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Body composition and lung 
cancer-associated cachexia in TRACERx

Cancer-associated cachexia (CAC) is a major contributor to morbidity and 
mortality in individuals with non-small cell lung cancer. Key features of 
CAC include alterations in body composition and body weight. Here, we 
explore the association between body composition and body weight with 
survival and delineate potential biological processes and mediators that 
contribute to the development of CAC. Computed tomography-based 
body composition analysis of 651 individuals in the TRACERx (TRAcking 
non-small cell lung Cancer Evolution through therapy (Rx)) study suggested 
that individuals in the bottom 20th percentile of the distribution of skeletal 
muscle or adipose tissue area at the time of lung cancer diagnosis, had 
significantly shorter lung cancer-specific survival and overall survival. This 
finding was validated in 420 individuals in the independent Boston Lung 
Cancer Study. Individuals classified as having developed CAC according 
to one or more features at relapse encompassing loss of adipose or muscle 
tissue, or body mass index-adjusted weight loss were found to have distinct 
tumor genomic and transcriptomic profiles compared with individuals 
who did not develop such features. Primary non-small cell lung cancers 
from individuals who developed CAC were characterized by enrichment of 
inflammatory signaling and epithelial–mesenchymal transitional pathways, 
and differentially expressed genes upregulated in these tumors included 
cancer-testis antigen MAGEA6 and m at rix m et al lo pr ot ei nases, such as 
ADAMTS3. In an exploratory proteomic analysis of circulating putative 
mediators of cachexia performed in a subset of 110 individuals from 
TRACERx, a significant association between circulating GDF15 and loss of 
body weight, skeletal muscle and adipose tissue was identified at relapse, 
supporting the potential therapeutic relevance of targeting GDF15 in the 
management of CAC.

Measures of body composition that distinguish skeletal muscle (SKM), 
visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) 
are associated with clinical outcomes in various diseases, including 
cancer1–4. One extreme manifestation of altered body composition that 
remains poorly understood is CAC; a paraneoplastic syndrome of invol-
untary SKM and/or adipose tissue loss, accompanied by dysregulation of 
the homeostatic mechanisms that govern protein and energy balance5,6.

Retrospective analyses have linked body composition to out-
comes across multiple solid tumor types, including breast, prostate 
and colorectal cancers7–9. In non-small cell lung cancer (NSCLC), SKM 
wasting has been shown to be associated with cancer treatment tox-
icity and reduced overall survival (OS)10. A meta-analysis of 13 NSCLC 
cohort studies demonstrated an association between low SKM mass 
and reduced OS, but not with disease-specific survival11. Similarly, 
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were current smokers and 79% were ex-smokers (37% and 51% in the 
BLCS cohort, respectively; Table 1).

The distribution of body SAT, VAT, SKM and body mass index 
(BMI) was similar in the TRACERx and BLCS cohorts (Fig. 2b,c). In the 
TRACERx and BLCS cohorts, men had higher VAT and SKM areas com-
pared with women: In TRACERx, mean VAT area was 171.7 cm2 in men 
versus 95.1 cm2 in women (unpaired two-samples t-test, P < 0.001) and 
198.5 cm2 in men versus 98.3 cm2 in women (P < 0.001) in the BLCS 
cohort. Mean SKM area was 147.4 cm2 in men versus 99.5 cm2 in women 
(P < 0.001) and 160.2 cm2 in men versus 109.8 cm2 in women (P < 0.001) 
in the TRACERx and BLCS cohorts, respectively. In both studies, women 
had higher SAT areas compared to men; 201.2 cm2 versus 144.6 cm2 
(P < 0.001, TRACERx) and 206.5 cm2 versus 172.6 cm2 (P < 0.001, BLCS; 
Fig. 2b,c). There was a strong correlation between BMI and both SAT 
and VAT (Spearman’s correlation, r = 0.75 and 0.73, respectively), and 
a weaker correlation with SKM (r = 0.39; Extended Data Fig. 1a); similar 
correlations were observed in the BLCS cohort (Extended Data Fig. 1b).

Participants in the TRACERx cohort were grouped according to 
the distribution of body composition into sex-adjusted bottom 20th, 
middle 20–80th and upper 20th percentiles, representing low, nor-
mal and high values of adipose and SKM, respectively (Fig. 2d). After 
adjusting for age, sex, BMI, smoking status, disease stage, histological 
subtype, ethnicity and adjuvant therapy use, participants in the lowest 
20th percentile for SAT, VAT and SKM had worse LCSS compared to par-
ticipants in the middle 20–80th percentile. The adjusted hazard ratios 
(HRs) were 2.09 (95% confidence interval (CI) 1.33–3.30, P = 0.001), 1.73 
(1.10–2.72, P = 0.019) and 1.44 (0.95–2.19, P = 0.088) for SAT, VAT and 
SKM, respectively (Supplementary Table 1). Participants in the bottom 
20th percentile for all three body compartments also had trend towards 
worse OS compared to those in the middle 20–80th percentile, with 
adjusted HRs of 1.49 (1.02–2.16, P = 0.037), 1.38 (0.95–2.01, P = 0.093) 
and 1.28 (0.91–1.78, P = 0.151) for SAT, VAT and SKM, respectively (Sup-
plementary Table 2).

These associations between the bottom 20th percentile for body 
composition and poor outcome in TRACERx were substantiated in 
the BLCS cohort. Adjusted HRs for LCSS of 1.97 (1.24–3.14, P = 0.004), 
1.57 (0.98–2.53; P = 0.06) and 1.35 (0.86–2.12, P = 0.19) for SAT, VAT 
and SKM, respectively (Fig. 2e and Supplementary Table 3). For OS, 
the corresponding HRs were 1.71 (95% CI 1.18–2.49, P = 0.005), 1.75 
(95% CI 1.20–2.54, P = 0.003) and 1.41 (95% CI 1.00–2.01, P = 0.05; Sup-
plementary Table 4).

When participants were categorized into more extreme percen-
tiles (bottom 10%, middle 10–90%, top 10%), the poor prognostic asso-
ciation between the bottom centile and LCSS and OS remained similar 
or were stronger than those observed using the less extreme thresholds 
(that is, bottom 20%, middle 20–80%, top 20%; Supplementary Table 5).

These independent cohorts revealed that participants with low 
SAT, VAT or SKM tissue at the time of NSCLC diagnosis tended to have 
a shorter LCSS and OS compared to participants in the middle 20–80th 
percentile, indicating the potential prognostic value of baseline body 
composition.

