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Sphingolipids control dermal fibroblast heterogeneity
Laura Capolupo, Irina Khven, Alex R. Lederer, Luigi Mazzeo, Galina Glousker, Sylvia Ho,
Francesco Russo, Jonathan Paz Montoya, Dhaka R. Bhandari, Andrew P. Bowman, Shane R. Ellis,
Romain Guiet, Olivier Burri, Johanna Detzner, Johannes Muthing, Krisztian Homicsko,
François Kuonen, Michel Gilliet, Bernhard Spengler, Ron M. A. Heeren, G. Paolo Dotto,
Gioele La Manno*, Giovanni D’Angelo*

INTRODUCTION: External signals (e.g., hor-
mones, cytokines, and growth factors) and
cell-autonomous properties (e.g., the tran-
scriptional and metabolic states of individual
cells) concur to determine cell-fate decisions.
Although the mode of action of external sig-
nals has been detailed extensively in decades
of intense research, themolecular bases of cell-
autonomous contribution to cell-fate decisions
have been traditionally more elusive. Lipids are
fundamental constituents of all living beings.
They participate in energymetabolism, account
for the assembly of biological membranes, act
as signaling molecules, and interact with pro-
teins to influence their function and intra-
cellular distribution. Eukaryotic cells produce
thousands of different lipids, each endowed
with peculiar structural features and contrib-
uting to specific biological functions. With
the development of lipidomics, we can now
understand the lipid compositional complex-
ity of cells and start making sense of lipidome

dynamics. Lipidomes indeed vary among cell
types and are reprogrammed in differentiation
events. However, whether and how lipidome
remodeling assists changes in cell identity is
not understood.

RATIONALE:Human dermal fibroblasts are cell
constituents of our skin that display cell-to-cell
phenotypic heterogeneity as a result of their
dynamic cell identity. Thus, individual dermal
fibroblasts can adopt different cell specializa-
tions that are responsible for wound repair,
fibrosis, or remodeling of the extracellular
matrix. Whether lipid metabolism is differ-
ently shaped in fibroblasts with different
phenotypes and if lipid composition partic-
ipates in the establishment of fibroblast sub-
typeswere unknown.Here, we addressed both
the overall lipid composition and phenotypic
states of hundreds of individual dermal fibro-
blasts looking for a possible role of lipids in the
determination of dermal fibroblast identity.

RESULTS: We coupled high-resolution mass
spectrometry imaging and single-cell mRNA
sequencing to resolve both lipidomes and
transcriptomes of individual dermal fibro-
blasts. We found that dermal fibroblasts exist
in multiple lipid compositional states that cor-
respond to transcriptional subpopulations
in vitro and to fibroblasts populating differ-
ent layers of the skin in vivo. We isolated the
metabolic pathways that account for this cor-
relation and found that sphingolipids aremajor
markers of the different lipid compositional
states that we named lipotypes. We also found
that lipotype heterogeneity influences cell iden-
tity by diversifying the response of otherwise
identical cells to extracellular stimuli and that
manipulating sphingolipid composition is
sufficient to reprogram cells toward different
phenotypic states. We also found that lipid
composition and signaling pathways are wired
in self-sustained circuits that account for the
metabolic and transcriptional fibroblast het-
erogeneity. Specifically, we observed that
sphingolipids modulate fibroblast growth
factor 2 (FGF2) signaling, with globo-series
sphingolipids acting as positive regulators and
ganglio-series glycosphingolipids as negative
regulators. In turn, FGF2 signaling counteracts
ganglioside production by sustaining the alter-
native metabolic pathway leading to the pro-
duction of globo-series sphingolipids.

CONCLUSION: By studying the lipid com-
position of individual cells, we found that
lipids play a driving role in the determina-
tion of cell states. We indeed uncovered an
unexpected relationship between lipidomes
and transcriptomes in individual cells. In
fact, our results indicate that the acqui-
sition of specific lipotypes influenced the
activity of signaling receptors and fostered
alternative transcriptional states. Cell states
are intermediates in the process of cell dif-
ferentiation in which state switches precede
terminal commitment. As a consequence,
lipidome remodeling could work as an early
driver in the establishment of cell identity,
and following lipid metabolic trajectories of
individual cells could have the potential to
inform us about key mechanisms of cell fate
decision. Thus, this study stimulates new
questions about the role of lipids in cell-fate
decisions and adds a new regulatory com-
ponent to the self-organization of multi-
cellular systems.▪
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Sphingolipids control dermal fibroblast heterogeneity. Human dermal fibroblasts exist in multiple lipid
configurations (lipotypes) marked by different sphingolipids. Sphingolipids such as Gb4 or GM1, distinctly
modulate FGF receptor (FGFR) signaling upon exposure to FGF2. As a result of this modulation, lipotypes
promote alternative transcriptional programs that are associated with papillary or reticular fibroblasts.
Accordingly, fibroblasts bearing different lipotypes populate the reticular and papillary layers of the skin.
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Sphingolipids control dermal fibroblast heterogeneity
Laura Capolupo1, Irina Khven2, Alex R. Lederer2, Luigi Mazzeo3, Galina Glousker4, Sylvia Ho1,
Francesco Russo5, Jonathan Paz Montoya1, Dhaka R. Bhandari6, Andrew P. Bowman7,
Shane R. Ellis7,8,9, Romain Guiet10, Olivier Burri10, Johanna Detzner11, Johannes Muthing11,
Krisztian Homicsko12,13,14, François Kuonen15, Michel Gilliet15, Bernhard Spengler6,
Ron M. A. Heeren7, G. Paolo Dotto16,17,18, Gioele La Manno2*, Giovanni D’Angelo1,5*

Human cells produce thousands of lipids that change during cell differentiation and can vary across
individual cells of the same type. However, we are only starting to characterize the function of these
cell-to-cell differences in lipid composition. Here, we measured the lipidomes and transcriptomes
of individual human dermal fibroblasts by coupling high-resolution mass spectrometry imaging with
single-cell transcriptomics. We found that the cell-to-cell variations of specific lipid metabolic pathways
contribute to the establishment of cell states involved in the organization of skin architecture.
Sphingolipid composition is shown to define fibroblast subpopulations, with sphingolipid metabolic
rewiring driving cell-state transitions. Therefore, cell-to-cell lipid heterogeneity affects the determination
of cell states, adding a new regulatory component to the self-organization of multicellular systems.

