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General Introduction 

 

Take a deep breath, listen: trees swinging with the wind, jazz music playing in the background, 

people walking, chatting. Every sensory stimulus around us, every decision we make, every 

action, every heartbeat happens in time. How can multimodal sensory input at multiple 

timescales converge into a temporally coherent perceptual representation?  

In this thesis I will discuss that our lives are governed by the passage of time, and I will 

consequently argue that our sense of time is fundamental to transition from chaos to cosmos 

(Kant, 1787).  

However, what is time? We cannot see it, nor touch it and yet we do somehow perceive time. 

How do we do so and how do we use the sense of time to orient, act in, and adapt to a 

dynamically changing environment? Does our bodily physiological activity influence our 

sense of time? Then, is the sense of time subjective? Namely, does my perception of time 

differ from yours? And in turn, how does it shape our perception and action?  

I will try to address these questions by focusing on specific timing computations: the 

neurophysiological mechanisms to encode, track and predict temporal regularities in the 

sensory environment. The journey starts with an introduction on the physical understanding 

of time (Chapter 1, paragraph 1) and moves to its implementation in the brain (Chapter 1, 

paragraph 2-3). I will discuss that as physical time allows to characterize space, motion and 

dynamics in natural sciences, the brain similarly employs an internal sense of time to 

understand the world. As we shall see, neural waves in extended cortico-subcortical networks 

sample the sensory environment by chunking continuous sensory streams into finite units, 

encode the precise timing of sensory input and keep track of time intervals between 

successive onsets relative to an endogenous clock that marks the continuous flow of time. 

Thus, neural waves at multiple timescales let a frequency architecture of dynamic oscillators 

emerge, ultimately instantiating an adaptive neural code to coordinate perception and action. 

I will further discuss that timing computations generate and are fostered by temporal 

predictions: breaking the physical asymmetry of time flow, neural waves flip the arrow of time 

and access past information to inform the future. By detecting temporal patterns, recurrencies, 

regularities, the brain generates predictions about future events, optimizing sensory 

processing, perception and action.  
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These concepts are experimentally tested in a series of comparative and translational studies 

in Chapters 2-4. In Chapter 2, I explore basic neurophysiological mechanisms to encode, track 

and predict temporal regularities in the general population. Complementing these 

observations, in Chapter 3 I take an evolutionary perspective and assess cross-species (dis-) 

similarities in basic timing. Finally, in Chapter 4 I discuss that subcortical lesions causally 

impact our capacity to detect, produce, and synchronize with temporal regularities in the 

environment.  

In these chapters I dedicate particular attention to the characterization of intra- and inter-

individual variabilities in basic timing, in the preferred time, as well as in the capacities to 

detect and synchronize with external time. Thus, the sense of time is not fixed; and physical 

time is not fixed either. As we shall see, physical time is bound to space, and particularly at 

the speed at which we travel through space. I argue that our sense of time may similarly 

fluctuate, expand and contract, and vary according to one’s state: a state defined by a system 

of endogenous body and brain physiological oscillators fluctuating at their eigenfrequency, 

their mutual dynamic interactions and their adaptation and tuning to environmental 

contingencies (i.e., incoming sensory stimuli and motor state). Hence, in Chapter 5 I introduce 

a new conceptualization of a body-brain dynamic system proposing that body physiology 

(e.g., respiration and heart activity) influence brain activity and cognition. This novel 

framework suggests that body signals represent complementary time keeping and time 

generating modules influencing brain activity, perception and action.  

Finally, in Chapter 6 I provide an overview of the main findings, discuss their impact on basic 

and applied research and motivate future research formulating novel and holistic research 

questions on neurocognitive functioning in health and pathology.  

Before that though, let time flow at its own speed: what is time? 
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1. Time and time flow 

1.1.  Measuring physical time 

"The second is the duration of 9192631770 periods of the radiation corresponding to the 

transition between the two hyperfine levels of the ground state of the caesium 133 atom." 

- 13th General Conference on Weights and Measures in 1967.  

Our best measure of time is obtained by monitoring the resonant frequency of atoms (caesium 

133), thus the label atomic clocks. What provides this fine measure of seconds is the frequency 

of electromagnetic radiation, defined by the rate of transition between different energy levels. 

The idea to use atoms and their periodic, precise fluctuation between energy states to measure 

time was inspired by James Clerk Maxwell, who first proposed measuring time via the 

vibrations of light waves: “A more universal unit of time might be found by taking the periodic 

time of vibration of the particular kind of light whose wavelength is the unit of length.” 

(Treatise on Electricity and Magnetism, 1873; Achard, 2005; Ramsey, 2005). These super-

precise clocks now define the International Atomic Time and are used to connect the world 

into a unique sense of time. They are further used by satellite networks to allow for terrestrial, 

maritime, and aerial navigation with a bare 3cm error.  

However, we have not always been so precise, and we may remember seeing a pendulum 

clock in our grandma’s house. For a long time, our best markers of the passage of time were 

pendulums, harmonic oscillators whose quasi-isochronous swinging would accumulate an 

error of approximately 15s per day. For almost 300 years, the world relied on the creation of 

Christiaan Huygens (inspired by the conceptualizations of Leonardo Da Vinci in 1494 and 

Galileo Galilei in 1582) for scheduling daily life, home routines, work shifts, or public 

transportation. Before that, there were obviously other time-keeping devices, but they would 

accumulate several minutes of error per day, hours of error every ~4 days, and days of error 

per year. The early attempts to provide an objective marker of time flow date back to ancient 

Egypt, the Babylonians, Greek, and Chinese, who employed sundials, water, and incense 

clocks. These were followed by the hourglass (or sandglass) and mechanical clocks in the 14th 

century, and later by the pendulum clock. However, what most of us wear daily is a quartz 

watch, an electronic oscillator regulated by a quartz crystal.  
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1.2.  Is there objective time? 

Quartz clocks achieve an accuracy that is at least an order of magnitude above that of 

mechanical clocks. However, the truth is that clocks carried by different individuals will not 

necessarily align: there is need for a radiofrequency pulse to re-align these clocks from time 

to time.  

There are various reasons for watches to diverge from the ‘correct’ time, one being that time 

perhaps is not fixed, but there are different measures of time. There is your time, the one 

measured by the watch you carry at work; and there is someone else’s time, the one measured 

by the watch of an airline pilot crossing Europe at high altitude and speed. What I am trying 

to convey is to acknowledge that physical time is inherently bound to space and, in particular, 

to the speed at which we travel through space. This step would allow us to move from the 

classical Newtonian view of absolute time to Einstein’s relativity (1905) and the notion of 

space-time. In this perspective, there is a turn in focus: we measure space by using time. 

Although we cannot speak of ‘absolute’ time (i.e., it is not universally fixed), we acknowledge 

that the speed of light is fixed. This new universal constant allows measuring space by using 

a precise measure of time as derived from cesium clocks. Next, we can calculate how long it 

takes for photons to travel certain distances and define a meter to be the distance travelled by 

light in 0.00000000334 seconds, yet another very odd number like the one we started out with.  

 

1.3.  The arrow of time 

What is also odd is that while there is a relationship between time and space, there is a clear 

difference between them: we can travel north and south, east and west, e.g., go from 

Maastricht to Salerno for a vacation; but we cannot travel into the past or future. We can access 

information from the past and retrieve memories, but we cannot do that in the future. While 

most of the laws of physics are symmetric (i.e., they do not distinguish past and future: if we 

reverse the motion of particles, the same laws of physics would explain their behavior), there 

is an asymmetry in the flow of time. In fact, a cup of water falling to pieces represents a 

process that cannot be reversed (it would break the 2nd law of thermodynamics). Similar 

observations were made long before the advent of modern physics. In fact, pre-Socratic 

philosophers like Heraclitus (~540 B.C.E.) and Anaxagoras (~500 B.C.E.) already debated the 

unidirectional flow of time, and the impossibility to reverse its course. Thus, the arrow of time 

distinguishes past from future, and this physical asymmetry is characterized by an increase in 
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entropy. To catch the concept, we can use a very simple example: living beings need to 

consume food to generate energy and stay alive; food (which is originally in a highly ordered 

state) is transformed into energy, and energy is used to generate heat, which is a disordered 

state. Entropy increases and the process is irreversible.  

Keeping this in mind, we can measure space by using time, and we can further use it to 

characterize motion: change in space as a function of time.  

 

1.4.  Using time for motion 

How exactly do we quantify and characterize space and motion? 

We can use Newton's laws of mechanics: the concepts of velocity, acceleration, and energy. 

According to Newton, the velocity of an object (i.e., the speed at which it is travelling through 

space and time) will be constant if there is no force altering its state. Deviations from its 

original motion can be quantified by the acceleration of that body, i.e., the rate of velocity 

change. According to the second law of motion, the acceleration of an object is proportional 

to the net force acting on it, with the proportionality provided by the object’s mass.  

This framework allows to characterize change over time, but how much time? A minute, a 

second, a fraction of a second?  

What we want to do is breaking time down into small units to quantify change. However, it 

took a long while from Zeno of Elea (~450 B.C.E) to Archimedes (~250 B.C.E), Galileo 

Galilei. and finally, to Isaac Newton and Gottfried Leibniz to come up with a solution: the 

continuous flow of time can be subdivided into infinitesimal quantities via calculus. This 

mathematical technique allows describing the rate of change of something using derivatives, 

while the total amount of change can be obtained via integrals. Thus, the velocity at which 

your boat travels from Salerno to Amalfi can be obtained by looking at the slope of the curve 

drawn by a graph that plots changes in position as a function of time x(t). A flat line would 

tell you that while time flows, there is no change in position; a steep curve, instead, would 

indicate fast changes in little time (Fig. 1A).  
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Figure 1 – Illustration on the use of derivatives to describe changes in space over time.  

 

The slope at each (space-time) point of this graph can be obtained by drawing a tangent line 

at that specific (infinitesimally small) location (Fig. 1B). This systematic procedure lets us 

describe motion and dynamics. We can, indeed, calculate the rate of change in position (𝛿𝑦) 

over time (𝛿𝑥) obtaining velocity (𝑣), i.e., the derivative of position with respect to time:  

𝑣 =  
𝛿𝑦

𝛿𝑥
 

In turn, we can calculate acceleration, as the derivative of velocity with respect to time or as 

the second derivative of position:  

𝑎 =  
𝛿𝑣

𝛿𝑥
 

Finally, once we have information on acceleration, we can quantify the force acting on an 

object: 

𝐹 = 𝑚𝑎 

In this formula, the acceleration of an object is proportional to the (net) force acting on it with 

the constant of proportionality provided by the mass. We obtained Newton’s second law of 

motion, the most famous equation in classical physics.  

What we can also do is use the same ingredient to go a bit further: characterizing the 

momentum and kinetic energy of an object at any location in space and time. These 

fundamental properties, along with the laws for the conservation of momentum and energy, 

complete a long journey that started with Greek philosophers and Aristotle (~350 B.C.E), 

went on to Avicenna (~1000) and Jean Burdian (~1300), finally reaching René Descartes, 

Galileo Galilei, and Isaac Newton.  
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Motion, velocity, energy; once defined time, we discussed that we can use time to characterize 

the state of a system and its dynamic changes. In this thesis, I am particularly interested in 

characterizing a specific type of system: oscillators.  

 

1.5.  Oscillators 

(Simple harmonic) oscillators can be exactly described by equations of motion. What makes 

them even more appealing is the fact that oscillators are everywhere around us: a weight 

hanging from a spring, the motion of an atom wiggling in a molecule, all the way up to 

vibrating quantum fields in particle physics and the value of the Higgs Boson field. Perhaps 

closer to the immediate interest of this thesis, the displacement of a pendulum clock, sounds 

waves, electrical currents, and neural activity can be similarly described by oscillators. These 

elements will be the protagonists of Chapters 1 to 4. At the end of this Chapter and in Chapter 

5, I open up possibilities for more biological oscillators: I will talk about circadian, respiratory, 

and heart rhythms. Oscillators are ubiquitous in physics and natural sciences, so we should 

learn how to use them to explain physical phenomena.  

As this chapter is about time, let me describe oscillators by thinking about a pendulum clock. 

The pendulum clock transforms energy into the motion of its pendulum (Fig. 2A). The motion 

is periodic; thus, the pendulum will continue to swing without changes as long as there is 

energy, or until it is perturbed. In the latter case, the motion of the pendulum should return to 

its endogenous oscillation, its eigenfrequency.  
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Figure 2 – The motion of a pendulum clock can be characterized by simple oscillators.  

This formulation describes a self-sustained oscillator; an active, autonomous dynamical 

system (Pikovsky et al., 2002). The swinging of the pendulum traces a steady (sinusoidal) 

oscillation (Fig. 2A, bottom), which is characterized by the period T, the amount of time 

elapsed between two consecutive cycles of the oscillation. In turn, the period defines the 

rhythm, or the cyclic frequency (f) as follows: 

𝑓 =  
1

𝑇
 

Next to its frequency, the oscillator is characterized by another fundamental property, the 

phase. The phase determines the state of a period oscillator as it allows to parametrize the 

waveform within each cycle. The phase (green solid line in Fig. 2A) grows exponentially with 

the evolution of the oscillation, unambiguously marking the where within an oscillatory cycle 

(corresponding to when as it evolves over time) independently of the amplitude. Thus, the 

phase grows from 0 to 2π and its multiples (4π and beyond; green dotted lines in Fig. 2A), or 

can be wrapped around a unit circle and be reset at the end of each cycle (0 to 2π, and then 

restarting from 0). In fact, as the sine is a periodic function, two phases differing by 2π 

represent the same physical state. When two oscillators are in the same state they can be 

defined as being phase-locked, irrespective of their amplitudes. Similarly, two oscillators are 

said to be phase-locked when they are in a steady phase relationship (e.g., phase-shifted or 

anti-phase; Fig. 2B), although not exactly in-phase. The phase can be adjusted with the 
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application of small external forces: this allows (electronic) clocks to be universally 

synchronized towards atomic clocks by means of a radiofrequency pulse. Alternatively, two 

interacting oscillators (e.g., two metronomes on a moving platform) can mutually adjust their 

phase so to achieve phase-locking. This example implies that the two systems oscillate at the 

same frequency, as in the case of quartz clocks. However, two oscillators originally fluctuating 

at different frequencies can synchronize, too: this is what is called frequency entrainment or 

locking. The likelihood for synchronization of two systems oscillating at different periods 

depends on the coupling strength (i.e., the strength of interaction) and the frequency detuning 

(i.e., the difference in their eigenfrequency). The balance between coupling and frequency 

detuning is proportional: the higher the frequency detuning, the stronger the coupling required 

for entrainment. Notably, however, the (strong) coupling should not deprive either of the 

oscillators of their own endogenous rhythm: the self-sustained oscillator should still be able 

to return to its original behavior when the interaction (or perturbation) ceases. Furthermore, 

as discussed for phase-locking, frequency-locking can similarly be instantiated 

unidirectionally by imposing external forces. For instance, one may induce frequency- and/or 

phase-locking of neural oscillators by stimulating the sensory system with a loud metronome. 

Although rarely differentiated in the literature, this unidirectional synchronization is 

sometimes referred to as entrainment in the broad sense (Obleser & Kayser, 2019). 

We now have the right ingredients for studying dynamic systems and simple oscillators. How 

can we use this framework to study how our brain processes time and the timing of sensory 

input in the environment?  

We can leverage two essential observations: 

1. Most of our reality displays gradients of temporal regularity: the motion of planets 

within galaxies, our music and speech, and complex behaviors can be characterized 

by oscillators. In this perspective, we can use the case of isochrony (e.g., in 

isochronous auditory sequences) to systematically investigate how we process and 

predict the timing of sensory input, and how we encode temporal regularities; 

2. Secondly, we assess the coupling dynamics of oscillators: oscillations traced by an 

isochronous pendulum clock on a moving time-plane (Fig. 2A; an isochronous 

auditory sequence), and the oscillations generated by brain activity. By examining 

the relationship between these waves, we can formulate ideas on how we generate, 

encode, and predict time.  
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2. Time in the brain 

You are in Piazza Duomo, in Amalfi (Italy), facing the beauty of the medieval cathedral of 

Saint Andrew, with its rich Arab-Norman, Gothic, Renaissance, Baroque decors. Myriads of 

tourists surround you, capturing the moment in pictures, speaking in their own languages. 

Next to Saint Andrew’s fountain, on your right side, a musician sings ‘Resta cu’mme’ by Pino 

Daniele, and some people are singing along and filming while passing by. At the same time, 

you feel the warm sea breeze, the smell of fresh ‘spaghetti con le vongole’ (spaghetti with 

clams), and the subtle and refreshing smell of lemon zest from Pasticceria Pansa (ancient 

bakery). Your heartbeat resonates with the music, your stomach signals you are hungry, and 

your body temperature is rising. This vivid multisensory experience may sound pleasant, 

perhaps familiar if you have visited Amalfi. However, have you ever considered what was 

happening in your brain at that moment?  

Our nervous system is bombarded by a continuous flow of information coming from both 

external (environment) and internal (bodily) sources. How do we coordinate multisensory 

input at multiple timescales and from diverse spatial sources into a unique coherent perceptual 

representation? How do we separate these sources into distinct streams, how do we merge 

streams, and how do we prioritize a stream of interest?  

The philosopher Kant postulated that the sense of time plays a fundamental role in our 

perception of the world. He speculated (here paraphrased) that we employ mechanisms of 

temporal organization to aggregate and separate sensory information into coherent units. The 

sense of time, thus, precedes our sensory reality and shapes our perception, allowing to 

transition from chaos to cosmos (Grier, 2010). What is fascinating is that recent research 

informs the foundations of this hypothesis, in which smart grouping and segmentation 

functions continuously parse multivariate sensory input in time (Buzsáki, 2006; Large & 

Jones, 1999; Schroeder & Lakatos, 2009; Thut et al., 2012; Zoefel & VanRullen, 2016) to 

generate a coherent representation of the internal and external world. In this formulation, the 

capacities to encode the precise timing of sensory events around us, and to time our own (re-

)actions become fundamental to act and adapt in a dynamically changing environment. Hence, 

we can imagine our own sense of time as an internal clock keeping track of time (e.g., elapsed 

time from instance t and instance t+n). Meanwhile, our clock deals with the timing of sensory 

input: it encodes the precise when of event A and B (t𝐴 , t𝐵), and their temporal relationship 

(Δt between t𝐴 , t𝐵). A very precise pacemaker would reliably discriminate even small Δt, 

allowing coherent parsing and chucking of information. Thus, if t𝐴 ≠ t𝐵  we can infer that A 
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and B are separated. To make it more challenging (though realistic), let us think of event A 

and B as sensory streams: let A be the lip movements of the musician singing the Pino 

Daniele’s song and B be the speech sounds of a German tourist behind you. What we are 

confronted with is a continuous stream of sensory input (e.g., the speech signal can be 

decomposed into words, syllables, phonemes), each having their own when (i.e., they occur 

at a specific time) and each establishing a specific Δt, a temporal relationship with adjacent 

events (e.g., the Δt between syllables into a word), defining a rate (i.e., syllables occur at an 

average rate of 3Hz, thus there are ~3 syllables per second; Giraud & Poeppel, 2012). 

Encoding the timing of A and B has become a multi-layered temporal processing task, 

spanning a time-series: a continuous flow of single event onsets t𝐴𝑠  and t𝐵𝑠 with a series of 

Δts, finally generating a percept of the timing (or the rhythm) of event A (T𝐴 with its own 

evolution and temporal dynamics) and event B (T𝐵 with its own temporal dynamics). While 

not easy, we are generally good at this task, and can be sure that the German behind us is not 

singing Pino Daniele’s song – the sensory streams are evolving in parallel, but T𝐴 ≠ T𝐵.  

How do we implement such complex temporal processing task in the brain? How do we 

encode the timing of sensory input while keeping our own internal timing?  

 

2.1.  Neural waves implement time(s) 

We recently introduced ‘DPS’, a 3-node hierarchical framework (Criscuolo et al., 2023a) to 

describe the essential timing functions required to act and adapt in a dynamically changing 

environment.  

This framework leverages on a fundamental characteristic of our sensory reality: there are 

gradients of temporal regularity (Greenfield, Honing, et al., 2021). There are, indeed, 

periodicities within the body (e.g., heartbeat and respiration; Criscuolo, Schwartze, et al., 

2022a), as well as in our variegated sensory environment (e.g., music, speech) and in complex 

behaviors (interpersonal interactions in the animal and the human world; Greenfield, Aihara, 

et al., 2021). Thus, the ability to detect, produce, and synchronize (‘DPS’) with temporal 

regularities becomes essential to navigate our environment and synchronize in social contexts.  

At the core, we find D, which relies on the encoding of a rhythm, i.e., the neurophysiological 

processing of temporal regularities. Animal models have demonstrated that there are brain 

cells acting as ‘neural chronometer’, encoding the passage of time and the precise timing of 
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sensory events (Merchant et al., 2011; Merchant, Harrington, et al., 2013; Merchant, Pérez, et 

al., 2013) with a dynamic time-varying representation (Crowe et al., 2014). Thus, the 

sequential firing activity of these cells encodes and predicts regularly timed stimuli (Bartolo 

& Merchant, 2015) as well as tempo changes, further allowing to produce synchronized 

tapping (P and S; Gámez et al., 2018).  

When looking at neuronal populations, the time-processing computations of single cells are 

reflected in neural waves: fluctuations of neural activity align with the timing of sensory 

events (e.g., Lakatos et al., 2008). Neural waves or neural oscillations, correspond to rhythmic 

changes in the excitability of neuronal populations (Bishop, 1932; Buzsáki & Draguhn, 2004). 

These fluctuations are a fundamental property of neural activity in both humans and animals 

(Buzsáki, 2006; Buzsáki et al., 2012, 2013), and they allow organizing single cell spiking and 

regional as well inter-regional spike traffic across the brain (Buzsáki, 2006; Fries, 2005; Wang, 

2010) and at multiple timescales (Lakatos et al., 2005). A variety of methodological 

approaches exist to acquire and analyze such rich timeseries (Criscuolo & Brattico, 2023), 

characterize their varying properties across the brain (e.g., Keitel & Gross, 2016), and assess 

their role in information flow (e.g., Canolty & Knight, 2010; Fries, 2015). What is generally 

clear, despite the specific method in use, is that neural waves coordinate sensory input in time: 

events falling within the excitability window are preferentially processed, while events 

occurring within the inhibitory window are filtered out (Lakatos et al., 2013; Schroeder & 

Lakatos, 2009). The sensory environment is, thus, sampled in a (quasi-)rhythmic manner, and 

the pace of sampling is determined by the speed of one’s internal clock(s) and the capacity to 

align neural waves to external rhythms. In this perspective, neural oscillations track sensory 

input at multiple timescales: going back to our speech example, words (~1Hz), syllables 

(~3Hz) and phonemes (~10Hz) are tracked by tempo-matching endogenous neural 

oscillations. However, if you rather decide to focus on the romantic Pino Daniele’s song, your 

oscillations would fluctuate at different rates, thus aligning to musical rhythms and prioritizing 

that sensory stream (Lakatos et al., 2013; Schroeder & Lakatos, 2009).  

The alignment of neuronal oscillations to salient periodicities in sensory streams is generally 

referred to as entrainment (Haegens & Zion Golumbic, 2018; Henry et al., 2014; Lakatos et 

al., 2008; Obleser & Kayser, 2019). Entrainment is a mechanism whereby an endogenous 

oscillator tends to tune-in and -out of external sources oscillating in proximity to their 

eigenfrequency. This formulation encapsulates a few assumptions: to entrain, neural waves 

should (i) be described as self-sustained (endogenous) oscillators, pre-existing, and outlasting 
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the external stimulation; (ii) adapt their endogenous oscillatory rate (𝐹𝐴) so to match the 

external rate (𝐹𝐵); (iii) go back to their spontaneous rate (eigenfrequency) when the 

stimulation ceases; (iv) be frequency-selective, thus can speed up and slow down within 

boundaries described by an Arnold tongue. The Arnold tongue characterizes the possibilities 

for frequency-tuning (frequency entrainment) and depends upon the frequency and amplitude 

of the external rhythm. Thus, with increasing ΔF (𝐹𝐴 - 𝐹𝐵) higher amplitudes are needed to 

induce entrainment. Finally, neural waves should (v) show dynamic changes while tuning-in 

and -out with the external stimulation frequency, thus displaying acceleration and deceleration 

trends over a few cycles (Lakatos et al., 2013; Spaak et al., 2012). The internal clock should 

be stable enough to keep internal timing, while accommodating time-varying environmental 

rhythms (Barnes & Jones, 2000). The presence of these dynamics is fundamental to 

distinguish ‘real’ entrainment from resonance and series of stimulus-locked evoked responses 

(Helfrich et al., 2019).  

Resonance (Large & Snyder, 2009) is a physical phenomenon whereby the amplitude of an 

endogenous oscillator would resonate (i.e., it would be amplified) in presence of an external 

stimulus matching or in close proximity to its eigenfrequency. There is frequency-specificity 

and alignment of oscillations as in entrainment, but absence of tuning dynamics.  

What is also possible is that neurons simply fire in response to each stimulus onset in a time-

series, generating a sequela of entrainment-like time-locked evoked responses. For instance, 

neurons would respond promptly to each syllable onset within a speech sequence, ultimately 

revealing an entrainment-like pattern of oscillatory activity. Here, however, assumptions i-v 

are not met: we are not describing a self-sustained oscillator dynamically adapting its rate to 

the external rhythm; this is a rather buzzer-like activity. Disentangling true entrainment from 

entrainment-like phenomena is not easy (Breska & Deouell, 2017; Henry et al., 2014; Henry 

& Obleser, 2012; Herrmann et al., 2013; Lerousseau et al., 2021; Morillon & Baillet, 2017) 

yet it is fundamental to deepen our understanding of neural oscillatory dynamics and how we 

employ them to detect, produce, and synchronize with temporal regularities in the 

environment.  

 

2.2.  Flipping the arrow of time to inform the future 

Are we always processing the when of each single sensory input around us?  
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The answer is ‘sort of’. We are continuously monitoring sensory streams, but we can rely on 

the fact that most of our sensory reality displays some gradient of temporal regularity 

(Greenfield, Honing, et al., 2021). There are periodicities within the body (e.g., heartbeat and 

respiration; (Criscuolo et al., 2022a) as well as in our variegated sensory environment (e.g., 

music, speech). I have already mentioned that speech can be decomposed into subunits 

occurring at a specific rate, defining phoneme, syllable, and word rates (Giraud & Poeppel, 

2012). This temporal regularity, here also referred to as rhythm, is what enables individuals to 

generate predictions about the when of sensory events. As physics depends on recurrent 

patterns to generate laws of nature, our brain uses (temporal) patterns to infer what comes 

next and when. Hence, you may know when to expect the next syllables because you encoded 

my speech rhythms. The capacity to detect patterns and temporal regularities becomes, then, 

fundamental to produce and synchronize with rhythms: we can dance to music because we 

know when the next beat falls, and we can synchronize with others because their action timing 

is predictable. Consequently, we can argue that temporal predictions allow for proactive 

adaptive behavior: predictions are exploited to foster sensory processing, perception, 

allocation of attention and ultimately to speed-up behavior and action (Arnal, 2012; Friston, 

2005; Háden et al., 2015; Koelsch et al., 2019; Nobre et al., 2012; Schröger et al., 2015). 

Yet how do we achieve this?  

I already introduced the concept of entrainment and discussed that neural waves dynamically 

align and track external rhythms in human (Criscuolo et al., 2023b) as well as in nonhuman 

animals (Criscuolo et al., 2023a) thereby encoding their temporal regularity. What I did not 

discuss yet, is that rhythmic brain activity leverages the encoded regularity to establish 

predictions about the when of next events (Lakatos et al., 2013), thereby dynamic attending 

(Mari R. Jones, 1976; Large & Jones, 1999) the sensory environment.  

Such predictions are visible as anticipatory neural activity (Arnal, 2012; Fujioka et al., 2009, 

2012; Large & Snyder, 2009), and ultimately allow producing and synchronizing behaviors in 

a predictive manner (Bartolo & Merchant, 2015; Gámez et al., 2018). The brain, thus, operates 

an “adaptation by anticipation” (Fraisse, 1963; p. 18) mechanism to optimize behavior and 

does so across sensory modalities (Arnal & Giraud, 2012; Cravo et al., 2013; Friston, 2005; 

Morillon et al., 2016; Nobre et al., 2012). Not only due to the inherent (quasi-)rhythmic nature 

of many environmental stimuli, a wide variety of neurocognitive functions ranging from 

speech (Giraud & Poeppel, 2012), reading (Goswami, 2011), and music (Doelling & Poeppel, 
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2015) processing rely on basic timing abilities. Thus, understanding the basic functional 

mechanisms by which neural activity encodes, tracks, predicts, and synchronize with temporal 

regularities in the sensory environment becomes fundamental to better understand a variety 

of neurocognitive functions in healthy as well as in clinical populations.   

 

2.3.  Perception fluctuates in waves: the case of accentuations 

I have discussed that neural oscillations represent fluctuations in the excitability of neuronal 

populations. The alternation of high- and low-excitability phases instantiates a ‘rhythmic 

mode’ of sensing (Lakatos et al., 2013) and attending (Mari R. Jones, 1976; Large & Jones, 

1999) the environment. Thus, neural waves implement a spectrotemporal filter (Lakatos et al., 

2013), prioritizing sensory events falling in the high-excitability window.  

The alternation of high- and low-salience may influence (or bias) subjective perception and 

behavioral performance (e.g., perceptual tasks; Iemi & Busch, 2018; Zoefel & VanRullen, 

2017). For instance, when listening to a ticking clock, humans show a disposition to perceive 

subjective accentuations (or rhythmization; Brochard et al., 2003): although the sounds are 

physically identical, the human brain tends to perceive a tic-toc illusion. Hence, the hypothesis 

that while synchronizing to an isochronous auditory sequence, neural oscillatory activity 

would accentuate (or group) two or three equidistant tones according to a binary (on-/off-beat; 

or Strong-weak (S-w)) or ternary (S-w-w) pattern. In turn, sensory processing fluctuates in 

function of the alternating high- and low-salience temporal windows, becoming optimal for 

sensory events falling in the on- as compared to the off-beat positions (Abecasis et al., 2005; 

Baath, 2015; Brochard et al., 2003; Poudrier, 2020; Schmidt-Kassow et al., 2011).  

Subjective accentuations emerge during passive listening, and may therefore represent the 

most basic, yet fundamental mechanism by which neural waves allow encoding and attending 

the sensory environment beyond simple isochrony processing. However, although being one 

of the earliest rhythm- and timing- processing phenomena to be experimentally investigated 

(Bolton, 1894), subjective rhythmization has yet to be fully understood.  

What seems to be clear is that individuals tend to accentuate mostly in patterns of two and 

three, while groups of four are possible but less likely (Abecasis et al., 2005; Baath, 2015; 

Brochard et al., 2003; Schaefer et al., 2011; Woodrow, 1909). The switch from a single tone 

to accentuation processing and the width of the accentuation pattern seems to depend mostly 
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on the rate of auditory sequences, whereby accents over four tones are most likely in very fast 

auditory sequences (e.g., 5Hz), while smaller groups (accents of two) are prevalent in slower 

stimulation rates (Poudrier, 2020). At the same time, there are subjective preferences for 

accentuation patterns as well as inter-individual variabilities in the if individuals accentuate at 

all. In fact, individuals do not necessarily superimpose accentuations if not explicitly 

instructed to do so (Baath, 2015; Poudrier, 2020). Individual differences are typically 

explained in the context of music expertise (Bouwer et al., 2018; Drake et al., 2000; Geiser et 

al., 2010), and enculturation (Iversen et al., 2008; Polak et al., 2018), but little attention has 

been given to intra-individual variability and understanding what happens at the 

neurophysiological level. Existing EEG evidence, indeed, mostly employed event-related 

potential (ERP) paradigms to target subjective accentuations, thus performing trial- and 

group-level averages. Similarly, a parallel research line has consistently showed the possibility 

of capturing imaginary binary or triple beats in oscillatory brain activity via Fourier analyses 

(Nozaradan et al., 2011). The authors showed that this phenomenon mostly engages cortical 

but not subcortical brain regions (Nozaradan et al., 2018), is predominantly found over 

auditory and premotor cortex (Nozaradan, Mouraux, et al., 2017), and is not modulated by 

attention (Lenc et al., 2020). Both approaches, however, prevent the assessment of ongoing 

neural oscillatory activity at the single-trial and -individual level, ultimately neglecting the 

possibility that there may be transient and time-varying accentuation patterns in neural waves. 

In other words, several critical questions so far remain unanswered: (i) do individuals always 

accentuate, or do they do it sometimes?; (ii) do individuals consistently accentuate over time, 

or do they switch between accentuation patterns?; (iii) do accentuations influence other 

cognitive processes (e.g., deviance processing)? Finally, (iv) is accent processing unique to 

humans or is it present in nonhuman animals? The latter is a fundamental question, as it 

pertains to the putative link between basic rhythm processing and the evolution of higher order 

cognitive functions, such as music and speech processing in humans.  

These questions are addressed in Chapter 2 and 3, where we introduced a new method to 

assess accentuation patterns at the single-trial and individual level in humans and macaque 

monkeys.  
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2.4.  The role of audio-motor and cortico-subcortical interactions 

Let us shortly go back to Amalfi and imagine to be immersed in that unique, variegated, 

multisensory landscape. I mentioned that our brain is posed with a challenging task: achieving 

ordo ab chaos. I also discussed that the existence of temporal regularities allows forming 

predictions about future events, thereby facilitating sensory processing. Thus, we can enjoy 

Pino Daniele’s song because auditory processing leverages on perceived regularities in music 

and speech rhythms to predictively align neural oscillations to expected event onsets. While 

apparently simple, the mechanism of neural entrainment still requires precise temporal 

coordination at the millisecond scale. Which brain networks allow for such exquisite timing? 

Humans’ excellent timing capacities and cross-species differences in rhythm cognition 

(Honing, 2012, 2018) have long been associated with neuroanatomical changes along the 

dorsal auditory stream, and extending into premotor and basal ganglia areas throughout 

evolution (Balezeau et al., 2020; Rauschecker & Scott, 2009) as well as intense training (e.g., 

music training (Criscuolo, Pando-Naude, et al., 2022). However, recent research showed a 

more influential role of sensorimotor regions (e.g., primary sensory and motor areas; 

Balasubramaniam et al., 2021; Wiener et al., 2019) that seem to be responsible for rhythm 

processing and production in both humans (Chen et al., 2008; Grahn & Brett, 2007; Kotz et 

al., 2018; Wiener et al., 2010) and nonhuman animals (Cisek, 2019; Mendoza & Merchant, 

2014; Merchant & Honing, 2014; Sohn et al., 2019). These observations further support the 

view that sensorimotor regions have played a significant role in the capacity of organisms to 

adapt to the environment, as they phylogenetically preceded the development of higher-order 

brain regions.  