Identifying the cachexia phenotype
Among the 291 participants in TRACERx with a confirmed relapse 
(median time to relapse 14.1 months, 95% CI 12.9–16.1), 206 had relapse 
body composition data and 188 participants had available abdominal 
CT image sections both at diagnosis and relapse for the assessment 
of body composition change (Fig. 1 and Methods). We endeavored 
to ensure consistent and reproducible longitudinal measurements, 
reducing the impact of investigator-dependent variation (Methods), by 
using an automated, deep learning-based body composition method16, 
as well as manual quality control of all L3 annotations and image seg-
mentations.

A strong correlation was observed between body weight loss 
and VAT loss, and between VAT and SAT loss (Spearman’s r = 0.70 

retrospective studies have suggested an association between low SAT 
and low VAT with reduced OS12,13, again, without a significant difference 
in cancer-specific survival. Key areas of uncertainty include how body 
composition changes throughout the disease course, and what are the 
underlying molecular mediators of altered body composition.

Our study had three aims: (1) to systematically profile body com-
position using standardized methods among individuals diagnosed 
with early-stage lung cancer in terms of SKM, VAT and SAT, to explore 
associations between baseline measures and clinical outcomes; (2) 
to examine how these body composition measures change over time 
in relation to clinical outcomes and how this can be used to identify 
individuals who develop the CAC phenotype; and (3) to explore the 
tumor genomic, transcriptomic and plasma proteomic landscape for 
potential molecular mechanisms and mediators of CAC.

We used established computed tomography (CT) imaging analy-
sis methods14–16 to assess body composition at lung cancer diagno-
sis and relapse. To investigate the interplay between tumor biology, 
body composition and clinical outcomes, our analysis plan involved 
whole-exome and transcriptomic analysis of diagnostic bulk tumor 
samples, in addition to plasma proteomics, to identify tumor-intrinsic 
factors, as well as potential circulating mediators associated with the 
development of CAC.

We analyzed CT images from two large independent cohorts of 
individuals diagnosed with early-stage NSCLC, treated with surgi-
cal resection, plus adjuvant therapy, if indicated according to tumor 
stage, which included a principal cohort of 651 individuals from the 
TRACERx study17,18, and a validation cohort of 420 individuals from the 
Boston Lung Cancer Study (BLCS)19. Altogether, this encompassed 1,071 
diagnostic CT scans paired with detailed clinical annotation, including 
clinical outcomes.

SAT, VAT and SKM areas at the third lumbar vertebra level20 were 
determined using a deep learning-based imaging analysis pipeline, 
establishing the baseline body composition database. Among the 291 
individuals in TRACERx who experienced disease relapse, 274/291 
individuals had available body composition and/or body weight data 
at diagnosis and relapse, and were evaluated to identify changes indica-
tive of the CAC phenotype (Fig. 1). Matched bulk tumor whole-exome 
sequencing (WES) and RNA-sequencing (RNA-seq) data from the pri-
mary tumor were also analyzed to identify genomic and transcrip-
tomic alterations in relation to the CAC phenotype at relapse. In a 
subset of individuals from this cohort with available plasma samples 
(total of 256 samples collected at diagnosis and relapse), plasma pro-
teomic analysis was performed to investigate differential protein 
expression in relation to the CAC phenotype. By integrating longi-
tudinal imaging, tumor and blood analyses, we provide insights into 
the relationship between body composition and CAC in NSCLC, char-
acterizing the tumor genome, transcriptome and plasma proteome  
(Fig. 2a), establishing a platform for downstream validation and potential  
clinical translation.

Results
Body composition at cancer diagnosis
We assessed body composition, based on SAT, VAT and SKM 
cross-sectional tissue area at the level of the third lumbar vertebra 
(L3), in participants at the time of early-stage NSCLC diagnosis to 
determine the prognostic association of these parameters with lung 
cancer-specific survival (LCSS) as the primary outcome measure for the 
baseline body composition study. Body composition in 651 participants 
from the TRACERx study and 420 participants from the BLCS study was 
assessed at the time of cancer diagnosis (Fig. 1). All participants in the 
TRACERx and BLCS cohorts underwent primary surgical resection, and 
had stage I–III NSCLC. In the TRACERx cohort, 42% of participants had 
stage I disease (BLCS, 48%), 36% had stage II disease (BLCS, 15%) and 
22% had stage III disease (BLCS, 37%). In the TRACERx cohort, 35% of 
participants received adjuvant therapy (55% in the BLCS cohort), 14% 
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and 0.62; Extended Data Fig. 1c). As expected, grade 4 BMI-adjusted 
weight loss was also associated with loss of SAT, VAT and SKM compared 
to grade 0 BMI-adjusted weight loss (Methods and Extended Data  
Fig. 1d; P < 0.0001). The distribution of absolute changes (that is, gain or 
loss between diagnosis and relapse) in SAT, VAT, SKM (cm2) and weight 
(kg) did not differ between females and males (Fig. 3a,b). Regression 
analyses were then used to examine the association between LCSS 
and varying cutoffs from 5% to 40% used to define SAT, VAT and SKM 
loss (Methods and Supplementary Fig. 1). A loss of ≥20% tissue area 
between diagnosis and relapse in SAT or VAT was associated with worse 
LCSS (SAT: HR 1.56 (95% CI 1.02–2.38), P = 0.042; VAT: HR 1.67 (95% CI 
1.12–2.49), P = 0.0111) and worse OS (SAT: HR 1.59 (95% CI 1.08–2.36), 
P = 0.019; VAT: HR 1.72 (95% CI 1.19–2.47), P = 0.004) compared to par-
ticipants with <20% SAT or VAT tissue area loss (Supplementary Fig. 2). 
A loss of ≥10% SKM tissue area in participants was associated with worse 
LCSS and OS compared to participants with <10% SKM tissue area loss 
(HR 1.80 (95% CI 1.20–2.70), P = 0.0047 and HR 1.85 (95% CI 1.27–2.69), 
P = 0.0013). Grade 4 BMI-adjusted weight loss in participants was asso-
ciated with worse LCSS and OS compared to participants with grade 0 
BMI-adjusted weight loss (HR 5.05 (95% CI 2.87–8.90), P < 0.0001 and 
HR 4.22 (95% CI 2.48–7.20), P < 0.0001).

To explore the occurrence of distinct patterns of loss affecting 
specific body compartments, participants were grouped according 
to isolated or co-occurring loss of SKM, VAT and SAT for the above 
prognostic thresholds (Fig. 3c). Among 96 participants in whom a loss 
occurred in any given compartment, 23 (24%) experienced losses across 
all three compartments, 25 (26%) experienced losses in two compart-
ments and 48 (50%) experienced an isolated loss in one compartment 
(SKM (n = 21), VAT (n = 22) or SAT (n = 5)), suggesting distinct clinical 
subtypes of CAC involving different anatomical patterns of adipose 
and/or muscle tissue loss. Participants with co-occurring tissue loss 

across all three compartments had a shorter LCSS compared with 
participants without any tissue loss (adjusted HR: 2.6, 95% CI 1.39–4.87, 
P = 0.003; Fig. 3c and Supplementary Table 6).