T
he division of labor is a fundamental
organizational principle ofmulticellular
organisms that is implemented through
transcriptional programs resulting in cell
types.However, phenotypic heterogeneity

can occur across cells of the same type, result-
ing in different cell states (1–3). These varying
cell states can have physiological significance
such as priming diverging differentiation pro-
grams (4) or contributing to distinct cellular
tasks in physiological processes (5).
Fibroblasts are a cell type that can plasti-

cally transition across multiple states (6–13).
Changes in the proportion of fibroblast sub-
populations are associated with fibrosis and
contribute to a tissue microenvironment per-
missive for cancer growth (14–18). Cell lineage,
soluble factors, and the microenvironment (6)
all contribute to the determination of fibro-
blast states (15), yet the molecular circuits that
govern this fibroblast heterogeneity and plas-
ticity have not been fully clarified.
Metabolic rewiring is inherent to cell-fate

transitions (19), and several metabolic switches
involving lipids are important for multicellular
organism development (20). Nonetheless, only
a few studies have investigated lipid compo-
sition at the single-cell level and the relevance
of its variability (21–24). Thus, whether lipid

metabolism has a role in the determination
of cell states remains unclear. Specifically, al-
though lipids modulate the differentiation of
stem cells in the skin (25), whether and how
lipidmetabolism participates in fibroblast state
plasticity has not been addressed.
Mass spectrometry (MS) techniques now

have enough sensitivity to enable single-cell
lipidomics (26–28). In particular,matrix-assisted
laser desorption/ionizationmass spectrometry
imaging (MALDI-MSI) provides coverage of
the lipidmass-to-charge-number (m/z) range,
causesminimal fragmentation, andhas reached
a spatial resolution compatible with single-cell
analysiswhilemaintainingmass resolution and
accuracy (29–36).

MALDI-MSI reveals the organizing principles of
lipid heterogeneity

We performed space-resolved (25 to 50 mm2

pixel size)MALDI-MSI on low-passage primary
dermal human fibroblasts (dHFs) (Fig. 1A).
Lipid images (Fig. 1B) were extracted from
raw data and lipid identity was attributed (37)
and validated by electrospray ionization liquid
chromatography–mass spectrometry (ESI-LC/
MS) (37) and multiple reaction monitoring
(MRM)–based lipidomics (Fig. 1A; fig S1, A
and B; and table S1). Specific attributions were

disambiguated by comparison with pure stan-
dards (fig. S1C) and targeted LC-MS/MS (fig.
S1D). Overall, images of 205 annotated lipids
were obtained (37) (table S1), which account
for a sizable fraction of the dHF lipidome as
detected by LC-MS.
The intensities of all them/z peaks at each

scanned location (i.e., pixel) were used to per-
form a multivariate analysis. Principal com-
ponent analysis (PCA) revealed that 95% of the
pixel-to-pixel variability could be explained by
eight principal components (PCs) (Fig. 1C and
fig. S1E). The in situ visualization of the PC
coordinates corresponding to each pixel delin-
eated distinct distribution patterns for differ-
ent groups of lipids (Fig. 1C).
PC1 coordinates changed from the inner part

of the cell toward the cell periphery, suggesting
that this axis captures fundamental differences
in lipid composition of the perinuclear and
peripheral cell membranes (Fig. 1D). In con-
trast to what was observed for PC1, PC2 to PC8
coordinates distributed differently among cells,
with some cells displaying exclusively positive
or negative pixels (Fig. 1C). Lipids belonging
to the sphingolipid pathway [i.e., ceramides
(Cers), sphingomyelins (SMs), hexosylceramides
(HexCers), trihexosylceramides (Gb3s), and
globosides (Gb4s)] accounted for these axes
of cell-to-cell variation (Fig. 1D and fig. S1E).
This confirms previous observations concern-
ing the cell-to-cell variability of specific sphin-
golipids (21, 24) and extends them to most of
the lipid species observed in this pathway.
From these results, we conclude that two co-
existing axes of lipid variation exist in dHFs.
One axis pertains to intracellular organization
(38) and the other to lipid-related intercellular
heterogeneity (39).

Single-cell analysis reveals lipid coregulation

To understand the nature of this lipid inter-
cellular heterogeneity, we used optical images
to guide cell segmentation and transferred
them onto the MS images to obtain a total of
257 single-cell lipidomes from three indepen-
dent MALDI-MSI recordings (Fig. 2A). After
data normalization and batch correction, the
cell-to-cell variability associated with individ-
ual lipid species was summarized by com-
puting their coefficient of variation (CV) (37)
across the cell population. The obtained values
were used to rank lipids according to their
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decreasing CV. Sphingolipids populated the
top CV ranking positions, confirming that the
sphingolipid pathway (fig. S1F) is subjected to
high cell-to-cell variability (Fig. 2B).
To test whether the sphingolipid metabolic

pathway is coordinatelymodulated or if differ-

ent sphingolipid subsets are controlled in-
dependently in different cells, we created a
pairwise lipid-lipid correlation (Pearson’s R)
matrix (Fig. 2C). Although phospholipid spe-
cies did not form biochemically meaningful
cliques, sphingolipidswere clustered in groups