Thus, the motor system is engaged in timing and predictive timing processing (Merchant & 

Yarrow, 2016; Morillon et al., 2015; Schubotz, 2007) in both active and passive paradigms 

(Chen et al., 2008; Fujioka et al., 2012; Grahn & Rowe, 2009). Continuous and bidirectional 

interactions between sensory and motor regions inform perception and action in a predictive 

manner (Miall & Wolpert, 1996; Patel & Iversen, 2014; Prinz, 1997; West & Gibson, 1969; 

Wolpert & Flanagan, 2001). In fact, the motor system influences sensory (e.g., auditory) 

regions via active sensing, i.e., by generating a temporally coherent representation of the 

sensory environment and efferent copies of motor plans (Grahn & Rowe, 2013; Merchant & 

Yarrow, 2016; Schroeder et al., 2010; Tian & Poeppel, 2010). Top-down predictions are 

mediated by sensory regions via beta-band (β; 12-25Hz) activity (Arnal et al., 2015; Arnal & 

Giraud, 2012; Biau & Kotz, 2018; Fujioka et al., 2012, 2015; Morillon & Baillet, 2017; Park 
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et al., 2015), which phase-resets delta-band (δ; 1-4Hz) oscillations, aligning them to sensory 

streams. Thus, audio-motor interactions are mediated via β-δ cross-frequency coupling and 

provide the neural code responsible for temporal processing and predictive timing (Arnal et 

al., 2015; Morillon et al., 2019; Morillon & Baillet, 2017; Saleh et al., 2010).  

The motor system discussed here is a widely distributed network extending to cingulate, 

premotor, posterior parietal, and supplementary motor cortex (Wittmann, 2013), and further 

includes the thalamus (Barczak et al., 2018) and hippocampus (Aly & Turk-Browne, 2018). 

However, substantial evidence suggests the basal ganglia (BG) and the cerebellum (CE) to be 

at the core of the cortico-subcortico-cortical network fundamental for rhythm and timing 

processes ( Ivry & Keele, 1989; Schwartze & Kotz, 2013). In particular, the BG are involved 

in generating temporal predictions and in using relative timing to extract the beat (Grahn, 

2009; Grahn & Brett, 2009; Schwartze et al., 2011; Teki et al., 2011). In turn, lesions in the 

BG impact the capacity to encode salient periodicities in sensory streams (i.e., extracting the 

beat) in both complex (syncopated rhythms; Nozaradan et al., 2017) as well as simple auditory 

sequences (Schwartze et al., 2015). Thus, patients with BG lesions were indifferent to 

manipulations of the temporal regularity in auditory sequences and could not generate and 

employ temporal predictions to efficiently process incoming sensory streams (Schwartze et 

al., 2015). In synchronization-continuation tapping tasks, BG lesion patients showed intact 

capacity to synchronize their tapping to the external rhythm (Schwartze, Keller, et al., 2011b) 

but at the same time showed largely heterogeneous tapping behaviors. These revealed 

difficulties in coordinating and adjusting their tapping to tempo changes (Schwartze, Keller, 

et al., 2011b). Lesions in the CE, instead, did not disrupt the capacity to generate predictions 

when confronted with temporal regularities (Schwartze & Kotz, 2021). However, the lesions 

altered the encoding of event onsets within an auditory stream (Nozaradan, Schwartze, et al., 

2017), resulting in delayed and variable early event-related responses in the EEG (Kotz et al., 

2014; Schwartze & Kotz, 2021). These observations suggest the CE to encode the precise 

timing (the when of this event onset) of sensory stimuli in the subsecond range (Ivry et al., 

1988; Ivry & Keele, 1989; Ivry & Schlerf, 2008), ultimately allowing to estimate the duration 

of time intervals (Grube, Cooper, et al., 2010a; Grube, Lee, et al., 2010; Knolle et al., 2012, 

2013; Teki, Grube, Kumar, et al., 2011; Teki, Grube, & Griffiths, 2011). The altered capacity 

to precisely encode event onsets and single time intervals (Grube, Cooper, et al., 2010b) 

further affects the production and synchronization to rhythms (Ivry et al., 1988; Ivry & Keele, 

1989) with CE lesion patients displaying larger heterogeneity in self-paced tapping, and 
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reduced capacities to synchronize their tapping to temporally regular sequences as well as to 

tempo changes (Schwartze et al., 2016a). 

Most of these research lines, however, adopted either behavioral or event-related EEG 

paradigms, ultimately providing an incomplete view of what happens in in the patients’ brains 

when confronted with temporal regularities. Do neural waves in BG and CE lesion patients 

encode, track, and predict auditory rhythms? Chapter 4 addresses this question by 

systematically assessing neural oscillatory activity, its coupling to external auditory rhythms, 

and further complements neural data with a behavioral task. 

 

3. Time in and out of the brain 

So far, I discussed the idea of an internal clock generating endogenous time and processing 

external timing. Next, I speculated that neural oscillations, and specifically β-δ waves, 

implement the adequate neural code to process and predict environmental rhythms. Lastly, I 

reviewed evidence, showing that an extended cortico-subcortical brain network is responsible 

for the above-mentioned timing processes.  

However, is the brain the only organ generating endogenous time and processing the timing 

of external events?  

Physiological body signals like respiration (Park et al., 2020; Varga & Heck, 2017), heart 

(Candia-Rivera, 2022; Park & Tallon-Baudry, 2014), gastrointestinal (Azzalini et al., 2019), 

and ocular (Pfeffer et al., 2022) rhythms, display an intrinsically (quasi-)periodic oscillatory 

activity that mirrors and influences rhythmic brain signals (Klimesch, 2018). In adulthood, 

the neurotypical resting cardiac cycle oscillates at approximately 1.25Hz per second (~75 

beats per minute), breathing at 0.25Hz (~15 times per minute), and the gastric cycle at around 

0.05Hz (repeats ~3 times per minute). These rhythms change with task demands (e.g., 

exercise, see (White et al., 2014) for a review; meditation, (Wallace & Benson, 1972)), one’s 

health (for a meta-analysis, see (Thayer et al., 2011)), and across the lifespan (Fleming et al., 

2011), but remain mostly slower than neural activity, which typically fluctuates between ~1-

50Hz. On an even longer timescale, we probably find one of the most important biological 

periodicities: circadian rhythms. Circadian rhythms include all those physiological and 

behavioural processes oscillating with a period of about a day. Even in absence of 
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environmental time-keeping cues (e.g., variation of light intensity throughout the day) 

circadian rhythms remain relatively stable and show little inter-individual variability.  

As previously discussed for neural waves, bodily rhythms can be described as endogenous 

oscillators, which can interact with other bodily rhythms by adjusting their phase but are (in 

principle) independent of them (Pittendrigh, 1981; Yerushalmi & Green, 2009). Consequently, 

bodily waves represent ideal candidates for endogenous and adaptive clocks. Next to the 

brain, we may thus have a multitude of body-brain time generators and time keeping systems. 

These internal clocks differ across individuals due to inter-individual variabilities in body 

physiology as well as in brain rhythms. Furthermore, these internal clocks are modulated by 

psychological and cognitive states, such as mood and motion. For instance, bodily 

physiological activity varies with motion (e.g., while running), potentially shifting the 

eigenfrequency and phase of our internal clocks. This observation reminds us of Einstein’s 

view according to which physical time is bound to space and at the speed at which we travel 

through space. Moreover, it strengthens the hypothesis that bodily physiological activity (e.g., 

cardiorespiratory rhythms) implements time computations, and contributes to the sense of 

time.  

What remains to be clarified, however, is the link between the body and cognition: does body 

physiology influence neural activity and cognition? Are body-brain physiological interactions 

omnipresent and stable throughout the day and the lifespan? Can altered body-brain 

interactions influence neurocognitive functions? And in turn, can training improve body-brain 

interactions? 

 

3.1.  Body-Brain Waves time cognition 

Body-brain (or -mind) connections have long interested philosophers and scientists. There is 

evidence that Plato, Hippocrates, Descartes, and Newton, among others, have asked questions 

about the link between the body and the mind.  

In recent years, neuroscientific research has been expanding the sole focus on 

neurophysiology and behavior to include several peripheral physiological signals, arguing that 

they should be considered as conjunct determinants of cognition. Accumulating evidence, in 

fact, demonstrates that neural spiking, information processing, and overt behavior can be 

influenced by physiological body signals (Critchley & Garfinkel, 2018): breathing (Heck et 
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al., 2016; Ito et al., 2014; Kluger, Balestrieri, et al., 2021), gastrointestinal (Azzalini et al., 

2019; Mayer, 2011), and cardiac (Park et al., 2014; Park et al., 2016) signals modulate not 

only neural excitability and perception, but also consciousness (Park & Blanke, 2019), 

emotion regulation (Damasio & Carvalho, 2013), memory (Zelano et al., 2016), and action 

(Park et al., 2020).  

To mention but a few examples, there is evidence that voluntary breathing control improves 

motor coordination, e.g., for speaking, singing, or laughing (McFarland, 2001; McKay et al., 

2003). Hence, eye movements (Rassler & Raabe, 2003; Rittweger & Pöpel, 1998) and 

complex motor acts such as walking, cycling, and running synchronize with breathing 

(Bechbache & Duffin, 1977; Bramble & Carrier, 1983; Folinsbee et al., 1983; Hill et al., 1988; 

Jasinskas et al., 1980; Kohn et al., 2016; Rassler & Kohl, 1997), as do rowing (Mahler et al., 

1991) and finger tapping (Wilke et al., 1975). These findings support a putative top-down 

mechanism of “motor-respiration control in action preparation” (Decety et al., 1993; Park et 

al., 2020). Namely, any form of action planning entails anticipatory control of breathing. At 

the same time, evidence suggests that motor coordination further relates to the cardiac cycle 

(Palser et al., 2021) as motor excitability (i.e., the sensorimotor oscillatory activity associated 

with motion preparation) seems to be maximal during systole (Al, Stephani, et al., 2021).  

Moving to perception, tactile (Grund et al., 2022), visual signal detection (Flexman et al., 

1974), visuo-spatial (Perl et al., 2019), and memory performance (Nakamura et al., 2018; 

Zelano et al., 2016) are modulated relative to the respiratory cycle. Similarly, to what I 

discussed for brain waves, there is an endogenous tendency to adaptively align respiration to 

sensory inputs (Johannknecht & Kayser, 2022; Perl et al., 2019) to synchronize predicted 

stimulus onsets to late inspiration or early expiration phases (Grund et al., 2022). This effect 

resembles respiratory entrainment to a rhythm (Allen et al., 2022), i.e., the natural breathing 

rate endogenously synchronizes to external inputs. Attention to breathing further reinforces 

alignment (Bramble & Carrier, 1983; Haas et al., 1986; Kohl et al., 1981), ultimately providing 

a critical neurocognitive mechanism to improve sensory processing (Allen et al., 2022). In 

fact, the breathing phase influences neural excitability (e.g., alpha power; Kluger et al., 2021), 

strengthening the notion that the respiration-brain-stimulus coupling achieves processing 

advantage (Allen et al., 2022; Criscuolo et al., 2022a). Evidence on the heart-cycle is slightly 

more confusing, as visual attention (Pramme et al., 2014, 2016), visual processing (Galvez-

Pol et al., 2020; Kunzendorf et al., 2019), somatosensory perception (Al, Iliopoulos, et al., 

2021; Edwards et al., 2009), motor inhibition (Rae et al., 2018; Ren et al., 2022), sensorimotor 
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processes (Larra et al., 2020), and interoceptive awareness (Herman & Tsakiris, 2021) are 

better during systole compared to diastole. However, counter evidence exists showing that 

auditory (Schulz et al., 2020), visual (Park et al., 2014; Salomon et al., 2016), somatosensory 

perception (Al et al., 2020; Al, Iliopoulos, et al., 2021; Motyka et al., 2019), reaction times 

(Schulz et al., 2020), and learning (Waselius et al., 2018) are more optimal during diastole 

than systole. 

Despite these discrepancies, the observations suggest that the combined assessment of body-

brain physiological measures can unravel neglected sources of information (Bashan et al., 

2012) and thus promise to advance our understanding of how we evaluate, perceive, and act 

in a dynamically changing environment (Criscuolo et al., 2022).  

 

3.2.  The Body-Brain Dynamic System 

Along these lines, in a recent opinion article (Chapter 5; Criscuolo et al., 2022a) we put 

forward an integrative holistic framework to examine the body-brain-behavior interface: the 

body-brain dynamic system (BBDS). We discussed that body-brain waves may provide a rich 

architecture of time generators and time keeping mechanisms across the body, whose critical 

role extends across sensory modalities and cognitive functions. This novel, holistic, and 

individualized approach opens to a plethora of exciting new research questions in neurotypical 

and pathological populations. Starting from the ontogeny of these physiological signals, one 

could ask who provides the tactus to the body-brain frequency orchestra? Are there any 

leitmotivs, i.e., recurrent patterns in body-brain coupling dynamics? Who orchestrates body-

brain waves and their interactions? Are there inter-individual differences in body-brain 

dynamics? 

These research questions require a fundamental shift in the study of human brain and behavior, 

and further necessitate comprehensive experimental settings, monitoring multiple body-brain 

physiological signals in parallel. Embracing this quest, we have recently pre-registered two 

research lines: the first targets the link between individual body-brain rhythms and behavioral 

rhythms (Criscuolo et al., 2022b), while the second aims at developing a holistic bio-feedback 

body-brain training to modulate neurocognitive functions and emotional states (Criscuolo & 

Kotz, 2023). The first research line leverages the notion of internal clock(s) to generate 

research questions such as: Are individual spontaneous behavioral rhythms shaped by bodily 

rhythms? For instance, are your walking and speaking rates dependent on your heart rate? 



23 

 

Similarly, are listening preferences (e.g., speech and music rhythms) influenced by heart and 

breathing rhythms? This project puts individual differences at center stage, and systematically 

examines body-brain dynamic interactions and their influence on a multitude of behaviors 

such as perception and action. The second research line, aims at expanding the traditional 

neurofeedback setups. We argue that modulating cognition takes more than the brain only: a 

comprehensive body-brain assessment, and a body-brain biofeedback will improve the 

efficacy of existing neurofeedback training. In particular, the project will test the influence of 

the new biofeedback training on attention, anxiety, and wellbeing.   



 





Chapter 2

Individual neurophysiological signatures 

of spontaneous rhythm processing
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Abstract 

When sensory input conveys rhythmic regularity, we can form predictions about the timing of 

upcoming events. Although rhythm processing capacities differ considerably between 

individuals, these differences are often obscured by participant- and trial-level data averaging 

procedures in M/EEG research. Here, we systematically assessed neurophysiological 

variability displayed by individuals listening to isochronous (1.54Hz) equitone sequences 

interspersed with unexpected (amplitude-attenuated) deviant tones. Our approach aimed at 

revealing time-varying adaptive neural mechanisms for sampling the acoustic environment at 

multiple timescales. Rhythm tracking analyses confirmed that individuals encode temporal 

regularities and form temporal expectations, as indicated in delta-band (1.54Hz) power and 

its anticipatory phase alignment to expected tone onsets. Zooming into tone- and participant-

level data, we further characterized intra- and inter-individual variabilities in phase-alignment 

across auditory sequences. Further, individual modelling of beta-band tone-locked responses 

showed that a subset of auditory sequences was sampled rhythmically by superimposing 

binary (strong-weak; S-w), ternary (S-w-w) and mixed accentuation patterns. In these 

sequences, neural responses to standard and deviant tones were modulated by a binary 

accentuation pattern, thus pointing towards a mechanism of dynamic attending.  

Altogether, the current results point toward complementary roles of delta- and beta-band 

activity in rhythm processing and further highlight diverse and adaptive mechanisms to track 

and sample the acoustic environment at multiple timescales, even in the absence of task-

specific instructions.  

  

 

Highlights 

Neural oscillations sample the acoustic environment at multiple timescales; 

Delta-band oscillations encode temporal regularities and predict tone onsets; 

Beta-band oscillations parse auditory sequences by superimposing accentuation patterns; 

Delta-beta oscillations provide a neural code for dynamic attending environmental rhythms.  
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Introduction 

Due to the inherently rhythmic nature of many environmental stimuli, neurocognitive 

functions such as attention (Lakatos et al., 2008) sensorimotor behavior (Merker et al., 2009), 

speech (Giraud & Poeppel, 2012; Sonja A. Kotz & Schwartze, 2010), reading (Goswami, 

2011), and music processing (Doelling & Poeppel, 2015) rely on basic timing capacities. To 

generate a temporally coherent representation of a rhythmic environment, we track stimulus 

periodicities, use smart grouping, and continuously segment and combine multiple inputs in 

time (Buzsáki, 2009; Schroeder & Lakatos, 2009; Thut et al., 2012a; Zoefel & VanRullen, 

2016). According to the dynamic attending theory (Large & Jones, 1999) these processes can 

reflect how internal attending rhythms synchronize with external rhythms. This and similar 

theoretical views (Fraisse, 1963; p. 18) suggest that oscillatory brain activity instantiates a 

realistic model for “adaptation by anticipation”. Accordingly, temporally regular sensory input 

should make future events predictable and improve the overall effectiveness of behavior. 

Thus, allocating attention to salient events can facilitate sensory processing, perception, and 

action (Friston, 2005; Arnal, 2012; Schröger et al., 2015; Koelsch et al., 2019).  

However, continuous change is a fundamental characteristic of life (Schwartze, Rothermich, 

et al., 2011), and next to temporal regularities, we frequently encounter irregular rhythms or 

sudden environmental changes. To account for these dynamics, any realistic adaptation 

mechanism likely tolerates a certain degree of temporal irregularity or unpredictability while 

trying to achieve synchronization (Barnes & Jones, 2000). Endogenous oscillatory activity 

must hence not only be precise and stable over time, but also flexible enough to achieve 

adequate adaptive timing (e.g., speeding-up or slowing-down). Oscillatory brain activity can 

actively track and process (quasi-)periodic and never strictly isochronous signals such as 

speech that includes rhythmic variations at phoneme (25-35Hz), syllable (4-8Hz), or word (1-

3Hz) rates, as well as slower fluctuations (>1Hz) reflecting linguistic boundaries (Ding et al., 

2015; Giraud & Poeppel, 2012). Moreover, it can rapidly adapt to changes in the sensory 

environment, likely through phase resetting (Barnes & Jones, 2000; Haegens & Zion 

Golumbic, 2018; Mormann et al., 2005; Obleser et al., 2012; Zoefel et al., 2018).  

Particularly, delta- (δ; 1-4Hz) and beta- (β; 12-25Hz) frequency oscillations have been 

associated with rhythm processing, temporal prediction, and attention in humans (Arnal, 

2012; Biau & Kotz, 2018; Colling et al., 2017; Fujioka et al., 2012, 2015; Morillon et al., 

2016; Nozaradan et al., 2015, 2017a) and in non-human primates (Bartolo & Merchant, 2015; 
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Merchant et al., 2015; Merchant & Bartolo, 2018; A. D. Patel & Iversen, 2014). However, 

prior behavioral studies on temporal processing also reported high within-subject variability 

(Baath, 2015; Poudrier, 2020). Thus, a critical question arises: can the systematic assessment 

of individual neurophysiological variability improve our understanding of how we process 

environmental rhythms? (Grahn & McAuley, 2009; Kononowicz & van Rijn, 2015; Nave et 

al., 2022; Waschke et al., 2021).  

To address this question, we let participants listen to isochronous (1.54Hz) equitone 

sequences, comprising frequent standard and either one or two amplitude-attenuated deviant 

tones while EEG was recorded. The small amplitude attenuation represented a minimally 

distracting unpredictable deviation from the established regularity of the auditory sequence. 

A deviant-counting task focused participant’s attention on an acoustic feature (loudness) of 

the stimuli, diverting attention away from the temporal properties of the auditory sequence. 

We first assessed the neural signatures of spontaneous temporal processing by means of 

rhythm tracking analyses, expecting to observe a peak of neural oscillatory power at the 

stimulation rate (1.54Hz, i.e., delta-band), and a consistent phase-alignment towards expected 

tone onsets, indicating temporal prediction.  

Second, we focused on the known human disposition to superimpose accentuation patterns 

onto isochronous equitone sequences as exemplified by the “tick-tock” clock effect (Brochard 

et al., 2003). This typically results in perceived binary (strong-weak (S-w)) accentuations, 

while ternary (S-w-w) and other accentuations are possible (Abecasis et al., 2005; Baath, 

2015; Brochard et al., 2003; Fujioka et al., 2015; Polak et al., 2018; Poudrier, 2020; Savage 

et al., 2015).  

Informed by previous results that confirmed a role of beta oscillations in temporal predictions 

(Fujioka et al., 2012) and beat processing (Fujioka et al., 2015), we expected that such 

accentuation patterns would show in the envelope of beta-band activity. We employed a fixed 

stimulation frequency where we expected more binary than ternary accents (Abecasis et al., 

2005; Baath, 2015; Brochard et al., 2003; Fujioka et al., 2015; Poudrier, 2020).  

Third, we looked into individual differences to answer whether: (i) individuals always 

accentuate, (ii) individuals accentuate consistently over time, and (iii) accentuation patterns 

modulate cognitive processes as reflected in deviance processing (Brochard et al., 2003). To 

this end, we modelled single-participant and single-trial time-locked beta-band fluctuations to 

gain a better understanding of intra- and inter-individual neurophysiological variability 
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indicating individual mechanisms employed to sample, evaluate, and adapt to environmental 

rhythms.  

Materials & Methods 

Participants 

Twenty native German speakers participated in the study and signed written informed consent 

in accordance with the guidelines of the ethics committee of the University of Leipzig and the 

declaration of Helsinki. Participants (9 females; 21-29 years of age, mean 26.2 years) were 

right-handed (mean laterality coefficient 93.8, Oldfield, 1971), had normal or corrected-to-

normal vision, and no known hearing deficits. Participants received 8€/h for taking part in the 

study. Participants were not asked to indicate musical expertise and/or daily music listening.  

 Experimental design and procedure 

The stimuli comprised 192 sequences, consisting of 13-to-16 tones (F0 = 400 Hz, duration = 

50 ms, amplitude = 70dB SPL; standard STD), presented in two recording sessions. One or 

two deviant tones (DEV), attenuated by 4dB relative to the STD tones, were embedded in 

each sequence, replacing STD tones. The first DEV tone could either occur in an odd or even-

numbered position (8-11th), corresponding to a hypothetical binary Strong-weak (S-w) 

accentuated position, while the second DEV always fell on the 12th position (w position, 

Fig.1). The inter-onset-interval between successive tones was 650ms, resulting in a fixed 

stimulation frequency of 1.54Hz and a total sequence duration of 8.45-10.4s (13 to 16 tones * 

650ms). This paradigm was thus comparable to previous behavioral studies on subjective 

accentuation (Brochard et al., 2003; Poudrier, 2020).  

Participants were seated in a dimly lit soundproof chamber facing a computer screen. Every 

trial started with a fixation cross (500ms), followed by the presentation of the tone sequence. 

The cross was continuously displayed on the screen, preventing excessive eye movements 

during the presentation of the tone sequences. At the end of each sequence, a response screen 

appeared and prompted participants to immediately press a response button to indicate 

whether they had heard one or two softer tones. The button assignment was counterbalanced 

across participants. After the response, there was an inter-trial interval of 2000ms. A session 

was divided into two blocks of approximately 10 minutes each, with a short pause in between 

(about 25 minutes total duration). 
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Figure 1 - Experimental conditions 

Participants listened to 192 isochronous tone sequences, containing 13-to-16 tones and either one or two deviants 

(DEV). The first DEV could either fall on positions 8,9,10,11th, while the second DEV always fell on position 12th. 

A hypothetical binary accentuation pattern would designate adjacent tones as Strong-weak (S-w) duplets. In this 

case, the first DEV would occur with equal probability in S-w positions. 

 

EEG recording 

The EEG was recorded from 59 Ag/AgCl scalp electrodes (Electrocap International), 

amplified using a PORTI-32/MREFA amplifier (DC to 135 Hz), and digitized at 500 Hz. 

Electrode impedances were kept below 5kΩ. The left mastoid served as online reference. 

Additional vertical and horizontal electro-oculograms (EOGs) were recorded.  

Data Analysis 

Behavioral analysis 

Behavioral data (i.e., response accuracy) were analyzed with a repeated-measures ANOVA 

with the deviant position (odd vs. even) as the independent variable and sequence order 

(position in the sequence, e.g., 8th or 9th) as a covariate. 

EEG Preprocessing 

Data were pre-processed using combined custom Matlab scripts/functions and the Matlab-

based FieldTrip toolbox (Oostenveld et al., 2011). Data were first re-referenced to the average 
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of the two mastoid electrodes and then band-pass filtered with a 4th order Butterworth filter 

in the frequency range of 0.1-50 Hz (ft_preprocessing). Eye-blinks and other artifacts were 

identified using independent component analysis (‘fastICA’ implemented in FieldTrip). A 

semi-automated pipeline was used to identify EEG components with a strong correlation (>.4; 

labeled as “bad” components) with the EOG time-courses to inspect the respective 

topographical distribution across scalp electrodes and to remove “bad” components. Data 

segmentation was then conducted separately for the rhythm-tracking, event-related potential 

(ERP), and time-frequency representation (TFR) analyses. Note that behavioral and rhythm 

tracking analyses are independent of the modelling and the analyses on individual 

accentuation patterns described later.  

Rhythm tracking analyses 

Rhythm-tracking analyses involved neural responses to the full equitone sequences. 

Following ICA, 192 (96 sequences * 2 sessions per participant) segments were created, 

starting from the first tone onset up to the 13th tone offset (8.45s). Fast-Fourier transform and 

rhythm tracking analyses, however, were performed on shorter segments starting from the 3rd 

up to the 13th tone offset (7.15s-long). The first two tones of the sequence were excluded from 

further analyses as it is known that they elicit much stronger event-related responses than 

tones in later positions of the sequence.  

Next, we selected a fronto-central channel cluster, encompassing the sensor-level 

correspondents of prefrontal, pre-, para-, and post-central regions that were highlighted in 

previous MEG studies which employed source-localization analyses (Fujioka et al., 2012; 

Fujioka et al., 2015). The cluster included 16 channels: 'AFz', 'AF3', 'AF4', 'F3', 'F4', 'F5', 'F6', 

'FCz', 'FC3', 'FC4', 'FC5', 'FC6', 'C1', 'C2', 'C3', 'C4'. Data from this fronto-central cluster were 

not averaged at this stage and were used for Fast-Fourier transform (FFT) and phase-locking 

analyses. While the FFT analysis mirrors the well-known ‘frequency-tagging’ approach 

(Nozaradan, Schwartze, et al., 2017), the employed phase analyses provide a richer 

description of how neural oscillations track external auditory rhythms. Hence, the name 

‘rhythm tracking analyses’.  

Fast-Fourier transform 

Single-trial data from the fronto-central cluster were submitted to a FFT (“FFT data”) with an 

output frequency resolution of 0.14Hz (1/7.15s = .14Hz). Spectral power was calculated as 
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the squared absolute value of the complex Fourier output. Each trial was then normalized by 

the standard deviation across trials, per frequency-bin and channel. Lastly, the frequency-

domain data were averaged across channels and trials. For illustration purposes only, the 

Fourier spectrum was restricted to 1-4Hz (Fig. 2A). The complex Fourier spectrum was also 

used to calculate inter-trial phase coherence (ITPC; Fig. 2A). This was calculated by dividing 

the Fourier coefficients by their absolute values (thus, normalizing the values to be on the unit 

circle), calculating the mean of these values, and finally taking the absolute value of the 

complex mean. Further documentation can be found on the FieldTrip website 

(https://www.fieldtriptoolbox.org/faq/itc/).  

Phase-locking analyses 

A time-resolved phase-locking analysis was performed to estimate the phase relationship 

between neural activity at the stimulation frequency and the sequential tone onsets.  

The 8.45s-long data segments from the fronto-central cluster were bandpass-filtered with a 

4th order Butterworth filter around the stimulation frequency (1.04-2.04Hz, obtaining a 

1.54Hz center frequency; ft_preprocessing) and Hilbert-transformed to extract the analytic 

signal. The time-course of the real part of the analytic signal was then plotted (Fig.2B) as a 

function of the STD tone onset preceding (blue) and following (red) the DEV (green; note that 

this plot serves an illustrative purpose only). Phase-locking analyses focused on tones 3 to 13, 

and were performed at the sequence and channel levels by means of circular statistics (circular 

toolbox in Matlab; (Berens, 2009), based on the circular mean phase-angles estimated in the 

~60ms (i.e., a time-window proportional to the stimulation frequency = 1/1.54Hz/10) 

preceding individual tone onsets. Next, the sequence- and channel-level mean vector length 

were calculated (MVL; (Berens, 2009) for pre-DEV STD tones and the resultant values then 

pooled across channels. The focus on pre-DEV tones only is motivated by the fact that the 

onset of a DEV tone might disrupt the predictability of the auditory sequence, and further 

induces a phase-reset of oscillatory activity. Next, MVLs for pre-DEV STD tones were 

statistically assessed against the MVL from a random distribution (random uniform 

distribution of phase-angles) by means of 1000 permutation tests. A p-value lower than .05 

was considered statistically significant. For illustrative purposes, we also calculated 

participant-, channel- and sequence-level ‘relative phase angles’: these were expressed as the 

absolute phase difference between phase-angles for each channel and tone position (e.g., 3rd 

to 8th) and the most common phase-angle in the sequence. The most common phase-angle was 

https://www.fieldtriptoolbox.org/faq/itc/
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identified by means of the ‘histogram’ function in MATLAB, using ‘probability’ as parameter 

after rounding phase values to 1 decimal. This means, a probability value is attached to each 

of the phase-angles within a single-participant, -channel, and -sequence, and across a tone 

positions (3rd to 8th). Next, the phase value with the highest probability (i.e., the most 

common) was used as a reference to calculate the ‘relative phase-angles’. Thus, we computed 

the absolute phase difference between each of the phase-angles and the most common phase 

value. 

Examples of participant- and sequence-level relative phase-angles are plotted in Fig. 2C, and 

the pooling over participants, sequences, and channels is provided in Fig. 2D.  

ERP and TFR data 

After ICA, data were segmented into 4s-long epochs symmetrically time-locked to every tone 

onset. Next, we employed an automatic channel-by-channel, trial- and participant-level 

artifact suppression procedure (comparable to Kaneshiro et al., 2020). Artifact suppression 

focused on time-windows ranging from -.4 to .4s relative to each stimulus onset. Amplitude 

values were temporarily normalized by their standard deviation across trials and outliers (data 

points per epoch and channel) were defined by means of a threshold criterion (values > mean 

+ 4*SD). The identified noisy time-windows (with 50ms symmetrical padding) were then 

filled with NaNs, and these missing values were replaced by means of cubic temporal 

interpolation (‘pchip’ option for both the built-in Matlab and FieldTrip-based interpolation 

functions) considering the time-course of neighboring time-windows (extending up to 100ms 

when possible, automatically reduced otherwise). The current approach is a novel data-driven 

procedure developed to minimize the data loss. It differed from (Kaneshiro et al., 2020) insofar 

as the channel-by-channel routine allowed the algorithm to flexibly adapt the outlier threshold 

estimates to the inherent noise varying over channels. Descriptive analyses revealed that the 

artifact suppression procedure was used for 5% of trials on average, on time-windows 100ms 

long, and most likely between 350-400ms after stimulus. Critically, this strategy allowed 

keeping all trials instead of rejecting entire epochs only partially contaminated by artifacts 

(i.e., as it usually happens in the typical standard artifact rejection procedure) (Kaneshiro et 

al., 2020). 

Next, a standard whole-trial rejection procedure based on an amplitude criterion (85uV) was 

applied. Data were then segmented for event-related-potential (ERP) analyses (“ERP data”), 

including 500ms prior and following each tone onset (1s in total). Data for the time-frequency 
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representation analyses (“TFR data”) were not further segmented at this stage. ERP data were 

band-pass filtered between 1-30Hz, while TFR data were low-pass filtered at 40Hz. Data were 

downsampled to 250Hz. 

Single-trial TFR data underwent time-frequency transformation by means of a wavelet-

transform (Cohen, 2014) with a frequency resolution of .25Hz. The number of fitted cycles 

ranged from 3 for the low frequencies (<5Hz) to 10 for high frequencies (>5Hz and up to 

40Hz). The single-trial approach results in ‘induced’ (as compared to ‘evoked’) responses. 

TFR data were then re-segmented to reduce the total length to 2s, symmetric around tone 

onsets.  

Mean correction of ERP and TFR data 

Single-trial ERP amplitudes were mean-corrected by a global average over all epochs and 

computed in a time-window ranging from -0.2 to 0.3s relative to tone onset. Similarly, single-

trial TFR power was normalized by computing relative percent change with reference to the 

global mean power across epochs (-0.2 to 0.3s relative to tone onset). This previously applied 

approach (Abbasi & Gross, 2020; Fujioka et al., 2012) was preferred over classical baseline 

correction because we aimed at analyzing power fluctuations in pre-stimulus intervals. 

Finally, we calculated a fronto-central channel cluster average (using the same channels as for 

the rhythm tracking analyses). All subsequent analyses were performed exclusively on this 

channel cluster.  

ERP analyses 

Evoked responses over trials were averaged separately for STD and DEV tones and for odd 

(hypothetical “Strong” position in a binary accentuation pattern; S, Fig. 3A, left) and even 

(“weak”; w) positions from the 3rd to the 11th tone. The first STD tones were disregarded to 

exclude the increased responses typically observed at the beginning of an auditory sequence. 

Fig. 3A shows the respective ERPs for the averaged fronto-central cluster, for STD tones in 

hypothetical strong and weak positions (left) and for the comparison of STD and DEV tones 

averaged over these positions (right). Statistical analysis was performed by means of paired-

sample t-tests over a time-window ranging from 0 to 350ms relative to tone onset. An FDR-

adjusted p-value lower than .05 was considered statistically significant (Benjamini & 

Hochberg correction).  

TFR analyses 
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Time–frequency representations were averaged over STD trials, separately for odd and even 

positions (hypothetical strong and weak positions, respectively; Fig. 3B). Mean amplitudes in 

the low-beta band (low-β; 12-20Hz; Biau & Kotz, 2018) were then statistically compared for 

S-w positions by means of paired-sample t-tests over a time-window ranging from 0 to 350ms 

relative to tone onsets. An FDR-adjusted p-value lower than .05 was considered statistically 

significant (Benjamini & Hochberg correction).  

Individual classification of accentuations 

An individual modelling approach was adopted to identify binary and ternary accentuation 

patterns. Similar to earlier studies on predictive timing, (Fujioka et al., 2012; Fujioka et al., 

2015), we focused on single-participant's low-β mean power peaks for STD tones in the first 

eight positions of the equitone sequence. Tone-level mean power peaks were calculated as 

follows: we first located the power peaks in time-windows centered at 100ms post-stimulus 

(resulting peaks from analyses in Fig. 3C) and extending 60ms (proportional to the center 

frequency of interest; for low-β: 1/16Hz = 60ms), prior and after each peak. Next, the resulting 

peak latencies were used to create a second time-window of interest centered around the 

individual peaks and extending 60ms before and after it. Thus, tone-level mean power peaks 

were calculated within these 120ms-long time-windows following the stimulus onset (from 

now on, β-post).  

Single-tone β-post were first concatenated to mimic an 8-tone sequence (i.e., a trial). Single-

participant and trial-level β-post (eight tones) were then entered into a stepwise regression 

model (Fig. 4A) (‘stepwiselm’ in Matlab) with three predictors: a binary (values: 1, -1), a 

ternary (1, -.5, -.5), and a constant term (ones). The stepwise regression function searches for 

the predictor or a combination of predictors that maximizes the fit of the model to the real 

data. The model thus allows the combination of multiple predictors, but no interactions 

between terms. Once all combinations are tested, the winning model is chosen based on the 

estimated adjusted eta squared. Trials for which the winning model involved the binary 

predictor were labeled “binary”, trials for which the winning model involved the ternary 

predictor were labeled “ternary”. Accordingly, we interpreted (and labeled) the combination 

of binary and ternary terms as “combined”. The remaining trials in which neither binary nor 

ternary predictors were included in the winning model, were labeled as “not classified”. 

