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a b s t r a c t 

Background and Objectives: Bedside chest radiographs (CXRs) are challenging to interpret but impor- 

tant for monitoring cardiothoracic disease and invasive therapy devices in critical care and emergency 

medicine. Taking surrounding anatomy into account is likely to improve the diagnostic accuracy of artifi- 

cial intelligence and bring its performance closer to that of a radiologist. Therefore, we aimed to develop 

a deep convolutional neural network for efficient automatic anatomy segmentation of bedside CXRs. 

Methods: To improve the efficiency of the segmentation process, we introduced a "human-in-the-loop" 

segmentation workflow with an active learning approach, looking at five major anatomical structures in 

the chest (heart, lungs, mediastinum, trachea, and clavicles). This allowed us to decrease the time needed 

for segmentation by 32% and select the most complex cases to utilize human expert annotators effi- 

ciently. After annotation of 2,0 0 0 CXRs from different Level 1 medical centers at Charité – University 

Hospital Berlin, there was no relevant improvement in model performance, and the annotation process 

was stopped. A 5-layer U-ResNet was trained for 150 epochs using a combined soft Dice similarity coeffi- 

cient (DSC) and cross-entropy as a loss function. DSC, Jaccard index (JI), Hausdorff distance (HD) in mm, 

and average symmetric surface distance (ASSD) in mm were used to assess model performance. External 

validation was performed using an independent external test dataset from Aachen University Hospital 

( n = 20). 

Results: The final training, validation, and testing dataset consisted of 1900/50/50 segmentation masks 

for each anatomical structure. Our model achieved a mean DSC/JI/HD/ASSD of 0.93/0.88/32.1/5.8 for the 

lung, 0.92/0.86/21.65/4.85 for the mediastinum, 0.91/0.84/11.83/1.35 for the clavicles, 0.9/0.85/9.6/2.19 for 

the trachea, and 0.88/0.8/31.74/8.73 for the heart. Validation using the external dataset showed an overall 

robust performance of our algorithm. 

Abbreviations: ASSD, average symmetric surface distance; CNN, convolutional neural network; CXR, chest radiograph; DSC, Dice similarity coefficient; HD, Hausdorff

distance; ICU, intensive care unit; JI, Jaccard index; PA, posterior-anterior view; SD, standard deviation. 
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Table 1 

Overview of manufacturers of the devices used for chest radiography in our study 

with the respective number of examinations. 

Manufacturer Number of exams % 

Canon Inc. 265 12% 

Carestream Health 9 0.4% 

FUJI Photo Film Co., ltd. 579 26.3% 

GE Healthcare 1 0.05% 

Kodak 1165 53% 

Philips Medical Systems 1 0.05% 

Siemens 180 8.2% 
hort abstract 

This study presents a novel real anatomy-based multi-label 

egmentation approach for automated anatomical prediction of 

he lungs, heart, clavicles, trachea, and mediastinum in bed- 

ide chest radiographs (CXRs). Segmentation efficiency was opti- 

ized using a human-in-the-loop approach with active learning, 

ncluding 2,0 0 0 anterior-posterior view bedside CXRs from dif- 

erent Level 1 medical centers. A 5-layer U-ResNet was trained 

or 150 epochs with combined soft Dice similarity coefficient 

DSC) and cross-entropy as a loss function. Model performance 

as evaluated based on DSC, Jaccard index (JI), Hausdorff dis- 

ance (HD) in mm, and average symmetric surface distance 

ASSD) in mm. The final training/validation/test dataset con- 

isted of 1,900/50/50 segmentation masks of each anatomi- 

al structure. Our model achieved a mean DSC/JI/HD/ASSD of 

.93/0.88/32.1/5.8 for the lungs, 0.92/0.86/21.65/4.85 for the medi- 

stinum, 0.91/0.84/11.83/1.35 for the clavicles, 0.9/0.85/9.6/2.19 for 

he trachea, and 0.88/0.8/31.74/8.73 for the heart. 