Based on the above thresholds for tissue loss between diagnosis 
and first relapse strongly associated with LCSS and OS, we classified 
participants into two groups: those with a cachexia phenotype called 
‘CAC’ (n = 108), defined as experiencing ≥20% SAT and/or VAT loss, 
and/or ≥10% SKM loss, and/or grade 4 BMI-adjusted weight loss in 
the interval between diagnosis and relapse, and those without called 
‘non-CAC’ (n = 166; Supplementary Fig. 3). A higher proportion of men 
and participants with lung squamous cell carcinoma were identified in 
the CAC group compared to the non-CAC group (62.0% versus 51.8%, 
and 34.3% versus 25.9%). Smoking status and use of adjuvant therapy 
was similar between the two groups (Supplementary Table 7).

This categorization of participants into CAC and non-CAC groups 
was then used to conduct further downstream analyses to generate 
biological hypotheses relating to potential mediators of CAC.

Primary tumor genomic and transcriptomic features
To examine the presence of genomic and transcriptomic alterations 
potentially relevant to the development of CAC, we analyzed tumor 
sequencing data in relation to the CAC and non-CAC groups. Primary 
NSCLCs from participants recruited into TRACERx were subjected to 
multiregional WES and RNA-seq (Methods).

Distinct differential gene expression profiles, adjusted for his-
tology and sex (Methods), were observed in primary tumors from 
participants in the CAC compared with the non-CAC group (Fig. 4). 
Gene expression of melanoma-associated antigen 6 MAGEA6, metal-
loproteinases such as ADAMTS3, and transcriptional and cytoskel-
etal regulators, such as NR2F1 and SPTB, were significantly increased 
in the CAC group (Fig. 4a). To explore the biological relevance of 

797 participants in TRACERx (February 2022)

651 participants with
body composition
profile available at

diagnosis

791 participants with
body weight
available at
diagnosis

206 participants with
body composition
profile available at

relapse

291 participants with
confirmed relapse

274 patients with paired diagnosis and relapse body
composition (n = 188) and/or body weight data (n = 232)

107 participants with
plasma samples
for GDF15-ELISA

at diagnosis

79 participants with
plasma samples
for GDF15-ELISA

at relapse

110 participants with
paired diagnosis and
relapse Olink sample

70 participants with 
paired diagnosis and
relapse ELISA sample

420 participants with
body composition
profile available at

diagnosis

1,942 participants in BLCS
with CT scans

Complete clinical annotation,
survival data, stage I–III

232 participants with
body weight available

at relapse

141 participants with
plasma samples
for Olink assay at

diagnosis

115 participants with
plasma samples
for Olink assay at

relapse

Fig. 1 | Participant and sample selection. Selection of participants and samples from the TRACERx and Boston Lung Cancer Study (BLCS) studies. All available 
computer tomography (CT) scans and samples at diagnosis and relapse were considered for this study. Limited availability was due to sample exhaustion or missing 
collection, shipment or transfer.
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these differentially expressed genes in the development of CAC, we 
cross-referenced genes with significantly altered expression in the CAC 
group with a list of 400 genes that have been previously shown to be 
associated with, or functionally influence, the development of either 
obesity or cachexia in preclinical and clinical models, or derived from 
genome-wide association studies (GWAS) of obesity, BMI and cachexia 
(hereafter referred to as ‘cachexia candidate gene list’; Supplementary 
Table 9)21–35. From this gene list, semaphorin-3A (encoded by SEMA3A) 
and insulin-like growth factor 1 (encoded by IGF1), which impact body 
weight36,37, and potassium channel KCNJ12, and A-kinase anchoring pro-
tein 6 (AKAP6), for which genomic variants have been associated with 

increased BMI in GWAS22, were found to be differentially upregulated 
in the CAC group (Fig. 4a,b).

Gene set enrichment analysis, adjusted for sex and histology 
(Methods), showed significant enrichment of several hallmark gene 
sets in primary tumors from participants in the CAC group compared 
to the non-CAC group, including epithelial–mesenchymal transi-
tion, hedgehog signaling and myogenesis, while estrogen-response 
pathways were significantly enriched in the non-CAC group (adjusted 
P < 0.05; Fig. 4c). Distinct differential gene expression profiles were 
also observed in primary tumors from participants who predominantly 
experienced isolated tissue loss in individual body compartments or 
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body weight, for example ≥20% SAT loss versus <20% SAT loss, sug-
gesting possibly distinct wasting mechanisms specific to adipose and 
muscle tissue (Extended Data Fig. 2 and Supplementary Fig. 4).

Analysis of somatic copy number alterations was performed using 
GISTIC2.0 to identify amplifications and deletions specific to the CAC 
and non-CAC groups, and the SAT/VAT/SKM and body weight loss 
prognostic thresholds (Fig. 4d and Supplementary Fig. 5)38. Multiple 
loci from the cachexia candidate gene list were found to be exclusively 
amplified in the CAC group, including chromosome 11q22.3 containing 
various metalloproteinases, such as MMP1 and MMP3, which have been 

functionally implicated in tissue wasting in Drosophila models29 and 
chromosome 3q27.1, containing ADIPOQ, which has been implicated 
in weight loss in humans39.

Since inflammatory signaling pathways, such as interferon-alpha 
response, were observed to be upregulated in the CAC group, we fur-
ther investigated whether this was concordant with increased inflam-
matory cell infiltration using the previously published T cell ExTRECT 
method, providing T cell infiltration estimates based on WES data38,40. 
No significant difference in T cell receptor-α gene (TCRA) scores, that is, 
T cell infiltrates, was observed between primary tumors in the CAC and 
non-CAC groups, and this remained so after adjusting for sex (Extended 
Data Fig. 3a–c). However, TCRA scores in the blood were higher in 
the non-CAC group, suggesting higher circulating T cell fractions in 
the circulation, although the differences were not significant when 
looking at female and male participants separately (Extended Data 
Fig. 3d–f). Danaher immune signature41 and CIBERSORTx42 RNA-seq 
cell type deconvolution approaches were also used to compare the 
abundance of inflammatory cells, but no significant difference was 
observed after adjusting for multiple comparisons (Extended Data 
Fig. 4 and Supplementary Fig. 6).

In summary, our analysis of tumor WES and RNA-seq data from par-
ticipants who did and did not develop CAC revealed distinct genomic 
and transcriptomic profiles, including upregulated inflammatory sign-
aling and increased expression or amplification of metalloproteinases.