Participant-level model results are provided in Suppl. Table 2 as “Preferences for accents” and 

expressed as the percentage of trials relative to the total number of auditory sequences (192 
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per participant). The subject-level goodness of fit of the model is provided in the same table. 

The “Preferences for accentuations” across participants are provided in Fig. 4B and expressed 

as the percentage of trials relative to the total number of auditory sequences (192 per 

participant).  

Binary accents analyses 

Further confirmatory analyses were performed to verify if the successfully identified “binary” 

trials indeed showed binary-like accentuation patterns. If so, neural responses to tones falling 

on odd-numbered positions should differ from those on even-numbered positions. However, 

there should be no differences for neural responses on the same positions: namely, tones 

falling on odd-numbered positions should elicit similar (i.e., non-significantly different) 

neural activity.  

To verify if this was the case, we first vertically concatenated trials classified as “binary”, and 

then computed a trial-based single-tone pair-wise low-beta mean peak amplitude difference 

(corresponding lower-triangle 2-D means are provided in Fig. 4D), i.e., amplitude differences 

between responses to each tone in the sequence (1-8 positions). For example, the response 

amplitude for the 1st position was compared to the 2nd position, then to the 3rd, and so forth. 

In turn, the amplitude for the 2nd position was compared to the 3rd, the 4th etc. The resulting 

pair-wise amplitude difference matrix had a size of N trials x N positions-1 x N positions-1. 

From this matrix, we statistically compared the pair-wise amplitude difference for tones in 

odd-positions (Fig. 4E; “odd-pos difference”) and even-positions (“even-pos difference”) by 

means of 1000 permutations of odd-even labels. An FDR-adjusted p-value lower than .05 was 

considered statistically significant (Benjamini & Hochberg correction). The two variables 

were then combined into a distribution of “binary similarity”. The binary similarity combines 

the amplitude difference for tones in odd-numbered positions (1-3-5-7th) and the amplitude 

difference for tones on even-numbered positions (2-4-6-8th). Binary similarity was statistically 

compared to “binary dissimilarity”, which was calculated as the mean difference of tones in 

odd versus even positions (Fig. 4E). Statistical testing was performed using 1000 permutations 

of odd-even labels, and an FDR-adjusted p-value lower than .05 was considered statistically 

significant (Benjamini & Hochberg correction).  

DEV analyses as a function of binary accents 
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For each participant, we isolated binary trials identified with the described “individual 

classification of accents” procedure and explored the relation between accentuations and DEV 

processing to explore whether ERP responses differed according to their accents (S-w).  

Statistical analyses compared ERPs to DEV tones in even- (8,10th) versus odd-numbered 

(9,11th) positions (Fig. 4F). Notably, we considered possible “pure binary” and “phase-shifted 

binary” accents (or inverse binary), where the former corresponds to the typical S-w pattern 

in odd and even positions, and the second to the reverse w-S pattern. Indeed, individuals may 

start accentuating at different times along the auditory sequences, and hypothetical S-w 

positions may likely fall on either odd or even positions. The selection was informed by the 

beta coefficients associated with the identified binary trials: a positive coefficient would 

indicate “pure binary” (S-w), while a negative coefficient would correspond to the “inverse 

binary” (w-S). The distribution of “pure” and “inverse” binary is provided at the bottom left 

of Fig. 4B, expressed as percent of trials relative to the total number of auditory sequences 

(192 per participant).  

Next, we re-ordered accented S-w positions according to individual binary processing (odd-

numbered positions falling on S accents in “pure binary” but on w in “inverse binary”), and 

statistically compared their associated ERPs time-courses (Fig. 4F). Statistical testing was 

performed by means of paired-sample t-tests, and an FDR-adjusted p-value lower than .05 

was considered as statistically significant (Benjamini & Hochberg correction).  

DEV analyses in ternary and non-classified trials  

We also tested whether a similar S-w effect would be observed for DEV processing in ‘non-

classified’ trials. ERP responses for DEV tones falling on accented S (odd-numbered 

positions) and w (even-numbered) positions were pooled and statistically compared by means 

of paired-sample t-tests. An FDR-adjusted p-value lower than .05 was considered statistically 

significant.  

Next, we focused on potential “ternary” trials. In this case, the accent can either fall on the 

first (S-w-w), second (w-S-w), or third (w-w-S) position. To disentangle these three 

accentuation patterns from the distribution of “ternary” trials, we ran a second stepwise 

regression model. The model featured three predictors to include the possible accentuation 

types: 1,-.5,-.5 (pattern 1), -.5,1,-.5 (pattern 2) and -.5,-.5,1 (pattern 3). Again, the model did 

not allow interaction terms and the winning model was chosen based on adjusted eta squared. 

The output of the model is provided in Fig. 4B (bottom right), as the percentage distribution 
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of three accentuation patterns across participants. Importantly, other accentuation patterns are 

possible as a S-w-w pattern could be represented by a stair-case amplitude change (e.g., 1, -

.75, -.25) or a shuffled version (e.g., 1, -.25, -.75). Considering that binary accentuations are 

usually prevalent (Abecasis et al., 2005; Baath, 2015; Poudrier, 2020), possibly due to a 

cognitive bias structuring tonal sequences into groups of two (Polak et al., 2018; Savage et 

al., 2015), and that the employed stimulation rate may preferentially induce binary rather than 

ternary accentuations (Baath, 2015; Poudrier, 2020), even when tapping to polyrhythms 

(Møller et al., 2021), we did not build other models to test all possible ternary accentuations, 

or any other accentuation patterns. Of note is also that the employed model only used the first 

eight tones of the equitone sequence. This avoids the onset of DEV tones in later positions, 

which may disrupt ongoing accentuation, but inevitably leaves only up to two periods of a 

ternary accent (as compared to four repetitions of a binary accent). Consequently, even two 

small amplitude fluctuations with superimposed noise (inherent in EEG recordings) may drive 

the ‘ternary’ classification, but these trials may not necessarily reflect a true ternary 

accentuation. Accordingly, we accepted that a portion of ‘ternary’ trials might not be classified 

with the 1,-.5,-.5, -.5,1,-.5 and -.5,-.5,1 pattern.  

Data and code Availability 

The analysis code and the data in use here will be stored in an open repository and can be 

provided upon reasonable request by the corresponding author.  

 

Results 

Behavioral Data 

We tested whether the counting of deviant tones (DEV) differed for deviants in odd or even 

positions in the equitone sequence. The respective ANOVA with deviant position (odd vs. 

even) and sequence order as a covariate did not reveal a significant effect of deviant position 

(F(1,71) = 1.115, p = .295, eta-square = 0.16) nor a significant effect of sequence order 

(F(1,69) = .02, p = .97, eta-square = 0). This indicates that DEV counting performance did 

not differ in the equitone sequence.  
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Rhythm tracking  

Participants listened to equitone sequences presented at a stimulation rate of 1.54Hz, and we 

tested whether and how their neural activity would show idiosyncratic signatures of rhythm 

tracking. When individuals listen to these sequences, their neural activity reflects the timing 

of external events (Fig.2A-B). Indeed, ITPC analyses and the normalized power of the Fourier 

spectrum both showed a clear peak at the stimulation frequency (1.54Hz; Fig. 2A), and the 

time-course of delta-band neural activity showed a tendency to align to tone onsets (Fig. 2B; 

this plot is for illustration purposes only). To quantify the consistency of anticipatory phase 

alignment to the expected tone onsets, we tested the phase consistency of delta-band (1.54Hz) 

neural activity in a time-window preceding tones onset. Phase-locking analyses focused on 

the ~60ms (proportional to the stimulation frequency: 1/1.54Hz/10) prior to tone onsets. 

Single-participant trial-level mean vector lengths (MVL) of STD tones preceding a DEV (pre-

DEV) revealed a consistent phase-relationship with STD onsets: the MVL significantly 

differed from a random distribution (Fig. 2D, bottom; pre-DEV in blue; Suppl. Tab. 1 for 

statistical results). However, we observed intra- and inter-individual differences: participants' 

delta-band activity did not always synchronize to tone onsets with the same phase relationship 

(Fig. 2C). Rather, a broad range of possible phase-lags was observed across trials, both at the 

level of single-participants (Fig. 2C right) as well as when pooling values across participants 

(Fig. 2D top-left). The distribution of single-participant phase-angles across trials accordingly 

did not differ from a random distribution (Suppl. Tab. 1). Phase-angles were consistent within 

a trial (MVL statistics in Fig. 2D bottom and Suppl. Tab. 1) but differed across trials. To further 

explore this variability, we computed a measure of ‘relative phase’. This was calculated, at 

the single-participant, channel- and sequence-level as the absolute difference from each phase-

angle within one sequence and the most common phase. The distribution of relative phase-

angles across trials and participants shows variance which mostly ranges between 0-30 

degrees (Fig. 2D, right), supporting the MVL calculation. Thus, individuals show a predictive 

and consistent phase-alignment of delta-band activity to expected tone onsets. However, the 

specific phase for this alignment is variable across trials. 
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Figure 2 - Rhythm tracking analyses 

A: Fourier spectrum of neural activity along the entire equitone sequence. The plots display, in order, the inter-trial phase coherence 

(ITC; left) and the grand-average normalized power (right) in the frequency range from 1 to 4Hz. The vertical line highlights the peak 

of phase coherence at the stimulation frequency (1.54Hz). B: time-course of neural activity at the stimulation frequency. Vertical bars 

indicate the onsets of STD tones prior- (blue) and post-DEV (red). The DEV onset is reported in green. Blue shades represent the 

standard errors. Light-blue rectangles indicate the focus on the pre-stimulus intervals (not scaled). C: Polar histograms for single-

participant and sequence-level phase angles extracted from 60ms prior to the onsets of STD tones prior (blue) to the DEV from the 

fronto-central cluster of interest. Here, we report a few sequence-level phase-angles from Participant 1 (top) and Participant 19 

(bottom). On the right, the polar histograms report the distribution of phase-angles across all trials (192 per participant) and the 

‘relative phase’ across sequences. This is a measure of deviation from the most common phase-angle, at the sequence-level. D. Group-

level phase-angles are randomly distributed around the polar histogram. On its right, the group-level ‘relative phase’. These phase-

angles indicate a variation from the most common phase-angle. At the bottom, the distribution of mean vector length (MVL) calculated 

at the single-participant and sequence-level and averaged across the fronto-central cluster of interest. Importantly, these MVLs are 

based on the raw phase-angles for pre-DEV (blue) and are statistically compared to the MVL for random distribution of phase-angles. 

Single-participant statistics are reported in Suppl. Tab. 1. 
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Analyses on Accentuations 

We tested whether participants’ neural activity would sample the acoustic environment by 

superimposing binary accentuation patterns (S-w accents in odd-numbered versus even-

numbered positions) onto the equitone sequences. We analyzed event-related responses (ERP) 

to STD tones in S and w positions, and further inspected the time-frequency representation of 

time-locked responses.  

ERPs to STD tones in S-w positions did not statistically differ (Fig. 3A). However, DEV tones 

elicited stronger N100 responses compared to STD tones (FDR-adjusted p < .05; Fig. 3A, 

right), confirming the processing of an unpredicted deviant tone.  

The time-frequency representation plots of neural activity in response to STD tones mainly 

showed two event-locked responses (Fig. 3B): one in the theta (4-8Hz) and one in the low-

beta (low-β; 12-20Hz) frequency-band. Following our hypotheses and informed by previous 

work (Fujioka et al., 2012; Fujioka et al., 2015), we focused on the time-course of activity in 

the low-β range and compared event-locked power fluctuations for STD tones on odd (S) to 

even (w) numbered positions along the sequence (Fig. 3C), corresponding to hypothetical S-

w binary accents (blue and red, respectively). We statistically compared the time-courses of 

low-β activity (Fig. 3C) for STD tones in hypothetical S-w positions. The comparison did not 

survive FDR correction for multiple comparisons. Both FDR-adjusted p-values and non-

adjusted p are provided in Fig. 3C (in black and red, respectively).  

In summary, neither ERP nor TFR analyses revealed a binary accent, as STD tones elicited 

similar responses when they occurred in odd- and even-numbered positions in the auditory 

sequence. Similarly, ERPs to DEV in odd- and even-numbered positions did not statistically 

differ (Suppl. Fig. 1, bottom). These observations seemingly contradict original findings 

(Brochard et al., 2003), but might result from a different experimental setup and processing 

pipeline. For instance, the choice of region and time-windows of interest for statistical 

analyses differ from the original study.  

To better characterize the phenomenon of subjective accentuation, we decided to zoom into 

inter- and intra-individual differences in when and how accentuation patterns are 

superimposed onto the auditory sequences. Indeed, not only may individuals start to 

accentuate at different points along the sequence (i.e., not necessarily at the beginning), they 
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may also do so differently over time (e.g., binary or ternary accents), or even not accentuate 

at all (Brochard et al., 2003). These alternatives were tested with a novel modelling approach.  

 

Figure 3 - Binary accents on hypothetical S-w positions. 

A: On the left, ERP responses for STD tones in S (blue) w (red) positions. On the right, ERP responses for STD (blue) and DEV tones. 

Stars indicate significant time-windows, as assessed by means of paired-sample t-tests (FDR-adjusted p <.05). B: grand-average 

time-frequency spectrum time-locked to STD tones (-.2 to .35s). The frequency range spans from 1-to-40 Hz with a frequency resolution 

of .25Hz. The red rectangle highlights evoked responses in the low-beta (12-20Hz) frequency range, on which we performed statistical 

comparisons in C. The topographic plot on top displays the FC cluster average in use. C: extracted time-course of low-beta activity 

in hypothetical S-w positions, time-locked to STD tones onsets, in blue for odd-numbered positions (Strong) and red for even-numbered 

positions (weak). Shaded colors report standard errors. On top, a grey rectangle delineates the time-window in which statistical testing 

without multiple-comparison correction showed a difference between S and w positions. The comparison, however, did not survive 

FDR correction.  
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Modelling of individual accentuations 

To address the questions of (i) whether everyone accentuates in a consistent way, (ii) whether 

everyone always accentuates in the first place, and (iii) whether accentuation patterns 

influence DEV processing (Brochard et al., 2003), we focused on trial-level data and modelled 

various accentuation patterns. We used a trial-based stepwise regression model to classify 

participant-level single-trial beta-band neural responses as best reflecting clear binary and 

ternary accents, or the absence of a corresponding accentuation. The choice to focus on beta-

band activity was informed by previous evidence (Fujioka et al., 2012; Fujioka et al., 2015). 

The model predicted tone-by-tone low-β-post peak power from three predictors: binary, 

ternary, and constant (no accents) terms (Fig. 3A). Resulting ‘preferences for accentuations’ 

and goodness of fit are reported in Suppl. Table 2 and summarized in Fig. 4B. Note that most 

trials (~60%) did not clearly reflect either binary or ternary accents. In the absence of 

perceptual reports, it remains open whether participants did not perceive accentuations, or 

whether the current analyses are not sensitive enough to detect imagined accentuations at the 

level of neural activity. 

Next, we zoomed into “binary trials”, and distinguished S-w from w-S accentuation patterns 

based on the single-trial β-coefficients from the accent modelling (see methods). The resulting 

distributions are reported in Fig. 4B, bottom left. Similarly, we disentangled three possible 

accentuation patterns in the “ternary trials”. We performed a separate stepwise regression 

model using S-w-w, w-S-w, and w-w-S accents as predictors (see methods). Distributions of 

these accents are reported in Fig. 4B, bottom right. Note that a large proportion of “ternary 

trials” did not further adhere to one of the ternary accentuation patterns specified as predictors. 

This approach allowed showing that, on a portion of trials, individuals spontaneously 

superimpose accentuation patterns on identical tones embedded in an isochronous equitone 

sequence. Importantly, the results confirm that the same participants also switched between 

binary, ternary, and other accentuation patterns over trials. However, in the majority of trials 

no consistent accentuation pattern was confirmed.  
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Figure 4 - Individual classification of accents and analyses on binary accents.  

A: We modelled potential accentuation patterns by means of stepwise regression modelling and using low-beta post-stimulus responses 

as a dependent variable. The predictors were a binary (1, -1), a triple (1, -.5, -.5) and a constant term (ones). B: preferences for 
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accents, as reported from the modelling. In order, we plot the distribution of trials assigned to binary, ternary, combined (binary-

ternary) accents, and ‘not classified’ (neither binary nor ternary) across participants. At the bottom, we zoom into binary trials and 

distinguish S-w accents from w-S accents based on trial-level Beta coefficients from the modelling. Similarly, on its right side, the 

distribution of ternary trials showing S-w-w, w-S-w, and w-w-S accentuation patterns. To extract these three accentuation patterns, 

we performed separate stepwise regression modelling as explained in the method section. C: Exemplar S-w and w-S accent 

fluctuations expected along 8 positions of the auditory sequence in the ‘binary’ trials. Blue for S-w; cyan for w-S sequences. This plot 

has illustration purposes only. D: grand-average pair-wise difference for low-beta peaks across the first 8 positions of the auditory 

sequence in binary trials. E: on the left, the distribution of amplitude differences across odd-numbered positions (in blue) and even-

numbered positions (cyan). The average of these two distributions forms the ‘Binary similarity’. On the right, the ‘binary similarity’ 

(blue) and the mean amplitude difference of odd- versus even-numbered position (‘binary dissimilarity’; in cyan). Statistical testing 

was performed by means of thousand permutation testing, and an FDR-adjusted p < .05 was considered as statistically significant. 

F: ERPs to DEV tones on S-w positions in the binary trials. Statistical testing reported a significant difference in the time-window 

between ~120-170ms post-stimulus, as highlighted by the grey shades. ERPs to DEV tones in non-binary trials did not differ on S-w 

positions; see Suppl. Fig. 1. 

 

Binary accents 

Once we isolated, at the single-participant level, trials showing binary accentuation patterns, 

we aimed at statistically testing whether low-β responses would significantly differ in S versus 

w positions. Thus, we tested whether the modelling approach delivers a meaningful 

classification of binary accentuation.  

We isolated the identified ‘binary’ accent trials and calculated the tone-by-tone pair-wise 

difference for low-β across eight positions in the acoustic sequence and preceding the DEV 

tone. For visualization purposes, the resulting matrix was averaged across trials and the upper 

symmetrical triangle was masked (Fig.4D). The original matrix (all trials) was used to 

calculate metrics of “Binary similarity” and “Binary dissimilarity” (Fig.4E; see ‘Binary 

accents analyses’ in the methods). The Binary similarity features the distributions of amplitude 

differences on odd- and even-numbered positions. For the “Binary dissimilarity” analyses we 

calculated the amplitude difference for tones on odd- versus even-numbered positions 

(corresponding to accented versus non-accented; thus labeled “Binary difference”) and 

statistically compared it to the Binary similarity (right-side plot in Fig.4E). Statistical testing 

yielded a significant difference (FDR-adjusted p < .05). Analyses confirmed that the trials 

classified as ‘binary’ in the modelling, do indeed show a consistent binary accentuation 

pattern. Hence, the low-β amplitudes in STD tones in S positions significantly differ from 

those in w positions. To further verify the validity of the accent modelling approach, we tested 

whether identified ‘preferences for accents’ modulate DEV processing.  

 



47 

 

DEV processing based on binary accents  

We investigated whether DEV processing is modulated by binary accents in ‘binary’ trials. 

Thus, we tested whether ERPs to DEV tones falling on S-w positions in the successfully 

identified “binary” trials would be statistically different. First, we isolated the identified binary 

trials and discerned ‘pure binary’ from ‘inverse binary’ trials based on the beta-coefficient 

resulting from the regression modelling (see methods). Next, we pooled trials belonging to 

the same accent (S or w) and statistically compared ERPs to DEV on S-w positions based on 

the identified accentuation patterns, and thus irrespectively of the sequence position (odd-

numbered (9,11th positions) or even-numbered (8,10th)). Within-participant statistical 

comparison of the respective ERPs yielded significant difference in the time-window between 

120-170ms (p FDR adjusted <.05; Fig. 4F).  

Similarly, we tested whether the same S-w effect would be observed for those trials in which 

no accentuation pattern could be identified ('non-classified’ trials). In these non-classified 

trials, DEV processing was not modulated by binary accentuation patterns (p FDR 

adjusted >.05; Suppl. Fig. 1). Similarly, DEV processing was not modulated by binary 

accentuations when pooling all trials (binary, ternary, and non-classified; Suppl. Fig. 1).  

Lastly, exploratory analyses focused on the ‘ternary’ trials and modelled three possible 

accentuation patterns: S-w-w, w-S-w, w-w-S (Fig. 4b). However, only a small percentage of 

trials was assigned to these accentuation types (~2% per pattern). This likely reflects that a 

range of other ternary accents are possible (e.g., 1, -.75, -.25; or 1, -.25, -.75), along with their 

potential combinations, which were not further modelled here.  

In summary, we here show that DEV processing is modulated by binary accents, but 

exclusively in those trials identified as ‘binary’ during the accent modelling. This observation 

supports the modelling procedure as a viable method for identification of trial- and individual-

level variability in temporal processing.  

 

Discussion 

The current study aimed at exploring individual neurophysiological variability in rhythm 

processing. More specifically, we first examined how delta-band neural activity would track 

auditory rhythms. Hence, we quantified the sequence-level consistency of phase-alignment 
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towards expected tone onsets. Next, we tested whether neural activity in the low-beta band 

(12-20Hz) would reflect the superimposition of binary accentuation patterns, previously 

described by the “tick-tock” clock phenomenon (Brochard et al., 2003). Accentuations may 

reflect a neural mechanism which rhythmically and dynamically samples the environment in 

subunits, resembling the superimposition of a basic beat (strong–weak alternation).  

When listening to equitone sequences, participants’ neural activity tracked the timing of 

external events (Fig.2A), aligning delta-band oscillatory dynamics to expected tone onsets 

(Fig.2) (Buzsáki, 2009; Schroeder & Lakatos, 2009; Thut et al., 2012b; Zoefel & VanRullen, 

2016). Hence, sequence-level mean vector lengths of delta-band activity preceding tone onsets 

displayed anticipatory coupling of brain activity to the timing of environmental stimuli. This 

finding further confirms theoretical views according to which the brain might generate 

temporal predictions to achieve successful rhythm tracking to optimize sensory processing, 

perception, and allocation of attention (Friston, 2005; Arnal, 2012; Schröger et al., 2015; 

Koelsch et al., 2019).  

Notably, when pooling phase-angles across sequences either at the single-participant or group-

level, we observed random phase distributions. In other words, delta-band neural activity did 

not always align its high-excitability phase to the expected onset of auditory tones. Rather, we 

observed a wide range of possible synchronization regimes, which show consistency at the 

sequence-level, but high variability across sequences and participants. These findings may 

suggest that rhythm tracking does not necessarily rely on a specific phase-alignment (high-

excitability phase) with environmental stimuli to optimize stimulus processing. Rather, our 

data showed that neural tracking may be supported by an adaptive phase-alignment, that can 

vary over time and across individuals, while keeping consistency at the trial-level. However, 

task and attention manipulations may modulate the observed trial-level variability.  

Next to rhythm tracking, we investigated the neural signatures associated with the human 

disposition to accentuate tones when listening to equitone sequences (Brochard et al., 2003). 

This spontaneous phenomenon typically induces binary (strong-weak (S-w); Brochard et al., 

2003) accents, but other accentuation patterns such as ternary ones (S-w-w) are possible 

(Abecasis et al., 2005; Baath, 2015; Brochard et al., 2003; Fujioka et al., 2012; Fujioka et al., 

2015; Poudrier, 2020). Importantly, while tones are physically identical, these superimposed 

accents influence observable behavior and underlying neural activity (Nozaradan et al., 2011, 

2016, 2017; Schmidt-Kassow et al., 2011). However, sparse behavioral and neuroimaging 
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research has looked at individual differences (Jessica A. Grahn & Brett, 2007; Jessica A. 

Grahn & McAuley, 2009) and mainly tested task-based beat processing (e.g., Fujioka et al., 

2015). Thus, the question remains whether participants naturally accentuate in the absence of 

specific task instructions, and if they do so in a consistent manner over time. To address these 

questions, we focused on participant-level neurophysiological variability and modelled 

single-trial beta-band activity (Fig.4A) to probe whether we could observe binary or ternary 

accentuation patterns. Neural activity in the beta range has been associated with rhythm 

(Arnal, 2012; Biau & Kotz, 2018; Fujioka et al., 2012; Fujioka et al., 2015; Morillon et al., 

2016) and beat processing (Fujioka et al., 2012; Fujioka et al., 2010). The current findings 

confirm its prevalence in time-locked responses to STD tones (Fig.3B). Furthermore, beta-

band activity showed an individuals’ spontaneous disposition to superimpose accentuation 

patterns, even when not instructed to do so (Fig.4). Hence, we characterized inter- and within-

participant differences in adopting binary and ternary accents over time (Fig. 4B and Suppl. 

Tab. 2). These accentuations might reflect the automatic predisposition to sample continuous 

auditory input streams into predictable, coherent, and finite units. This might reflect 

fluctuations of attentional resources over time (Bolton, 1984; Mari R. Jones, 1976; Schroeder 

& Lakatos, 2009) (rather than being equally distributed over time), and variations within each 

attentional cycle so to attribute salience to accentuated events. We tested this view by 

particularly focusing on binary accents (Fig. 4C-F) and showed that neural responses in the 

beta-band for tones falling on odd-numbered (‘strong’ (‘S’)) positions were significantly 

greater from those in even-numbered positions (‘weak’ (‘w’); Fig. 4E, F) on a selection of 

trials. This suggests that individuals spontaneously superimpose binary accents (S-w) while 

listening to equitone sequences to parse and segment continuous sensory streams, potentially 

allocating attentional resources to salient sensory events and to optimize perception (Nobre & 

Van Ede, 2018; Shalev et al., 2019). However, most trials (~60%) did not reflect either binary 

or ternary accents (both approximately in 20% of trials, Fig. 4B). This observation may result 

for at least four reasons: (i) individuals do not always accentuate, when not instructed to do 

so; (ii) individuals do accentuate, but switch between accentuation patterns over time; (iii) the 

applied method or the data per se are not sensitive enough to pick up spontaneous and varied 

accentuations; (iv) the employed stimulation rate may be suboptimal to induce different 

accentuation patterns such as ternary and longer patterns (Baath, 2015; Poudrier, 2020). 

Indeed, prior studies on predictive timing and beta-band actvity relied on source-reconstructed 

neural MEG data (Fujioka et al., 2012, 2015), thus probably benefitted from a higher signal-

to-noise ratio than the current study. Furthermore, although it is known cognitive bias might 
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induce the structuring of tonal sequences into groups of two (Polak et al., 2018; Savage et al., 

2015) rather than other groupings, other studies have shown a link between stimulation rates 

and preferred accentuation patterns (Baath, 2015; Poudrier, 2020). Accordingly, inter-stimulus 

intervals between 500-900ms should preferentially induce a binary accent (and its double, i.e., 

accents over groups of four tones), while ternary and other accentuations are possible, 

although less common, at this and slower rates.  

In the absence of perceptual reports, we cannot preclude these options. However, we show 

positive evidence that in a portion of trials participants display clear binary and ternary 

accentuation patterns independent of behavioral reporting or finger or foot tapping. These 

results support the notion that humans sample the environment in an individual, dynamic 

manner (Large & Jones, 1999).  

We note that classifying trials based on beta fluctuations, followed by testing beta time-locked 

responses over sequence positions might be circular, but is confirmatory. Thus, we compared 

neural responses to unpredicted (deviant) tones falling on S-w positions in the classified 

binary trials and found a significant effect in ERP responses to DEV tones (Fig. 4F). Notably, 

the modulation of DEV processing was absent in those trials which did not adhere to a specific 

accentuation pattern (non-classified trials; Suppl. Fig. 1). These observations parallel earlier 

findings (Brochard et al., 2003; Jongsma et al., 2004; Schmidt-Kassow et al., 2011) and 

indicate that accentuations might affect how we allocate attention to the auditory environment. 

However, further investigations are needed to clarify this intricate link between attention 

deployment, attentional shifts, and temporal processing in listening contexts. Thus, future 

studies could further dive in the frequency-specificity of such effects and complement neural 

data with perceptual reports.  

In summary, we characterize individual neurophysiological signatures of temporal processing, 

and associate them with specific delta-band phase-coupling mechanisms and with beta-band 

dynamics, respectively. The findings showcase the feasibility of using EEG to identify 

individual neurophysiological signatures of temporal processing, suggesting that common 

trial- and group-level averaging approaches might inevitably obscure inter-individual 

differences and trial-by-trial variability. In contrast, the approach adopted here allows the 

monitoring of neurophysiological variability underlying flexible but consistent mechanisms 

for evaluating and adapting to (un)predictable environmental stimuli. Consequently, we 

propose that zooming into individual variability might allow to better predict behavioral 
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variability in processing simple and complex environmental rhythms (e.g., speech tracking; 

(Kandylaki & Criscuolo, 2021)) in neurotypical and pathological populations (Schwartze et 

al., 2015, 2016a).  

 

Conclusions 

When listening to isochronous equitone sequences, humans’ neural activity tends to 

spontaneously align and track the timing of auditory events. A novel trial-level modelling 

approach additionally confirms that individuals tend to superimpose accentuation patterns 

onto isochronous equitone sequences, indicating active sampling of the acoustic environment 

and (potentially) differential allocation of cognitive resources. We explored inter-individual 

and trial-level neurophysiological variability in temporal processing and auditory 

accentuation, and reveal flexible, time-varying neural mechanisms involved in effective 

evaluation and adaptation to environment rhythms. The combined findings highlight that an 

individualized analysis approach to neurophysiological data can indicate meaningful variation 

in a listening context and should be considered in a more differentiated account of the role of 

temporal dynamics in audition.  
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Phase-angles 

Pre-DEV Vs Random 

Phase-angles 

Pre-DEV Vs post-

DEV 

MVL 

Pre-DEV Vs Random 

 P vals 
Obs 

Diff 

Eff 

Size 
P vals 

Obs 

Diff 

Eff 

Size 
P vals 

Obs 

Diff 

Eff 

Size 

Subj1 0.233 1.733 1.277 0.057 -2.715 -2.039 0.001 0.145 0.726 

Subj2 0.689 0.719 0.520 0.906 0.073 0.056 0.001 0.121 0.654 

Subj3 0.505 0.917 0.671 0.336 0.694 0.523 0.001 0.110 0.593 

Subj4 0.461 -0.727 -0.539 0.755 0.160 0.121 0.001 0.156 0.834 

Subj5 0.261 -1.629 -1.195 0.740 -0.176 -0.136 0.001 0.197 1.099 

Subj6 0.479 0.598 0.446 0.692 0.169 0.132 0.001 0.138 0.729 

Subj7 0.805 0.230 0.171 0.859 -0.089 -0.068 0.001 0.085 0.469 

Subj8 0.662 -1.060 -0.758 0.069 -2.956 -2.141 0.001 0.096 0.479 

Subj9 0.358 1.818 1.315 0.149 2.448 1.776 0.001 0.113 0.607 

Subj10 0.606 -0.756 -0.551 0.719 -0.259 -0.196 0.001 0.109 0.616 

Subj11 0.802 -0.360 -0.262 0.919 -0.100 -0.075 0.001 0.124 0.655 

Subj12 0.656 0.800 0.581 0.953 0.069 0.051 0.001 0.115 0.646 

Subj13 0.057 2.993 2.170 0.059 2.962 2.151 0.001 0.089 0.474 

Subj14 0.094 2.838 2.048 0.146 2.633 1.900 0.001 0.141 0.721 

Subj15 0.093 -2.489 -1.836 0.582 0.236 0.186 0.001 0.107 0.556 

Subj16 0.123 -2.647 -1.911 0.905 0.155 0.112 0.001 0.135 0.704 

Subj17 0.583 -1.229 -0.881 0.973 0.056 0.040 0.001 0.110 0.605 

Subj18 0.402 1.909 1.358 0.034 -3.076 -2.205 0.001 0.135 0.718 

Subj19 0.778 -0.704 -0.504 0.339 1.127 0.839 0.001 0.122 0.643 

Subj20 0.314 1.407 1.033 0.475 -0.559 -0.416 0.001 0.174 0.918 

 

Suppl. Tab. 1 - Circular statistics for phase-angles and mean vector lengths. 

Statistical testing of the phase-angle differences between neural activity at the stimulation frequency (1.54Hz) for STD tones pre-DEV 

versus a random distribution. On the right, the statistical comparison of trial-based mean vector lengths (MVL) for STD tones pre-

DEV versus a random distribution. The phase-angles are extracted, for each tone, in the pre-stimulus intervals in a time-window of 

60ms (1/1.54Hz/10) and averaged with circular mean statistics. The MVL are calculated based on the trial-level phase-angle circular 

means. Statistical testing was performed, independently, by means of 1000 permutation tests. The table provides, in order, the p-

values (rounded to 3 decimals), observed differences and effect sizes per participant. 
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 Binary % Ternary % Combined % Other % R2 

Subj1 19,3 26 9,4 45,3 0,40 

Subj2 20,8 18,2 18,2 42,8 0,38 

Subj3 20,3 22,9 16,1 40,7 0,39 

Subj4 20,3 29,2 12,5 38 0,39 

Subj5 22,4 21,4 17,7 38,5 0,41 

Subj6 17,2 19,3 13 50,5 0,41 

Subj7 18,2 26 12,5 43,3 0,37 

Subj8 26 21,4 9,4 43,2 0,39 

Subj9 17,2 20,8 14,1 47,9 0,36 

Subj10 15,1 26,6 12 46,3 0,36 

Subj11 22,4 17,7 13,5 46,4 0,37 

Subj12 25 21,4 14,6 39 0,39 

Subj13 17,7 20,8 15,6 45,9 0,39 

Subj14 24 20,8 17,2 38 0,39 

Subj15 17,2 20,8 19,8 42,2 0,38 

Subj16 21,9 27,6 9,9 40,6 0,35 

Subj17 22,9 18,8 10,9 47,4 0,34 

Subj18 25 22,9 12,5 39,6 0,39 

Subj19 19,8 16,7 12,5 51 0,36 

Subj20 18,8 20,8 12 48,4 0,40 

 

Suppl. Tab. 2 - Preferences for accents form the modelling. 

The table reports the percentages of individual preferences for (in order) binary, ternary, combined (binary + ternary) accents. The 

‘Other’ column includes all trials which could not be classified as the above-mentioned accents. The last column on the right provides 

the goodness of fit (expressed as Eta-squared, ‘R2’) of the chosen models, averaged across trials per participant. 
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Suppl. Fig. 1 - DEV processing was not significantly modulated by binary accents in non-classified trials.  

Top: Event-related responses to DEV tones falling on even-numbered (blue) and odd-numbered (red) positions along the auditory 

sequence in those trials in which no accentuation pattern was observed (non-classified trials). Statistical comparison did not yield 

any significant difference. Bottom: the same DEV comparison before the single-trial modelling. Statistical comparison of Even-odd 

positions did not yield any significant difference.  
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Abstract 

Many animal species show comparable abilities to detect basic rhythms and produce rhythmic 

behavior. Yet, the capacities to process complex rhythms and synchronize rhythmic behavior 

appear to be species-specific: vocal learning animals can, but some primates might not. This 

discrepancy is of high interest as there is a putative link between rhythm processing and the 

development of sophisticated sensorimotor behavior in humans. Do our closest ancestors 

show comparable endogenous dispositions to sample the acoustic environment in the absence 

of task instructions and training?  