consisting of compounds bearing the samehead
group (i.e., OH with Cers, hexose with HexCers,
trihexose with Gb3s, and N-acetyl-hexose-
trihexose with Gb4s) but with different Cer
backbones (mostly 34:1, 40:1, 42:1, and 42:2)
(fig. S1F). This suggests that specific enzymatic
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Fig. 1. Single-pixel MALDI-
MSI analysis on dHFs.
(A) Schematic drawing of
MALDI-MSI workflow.
Cells were fixed, matrix
was deposited, and MALDI-
MSI was performed by
rasterizing the laser across
a selected area. For each
spot, a mass spectrum was
collected and mass images
were obtained for each
ion by plotting m/z intensity
at the corresponding x
and y coordinates (left panel).
For peak identification,
total lipid extracts were
analyzed by ESI-LC/MS
(right panel). Lipids identi-
fied by ESI-LC/MS were
then compared with
the ones obtained by
MALDI-MSI. (B) Ion images
(50 mm2/pixel; 354 ×
218 pixels) of selected lipids
recorded in positive-ion
mode. Insets show individual
cells images at higher mag-
nification. [PC(34:1)+Na]+,
phosphatidylcholine with
acyl chains consisting
of 34 carbon atoms and
one double bond complexed
with sodium; [SM(34:1)+Na]+,
SM with a backbone of
34 carbon atoms and
one double bond complexed
with sodium; [PC O-(36:4)
+H]+, phosphatidylcholine
plasmalogen with acyl
chains consisting of
36 carbon atoms and
four double bonds
complexed with hydrogen;
TIC, total ion current. Scale
bar, 500 mm. (C) Images
displaying at each location
the PCA coordinate of each
pixel. PC1, PC5, and PC6
values are displayed using
a divergent color map;
positive coordinates are
shown in red and negative in
blue. Insets show individual
cell images at higher magnification. (D) Bar plots showing the contribution of the top 10 lipids with higher (red) and lower (blue) loadings for
each PC. Miniatures in the upper left corner show the entire distribution.
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activities responsible for Cer processing, rather
than those producing different Cer backbones,
are variable at a cell-to-cell level. Accordingly,
the relative abundances of lipids sharing the
same head group were more correlated than
those sharing the same backbone (fig. S1G).
Single-cell lipidomeswere thenused to group

cells according to their lipid composition (37),
resulting in distinct cell clusters (Fig. 2D and
fig. S1H).When the levels of sphingolipids were

considered, we observed that certain species
(i.e., Cers, HexCers, Gb3s, and Gb4s) were en-
riched in specific cell clusters, suggesting that
dHFs exist in distinct sphingolipid metabolic
states (Fig. 2, E and F).

Sphingolipids define dHF lipotypes

To validate these results, we stained cells with
fluorescently labeled bacterial toxins that re-
cognize different sphingolipid head groups:

Shiga toxin 1a (ShTxB1a) binds to Gb3 (40),
Shiga toxin 2e (ShTxB2e) binds to Gb3 and
Gb4 (41), and Cholera toxin B (ChTxB) binds
the ganglioside GM1 (42). Toxins stained dHFs
with a pattern reminiscent of the variability
observed byMALDI-MSI (Fig. 3A and fig. S2A).
Treatment with inhibitors of sphingolipid pro-
duction [fumonisin B1 (FB1) (43) andD-threo-1-
phenyl-2-decanoylamino-3-morpholino-1-propanol
(D-PDMP) (44)] or silencing the expression of
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Fig. 2. Single-cell lipidomics analysis.
(A) Schematic of the approach used for
single-cell analysis of MALDI-MSI data.
Confocal micrographs were used as guides
to segment cells out of the mass images,
and single-cell ion abundance was computed
as the TIC-normalized peak intensity. Dif-
ferent acquisitions were combined after
ComBat batch correction. (B) Barplot
showing the CV of lipids computed across
257 cells. Lipids were ranked by CV and
color coded according to their class
(sphingolipids are shown in red, glyceroli-
pids in gray). Single-cell lipid levels are
shown in the bottom part of the plot.
(C) Lipid covariation network. Nodes
represent individual lipids, size is
proportional to the CV, and color is
according to lipid class: Cers are shown
in yellow, Gb3s in red, SMs in blue,
HexCers in cyan, and Gb4s in green. Edges
connect two lipids where the correlation
coefficient is >0.85. (D) t-distributed
stochastic neighbor embedding (t-SNE) of
the single-cell lipidomics data. Cells are
colored by the clusters defined by hierar-
chical clustering. (E) t-SNE colored by the
abundance of sphingolipids. (F) Mass
images showing the spatial distribution of
sphingolipid precursors (Cers and HexCers)
and complex sphingolipids (Gb3s and
Gb4s) composed of different backbones
(34:1, 42:1, and 42:2). Miniatures in
the top left corner of each image depict
a simplified schematic of the lipid
structure (compare with fig. S2A).
Scale bar, 500 mm.
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B4GALT5 encoding lactosylceramide synthase
(LCS) reduced toxin binding (fig. S2, B and C)
without inducing significant toxicity (fig. S2D),
indicating that toxins are a faithful proxy for
dHF sphingolipid composition in our setting.

As further validation, dHFs were first fixed
and stained with toxins and then imaged by
MALDI-MSI (Fig. 3B). ShTxB1a staining cor-
related best with Gb3 levels, and ShTxB2e
staining correlated well with Gb3 and Gb4