Plasma proteome at cancer diagnosis and relapse
Given the potential role of circulating mediators in driving the CAC 
phenotype, plasma samples, where available, collected from TRACERx 
participants at diagnosis (141 participants: 55 in the CAC and 70 in the 
non-CAC group, 16 without imaging or body weight, but included for 
analysis with clinical demographic data) and first relapse (115 partici-
pants: 43 in the CAC and 58 in the non-CAC group, 13 without imaging 
or body weight, but included for analysis with clinical demographic 
data; Fig. 1) were subjected to unbiased proteomic profiling using the 
Olink Explore 3072 platform to investigate the presence of proteins 
associated with the development of CAC43. Paired diagnosis and relapse 
plasma samples were available for 110 participants. Differential protein 
expression, that is, increased or decreased plasma protein expression, 
in participants in the CAC group compared with the non-CAC group, 
at diagnosis and at relapse, was analyzed.

In the CAC group, 114 plasma proteins were found to have increased 
expression at the time of diagnosis compared with the non-CAC group, 
although these did not remain significant after adjusting for multiplic-
ity (Benjamini–Hochberg correction; Fig. 5a). Similarly, 443 proteins 
were found to have increased expression at the time of relapse, of which 
12 proteins, including GDF15, HSPA2, KIAA0319, TNFRSF10B and IL1RL1, 
remained significant after Benjamini–Hochberg correction (Fig. 5a). 
Concordant increased primary tumor gene expression and plasma 
protein expression was only identified for HSPA2 and SV2A in the CAC 
group (Supplementary Table 10).

When considering 24 circulating proteins previously reported to 
play a role in CAC44 (Supplementary Table 11), in the CAC group 14/24 
proteins, including tumor necrosis factor (TNF), GDF15 and CCL3, 
were found to have increased plasma protein expression at the time 
of diagnosis compared with the non-CAC group, but the difference 
was not significant after Benjamini–Hochberg correction (Fig. 5b). At 
the time of relapse, GDF15, a known mediator of anorexia and weight 
loss45, demonstrated significantly increased expression in the CAC 
group compared with the non-CAC group (Fig. 5b and Extended Data 
Fig. 5). Furthermore, a significant correlation was observed between 
normalized protein expression of GDF15 and loss of SAT, VAT, SKM and 
body weight at the time of relapse (Extended Data Fig. 6).

Among the 141 TRACERx participants analyzed in the Olink study, 
in a subset of this cohort the relationship between increased GDF15 and 
development of the CAC phenotype at relapse had previously also been 

Table 1 | Baseline participant characteristics of TRACERx 
and Boston Lung Cancer Study (BLCS) cohorts

TRACERx (N = 651) BLCS (N = 420)

Age, mean (s.d.), years 68.7 (9.1) 64.53 (10.1)

BMI, mean (s.d.), kg/m2 26.7 (5.1) 26.48 (5.4)

Weight, mean (s.d.), kg 75.0 (16.9) 75.02 (18.2)

Height, mean (s.d.), m 1.67 (0.1) 1.68 (0.1)

VAT baseline, mean (s.d.), cm2 138 (98.7) 145.5 (113.9)

SAT baseline, mean (s.d.), cm2 169 (94.3) 190.5 (103.5)

SKM baseline, mean (s.d.), cm2 126 (34.5) 133.6 (33.9)

Sex

 Female 286 (43.9%) 222 (52.9)

 Male 365 (56.1%) 198 (47.1%)

Ethnicity

 White-European ancestry 411 (97.9%)

 African American 9 (2.1%)

 Non-whitea 36 (5.5%)

 White-British-Irish 590 (90.6%)

 White-other 22 (3.4%)

 Missing 3 (0.5%)

Smoking status

 Current smoker 89 (13.7%) 155 (36.9%)

 Ex-smoker 513 (78.8%) 216 (51.4%)

 Never smoked 49 (7.5%) 49 (11.7%)

NSCLC stage

 IA 131 (20.1%) 203 (48.3%)

 IB 139 (21.4%)

 IIA 124 (19.0%) 63 (15.0%)

 IIB 113 (17.4%)

 IIIA 138 (21.2%) 154 (36.7%)

 IIIB 6 (0.9%)

Histology

 Adenocarcinoma 362 (55.6%) 223 (53.1)

 Squamous cell carcinoma 211 (32.4%) 104 (24.8)

 Other 65 (10.0%) 93 (22.1)

 Not available 13 (2.0%)

Adjuvant treatment

 Adjuvant 227 (34.9%) 229 (54.5)

 No adjuvant 408 (62.7%) 191 (45.5)

 Missing 16 (2.5%)
aThe category ‘non-white’ includes 2 (0.3%) African, 2 (0.3%) Asian, 2 (0.3%) Black, 8 (1.2%) 
Caribbean, 6 (0.9%) Indian, 8 (1.2%) Middle Eastern, 1 (0.2%) Pakistani, 1 (0.2%) South 
American, 2 (0.3%) white and Asian, 4 (0.6%) white and Black.
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identified using an electrochemiluminescent immunoassay (Methods), 
including 107 plasma samples collected at diagnosis and 79 plasma sam-
ples collected at relapse (Fig. 1). The median circulating GDF15 level in the 
whole cohort was 1,902 pg ml−1 (normal range 200–1,200 pg ml−1; ref. 45)  
at diagnosis, and further increased at relapse (median 2,393.5 pg ml−1;  
Fig. 5c). Notably, serum GDF15 levels in the TRACERx cohort (median 
age 70 years) were higher than previously published in age-matched 
non-cancer volunteers (60–70 years, median plasma GDF15 levels of 
866 pg ml−1) and in keeping with previous reports of increased cir-
culating GDF15 in participants with NSCLC46–49. Median GDF15 levels 
in participants who developed CAC between diagnosis and relapse 
were significantly higher compared with participants who did not 
develop CAC, both at the time of diagnosis (2,156 pg ml−1 versus 
1,631 pg ml−1; P = 0.03) and relapse (3,222 pg ml−1 versus 1,878 pg ml−1, 
 P < 0.001; Extended Data Fig. 7). Circulating GDF15 levels at diagno-
sis and at relapse were significantly associated with increased age 
(Extended Data Fig. 8). There was no significant association between 
GDF15 levels at diagnosis or at relapse and BMI at diagnosis, smoking 

status or number of pack years, use of adjuvant treatment and tumor 
stage or volume (Extended Data Fig. 8). GDF15 levels at diagnosis and 
relapse were not associated with time to recurrence in a Cox regression 
analysis (HR 1.0, 95% CI 1.0–1.0, P = 0.269 and P = 0.350, respectively).