We recorded EEG from macaque monkeys and humans while they passively listened to 

isochronous equitone sequences. Individual- and trial-level analyses showed that macaque 

monkeys’ and humans’ delta-band neural oscillations encoded and tracked the timing of 

auditory events. Further, mu- (8-15Hz) and beta-band (12-20Hz) oscillations revealed the 

superimposition of varied accentuation patterns on a subset of trials. These observations 

suggest convergence in the encoding and dynamic attending of temporal regularities in the 

acoustic environment, bridging a gap in the phylogenesis of rhythm cognition.  

 

 

Highlights 

• Macaque and human EEG show converging neural signatures of rhythm processing; 

• Delta oscillations encode and track temporal regularities in the acoustic environment;  

• Mu oscillations reveal superimposed accentuation patterns on isochronous 

sequences; 

• Similar neurophysiological responses favor the phylogenesis of human rhythm 

cognition. 

Keywords 

Neural oscillations, rhythm processing, macaque monkeys, EEG, temporal regularities.  
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Introduction 

“The perception, if not the enjoyment, of musical cadences and of rhythm is probably common 

to all animals and no doubt depends on the common physiological nature of their nervous 

system” – Charles Darwin.  

Research in non-human animal species is considered a test case for unravelling the 

evolutionary origin(s) of human rhythm cognition (Honing, 2018; Kotz et al., 2018; Patel, 

2014; Ravignani et al., 2019). Here, we conceptualize ‘rhythm’ as any pattern of events re-

occurring over time. The temporal regularity of an acoustic event sequence (from isochronous 

tones to music) and complex behavior (e.g., walking and speaking) can, thus, be seen as a 

form of rhythm. 

What makes us capable of detecting temporal regularities in the environment? And in turn, 

what allows us to produce rhythmic behaviors and synchronize our movements to an external 

rhythm? Detection requires the encoding of a rhythm, i.e., the neurophysiological processing 

of temporal regularity. In turn, this allows producing and synchronizing with external rhythms. 

However, are the capacities to detect, produce, and synchronize rhythms (from now on, 

‘DPS’) innate and shared across species? 

Comparative studies have shown that DPS is found in vocal learning animals (e.g., parrots; 

Patel et al., 2009), but only partially in others (Schachner et al., 2009). Macaque monkeys 

performed similarly to humans in tapping tasks (Zarco et al., 2009), showed sensitivity to 

temporal (ir-)regularities in auditory sequences (Selezneva et al., 2013), and chimpanzee 

spontaneously aligned their tapping to task-irrelevant auditory rhythms (Hattori et al., 2013). 

However, the macaque monkey seems unable to detect and synchronize with salient 

periodicities from complex rhythms such as human-made (musical) stimuli (Honing et al., 

2012, 2018). Such results partially supported the notion that many species share a basic 

capacity for detecting temporal regularities, but some cognitive processes underlying DPS 

might be species-specific (Fitch, 2013; A. Patel, 2008; Patel, 2006), and further dependent 

upon neuroanatomical differences (Merchant & Honing, 2014; Patel & Iversen, 2014).  

However, other studies, have shown that the capacity to process and synchronize behavior 

with rhythms also depends on voluntary control, cognitive state, attention, and motivation, 

beyond the actual capacity to control behavior (Wilson & Cook, 2016). When exposed to 

music, children do not automatically synchronize with the musical beat, but do so in a social 

context (in presence of adults; (Kirschner & Tomasello, 2009)). Similarly, macaque monkeys 
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spontaneously synchronize behavioral displays (Nagasaka et al., 2012), and bonobos tend to 

spontaneously synchronize rhythmic behavior with a human experimenter (Large & Gray, 

2015).  

Thus, a more fundamental question in comparative rhythm cognition is: do nonhuman animals 

have the neurophysiological predisposition to encode temporal regularities in the 

environment? Once we have addressed this question we can probe their ability for rhythmic 

displays, which, in isolation, do not necessarily inform about their sensory capacities to 

process temporal regularities (Wilson & Cook, 2016). 

Accumulating evidence shows that premotor cortex cells in macaque monkeys resemble a 

‘neural chronometer’ encoding time intervals (Merchant et al., 2011; Merchant, Harrington, 

et al., 2013) with a dynamic time-varying representation (Crowe et al., 2014). These cells 

predict regularly timed stimuli (Bartolo & Merchant, 2015) and allow predictive tapping to 

tempo changes (Gámez et al., 2018). Macaque monkeys’ neural activity indicates the encoding 

and synchronization with temporal regularities in the sensory environment (Lakatos et al., 

2008), and dynamic attending (Large & Jones, 1999) to sensory streams, similarly to humans 

(for overviews: Obleser & Kayser, 2019; Schroeder & Lakatos, 2009).  

In the auditory, as well as in other sensory domains, fluctuations of neural activity instantiate 

a ‘rhythmic mode’ of sensing (Lakatos et al., 2013) and attending (Large & Jones, 1999) the 

environment that can bias subjective perception (Iemi & Busch, 2018; Zoefel & VanRullen, 

2017). Thus, the alternation of high- and low-salience may influence how we perceive sensory 

input and further influences behavioral performance (e.g., perceptual tasks). For instance, 

humans show a disposition to perceive subjective accentuations (the tic-toc illusion) when 

listening to isochronous equitone sequences (Brochard et al., 2003). Even though all tones are 

physically identical, the human brain tends to accentuate two or three equidistant tones 

according to a binary (on-/off-beat; or strong-weak (S-w)) or ternary (S-w-w) pattern 

(Abecasis et al., 2005; Baath, 2015; Brochard et al., 2003; Poudrier, 2020; Schmidt-Kassow 

et al., 2011). As the phenomenon emerges during passive listening, the superimposition of 

accentuations may represent a spontaneous tendency to sample (or attend) the acoustic 

environment beyond the encoding of single event onsets or time-intervals. As such, subjective 

accentuation may represent an unbiased marker of endogenous rhythm processing in a quasi-

naturalistic context as it does not depend on training nor task demands. 
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Human event-related potentials (ERPs) mirror these subjective accentuation patterns, showing 

amplitude differences for tones in S-w positions (Abecasis et al., 2005; Brochard et al., 2003). 

Neural oscillations in the alpha- and beta-band (8-20 Hz) not only coincide with but precede 

the onset of expected tones (Arnal, 2012; Fujioka et al., 2009, 2012; Snyder & Large, 2005), 

and their amplitude can be modulated by trial-level accentuation patterns (Criscuolo, 

Schwartze, Henry, et al., 2022). These oscillatory brain dynamics likely reflect the active 

generation of temporal predictions, whereby the first element in a series of two or three might 

be more salient (S) than others (w).  

Does our closest ancestor show a comparable endogenous disposition to sample the acoustic 

environment in the absence of task instructions and/or training?  

In the current study, we recorded EEG in two macaque monkeys who passively listened to 

isochronous equitone sequences. Similar to a recent study in human participants (Criscuolo, 

Schwartze, Henry, et al., 2022), we investigated the monkey’s endogenous tendencies to (i) 

internalize the timing of external sound events, to (ii) track tone onsets, and to (iii) parse 

equitonal sequences with a superimposed binary accentuation pattern. Lastly, we directly 

compared human and macaque monkey EEG to (iv) test for (dis-)similarities in basic rhythm 

processing.  

The current findings suggest that macaque monkeys have the adequate neural outfit to go 

beyond simple isochrony processing. The unexplored parallels between macaque and humans 

bridge a critical gap in the phylogenesis of rhythm cognition, potentially lending support to 

Darwin’s notion of a shared neurophysiological predisposition for rhythm processing in non-

human primates.  

 

Materials and Methods 

Experimental procedure  

We tested two macaque monkeys. Monkey 1 (M1) is a 12-year-old male, Monkey 2 (M2) a 9-

year-old female. Both monkeys had normal hearing and were previously trained in spatial and 

temporal categorization tasks (M1)(Mendoza et al., 2018) and a synchronization tapping task 

(M2)(Gámez et al., 2019). Both monkeys were awake (i.e., were not sedated) while EEG was 

recorded, sitting in a quiet room [3 (l) × 2 (d) × 2.5 (h) m] with dimmed lighting and two 

loudspeakers placed at a ~50cm from their ears. The animals were seated comfortably in a 

monkey chair, where they could freely move their head, hands, and feet. No head fixation was 
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used, and the EEG electrodes were attached to the monke’'s scalp using tape (see EEG data 

acquisition below). To ease the fixation of the electrodes, the monke’'s hair on the scalp and 

reference ear was shaved. Detailed information about human participants, EEG data 

collection, and analysis procedures can be found in a recent study (Criscuolo, Schwartze, 

Henry, et al., 2022). Briefly, we randomly selected 4 human participants from a dataset of 20 

individuals (21-29 years of age, mean age 26.2 years). EEG was recorded from 59 Ag/AgCl 

scalp electrodes (Electrocap International), amplified using a PORTI-32/MREFA amplifier 

(DC to 135 Hz), and digitized at 500 Hz.  

Ethics statement 

Animal care and experimental procedures were approved by the National University of 

Mexico Institutional Animal Care and Use Committee and conformed to the principles 

outlined in the Guide for Care and Use of Laboratory Animals (NIH, publication number 85–

23, revised 1985). The Mexican standards on research ethical protocols with non-human 

primates (NHP) are in the ‘NORMA Oficial Mexicana NOM-062-ZOO-1999’, and are in line 

with regulations from 13 other countries (Hartig et al., 2023).  

Audiogram  

The animal’s hearing capacity was recorded with a scalp-recorded audiogram in partially 

sedated states. Sedation was induced and maintained with Ketamine (Aranada, Mexico).  

Stimuli materials 

For the audiogram, click sounds were produced trough TTL pulses generated with a TDT-RZ6 

signal processor (Tucker-Davis Technologies, system 3, Florida, USA) at a digitization rate 

of 97656.24Hz. Clicks lasted 0.5ms and were delivered at a rate of 15.1Hz, in random 

polarities and sound intensities (from 20 to 90, steps of 10dB SPL). Twenty blocks of 4000 

stimuli were presented in a single recording session to collect 1000 repetitions per click 

intensity. Clicks were binaurally delivered through open-field speakers (KRK 5-G3, USA) 

located 85cm from animal’s ears. Sound intensity was calibrated using a free-field condenser 

microphone (426B03), a sensor signal conditioner (480C02, PCB Piezotronics, NY USA), 

and the TDT rPvdsEx circuits.  
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EEG recording 

For the audiogram, continuous EEG was recorded from three Grass gold-plated electrodes 

(Natus Neurology, #FS-E5GH-60; Fig. 1) located at Fz, Cz, and Pz according to the 10/20 

system. A reference electrode was located on the right earlobe, while the ground electrode was 

located at the central forehead. Scalps were shaved and cleaned with mild abrasive gel 

(Nuprep, Weaver and Company, USA) before the recording session to reduce scalp 

impedance. The signal was amplified by means of a medusa preamplifier (RA16PA, TDT 

systems) and digitized at 24414.06Hz with an on-line filter from 3Hz – 6000Hz. Additionally, 

a notch filter at 60Hz was applied to remove the line frequency.  

Signal processing  

Channel Cz was selected for the analyses of the audiogram, based on the known higher signal-

to-noise ratio of the vertex signal. The signal was further band-pass filtered (150–3000Hz, 

Butterworth 4th-order filter) and epoched relative to stimulus onset (−10-66ms). EEG epochs 

were sorted into positive and negative polarity click presentations and sub-averages were 

computed for each polarity condition. An added polarity grand average was obtained and used 

for further analysis to avoid any transduction stimulus artifact and to minimize the cochlear 

and microphonic potentials. ABR waves of similar latency as those reported in anesthetized 

or sedated animals (Laughlin et al., 1999) were observed (Suppl. Fig. 1). A significant evoked 

response (2-tailed t-test, 10ms window size) was observed at 60- and 50-dB SPL for monkey 

1 and 2, respectively. A previous study in fuscata macaques reported that at a level of 60dB 

SPL level, the monkeys were able to hear tones in a 28Hz to 37kHz range (Jackson et al., 

1999), frequencies that are elicited by the click broad-band stimulus. Three ABR components 

were clearly identified at 90dB SPL in both monkeys. These components with positive peaks 

had latencies of ≈ 3, 4.6, and 8ms. The shape and latency of the first two waves agrees with 

previous reports (Suppl. Fig.1, (Lasky et al., 1995)). The likely neural generators of the 

observed waves are the cochlear nucleus, lateral lemniscus, and inferior colliculus (Lasky et 

al., 1995; Uno et al., 1991, 1993). The observed peak amplitudes (≈3-14µV) were larger than 

those reported in awake head-fixed Macaca fuscata (Uno et al., 1993) (tenths of µV) using 

similar level and rate parameters but close-field and monaural stimulation. Although it is 

known that anaesthesia or sedation might considerably diminish or even abolish evoked 

responses (Uno et al., 1993), the audiogram ensured that both monkeys could perceive the 

tones employed in the experimental paradigm as both standard (STD) tones and amplitude-
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deviant (DEV) tones were above the individual hearing thresholds in both monkeys.  

Experimental paradigm 

Monkeys listened to 13-tone (440Hz, 85dB, 50ms duration) isochronous equitone sequences 

(Fig.1, right). On < 5% of the trials, amplitude-deviant tones (DEV; 66dB) could fall on the 

8-9-10-11th position (Fig.1, bottom row). The inter-stimulus-interval between tones was fixed 

at 0.6s, corresponding to a fixed stimulus rate of (1.6667Hz). The entire trial sequence lasted 

7.8s and was followed by a random inter-trial silent period between 3.5 and 5.5s. Critically, 

no accentuation pattern (strong-weak sounds) was imposed in the auditory sequence. M1 

underwent 21 recording sessions and M2 25 sessions during which both animals listened to 

100 13-tone sequences each. Out of 1300 total events, 1240 were STD tones (>95%) and 60 

were DEV (4,6%). The stimulus materials in use were nearly identical for humans and 

monkeys (Criscuolo, Schwartze, Henry, et al., 2022). 

 

Figure 1 –- Electrode positions and stimulus sequence.  

Electrode positions on the macaque monkey scalp (left) and the 13-tone isochronous equitone sequence (right). The hypothesized 

superimposition of binary accentuations would parse the auditory sequence in alternating“"stron”" (S) and“"wea”" (w) accents. 

Deviant tones (DEV) occurred from the 8th position onward. Accordingly, they could occur on S and w accentuated positions with 

equal probability. 

 

EEG data acquisition 

The EEG was recorded from electrodes (Grass gold-plated electrodes) attached to five scalp 

positions (Fz, Cz, Pz, F3, F4) according to the 10-20 system (Fig. 1). Both monkeys previously 

underwent surgery procedures where the head fixation posts were implanted during aseptic 

surgery and under gas anesthesia. Importantly, the temporal maxillary muscles of the two 

monkeys were retracted during the surgery, thus leaving the upper skull surface free of 
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muscular or eye-induced artifacts. A second surgery was performed and head holding devices 

were removed prior to data collection. All electrodes were attached to the scalp using Ten20 

Conductive EEG paste and medical tape and were referenced to the right ear (fleshy part of 

the pinna). The electrodes were connected to a Tucker-Davis Technologies (TDT) head stage 

(#RA16LI) for low impedance electrodes. This head stage was connected to a TDT RA16PA 

preamplifier, which in turn was connected to a TDT RZ2 processor. RZ2 was programmed to 

acquire the EEG signals with a sampling rate of 610.35Hz and the bandpass filters were set at 

0.01–100Hz. 

 

Data analysis 

Preprocessing 

Data were pre-processed with a combination of custom Matlab scripts/functions and the 

Matlab-based FieldTrip toolbox (Oostenveld et al., 2011). Data were band-pass filtered with 

a 4th order Butterworth filter in the frequency range of 0.5-50Hz (ft_preprocessing). Next, data 

segmentation was conducted separately for ‘rhythm-tracking’, event-related potentials (ERP) 

and time-frequency representation (TFR) analyses. 

Rhythm tracking analyses 

Rhythm-tracking analyses were time-locked to encompass the whole equitone sequence. 100 

sequences (per experimental session) were created, starting from the third tone onset and 

including up to the 13th tone (6.6s). Next, we computed a fronto-central channel cluster 

encompassing ‘Fz’, ‘F3’, ‘F4’, ‘Cz’. Data from this front-central cluster were used for Fast-

Fourier transform (FFT) and phase-locking analyses.  

Fast-Fourier transform 

Single-trial data from the fronto-central cluster were submitted to a FFT (“FFT data”) with an 

output frequency resolution of 0.15Hz (1/6.6s = .15Hz). Spectral power was calculated as the 

squared absolute value of the complex Fourier output. Data in each frequency bin were 

normalized by the frequency-specific standard deviation across trials. Lastly, we averaged the 

frequency-domain data across channels and trials. For illustration purposes, we restricted the 

Fourier spectrum to 1-7Hz in Fig. 2A, top for M1 and bottom for M2.  
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 Phase-locking analyses 

A time-resolved phase-locking analysis was performed to estimate the phase relationship 

between neural activity at the stimulation frequency and the sequential tone onsets.  

Sequence-level data from the fronto-central cluster were bandpass-filtered with a 4th order 

Butterworth filter around the stimulation frequency (1.1-2.1Hz, considering a 1.67Hz center 

frequency; ft_preprocessing) and underwent Hilbert transform to extract the analytic signal. 

Next, we plotted the time-course of the real part of the analytic signal (Fig. 2B, top for M1 

and bottom for M2) as a function of the onsets of STD tones preceding (blue) and following 

(red) the DEV (green; this plot is for illustrative purposes only). Phase-locking analyses were 

performed at sequence- and channel-levels by means of circular statistics (circular toolbox in 

Matlab; (Berens, 2009)), based on the circular mean phase-angles estimated in the 60ms 

(proportional to the stimulation frequency: 1/1.67Hz/10) preceding individual tone onsets. 

Next, the sequence- and channel-levels mean vector length (MVL; (Berens, 2009)) were 

calculated for pre-DEV STD tones and averaged the values across channels. MVL for pre-

DEV STD tones were statistically assessed against the MVL from a random distribution 

(random uniform distribution of phase-angles) by means of 1000 permutation tests. A p-value 

lower than .05 was considered statistically significant. In Suppl. Fig. 2, we also provide 

session-, channel-, and sequence-level ‘relative phase angles. These were expressed as the 

absolute phase difference between phase-angles for each tone position (e.g., third to eight) and 

the most common phase-angle in the sequence (the one with the highest probability, as 

obtained from histogram function in MATLAB, with ‘probability’ as input). The pooling over 

sessions and channels is displayed in Fig. 2D and 3D. 

ERP and TFR data 

Data were segmented into 4-s-long epochs symmetrically time-locked to every tone onset. 

Next, we employed a data-driven channel-by-channel and trial- and monkey-level artifact 

suppression procedure ((Criscuolo, Schwartze, Henry, et al., 2022); and similar to the method 

implemented in (Kaneshiro et al., 2020)). Artifact suppression focused on time-windows 

ranging from -.4 to .4s relative to each stimulus onset. Amplitude values were temporarily 

normalized by their standard deviation across trials and outliers (data points per epoch and 

channel) were defined by means of a threshold criterion (values > mean + 4*SD). The 

identified noisy time-windows (with 50ms symmetrical padding) then served to suppress 

(replace by NaNs) time-points in the non-normalized data. The missing values were replaced 

by means of cubic temporal interpolation (using the ‘pchip’ option for both the built-in Matlab 
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and FieldTrip-based interpolation functions) considering the time-course of neighboring time-

windows (extending up to 500ms when possible, automatically reduced otherwise). The 

current approach is a novel data-driven procedure developed to minimize the data loss. Thus, 

rather than rejecting entire epochs only partly contaminated by artifacts (i.e., standard artifact 

rejection procedure), we opted for an artifact suppression approach that allowed keeping all 

trials. Note that the channel-by-channel routine allowed the algorithm to flexibly adapt the 

outlier threshold estimates to the inherent noise varying over channels. Lastly, a standard 

whole-trial rejection procedure based on an amplitude criterion (85uV) was applied. Data 

selected for event-related-potential (ERP) analyses (“ERP data”) were segmented including 

500ms prior and following each tone onset (1s in total). Data destined to time-frequency 

representation analyses (“TFR data”) were not further segmented at this stage. ERP data were 

band-pass filtered between 1-30Hz and TFR data low-pass filtered at 40Hz. 

TFR data finally underwent time-frequency transformation by means of a wavelet-transform 

(49) with a frequency resolution of .25Hz. The number of fitted cycles ranged from 3 for the 

low frequencies (<5Hz) to 10 for high frequencies (>5Hz and up to 40Hz). TFR data were 

then re-segmented, so to reduce the total length to 2s, symmetrically distributed relative to 

tone onsets.  

Post-processing of ERP and TFR data 

Single-trial ERP amplitudes were mean-corrected by a global average over epochs and 500ms 

long (-0.2 to 0.3s relative to tone onset). Similarly, single-trial TFR amplitudes were 

normalized by computing relative percent change with reference to the global mean amplitude 

across epochs and 500ms long. This approach has been used elsewhere (Abbasi & Gross, 

2020; Fujioka et al., 2012) and was preferred over baseline correction as we were interested 

in analyzing amplitude fluctuations in the pre-stimulus intervals. Then, we created a fronto-

central channel cluster. All following analyses were performed exclusively on this channel 

cluster.  

ERP analyses 

We averaged evoked responses over trials separately for STD and DEV tones, and for odd 

(hypothetical “Strong” position in a binary accent; S, Fig. 3,4) and even (“weak”; w) serial 

positions from the 3rd to the 11th tone. The first standard tones were not included to avoid 

increased responses typically observed at the beginning of an auditory sequence. Fig. 3A and 

4A show the respective ERPs for the averaged fronto-central channel, for STD tones on S-w 
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positions (left) and for the comparison of STD and DEV tones averaged over S-w positions 

(right). Statistical analysis was performed by means of paired-sample t-tests. An FDR-

adjusted p-value lower than .05 was considered statistically significant (Benjamini & 

Hochberg correction).  

TFR analyses 

We averaged time–frequency representations over STD trials, separately for odd and even 

positions (hypothetical strong and weak positions, respectively; Fig. 3B and 4B). Next, we 

quantified mean peak amplitudes in the mu-band (8-15Hz) in the post-stimulus intervals 

(80ms (proportional to the center frequency: 1/12Hz) and compared them for S-w positions 

(Fig. 3C and 4C).  

Individual classification of accents 

An individual modelling approach was developed to identify binary accents. Since other 

accentuation patterns are possible (Abecasis et al., 2005) beyond the binary default (Brochard 

et al., 2003), the model further tested for the presence of ternary accents. We focused on single-

subject, mu-band peak amplitudes for STD tones in the first 8 positions of the auditory 

sequence in 80ms time-windows (proportional to the center frequency of interest; mu-band: 

1/12Hz = 83ms) following the stimulus onset. 

Single-tone mu-band amplitudes were concatenated to mimic an 8-tone auditory sequence 

(i.e., a trial). Next, single-subject and trial-level mu-band fluctuations (8 tones) were entered 

into a stepwise regression model (Fig. 5A; ‘stepwiselm’ in Matlab) with 3 predictors: binary 

accents (values: 1, -1), ternary (1, -.5, -.5), and a constant term (ones). The winning model 

was chosen based on adjusted Eta-squared. Trials for which the winning model involved the 

binary predictor were labeled “binary”. Similarly, trials for which the winning model involved 

the ternary predictor were labeled “ternary”. The model thus allowed the combination of 

multiple predictors, but no interactions between terms. We accordingly interpreted (and 

labeled) the combination of binary and ternary terms as “combined”. Lastly, trials in which 

grouping could not be clearly identified were labeled as “not classified”. Session-level model 

results are provided in Suppl. Tab. 2, designated as “Preferences for accents” and expressed 

as the percentage of trials relative to the full number of auditory sequences (100 per session, 

per monkey). The session-level goodness of fit of the model is provided in the same table. The 

“Preferences for accents” across sessions and monkeys are provided in Fig. 5B. 
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Binary accent analyses 

To confirm that the identified “binary” trials indeed showed binary accentuation patterns, we 

performed further analyses. First, we concatenated trials classified as “binary” and computed 

a trial-based single-tone pair-wise amplitude difference (its lower-triangle 2-D mean is 

provided in Fig. 5C). Namely, we calculated the amplitude difference between every tone (1-

8 positions) along the auditory sequence independently for each sequence. Hence, we 

estimated the amplitude difference for the 1st and 2nd position, then to the third position, and 

so forth. Similarly, the amplitude for the 2nd position was compared to the 3rd, the 4th position, 

and so on. The result of this computation is a session-level pair-wise amplitude difference 

matrix, whose size is N trials x N positions-1 x N positions-1. Next, we isolated the pair-wise 

amplitude difference for tones in odd-positions (Fig. 5D; “odd-pos difference”) and even-

positions (“even-pos difference”) and statistically compared them by means of 1000 

permutations of odd-even labels. An FDR-adjusted p-value lower than .05 was considered 

statistically significant (Benjamini & Hochberg correction). These two variables were then 

combined into a distribution of “binary similarity”. The binary similarity, thus, features the 

amplitude difference for tones in odd-numbered positions (1-3-5-7th) and the amplitude 

difference for tones on even-numbered positions (2-4-6-8th). In contrast, the binary 

dissimilarity was created by extracting the mean difference of tones in odd versus even 

positions (Fig. 5D). Finally, the binary similarity was statistically compared to the binary 

dissimilarity. Statistical testing was performed by means of 1000 permutations of odd-even 

labels, and an FDR-adjusted p-value lower than .05 was considered statistically significant 

(Benjamini & Hochberg correction).  

Comparative analyses 

In a prior study (Criscuolo, Schwartze, Henry, et al., 2022) we investigated rhythm processing 

capacities in humans, using a comparable experimental paradigm and analysis pipeline as 

here. Human participants only took part in two experimental sessions, hence we only focused 

on the first two experimental sessions of the monkeys for comparative data analyses (see 

Criscuolo, Schwartze, Henry, et al., 2022) for further details regarding the analysis procedure 

adopted in the human dataset).  

From the human sample, we randomly selected 4 participants (gender-balanced, as for the 

monkeys). In monkeys as well as in humans, we extracted the ‘individual preferences for 

accents’ as calculated in the accent modelling. Next, we isolated ‘binary’ trials, performed 
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‘binary similarity’ and ‘binary dissimilarity’ analyses as described in the ‘Binary accent 

analyses’ paragraph. Lastly, we inspected the time-course of neural activity time-locked to 

STD tones and compared it across monkeys and humans (Fig. 6). 

Ternary accent analyses 

Exploratory analyses zoomed in ternary trials. While the ‘binary trials’ could only show two 

accentuation patterns (S-w or w-S), ternary beats can show at least three different accentuation 

patterns, i.e., the accent can either fall on the first (S-w-w), second (w-S-w), or the third 

position (w-w-S). To disentangle these three accentuation patterns from the distribution of 

“Ternary trials” identified during the “Individual classification of accents”, we ran a second 

stepwise regression model. This model featured three predictors corresponding to the 

respective accentuation types, implemented as:1, -.5, -.5 (pattern 1), -.5, 1, -.5 (pattern 2) and 

-.5, -.5, 1 (pattern 3). The model did not allow interaction terms, and the winning model was 

chosen based on adjusted Eta-squared. The output of the model is provided in Fig. 5B (bottom 

right), as the percent distribution of three accentuation patterns across sessions and relative to 

the total number of auditory sequences (100 per session). Note that not all trials could be 

classified as pertaining to the three modelled accentuation patterns. Other accentuation 

patterns are possible in the ternary trials, which were not modelled here: for instance, a S-w-

w pattern could be as well represented by a stair-case amplitude change (i.e., 1, -.75, -.25) or 

a shuffled version of it (i.e., 1, -.25, -.75). However, given that the stimulation rate in use is 

likely suboptimal to test ternary accentuations even in humans (Abecasis et al., 2005; Baath, 

2015; Brochard et al., 2003; Fujioka et al., 2012; Poudrier, 2020), we did not build models to 

test all possible ternary accentuation patterns. Furthermore, it is important to note that the 

model in use here only uses the first 8 tones of the auditory sequence. This choice avoids the 

onset of DEV tones in later positions, which may disrupt ongoing accentuations, but inevitably 

leaves only up to two periods of a ternary accent (as compared to 4 repetitions of a binary 

accent). Consequently, even two small amplitude fluctuations with superimposed noise 

(inherent in EEG recordings) may drive the ‘ternary’ classification, but these trials may not 

necessarily reflect a true ternary accent. In turn, we expected a large proportion of ‘ternary’ 

trials to fail to be further classified as strictly reflecting the modelled patterns (1,-.5,-.5 (pattern 

1), -.5,1,-.5 (pattern 2) and -.5,-.5,1 (pattern 3)). The small percentage of trials belonging to 

the three accentuation types (~2%) precluded further analyses due to insufficient statistical 

power to interpret results.  

Resources and details 
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The datasets supporting the current study will be deposited in a public repository but are 

available from the corresponding author upon reasonable request. The code for analyses is 

available upon request. Further information and requests for resources should be directed to 

the Corresponding Author. 

 

Results 

Rhythm tracking  

Macaque monkeys passively listened to isochronous equitone sequences presented at a 

stimulation rate of 1.67Hz and containing 13-to-15 frequent tones (standard; STD) and one 

amplitude-attenuated deviant tone (DEV). We tested whether and how their neural activity 

would show idiosyncratic signatures of rhythm tracking.  

Macaque monkeys’ neural activity encoded the timing of external events (Fig. 2A, B top for 

M1 and bottom for M2). The Fourier spectrum showed a power peak at the stimulation 

frequency (1.67Hz; Fig. 2A), indicating that neural activity responded timely to tone onsets. 

Next, we quantified the consistency of pre-stimulus phase in delta-band (centered at 1.67Hz) 

neural activity during a time-window preceding tone onsets (Fig. 2B) by means of mean vector 

length (MVL) analyses. This phase analysis focused on the ~60ms (proportional to the 

stimulation frequency: 1/1.67Hz/10) prior to tone onsets. Single-session trial- and channel-

level MVL of STD tones preceding a DEV (pre-DEV) significantly differed from a random 

distribution (MVLs are plotted as kernel distributions in Fig. 2D; pre-DEV in blue; Suppl. 

Tab. 1-2 for statistics). 
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Figure 2 –- Rhythm tracking analyses 

A: Fourier spectrum of neural activity along the entire auditory sequence. The plot displays the grand-average power in the frequency 

range from 1 to 7Hz. B: time-course of neural activity at the stimulation frequency. Vertical dotted lines indicate the onsets of STD 

tones prior- (blue) and post-DEV (red). The DEV onset is reported in green. Blue shades represent the standard errors. Light-blue 

rectangles indicate the pre-stimulus intervals of STD in which we performed phase analyses (not scaled). C: the kernel density 

distribution of mean vector length (MVL) calculated at the single-session and sequence-level and averaged across the fronto-central 

cluster of interest. These MVLs are based on the raw phase-angles for pre-DEV STD tones (blue) and are statistically compared to 

the MVL for random distribution of phase-angles. Single-session statistics are reported in Suppl. Tab. 2. 

 

Accent processing 

We tested whether participants’ neural activity would sample the acoustic environment by 

superimposing binary accentuation patterns (S-w accents in odd-numbered versus even-

numbered positions) onto the isochronous equitone sequences. Thus, we analyzed event-

related responses (ERP) to STD tones in S and w positions, and further inspected the time-

frequency representation of time-locked responses.  

ERPs to STD tones in S-w positions did not differ statistically (Fig. 3A, 4A). However, STD 

tones elicited stronger N100 and P200 responses as compared to DEV tones (FDR-adjusted p 

< .05; Fig. 3A,4A, right), confirming the processing of an unpredicted amplitude-attenuated 

deviant tone.  
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The time-frequency representation plots of neural activity in response to STD tones mainly 

showed one event-locked response in the mu-band (8-15Hz; Fig. 3B for M1 and 4B for M2). 

In this frequency band, we compared event-locked fluctuations for STD tones in odd (S) 

versus even (w) positions along the sequence (Fig. 3C, 4C), corresponding to hypothetical S-

w positions (blue and red, respectively). The result of the statistical comparison of S-w 

positions did not survive multiple comparison by FDR correction (FDR > .05).  

To summarize, neither ERP nor TFR analyses revealed a binary accentuation, as STD tones 

elicited similar responses when they occurred in odd- and even-numbered positions along the 

auditory sequence. This result, however, may be associated with inter- and intra-individual 

differences in when and how accentuation patterns are superimposed onto the auditory 

sequences (Brochard et al., 2003). These hypotheses required a more adequate method to be 

tested: the novel accent modelling approach below. 
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Figure 3 – ERPs and TFR data for monkey 1  
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Figure 4 –- ERPs and TFR data for monkey 2 

  

A: On the left, ERP responses for STD tones in S (blue) w (red) positions. On the right, ERP responses for STD (blue) and DEV tones. 

Stars indicate significant time-windows, as assessed by means of paired-sample t-tests (FDR-adjusted p <.05). B: grand-average 

time-frequency spectrum time-locked to STD tones (-.2 to .4s). The frequency range spans 1-40Hz with a frequency resolution of 

.25Hz. The red rectangle highlights predominant responses in the mu (8-15Hz) frequency range, on which we performed statistical 

comparisons. C: extracted time-course of mu-band activity in hypothetical S-w positions, time-locked to STD tones onsets, in blue for 

odd-numbered positions (Strong binary accent) and red for even-numbered positions (weak binary accent). Shaded colors indicate 

standard errors. On top, a grey rectangle delineates the time-window in which peak amplitude extraction is performed. 

 

 

Accent modelling 

To address the questions of whether (i) monkeys accentuate in a similar way, (ii) they always 

accentuate, and (iii) accentuation patterns influence DEV processing (Brochard et al., 2003), 
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we focused on trial-level data and modelled various accentuation patterns. We used a stepwise 

regression model to classify session-level, mu-band neural responses as best reflecting a 

binary, ternary, or absence of accentuation patterns. The model predicted tone-by-tone mu-

band amplitude changes from three predictors: binary, ternary, and constant terms (Fig. 5A). 

Resulting preferences for accents are reported in Suppl. Tab. 3 and summarized in Fig. 5B. 

Note that most trials (~60%) did not reflect either binary or ternary accents. In the absence of 

perceptual reports, we cannot confirm whether this observation signals lack of sensitivity of 

our method, or whether monkeys did indeed not accentuate.  

Next, we zoomed into “binary trials” and disentangled S-w from w-S accentuation patterns 

based on the single-trial β-coefficients obtained from the modelling (see methods). The 

resulting distributions are reported in Fig. 5B, bottom left. Similarly, we disentangled three 

possible accentuation patterns in the “ternary trials” (Suppl. Fig. 3). We performed a separate 

stepwise regression modelling using S-w-w, w-S-w and w-w-S accents as predictors (see 

methods). Distributions are reported in Suppl. Fig. 3. 

Overall, this approach allowed showing that macaque monkeys’ neural activity spontaneously 

superimpose accentuation patterns on identical tones embedded in isochronous equitone 

sequences. Importantly, the monkeys’ neural activity seems to switch between binary, ternary, 

and other accentuation patterns over trials. Notably, however, in the majority of trials no 

consistent accentuation pattern was identified. 
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Figure 5 –- Modelling of individual accents and analyses on binary accents. 

A: The modelling of accents was performed by means of stepwise regression modelling and using mu-band post-stimulus responses 

as the dependent variable. The predictors were a binary (1, -1), a ternary (1, -.5, -.5) and a constant term (ones). B: preferences for 
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accents, as reported from the modelling. In order, we plot the distribution of trials assigned to binary, ternary, combined (binary-

ternary) accents, and ‘not classified’ (neither binary nor ternary) across the two monkeys. At the bottom, we zoom into binary trials 

and distinguish S-w accents from w-S accents based on trial-level Beta coefficients from the modelling (top for M1, M2 below). C: 

grand-average pair-wise difference for mu-band peak amplitudes across the first 8 positions of the auditory sequence in binary trials. 