levels, whereas neither correlated with SM
levels. ChTxB staining, our proxy for the levels
of GM1 (42), a sphingolipid not detected by
MALDI-MSI in positive-ionmode, did not cor-
relate with any of the sphingolipids detected
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Fig. 3. Identification of dHF lipotypes
by MALDI-MSI and toxin staining.
(A) Confocal micrographs showing cells
stained with bacterial toxins ShTxB1a
(green), ShTxB2e (red), ChTxB (blue), and
Hoechst (gray) for nuclei. Scale bar,
50 mm. (B) Side-by-side comparison of
toxin staining and MALDI-MSI acquisition
on the same cells. First, cells were stained
with bacterial toxins as in (A), and images
were acquired by confocal microscopy
(left panel). Then, MALDI-MSI (25 mm2/
pixel) was performed on the same cells
(center panel). Mass images (320 ×
320 pixels) of complex sphingolipids
[SM (42:1), Gb3 (42:1), and Gb4 (42:1)]
are shown. Scale bar, 200 mm. (C) Cells
were stained with bacterial toxins as in (A)
and with antibodies against Beta-COP
(COPI vesicles) or EEA1 [early endosomes
(EEs)], and images were acquired by
confocal microscopy. Normalized fluores-
cence intensities of toxin and organelle
marker stainings of single cells were
used to analyze the correlation between
lipotypes and cell area and with exo/
endocytic organelles. Data are shown
as violin plots. *P < 0.05, **P < 0.01,
***P < 0.001, ordinary one-way ANOVA.
(D) Representative cells stained as for
EEA1 or Beta-COP and classified according
to their lipotypes. (E) Schematic repre-
sentation of dHF cell lineage tracking.
(F) Representative confocal micrograph of
toxin-stained dHFs before (left) and after
(right) segmentation with Cellpose. Seg-
mented cell colors correspond to the
different lipotypes. (G) Lineage recon-
struction for the cells illustrated in
(F) as inferred using TrackMate (37).
(H) Correlation plots of normalized
ChTxB, ShTxB1a, and ShTxB2e intensities
between daughter cells at the time
course end point. Dots are colored by the
number of hours after mother cell division.
(I) Heatmap of frequencies for two
lipotypes occurring in two sister cells
colored by z-score. Positive deviation from
zero indicates an increased observed fre-
quency of the sister-lipotype combination
compared with random chance, and negative
deviation from zero indicates a decreased
observed frequency of the sister-lipotype
combination compared with random chance. P values were calculated using the bootstrap pairwise t test (37). (J) Probability of a lipotype state transition occurring in a
cell over a 21-hour time period as estimated using CELLMA (37). Probabilities are located at the corresponding arrow tails. (K) Markov model–simulated evolution of a pure
ChTxB+ (left) or pure ShTxB1a+/2e+ (right) cell population over 7 days. (L) Line plots displaying the evolution of the state predictability of a cell (or its progeny) after a certain
time from an original state measurement. Differently colored tracks correspond to a different original lipotype measurement (t = 0). Kullback-Leibler divergence is evaluated
between the probability distribution vector obtained using the Markov transition matrix and the steady-state probability distribution (i.e., the best uninformed guess).
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by mass imaging (fig. S2, E and F). We then
analyzed dHFs derived from four unrelated
healthy individuals that displayed an analo-
gous pattern of cell-to-cell sphingolipid var-
iability (fig. S2G), suggesting that bacterial
toxins capture cell-to-cell sphingolipid hetero-
geneity and that sphingolipid heterogeneity is
common to dHFs from different individuals.
We categorized dHFs depending on their

sphingolipid configurations into ChTxB+,
ShTxB1a+, ShTxB2e+, ShTxB1a+/2e+, triple+,
and “other” (accounting for all other configura-
tions) (fig. S3A). When looking at features as-
sociated with these categories (Fig. 3C and fig.
S3B),we observed that ShTxB1a+/2e+ and triple+

cells were larger than ChTxB+ and ShTxB2e+

cells and that ShTxB1a+/2e+ had amore com-
plex shape than ChTxB+ cells (Fig. 3C and fig.
S3B). We also considered the cell-to-cell var-
iability associated with exo/endocytic organ-
elles (45), where sphingolipid production and
turnover take place (46). We observed that
ShTxB1a+/2e+ dHFs have an expanded early
endosomal compartment comparedwith other
configurations, with ChTxB+ dHFs showing
an opposite phenotype. Similar, although less
striking, changes were observedwhen looking
at coat protein complex I (COPI) vesicles and
at the Golgi complex (Fig. 3, C and, D, and fig.
S3, C andD). Thus, dHFs exist in different lipid
metabolic configurations that correspond to
distinct cell phenotypes involving cell size and
shape and are endowed with different endo-
cytic and secretory states.
To assess the dynamics of sphingolipid con-

figurations, dHF lineageswere followed by live
microscopy, and individual cells were analyzed
by toxin staining after fixation (Fig. 3, E to G;
fig. S4A; and movie S1). When the intensity
levels associated with individual toxins were
considered in pairs of sister cells, we noticed
that they were correlated (Fig. 3H) and that
lineage-related cells had a higher probability
of sharing the same sphingolipid configuration
than would be expected by chance (Fig. 3I and
fig. S4, B to D). Considering the toxin-staining
patterns of lineage-related cells, we modeled
the dynamics of lipid configuration switches
by developing the cell-state transition esti-
mation by lineage leaf-state Markov analysis
(CELLMA) algorithm (37). This model pre-
dicted that ShTxB1a+/2e+, ChTxB+, and triple+

are stable states with a 37%, 51%, and 68%prob-
ability of converting into a different lipid con-
figuration during a single-cell replication cycle
(21 hours), respectively. Conversely, ShtxB1a+

and ShtxB2e+ states were more transient and
showed a greater propensity (95 and 80%
during a single replication, respectively) for
converting into ShTxB1a+/2e+ or into “other”
lipid configurations (Fig. 3J and fig. S4E).
These dynamics translate into lipid-state

transition fluxes such that the predominant
lipid configurations are propagated across cell

generations (fig. S4F). Accordingly, our model
predicts that populations composed of cells all
belonging to the same lipid category would
revert slowly (i.e., within 7 days) to a hetero-
geneous steady state (Fig. 3K and fig. S4G). In
agreement with this prediction, when we se-
lected ShTxB1a+ or ChTxB+ cells by fluorescence-
activated cell sorting (FACS) and kept them in
culture for 10 days, the cell cultures reverted to
heterogeneous cell populations with lipid-state
compositions similar to those fromwhich they
were originally selected (fig. S4H).
On the basis of these results, we conclude

that dHFs exist in metastable sphingolipid
metabolic configurations (Fig. 3L) that corre-
spond to given phenotypic states and persist
during cell generations. Hereafter, we refer to
these lipid metabolic states as lipotypes.