Circulating GDF15 levels, at diagnosis and relapse, were signifi-
cantly higher in participants who developed grade 4 BMI-adjusted 
weight loss at relapse compared to those who had stable or increased 
weight (grade 0; Fig. 5d,e). Increased circulating GDF15 was signifi-
cantly associated with loss of body weight, as well as loss of SAT, VAT and 
SKM tissue (Fig. 5f–i and Supplementary Fig. 7). WES and RNA-seq data 
were analyzed to investigate whether increased circulating GDF15 was 
associated with genomic alterations and/or increased gene expression 
in the primary tumor. Mutations in the GDF15 gene were found in only 
three participants (c.C564T, c.T312G, c.A313G). There was no significant 
correlation between primary tumor GDF15 gene expression and circu-
lating GDF15 levels (Fig. 5j,k), although the power to detect any correla-
tion was limited by the small number of relapse samples in this cohort. 
Furthermore, the ploidy-adjusted copy number of the GDF15 gene on 
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between primary diagnosis and first relapse. a, Distribution of losses and 
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chromosome 19p13.11q did not correlate with baseline gene expres-
sion (R = −0.072; Extended Data Fig. 9a) and copy number events were 
not associated with circulating GDF15 levels (Extended Data Fig. 9b).  
Participants with GDF15 copy number gain, defined as amplifications 
or gains of 19p13.11q, in relapsed tumor tissue, tended to have higher 
circulating GDF15 levels compared to participants with tumors car-
rying GDF15 copy number losses (4630 pg/ml versus 2671 pg/ml,  
P = 0.14; Extended Data Fig. 9c).

To explore whether the relationship between increased circu-
lating GDF15 and the development of CAC at relapse was restricted 
to early-stage NSCLC, in an independent cohort of 164 participants 
with stage IV metastatic lung adenocarcinoma (ARCHER trial, 

NCT01360554), plasma GDF15 levels were measured using a GDF15 
ELISA (Methods)50. Circulating GDF15 levels were significantly higher 
in participants with grade 3 or 4 BMI-adjusted weight loss over approxi-
mately 6 months after study enrollment compared to participants 
with grade 0 BMI-adjusted weight loss, that is, stable body weight 
(Extended Data Fig. 10), suggesting a similar relationship between 
circulating GDF15 and weight loss in the advanced disease setting. 
Body composition could not be assessed in this cohort since imaging 
was not available.

Overall, these data suggest that participants who develop features 
of CAC at first relapse have distinct tumor genomic and transcriptomic, 
as well as plasma proteomic, profiles. Circulating GDF15 demonstrated 
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the strongest correlation with loss of adipose tissue, SKM and body 
weight, emphasizing the potential for GDF15-targeted therapy in the 
management of CAC51.

Discussion
The first aim of this study was to generate body composition profiles of 
participants with early-stage lung cancer and to elucidate their associa-
tion with survival outcomes. At the time of cancer diagnosis, low SAT, 
VAT and SKM were each associated with poor LCSS and OS in both the 
TRACERx and BLCS cohorts, demonstrating the prognostic relevance 
and clinical utility of body composition in identifying participants with 
high-risk disease52,53.

Two distinct features of CAC are loss of body weight and SKM6. 
The second aim of this study was to examine how body composition 
and body weight change in the context of lung cancer recurrence. We 
observed that, between diagnosis and first relapse, 24% of participants 
experienced a loss across all three body compartments, but subgroups 
of participants with pronounced or isolated loss of SAT, VAT or SKM 
were also identified, suggesting the possibility that distinct CAC clinical 
phenotypes may exist whereby individual, or a combination of, body 
composition compartments may be preferentially affected54.

Using thresholds for a measure of loss in each individual body 
composition and body weight that were associated with poor LCSS 
and OS, we identified participants who developed CAC in the inter-
val between diagnosis and relapse, and used this classification to 
address the third aim of this study, which was to explore potential 
molecular mechanisms and mediators driving the CAC phenotype. 
The genomic and transcriptomic profiles of primary tumors in par-
ticipants with and without features of CAC at the time of first relapse 
were found to be distinct. Participants who developed CAC at relapse 
had increased differential expression of semaphorin-3A (SEMA3A), 
insulin-like growth factor 1 (IGF1), the potassium channel KCNJ12 
and A-kinase anchor protein 6 (AKAP6)36. Furthermore, multiple 
inflammatory pathways were upregulated and there was increased 
expression of several genes of interest, including lipopolysaccharide 
binding protein (LBP) and metallopeptidases, such as the ADAM met-
allopeptidase encoded by ADAMTS3 (refs. 55,56). This is in keeping with 
previous observations that have suggested tumor-driven systemic 
inflammation is a contributor to CAC57,58. While preclinical studies have 
reported increased tumor expression of interleukin-17 in the murine 
Lewis lung carcinoma model and parathyroid hormone-related pro-
tein59,60 as purported mediators of cachexia, we did not see this in the  
TRACERx cohort.

Analysis of somatic copy number alterations in primary tumors 
revealed distinct copy number profiles in participants who developed 
CAC, including amplification of a cluster of matrix metalloproteinases 
on chromosome 11q22.2, including MMP1 and MMP3, which have pre-
viously been functionally associated with tumor-induced muscle loss 
in Drosophila models29, as well as amplifications involving ADIPOQ 
(adiponectin) on chromosome 3q27.1. High levels of adiponectin, a 
regulator of insulin sensitivity and lipid metabolism, have previously 
been associated with low body weight and weight loss, while low levels 
have been associated with obesity39. Overall, our transcriptomic and 

genomic analyses suggest specific tumor-derived factors may play a 
role in the development of CAC.

Finally, plasma proteomic analysis at diagnosis and relapse dem-
onstrated significant differential plasma protein expression between 
participants who did and did not develop CAC, including proteins 
such as TNF receptor TNFRSF10B and IL1RL1 (interleukin 1 receptor- 
like 1). Among participants who developed CAC, the most differentially, 
highly expressed, candidate plasma protein at the time of relapse was 
GDF15; a highly conserved member of the transforming growth factor-β 
superfamily, which circulates at physiologically low levels in healthy 
states. GDF15 expression and secretion is upregulated in response to 
cellular stress61,62, and elevated circulating levels have been identi-
fied in a broad range of human diseases, including cardiac, renal and 
respiratory failure, and notably anorexia and weight loss63–66. There 
is mounting preclinical evidence that GDF15 may be a putative drug-
gable target, with transgenic mice overexpressing GDF15 developing a 
cachexia-like syndrome that can be readily reversed with neutralizing 
GDF15 monoclonal antibodies64,67,51.