. Introduction 

Bedside chest radiographs (CXRs) are commonly used in the 

mergency department or intensive care unit (ICU) to aid diag- 

osis and disease management but are often difficult to interpret 

ue to limited image quality as they are usually taken under more 

hallenging conditions [1–3] . Given that bedside CXRs are often 

aken in critically ill patients, accurate diagnosis is of particular 

elevance, e.g., for monitoring cardiopulmonary diseases or deter- 

ining the location of invasive therapy devices [4–6] . 

Apart from image quality, the interpretation of bedside CXRs re- 

ies heavily on a thorough understanding of human anatomy. Radi- 

logists must have a detailed knowledge of the structures within 

he chest, including the bones, vessels, and organs, to ensure accu- 

ate interpretation. 

In clinical practice, deep learning approaches are emerging as 

dditional diagnostic tools for CXRs. Some models reach the expert 

evel in detecting thoracic abnormalities, e.g., pneumothorax, me- 

iastinal widening, pneumoperitoneum, pleural effusion, atelecta- 

is, fibrosis, cardiomegaly, or specific diseases such as SARS-CoV-2 

neumonia or tuberculosis [7–10] . Other applications include iden- 

ification of therapy devices or segmentation of anatomy [ 11 , 12 ].

onvolutional neural network (CNN) architectures proved particu- 

arly useful for these purposes [13–17] . In a recent study, the diag- 

ostic performance of 20 experienced radiologists was improved in 

02 of 127 clinical findings when the evaluation of CXRs was sup- 

orted by a comprehensive CNN model [18] . Most existing mod- 

ls are based on CXRs obtained in the standing or sitting position 

nd do not consider bedside thoracic radiography, where heteroge- 

eous imaging features and common thoracic pathologies compli- 

ate anatomy delineation. 

While previous deep learning approaches succeeded in classifi- 

ation tasks, they were not developed taking into account anatom- 

cal context. 

Using a computer-aided human-in-the-loop segmentation 

orkflow with an active learning approach to improve segmen- 

ation efficiency, we here present the first multi-label CNN-based 

rchitecture for automatic prediction and segmentation of five 
2 
computer-aided segmentation method with active learning, our anatomy-

le performance to state-of-the-art approaches. Instead of only segmenting

f the organs, as previous studies did, a closer approximation to actual

ting along the natural anatomical borders. This novel anatomy approach

pathology models for accurate and quantifiable diagnosis. 

© 2023 Elsevier B.V. All rights reserved. 

ajor anatomical structures (lung, heart, trachea, mediastinum, 

nd clavicles) in bedside CXRs. 

The article is organized as follows: In the Materials and Meth- 

ds section, we present our dataset, approach, and statistical meth- 

ds and describe the external independent validation dataset. In 

he Results, we first present the segmentation performance in our 

ataset and show excellent and poor labeling results. We then re- 

ort the results for the external independent dataset. In the Dis- 

ussion, we provide an overview of the current state of the art 

n multi-label segmentation approaches for CXRs compared to our 

esults and discuss the potential benefits and limitations of our 

odel. 

. Materials and methods 

Ethics approval was granted by the Ethics Committee of Charité

University Hospital Berlin (EA4/042/20) in line with the Declara- 

ion of Helsinki, including a waiver of informed consent due to the 

etrospective design of the study. 

.1. Dataset and pre-processing 

Two thousand AP bedside CXRs from different level 1 medical 

enters at Charité – University Hospital Berlin obtained between 

009 and 2019 were randomly selected from our local PACS (Pic- 

ure Archiving and Communication System) and exported to an in- 

ospital server using DICOM (Digital Imaging and Communications 

n Medicine) format. Subsequently, all CXRs were anonymized us- 

ng Python (v. 3.8.13) with SimpleITK (v. 2.1.1). 

Bedside radiography devices from multiple manufacturers were 

sed for image acquisition (see Table 1 ), resulting in heterogeneous 

ixel sizes (1778 × 2092 to 3520 × 4280) and spacing (0.1 to 

.168 mm), as well as different gray levels (16 to 64 bit) for each 

adiograph. 