Lipotypes mark specific cell
transcriptional states

We performed single-cell RNA sequencing
(scRNA-seq) on a total of 5652 dHFs. Uni-
formmanifold approximation and projection
(UMAP) embeddingwas computed on the gene
expression profiles, and 17 cell clusters were
identified by the Louvain algorithm (Fig. 4A).
These 17 clusters were grouped into six cate-
gories related to different biological processes:
proliferation, proinflammatory cytokine se-
cretion (inflammatory), profibrotic secretion
(fibrogenic), extracellular matrix remodeling
(fibrolytic), and proangiogenic factor secre-
tion (vascular) (Fig. 4B and fig. S5A). A further
group represented bona fide basal-state fi-
broblasts (basal). We investigated the dynamic
relationships among these categories using dif-
fusion maps (47) and partition-based graph
abstraction (PAGA), which estimate the tra-
jectories and connectivity of the different
components of a manifold (48). This analysis
revealed that basal and proliferating categories
were interconnected, whereas inflammatory,
fibrogenic, and fibrolytic categories represented
mutually alternative transcriptional cell config-
urations (Fig. 4, C and D).
Next, to link the expression-defined sub-

types with those defined by sphingolipids, we
isolated dHFs according to their lipotypes by
FACS and performed bulk RNA sequencing
on the different sorted samples. We isolated
ChTxB+, ShTxB2e+, ShTxB1a+/2e+, and triple+

cells (Fig. 4E and fig. S5B). Genes up-regulated
in the different lipotypes were extracted and
used to compute gene signature scores on the
single-cell dataset. The four lipotype signatures
mapped to distinct UMAP areas that corre-
sponded to themajor transcriptional categories
(Fig. 4, F andG). Triple+ cells corresponded to
inflammatory, fibrolytic, and vascular fibro-
blasts; ShTxB1a+/2e+ and ShTxB2e+ to pro-
liferating cells and basal state fibroblasts; and
ChTxB+ to “fibrogenic” fibroblasts. This sug-
gests that specific lipotypes are associated

with prevalent cell states (Fig. 4H). To verify
this finding, we costained dHFs with toxins
and markers for the different clusters, which
revealed a specific overlap between ChTxB and
smooth muscle actin (encoded by the gene
ACTA2, a fibrogenic marker)–positive cells
and between ShTxB2e and laminin A (encoded
by the gene LMNA, a basal and proliferative
marker)–positive cells. Altogether, these obser-
vations indicate that lipotypes are markers of
dHF cell states (Fig. 4, I and J).

Lipotypes mark specific dHF populations
in vivo

Cell states of dHFs in vitro partly reflect pop-
ulations of fibroblasts in the skin. Specifically,
fibroblasts localized in the deeper dermal re-
gion (i.e., reticular fibroblasts) are endowed
with fibrogenic activity (49), whereas those
populating the more superficial region (i.e.,
papillary fibroblasts) have greater proliferative
capability (50). Therefore, we derived transcrip-
tional signatures for papillary and reticular
dHFs from studies (51) and mapped them on
our UMAP embedding (Fig. 5A). We found that
the reticular signature largely overlaps with the
fibrogenic UMAP region (also associatedwith
ChTxB+ signature). Conversely, the papillary
signature overlaps with the basal and fibrolytic
UMAP regions (also associated with ShTxB2e+

and ShTxB1a+/2e+ signatures) (Fig. 5, A and B).
Accordingly, when we toxin-stained human

skin biopsies, we observed that ChTxB+ cells
are preferentially found in the reticular dermal
region, whereas ShTxB1a+/2e+ cells are preva-
lently found in the papillary dermal region
(Fig. 5C). Counterstaining for the fibroblast
marker vimentin and other dermal markers
confirmed that dHFs are stained with differ-
ent specificities by toxins (Fig. 5D and fig. S6).
Keratinocytes, as recognized by the marker
pankeratin, were primarily ShTxB1a+/2e+ and
endothelial cells, as recognized by themarker
CD31, were stained by all three toxins (Fig. 5E
and fig. S6).
When skin is damaged, for example, from

wounding or cancer lesions, dermal fibroblasts
become activated and experience phenotypic
interconversion (52). We stained three skin
samples from individuals diagnosed with cu-
taneous squamous cell carcinoma (cSCC) with
sphingolipid-binding toxins. In all three cases,
recognizable cancer lesions were surrounded
by cells prevalently stained by ChTxB (Fig. 5F
and fig. S7, A and B). When counterstained
with dermal markers, these ChTxB+ cells were
vimentin+, suggesting that they are cancer-
associated fibroblasts (CAFs) (fig. S7C).
CAFs can be effectively isolated from cancer

tissues. We thus examined two pairs of CAFs
and matched dHFs from cSCC and flanking
unaffected areas from the samepatients (fig. S7,
D and E) for toxin analysis. In both cases, CAFs
were predominantly ChTxB+ andShTxB1a–/2e–,
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Fig. 4. Lipotype mapping to transcriptional cell states. (A) UMAP embedding
analysis of scRNA-seq of 5652 individual dHFs colored by the assigned cluster.
(B) Gene expression dot plot of cluster marker genes. Genes for each cluster were
identified using the Wilcoxon rank-sum test. (C) Diffusion map visualization of single
dHF cells from (A) highlighting the axes of transcriptional variation among the different
cell states. (D) PAGA applied to scRNA-seq data of control dHFs. Nodes indicate
cell type states, and the length of edges indicates the degree of similarity between
states, with shorter edges corresponding to greater state similarity. (E) Heatmap
reporting the average gene expression of enriched genes for each of the FACS-sorted
lipotype populations (bulk RNA-seq data). For each lipotype, the top eight genes,
ranked by fold change, are shown. (F) UMAP embedding colored by the different
lipotype gene signature scores. The 250 top differentially expressed genes were

used to calculate the signature score. (G) Dot plot colored by the average lipotype
z-score of cells of the different clusters. Size of the dots represents the number
of cells with magnitude of the score >0.35. (H) PAGA applied to scRNA-seq data of
control dHFs and based on the ShTxB2e+, ShTxB1a/2e+, ChTxB+, and triple+

lipotype signatures. Nodes are positioned corresponding to cell states in (D).
Color of nodes corresponds to z-score signatures, with a positive z-score (red)
indicating a greater correspondence of the particular cell type to the particular
lipotype state. Color bar is the same as in (G). (I) UMAP embedding of dHFs
colored by the expression of the two canonical markers for fibrogenic (ACTA2) and
basal (LMNA) cell states. (J) Confocal micrographs of cells stained with ShTxB1a
(green), ShTxB2e (red), and ChTxB (blue) and counterstained by antibodies
against ACTA2 and LMNA (magenta). Scale bar, 100 mm.
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compared with matched dHFs (Fig. 5, G and
H). These data indicate that dHF lipotypes are
reflected by fibroblast subtypes populating dif-
ferent dermal regions and are differently asso-
ciated with skin cancers.

