21 (0.06 to 0.73) .01 0.16 (0.04 to 0.59) .006

Mean heart RT dose, Gy 270 16 1.04 (1.01 to 1.06) .01 1.06 (1.02 to 1.10) .004

CAC

DL-CAC = 0 139 9 1.0 (reference) 1.0 (reference)

DL-CAC ≥ 1 131 7 0.84 (0.31 to 2.23) .72 0.90 (0.37 to 2.24) .83

Abbreviations: CAC, coronary artery calcium; DL, deep learning; ECOG, Eastern Cooperative Oncology Group; HR, hazard ratio; MACEs, major adverse
cardiac events; RT, radiotherapy; SHR, subdistribution hazard ratio.
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