The same association between circulating GDF15 levels and body 
weight loss was observed in an independent cohort of participants 
with advanced metastatic NSCLC, suggesting that this association is 
agnostic of disease stage, and further corroborating the key role of 
GDF15 as a mediator of CAC in NSCLC. No clear evidence of increased 
tumor GDF15 expression was observed and plasma GDF15 levels were 
not clearly associated with genomic amplification of the GDF15 locus. 
However, GDF15 is known to be produced in diverse tissue sites, includ-
ing liver and kidney, which may act as alternative potential sources of 
pathological secretion62,68. Furthermore, GDF15 is subject to differential 
rates of production and clearance, mediated by other factors, such as 
hepatic stabilin-1 and stabilin-2 (ref. 69).

While our study provides a NSCLC dataset integrating tumor 
genomics and plasma proteomics with body composition and body 
weight, there are limitations in the interpretation of the data. The 
thresholds for tissue and weight loss between diagnosis and relapse, 
including potential interaction between these variables, to identify 
individuals who develop the CAC phenotype requires validation in 
independent cohorts. The body composition analysis focuses on two 
time points in the disease course: diagnosis and first relapse. Conceiv-
ably, the cachexia phenotype may develop at subsequent time points 
of disease progression with increasing burden of disease, warranting 
further investigation. Our description of the CAC phenotype is based 
on changes that occur between diagnosis and first relapse, whereas the 
tumor genomic and transcriptomic data were mostly derived from the 
resected primary tumor given tissue availability. As such, our analyses 
are correlative and generate hypotheses; therefore, further studies 
to validate our findings, including functional experiments, are war-
ranted. A selection bias cannot be excluded in the plasma proteomic 
analyses, since only participants with available complete baseline and 
relapse imaging data and sufficient amounts of banked plasma were 
analyzed. Future studies aiming to establish the underlying biologi-
cal mechanisms of CAC would benefit from incorporating functional 
participant data, such as physical activity, food intake and muscle 
function, as well as quality-of-life measures, to reflect the complexity 

Fig. 5 | Differential protein expression and associations between circulating 
GDF15, body composition and body weight changes, and cancer cachexia.  
a, Differential plasma proteome of participants in the cachexia versus non-
cachexia groups, at diagnosis (left) and relapse (right). The ten proteins with 
highest differential expression are labeled; P values from two-sided t-test. 
Red dots indicate significant differential protein expression after Benjamini–
Hochberg correction. b, Differential plasma protein expression of putative 
cachexia mediators in the cachexia versus non-cachexia group, at diagnosis (left) 
and relapse (right). The ten proteins with highest differential expression are 
labeled; P values from two-sided t-test. Red dots indicate significant differential 
protein expression after Benjamini–Hochberg correction. c, Plasma GDF15 

levels in participants at diagnosis (baseline, n = 107) or first recurrence (n = 79) of 
NSCLC in the TRACERx cohort (two-sided Wilcoxon test). d,e, Baseline (n = 80; 
d) and recurrence (n = 61; e) GDF15 levels according to weight change category 
in the TRACERx cohort (two-sided Wilcoxon test). f–i Spearman’s correlation of 
recurrence GDF15 levels and loss/gain of body weight (n = 62; f), SAT (g), VAT (h) 
and muscle (n = 61; i). j,k, Spearman’s correlation of diagnosis (j) and recurrence 
(k) GDF15 levels and GDF15 gene expression as transcripts per million (TPM). All 
Wilcoxon tests are two-sided. Box plots represent lower quartile, median and 
upper quartile, and whiskers extend to a maximum of 1.5 times the interquartile 
range beyond the box. Points indicate individual data points. Gray error bands 
represent the 95% CI of the fitted linear model. y axes in d–i represent log10 scales.
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of CAC and to capture its related constitutional symptoms. Overall, 
this study demonstrates the significant, independent and potentially 
prognostic impact of altered body composition on clinical outcomes 
(LCSS and OS) in NSCLC. The presence of specific body composi-
tion changes, either predominant loss of adipose or muscle tissue, in 
subgroups of participants suggests distinct clinical subtypes of CAC, 
which may be driven by unique biological mechanisms warranting 
further investigation. We show that automated pipeline technologies 

unlock the potential to leverage CT imaging embedded in medical 
oncological practice to identify individuals at risk of developing CAC, 
simultaneously providing the scientific means to study potential 
drivers and mechanisms of cachexia pathophysiology. Amidst the 
plethora of proposed pro-cachectic mediators, GDF15 emerges as 
a differentially expressed, and clinically measurable, protein, with a 
mounting evidence base, establishing its potential to translate to a 
biotherapeutic target.
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Methods
Participant cohorts
TRACERx cohort. TRACERx is a UK-wide prospective multicenter study 
of participants with primary NSCLC that aims to define evolutionary 
trajectories for lung cancer through multiregional and longitudinal 
tumor sampling17(NCT01888601). The study was approved by an inde-
pendent Research Ethics Committee (13/LO/1546). All participants 
provided written informed consent. Participants are followed for up to 
5 years from the point of primary diagnosis, through surgical resection 
to cure, cancer progression(s) and death. The study collects longitudi-
nal clinical, epidemiological and imaging data as well as multiregional 
tumor tissue samples. The study protocol with inclusion/exclusion 
criteria has been published previously18.

For the body composition and cachexia study, participants were 
included if a preoperative abdominal CT incorporating the third lumbar 
vertebra and performed within 3 months of primary surgical tumor 
resection, was available. For the delta cohort, all participants with 
available abdominal CT at the time of disease recurrence were included. 
Overall, 651 participants with a pre-surgery baseline CT were included, 
of which 188 had a relapse with corresponding CT scan.

BCLS cohort. Participants from the US cancer cohort in this analysis 
are part of the ongoing BLCS, a multi-institutional epidemiology cohort 
study at Massachusetts General Brigham (MGB) and the Dana-Farber 
Cancer Institute (DFCI). Inclusion criteria for this analysis were 
pathology-confirmed diagnosis of lung cancer with available abdomin-
opelvic CT or positron emission tomography/CT scans within 4 months 
before and the 2 months after diagnosis, and relevant, a priori-defined 
clinical covariates available. Participants were excluded if imaging 
or clinical data were incomplete or missing. The study was approved 
by the institutional review boards of all institutions and the require-
ment for written informed consent was waived. Information regarding 
smoking status was prospectively collected in the TRACERx study and 
was also available for all participants in the BLCS cohort. Participant 
demographics are provided in Table 1.