.2. Manual anatomical segmentation 

Manual segmentation was performed using 3D Slicer software. 

or each CXR, a 2D ground-truth mask was created for the heart, 

ungs, mediastinum, trachea, and clavicles and stored in NRRD 

Nearly Raw Raster Data) format. Segmentations were performed 

y two sixth-year medical students (LX, DS) and a fourth-year ra- 

iology resident (MW). Segmentation masks were then reviewed 

y two board-certified radiologists with six and seven years of ex- 

erience in chest radiology (LCA, KKB). For quality assurance, each 
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Fig. 1. Diagram of the human-in-the-loop approach used in our study to increase the speed and effectiveness of the human annotators. 
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natomical mask was finally reviewed by a board-certified radiol- 

gist with twelve or 20 years of experience and adjusted if neces- 

ary (JLV or SMN). 

.3. Computer-assisted anatomical segmentation 

To improve the efficiency of the segmentation process, a 

omputer-aided segmentation workflow was implemented using 

ONAILabel (v. 0.3.2) [19] . After segmentation of 500 images, a 

-Net model was trained to produce preliminary segmentations. 

he human annotators only corrected the preliminary segmenta- 

ions of the model. After 750, 10 0 0, 150 0, and 20 0 0 segmentations,

he model was re-trained to improve segmentation quality. After 

500 segmentations, the model already achieved subjectively ex- 

ellent performance on CXRs without pathological findings. There- 

ore, an active learning approach was adopted to identify and pri- 

ritize complex images in the dataset for annotation. To this end, 

he model made repeated predictions for individual CXR images 

ith random dropout applied to model weights. Based on the as- 

umption that complex CXRs have a higher individual prediction 

ariance, this allowed us to compute epistemic uncertainty and its 

se to identify potentially difficult CXRs. 

Fifty of the 500 most difficult CXRs were randomly selected 

s the test dataset, and the remaining images were included in 

he labeling workflow. Without this workflow, segmentation of 

 single CXR took b 2–8 min (mean ± standard deviation (SD): 

:23 ± 2:04 min), depending on the difficulty level. After imple- 

entation of this workflow, the mean annotation time decreased 

o 2:58 ± 1:23 min. Appendix A (Figure A.1) provides further de- 

ails on annotation times. The validation dataset consisted of 50 

andomly selected CXRs from the whole dataset. 

Fig. 1 provides a schematic overview of our human-in-the-loop 

orkflow. 

.4. Model training and post-processing 

Model training was performed using MONAI (v. 0.8.1) and Py- 

orch (v. 1.11.0). A 5-layer U-ResNet was trained for 150 epochs 

ith early stopping using a combination of Dice similarity coeffi- 

ient (DSC) and cross-entropy as loss function and monitoring the 

SC as a key metric [20] . During training, images were resized to 
3 
12 × 512 pixels, and a moving window of size 384 × 384 pix- 

ls was used to extract image subregions for training. A further 

ncrease in image resolution did not improve the key metric. Sev- 

ral image modifications, such as cropping, rotating, contrast, and 

rightness changes, were randomly applied to the images during 

raining. The resolution of the segmentation masks created by the 

odel was smaller than that of the original images, so resizing had 

o be applied to create overlays. As this resulted in stair-step arti- 

acts, median smoothing was applied to the resized segmentation 

asks. 

Training was performed on an Ubuntu 20.04 Workstation with 

MD Ryzen 

TM Threadripper TM 2970WX Processor (Advanced Micro 

evices, Santa Clara, California, United States), 64 GB of RAM, and 

4 GB VRAM Nvidia GeForce RTX 3090 (Nvidia, Santa Clara, Califor- 

ia, United States). For training, the learning rate was kept at 1e-3. 

 weight decay of 0.001 and a dropout of 0.1 were used during 

raining to regularize the model. 

For an exemplary illustration of the predicted segmentation 

asks, labels within the top and bottom 5% Dice scores were 

andomly selected. Semi-transparent contoured masks of the pre- 

icted and associated manually labeled masks were then created 

nd superimposed on the original image (see Appendix B). 