Sphingolipid composition influences cell states

We surveyed whether lipotypes are the result
of cell state–specific transcriptional programs

that involve lipid-metabolizing enzymes. Un-
expectedly, when the expression of genes en-
coding sphingolipid enzymes and accessory
factors was visualized on the UMAP em-
bedding, none of them showed a cell state–
specific localization (fig. S8A). To test this, we
combined toxin staining and mRNA fluores-
cence in situ hybridization (FISH). We assayed
the expression of ST3GAL5 encoding GM3 syn-

thase (GM3S) and A4GALT encoding Gb3 syn-
thase (Gb3S) and their lipid products through
toxins ChTxB and ShTxB1a within the same
cells (Fig. 6A and fig. S8B). When toxin stain-
ing intensity was considered along with FISH
counts, we observed either no or weak (R =
0.29) correlation of the two readouts, suggest-
ing that single-cell sphingolipid composition
is largely determined by posttranscriptional
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Fig. 5. Lipotypes define dHF
population in the skin. (A) Pap-
illary and reticular signatures
overlaid onto the UMAP embed-
ding. (B) Dot plot colored by the
average reticular and papillary
z-score of cells of the different
clusters. Size of the dots
represents the number of cells
with magnitude of the score
>0.35. (C) Confocal micrographs
of human foreskin tissue section
stained with bacterial toxins
ShTxB1a (green), ShTxB2e (red),
and ChTxB (blue). Insets show
lipid staining in papillary (aster-
isks) and reticular (arrowheads)
fibroblasts. Scale bar, 200 mm.
The dotted line delineates the
papillary-reticular dermal bound-
ary. (D) Confocal micrographs of
human foreskin tissue section
stained with bacterial toxins
ShTxB2e (red) and ChTxB (green)
and vimentin (blue) as a fibroblast
marker. Insets show staining in
papillary and reticular layers.
Scale bar, 200 mm. The dotted line
delineates the papillary-reticular
dermal boundary. (E) Confocal
micrographs of human foreskin
tissue section stained with bacte-
rial toxins as in (D) and pankeratin
(blue) as a keratinocyte marker.
Insets show staining in papillary
and reticular layers. Scale bar,
200 mm. (F) Confocal micro-
graphs of human cSCC sections
stained with bacterial toxins as in
(C). Scale bar, 200 mm. Insets
show tumor regions surrounded
by ChTxB+ fibroblasts (yellow
arrowheads). (G) Confocal micro-
graphs of CAFs and normal
dHFs isolated from the same
individuals, stained with bacterial
toxins as in (C). Scale bar,
200 mm. (H) Scatter plots of
fluorescence intensity values for
each toxin comparing control
dHFs (blue) and their
corresponding CAFs (red).
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mechanisms. Therefore, lipotypes are asso-
ciated with cell states, yet cell states are not
endowed with transcriptional programs that
would account for the lipotypes with which
they are associated. This raises the question
of whether lipotypes are causally upstream of
cell states and if lipid composition influences
cell-to-cell transcriptional heterogeneity.
To test this hypothesis, we treated dHFs

with the Cer synthase inhibitor FB1, which
blocks the production of sphingolipids (figs.
S1F and S2B), and performed scRNA-seq.
When FB1-treated dHFs were integrated in
the same transcriptional embedding along
with control cells, they displayed a different
distribution across states (Fig. 6B and fig.
S8C). FB1-treated cells were more frequently
associated with fibrolytic (from 6% in control

cells to 23% in FB1-treated cells) and vascu-
lar (from 0.6 to 1.3%) than fibrogenic (from
48 to 40%) and inflammatory (from 9 to 6%;
Fig. 6B and fig. S8D) states. These changes
correspond to an increased association of FB1-
treated dHFs with “papillary” and decreased
association with “reticular” fibroblast states
(Fig. 6C).
FB1 treatment deprives cells of most sphin-

golipids (43), so this treatment does not inform
on how the individual lipid species associ-
ated with the cell states influence signaling.
We established dHF lines overexpressing either
GM3S or Gb4S, two enzymes driving alterna-
tive sphingolipid-processing pathways (Fig.
6D). These overexpressing (OE) cells dis-
played the expected changes in sphingolipid
composition, with GM3S-OE dHFs composed

largely of ChTxB+ cells and Gb4S-OE dHFs
composed largely of ShTxB1a+/2e+ cells (Fig. 6E
and fig. S8E).
GM3S-OE and Gb4S-OE lines were then

analyzed by scRNA-seq to test the impact of
lipotype change on cell state. GM3S-OE and
Gb4S-OE dHFs populated two distinct tran-
scriptional regions (Fig. 6F). Gb4S-OE dHFs
were more associated with basal, inflamma-
tory, and fibrolytic states, whereas GM3S-OE
dHFs were for the major part in a fibrogenic
state (88%) and almost never in inflammatory
or fibrolytic states (fig. S8F). Gene expression
analysis confirmed this transition: COL12A1
and VCAN markers of fibrogenic state were
significantly up-regulated in GM3S-OE cells
and down-regulated inGb4S-OE cells, whereas
the fibrolytic and inflammatorymarkersMMP-1
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Fig. 6. Effect of sphingolipid perturbations on cell states. (A) Representative
confocal micrographs of correlative mRNA-FISH/fluorescence toxin staining
using A4GALT and ST3GAL5 (magenta) probes and ShTxB1a (green) and ChTxB
(blue). Nuclei were labeled with Hoechst (gray). Scale bar, 50 mm. Right,
scatterplot showing the level of expression against toxin fluorescence. Pearson’s
correlation coefficient is indicated. Quantification on 120 and 96 individual
cells for A4GALT and ST3GAL5, respectively. (B) Left, UMAP embedding of the
scRNA-seq data for the control (5652 individual dHFs) and FB1-treated cells
(6546 individual dHFs). Cells are colored by their assigned cluster. Right, density