ARCHER1009 cohort. ARCHER1009 was a randomized phase 3 study 
for participants with advanced NSCLC who were randomized to the 
epidermal growth factor receptor inhibitors dacomitinib and erlo-
tinib50. This study received ethical approval from the Pfizer Institutional 
Review Board and was conducted in accordance with the Declaration 
of Helsinki (NCT01360554). For the cachexia study, 164 participants 
with available plasma and body weight data at two time points within 
6 months were included. Classification of weight loss was similar to 
published schemes6,70 and defined as weight stable/gain, >0–5% weight 
loss or >5% weight loss. Any prior treatment (chemotherapy, radiation 
or surgery) must have been completed at least 2 weeks before randomi-
zation at the start of the study.

Body composition and body weight measurements
For the TRACERx cohort, SAT, VAT and SKM were quantified as areas 
(cm2) localized to the third lumbar vertebra (L3) level. CT scans were 
generated according to standard local protocols at the participating 
sites (Supplementary Table 12). L3 selection, image segmentation 
and tissue area quantification were conducted via an automated deep 
learning-based pipeline (Data Analysis Facilitation Suite (DAFS), Voronoi  
Health Analytics16,71–73). To measure SAT, VAT and SKM areas at the 
L3 level, analyses were run with the ‘avg-L3mid[3]’ command, which 
measures across three slices above and below the midst of L3 to increase 
data accuracy (Supplementary Fig. 8). The following Hounsfield unit 
(HU) boundaries were used: For SAT, −190 to −30 HUs; for VAT, −150 
to −50 HUs; and for SKM, −29 to 150 HUs. Accurate L3 selection and 
segmentation quality was manually inspected for all participants by 
an experienced investigator (medical oncologist with over 10 years 
of experience). To this end, each CT annotation and segmentation 

was inspected via a sagittal, coronal and axial view of each scan using 
the ‘quickcheck’ option; mis-annotations were corrected using the 
CAST (CT Annotation and Segmentation Tool) feature from DAFS. To 
confirm the highly reproducible nature of the algorithm, 60 CT scans 
were rerun twice through the automated annotation, segmentation 
and measurements steps. Using the precision metrics previously pro-
posed by Arribas et al., ≤0.01% variance was observed between the runs 
(Supplementary Table 13)74. Absolute (cm2) change between baseline 
and relapse was calculated for SAT, VAT and SKM for each participant.

For the independent BLCS cohort, baseline body composition 
was measured by a previously developed automated system75,76, which 
produced body composition measurements at the L3 level for SAT, VAT 
and SKM in cm2. Manual quality control was conducted for all images 
in the BLCS cohort by an experienced investigator (radiologist with 
over 10 years of experience).

Body weight data in the TRACERx, BCLS and ARCHER1009 cohorts 
were collected from medical records in routine health care settings; 
scale calibrations and type of clothing was conducted according to 
local standards. For the TRACERx cohort, body weight changes were 
assessed between baseline and relapse; for the ARCHER1009 cohort, 
body weight changes were assessed between time of enrollment and 
end of study. BMI-adjusted weight change was calculated as follows, 
similar to previous publications77:

Whole-exome and RNA sequencing
WES was performed on DNA purified from tumor tissue with matched 
germline DNA from whole blood, as described previously18,78. RNA 
was extracted from primary tumor tissue, and downstream analyses 
were conducted as reported previously; where applicable, multire-
gional gene expression data were handled as the average per tumor or 
adjusted by a linear mixed-effects model, also accounting for histol-
ogy and sex (Martinez-Ruiz et al, 2023). P value < 0.01 and absolute 
log fold change >1 was used to identify differentially expressed genes. 
GSEA was done by pre-ranking the genes by fold-change values and 
using the fgsea R package (v1.22.0) and using the hallmark gene set 
from the Molecular Signatures Database (v.7.4) with a minimal size 
of 15 and maximal size of 500. GISTIC2.0 was used to analyze copy 
number alterations in tumor tissues according to the cachexia and 
non-cachexia groups38.

A list of candidate cachexia genes, that is, genes possibly associ-
ated with cachexia, was generated by reviewing supporting literature, 
including GWAS on obesity and cachexia, because both extremes can 
share common metabolic perturbations, as well as murine and Dros-
ophila models (see Supplementary Table 9).

Plasma proteomics
Plasma proteomes were profiled using the Olink Explore 3072 plat-
form at Bioxpedia following the standard Olink-certified protocol43. 
TRACERx plasma samples and control samples were plated on three 
96-well plates that were processed in one batch. For data analysis, 
protein expression as log2 of normalized protein expression was used. 
Comparisons of protein expression between body composition groups 
were made by Welch two-sample t-tests with Benjamini–Hochberg 
correction. Data that did not pass the Olink-specified quality-control 

BMI (kg/m2)

Weight loss (%) ≥28 25–27.9 22–24.9 20–21.9 <20

±2.4 0 0 1 1 3

2.5–5.9 1 2 2 2 3

6–10.9 2 3 3 3 4

11–14.9 3 3 3 4 4

≥15 3 4 4 4 4
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metrics were excluded from the analysis. R packages OlinkAnalyze 
v3.1.0 and ggplot2 v3.3.6 were used for data analysis and visualization.

For the orthogonal GDF15 validation, GDF15 was measured in 
TRACERx plasma samples using the Elecsys GDF15 immunoassay 
(Roche) at baseline ahead of surgery and at diagnosis of relapse. Plasma 
samples from the ARCHER1009 samples were obtained at the end of 
study and human GDF15 was measured using ELISA (R&D Systems).

Statistical analyses
All statistical analyses were performed in R v4.1.1. GDF15 plasma levels 
were log10 transformed. Tests involving correlations were done using 
stat_cor from the R package ggpubr (v04.0) with linear regression 
and Spearman’s rank-order correlation. Categorical comparisons 
were made by analysis of variance, student’s t-test or Wilcoxon test. 
P values were two sided and considered as statistically significant 
if below 0.05. Data structuring, plotting and analysis in R was also 
done by ggplot2 (v3.3.6), cowplot (v1.1.1), table1 (v1.4.2), gg.gap (v1.3), 
data.table (v1.14.2), readxl (v1.4.0), xlsx (v0.6.5), ggsci (v2.9), ggsignif 
(v0.6.3), ggdendro (v0.1.23), scales (v1.2.0), survminer (v0.4.9), survival 
(v3.4.0), GenomicRanges (v1.46.1), ggvenn (v0.1.9), EnhancedVolcano 
(v1.10.0), fuzzyjoin (v0.1.6), tidyr (v1.2.0) and dplyr (v1.0.8). For LCSS, 
an event was death from lung cancer; and all other participants were 
censored at the date last seen alive or death from other causes (compet-
ing risk analyses, in which death from other causes were treated as a 
competing event, did not produce materially different associations). 
For OS, an event was death from any cause; and all other participants 
were censored at the date last seen alive.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The WES and RNA-seq data (from the TRACERx study) used during this 
study have been deposited at the European Genome–phenome Archive 
(EGA), which is hosted by The European Bioinformatics Institute (EBI) 
and the Centre for Genomic Regulation (CRG) under the accession 
codes EGAS00001006494 (WES) and EGAS00001006517 (RNA-seq); 
access is controlled by the TRACERx data access committee. Details on 
how to apply for access are available on the linked page.
The Olink dataset, de-identified body composition and body weight as 
well as clinical outcome data from TRACERx and BLCS are provided in a 
Zenodo repository (https://doi.org/10.5281/zenodo.7617516), together 
with plasma GDF15 data from ARCHER1009.