.5. Metrics and statistical analysis 

Python (v. 3.8.13) with MONAI (v. 0.8.1) and PyTorch (v. 1.11.0) 

ere used to read and process the radiographs and labels for eval- 

ation. Furthermore, R (v. 4.1.2), including the tidyverse (v. 1.3.1) 

ackage, was used for statistical analysis and the creation of box- 

lots and images. DSC, Jaccard Index (JI), Hausdorff distance in 

m (HD), and average symmetric surface distance in mm (ASSD) 

ere taken as metrics to report the performance achieved for each 

natomical structure [ 20 , 21 ]. Mean and SD, as well as median and

nterquartile range, were reported for each metric. Please refer to 

ppendix B for a detailed explanation of the evaluation, including 

ll necessary code. 

.6. Validation on an independent external dataset 

Our model was validated on an independent external test 

ataset consisting of 20 randomly selected bedside CXRs from the 
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Table 2 

Overview results of the median and mean Dice similarity coefficient (DSC), Jaccard index (JI), Hausdorff distance (HD), and average symmetric surface 

distance (ASSD) with interquartile range (IQR) or standard deviation (SD) for the predicted segmentation labels of the heart, lungs, mediastinum, 

trachea, and clavicles. 

Label DSC JI HD (mm) ASSD (mm) 

Median (IQR) Mean (SD) Median (IQR) Mean (SD) Median (IQR) Mean (SD) Median (IQR) Mean (SD) 

Heart 0.91 (0.07) 0.88 (0.07) 0.83 (0.12) 0.8 (0.1) 27.14 (22.46) 31.74 (16.62) 6.91 (5.4) 8.73 (4.79) 

Lungs 0.93 (0.03) 0.93 (0.02) 0.88 (0.05) 0.88 (0.04) 27.29 (15.72) 32.1 (17.57) 5.35 (2.04) 5.8 (2.78) 

Mediastinum 0.93 (0.05) 0.92 (0.05) 0.87 (0.09) 0.86 (0.08) 16.49 (15.02) 21.65 (13.14) 4.29 (3.65) 4.85 (3.7) 

Trachea 0.97 (0.09) 0.9 (0.16) 0.94 (0.15) 0.85 (0.19) 1.1 (7.86) 9.6 (16.67) 0.5 (1.34) 2.19 (4.48) 

Clavicles 0.92 (0.04) 0.91 (0.06) 0.86 (0.07) 0.84 (0.08) 9.07 (4.7) 11.83 (14.15) 1.18 (0.68) 1.35 (0.76) 
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evel 1 medical center at University Hospital Aachen. The imag- 

ng devices used were four mobile X-ray systems (Mobilett MIRA, 

iemens Healthcare, Erlangen, Germany), and images were ac- 

uired in seven surgical and three internal medicine ICUs. All CXR 

mages in this test set were 16-bit grayscale images with a spa- 

ial resolution of 2140 × 1760 pixels and 0.2 × 0.2 mm spacing. 

he images were labeled by a local radiologist with nine years of 

xperience in chest radiology (DT). Metrics described above were 

pplied to evaluate performance. 

. Results 

The final training dataset consisted of 1,900 bedside CXRs with 

anually segmented heart, trachea, lungs, mediastinum, and clav- 

cles. The validation and test datasets each included 50 labeled 

XRs. 

Of the 2,0 0 0 CXRs in this study, 812 (40.6%) were from female

atients, 1,170 (58.5%) were from male patients, and 18 (0.9%) from 

atients who did not wish to provide information. The mean age 

 ± SD) of female patients in our study was 63.5 ± 17.1 years at the 

ime of CXR examination. Males had a mean age of 63.0 ± 16.2 

ears. Patients who chose not to report their sex had a mean age 

f 56.4 ± 18.1 years. 