maps of control (CTRL) and FB1-treated cells mapped in the UMAP space.
(C) Papillary and reticular gene signatures in the FB1-treated sample overlaid
onto the UMAP embedding. (D) Confocal images of the overexpressing cell
lines stained with antibodies against V5 protein tag (green) and GOLPH3 (red).
Scale bar, 50 mm. (E) Confocal images of the overexpressing cell lines stained
with the bacterial toxins ShTxB1a (red), ShTxB2e (green), and ChTxB (blue).
Scale bar, 50 mm. (F) Cell density plot of single-cell expression profile of the OE
dHF cells mapped by similarity onto the UMAP projection in (B). (G) Papillary
and reticular signatures overlaid onto the UMAP embedding of the OE dHFs.
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and CCL2 were up-regulated in Gb4S-OE cells
anddown-regulated inGM3S-OEcells (fig. S8G).
Moreover, when reticular and papillary signa-
tures were considered, we found that Gb4S-
OE dHFs were clearly more associated with
papillary states and GM3S-OE dHFs with re-
ticular states (Fig. 6G).

Sphingolipids integrate into regulatory circuits
involved in cell-state determination

The transcriptional changes triggered by FB1
involve targets of fibroblast growth factor 2
(FGF2) activation and of transforming growth
factor–b (TGF-b) repression (53) (fig. S9A).
FGF2 and TGF-b transcriptional programs
are in fact largely antagonistic (53). Genes up-
regulated by FGF2 and down-regulated by
TGF-b (such asMMP-1) were preferentially ex-
pressed in the FB1-treated cells and in the
fibrolytic-basal population, whereas genes up-
regulated by TGF-b and down-regulated by
FGF2 (such as ACTA2) were more expressed
in control cells and in the fibrogenic popula-
tion (fig. S9A). This was confirmed by quanti-
tative polymerase chain reaction (qPCR) and
immunofluorescence analysis on a panel of
selected markers and extended to treatment
with D-PDMP and LCS-KD (fig. S9, B to F),
suggesting that global sphingolipid depriva-
tion either promotes FGF2 or suppresses TGF-
b signaling.
In dHFs challengedwith increasing amounts

of FGF2 or TGF-b, sphingolipid depletion did
not inhibit fibroblast response to TGF-b, whereas
it sensitized cells to FGF2 (fig. S9G). Moreover,
genetic interruption of FGF signaling through
the expression of a dominant-negative ver-
sion of FGF receptor 1 (DNFGFR1) specifically
blunted the transcriptional response to FB1
treatment (Fig. 7, A to C), indicating that trans-
criptional changes induced by sphingolipid
deprivation require FGF signaling.
When FGF2 and TGF-b signatures were

mapped onto Gb4S-OE and GM3S-OE dHF
UMAPs, we observed that GM3S-OE fostered
the TGF-b transcriptional program, whereas
for Gb4S-OE, we revealed the opposite trend
(fig. S9H). The effect on the FGF2 program
was more difficult to observe because the
expression signature dominates in actively pro-
liferating cells (fig. S9H). Nonetheless, im-
munofluorescence experiments showed that
although GM3S-OE dHFs were almost uni-
formly ACTA2+/MMP1–, Gb4S-OE dHFs dis-
played high MMP1 levels (Fig. 7, D and E).
This effect was counteracted by the FGF sig-
naling inhibitor infigratinib (fig. S9I), indicat-
ing again that transcriptional responses to
changes in cellular sphingolipid composition
require FGF signaling.
Moreover, stimulating Gb4S-OE and GM3S-

OE dHFs with FGF2 resulted in increased and
decreased responses, respectively (fig. S9, J and
K), and exogenous administration of GM1 to

FB1-treated cells (fig. S9L) specifically counter-
actedMMP1 induction (fig. S9M). This suggests
that GM1 and Gb3/Gb4 have opposite modula-
tory effects on FGF2 signaling. We thus chal-
lenged dHFs with FGF2 and monitored the
immediate single-cell signaling response by
following ERK phosphorylation (54) as a func-
tion of the cell lipotype. In our conditions,
FGF2-induced ERKphosphorylationwasmax-
imal after 5 min of stimulation (Fig. 7F and
fig. S10A). At this time point, ShTxB1a+/2e+

cells displayed a consistently stronger re-
sponse to FGF2 than ChTxB+ cells from the
same cell culture dish (Fig. 7G and fig S10, B
and C), indicating that dHFs exposing Gb3
and Gb4 at their cell surfaces are more sus-
ceptible to FGF pathway activation than those
exposing GM1.
Unexpectedly, toxin staining analysis of

dHFs in which the FGF2 pathway was blocked
either genetically or pharmacologically showed
a transition of the dHFs to a ChTxB+ state (Fig.
7H and fig. S10, D and E). Along similar lines,
FGF2 stimulation induced an increase in the
ShtxB1a+/2e+ cell population with a con-
current decrease of ChTxB+ cells (fig. S10, D
and E). This effect was largely nontranscrip-
tional, because in DNFGFR1 dHFs, the pro-
duction of the Gb3 was reduced as assessed
by metabolic labeling (fig. S10F), yet the ex-
pression of the genes that encode sphingo-
lipid synthetic enzymes was not modulated
(fig. S10G).
Thus, sphingolipids modulate FGF2 signal-

ing, with Gb3/Gb4 acting as positive regu-
lators and GM1 as a negative regulator. In
turn, FGF2 signaling counteracts GM1 pro-
duction by sustaining the alternative meta-
bolic pathway leading to the production of
Gb3 and Gb4 (Fig. 7I).