D: on the left, the distribution of amplitude differences across odd-numbered positions (in blue) and even-numbered positions (cyan). 

The average of these two distributions forms the ‘Binary similarity’. On the right, the ‘binary similarity’ (blue) and the mean amplitude 

difference of the odd- versus even-numbered position (‘binary dissimilarity’; in cyan). Statistical testing was performed by means of 

1000 permutations, and an FDR-adjusted p < .05 was considered as statistically significant.  

 

Binary accents 

After isolating trials showing binary accentuation patterns, we aimed to statistically test 

whether mu-band responses would significantly differ in S versus w positions. If so, neural 

responses to tones falling on odd-numbered positions should differ from those on even-

numbered positions. However, there should be no differences for neural responses on the same 

positions: namely, tones falling on odd-numbered positions should elicit similar (i.e., non-

significantly different) neural activity. In sum, we assessed whether this modelling approach 

delivers a meaningful classification of binary accents. 

To this end, we isolated the binary trials and calculated the tone-by-tone pair-wise amplitude 

difference for mu-band post-stimulus activity across 8 positions in the auditory sequence and 

preceding the DEV tone. For visualization, the resulting matrix was averaged across trials and 

only the lower diagonal matrix is shown (Fig. 5C). The original matrix (all trials) was instead 

used to calculate metrics of “Binary similarity” and “Binary dissimilarity” (Fig. 5D; top for 

M1 and bottom for M2). The Binary similarity features two distributions: the amplitude 

difference for tones in odd-numbered positions (1-3-5-7th; “blue”, labeled as “odd-numbered 

position difference”) and the amplitude difference for tones in even-numbered positions (2-4-

6-8th; cyan, labeled as “even-numbered position difference”). The two distributions did not 

significantly differ from each other. The respective values were then combined to compute a 

“Binary similarity” variable. For the “Binary dissimilarity” analyses, we calculated the 

amplitude difference for tones in odd- versus even-numbered positions (corresponding to on-

beat versus off-beat “Binary difference”) and statistically compared it to the “Binary 

similarity” (Fig. 5D). Statistical testing confirmed a significant difference (FDR-adjusted p < 

.05), indicating that mu-band post-stimulus amplitudes were significantly modulated 

according to a binary accent. The same procedure was independently repeated for both 

monkeys.  
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Taken together, these results confirmed that trials classified as ‘binary’ during the modelling 

did indeed show a consistent binary accentuation pattern. Mu-band amplitudes on STD tones 

in S positions significantly differed from those in w positions.  

 

Comparative analyses of human and monkey data  

Next, we set out to investigate similarities in rhythm processing between humans and macaque 

monkeys. We directly compared the two macaque monkeys with a subset of 4 datasets of 

participants taken from a prior human study (Criscuolo, Schwartze, Henry, et al., 2022). 

Critically, these human participants underwent EEG recording while listening to similar 

stimulus material as the monkeys. This allowed us to reproduce the modelling of accents in 

use here and to directly compare the two datasets.  

As human participants took part in only two experimental sessions, we focused on the first 

two experimental sessions of the monkeys as well. Details on the analysis procedure for the 

human dataset can be found in (Criscuolo, Schwartze, Henry, et al., 2022). In Fig. 6A, we 

show preferences for accents for M1, M2, and 4 human participants and below, the distribution 

of preferences for binary, ternary, and other accents (non-classified trials). Like humans, 

macaque monkeys showed the emergence of binary accentuations in 21% of the trials and 

ternary accentuations in 23% of the trials. From the selected binary trials, we then plotted the 

time-course of event-locked activity in the mu-band for M1 and M2 and low-beta for humans, 

and for STD tones on S-w positions (blue and red respectively; Fig. 6B). Comparable to 

human participants, both monkeys showed larger amplitudes in response to STD-S tones than 

for STD-w tones (Fig. 5). However, while in M1 and human participants binary accentuations 

were evidenced by a non-significant Binary Similarity but a significant Binary Dissimilarity, 

M2 showed such an effect later (Fig. 6C). We take this finding as additional evidence for the 

inter- and intra-individual variability across species in the if, when, and how accentuations 

occur.  
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Figure 6 – Monkey-human similarities in rhythm processing. 

A: distribution of preferences for accents for, from left to right, M1, M2, and 4 human participants selected from a separate human 

dataset (Criscuolo, Schwartze, Henry, et al., 2022). B: The time-course of time-locked neural dynamics in the mu-band for M1 and 

M2, and in the low-beta band for human participants. In blue, the time-locked responses to STD tones on Strong positions and red 

for weak positions. C: Binary accent effect quantified by means of Binary Similarity and Dissimilarity metrics. 

While M1 and the four human participants showed comparable binary accentuations from the beginning, M2 showed the same pattern 

later (Fig. 5). Of note, M2 only showed significant binary accentuations after two recording sessions. This observation differentiates 

the one depicted in Fig. 5, where we denoted significant binary accentuations when pooling across data from all recording sessions 

(>20). Thus, monkeys similarly to humans tend to vary in how they subjectively employ binary accentuation patterns over time.  

 

Discussion 

In this comparative EEG study, we set out to investigate the basic rhythm processing capacities 

of macaque monkeys and humans. All participants passively listened to isochronous equitone 

sequences, and we examined spontaneous neurophysiological activity that underlies the 

sampling of temporal regularities in the acoustic environment. We intentionally did not choose 

an active experimental task setting as it might enforce unspecific goal-directed behavior, and 

potentially confound genuine endogenous rhythm processing. We further suggest that the 

testing of task-independent neural behavior in non-human primates might be a quintessential 

step in understanding the phylogenetic trajectories of basic rhythm cognition.  

The present results show that the macaque monkey’s neurophysiological responses display 

the encoding of temporal regularities in the acoustic environment even during passive 

listening, and confirm prior task-active results (Ayala et al., 2017; Bartolo et al., 2014; Crowe 

et al., 2014; Gámez et al., 2018; Honing et al., 2018; Merchant et al., 2011; Merchant, Pérez, 

et al., 2013; Zarco et al., 2009). We further show that these neurophysiological responses go 

beyond the mere encoding of isochrony: neural activity in the mu-band indicated the 

superimposition of binary (strong (S)–- weak (w)) accentuations in a subset of trials, mirroring 

results in humans (Criscuolo, Schwartze, Henry, et al., 2022). Even though all tones were 

physically identical, in some trials tone-locked neural responses were modulated by a binary 

(S-w) or ternary (S-w-w) subjective accentuation, resembling the well-documented tic-toc 

phenomenon observed in humans (Abecasis et al., 2005; Baath, 2015; Brochard et al., 2003; 

Poudrier, 2020; Schmidt-Kassow et al., 2011). As this phenomenon emerged during passive 

listening, the superimposition of accentuations might represent the spontaneous sampling of 

the acoustic environment beyond the encoding of single event onsets or time-intervals. 

Standard ERP and time-frequency analyses, relying on the averaging of neural activity over 

hundreds of trials, failed to show these binary accentuation patterns. In comparison, our novel 

trial-based analysis increased sensitivity to such accentuation patterns. These combined 

observations also support earlier human studies that reported large inter- and intra-individual 
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differences in if, when, and how participants accentuate (Baath, 2015; Poudrier, 2020). Hence, 

various accentuation patterns are possible: individuals may start accentuating at different time 

points (i.e., not necessarily from the beginning of an auditory sequence), may alternate accents 

over time (thus, over trials), or may not accentuate at all (if not instructed to do so). Thus, any 

trial-averaging procedure may inevitably overwrite these accentuation possibilities and masks 

out individual tendencies that influence the parsing of acoustic environmental rhythms.  

While isochrony may not necessarily represent a (musical) rhythm, we propose it to be an 

ideal test-case for investigating the basic neurophysiology that underlies the encoding of 

temporal regularities. We further note that isochrony is present in a wide range of daily 

behavior, and its evolutionary advantage might lie in its simplicity: it allows generating 

temporal predictions (Ravignani & Madison, 2017). In turn, temporal predictability facilitates 

adaptive behaviours, rhythmic interactions, music, speech, and much more (Greenfield, 

Honing, et al., 2021).  

Complementing results from task-active settings (Lakatos et al., 2008; Schroeder et al., 2010), 

we show that macaque monkeys can encode and track regularly timed event onsets with low-

frequency neural oscillations, mirroring results in humans (42,62,63, see for an overview 29). 

Along with alpha-/beta-band rhythms, delta-band oscillations have been associated with 

internalised timing and motor-to-auditory top-down predictions, even in the absence of overt 

motor tasks (Abbasi & Gross, 2020; Arnal, 2012; Arnal & Giraud, 2012; Bartolo et al., 2014; 

Biau & Kotz, 2018; Engel & Fries, 2010; Fujioka et al., 2009, 2015; Saleh et al., 2010). Both 

rhythms are prominently found in cortical motor (A. Keitel & Gross, 2016) and subcortical 

(striatal) brain regions (Bartolo et al., 2014; Bartolo & Merchant, 2015), and their functional 

coupling underlies complex auditory processing and temporal predictions in humans (Arnal 

et al., 2015; B. B. Morillon et al., 2019; B. Morillon & Baillet, 2017). Amplitude modulations 

in the alpha-beta frequency bands are associated with the priming of auditory brain regions 

via feedforward anticipation of incoming auditory input (Bowers et al., 2013; Engel & Fries, 

2010; Gehrig et al., 2012; Klimesch, 2012; Liljeström et al., 2015). Thus, recurrent 

information flow between motor and auditory circuitries might underlie the emergence of 

simple to complex rhythm and beat structure in audition (A. D. Patel & Iversen, 2014).  

Cross-species differences in complex rhythm and beat processing have been commonly 

associated with neuroanatomical and -functional differences in the motor system, specifically 

in cortico-basal-ganglia-thalamo-cortical (mCBGT) circuitry, which is more developed in 

humans than in non-human species (Mendoza & Merchant, 2014; Patel & Iversen, 2014; 

Wilson & Cook, 2016). However, the current findings might indicate that basic rhythm 
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processing capacities not necessarily involve the mCBGT, or that they preceded 

neuroanatomical changes in the evolution of the human brain. However, given the absence of 

information on the neuroanatomical provenance in EEG signals, we refrain from speculations 

but motivate future studies to investigate this matter.  

In summary, the current findings confirm that macaque monkeys have an adequate neural 

outfit to sample temporal regularities in the environment, and further show a human-like 

predisposition to parse regular acoustic input with accentuation patterns. These observations 

confirm that macaque monkeys have the fundamental building blocks that are necessary for 

DPS. 

These unexplored parallels between humans and macaque monkeys motivate further cross-

species investigations to advance better understanding of the phylogenesis of human rhythm 

cognition. 

 

Conclusion  

While passively listening to isochronous equitone sequences, macaque monkeys’ neural 

oscillatory activity sampled the acoustic environment at multiple timescales. Delta- and mu-

band oscillations encode the temporal regularity in auditory sequences, tracked sound-onsets, 

and parsed them with a superimposed accentuation pattern. These observations mirror basic 

rhythm processing in humans and confirm a complementary role of low- (delta) and high- 

(mu) frequency bands. As these basic rhythm processing capacities are linked to the 

development of complex sensorimotor skills in humans (e.g., speech and music), these 

findings highlight a basic and fundamental steppingstone in the phylogenetic trajectories of 

humans’ rhythm cognition.  
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Abstract 

Acting in and adapting to a dynamically changing environment necessitates precise encoding 

of the temporal unfolding of sensory events around us and to the time of our own (re-)actions 

to them.  

Cerebellar (CE) and basal ganglia (BG) circuitries play fundamental and complementary roles 

in the timing of sensory events. While the CE seems to encode the precise timing of sensory 

events (when an event occurs), the BG engage in generating temporal predictions (when a next 

event occurs). However, their contributions are rarely investigated in combination, as it is 

generally difficult to record data from respective patient groups in parallel.  

Here we investigated the contributions and causal roles of CE and BG in sensory and 

sensorimotor timing processing. Healthy controls and patients with lesions in either CE or BG 

listened to isochronous auditory sequences while their EEG was recorded and later performed 

a tapping synchronization task. We characterized intra- and inter-individual variabilities, as 

well as group differences, in delta-band phase-coherence, power fluctuations, and dynamics 

of acceleration, deviation and stability while tuning delta-band oscillations and tapping to the 

rhythm of the auditory sequence.  

Combined behavioral and neurophysiological results confirm that patients displayed 

heterogeneity and altered capacity to synchronize ongoing neural activity and behavior with 

temporal regularities in the acoustic environment. These results confirm and differentiate the 

causal roles of the CE and BG in temporal processing as well as in the production and 

synchronization with temporally regular sound events.  
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Introduction 

Time is a fundamental dimension of human cognition. Every decision, every action, every 

sensory stimulus around us happens in time and at multiple timescales. Our capacities to 

encode the precise timing of events and to time our (re-)actions to them are pivotal for acting 

and adapting to a continuously changing dynamic environment. However, the environment 

displays some gradient of temporal regularity (Greenfield, Honing, et al., 2021): there are 

various periodicities within the body (e.g., the heartbeat and respiration; Criscuolo et al., 2022) 

as well as in simple and complex sensory inputs (e.g., music, speech) and in behavior (e.g., 

interpersonal interactions in the animal and human world; Greenfield, Aihara, et al., 2021). 

These temporal regularities (or rhythm) can enable individuals to anticipate when an event 

starts and when the next sensory event occurs. In turn, temporal anticipation can benefit 

adaptive behavior: we can dance to music because we know when the next beat falls, and we 

can synchronize with others because their movement timing is predictable. Yet what 

determines our capacity to adapt behavior in time? Do we differ in the if and how we adapt 

and synchronize with auditory rhythms? 

We have previously proposed (Criscuolo et al., 2023) that synchronization depends 

on two fundamental lower level capacities that form a 3-node framework: detect, produce, 

and synchronize (‘DPS’) with rhythms (Criscuolo et al., 2023). Encoding is a prerequisite to 

detect rhythms. Human (e.g., Schroeder & Lakatos, 2009) as well as nonhuman animals (e.g., 

Lakatos et al., 2008) can do so by aligning endogenous neural oscillatory activity at multiple 

timescales (Criscuolo et al., 2023; Lakatos et al., 2005) to temporal regularities in the sensory 

environment. Encoding and detecting regularities allow generating predictions about when 

next events occur, thus enabling the dynamic attending (Large & Jones, 1999) of event onsets. 

Temporal predictions materialize as anticipatory neural activity (Arnal, 2012; Fujioka et al., 

2009, 2012, 2015; Ross et al., 2018; Snyder & Large, 2005), which supports the predictive 

alignment of neural oscillations to event onsets, fosters sensory processing (Lakatos et al., 

2013) and further allows for production and synchronization of behavior in a predictive 

manner (Bartolo & Merchant, 2015; Gámez et al., 2018). Thus, “adaptation by anticipation” 

(Fraisse, 1963; p. 18) is a mechanism for optimizing behavior and operates across sensory 

modalities (Arnal & Giraud, 2012; Cravo et al., 2013; Friston, 2005; B. Morillon et al., 2016; 

A.C. Nobre et al., 2012).  

Fundamental to predictive temporal processes is the engagement of an extended 

motor system (Arnal, 2012; Fujioka et al., 2012, 2015), recruited to prepare and execute 
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predictive and synchronized behavior. The cerebellum (CE) and the basal ganglia (BG) are 

structures in an extended subcortico-cortical brain network that plays a pivotal role in 

temporal processing (Schwartze & Kotz, 2013). The CE encodes the precise timing (when an 

event onsets) of sensory events in the subsecond range (Ivry et al., 1988; Ivry & Keele, 1989; 

Ivry & Schlerf, 2008) and thus allows estimating the duration of temporal intervals (Grube, 

Cooper, et al., 2010a; Grube, Lee, et al., 2010; Knolle et al., 2012, 2013; Teki, Grube, & 

Griffiths, 2011; Teki, Grube, Kumar, et al., 2011) by quantifying the time elapsed between 

event onsets. The BG support the generation of temporal predictions (when the next event 

occurs) and use relative timing to extract the beat (Grahn, 2009; Grahn & Brett, 2009a; 

Schwartze et al., 2011a; Teki, Grube, Kumar, et al., 2011). Consequently, patients with BG 

lesions are less sensitive to temporal regularity in auditory sequences, potentially resulting in 

a less efficient prediction of incoming sensory information in basic (Schwartze et al., 2015) 

as well as in complex (syncopated rhythms; Nozaradan et al., 2017) sequences. In contrast, 

CE lesions tend to not impact the capacity to generate temporal predictions (Schwartze et al., 

2016b) but alter the encoding of event onsets in basic and complex sound sequences 

(Nozaradan et al., 2017), ultimately resulting in delayed and variable early event-related 

responses in the EEG (Schwartze & Kotz, 2021). Altered encoding of event onsets and single 

time intervals (Grube, Cooper, et al., 2010b) further affects the production of and 

synchronization with rhythms (Ivry & Keele, 1989; Ivry, Keele & Diener, 1988). CE lesion 

patients displayed larger heterogeneity in self-paced tapping and reduced capacities to 

synchronize their tapping to temporally regular sequences and tempo changes (Schwartze et 

al., 2016a). On the other hand, BG lesion patients showed intact synchronization when tapping 

to an external rhythm but also variable tapping behavior, indicating difficulties in coordinating 

and adjusting their tapping specifically to slower tempo changes (Schwartze, Keller, et al., 

2011b). Supporting prior lesion studies, these observations suggest intact single interval-based 

timing in the BG patients (Grube, Cooper, et al., 2010b; Teki, Grube, Kumar, et al., 2011), but 

impaired processing of temporal regularity (i.e., the hierarchical temporal structure of a 

sensory sequence, the beat) in music (Grahn & Brett, 2009b) and speech (Kotz & Schmidt-

Kassow, 2015). 

What underlies these dysfunctions? Can we relate difficulties in producing and synchronizing 

with external rhythms to specific neural dynamics? In other words, can the analysis of neural 

oscillatory activity causally show in what way the cortico-subcortical timing network 

differentiates the processing of temporal regularities in perception and action?  
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We report results from two experiments involving healthy controls (HC) and patients 

with focal lesions in either the CE or BG. Via a behavioral and an EEG experiment, we 

assessed sensory and sensorimotor capacities to encode, produce, and synchronize neural 

activity and overt behavioral responses with temporal regularities in auditory sequences.  

Participants listened to isochronous auditory sequences while EEG was recorded. We assessed 

if, when, and how their neural activity reflected the temporal regularity of auditory sequences. 

We expected CE patients to show increased variability in the temporal encoding of tone onsets, 

while we hypothesized BG patients to have difficulties in generating temporal predictions. To 

test these hypotheses, we developed an extensive analysis pipeline designed to quantify the 

tuning of delta-band neural oscillatory activity towards the stimulation frequency. In order, (i) 

time-frequency representation analyses allowed us to test for group differences in the power 

of neural activity in the delta-band. Next, (ii) instantaneous frequency (IF) analyses were 

employed to test whether delta-band neural activity would tune to the stimulation frequency 

(Sf) of the auditory sequence (1.5Hz). Third, (iii) acceleration analyses quantified the 

dynamics of oscillatory activity over time, once transformed into IF. (iv) Acc values were 

further used to compute a metric of Stability (inversely proportional to the sum of dynamic 

changes in the Acc over time). Similarly, (v) from IF we derived a metric of Deviation, which 

quantifies the standard deviation of IF from the Sf over time. Lastly, (vi) we complemented 

these metrics with a measure of Shannon entropy (E) of Pow, IF and Acc. Overall, these 

methods allowed to test the hypotheses that CE lesions should causally impact the ability to 

encode the precise timing of event onsets (variability in the IF, low ITPC and Dev), while BG 

lesions should causally impact the capacities to process temporal regularities and generate 

temporal predictions (low delta power, heterogenous IF and Acc, resulting in low S). 

In the behavioral experiment, we expected the patient groups to display difficulties in 

producing stable finger-tapping and to synchronize to regular auditory sequences presented at 

three different tempi. We hypothesized that CE patients would have difficulties in the precise 

encoding of event onsets and synchronizing behavior, especially with faster tempi, while BG 

patients were expected to have more difficulties producing and synchronizing with slower 

rhythms. To test these hypotheses, we conducted comprehensive within- and between-group 

analyses of individual dynamics of tapping, quantifying tapping rates, acceleration, entropy, 

and stability of the performance over time.  

Materials & Methods 
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Participants 

Thirty-three participants took part in the study and signed written informed consent in 

accordance with the guidelines of the ethics committee of the University of Leipzig and the 

declaration of Helsinki. Participants comprised two patient groups and one age- and gender-

matched control group: 11 patients with focal lesions in the basal ganglia (BG; mean age 50.9, 

range = 30-64 years; 5 males), 11 patients with focal lesions in the cerebellum (CE; mean age 

52.6, range = 37-64 years; 5 males), and 11 healthy controls (HC; mean age 52.1, range = 28-

63 years; 5 males). Patients’ demographics and lesion information are provided in Tab. 1, their 

anatomical MRI is provided in Fig. 1, and the results of their neuropsychological and cognitive 

assessment are provided in Suppl. Tab. 1.  

The HC group was recruited via a database at the Max Planck Institute for Human Cognitive 

and Brain Sciences (Leipzig, Germany). All participants were right-handed and matched for 

years of education. None of the participants were professional musicians, and they reported 

no history of hearing or psychiatric disorders. All participants received monetary 

compensation for taking part in the study. Further information on the participants and lesions 

characteristics can be found in Nozaradan et al., (2017).   
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CE  Age Location Additional locations Etiology Volume in cc X Y Z 

 64 posterior cerebellar lobule none PICA infarction 7,1 89 37 26 

 30 posterior cerebellar lobule superior frontal gyrus, corpus callosum 
ICH  

and AVM 
48 77 38 35 

 49 posterior cerebellar lobule, tonsil, vermis none PICA infarction 14,5 57 40 24 

 53 anterior and medial cerebellar lobule, tonsil none PICA infarction 7,9 62 41 24 

 39 anterior and posterior cerebellar lobule none cyst extripation 2,4 88 52 15 

 62 posterior cerebellar lobule thalamus PICA infarction 9 111 69 37 

 62 posterior cerebellar lobule telencephalic white matter PICA infarction 3,1 57 58 55 

 59 posterior cerebellar lobule, tonsil none PICA infarction 3,6 110 38 30 

 63 posterior cerebellar lobule telencephalic white matter PICA infarction 5,7 104 61 46 

 37 vermis, deep cerebellar nuclei, peduncle none tumor postoperatively 8,8 84 49 37 

 42 posterior cerebellar lobule none PICA infarction 0,3 121 48 27 

          

BG 
        

 41 putamen, pallidum, caudate body, IC corona radiata MCA infarction 23,4 56 113 76 

 59 putamen, pallidum, caudate head and body, IC corona radiata ICH 18,3 53 119 76 

 52 putamen none ICH 2,8 104 99 74 

 61 claustrum, putamen, pallidum, caudate body, EC, IC corona radiata, thalamus ICH 8,8 51 98 77 

 37 putamen, caudate body, IC none MCA infarction 0,8 55 97 88 

 50 putamen, caudate body, IC corona radiata, corpus callosum MCA infarction 6,7 54 110 81 

 60 putamen none MCA infarction 0,5 47 102 64 

 55 putamen, pallidum, caudate body none MCA infraction 3,0 102 101 77 

 51 claustrum, putamen, EC insula ICH 14,8 106 102 78 

 64 putamen, pallidum, caudate body, IC none MCA infaction 6,1 98 116 80 

 49 putamen, caudate body thalamus MCA infarction 6,3 93 103 82 

 

Table 1 – Individual patient history. 

In order, from left to right, age, lesion location, secondary lesion location, lesion etiology, volume of the lesion in cc, and lesion coordinates (as provided by MRIcron). Top for cerebellar (CE) patients, and bottom for basal ganglia 

(BG) patients. Abbreviations: PICA = posterior cerebellar artery, ICH = intracerebral/-cerebellar hemorrhage, AVM = arteriovenous malformation, IC = internal capsule, EC = external capsule, MCA = Middle cerebral artery. 

The highlighted rows indicate patients for which both EEG and tapping data were used.  
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Figure 1 – Brain lesion delineation and overlap. 

The figure provides the brain lesion delineation on a template anatomical MRI for basal ganglia (BG; top) and cerebellar (CE; 

bottom) patients. The figures were obtained by using MRIcron (http://www.mccauslandcenter.sc.edu/mricro/mricron/), and display 

the lesion overlap color-coded in shades of blue (blue = minimal overlap; light blue high overlap; values range from 0 to 5).  

 

EEG experiment: design and procedure 

Participants listened to 96 sequences comprising 13-to-16 tones in a recording session of 

approximately 25min. Each sequence contained frequent standard tones (STD; F0 = 400Hz, 

duration = 50ms, ramp up and down = 10ms, amplitude = 70dB SPL) and one or two 

amplitude-attenuated deviant tones (DEV; amplitude 66dB). The inter-onset-interval between 

successive tones was 650ms, resulting in a stimulation frequency (Sf) of 1.54Hz, and a total 

sequence duration of 8.45-10.4s (13 to 16 tones * 650ms; Fig. 2A).  

Participants were seated in a dimly lit soundproof chamber facing a computer screen. Every 

trial started with a fixation cross (500ms), followed by the presentation of an auditory 

sequence. The cross displayed on the screen served to prevent excessive eye movements 

during the presentation of the tone sequences. At the end of each sequence, participants were 

prompted to press a response button to indicate whether they had heard one or two softer 

http://www.mccauslandcenter.sc.edu/mricro/mricron/
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tones. After this response, there was an inter-trial interval of 2000ms. A session was divided 

into two blocks of approximately 10 minutes each, with a short pause in between. 

 

EEG recording 

The EEG was recorded by means of 59 Ag/AgCl scalp electrodes positioned according to the 

International 10-10 system with the ground placed on the sternum. Four additional vertical 

and horizontal electrodes monitored eye movements and were positioned on the outer canthus 

of each eye, and on the inferior and superior areas of the left orbit. The signals were amplified, 

low-pass filtered at 512Hz, digitized using a sampling rate of 1024Hz (64-channel high-speed 

amplifier, Biosemi, the Netherlands). Electrode impedances were kept below 5kΩ and the left 

mastoid served as online reference. Data were referenced to an average reference offline.  

 

Data Analysis 

EEG Preprocessing 

EEG data were analyzed in MATLAB with a combination of custom scripts and functions and 

the FieldTrip toolbox (Oostenveld et al., 2011). Data were band-pass filtered with a 4th order 

Butterworth filter in the frequency range of 0.1-50Hz (ft_preprocessing). Eye-blinks and other 

artifacts were identified using independent component analysis. This semi-automated routine 

is composed of two steps: in the first iteration, ‘fastICA’ (implemented in FieldTrip) was 

applied to decompose the original EEG signal into independent components (N= number of 

EEG channels -1). Components with a strong correlation (>.4) with the EOG time-courses 

were automatically identified and removed with ‘ft_rejectcomponent’ before reconstructing 

the EEG time-course. In a second step, ‘fastICA’ was used again, now with a dimensionality 

reduction to 20 components. These components were visually inspected via ‘ft_rejectvisual’ 

and marked as ‘outliers’ if their max values and z-scores were far from the distribution of 

other components. The 20 components were further visually inspected by plotting their 

topographies and time-series, and a second selection of ‘outliers’ was made. Taking into 

consideration the two visual inspections, we made a final decision on which components to 

remove. On average, 2 components were removed (‘ft_rejectcomponent’) before 

reconstructing the EEG time-series. In the next preprocessing step, artifact subspace 

reconstruction was performed as implemented in the ‘pop_clean_rawdata’ function in 
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EEGlab, and with the 'BurstCriterion' parameter set to 20 (as recommended in the online 

EEGlab tutorials; all other parameters were set to ‘off’). To further ensure the removal of 

potentially noisy channels and time-points, we implemented an automatic channel rejection 

and an artifact suppression procedure. To this end, the median variance across channels was 

calculated (excluding EOG channels), and channels exceeding 2.5*median variance were 

defined as ‘outliers’ and removed. Similarly, the artifact suppression procedure (see Criscuolo 

et al., 2023) interpolated noisy (>2.5*absolute median) time-windows on a channel-by-

channel basis. Lastly, data were low pass filtered at 40Hz via ‘ft_preprocessing’, segmented 

to each auditory sequence (starting 4s before the first tone onset and ending 4s after the last 

tone onset), and downsampled to 100Hz.  

 

Fast-Fourier Transform and Inter-Trial Phase coherence 

Fast-Fourier transform (FFT) analyses were conducted to test whether healthy participants 

and patients encoded temporal regularities in the auditory sequences. FFT analyses were 

performed at the single-participant, -channel and -trial level on 8s-long segments starting from 

the onset of the first tone in the auditory sequence and including a total of 12 tones. The 

resulting frequency resolution was .125Hz (1/8s = .125Hz). As in prior work (Criscuolo et al., 

2023), a fronto-central channel (FC) cluster was used, encompassing the sensor-level 

correspondents of prefrontal, pre-, para-, and post-central regions highlighted in (Fujioka et 

al., 2012; Fujioka et al., 2015). The cluster included 14 channels: 'AFz', 'AF3', 'AF4', 'F3', 'F4', 

'F5', 'F6', 'FCz', 'FC3', 'FC4', 'FC5', 'FC6', 'C3', 'C4'. Data from this FC cluster were not 

averaged at this stage. Next, the complex part of the Fourier spectrum was used to calculate 

inter-trial phase coherence (ITPC; Fig. 2B left). ITPC was obtained by dividing the Fourier 

coefficients by their absolute values (thus, normalizing the values to be on the unit circle), 

averaging, and finally taking the absolute value of the complex mean (for further 

documentation see https://www.fieldtriptoolbox.org/faq/itc/). For illustration purposes, the 

ITPC plots in Fig. 2B are restricted to 1-4Hz.  

As the stimulation frequency of the auditory sequences was 1.5Hz, we restricted single-

participant and -channel ITPC analyses at 1.5Hz only, and disregarded any other frequencies 

including (sub)harmonics of the stimulation frequency. Finally, single-participant and -

channel data were pooled per group and visualized as violin plots in Fig. 2B (right). Group 

differences were statistically assessed by means of a 1-way ANOVA with a group factor 

https://www.fieldtriptoolbox.org/faq/itc/
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(anova1 built-in in MATLAB), followed by post-hoc simple tests corrected for multiple 

comparisons via Tukey-Davis correction (multcompare built-in in MATLAB) in case of a 

significant (p <.05) main effect (Suppl. Tab. 2). Simple effects with a p-value below an alpha-

corrected .05 were considered statistically significant. 

 

Analyses of oscillatory dynamics 

We employed several methods to analyze neural oscillatory activity pre-, during, and post-

stimulation (listening periods). Details and parameters for each of the methods are provided 

in the respective sections below.  

Time-frequency transform  

After preprocessing, single-trial EEG data underwent time-frequency transformation 

(‘ft_freqanalysis’) by means of a wavelet-transform (Cohen, 2014). The bandwidth of interest 

was centered around the stimulation frequency (+/- 1Hz, i.e., .54 - 2.54Hz, thus obtaining a 

1.54Hz center frequency), using a frequency resolution of .2Hz. The number of fitted cycles 

was set to 3. The single-trial approach results in ‘induced’ (as compared to ‘evoked’) 

responses. No averaging over channels, trials, or participants was performed at this stage. The 

resultant time-frequency transformed data was labeled as ‘Pow’.  

Instantaneous frequency 

After preprocessing, single-trial EEG data were bandpass-filtered with a 4th order Butterworth 

filter centered around the stimulation frequency (plus and minus 1Hz, .54 - 2.54Hz, obtaining 

a 1.54Hz center frequency; ft_preprocessing) and Hilbert-transformed to extract the analytic 

signal. Next, the instantaneous frequency (IF) at each time point (t), and for each channel, 

trial, and participant, was calculated with the following formula: 

𝐼𝐹(𝑡) =  
𝐹𝑆

2𝜋
 𝜔(𝑡) =  

𝐹𝑆

2𝜋
 
𝑑𝜃(𝑡)

𝑑𝑡
  

Where 𝜔(t) is the derivative of the unwrapped phase (𝜃) at each time point (t), given the time-

steps (𝑑𝑡) and FS is the sampling frequency.  

 

Acceleration 
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Once calculated the single-participant, -trial, and channel-level IF, acceleration (Acc) was 

calculated as the first derivative of IF (or as the second derivative of the Hilbert-transformed 

signal). Thus, we employed the following formula: 

𝐴𝑐𝑐(𝑡) =  
𝑑 𝐼𝐹(𝑡)

𝑑𝑡
 

Stability 

Once the single-participant, -trial, and channel-level Acc was obtained, Stability (S) was 

calculated as the inverse of the sum of absolute changes in Acceleration. Thus, we employed 

the following formula: 

S(X) = 
1

∑ |𝐴𝑐𝑐|𝑁
1

 

Deviation  

Once the single-participant, -trial, and channel-level IF was obtained, we quantified the 

deviation (D) from the stimulation frequency. D was calculated as the square-root of the mean 

squared difference between the IF and the stimulation frequency (Sf):  

D(X) = √
1

𝑁
∑ ((𝐼𝐹 − 𝑆𝑓)2)𝑁

1  

Mean and Entropy Pre-, During, and Post-sequence 

For each participant, trial, and channel, we calculated the mean and entropy of Pow, IF and 

Acc in three time-windows of interest: pre-sequence (‘Pre’; -4 to 0s), during the sequence 

(‘Dur’; 0 to 8.45s), and post-sequence (‘Post’; 8.45 to 12.45s). Shannon entropy (E) was 

calculated with the following formula: 

𝐸(𝑋) =  − ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥 𝜖𝑋

 

Where Σ denotes the sum over the variable’s possible values and 𝑝 is the probability of each 

value (𝑥) in the time-series (𝑋). 

Latency 

For each participant, trial, and channel, we estimated how long it took for the IF to tune to the 

Sf (1.5Hz). The search was performed within the first 8s of listening (0-8s) of each trial, and 

by using a narrow frequency criterion (Sf ± .2Hz). 
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Statistical comparisons 

Group differences were statistically assessed for each of the above-mentioned metrics by 

means of a 1-way ANOVA with a group factor (anova1 built-in in MATLAB), followed by 

post-hoc simple tests corrected for multiple comparisons (Tukey-Davis correction) 

(multcompare built-in into MATLAB) in case of a significant (p <.05) main effect. Simple 

effects with a p-value below an alpha-corrected .05 were considered statistically significant 

and are reported as horizontal black lines on top of Fig. 3B. The ANOVA tables and simple 

tests are provided in the Supplementary materials (Tab. 3-10).  

 

 Tapping experiment 

The same participants also performed the tapping experiment. However, not all could 

complete the tapping task. We therefore present data from 7 matched participants per group. 

The participants who took part in both experiments are highlighted in Tab. 1.  

For the tapping experiment, participants listened to the same auditory stimuli as the ones 

employed in Nozaradan et al., 2017. They were composed of 12 intervals of 200ms and 

comprised pure tones (1000Hz) with 10ms rise and fall times and silent intervals (Fig. 4A). 

Such shortest inter-onset intervals (IOI) define a basic stimulation frequency (Sf) of 5Hz. The 

sequences were further presented at two more tempi: double (‘x2’, resulting in a 10Hz Sf), 

and quadruple (‘x4’, resulting in a 20Hz Sf) base tempo. Each sequence (12 intervals) was 

looped continuously for 33s, resulting in a total duration of ~5.5min. 