.1. Performance on the test dataset 

In the test dataset, the highest mean DSC and JI values for lung 

egmentation were 0.93/0.88, followed by 0.92/0.86 for the medi- 

stinum, 0.91/0.84 for the clavicles, 0.9/0.85 for the trachea, and 

.88/0.8 for the heart. There were outliers in segmentation per- 

ormance, particularly for the trachea and clavicles. When median 

SC and JI instead of means were considered, segmentation perfor- 

ance was best for the trachea at 0.97/0.94, followed by 0.93/0.88 

or the lung, 0.93/0.87 for the mediastinum, 0.92/0.86 for the clav- 

cle, and 0.91/0.83 for the heart. 

Mean HD and ASSD was 9.6/2.19 for the trachea, 11.83/1.35 

or the clavicles, 21.65/4.85 for the mediastinum, 31.74/8.73 for 

he heart, and 32.1/5.8 for the lungs. Again, for medians instead 

f means, the best segmentation performance was obtained for 

he trachea with an HD/ASSD of 1.1/0.5, followed by the clavicles 

ith 9.07/1.18, the mediastinum with 16.49/4.29, the heart with 

7.14/6.91, and the lung with 27.29/5.35. 

An overview of all metrics and their distributions is provided 

n Table 2 and Fig. 2 . Fig. 3 shows examples of the predicted labels

ithin the top 5% of the Dice score. In contrast, Fig. 4 shows radio-

raphs with a significant deviation of the predicted labels from the 

anually created segmentation masks. Additional image examples 

ith corresponding original and predicted masks can be found in 

he supplementary material (Appendix A, Figure A.2). 

.2. Performance on the external test dataset 

Validating our model on an independent external test dataset 

f 20 randomly selected ICU AP bedside CXRs resulted in 
4 
 mean DSC/JI/HD/ASSD of 0.92/0.86/25.04/5.77 for the lungs, 

.87/0.77/29.91/9.29 for heart, 0.86/0.76/27.53/8.57 for medi- 

stinum, 0.83/0.72/18.06/1.96 for clavicles, and 0.72/0.58/23.4/4.98 

or the trachea. Again, due to the high variance of the achieved 

erformance, it is advisable to consider medians, which were 

s follows: DSC/JI/HD/ASSD of 0.93/0.87/24.22/5.0 for the lungs, 

.88/0.78/29.14/8.99 for heart, 0.87/0.77/25.92/8.38 for medi- 

stinum, 0.85/0.74/13.47/1.86 for clavicles, and 0.73/0.57/23.05/3.83 

or the trachea. Overall, satisfactory performance was achieved for 

ach anatomical structure. Notably, tracheal segmentations devi- 

ted slightly from the results for our internal test dataset, while 

ll other results were highly comparable. 

Table 3 summarizes the results of the median and mean met- 

ics for each anatomical structure. Fig. 5 displays the distribution 

f each metric for the external test dataset. 

. Discussion 

We propose a multi-label segmentation model for identification 

f the true anatomical extent of the heart, lungs, trachea, clavicles, 

nd mediastinum on bedside CXRs. The solid performance on an 

ndependent external dataset underscores the model’s generaliz- 

bility. Furthermore, this study provides evidence for the effective- 

ess of combining computational human-in-the-loop approaches 

ith active learning. 

The best mean DSC/JI was obtained for the lungs, followed by 

he mediastinum, clavicles, trachea, and heart. Of note, we here 

sed more difficult-to-interpret bedside CXRs from different level 

 medical centers [6] . In addition, we aimed to approximate the 

rue size of the chest organs, rather than to segment only the 

on-overlapping parts, to obtain a more realistic architecture for 

natomical prediction. See Appendix A (Figure A.3) for an exam- 

le of a bedside CXR image delineating the complete lung versus 

ts visible portion only. Validation of our model on an indepen- 

ent, external test dataset of bedside CXRs yielded overall con- 

incing results, with only minor performance discrepancy in tra- 

heal prediction (mean DSC/JI of 0.72/0.57 versus 0.9/0.85). What 

ay have contributed to this comparatively lower DSC value is 

hat segmentation of the trachea is particularly challenging due to 

ow image contrast in the mediastinum. Furthermore, there is no 

lear anatomical boundary where the segmentation of the trachea 

hould end proximally and distally, which further contributes to 

ifferent segmentations by human readers. The latter may have led 

o observer bias in the test dataset, as the labeling technique may 

ave been different. 