Discussion

Here, we investigated whether and how lipid
metabolism affects cell identity by exploring
the dHF heterogeneity (7, 14) that results from
their plastic interconversion across cell states
(6, 55–57).
Our observations constitute an example

of how cell-to-cell lipid heterogeneity can
diversify the processing of extracellular sig-
nals and promote cellular responses (22).
The phenomenon that we describe can be
considered an instance of cellular contex-
tual decision-making whereby individual
cells route to alternative fates by processing
external inputs in the context of their internal
states (58).
Furthermore, considering both the ubiquity

of lipids and their structural diversity, we ex-
pect to find other cell types exploiting regu-
latory strategies analogous to the one that we
discovered. By extension, one can hypothesize
that lipidome remodeling participates in tis-
sue patterning and organogenesis. If this is

correct, then lipid-defined cell states analo-
gous to the lipotypes described here could be
involved in developmental symmetry-breaking
events and organogenesis (4). Indeed, our find-
ing that lipotypes are spatially segregated to
different dermal layers in human skin archi-
tecture supports this hypothesis.
A limitation of our study is the inability to

address lipid and transcriptional trajectories
live and in single cells. Although challenging
to obtain, time-resolved data have the poten-
tial to clarify how lipid metabolic fluxes evolve
during cell-state transitions (59). We envision
that emerging tools such as chemically synthe-
sized lipid probes and live-omics profiling will
enable such experiments (60, 61).
In conclusion, by exploiting the potential of

space-resolved nontranscriptional single-cell
omics, we provide evidence for cell-to-cell
heterogeneous lipid metabolism playing an
instructive role in the self-organization ofmul-
ticellular systems.

Methods summary

Human fibroblasts obtained from the dermis
of discarded skin samples of circumcised, 1- to
5-year-old healthymales were used forMALDI-
MSI analyses. Specifically, samples were ana-
lyzed using AP-SMALDI10 or AP-SMALDI5
AF systems using 5- or 7-mm spatial resolution
in positive-ionmode in themass rangem/z 400
to 1600. Mass images (n = 296) were then gen-
erated and lipids annotated by using a com-
bination of databases, ESI-LC/MS (62), and
MRM confirmation. To assess lipid variabil-
ity, single-pixel analysis was performed on the
296mass images. PCA analysis was performed
and the absolute values of the PCA loadings
were then used to identify the lipids with the
most variance of each single component. Single
dHFs were further manually segmented, and
raw abundance data for each scan and each
pixel in a cell were exported. Normalized lipid
count values were used to determine the CV.
Pearson’s R was used to evaluate lipid and
cell covariation.
For lipotype determination and feature ex-

traction, including fluorescence intensities,
area, eccentricity, shape complexity, and lo-
cal cell density, cells were stained with fluo-
rescently labeled B-subunit toxins or primary
and secondary antibodies. Cells were then
analyzed by confocal microscopy and seg-
mented using Cellpose. Time-lapse imaging
coupledwith toxin end-point stainingwas per-
formed to assess the dynamics of lipotype
configuration (63, 64). The lineage informa-
tion extracted from the time-lapse imaging
and the cell state from the end-point staining
were used to perform a sister-state frequency
analysis and to fit the estimation framework
CELLMA (37, 65).
To evaluate the association between tran-

scriptional states and lipotypes, scRNA-seq on
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dHFs and bulkRNA-seq on five cell populations
isolated by FACS according to their lipid com-
position were performed. Skin tissue sections
isolated from healthy individuals or from pa-
tients diagnosed with cSCC were used to eval-
uate the sphingolipid composition in vivo after
toxin staining and confocal microscopy. To
assess the influence of sphingolipid compo-
sition on cell state, dHFs treated with the Cer
synthase inhibitor FB1 or lentiviral stable cell

lines overexpressing GSL-synthesizing enzymes
were analyzed by scRNA-seq.
Full materials and methods are available as

supplementary materials (37).
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Fig. 7. Effect of sphingolipid perturbation on FGF signaling.
(A) Barplots of qPCR quantifying the mRNA levels of TGF-b and
FGF target genes in CTRL, DNTGFR2, and DNFGFR1 cells
treated with 25 mM FB1 for 6 days. Data are shown as log2-fold
change over untreated cells (n = 3; data are shown as means ±
SD). (B and C) Western blot and quantification of cells treated as
in (A). Data were normalized against GAPDH (n = 2; data are
means ± SD; *P < 0.05, **P < 0.01, Student’s t test). (D) Cells
were stained with ACTA2 and MMP1, and normalized intensity
values were extracted for quantification. Data were scaled
to the median and are shown as the log2-fold change over
control in an individual cell (CTRL, n = 58; GM3S-OE, n = 49;
Gb4S-OE, n = 81; ***P < 0.001, ordinary one-way ANOVA).
(E) Representative confocal images of OE dHFs stained with
antibodies against ACTA2 (green) and MMP1 (red). Scale
bar, 100 mm. (F) Plots indicating normalized intensity values of
pERK protein in cells serum starved and then treated with
5 ng/ml of FGF2 for different times as determined by
densitometry. (G) Cells treated for 5 min with 5 ng/ml of
FGF2 as in (F) were stained with the bacterial toxins
ShTxB1a (green), ShTxB2e (red), and ChTxB (blue) (left panel)
and pERK (gradient) (right panel). Representative confocal
micrographs and cell segmentations according to lipotype are
shown. Scale bar, 100 mm. (H) Confocal images of pLenti,
DNTGFBR2, and DNFGFR1 cells stained with the bacterial toxins
ShTxB1a (green), ShTxB2e (red), ChTxB (blue), and Hoechst for
nuclei. Scale bar, 100 mm. (I) Schematic representation of the
model for the role of lipotypes in cell-state determination.
Left panel, lipotypes corresponding to dHF cell states. Middle
panel, cell states and lipotypes determined by signaling
pathways that are in turn influenced by the lipid composition
of individual cells. Right panel, FGF2 binds to FGFR, leading
to the prevalent production of Gb3/Gb4 over GM1. To
close the circuit, GM1 negatively regulates FGFR, whereas Gb3
and Gb4 activate FGFR in a positive feedback loop. This is a
bistable system in which cells can be Gb3+ or Gb4+, leading
to a more fibrolytic state, or GM1+, leading to a more
fibrogenic state.
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