Participants were asked to tap with the index finger in time with the perceived beat in an 

auditory stream and were instructed to start tapping as soon as they perceived the beat. 

Differently from the EEG experiment, this task required participants to process the rhythm, 

extract the salient periodicity from the acoustic sequence and coordinate their movements to 

it.  

Tapping was performed on a response pad while the forearm and elbow were fixed on an 

armrest cushion to avoid excessive movements. Taps did not trigger any sound, and the latency 

of each finger tap (i.e. the time of contact of the finger onto the pad) was registered with 

millisecond accuracy and recorded in Presentation (NBS, Berkeley, USA).  
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Tapping data analysis 

Based on tapping time data, we obtained the inter-tap-interval (ITI) as the difference between 

successive tap onsets. Next, we calculated the Shannon entropy and the Stability in ITI with 

the same formulas as described above. Lastly, we obtained the tapping frequency (Freq) as the 

inverse of the ITI (1/ITI).  

Individual data were pooled for each group (Fig. 4B-C). We then performed two main 

statistical comparisons: within-group and between-group differences. For the latter, between 

group differences were assessed for the basic tempo, ‘x2’ tempo, and ‘x4’ tempo. In Fig. 4C, 

we display from left to right the group data for the ITI, Freq, and Stability, color coded per 

group. For the within group assessment, the same variables were displayed per group, 

assessing differences across tempi (color coded per tempo; basic, ‘x2’ and ‘x4’). 

Between and within group differences were statistically assessed only for the ITI by means of 

a 1-way ANOVA with a group factor (anova1 built-in in MATLAB), followed by post-hoc 

simple tests corrected for multiple comparisons by Tukey-Davis correction (multcompare 

built-in in MATLAB) in case of a significant (p <.05) main effect. Simple effects with a p 

value below an alpha-corrected .05 were considered statistically significant and are reported 

as horizontal black lines on top of Fig. 4. The ANOVA tables and the simple tests are provided 

in the Supplementary materials (Tab 11-16). No statistical comparisons were performed on 

the other metrics due to low statistical power (one value per subject, resulting in 7 values per 

group).  

 Link between Tapping – EEG data  

Despite the low number of participants, exploratory analyses aimed to assess a possible link 

between tapping and EEG data by means of Pearson correlation. We correlated the EEG 

metrics of ITPC, Pow E, IF E, Acc E, Stability, Deviation, and Latency with tapping metrics 

of Entropy and Stability. Correlations were assessed at the single-participant level, and 

independently for the three tempi. Finally, the results were visualized by means of circular 

graphs in Fig. 5 (rho values are provided in Suppl. Fig. 27).  

Data and code Availability 

The analysis code in use will be stored in an open repository.  
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Results 

In this study, we investigated how sensory and sensorimotor capacities are shaped by temporal 

regularities in auditory sequences comparing HC, CE, and BG patients. Hence, we report 

results from two experiments: first, participants listened to isochronous auditory sequences 

while EEG was recorded continuously (Fig. 2). Next, the same individuals performed a 

tapping task, in which they synchronized their tapping to regular auditory sequences presented 

at three different tempi (Fig. 4).  

EEG experiment 

In this experiment, we adopted two methodological approaches. First, we employed Inter-

Trial-Phase Coherence (ITPC) analyses to investigate if and how HC, BG and CE participants 

encoded temporal regularity in auditory sequences. Second, analyses of neural oscillatory 

dynamics assessed if, when, and how participants’ neural activity tuned in and out of temporal 

regularity in acoustic sequences. Details for each methodological approach can be found in 

the respective methods section above. Results for each method are discussed below, in two 

separate paragraphs.  

Inter-Trial Phase coherence (ITPC) 

While participants listened to isochronous auditory sequences presented at a Sf of 1.5Hz (Fig. 

2A), their neural activity encoded the temporal regularity, as shown by the coherence peaks 

at 1.5Hz in the ITPC spectrum (Fig. 2B). A distinct peak at 1.5Hz was present in the ITPC 

spectrum for all groups (Fig. 2B, left). However, statistical analyses revealed a significant 

group difference (Fig. 2B, right): HC (dark blue) showed stronger coherence at the Sf than 

both CE and BG groups (lighter shades of blue). The one-way ANOVA revealed a significant 

group effect (p < .001; Supp. Tab. 2), and post-hoc simple t-tests revealed higher coherence 

in HC than in both CE and BG groups, but no significant difference between CE and BG 

(Suppl. Tab. 2; corrected for multiple comparisons).  
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Figure 2 – Experimental design of the EEG study, and Inter-Trial Phase Coherence analyses.  

A: experimental design: participants listened to 96 isochronous auditory sequences presented at a fixed Stimulation frequency (Sf) of 

1.54 Hz (inter-stimulus onset (ISO) of 650ms). The sequences included frequent standard (STD; pitch 440Hz, loudness 85dB) and 

infrequent amplitude deviant (DEV) tone (amplitude 66dB). B: Inter-Trial Phase Coherence (ITPC) analyses. The ITPC plot features 

frequency in Hz on the x-axis and the ITPC values on the y-axis. Healthy controls (HC), cerebellar (CE) and basal ganglia (BG) 

patients’ data are provided in shades of blue (from dark to light blue). The vertical blue line signals the ITPC peak at 1.5Hz. These 

peaks were extracted and plotted on the right, via means of distribution plots. Here, statistical comparisons assessed group differences 

in ITPC values at the stimulation frequency (1.5Hz). The black horizontal lines report significant differences between the groups, 

after correction for multiple comparisons.  

 

 

Neural oscillatory dynamics of rhythm processing 

Single-participant estimations 

Each of the metrics mentioned above were estimated at the single-participant and –trial level, 

as illustrated in Fig. 3A: the time-course of Hilbert-transformed data, IF and Acc (solid line = 

mean over channels; shaded bars report the standard error (SE) over channels). The dashed 

pink line on the IF plot, reports the Sf. On the right side, the distribution of IF and Acc in the 
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‘Pre-‘, ‘Post-’ and ‘Dur-‘(ing) the listening periods (color-coded in shades of blues), and 

pooling across the FC channel cluster. The time-series of IF and Acc were further used to 

estimate D, the deviation from the Sf, and S, the stability of the neural signal. Finally, we 

obtained the Latency (not visualized here), the first crossing point of IF through the horizontal 

Sf line. The single-participant and -trial figures (33 participants x 96 sequences) can be 

provided upon reasonable request. 
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Figure 33 – Analyses on neural dynamics of rhythm processing. 

A: We estimated, at the single-participant and -trial levels, the instantaneous frequency (IF) and Acceleration (Acc; time-courses on 

the left side). The pink dashed line on top of the IF indicates the stimulation frequency (Sf). The distribution plots on the right side are 

obtained by pooling data points over channels and averaging over time. IF and Acc were also used to calculate metrics of Deviation 

(D) and Stability (S). The violin plots on the right side show the resultant D and S over time, and pooling over channels. B: mirroring 

the layout of A, the group-level data (color-coded in shades of blue) reporting on the left the time-courses of neural oscillations in the 

delta frequency band (top), the estimated IF (middle) and Acc (bottom). On the right side of the IF time-courses, violin plots of the IF 

pooling over trials and participants and averaging across the FC cluster of interest. Next to it, the estimated Dev values, and the 

Latency. Next to the time-courses of the Acc, violin plots of the Acc pooling over trials and participants and averaging across the FC 

cluster of interest. Next to it, the estimated S values. The thick black horizontal lines on top of the violin plots report significant group 

differences (p < .001, corrected for multiple comparisons).  
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Group visualization 

Individual data were then pooled into 3 groups: HC, CE, and BG patients. The group-level 

data is provided in Fig. 3B and mirrors the layout of Fig. 3A. 

On the right side, the violin plots show (in order) the IF and Acc, obtained by averaging data 

during the listening window (0-8s) and across channels, and by pooling single-participant and 

-trial data. Next to it, are the distributions of Dev, S and latency obtained by averaging over 

channels, and pooling over participants and trials. Note that for readability, Fig. 3 focuses on 

the listening period (‘Dur’) only, avoiding visualizations of Pre- and Post-listening periods. 

Similarly, Fig. 3 excludes data from Entropy analyses. Statistical comparisons are provided in 

Suppl. Tables, while additional figures are stored in a personal drive, and can be provided 

upon reasonable request by the authors.  

HC’s Pow and IF was like that of CE patients, but significantly different from BG patients 

(Suppl. Tab. 2,4). HC’s Dev and Lat were higher than both patients’ groups (Suppl. Tab. 9,10). 

There were no significant differences in Acc, but HC had a significantly higher S as compared 

to the two groups (Suppl. Tab. 8).  

In contrast, CE patients showed the lowest Dev and Lat (Suppl. Tab. 9,10), comparable Acc 

(Suppl. Tab. 6) and the lowest S (Suppl. Tab. 8).  

Finally, BG patients’ neural activity showed higher power (Suppl. Tab. 2) and lower IF (Suppl. 

Tab. 4) during listening as compared to both HC and CE. Their Dev, Lat, and S was higher 

than CE but lower than HC (Suppl. Tab. 8,9,10). 

Tapping experiment 

Participants listened to auditory sequences at 3 rates (basic tempo, ‘x2’ and ‘x4’ tempo; Fig. 

4) and were asked to synchronize their tapping to the perceived beat and try to keep tapping 

at a comfortable rate. Within- and between-group comparisons assessed tapping behavior and 

variability over time. Starting from the within group analyses (Fig. 4B), HC’s ITI followed an 

inverse U-shape, whereby ITI increased from the basic to the ‘x2’ tempo and decreased for 

the highest rate (‘x4’ tempo; Suppl. Tab. 15). The ‘x4’ showed the shortest ITI as compared to 

the other two tempi, thus resulting in the highest tapping frequency. Tapping stability tended 

to increase linearly over the tapping rates.  
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CE patients’ tapping behavior was comparable to the one found for HCs: their ITI showed an 

inverse U-shape, whereby the ITI was significantly longer in the ‘x2’ tempo as compared to 

the basic and ‘x4’ tempi, and the latter had the shortest ITI (Suppl. Tab. 16). Thus, the resulting 

tapping frequency increased across rates, and so did the tapping stability. 

Finally, the BG patients showed a negative linear relationship between tapping speeds and 

ITI, whereby the ITI were longest for the basic tempo and shortest for the ‘x4’ (Suppl. Tab. 

17). Thus, their resulting tapping frequency followed a U-shape across tempi, and their 

stability increased with ‘x4’ tempo.  

Moving to between-group differences (Fig. 4C), BG patients’ ITI were largely variable across 

individuals, as revealed by both within- and between-group analyses. In fact, some of the 

patients tapped at high frequencies, and others at a slow frequency, especially at the basic 

tempo. However, the average ITI at basic tempo was significantly longer than for the other 

two groups, who did not significantly differ from each other (Suppl. Tab. 12). CE patients 

showed longer ITI and high stability at ‘x2’ (Suppl. Tab. 13), and higher ITI at ‘x4’ tempo 

(Suppl. Tab. 14) as compared to the other two groups. BG had the lowest ITI at ‘x2’ tempo, 

and the lowest stability at ‘x4’ tempo. HC had the lowest ITI and the highest stability at ‘x4’ 

tempo.  
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Figure 44 – Tapping experiment and group comparisons.  



109 

 

A: experimental design: participants listened to auditory sequences at three different speeds and were asked to synchronize their 

tapping to the perceived beat, while keeping the tapping at a comfortable rate. These sequences included pure tones at 1000Hz and 

silent tones. The inter-onset-intervals (IOIs) varied from the basic tempo (IOI: .2s) to the ‘x2’ tempo (IOI: .1s) and ‘x4’ tempo (IOI: 

.05s), resulting in stimulation frequencies (Sf) of 5, 10 and 20 Hz respectively. B: Within group comparisons statistically assessed the 

difference in inter-tap-intervals (ITI) per group (each row), and across speeds (the three distributions per plot). Thick, black, 

horizontal lines report significant differences across tempi, per group. Next to ITI, we also estimated the tapping frequency (Freq) 

and tapping stability (in order). C: Between group comparisons statistically assessed the difference in ITI across groups (the three 

distributions per plot), per tempo. Thick, black, horizontal lines report significant differences across groups, per tempo. Next to ITI, 

we also estimated the tapping frequency (Freq) and tapping stability (in order).  

 

Link between Tapping - EEG 

Further analyses assessed the link between Tapping Entropy (Tap E; light blue) and Tapping 

Stability (Tap S; dark blue) with the metrics derived from the individual’s EEG data analyses 

(Fig. 5). Given the low number of participants per group, these correlations present 

exploratory analyses, and no conclusions are drawn on these observations. The correlation 

strength (rho values) is represented in Fig. 5 with the thickness of the line connecting each 

node. Rho values below .5 were masked out. Positive and negative rho values are also 

provided in Suppl. Tab. 18.  

 

Figure 5 – Relationship between Tapping and EEG data.  
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Exploratory analyses assessed the link between tapping metrics of stability (Tap S; dark blue) and Shannon entropy (Tap E; light 

blue) with EEG-derived metrics of Inter-trial-coherence (ITC), power entropy (Pow E), entropy in instantaneous frequency (IFQ E), 

acceleration entropy (Accel E), Acceleration Stability (Stab), Deviation (Dev) and Latency (Lat). Correlations were performed 

independently per groups (organized column-wise) and tapping speeds (organized in rows).  

 

Discussion 

We investigated the causal contributions of the cerebellum (CE) and the basal ganglia (BG) 

to sensory and sensorimotor processes underlying the detection, production and 

synchronization (‘DPS’) with basic auditory rhythms. Using EEG, we assessed the neural 

dynamics of temporal processing, unravelling group differences in when, if, and how healthy 

controls (HC), CE, and BG lesion patients process temporal regularities. Next, a behavioral 

experiment probed their capacity for DPS when tapping to temporally regular acoustic 

sequences at different rates.  

Starting from the behavioral experiment, we found significant group differences across 

tapping rates. CE patients showed similar tapping rates as HCs for the basic rate and more 

stable tapping than the other groups for the ‘x2’ rate, where they tapped faster. However, the 

tapping at ‘x4’ was slower and more variable than for the other two groups, and their stability 

was lower than that of the HCs. Analyses of delta-band neural dynamics revealed that CE 

patients’ delta power and instantaneous frequency were comparable to the HCs. However, 

they showed lower stability and reduced phase coherence, confirming preserved yet 

deteriorated sensitivity to temporal regularity in the acoustic sequences. These observations 

are in line with previous evidence, where CE patients showed intact sensitivity to the temporal 

structure of auditory sequences (Schwartze & Kotz, 2021), but heterogenous encoding of the 

precise timing of event onsets (Grube, Cooper, et al., 2010b; Nozaradan, Schwartze, et al., 

2017), ultimately affecting the production of and synchronization with rhythms especially at 

faster rates (Ivry & Keele, 1989; Ivry, Keele & Diener, 1988; Schwartze et al., 2016). 

Compared to HCs and CE patients, BG patients’ tapping frequency did not follow the increase 

in tempo rates but followed a U-shape. Large inter-individual variability was present 

especially at the basic tempo, with some patients tapping very fast while others tapped more 

regularly. BG patients' tapping stability was lower than that of the other groups in the fastest 

tempo. In line with these observations, EEG results for delta-band neural activity revealed 

stronger power variations, reduced instantaneous frequency, stability, and phase coherence in 

BG patients when listening to isochronous auditory sequences. We consider that altered 

sensory encoding of temporal regularity might have influenced the patients’ capacity to 
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produce and synchronize efficiently with an external rhythm. These findings are in line with 

previous results showing altered processing of salient periodicities in BG patients (Nozaradan, 

Schwartze, et al., 2017) even in simple auditory sequences (Schwartze et al., 2015), and 

confirm that the heterogeneity in tapping behavior and difficulties in adapting to tempo 

changes are related to BG dysfunctions (Schwartze, Keller, et al., 2011b).  

Although exploratory, correlation analyses further revealed a link between tapping behavior 

(entropy and stability) and brain-derived metrics of dynamics (e.g., power entropy, 

acceleration, stability), specifically for the BG patients. However, given the small sample size 

and low statistical power, we refrain from any speculative interpretations of these preliminary 

results.  

The newly employed methods allowed characterizing the role of delta-band oscillations in 

basic rhythm processing: we showed that delta oscillations fluctuate over time, tuning in and 

out of perceived acoustic regularity in auditory sequences by dynamically accelerating and 

slowing down from silence to listening periods. These observations support the dynamic 

attending hypothesis (Mari Riess Jones & Boltz, 1989; Large & Jones, 1999), and confirm the 

role of low-frequency oscillations (Schroeder & Lakatos, 2009) in detecting, producing, and 

synchronizing with temporal regularities in an auditory environment. On the other hand, the 

current approach also confirmed the fundamental role of the BG and CE in an extended 

cortico-subcortical-cortical network underlying rhythm and timing processing (Criscuolo, 

Pando-Naude, et al., 2022; Kasdan et al., 2022; Kotz et al., 2018; Schwartze & Kotz, 2013). 

In fact, we showed that while the healthy brain could flexibly and dynamically respond to and 

synchronize with sensory inputs, patients with lesions in the BG and CE did not. Patients 

showed a degree of heterogeneity and deteriorated capacity to synchronize ongoing neural 

activity to temporal regularities in the acoustic environment, which ultimately resulted in 

altered capacity to produce stable tapping and to synchronize behavior with external rhythms. 

Differently from our hypotheses, however, we could not clearly dissociate CE from BG timing 

functions. We argue that our experimental setup and/or the adopted analytical approach may 

have played a role. For instance, use of isochronous auditory sequences as opposed to complex 

auditory rhythms may represent the first limitation, as these stimuli may have been suboptimal 

to dissociate CE-related sensory timing computations from BG-related temporal predictions. 

Secondly, differently from the typical tone-locked analysis approach, we here investigated the 

neural dynamics of rhythm tracking at the sequence-level. This choice allowed us to 

characterize the frequency, acceleration, and stability of neural waves tuning towards auditory 
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rhythms. However, such approach does not provide an indication of inter-individual 

variability in the amplitude and latency of event-related responses to each tone onset along 

the sequence. Third, we have previously discussed that BG and CE are part of a widespread 

cortico-subcortical network engaging in rhythm processing. Thus, a lesion in these subcortical 

regions may not necessarily impact basic rhythm processing. In fact, we know from the animal 

literature that there are neurons in the cortex acting as ‘neural chronometer’ encoding the 

passage of time and the precise timing of sensory events (Merchant et al., 2011; Merchant, 

Harrington, et al., 2013; Merchant, Pérez, et al., 2013). These cortical neurons may take over 

timing computations as a functional reorganization mechanism after subcortical brain lesions, 

ultimately preventing to characterize the link between focal subcortical lesion and impaired 

timing functions. Finally, another limitation lies in the difficulty to distinguish fine-grained 

timing processing in absence of spatio-temporally resolved data. In this perspective, this 

research field would benefit from a more accurate characterization of the time-course, strength 

and directionality of information flow during rhythm processing. Such approach would allow 

to monitor the interplay and the causal relationship between cortico-subcortical regions, as 

well as between the BG and CE. Furthermore, it would enable to characterize the frequency-

specificity and directionality of influence of some timing computations. Existing literature 

suggests delta-, as well as beta-band activity to be prominent in subcortical and cortical brain 

regions (Bartolo et al., 2014; Bartolo & Merchant, 2015; A. Keitel et al., 2017; A. Keitel & 

Gross, 2016) and to be linked to predictive priming of sensory regions (Arnal, 2012; Engel & 

Fries, 2010). In other words, the anticipatory alignment of beta-band activity to the when of 

salient events (Fujioka et al., 2012, 2015) couples with bottom-up delta-band activity (Abbasi 

et al., 2018; Arnal et al., 2015; Merchant et al., 2015; Saleh et al., 2010) to instantiate motor-

to-auditory predictions in support of adaptive behavior. Thus, our focus on scalp activity and 

on delta-band activity only prevents a full characterization of bottom-up and top-down 

mechanisms of temporal processing and prediction. Altogether, we encourage future studies 

to complement the current findings with investigations of beta-band activity, with a particular 

focus on event-related dynamics and beta-delta functional coupling. Such a complementary 

approach would deepen our understanding of the neurophysiological mechanisms underlying 

intra- and inter-individual variabilities in the capacities to detect, produce and synchronize 

with temporal regularities in the sensory environment, and to ultimately produce adaptive 

behavior.  
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Conclusions 

The capacities to encode the precise timing of the sensory events around us, and to time our  

(re-)actions to changes in the environment are pivotal to act and adapt in a dynamically 

changing environment. In this study, we explored the rich and variegated landscape of neural 

oscillatory dynamics, and assessed if, when and how neural oscillations processed the temporal 

regularity in acoustic sequences. BG and CE lesions impacted the neurophysiological 

encoding of the rhythm and further affected the ability to produce and synchronize behavior 

(tapping) to external stimuli. 
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Abstract 

Continuous interactions between physiological body-brain rhythms influence how individuals 

act, perceive, and evaluate their environment. Despite increasing interest, the intricate 

interface between breathing, cardiac, neural rhythms, and cognitive function remains poorly 

understood. By evaluating current theoretical and empirical implications, we derive an 

integrative framework of a body-brain dynamic system that combines a hidden hierarchical 

structure with dynamical state transitions. We propose that body-brain signals can 

interchangeably drive state- and task-specific coupling mechanisms which influence cognitive 

functions. The dynamical nature of this framework parallels the intrinsic variability of human 

behavior, and ultimately aims at better understanding how individuals act in and adapt to a 

dynamically changing environment.  
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Reciprocal influence of body and brain rhythms on behavior? 

The question whether there is any systematic relationship between the body and the brain (or 

the ‘mind’) represents a longstanding debate, dating back to Hippocrates. In the Platonic 

dialogues we also read: 

“…the great error of our day in the treatment of the human body, … [is] that physicians 

separate the mind from the body.”  

Stepping back from Descartes’ and Newton’s reductionist principles, recent research confirms 

that multiple physiological activities of the body and the brain share a cyclic (quasi-)periodic 

(Klimesch, 2018) nature and display systematic patterns of (a)synchronous oscillatory 

dynamics and/or mutual dependencies.  

Although the most evident body rhythms such as respiration and heart rate (HR) are 

considerably slower (roughly 0.25Hz and 1.25Hz, respectively) than the most frequently 

studied neural rhythms (1-50Hz; Fig. 1A-B) and quite variable across the lifespan (Fleming 

et al., 2011), empirical evidence confirms their tight link to neural and cognitive functions. 

Body rhythms might directly influence neural spiking and oscillatory activity and thereby 

modulate information processing (Critchley & Garfinkel, 2018; H.-D. Park et al., 2014), 

perception, action, cognition, and emotion regulation (Azzalini et al., 2019; Ebert et al., 2002; 

Heck et al., 2017; Ito et al., 2014; Kluger, Balestrieri, et al., 2021; Kluger & Gross, 2021; 

Monti et al., 2019; Nakamura et al., 2018). Stimulated by these recent developments, we 

propose that the combined assessment of rhythmic body-brain signals is critical to advance a 

holistic understanding of how individuals solve the fundamental task of continuously 

evaluating, reacting, and adapting to a dynamically changing environment (Critchley & 

Harrison, 2013; Varga & Heck, 2017).  

Bridging the gap between current empirical research and existing theoretical propositions, we 

propose an integrative framework to holistically examine the body-brain-behavior interface. 

The central tenet of this body-brain dynamic system (BBDS) is to regard the body and the 

brain as partially independent subsystems that dynamically transition from decoupled to 

coupled states in a context-specific manner. We propose that an emergent hidden non-static 

hierarchical organization (see section ‘An integrative framework’) modulates neurocognitive 

function, continuously supporting the optimization of adaptive behavior. In contrast to static 

hierarchical conceptions, we reason that body-brain coupling instantiates a transient state that 
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is interchangeably driven by either the body or the brain according to environmental 

contingencies (Fig. 2).  

The first challenge for this framework is, that while appealing, observed links between body-

brain rhythms and behavior are mostly correlational in nature, and thus do not provide causal 

evidence. Second, research has primarily focused on the isolated influence of respiratory or 

cardiac rhythms on brain activity or behavior, precluding a more inclusive stance on the body-

brain-behavior interface. Existing holistic perspectives, instead, tend to focus on (self-

)consciousness, but not overt behavior (Critchley & Garfinkel, 2018; Park & Tallon-Baudry, 

2014). With a broader perspective, the ‘binary hierarchy body brain oscillation theory’ 

(Klimesch, 2018) was among the first to propose the existence of a body-brain frequency 

architecture governed by binary (sub)harmonic relationships (frequency coupling and cross-

frequency coupling, see Glossary). This theory accounts for inter-individual variability in 

body-brain rhythms (e.g., heart rate and spontaneous alpha band activity) and subjective rate 

preferences in overt behavior (e.g., spontaneous walking rate), and has stimulated key 

questions that define the starting point for the proposed BBDS framework:  

(i) Are body-brain rhythms continuously coupled over time?  

(ii) If body-brain coupling is not a constant phenomenon, which rhythm(s) drive it?  

(iii) Do psychophysiological states (e.g., resting versus active states) dynamically 

influence body-brain rhythms or are these constrained by static harmonic 

relationships?  

(iv) Is cognition (e.g., the allocation of attention over time) influenced by body-brain 

rhythms and vice versa? If so, how? 

(v) Finally, what exactly is the functional role of body-brain interactions? 

Guided by these questions and bridging the gap between current theory and empirical findings, 

the goal of the BBDS is to provide a dynamic perspective on the body-brain interface, focusing 

on breathing and cardiac rhythms to explain how such intricate interactions enable individuals 

to efficiently act in and adapt to a dynamically changing environment. Rather than a formal 

description of system dynamics, the BBDS develops a framework and motivates future 

research to implement and test model predictions (see Outstanding Questions). 

To this end, the BBDS embraces the natural variability of human behavior across multiple 

cognitive functions and promotes a holistic approach to the study of both neurotypical 

individuals and neurological disorders (see Box1). 
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Brain rhythms 

Neurophysiological activity is characterized by periodic fluctuations in the excitability of 

neuronal populations (Buzsáki et al., 2013). Rhythmic oscillatory activity is usually clustered 

(with some flexibility in the bandwidths) in multiple frequency bands, ranging from delta (1-

4Hz), theta (4-8Hz), alpha (8-12Hz), beta (12-25Hz) and gamma (from 25Hz onwards). These 

oscillations and their relation to cognitive function have been extensively studied in the 

domains of attention (Lakatos et al., 2008), sensorimotor behavior (Merker et al., 2009), 

speech (Giraud & Poeppel, 2012) and music [18], while aberrant neural oscillatory activity is 

linked to dysfunction thereof (Uhlhaas et al., 2018). Current evidence suggests that neural 

rhythms adhere to a specific spatio-temporal organization whereby functional coupling 

across space, time, and frequency is associated with local cytoarchitectonic structure, specific 

anatomical connectivity as well as with cognitive function (A. Keitel & Gross, 2016). For 

example, the coordination of excitability changes across neuronal populations might render 

perception an essentially rhythmic function (see perceptual cycles), which at least partially 

depends on the phase and rate of the respective oscillations (Large & Jones, 1999; Schroeder 

et al., 2010; Schroeder & Lakatos, 2009). However, little is known about the joint influence 

of other physiological oscillations, such as respiratory and cardiac rhythms on cognitive 

function. Thus, the question arises: is human behavior modulated by the interaction of body-

brain rhythms? And if so, how?  

Respiratory rhythms and their influence on brain dynamics and behavior  

Two main control systems regulate respiratory muscles (Plum, 2008). One exerts unconscious, 

autonomic, and continuous control of respiration meeting the body’s metabolic demands. This 

pathway comprises the brainstem, reticular formation, pons, and medulla. The other system, 

comprising sensorimotor and limbic forebrain structures (Belyk et al., 2020), facilitates the 

top-down control of respiration, allowing among other functions to coordinate speech and 

complex motor acts. 

A widespread cortico-limbic network actively tracks human breathing (Herrero et al., 2018). 

Activation of olfactory and limbic regions, including the amygdala and hippocampus, aligns 

with the inspiration phase (see phase-locking) of the respiratory cycle (Zelano et al., 2016). 

Voluntary control of breathing engages primary sensory and motor cortices, the supplementary 

motor area, cerebellum, thalamus, caudate nucleus, and globus pallidum, bilaterally, as well 
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as the medulla (McKay et al., 2003). Notably, breathing is also modulated by covert motor 

behavior, for instance during imagery (Decety et al., 1993) and listening to music (Bernardi 

et al., 2006). People tend to align their breathing with a perceived musical rhythm (Haas et 

al., 1986) as a form of respiratory entrainment. Consequently, the phase-alignment with 

external stimuli influences visuo-spatial (Kluger, Balestrieri, et al., 2021; Perl et al., 2019) and 

memory performance (Nakamura et al., 2018; Zelano et al., 2016). Conversely, 

psychophysical states can modulate breathing. For instance, states of anxiety, depression, 

anger, stress, and other negative or positive emotions are linked to specific respiratory patters 

(Jerath & Beveridge, 2020) and conscious control of breathing, e.g., slowing, can induce 

changes in heart rate variability ((Gross et al., 2016; Stark et al., 2000)) and in brain activity 

(Zaccaro et al., 2018). This evidence points to an active interface of psychophysical states, 

breathing, and cognitive function. However, which mechanisms govern these intricate 

relationships, and what defines breathing-cognition coupling functionally? Moreover, what 

does cardiac activity add to the equation?  

Cardiac rhythms and their influence on brain dynamics and behavior  

The alternation of systole (ventricular contraction) and diastole (ventricular relaxation) gives 

rise to the cardiac cycle and the heart rhythm. The heartbeat (HB) does not display the 

regularity of a metronome but rather acts more like a dynamic pacemaker (Shaffer et al., 2014) 

driven by both sympathetic (acceleration) and parasympathetic (vagus) nerves.  

“when the heart is affected, it reacts on the brain; and the state of the brain again reacts […] 

on the heart; so that under any excitement there will be much mutual action and reaction 

between these” – Charles Darwin (Darwin, 1998).  

Research shows that noradrenergic neurons in the locus coeruleus may influence 

neurovascular coupling and cerebral blood flow (Iadecola, 2017), from health to pathology 

(Sean Giorgi et al., 2020). Similarly, HR modulates thalamic activity, resulting in global brain 

and cognitive effects ranging from emotion regulation (Balzarotti et al., 2017) to attention and 

working memory performance (Hansen et al., 2003). Evidence further highlights a specific 

phase relationship between the cardiac cycle and information processing. Hence, visual 

perception is modulated by heartbeat-locked neural responses (Park et al., 2014), the so-called 

heartbeat-evoked potential (HEP). Consequently, reaction times in response to auditory 

(Louisa Edwards et al., 2007) and visual (McIntyre et al., 2007) stimuli increase around the 

R-peak. In turn, HEP modulated both early (P50) and later (N100, P300) event-related 
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potentials (ERP) of the EEG in response to somatosensory stimuli (Al et al., 2020). Hence, 

somatosensory stimuli are likely better detected during diastole than systole [48], and 

detection is inversely related to the amplitude of the preceding HEP, similarly to what has 

been observed for visual stimuli (Al et al., 2020; Park & Blanke, 2019b). However, this link 

is likely bi-directional, as cognitive functions such as attention, emotional processing, and 

social cognition, as well as the underlying brain activity, similarly impact interoception and 

HEP (Adolfi et al., 2017; Coll et al., 2021; Park & Blanke, 2019b).  
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Figure 1 – A framework for the body-brain dynamic system.  

A: a composite signal including brain (blue), heart (red) and respiratory (light blue) activity. B: brain-heart-lungs are partially 

independent subsystems, and a boundary (the physical extent of the body) separates them from the outside (OUT). Like an open system, 

the three subsystems share and exchange information with the external environment (input) and jointly deliver output (perception and 

action) via transformation processes (e.g., information processing). C: body-brain signals might switch from decoupled to coupled 

states to optimize behavior. We hypothesize that changes in breathing rates (e.g., speeding-up) might drive state transitions and induce 

changes in the rate and phase of the other signals. Signal dynamics can then be quantified by circular statistic tests (e.g., phase-

locking values). Thus, phase-locking might be highly variable in decoupled states, while coupled state might show a preferential 

clustering. Of note, some variability in the coupling patterns might still be present, but a prominent phase-angle optimizes behavior. 

Brain activity is plotted with a color-code ranging from low-excitability (-LE) to high-excitability (HE). This refers to the concept of 

perceptual cycles, namely that there are (sub-)optimal windows for information processing that depend on the excitability phase in 

which signals are presented. The traces in the figure are based on data simulated for illustrative purposes using MATLAB. 

 

The Influential predictive coding theory (Friston, 2005) offers a potential explanation to these 

findings, suggesting that the brain predicts and attenuates responses to rhythmically regular 

signals to optimize resource allocation to non-predicted sensory input (Seth & Friston, 2016). 

Consequently, the perception of sensory input oscillates at the HR, leading to the suppression 

of activity in response to events that fall on the low-excitability phase in the heart cycle (Al et 

al., 2020; Park et al., 2014). Alternatively, the neural subjective frame” suggests that (pre-

attentive) updating of internal body states modulates self-awareness and sensation (Park & 

Tallon-Baudry, 2014). Accordingly, the brain might switch attention from interoceptive to 

exteroceptive signals, and this transition parallels HEP modulations (García-Cordero et al., 

2017; Petzschner et al., 2019). Supporting this notion, oscillations during interoception (35-

110 Hz) differ markedly from those during exteroception (1-35 Hz) in the insula, amygdala, 

somatosensory cortex, and inferior frontal gyrus (Petzschner et al., 2019). Interestingly, 

exacerbated HEP modulations are observed in disease and are associated with dysregulated 

behavior, impaired cognition, and atypicalities in brain volume and connectivity of allostatic 

networks (Birba et al., 2022; Fittipaldi et al., 2020; Salamone et al., 2021).  

Taken together, these findings highlight bidirectional influences between heart activity, brain 

function, and behavior. However, how do HB and respiration relate to each other? Generally, 

the HB accelerates during inspiration (respiration rate (RR) decreases) and slows down during 

expiration (RR increases). These fluctuations of HB in relation to the breathing cycle are part 

of the phenomenon known as heart-rate variability and are influenced, among other factors, 

by the baroreflex and the sympathetic nervous system. The heart rate depends on breathing 

rhythms and tidal volume (depth of ventilation) and relates to breathing cycles approximately 

with a 4:1 ratio (4 HB within one respiration cycle) (Perry et al., 2019; Schäfer et al., 1998; 

Shaffer et al., 2014). Yet, little is known about how respiratory-cardiac coupling influences 

brain activity and cognition. Similarly, conceptual frameworks for the dynamics of such a 
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comprehensive body-brain system are largely lacking. In other words, how can the 

interactions between respiratory, cardiac, and brain activity, and their consequences for 

behavior, be characterized and explained?  

An integrative framework 

Earlier work has reviewed and discussed evidence of how visceral input modulates brain 

activity and subjective experiences of (self-) consciousness, as in the cases of intero- and 

exteroception (Azzalini et al., 2019; Park & Blanke, 2019a; H. D. Park & Tallon-Baudry, 

2014). Similarly, others have discussed the modulatory influence of breathing on brain 

activity, perception, and action (Kluger, Balestrieri, et al., 2021; Kluger & Gross, 2021; Varga 

& Heck, 2017).  