We compared our results with the current state-of-the-art 

ulti-label segmentation approaches for at least three anatomical 

tructures in CXRs (please refer to Table 4 ). 

Notably, most approaches included segmentation of the heart, 

ungs, and clavicles [ 24 , 26-32 ] while only one model performed 

dditional segmentation of the trachea [22] . There is no compa- 

able multi-label model for mediastinum segmentation. Of all ap- 

roaches, the UNet_ResNeXt50_Masks + Contours model by Kholi- 
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Fig. 2. Boxplots displaying the distribution of the Dice similarity coefficient ( a ), Jaccard index ( b ), Hausdorff distance in mm ( c ), and average symmetric surface distance in 

mm ( d ) for the predicted segmentation labels of the heart (green plots), lungs (red plots), mediastinum (blue plots), trachea (yellow plots), and clavicles (orange plots). 
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vchenko et al. showed the highest DSC/JI for segmentation of the 

eart (0.97/0.93), lungs (0.99/0.97), and clavicles (0.95/0.90) [24] . 

or clavicles, the nnU-Net approach of Gaggion et al. achieved a 

imilar performance (DSC: 0.95/JI: 0.90) [32] . These results surpass 

ur metrics for the heart (DSC: 0.88/JI: 0.80), lungs (DSC: 0.93/JI: 

.88), and clavicles (DSC: 0.91/JI: 0.84). 
Table 3 

Overview of model performance on the external test dataset. Median and m

tance (HD), and average symmetric surface distance (ASSD) with interquartile

segmentation labels of the heart, lungs, mediastinum, trachea, and clavicles. 

Label DSC JI 

Median (IQR) Mean (SD) Median (IQR) Mean (SD

Heart 0.88 (0.06) 0.87 (0.05) 0.78 (0.09) 0.77 (0.0

Lungs 0.93 (0.03) 0.92 (0.03) 0.87 (0.05) 0.86 (0.0

Mediastinum 0.87 (0.04) 0.86 (0.05) 0.77 (0.07) 0.76 (0.0

Trachea 0.73 (0.15) 0.72 (0.11) 0.57 (0.19) 0.58 (0.1

Clavicles 0.85 (0.04) 0.83 (0.05) 0.74 (0.07) 0.72 (0.0

5 
However, regarding these performance metrics for anatomical 

eart and lung segmentation, it is important to point out that our 

odel approximates the true anatomical size compared to previ- 

us approaches, which focused on the borders of projection radio- 

raphy. In addition, the performance of other published works de- 

ends on the dataset examined, including variations in pathologies 
ean Dice similarity coefficient (DSC), Jaccard index (JI), Hausdorff dis- 

 range (IQR) or standard deviation (SD) are displayed for the predicted 

HD (mm) ASSD (mm) 

) Median (IQR) Mean (SD) Median (IQR) Mean (SD) 

7) 29.14 (13.98) 29.91 (10.45) 8.99 (3.48) 9.29 (3.32) 

4) 24.22 (9.17) 25.04 (8.0) 5.0 (2.35) 5.77 (1.71) 

7) 25.92 (11.16) 27.53 (9.37) 8.38 (4.64) 8.57 (2.94) 

3) 23.05 (14.88) 23.4 (12.99) 3.83 (2.96) 4.98 (3.48) 