Code availability
Code to reproduce the figures is provided in a Zenodo repository 
(https://doi.org/10.5281/zenodo.7617516).
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Extended Data Fig. 1 | Correlation between body composition metrics 
and body weight. a Spearman’s correlation in the TRACERx cohort between 
subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), skeletal muscle 
(SKM) and body mass index (BMI) at primary diagnosis. b Spearman’s correlation 
in the BLCS cohort between SAT, VAT, SKM and BMI at primary diagnosis.  
c Spearman’s correlation between loss/gain of SAT, VAT, SKM and body weight 

between primary diagnosis and first relapse. d Losses and gains in cm2 of SAT 
(green), VAT (yellow) and SKM (red) according to BMI-adjusted weight loss grade 
0 to 4 (n=146). Bracket indicates p-value from two-sided Wilcoxon test; box 
plots represent lower quartile, median and upper quartile, whiskers extend to a 
maximum of 1.5 × IQR beyond the box. Points indicate individual data points.  
* indicates p-value <0.05, *** indicates p-value <0.001.
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Extended Data Fig. 2 | Differential gene expression according to SAT, VAT, 
SKM and body weight loss. tumor differential gene expression between patients 
with a SAT loss <20% versus ≥20%, b VAT loss <20% versus ≥20%, c Muscle loss 
<10% versus ≥10%, d BMI adjusted weight loss grade 0-3 versus 4, all adjusted 

for number of tumour regions, sex, and histology. e Overlap of differentially 
expressed genes (DEG) between the ≥20% SAT, ≥20% VAT, ≥10% SKM and grade 4 
weight loss groups. P values from moderated two-sided t-test without adjusting 
for multiple testing.
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Extended Data Fig. 3 | TCRA scores according to CAC and non-CAC groups at 
diagnosis. a Tumour TCRA scores according to CAC (n=66) and non-CAC status 
(n=85). b Tumour TCRA scores according to CAC and non-CAC in female patients 
(n= 26 and 37, respectively) and Cc male patients (n=40 and 48, respectively).  
d Blood TCRA scores according to CAC (n=66) and non-CAC status (n=85).  

e Blood TCRA scores in blood in female patients (n= 26 and 37, respectively) 
and Ff male patients (n=40 and 48, respectively). P-values from Wilcoxon tests 
are two-sided and not adjusted for multiple testing. Box plots represent lower 
quartile, median and upper quartile; whiskers extend to a maximum of 1.5 × IQR 
beyond the box. Points indicate individual data points.
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Extended Data Fig. 4 | Danaher scores according to CAC and non-CAC groups. 
P-values are from two-sided Wilcoxon tests and not adjusted for multiple 
comparisons. No significant difference was observed between cachexia  
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correction. Box plots represent lower quartile, median and upper quartile; 
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individual data points.
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Extended Data Fig. 6 | Correlation between normalized plasma GDF15 
expression (NPX) and changes in body composition and body weight.  
a-d Spearman’s correlation between body composition at diagnosis (a-C, n=103) 
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Extended Data Fig. 8 | Correlation of GDF15 plasma levels at diagnosis and 
at relapse with clinical features. a, b Spearman’s correlation between age and 
plasma GDF15 at diagnosis (a, n=107) and relapse (b, n=79). c, d Correlation 
between histology and plasma GDF15 at diagnosis (c, n=107) and relapse  
(d, n=79), two-sided Wilcoxon test. e, f Spearman’s correlation between body 
mass index (BMI) and plasma GDF15 at diagnosis (e, n=107) and relapse (f, n=79). 
g, h Correlation between smoking status and plasma GDF15 at diagnosis  
(g, n=107) and relapse (h, n=79), two-sided Wilcoxon test. i Spearman’s 
correlation between smoking pack years and plasma GDF15 (at diagnosis n=107, 
at relapse n=79). j Correlation between adjuvant therapy and plasma GDF15 at 

relapse (n=79), two-sided Wilcoxon test. k Correlation between lung cancer stage 
and plasma GDF15 at diagnosis (n=107), two-sided Wilcoxon test. l Spearman’s 
correlation between tumour volume and plasma GDF15 at diagnosis (n=73). 
P-values not adjusted for multiple comparisons. Grey error bands represent the 
95% confidence interval of the fitted linear model. Box plots represent lower 
quartile, median and upper quartile, whiskers extend to a maximum of 1.5 × IQR 
beyond the box. Points indicate individual data points. Y-axis represents log10 
scales. NSCLC, non-small cell lung cancer; LUAD, lung adenocarcinoma; LUSC, 
lung squamous cell carcinoma.
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Extended Data Fig. 9 | Copy number alterations of GDF15. a Ploidy-adjusted 
copy number compared to transcript-per-million GDF15 gene expression, at 
baseline, log10 transformed, Spearman’s correlation, n=1050 regions from 348 
patients. Grey error bands represent the 95% confidence interval of the fitted 
linear model. b Copy number events in relation to circulating GDF15 levels, at 
diagnosis (n=106), log10 transformed, p-values from two-sided Wilcoxon test, 

not adjusted for multiple testing. c Copy number events in relation to circulating 
GDF15 levels, at relapse (n=44), log10 transformed. P-values from two-sided 
Wilcoxon test, not adjusted for multiple testing. Box plots represent lower 
quartile, median and upper quartile; whiskers extend to a maximum of 1.5 × IQR 
beyond the box. Points indicate individual data points. Y-axes represent log10 
scales.
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Extended Data Fig. 10 | Plasma GDF15 levels and BMI-adjusted weight loss 
in the ARCHER1009 cohort. GDF15 levels according to BMI-adjusted weight 
loss category in patients (n=164) treated in the ARCHER1009 trial. P values from 
two-sided Wilcoxon test, not adjusted for multiple testing. Box plots represent 

lower quartile, median and upper quartile, whiskers extend to a maximum of 1.5 
× IQR beyond the box. Points indicate individual data points. Y-axis represents 
log10 scale.
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