Bridging the gap between current empirical research and existing theoretical propositions, the 

body-brain dynamic system (BBDS) provides a dynamic perspective on body-brain 

interactions and describes how such an interface enables individuals to efficiently act in and 

adapt to a continuously changing environment. This integrative framework promotes a holistic 

approach to the study of the body-brain-behavior interface and motivates future research for 

its formal implementations (see Outstanding Questions). The focus of the BBDS is on 

respiratory and cardiac rhythms alongside with brain activity and behavior. For simplicity, we 

disregard in the current discussion other bodily (or visceral) signals apart from respiratory and 

cardiac signals, but conceivably, integrating such signals into the framework may follow the 

same principles (Azzalini et al., 2019). 

A dynamic body-brain system 

The proposed framework is inspired by systems theory and considers interactive body-brain 

rhythms within a dynamic system.  

The BBDS focuses on three key elements: the brain, the lungs, and the heart, which constitute 

interconnected but partially independent subsystems. A boundary (the physical extent of the 

body) separates this system from the external environment (Key Figure; Fig. 1B). Like any 

open system, the three subsystems share and exchange information with the external 

environment (input) and jointly deliver output (perception, action) via transformation 

processes (e.g., information processing). The BBDS generates unique testable predictions: it 

is characterized by at least two states, a coupled and a decoupled state (Fig. 1C). In 

neurotypical behavior, the functional coupling of the body and the brain is not invariantly 
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maintained but can be dynamically and adaptively achieved whenever contingencies demand 

it. Thus, in wakeful states and in the absence of overt behavior, a largely decoupled system 

state is considered the default. In this scenario, autonomic centers regulating breathing and 

local cardiovascular centers modulating HB, dominate. When (re)acting, attending, and 

sensing the environment, the system can transition into a coupled state, influenced by top-

down regulatory centers. This transition is achieved through changes in the rate and phase of 

internal signals, which tend towards preferred phase-coupling to optimize behavior (Fig. 1C). 

Although body-brain coupling is not a constant feature of the system, the endogenous 

predisposition to achieve phase-alignment unveils a hidden non-static hierarchical 

organization. Thus, a directional organization is established that drives dynamic state 

transitions, which can be initiated by multiple physiological rhythms interchangeably (i.e., 

respiration or cardiac) in specific contexts. Methodologically, the assessment of body-brain 

interfaces resembles current state-of-the-art analyses of neural entrainment. Hence, transient 

changes in coupling strength can be analogously quantified by circular statistics (Wolpert & 

Tallon-Baudry, 2021) (Fig. 1C) on a trial-by-trial basis. Consequently, variability in body-

brain signals is the key mechanism for the dynamical aspect of the system, supporting the 

flexible interaction between the three sub-systems (lungs, heart, brain) and rapid adaptation 

to environmental contingencies, ranging from predictable to unpredicted events. Critically, 

this concept of flexible and adaptive interactions is supported by empirical evidence, showing 

that HB is prone to variability in healthy participants (Bigger et al., 1992), neural oscillatory 

signals can display state and task-specific timely responses (Mierau et al., 2017) and that 

respiration control modulates neural network activity and behavior (Herrero et al., 2018; 

Kluger & Gross, 2021). Thus, the proposed functional implication of the body-brain interface 

is to prepare the organism to dynamically allocate metabolic and cognitive resources required 

for behavioral contingencies. To do so, predictive processes allow exploiting prior knowledge 

and inform how to prepare the organism to better (re-)act in the environment. Thus, breathing 

and HR are dynamically modulated to optimize perceptual, behavioral (Balzarotti et al., 2017) 

and memory performance (Nakamura et al., 2018; Zelano et al., 2016).  

This perspective can be exemplified by scenarios in which successful behavior demands 

timely body-brain adaptation. We differentiate between at least two types of behavior that are 

characterized by strictly rhythmic or clustered body-brain-behavior relations in a coupled state 

(Fig. 2). Motor acts like speaking, laughing, singing, playing a wind instrument, or shooting 
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a ball are all preceded by a short preparatory inspiration, and behavior preferentially unfolds 

during the longer lasting and progressive expiration phase (Fig. 2A).  

 



129 

 

Figure 2 – Body-brain-behavior relationship in coupled and decoupled states. 

A. In clustered body-brain-behaviors, motor acts such as speaking, laughing, singing, playing a wind instrument, or shooting a ball 

would tend to unfold during the long-lasting expiration phase of the breathing cycle. Here, the phase-relationship between body-

brain-behavior is not regular but would depend on the motor act performed and physiological needs (e.g., need of oxygen). 

B. In rhythmic body-brain-behaviors, motor acts such as running, cycling, or swimming tend to establish a clear phase-relationship 

with the breathing cycle. The unfolding of behavior relative to body-brain rhythms is more precise as compared to clustered body-

brain-behaviors.  

C. Externally triggered behaviors let body-brain rhythms transition from decoupled to coupled states. In this case, the heart signal is 

the driver of body-brain coupling via speeding-up its pace. The traces in the figure are based on data simulated for illustrative 

purposes using MATLAB. 

 

These actions can be characterized by a clustered body-brain-behavior relationship: signal 

coupling is not achieved by a 1:1 phase relationship, but by 1: N phase clustering. Hence, the 

sequela of motor acts unfolds in one expiration phase, accompanied by variability in HB and 

brain activity. This idea translates to the brain’s readiness potential, which displays 

preferential phase-locking at the end of the inspiration phase, while behavior tends to cluster 

at the expiration phase (Park et al., 2020). Notably, respiration-action coupling is absent in 

unpredicted externally triggered actions (Park et al., 2020), where action planning is missing 

(decoupled state). Conversely, more stable rhythms are generated during continuous actions 

such as walking, running, or cycling. Here, the body-brain-behavior relationship reveals a 

highly regular pattern, characterized by stable intervals between inspiration-expiration phases 

(Fig. 2B). Likewise, motor movements and HB tend to phase-synchronize with breathing, 

establishing a rhythmic body-brain cycle.  

In this view, breathing seems to emerge as the driver of body-brain coupling in both rhythmic 

and clustered behaviors. Indeed, motor planning cannot preclude breathing control, and the 

organism exploits these body-brain dynamics to improve motor coordination, attention, and 

perception. Empirical evidence further supports this role as breathing modulates heart activity 

and induces brain-breathing coherence in a widely distributed brain network (Herrero et al., 

2018; Kluger & Gross, 2021). Top-down regulatory effects are likely achieved by 

synchronizing activity within cell assemblies and coordinating network interactions, 

ultimately regulating cortical excitability, and shaping sensory encoding, memory, and 

behavior (Heck et al., 2016; Heck et al., 2017; Kleinfeld et al., 2014; Martin & Ravel, 2014). 

We further propose that coupled states are reinforced by sensorimotor feedback loops to 

reduce noise (variability) in body-brain-behavior phase-locking.  

However, the BBDS is not assumed to rely on a single driver, which would imply a strict 

functional hierarchy. Indeed, unpredicted events and externally triggered actions may engage 
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cardiac rhythms as the primary driver (Fig. 2C). For instance, a loud and unpredictable sound 

may drive a sudden increase in HB. Such alerting signals may initiate a cascade of 

physiological processes, aiming at raising alertness and preparing the body for action. 

Consequently, body-brain coupling would aim to optimize a timely behavioral response and 

is achieved via a dynamic interplay between subcortical (autonomic) and cortical (top-down 

control) brain centers. 

We have discussed so far how body-brain dynamics determine how individuals successfully 

act in a dynamic environment and adapt to it. A critical pending question, though, concerns 

how perception and other cognitive functions are influenced by body-brain dynamics. 

In line with other neurocognitive accounts of multisensory perception (Large & Jones, 1999; 

Schroeder et al., 2010; Schroeder & Lakatos, 2009), the BBDS considers that sensory 

processing, allocation of attention, and perception unfold continuously, but in discrete units. 

Thus, while sensing the environment, attention is dynamically and flexibly allocated to 

prioritize specific locations, features and/or streams. In turn, the likelihood of perceiving a 

stimulus is modulated by the phase-relationship between the attended event and underlying 

neural activity, establishing so called ‘perceptual cycles’ (VanRullen, 2016). The high-

excitability phase of neural activity represents an optimal window for processing information, 

while neural responses to events falling on the low-excitability phase are suppressed. The 

BBDS proposes to extend this principle beyond neural activity in isolation to incorporate 

bodily physiological signals as conjunct determinants of ‘perceptual cycles’. It thus follows 

that body-brain rhythms establish high- and low-excitability cycles, influencing the likelihood 

of sensory processing and perception (Azzalini et al., 2019; Kluger, Balestrieri, et al., 2021; 

Park et al., 2014). Supporting this view, neural activity time-locked to HB before stimulus 

onset predicts visual detection (Park et al., 2014), and respiration-locked alpha modulations 

influence visuo-spatial processing (Kluger, Balestrieri, et al., 2021). Other cognitive functions 

may be similarly influenced by body-brain coupling, ranging from memory (Nakamura et al., 

2018; Zelano et al., 2016) to interoception (Park & Blanke, 201°a) and emotional processing 

(Jerath & Beveridge, 2020). For instance, memory encoding and retention may be enhanced 

when stimuli are presented during the body-brain high-excitability cycle and performance 

may be worse elsewhere.  

To conclude, the BBDS embraces the variability in human behavior and proposes that 

cognition necessitates intrinsically variable body-brain interactions to adapt to an ever-
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changing environment. A certain degree of variability in coupling states is well-documented 

in human EEG and respiratory signals and might support cross-domain generalization within 

such a framework. A static hierarchical model (Klimesch, 2018) might not sufficiently 

describe dynamic transitions from decoupled to coupled body-brain states, nor psychophysical 

changes observed from rest to motion. In contrast, the proposed differentiation of planned and 

externally triggered actions and of rhythmic and clustered body-brain coupled states suggests 

a flexible body-brain functional architecture, whose dynamics can be characterized by patterns 

of task- and state-specific evolution in body-brain phase-locking.  

Concluding Remarks and Future Directions 

Bridging the gap between empirical evidence and theoretical perspectives, we propose a novel 

framework for a body-brain dynamic system (BBDS), which aims to integrate the dynamical 

nature of body-brain rhythms with the inherent variability of human behavior. The BBDS 

framework thus promotes the combined assessment of physiological body rhythms 

(respiratory and cardiac) and brain rhythms as valuable sources of information to explain how 

individuals act in and adapt to a dynamically changing environment. This quest promises to 

advance our understanding of human perception, action, and cognition in neurotypical 

individuals and in neurological disorders, but necessitates appropriate experimental 

paradigms and analytical tools (see Outstanding Questions).  
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Glossary 

• Brain readiness potential: in the context of EEG measurements, the brain readiness 

potential is a metric associated with motor preparation. 

• Cross-frequency coupling: Cross-frequency coupling is a concept that describes the 

co-variation in the dynamics of two or more neural signals oscillating at different 

frequency bands (e.g., delta-beta coupling).  

• Cycle: when referring to periodic signals (neural oscillations, respiration, heart 

activity), a full cycle includes a repeated pattern in time. In the case of a sinusoidal 

wave, both the high- and low-excitability phases describe a full cycle, which is 

periodically repeated in time.  

• Directional causality: in the analysis of brain activity, directional causality measures 

the influence exerted by one signal on one or more other signals which are 

functionally coupled. It can be estimated by granger causality and/or other metrics 

relying on the information theory framework.  

• Entrainment: in physics, entrainment refers to a mechanism of active alignment of 

two oscillators, whereby the signals are independently oscillating at their individual 

rates before and after a transient moment of alignment.  

• Functional coupling: in the context of EEG measurements, functional coupling 

describes the co-variation in the dynamics of two or more signals (e.g., from two 

brain regions) and can be obtained through various metrics of amplitude or phase 

changes.  

• Heart-beat evoked potential (HEP): The HEP is an event-related EEG response 

reflecting body-brain interaction.  

• Hierarchical functional organization: this term refers to the presence of a 

structured pattern of functional coupling that can be mathematically quantified. Thus, 

elements at higher levels of the hierarchy interact with signals at lower levels and 

vice versa. Note that correlational evidence might suffice for this organization to take 

place. However, the model can be extended by means of measures of directional 

causality.  

• Perceptual cycles: given that oscillatory brain activity is characterized by alternating 

instances of high- and low-excitability phases, cognition might be a cyclic process 

with (sub-)optimal moments for information processing and perception.  
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• Phase-locking: when examining neural oscillations, phase-locking describes a 

precise relationship between the phase of a signal with another signal or event. For 

instance, brain activity in the beta-frequency band can be phase-locked to the 

occurrence of an acoustic event.  

• Predictive coding framework: this view postulates the inherent predictive nature of 

neural activity. Hence, the brain constantly generates predictions about events in the 

(internal and external) environment and a continuous process of learning updates 

current knowledge via prediction error signals (signaling the (mis-)match between 

expected and actual outcomes). 

• R-peak: the R-peak corresponds to the maximal deflection observed in the periodic 

electrocardiogram signal.  
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Box 1 – Translational aspects of body-brain research 

An interesting aspect of the body-brain integrative approach lies in the potential 

characterization of individual capacities as a prerequisite for personalized training or 

interventions. Clinicians and therapists have long asked how to improve standard protocols 

(Kotz & Gunter, 2015) as treatment outcomes vary significantly (Bella et al., 2017). 

Specification of individual capacities, including behavioral and cognitive measures together 

with brain, respiratory, and cardiac activity, may reveal a pivotal link between cognitive 

dysfunctions (e.g., attention deficits, dysfluent speech) and altered body-brain coupling. Thus, 

a better understanding of the causal relationships between body-brain-behavior could factor 

into early diagnosis and the development of individualized trainings. For example, breathing 

control techniques, along with metronome-timed speech training (Kell et al., 2009), are found 

to improve speech fluency in people who stutter. In these scenarios, the processing of external 

(music) rhythms and the volitional control of respiration may superimpose a temporal pattern 

through which behavior can unfold efficiently (Fig. 2). Through this mechanism, external 

rhythms provide a means to temporally (re-)structure altered body-brain-behavior. For 

instance, the speech production rate may align with the rate of externally presented rhythms. 

Alternatively, volitional control of breathing may facilitate sensorimotor coordination for 

speech production. Similar mechanisms may underlie the beneficial effects of rhythm training 

in dyslexia (Goswami, 2017), gait performance, time perception, and sensorimotor timing 

abilities in Parkinson’s disease (Bella et al., 2015; Benoit et al., 2014). Interestingly, the known 

modulatory effects of musical rhythm on blood pressure and cardiac activity (Bernardi et al., 

2006, 2009) might foster post-stroke interventions (Särkämö et al., 2014).  

Overall, these observations lead to the critical consideration that many clinical settings could 

benefit from an integrative body-brain-behavior approach. However, this requires a better 

understanding of the underlying functional and causal mechanisms linking body-brain 

physiology to behavior and general cognition. 
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Outstanding questions box 

• Are body-brain interactions steadily present over time or transient?  

• Which neuroimaging methods and experimental paradigms would enable testing the 

directionality and causal influence of body-brain signals on behavior? 

• Is signal synchronization (e.g., phase-locking or concurrent amplitude changes) the 

only pre-requisite for describing body-brain functional coupling? Would metrics of 

causality (e.g., granger causality) deepen current understanding of the link between 

body-brain and behavior?  

• What are the generators of body-brain synchrony? What drives body-brain coupling 

and what is its functional role? 

• Is it possible to modulate the activity of body-brain oscillators to influence cognitive 

functions?  

• Is the influence of body-brain dynamics restricted to a specific sensory modality 

(e.g., vision or audition), cognitive function (e.g., speech processing) or can we rather 

speak of a cross-domain functional mechanism?  

• Can body-brain analyses enrich individual neurocognitive profiling along the 

spectrum from health to pathology? If so, would they inform prevention and 

intervention? 

• Which type of formal implementation (e.g., metastability, chaotic system, 

turbulence) would better describe body-brain interactions and predict their influence 

on cognitive functions? 

  





Chapter 6

General Discussion
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General Discussion 

The leitmotiv of this thesis is time: physical time, the brain’s implementation of time, the 

psychological sense of time, and finally, time in the body. Thus, I asked: how do we use time 

to orient ourselves in the world? How do we implement time processing for general cognition? 

Are there inter-individual and cross-species differences in timing cognition? Does our bodily 

physiological activity contribute to our sense of time and influence timing processing?  

To address these questions, we here focused on a specific aspect of timing cognition: the 

capacity to process and detect temporal regularities in the sensory environment. In the first 

part of the thesis, I investigated the basic neural mechanisms by which we process and predict 

the timing of sensory input in our environment. My approach combined comparative and 

translational perspectives as I performed basic (Chapter 2), evolutionary (Chapter 3), and 

clinical (Chapter 4) research. Overall, I discussed that the capacity to act and adapt in a 

dynamically changing environment depends on our abilities to encode and predict the precise 

when of sensory events, and to timely coordinate our (re-)actions by generating predictions 

about the timing of future events.  

In Chapters 2 to 4, I systematically assessed the neural oscillatory dynamics underlying these 

fundamental timing functions. Participant- and trial-level analyses allowed exploring the rich 

and variegated nature of neural waves while encoding and attending auditory streams. I 

discussed that neural waves implement a dynamic and active sampling of sensory streams, 

thereby processing the temporal regularities in isochronous auditory sequences and 

generating expectations about the when of future events. Furthermore, I demonstrated that the 

continuous flow of auditory input is discretized in consecutive moments of high- versus low-

salience. Our brain does more than simply process isochrony: active sampling sometimes 

takes the form of accentuations. Thus, individuals differ in the if, when, and how they sample 

the acoustic environment, and further show intra-individual variabilities in their tendencies to 

superimpose binary, ternary, and other accentuation patterns onto isochronous auditory 

sequences. The alternation of high- versus low-salience moments impacted the processing of 

deviants, thus showing that accentuations influence other cognitive functions beyond rhythm 

processing. In Chapter 3, I discussed that rhythm tracking and accentuations are already 

present in nonhuman animals, macaque monkeys. Our ancestors’ neurophysiological activity 

showed striking similarities to humans’, in which they could encode temporal regularities, 

generating temporal predictions, and superimposing accentuations to foster deviance 

processing. As these timing computations are phylogenetically linked to the development of 
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higher-order cognitive functions such as music and speech processing in humans, these results 

bridge a gap in evolutionary literature and can motivate new cross-species investigations on 

rhythm cognition. Next, in Chapter 4, I demonstrated that the basal ganglia (BG) and the 

cerebellum (CE) play fundamental roles in rhythm processing: lesions in either of these two 

subcortical structures causally altered the capacities to precisely encode the timing of sensory 

events and to generate temporal expectations, ultimately impacting the ability to produce and 

synchronize behavior to external rhythms.  

In the second part of the thesis, I introduced a novel perspective on brain functioning. In 

Chapter 5, I proposed that the brain may not be functioning in isolation, but constantly 

interfaces with physiological fluctuations in bodily signals to inform cognition. Thus, I 

surveyed evidence for how breathing, cardiac, and gastrointestinal signals influence brain 

activity, information processing, perception and action. Bridging the gap between these 

fragmented research lines, I argued in favor of a fundamental shift in our experimental 

paradigms, so to allow for a more holistic assessment of body-brain physiological interactions 

and their influence on neurocognitive functioning. In this perspective, we proposed a novel 

framework for a Body-Brain Dynamic System (BBDS), characterized by systems of dynamic 

oscillators transiently shifting from body-brain decoupled to coupled states to coordinate 

information processing and behavior. The core tenet of the BBDS is that body-brain 

physiological rhythms shape individual rhythms: perceptual rhythms (e.g., individual 

attentional rhythms, and preferences for listening at specific rates) as well as behavioral 

rhythms (e.g., individual preferences for walking, running, reading, speaking at specific rates). 

In this formulation, the BBDS puts the individual in the spotlight and allows to explore inter-

individual differences finally holistically in cognition, from health to pathology.  

 

Physical time  

Starting from the physical understanding of time, we have seen that we use oscillations to 

quantify the passage of time. In fact, our modern measure of seconds is derived from the 

frequency of electromagnetic radiation of caesium atoms, thus the label atomic clock. The 

fluctuations between energy states of caesium atoms as well as the swinging of our grandma’s 

pendulum clock, trace oscillations. Oscillators can be characterized by frequency (the rate; 

relative to the period of the oscillation), amplitude (the magnitude; the width of swinging of 

the pendulum), and phase (the state of the oscillation; the precise position along the wave). 
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The inherent periodicity of oscillators allows discretizing the continuous flow of time into a 

measurable and predictable unit (an oscillatory cycle), ultimately producing a sense of time. 

In turn, we can use the sense of time to determine the when of unfolding events in our sensory 

environment, and we can reliably quantify the time elapsed from moment A to moment B. As 

such, time is what allows organizing multimodal sensory input at multiple timescales (e.g., 

speech and music audio-visual input) into coherent perceptual representations. The sense of 

time further allows to describe motion and dynamics in a variety of physical phenomena. For 

instance, time is employed to quantify the motion of particles, their velocity, acceleration, 

energy and other fundamental properties. These dynamics can be quantified by calculus, a 

mathematical technique which allows to describe the rate of change of something (e.g., the 

motion of particles) by subdividing the continuous flow of time into infinitesimal quantities.  

Altogether, we can argue that time plays a fundamental role in our lives. Time allows to 

describe almost any physical phenomena in the natural sciences. Similarly, the sense of time 

temporally organizes and structures our reality into a coherent percept, allowing us to make 

sense of the world. Ordo ab chaos.  

 

Time in the brain 

How does our brain generate the sense of time? How do we use this internal time to process 

the timing of sensory input in our environment?  

In Chapter 1, I discussed that brain cells, neurons, in highly specialized cortico-subcortical 

circuitries are time generators and time processing machines. In fact, these neurons act as self-

sustained endogenous oscillators, generating an internal sense of time, and capable of 

dynamically tracking and adapting to the timing of sensory input around us. Neural waves, 

indeed, possess an endogenous rhythm (i.e., they oscillate at a specific eigenfrequency), which 

resembles an internal clock. This clock, however, is not fixed but becomes a timekeeper that 

encodes external rhythms (i.e., the timing of sensory events) by tuning-in and -out with the 

timing of environmental stimuli. The capacity to couple internal to external oscillations is 

fostered by predictions: since most of our sensory reality displays gradients of temporal 

regularities, our brain employs temporal patterns to generate predictions about the when of 

next events. Thus, once the brain has detected regularities in my speech (e.g., there are 3-4 

syllables per second, defining a syllable rate), it forms expectations about the when of the next 

incoming sounds. In this context, delta and beta (δ-β) oscillatory rhythms seem to play a 
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crucial role in processing and predicting timing. I then discussed that β-δ waves form an 

adaptive neural code to integrate bottom-up sensory processing with top-down predictions. 

Hence, in the case of audition, β-δ cross-frequency coupling mediates audio-motor 

interactions, temporally pacing the flow of information between auditory and motor regions.  

This framework was tested in chapters 2 to 4, where I characterized the basic mechanisms by 

which neural waves implement rhythm processing in the general population (Chapter 2), in a 

comparative dataset with macaque monkeys (Chapter 3), and in a clinical population 

comprising stroke patients with lesions in the BG and CE (Chapter 4).  

 

Neural waves encode temporal regularities 

How do we use neural waves to process environmental rhythms? In Chapters 2-4 I explored 

the basic neural oscillatory mechanisms of auditory rhythm processing. I hypothesized that 

individuals may differ in the if, when, and how they process temporal properties in auditory 

sequences, thus I dedicated particular attention to characterize intra- and inter-individual 

variabilities.  

The starting point was testing these hypotheses in the general population. Healthy young 

individuals listened to isochronous auditory sequences while we recorded their electrical brain 

activity via electroencephalography (EEG). The analysis pipeline explored single-participant 

and -trial data, thus enabling us to dive into intra- and inter-individual variabilities in rhythm 

processing. First, Fourier and Inter-Trial Phase Coherence (ITPC) analyses demonstrated that 

individuals encoded the temporal regularity of auditory sequences, as revealed by clear 

amplitude and coherence peaks in the Fourier and ITPC spectra, respectively. Next, we 

performed so-called ‘rhythm tracking’ analyses to investigate the phase relationship between 

endogenous neural oscillatory activity in the δ-band and the onset of individual tones within 

the auditory sequence. These analyses indicated an overall phase coherence at the single-trial 

level as demonstrated by mean vector length analyses (i.e., a metric of phase coherence in 

circular statistics). The high coherence before stimulus onset might suggest a mechanism of 

predictive alignment towards expected tone onsets. However, we also characterized large 

intra- and inter-individual variabilities in δ-band pre-stimulus phase. In fact, in contrast to 

well-established lines of evidence, here δ-band oscillations did not always align their high-

excitability peak to tone onsets. In contrast, pre-stimulus δ phase scattered around the unit 

circle.  
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How to explain these discrepant observations? In Chapter 2, we discussed the possibility that 

individuals do not always track auditory rhythms if not instructed to do so. This argument is 

supported by previous evidence showing random pre-stimulus δ phase for ignored (as opposed 

to attended) auditory streams (Lakatos et al., 2013), and a gradual phase-shift and clustering 

of δ phase along the auditory sequence (Lakatos et al., 2005). To note, however, most of the 

classical studies documenting a phase effect of low-frequency oscillations on cognition 

(Lakatos et al., 2005, 2008, 2013) focused on stimulus onsets (0ms) rather than on pre-

stimulus time-windows. We chose to look into a 60ms pre-stimulus window, aiming at 

anticipatory phase-alignment while avoiding a potential stimulus-induced phase-reset. In fact, 

a stimulus onset typically triggers phase-reset and evoked responses, which might bias phase 

estimates and derived metrics (e.g., coherence). Hence, previous studies showed that the δ 

phase is 0 at stimulus onset and coherent over stimulus repetitions (Lakatos et al., 2008). 

Another difference lies in the recordings: while prior studies employed invasive recordings, 

in EEG the phase effects are sometimes flipped (e.g., as a result of volume conduction), thus 

showing improved auditory processing on the rising phase of δ-band activity (e.g., Henry & 

Obleser, 2012) as opposed to the trough (Lakatos et al., 2005, 2007, 2008). However, there is 

complementary EEG evidence documenting a behavioral advantage (e.g., detection 

performance) for stimuli presented along both the peak and trough of ongoing δ-band activity 

(Busch & VanRullen, 2010; Cravo et al., 2013; Henry & Herrmann, 2014; Henry & Obleser, 

2012; Mathewson et al., 2009; Schroeder & Lakatos, 2009; Stefanics et al., 2010). These 

contradictory results raise concerns about the real role of δ-band activity in information 

processing. In fact, a recent comprehensive review by Keitel et al., (2022), highlighted that 

there is scarce and contradicting evidence on the link between pre-stimulus oscillatory 

amplitude and phase and cognition, and often there are small effect sizes. While differences 

in experimental setups and methodologies (recording types ((non-)invasive), time-windows, 

channel selection (a single EEG channel (e.g., Cz) or a channel cluster), processing pipelines 

(e.g., re-referencing)) may partially account for these discrepant results, in the current work 

we emphasize the role of variability. In particular, we characterized large intra- and inter-

individual variabilities in the if and how people predictively align their δ-band oscillatory 

activity to isochronous tone onsets. We further discuss that if variability emerges in such basic 

experimental setup, it may play a functional and adaptive role in cognition (Criscuolo et al., 

2024). In turn, the need to dedicate more attention to single-participant and trial fluctuations.  
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Beyond the ‘rhythm tracking’ approach, ‘accentuation analyses’ further revealed that 

individuals spontaneously superimposed accentuation patterns onto auditory sequences. Thus, 

although identical, successive tones were differentially processed as a function of a binary 

(Strong – weak; S-w) and ternary (S-w-w) accentuation pattern in a subset of trials. In fact, 

single-participant and -trial modeling of β-band neural oscillations revealed individual 

preferences for binary, ternary, and other accentuation patterns. In turn, the tone-locked β-

band responses were fluctuating as a function of a S-w or S-w-w patterns. Moreover, the 

superimposed accentuations influenced deviance processing: event-related responses to 

deviant (amplitude attenuated) tones were stronger in the accentuated as compared to the non-

accentuated positions along the auditory sequence. These results support the dynamic 

attending theory (Large & Jones, 1999), according to which our brain dynamically samples 

the sensory environment, and further expands prior evidence on the phenomenon of subjective 

accentuation (Abecasis et al., 2005; Baath, 2015; Brochard et al., 2003; Poudrier, 2020). In 

this perspective, accentuations may serve to parse and segment continuous sensory streams 

into predictable, coherent and finite units (Bolton, 1984; Mari R. Jones, 1976; Schroeder & 

Lakatos, 2009) and to allocate attentional resources to salient sensory events with the scope 

to optimize perception (Nobre & Van Ede, 2018; Shalev et al., 2019). 

Overall, this chapter shed new light on the basic neurophysiological mechanisms of temporal 

processing: I confirmed the complementary roles of δ-β waves in basic rhythm processing and 

the existence of intra- and inter-individual variabilities in the if, when, and how individuals 

encode, predict, and sample the acoustic environment.  

 

A cross-species comparison  

Are there cross-species (dis)similarities in rhythm cognition? Are our close ancestors, 

macaque monkeys, capable of processing temporal regularities similarly to humans? 

Charles Darwin noted that: “The perception, if not the enjoyment, of musical cadences and of 

rhythm is probably common to all animals and no doubt depends on the common physiological 

nature of their nervous system”.  

Comparative research demonstrated that the capacities to detect, produce and synchronize 

with rhythms is present in vocal learning animals (e.g., parrots; Patel et al., 2009), but not in 

others: macaque monkey were shown not to detect and synchronize with human-made 
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(musical) stimuli (Honing et al., 2012, 2018). Thus, the hypothesis that some aspects of 

rhythm cognition may be species-specific (Fitch, 2013; Patel, 2008; Patel, 2006), and 

dependent upon neuroanatomical differences between humans and other nonhuman animals 

(Merchant & Honing, 2014; Patel & Iversen, 2014) arose. However, one may ask if the use of 

human-made complex rhythms is adequate to test evolutionary hypotheses of temporal 

processing capacities. Another question is whether a finger tapping task (as the one typically 

employed in these studies) fits the ecological reality of the animal, who probably never tapped 

before (and surely not along a human-made musical rhythm). Thus, in chapter 3 I argued that 

a more fundamental question in comparative rhythm cognition could be: do nonhuman 

animals have the neurophysiological predisposition to encode temporal regularities in the 

environment? 

To address this question, I mirrored the experimental approach adopted in Chapter 2. Hence, 

two macaque monkeys listened to isochronous auditory sequences while EEG was 

continuously recorded. The monkeys did not undergo any training specifically designed for 

this study, as there was no task involved. The monkeys were seated in a monkey chair, they 

were free to move, and passively listened to identical tones presented in isochronous auditory 

sequences for more than 20 recording sessions. Fourier analyses demonstrated that macaque 

monkeys’ neural activity encoded the temporal regularity of the auditory sequences similarly 

to humans, as revealed by amplitude peaks centred at around the stimulation frequency. Next, 

‘rhythm tracking’ analyses showed predictive phase alignment of δ-band oscillations towards 

expected tone onsets, as indexed by the mean vector length. Similar to what I discussed for 

humans in Chapter 2, however, there were large intra- and inter-individual variabilities in the 

phase alignment, and a portion of trials did not show signs of tracking (the phase coherence 

as indexed by the mean vector length did not reach statistical significance). These observations 

support previous evidence showing that macaque monkeys’ neural activity encodes and 

synchronizes with temporal regularities in the sensory environment (e.g., Lakatos et al., 2008). 

At the same time, however, the single-trial approach allowed demonstrating that there are 

variabilities in the if, when, and how δ-band oscillations track rhythms in the macaque. 

Similarly, single-trial modelling of β-band oscillations revealed that macaque monkeys 

employ accentuations in a subset of trials. As in humans, binary (S-w) and ternary (S-w-w) 

accentuation patterns sample the acoustic environment, superimposing adjacent temporal 

windows of high- versus low-salience. Here, as well as in Chapter 2, I discussed that 

accentuations were not visible when averaging event-related potentials (ERP) and event-
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related time-frequency signals. The typical tendency to average across hundreds of trials had 

probably masked out trial-level accentuations, ultimately leading to the view that monkeys 

are not capable of superimposing accentuations. Instead, despite documented neuroanatomical 

and -functional differences in the motor system, and specifically in the cortico-basal-ganglia-

thalamo-cortical (mCBGT) circuitry (Mendoza & Merchant, 2014; Patel & Iversen, 2014; 

Wilson & Cook, 2016), we confirmed comparable neurophysiological signatures of rhythm 

processing in macaque monkeys. As in humans, a δ-β neural code implements different 

aspects of temporal processing, ultimately allowing to encode, track and predict temporal 

regularities in the sensory environment.  

 

The causal role of subcortical circuitries  

Where in the brain can we ascribe such exquisite time processing capacities?  

Human’s excellent timing and rhythm processing and production abilities have long been 

associated with neuroanatomical changes along the dorsal auditory stream, and extending into 

premotor, neostriatal, and basal ganglia areas throughout evolution (Balezeau et al., 2020; 

Rauschecker & Scott, 2009). However, others have argued in favor of a more prominent role 

of sensorimotor (i.e., auditory and motor) regions (Balasubramaniam et al., 2021; Wiener et 

al., 2019) as these areas are engaged in rhythm processing and production in both humans 

(Chen et al., 2008; Grahn & Brett, 2007; Kotz et al., 2018; Wiener et al., 2010) and nonhuman 

animals (Cisek, 2019; Mendoza & Merchant, 2014; Merchant & Honing, 2014; Sohn et al., 

2019). Furthermore, as sensorimotor regions phylogenetically preceded the development of 

higher-order brain regions, they must have played a significant role in the capacity of 

organisms to adapt to the environment.  

The motor network being discussed here is an extended cortico-subcortical-cortical network 

engaging BG and CE. The BG and CE have been associated with various aspects of rhythm 

cognition, including the capacities to extract salient periodicities in auditory sequences and to 

encode the precise timing of sensory events. Causal evidence further exists, demonstrating 

that patients with lesions in these brain regions had difficulties with processing, producing, 

and synchronizing with rhythms. What remained unclear, however, is what exactly changes 

in the neural dynamics of the patients’ brains: are neural oscillations not encoding the temporal 

regularities of sensory streams? 
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In Chapter 4, I expanded our previously adopted experimental approach by developing a novel 

methodological procedure to characterize the neural oscillatory dynamics of rhythm 

processing. Leveraging on the notions built in Chapter 1, I applied calculus to describe 

parameters as the velocity (in this case, instantaneous frequency; IF) and acceleration (Acc) 

of neural waves while tracking auditory rhythms, and further derived metrics of neural 

stability (S), deviation (Dev) and entropy.  

As in Chapters 2 and 3, healthy ageing individuals (healthy controls; HC), and stroke patients 

with lesions in either the BG or CE listened to isochronous auditory sequences while their 

EEG was recorded. ITPC analyses revealed that BG and CE patients encoded the temporal 

regularity in auditory streams, but less precisely than HC. By exploring trial-level neural 

dynamics in the δ-band, I further revealed group differences in the power, IF, S, and Dev. CE 

patients’ δ-band power and IF were comparable to HC, supporting the notion that these 

patients conserved intact sensitivity to the temporal structure of auditory sequences 

(Schwartze & Kotz, 2021). However, the lower stability and phase coherence may indicate 

heterogenous encoding of the precise timing of event onsets (Grube, Cooper, et al., 2010b; 

Nozaradan, Schwartze, et al., 2017). BG patients showed larger variabilities in power, reduced 

IF and S as compared to HC potentially indicating altered encoding of the temporal regularity.  