7) 13.47 (9.76) 18.06 (11.51) 1.86 (0.43) 1.96 (0.51) 
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Fig. 3. Example series of chest radiographs within the top 5% of the Dice similarity coefficient (DSC) for at least one of the predicted segmentation masks. Notes: Upper 

rows in a ), b ), and c ) show overlaid semi-transparent manually created segmentation masks compared to the model’s predicted segmentations below each image for the 

heart (green), lungs (red), mediastinum (blue), trachea (yellow), and clavicles (orange). In the predicted masks, slight rim inhomogeneities can be occasionally observed. 
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nd image characteristics, making it difficult to compare different 

egmentation models in detail and identify state-of-the-art mod- 

ls for each anatomical structure [24] . Kholiavchenko et al. and 

aggion et al. reported their metrics on 247 CXRs of the pub- 

icly available JSRT database [ 24 , 25 , 32 ]. The JSRT database con-

ains 100 PA view standing CXRs of malignant nodules, 54 im- 

ges of benign lung nodules, and 93 images without pathology 

2048 × 2048 pixel size and 0.175 mm pixel spacing). By compari- 

on, our U-ResNet is based on a different dataset consisting of ICU 

edside CXRs, which are generally considered more challenging to 
6 
nterpret than standing CXRs because of the higher proportion of 

verlapping soft tissue, the higher frequency of pathologies, as well 

s poorer patient compliance [6] . Moreover, our model was trained 

n CXRs from different centers acquired with different x-ray ma- 

hines with consecutively heterogeneous pixel sizes and spacing as 

ell as different gray levels, which may have degraded model per- 

ormance. Finally, patient misplacement/rotation can also influence 

egmentation accuracy [24] . In support of this argument, other au- 

hors reported a decrease in their lung segmentation performance 

hen they applied their segmentation models to the public Mont- 
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Fig. 4. Selection of chest radiographs with a significant deviation of the predicted labels from the manually created segmentation masks. Notes: The brown arrows in a ), c ), 

and f ) indicate poorly delineated lungs, heart, and mediastinal borders in areas with compaction of soft tissue in the model-derived segmentation masks compared to the 

corresponding manual segmentations shown above. Image series b ) shows a dilated esophagus in the original radiograph (white arrow), which was predicted as part of the 

trachea by our model (white dotted arrow). The black arrow in d ) marks a peripherally inserted central catheter, which was predicted as part of the right clavicle by our 

model (black dotted arrow). In e ), especially the course of the upper trachea was more accurately predicted than initially labeled in the manual mask above. In contrast, the 

outlet of the left main bronchus is incomplete (blue arrow). The complete image series of the selected radiographs and additional images within the top and bottom 5% of 

the Dice similarity coefficient (DSC) are provided in Appendix A (Figure A.2). 
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omery dataset, which contains 58 of 138 CXRs with tuberculosis 

n standing PA view (4020 × 4892 or 4892 × 4020 pixel size and 

.0875 mm pixel spacing), instead of the JSRT dataset, where lung 

odules have little effect on the delineation of anatomical struc- 

ures [ 24 , 33 , 34 ]. 

Remarkably, our approach outperformed the only other avail- 

ble multi-label segmentation approach with trachea segmentation 

roposed by Pal et al., although they validated their approach on 

A standing CXRs of the ChestX-ray8 dataset instead of AP bedside 

mages as we did [ 22 , 23 ]. Of note, it can be beneficial to include

he prediction of tracheal or mediastinal anatomy in multi-label 
7 
egmentation models, e.g., when evaluating anatomical variations 

f the respective structures in the presence of concurrent diseases 

r when overlapping invasive therapeutic devices complicate man- 

al delineation. The additional prediction of anatomical structures 

s of particular importance for bedside CXRs, which are typically 

btained under poor image acquisition conditions, with patients 

aving various pathologies and invasive therapeutic devices, com- 

licating the visualization of anatomy. 

Our study has limitations. The different definition of anatom- 

cal areas used in this study limits the comparability with pre- 

ious work. Especially the hidden areas of the lungs are chal- 
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Fig. 5. Overview of the performance on the external test dataset. Boxplots displaying the distribution of the Dice similarity coefficient (a), Jaccard index (b), Hausdorff

distance in mm (c), and average symmetric surface distance in mm (d) for the predicted segmentation labels of the heart (green plots), lungs (red plots), mediastinum (blue 

plots), trachea (yellow plots), and clavicles (orange plots). 

Table 4 

Performance of the proposed model compared to current state-of-the-art deep learning multi-label segmentation approaches for at least three anatomical structures in chest 

radiographs. Bold values show the highest performance for each structure. 

Model Dataset Heart Lungs Mediastinum Trachea Clavicles 

DSC JI DSC JI DSC JI DSC JI DSC JI 

U-ResNet-5 (proposed model) Non-public # 0.88 0.80 0.93 0.88 0.92 0.86 0.90 0.85 0.91 0.84 

Attention UW-Net [22] ChestX-ray8 † [23] 0.81 0.68 ∗ 0.96 0.92 ∗ – – 0.81 0.68 ∗ 0.78 0.63 ∗

UNet_ResNeXt50_Masks + Contours [24] JSTR ‡ [25] 0.97 ∗ 0.93 0.99 ∗ 0.97 – – – – 0.95 ∗ 0.90 

InvertedNet with ELU [26] JSTR ‡ [25] 0.94 0.88 0.97 0.95 – – – – 0.93 0.87 

U-Net (VGG16) [27] JSTR ‡ [25] 0.95 0.91 0.98 0.96 – – – – 0.92 0.96 

Multi-task FCN [28] JSTR ‡ [25] 0.95 ∗ 0.90 0.98 ∗ 0.96 – – – – 0.93 ∗ 0.86 

X-Net + single-class [29] JSTR ‡ [25] 0.94 0.88 0.98 0.96 – – – – 0.94 0.88 

SegNet [30] JSTR ‡ [25] 0.94 0.90 0.98 0.96 – – – – 0.93 0.87 

U-Net single-class [31] JSTR ‡ [25] 0.95 0.90 ∗ 0.98 0.96 ∗ – – – – 0.94 0.88 ∗

nnU-Net [32] JSTR ‡ [25] 0.95 0.90 ∗ 0.98 0.96 ∗ – – – – 0.95 0.90 ∗

Notes: For authors introducing multiple approaches, the model with the best overall performance was chosen. DSC = Dice similarity coefficient. JI = Jaccard index. 
∗ = Values were calculated from the given metric. 
– = Not included for segmentation. 
# = Consisting of 2,0 0 0 anterior-posterior bedside chest radiographs. 
† = A subset of 200 posterior-anterior standing chest radiographs was used. 
‡ = Consisting of 247 posterior-anterior standing chest radiographs. 
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enging to segment for both human experts and the model, as 

o clear border is visible. This likely led to poorer performance 

etrics in our approach and limited comparability with published 

ata. Furthermore, we exclusively used bedside CXRs, in which 

he anatomical structures are more often overlaid with patholo- 

ies, and patients are more commonly in atypical positions, fur- 

her limiting the comparability with previous work. Third, there 

as just one ground-truth segmentation per image. However, mul- 

iple annotations by different readers would have been desirable 

o create more accurate segmentations and calculate inter-rater 

greement. Lastly, our external test dataset of 20 images is rel- 

tively small, which might make results more prone to random 

ariation. 

. Conclusions 

In conclusion, the contribution of our model to existing archi- 

ectures can be summarized as follows: 

First, our approach simultaneously segments several key 

natomical structures in bedside CXRs, including the heart, lungs, 

ediastinum, trachea, and clavicles, extending previous multi- 

abel segmentation models. Second, our approach is almost simi- 

ar in performance to existing state-of-the-art multi-label architec- 

ures, although it was developed on ICU AP bedside CXRs, includ- 

ng images acquired under challenging patient acquisition condi- 

ions, as well as heterogeneous imaging and disease characteris- 

ics. Third, our model approximates the true lung and heart size 

nstead of only segmenting their non-overlapping portions, pro- 

iding a more complex overall architecture for anatomical predic- 

ion. Finally, this study provides evidence for the effectiveness of 

ombining computational human-in-the-loop approaches with ac- 

ive learning, allowing for time- and cost-efficient use of human 

nnotators. 
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