The assessment of neural data was complemented with a behavioral task in which participants 

were asked to tap along with auditory sequences presented at three different rates. Here, CE 

patients tapped faster than other groups at the intermediate tempo, and much slower at the 

fastest tempo, further displaying more variability and reduced tapping stability as compared 

to HO. Thus, the reduced capacity to precisely encode the when of auditory events affected 

the production and synchronization to rhythms, confirming previous findings (Ivry & Keele, 

1989; Ivry, Keele & Diener, 1988; Schwartze et al., 2016). BG patients, instead, showed large 

inter-individual variabilities already at the basic tempo, and a reduced tapping stability at 

faster tempo. These results confirm the previously documented heterogeneity in tapping 

behaviors in BG and the difficulties in adapting to tempo changes (Schwartze, Keller, et al., 

2011b).  

Altogether, these results substantiate the role of low-frequency neural oscillatory dynamics 

(Schroeder & Lakatos, 2009) to detect, produce, and synchronize with temporal regularities 

in the sensory environment. Hence, I demonstrated that δ-band oscillations pre-exist and 

outlast auditory sequences and tend to tune-in and -out with the perceived acoustic regularity 
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by accelerating and slowing down over time. Moreover, I confirmed the fundamental role of 

BG and CE as part of an extended cortico-subcortical-cortical network underlying rhythm and 

timing processing (Schwartze & Kotz, 2013). In fact, lesions in either the BG and CE causally 

impacted the capacities to precisely encode the timing of sensory events, process temporal 

regularities, as well as to produce and synchronize rhythmic behavior.  

 

Time in the body-brain system 

In Chapter 1, I elaborated on the use of oscillations to characterize physical time, and on the 

use of time to characterize motion and dynamics in natural sciences. Next, I discussed that in 

cognitive neuroscience we similarly employ oscillations, i.e., neural oscillations, to 

understand how process time and temporal regularities. Thus, in Chapters 2-4 we have seen 

how a δ-β neural code implements different aspects of temporal processing, allowing to 

encode, track and predict temporal regularities in the sensory environment. However, in 

Chapter 1 and later in Chapter 5, I also discussed the existence of other endogenous oscillators 

in the body: a frequency architecture of body physiological signals exists, ranging from the 

slow circadian rhythms, to gastrointestinal, breathing and cardiac rhythms. Thus, similarly to 

what I discussed for brain waves, I proposed that cardiac, breathing and gastrointestinal 

signals can be viewed as self-sustained oscillators, generating endogenous rhythms (e.g., heart 

rate) and processing timing in the environment (e.g., aligning cardiac activity to musical beat). 

I then suggested that body physiology may provide an internal clock marking the flow of time 

and which is employed as internal reference to generate and influence the sense of time. As 

for brain rhythms, bodily waves differ across individuals, and dynamically change within the 

same person during rest, perception (e.g., listening to music) and action (e.g., during sports). 

These observations lead to new experimental questions: does body physiology influence brain 

activity and cognition? Does body physiology play a role in inter-individual variabilities in 

behaviors? And more on the methodological side, can body-brain interactions be described by 

dynamic systems?  

In Chapter 5 we introduced a new conceptualization of a Body-Brain Dynamic System 

(BBDS). The BBDS holistically examines the body–brain–behavior interface and aims at 

exploring intra- and inter-individual variabilities in neurocognitive functions and behaviors. 

In the BBDS, the body and the brain are viewed as partially independent subsystems, having 

their own physiological roles within the organism (e.g., oxygen supply). The subsystems, 
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however, can dynamically transition from decoupled to coupled states in a context-specific 

manner. While not necessarily always coupled, body-brain waves tend to achieve coupling to 

optimize behavior. Not only breathing (Heck et al., 2016; Ito et al., 2014; Kluger, Balestrieri, 

et al., 2021), but gastrointestinal (Azzalini et al., 2019; Mayer, 2011), and cardiac (Park et al., 

2014; Park et al., 2016) signals modulate neural excitability and perception, consciousness 

(Park & Blanke, 2019), emotion regulation (Damasio & Carvalho, 2013), memory (Zelano et 

al., 2016), and action (Park et al., 2020).  

 

How do body waves influence brain and behavior? 

‘Take a deep breath, listen’ (Chapter 1). At the beginning of the thesis, I introduced this 

example, which clearly illustrates how we control physiology (in this case, breathing) to focus 

attention and augment sensory processing. In our daily experience, we employ top-down 

breathing control to enhance information processing, but what we do not notice is its influence 

on other physiological signals. First, respiration influences cardiac activity, inducing the well-

known phenomenon of heart rate variability (Perry et al., 2019; Schäfer et al., 1998; Shaffer 

et al., 2014). As sensory processing, e.g., auditory (Edwards et al., 2007) and visual (McIntyre 

et al., 2007) processing, is enhanced around the R-peak, breathing-to-cardiac interaction 

represents an endogenous mechanism to foster cognition, potentially achieved by timely 

allocating metabolic resources. At the same time, a ‘respiration modulated brain oscillatory 

network’ exists (Kluger & Gross, 2021), which encompasses temporal, hippocampal, 

brainstem, and cerebellar regions, as well as motor, prefrontal, and posterior areas. Breathing 

couples with many complex motor behaviors such as speaking, singing, or laughing 

(McFarland, 2001; McKay et al., 2003) as well as walking, cycling, running (Bechbache & 

Duffin, 1977; Bramble & Carrier, 1983; Folinsbee et al., 1983; Hill et al., 1988; Jasinskas et 

al., 1980; Kohn et al., 2016; B. Rassler & Kohl, 1997), and rowing (Mahler et al., 1991). Thus, 

breathing control seems to be a mechanism to temporally coordinate action and structure the 

sequela of motor plans within the respiratory cycle. We proposed both clustered and rhythmic 

body-brain-behaviors to be possible, each characterized by different coupling patterns 

between these three elements. Thus, speaking may adhere to clustered behaviors, as a short 

inspiration is followed by a long expiration during which speech sounds unfold. Jogging, 

instead, fits better in the rhythmic behaviors as there is a tight correspondence between the 

motion of motor effectors (hands and legs) with the breathing cycle. What is fascinating is 
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that this research perspective opens to the investigation of daily behaviors and demands for 

ecologically valid experimental setups: daily acts of speaking, playing a musical instrument, 

doing sports fundamentally rely on body-brain -behavior coupling, but have yet to be 

characterized as such. 

 

Individual body-brain rhythms influence inter-individual variability 

Another debate surrounds the question of whether individual physiological rhythms influence 

individual cognitive and behavioral rhythms. For instance, individuals differ in their preferred 

tempo when listening to music and speech, with some preferring faster rates (e.g., speeding 

up a podcast), while others prefer slower rates (e.g., they avoid techno music). Similarly, there 

are individual differences in walking and speaking rates, and some individuals tend to 

comfortably jog and swim faster than others. Are these differences paralleled and explainable 

as a function of inter-individual differences in breathing and heart rates? Namely, do slower 

respiratory and heart rates determine slower walking and speaking rates? The link between 

individual body-brain rhythms and behavioral rhythms is currently being investigated in an 

ongoing pre-registered research line (Criscuolo et al., 2022b), where we test a number of 

spontaneous behaviors (e.g., reading, speaking, walking) while continuously monitoring 

bodily and brain activity. In the same research line, we test inter-individual differences in 

rhythms of perception: by letting participants passively listen to basic (isochronous) and 

complex (speech and poems) auditory sequences, we aim at better understanding how body-

brain waves sample, encode, and predict temporal regularities in the acoustic environment. 

Once more, we leverage on the dynamic attending framework and expand its focus so to 

include bodily waves into the equation. Do bodily rhythms influence how we sample and 

process sensory information in the acoustic environment? How do heart and breathing rates 

act and interact with perceived temporal regularities? Can we expand the δ-β neural code for 

timing processing so to include the influence exerted from body waves?  

Perhaps even before that, how to assess the dynamics of body-brain interactions from rest to 

cognition? How to achieve body-brain coupling as described in the BBDS?  

We argued that body-brain interactions and the transition from decoupled to coupled states 

demand for systematic assessments of the strength and directionality of influence between 

body-brain signals, at multiple timescales. As these signals are characterized by a periodicity, 
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a dynamic system of coupled oscillators could describe each signal’s dynamic, on the one 

hand, and signals interactions on the other. Thus, we hypothesized the transition from 

decoupled to coupled states to let a body-brain frequency architecture emerge. This 

architecture is argued not to be hierarchical, as the driver of coupling could either be the top-

down control of breathing, or bottom-up heart rate changes.  

However, can everyone control body-brain coupling efficiently? What is the influence of 

cardiovascular and respiratory disorders on brain activity and cognition? 

Translational research showed a link between respiratory diseases in childhood (Campbell et 

al., 2017; Goodwin & Buka, 2008; Maric et al., 2020) and heightened risks for anxiety 

disorder and major depression in adulthood. Furthermore, breathing impairments were 

associated with early manifestations of Parkinson’s disease (Morley & Duda, 2011), even in 

the ‘pre-motor’ diagnosis (Maric et al., 2020). Other psychiatric disorders (Quadt et al., 2018; 

Tumati et al., 2021), anxiety, depression (Paulus & Stein, 2010), and autism (Garfinkel et al., 

2016) were also linked to an altered sensitivity to bodily visceral inputs. Altogether, this 

evidence suggests that a holistic assessment of body-brain interactions may help to better 

understand pathological conditions characterized by altered body physiology. However, in the 

healthy as well as in clinical populations, research has been limited to assessing one bodily 

signal next to brain activity and/or behavior, thus preventing the holistic characterization of 

body-brain dynamics and their conjunct influence on cognition. 

To conclude, in Chapter 5 I discussed that the BBDS draws a tight link between bodily 

physiological rhythms, brain activity, and behavior. Fluctuations in body-brain interactions 

instantiate a rhythmic mode of perception and may be described by a system of body-brain 

dynamic oscillators. I argued that the time is ripe for a fundamental shift in how we study 

neurocognitive functions. Body-brain interactions demand for more attention and offer novel 

perspectives to foster our understanding of cognition in health and pathology. The BBDS 

paves the way for a plethora of novel and holistic research questions on human functioning; 

and I hope to pick up the right ones in my future research.  

To start off with, I have introduced two novel research lines: the first targets the link between 

individual body-brain rhythms and behavioral rhythms (Criscuolo et al., 2022b), while the 

second aims at developing a holistic bio-feedback training to modulate neurocognitive 

functions and emotional states (Criscuolo & Kotz, 2023). As such, this research aims at 

expanding the traditional neurofeedback setups so to include bodily physiological activity and 
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body-brain interactions next to the assessment of brain activity in isolation. Thus, I 

hypothesized that a holistic biofeedback approach designed to train the capacity to focus on 

interoceptive signals and increase body-brain coupling will increase the efficacy of existing 

neurofeedback trainings in improving attention, anxiety and wellbeing.  

‘Take a deep breath, listen’: Body-Brain Waves may be generating your own internal clock, 

sampling the sensory environment and coordinating perception and action within your own 

heart beats. If so, cognition and inter-individual differences may be better understood from 

the lens of a body-brain dynamic system.  
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What have we learned? 

 

Ordo ab chaos  

In this thesis, I have discussed that time processing is fundamental to achieve a coherent 

perceptual representation of our sensory environment. Chaotic multivariate sensory inputs of 

different spatial provenance and at multiple temporal scales converge into a coherent percept 

by using our sense of time.  

Timing cognition in waves  

The continuous flow of time is discretized into measurable and compact units by using 

oscillations of an atomic clock. Our endogenous sense of time is similarly associated with 

oscillations of brain activity, i.e., fluctuations in the excitability of neuronal populations. In 

Chapters 2-4 I demonstrated that neural waves encode, track and predict temporal regularities 

in the acoustic environment in healthy young and ageing individuals as well as in macaque 

monkeys. Cross-species similarities in basic rhythm cognition speak in favor of a fundamental 

role of basic timing throughout evolution. Lesions in the BG and CE in humans, however, 

causally impact temporal processing, and further alter the capacities to produce and 

synchronize with rhythms.  

 

Time and timing are not fixed: variability 

In this thesis I dedicated particular attention to intra- and inter-individual variabilities, 

typically neglected by pooling and averaging data across trials and participants. This approach 

allowed for interesting discussions: for instance, in Chapter 2 and 3 I showed that standard 

ERP and time-frequency analyses relying on the averaging of neural activity over hundreds 

of trials failed to show the presence of binary accentuations. In contrast, single-trial modelling 

revealed fluctuations: there were binary, ternary and other accentuations, on a subset of trials. 

In those trials, identical tones were differentially processed in function of S-w accents, and 

the accentuations further influenced deviance processing. These observations reveal a more 

variegated picture than previously thought: there are intra- and inter-individual differences in 

the if, when, and how participants sample the acoustic environment, and in the if, when, and 

how they processed temporal regularities at all. In the comparative study (Chapter 3), this 

systematic approach was even more important: evolutionary hypotheses on cross-species 
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similarities are usually tested by employing human-made stimuli and by training the animal 

to perform human-like behavior (e.g., synchronizing to complex musical rhythms). Leaving 

out the discussion on whether humans themselves enjoy (and are capable of) having to 

precisely tap along with music for long experimental sessions, these manipulations surely do 

not match an animal’s ecological reality. Thus, I argued that a quintessential step in 

understanding the phylogenetic trajectories of basic rhythm cognition is the testing of task-

independent neural behavior in non-human primates. In absence of specific task instructions, 

the animal may or may not be attentively listening to the auditory sequences at all. However, 

if the animal’s brain still shows to be processing the temporal regularities in the acoustic 

environment, that provides evidence for an endogenous predisposition to process rhythms. In 

turn, one may speculate on the evolutionary role of rhythm cognition: what is its functional 

and adaptive role? In this context, single-trial analyses were fundamental to show the capacity 

of macaque monkeys’ neurophysiological activity to encode, track and predict temporal 

regularities and sample the acoustic environments via accentuations patterns, in absence of 

task instructions.  

Large intra- and inter-individual variabilities were also observed in ‘rhythm tracking’ analyses 

across Chapters 2-4. Healthy young individuals and macaque monkeys showed large 

variability in the if, when and how they aligned their neural waves to the rhythm of auditory 

tones. A portion of trials did not show phase coherence (as indexed by mean vector length), 

our proxy for the hypothesized predictive phase alignment. More exhaustive analyses on the 

dynamics of neural tracking in Chapter 4 similarly showed large heterogeneity in the velocity 

and acceleration of neural waves while tuning to auditory rhythms. While healthy participants 

displayed more stable neural dynamics as compared to stroke patients, they still showed 

variability.  

 

What influences such variability? 

In Chapter 5, I discussed that investigating the brain in isolation may be reductionist. The 

body hosts a plethora of endogenous oscillators, each fluctuating at its eigenfrequency. Neural 

waves, circadian, gastrointestinal, cardiac and respiratory rhythms may represent internal 

clocks ticking at different frequencies, mutually interacting, and forming a body-brain 

frequency architecture. I, thus, discuss that body-brain rhythms resemble dynamic oscillators 

sampling our sensory environment at multiple timescales, dynamically attending and 
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coordinating motor production and synchronization. Importantly, individuals differ in their 

physiology: your cardiac and breathing rates make you unique. Furthermore, your cardiac and 

breathing rates let your internal clock tick at your unique rhythm. Consequently, variability in 

body-brain rhythms and their dynamic interaction may instantiate inter-individual variabilities 

in sensory processing, perception and action.  

However, how much do we know about inter-individual variabilities in bodily and behavioral 

rhythms (e.g., individual walking and speaking rates)? How much do we know about body-

brain interactions and their influence on general cognition? Unfortunately, still little, but in 

recent years there has been a steep increase in interest in the topic and many research labs 

across the world are investigating various aspects of cognition in relation to body-brain 

interactions. While still young, this field of research promises to advance our understanding 

of neurocognitive functions, in health and cognition. And we are joining this journey with two 

exciting research lines in both basic (Criscuolo, Schwartze, & Kotz, 2022b) and translational 

(Criscuolo & Kotz, 2023) research.  

 

 

Is isochrony processing a valid scenario for testing rhythm cognition? 

While I acknowledge that isochronous auditory sequences may not necessarily represent a 

‘realistic’ stimulus, in Chapter 3 I proposed it to be an ideal test-case for investigating the 

basic neurophysiological mechanisms underlying the processing of temporal regularities. In 

the absence of other temporal, spectral, and semantic information (i.e., as in complex rhythms, 

in music and speech), I have isolated the neural dynamics encoding a sequence of tones onsets 

and their predictable periodicity. While perhaps perceived as minimalistic (or simplistic), I 

note that isochrony (or gradients of temporal regularity) is present in a wide range of daily 

behaviors (e.g., walking), environmental stimuli (e.g., speech), and physical phenomena (e.g., 

motion of particles). Thus, understanding basic rhythm cognition is a fundamental stepping 

stone allowing investigations of more complex rhythms. Furthermore, in light of the 

discussion on variability above, starting with simple stimuli may be a better strategy as 

compared to investigating the processing of complex stimuli. In fact, variability may scale 

with task and/or stimulus complexity ultimately compromising the signal to noise ratio of the 

neural dynamics under investigation.  

 

Can timing modulate other cognitive functions?  
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We discussed that internal time generation and time processing are fundamental to structure 

cognition: the sense of time allows to coherently process multisensory information, 

coordinating perception and (re-)action. When timing is altered, as in BG and CE patients, 

sensory processing is affected, as well as the capacities to produce and timely synchronize 

behaviors.  

While we here tested the processing of basic rhythms (isochronous auditory sequences), and 

the production of simple behaviors (finger taps), we argue that these lower-levels functions 

are fundamental for higher-order cognitive functions and behaviors such as music and speech 

processing and production. Indeed, speech processing relies on a frequency architecture of 

brain waves (Giraud & Poeppel, 2012; Rimmele & Keitel, 2023), encoding and predicting the 

timing of speech sounds (phonemes, syllables, words). Similarly, speech production requires 

the planning and coordination of a sequela of motor movements, along with the prediction of 

upcoming sensory input (Hickok, 2012; Hickok & Poeppel, 2007). When some of these timing 

and predictive computations are altered, dysfluencies occur as in the case of stuttering 

(Sengupta et al., 2017). In fact, diverse developmental speech and language problems, ranging 

from dyslexia to stuttering, and with frequent comorbidity with motor and attention disorders, 

have been linked to genetic liability for ‘atypical rhythms’ (Niarchou et al., 2021). This large-

scale genome-wide association study unravelled the fundamental influence of genetic factors 

on endogenous timing mechanisms. In particular, the abilities to process temporal regularities, 

predict, and synchronize to temporal patterns seem to have a genetic substrate which 

influences neurodevelopmental processes.  

 

Can we use timing in rehabilitation? 

Rhythmic training has been largely employed as a tool to improve speech and language 

processing, as well as motor coordination. For instance, rhythmic trainings proved to be 

effective in improving speech fluency (Toyomura et al., 2015), as well as reading skills 

(Bonacina et al., 2015). Similarly, music exposure (Nombela et al., 2013; Nombela et al., 

2013) and dance (Earhart, 2009) seem to improve gait (speed and fluency of coordination) in 

Parkinson’s disease (PD) patients. The predominant idea is that rhythmic training and music 

exposure may stimulate and provide a regular temporal frame, an internal clock, which is 

otherwise altered in these conditions (Goswami, 2011). What is usually neglected, however, 

is the bodily perspective: the aforementioned genome-wide study (Niarchou et al., 2021) 
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further unveils shared genetic architecture between timing processes and two other bodily 

rhythms, respiration and circadian rhythms. In PD, for instance, motor deficits usually co-

exist with respiratory (Mehanna & Jankovic, 2010) and cardiovascular (Ziemssen & 

Reichmann, 2010) problems, pointing towards a central timing deficit. And while music and 

rhythm training are sometimes effective, large inter-individual differences exist, whereby 

some PD patients show no improvement or even worsening of symptoms when exposed to 

auditory stimuli (Nombela et al., 2013; Thaut et al., 1996). Altogether, these observations 

strengthen the link between various body-brain rhythms, timing capacities, and general 

cognition, ultimately reinforcing the need for more individualized, systematic and holistic 

assessments of body-brain interactions and individual variabilities.  
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Conclusions 

In this thesis, I investigated the basic neurophysiological mechanisms to process and predict 

temporal regularities in the sensory environment. I performed basic, comparative and 

translational research and demonstrated that the capacities to detect, produce and synchronize 

with rhythms in the acoustic environment rely on neural dynamics in the δ-β frequency-bands. 

δ-band neural waves encode and track auditory rhythms via adaptive mechanisms of 

frequency- and phase-tuning, generally referred to as entrainment. Thus, I characterized cross-

species similarities in neurophysiological mechanisms of basic rhythm processing, and further 

confirmed the fundamental role of subcortical brain regions in rhythm cognition. In fact, focal 

lesions in either the BG or CE causally impacted the capacities to precisely encode, produce 

and synchronize with external rhythms. Next to δ-band activity, we demonstrated that β-band 

oscillations sample the acoustic environment by superimposing accentuation patterns onto 

isochronous auditory sequences. These β-band dynamics were present in humans as well as 

nonhuman animals, confirming shared capacity to process rhythms beyond isochrony in our 

close ancestors, macaque monkeys. Overall, these observations speak in favor of an 

evolutionary role of rhythm cognition in the phylogeny of higher-order cognitive functions, 

such as music and speech in humans. Finally, I expanded the research line to other 

physiological rhythms: bodily activity. I discussed that bodily physiological signals resemble 

endogenous oscillators and may interact with brain waves modulating general cognition. 

Thus, I proposed the novel framework of the Body-Brain Dynamic System to analytically 

characterize body-brain interactions and their causal role in influencing intra- and inter-

individual variabilities in neurocognitive functions and behaviors.  

Altogether, I discussed that timing in the body-brain system interacts with timing in the 

sensory environment, ultimately modulating our capacities to detect, produce and synchronize 

with rhythms, and influencing the abilities to act and adapt in a dynamically changing 

environment.  
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Summary 

From pre-Socratic to modern philosophers, many have debated about the role of the sense of 

time in our experience of the world. What is time, and how do we use it to structure our 

perception? Drawing a tight link between the use of time in physics and natural sciences and 

the sense of time in cognitive neuroscience, the research summarized in this thesis aims at 

understanding how our brain generates a sense of time, and how we employ time to 

coordinate perception and action.  

With a series of basic, comparative and translational studies reported in Chapters 2 to 4, I 

discuss that neurophysiological activity in the brain may provide an exquisite sense of time: 

neural waves represent an internal ticking clock, generating an endogenous representation of 

time and able to keep track of the precise timing of external events. Thus, we discussed that 

neural waves at multiple time-scales (e.g., delta (δ; 1-4Hz) and beta (β; 12-20Hz)) encode 

the when of incoming sensory information, and predictively track the when of future sensory 

inputs by generating predictions. These expectations are formed by detecting temporal 

regularities in environmental stimuli: leveraging on learnt temporal patterns, neural waves 

prepare the organism to process the next stimuli, thus optimizing sensory processing, 

perception, and (re-)action. These so-called dynamics of attending are thought to play a 

fundamental role in our capacities to act and adapt in a dynamically changing environment. 

They rely on an extended cortico-subcortical network involving basal ganglia (BG) and 

cerebellum (CE), and are putatively linked to the development of higher order cognitive 

capacities in humans, such as music and speech.  

Thus, in our research we asked: (i) do our close ancestors, macaque monkeys, process 

auditory temporal regularities similarly to humans? Next, (ii) can lesions in the BG and CE 

impact the capacities to encode, produce and synchronize with rhythms in the sensory 

environment? 

In Chapter 2, we identified an adaptive δ-β neural code sampling the sensory environment 

by encoding, tracking and predicting basic auditory rhythms. In Chapter 3 we argued that 

striking similarities between humans and nonhuman animals (macaque monkeys) support 

the notion of shared basic rhythm cognition, challenging existing evolutionary hypotheses 

on the evolution of language and music in humans. Finally, in Chapter 4 we demonstrated 

that the δ-band neural computations employed to precisely encode the timing of auditory 

input are altered in BG and CE patients, who showed difficulties in processing the precise 
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when, as well as in tracking and predicting upcoming sensory inputs. These difficulties were 

further reflected in behavioral data, showing impaired ability of these patients to produce 

and synchronize their own behavior (tapping) to externally presented rhythms.  

Expanding this research line, in the second part of the thesis (Chapter 5) we discussed that 

the sense of time is further influenced by bodily physiological activity: heartbeat, respiration 

and gastrointestinal rhythms provide yet another level of time in the body, next to brain 

activity. We thus, argued, that these complementary rhythms in the body and the brain may 

form a dynamic system of coupling oscillators, influencing sensory processing, perception 

and action. Our formulation of the Body-Brain Dynamic System (BBDS) incorporates the 

variability of human behavior, and explains it in function of inter-individual variabilities in 

physiological rhythms, as well as in body-brain coupling states. The BBDS opens to a 

plethora of new investigations on neurocognitive functioning in healthy and clinical 

populations: what is the modulatory influence of (altered) cardiovascular, respiratory and 

gastrointestinal activity on brain functioning and cognition? Some of the hypotheses 

formulated in the framework in Chapter 5 are tested in our new ongoing research line, in 

which we directly assess the link between body-brain rhythms, their dynamic coupling, and 

individual behavioral rhythms (e.g., rhythm of walking, speaking, listening preferences).  

Altogether, the results presented in Chapters 2-4 speak in favor of a fundamental role of δ-β 

neural waves in rhythm processing, strengthen the notion that there exist similarities 

between human and nonhuman animal’s rhythm cognition, and confirm the causal role of 

BG and CE structures in rhythm processing and production.  

The second research line introduced in Chapter 5, suggests to expand the horizon of 

cognitive neuroscience research so to include body physiology and body-brain interactions 

in the equation. As such, our novel framework argues in favor of a fundamental shift in how 

we study human brain and behavior: holistic, systematic, individual assessments are critical 

to advance our understanding of human cognition, in health and pathology.  

To conclude, we discussed that time generation and time processing, in the body and the 

brain, are fundamental to structure cognition: the sense of time allows to coherently process 

multisensory information, coordinating perception and (re-)action. Ordo ab chaos.   
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Nederlandse samenvatting (Dutch summary) 

Van pre-Socratische tot moderne filosofen hebben velen gedebatteerd over de rol van het tijdsbesef in 

onze ervaring van de wereldlijke realiteit. Wat is tijd en hoe gebruiken we het om onze waarneming te 

structureren? Door een nauwe link te leggen tussen het gebruik van tijd in de natuurkunde en 

natuurwetenschappen enerzijds, en het tijdsbesef in de cognitieve neurowetenschappen anderzijds, heeft 

het onderzoek samengevat in deze scriptie tot doel te begrijpen hoe onze hersenen een gevoel van tijd 

genereren, en hoe we tijd gebruiken om perceptie en actie te coördineren. 

Met een reeks basis-, vergelijkende en translationele studies gerapporteerd in Hoofdstukken 2 tot 4, 

bespreek ik dat neurofysiologische activiteit in de hersenen mogelijk een voortreffelijk tijdsbesef biedt: 

neurale golven vertegenwoordigen een interne tikkende klok, genereren een endogene representatie van 

tijd en zijn in staat om de precieze timing van externe gebeurtenissen bij te houden. We hebben 

besproken dat neurale golven op meerdere tijdschalen (bijv. delta (δ; 1-4Hz) en beta (β; 12-20Hz)) het 

'wanneer' van binnenkomende sensorische informatie coderen, en voorspellend het 'wanneer' van 

toekomstige sensorische input volgen door voorspellingen te genereren. Deze verwachtingen worden 

gevormd door het detecteren van temporele regelmatigheden in omgevingsstimuli: door te profiteren 

van geleerde temporele patronen, bereiden neurale golven het organisme voor om de volgende stimuli 

te verwerken, waardoor sensorische verwerking, perceptie en (her)actie worden geoptimaliseerd. Deze 

zogenaamde dynamiek van aandacht wordt verondersteld een fundamentele rol te spelen in onze 

capaciteiten om te handelen en aan te passen in een dynamisch veranderende omgeving. Ze steunen op 

een uitgebreid cortico-subcorticaal netwerk dat betrokken is bij de basale ganglia (BG) en het cerebellum 

(CE), en worden verondersteld te zijn verbonden met de ontwikkeling van hogere cognitieve capaciteiten 

bij mensen, zoals muziek en spraak. 

Dus, in ons onderzoek vroegen we ons af: (i) verwerken onze naaste voorouders, makaakapen, auditieve 

temporele regelmatigheden op dezelfde manier als mensen? Vervolgens, (ii) kunnen laesies in de BG en 

CE de capaciteiten beïnvloeden om ritmes in de sensorische omgeving te coderen, produceren en 

synchroniseren? 

In Hoofdstuk 2 identificeerden we een adaptieve δ-β neurale code die de sensorische omgeving 

bemonstert door basisauditieve ritmes te coderen, volgen en voorspellen. In Hoofdstuk 3 betoogden we 

dat opvallende gelijkenissen tussen mensen en niet-menselijke dieren (makaakapen) de notie van 

gedeelde basisritmecognitie ondersteunen, bestaande evolutionaire hypothesen over de evolutie van taal 

en muziek bij mensen uitdagend. Ten slotte toonden we in Hoofdstuk 4 aan dat de δ-band neurale 

berekeningen die worden gebruikt om de timing van auditieve input nauwkeurig te coderen, worden 

veranderd bij BG- en CE-patiënten, die moeite hadden met het verwerken van het precieze 'wanneer', 

evenals met het volgen en voorspellen van aankomende sensorische inputs. Deze moeilijkheden werden 

verder weerspiegeld in gedragsgegevens, waarbij een verminderd vermogen van deze patiënten om hun 
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eigen gedrag (tikken) te produceren en te synchroniseren met extern gepresenteerde ritmes werd 

aangetoond. 

Door deze onderzoekslinie uit te breiden, bespraken we in het tweede deel van de scriptie (Hoofdstuk 5) 

dat het tijdsbesef verder wordt beïnvloed door lichamelijke fysiologische activiteit: hartslag, ademhaling 

en gastro-intestinale ritmes bieden nog een ander niveau van tijd in het lichaam, naast hersenactiviteit. 

We betoogden dus dat deze complementaire ritmes in het lichaam en de hersenen een dynamisch systeem 

van koppelende oscillatoren kunnen vormen, dat de sensorische verwerking, perceptie en actie 

beïnvloedt. Onze formulering van het Body-Brain Dynamic System (BBDS) omvat de variabiliteit van 

menselijk gedrag en verklaart dit in functie van interindividuele variaties in fysiologische ritmes, evenals 

in toestanden van koppeling tussen lichaam en brein. Het BBDS opent naar een overvloed aan nieuwe 

onderzoeken naar neurocognitieve werking bij gezonde en klinische populaties: wat is de modulerende 

invloed van (veranderde) cardiovasculaire, respiratoire en gastro-intestinale activiteit op hersenfunctie 

en cognitie? Sommige van de hypothesen geformuleerd in het kader van Hoofdstuk 5 worden getest in 

onze nieuwe, lopende onderzoekslinie, waarin we rechtstreeks de link tussen lichaam-hersenen ritmes, 

hun dynamische koppeling en individuele gedragsritmes (bijv. loopritme, spreekritme, 

luistergewoonten) beoordelen. 

Al met al spreken de resultaten gepresenteerd in Hoofdstukken 2-4 voor een fundamentele rol van δ-β 

neurale golven in ritmeverwerking. Ze versterken de notie dat er overeenkomsten zijn in het ritmebegrip 

tussen mensen en niet-menselijke dieren en bevestigen de causale rol van BG- en CE-structuren in 

ritmeverwerking en -productie. 

De tweede onderzoekslinie geïntroduceerd in Hoofdstuk 5, suggereert het horizon van cognitieve 

neurowetenschappelijk onderzoek uit te breiden om lichaamsfysiologie en lichaam-hersenen interacties 

in de vergelijking op te nemen. Als zodanig betoogt ons nieuwe kader voor een fundamentele 

verschuiving in hoe we menselijke hersenen en gedrag bestuderen: holistische, systematische, 

individuele beoordelingen zijn cruciaal om ons begrip van menselijke cognitie, zowel in gezondheid als 

in pathologie, te bevorderen. 

Ter afsluiting bespraken we dat tijdscreatie en -verwerking, in het lichaam en de hersenen, fundamenteel 

zijn om cognitie te structureren: het tijdsbesef maakt het mogelijk om multisensorische informatie 

coherenter te verwerken, perceptie en (her)actie te coördineren. Ordo ab chaos. 

  



165 

 

Impact addendum 

 

What is the main purpose of the research described in the thesis and what are the main 

results and conclusions? 

The research summarized in this thesis aimed at understanding how we encode and process 

the timing of sensory input, and how we employ timing computations to efficiently coordinate 

perception and action. With a series of basic, comparative and translational studies reported 

in Chapters 2 to 4, I showed that neurophysiological activity in the brain provides an exquisite 

sense of time: neural waves represent endogenous oscillators, produce an internal clock, and 

are capable of tracking the precise timing of sensory input. Thus, I discussed that neural waves 

at multiple timescales (e.g., delta (δ; 1-4Hz) and beta (β; 12-20Hz)) encode the when of 

incoming sensory information, and predictively track the when of future sensory inputs by 

generating predictions. These so-called dynamics of attending are thought to play a 

fundamental role in our capacities to act and adapt in a dynamically changing environment.  

Thus, in our research we demonstrated similarities in basic rhythm cognition between humans 

and nonhuman animals, macaque monkeys. Next, we provided causal evidence for a 

fundamental role of BG and CE in the capacities to encode, produce and synchronize with 

rhythms in the sensory environment. Expanding this research line, in the second part of the 

thesis I discussed that bodily physiological activity interacts with and influences 

neurocognitive functions. Heartbeat, respiration and gastrointestinal rhythms provide yet 

another level of time in the body, next to brain activity. Thus, I advanced the new framework 

the Body-Brain Dynamic System (BBDS) to analytically examine and characterize body-

brain interactions and their influence on sensory processing, perception and action.  

 

What is the (potential) contribution of the results of this research to science? 

Altogether, the results presented in Chapters 2-4 speak in favor of a fundamental role of δ-β 

neural waves in rhythm processing, strengthen the notion that there exist similarities between 

human and nonhuman animal’s rhythm cognition, and confirm the causal role of BG and CE 

structures in rhythm processing and production.  

The second research line introduced in Chapter 5, suggests expanding the horizon of cognitive 

neuroscience research so to include body physiology and body-brain interactions into the 
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equation. As such, our novel framework argues in favor of a fundamental shift in how we 

study human brain and behavior: holistic, systematic, individual assessments are critical to 

advance our understanding of human cognition, in health and pathology.  

To conclude, I discussed that time, in the body and the brain, is fundamental to structure 

cognition: the sense of time, and the capacities to track and sample sensory input, allow to 

temporally organize multisensory information into a coherent percept, and ultimately allow to 

act and adapt in a dynamically changing environment. Ordo ab chaos.  

 

Conceptual and methodological advances  

Across chapters, we have dedicated particular attention to intra- and inter-individual 

variabilities: we have developed new methodological approaches to explore variability in 

individual brain data, and to characterize time-varying dynamics of neural oscillatory activity. 

Brain functioning and behavior are variegated, multifaceted, complex, dynamic phenomena 

(or systems) which cannot be summarized into group averages. The typical tendency to 

aggregate data across individuals and hundreds of experimental trials leaves out systematic 

assessments of what happens moment to moment, as well as what determines observed 

behaviors. We discuss that this approach has failed and will inevitably keep on failing in 

understanding human cognition and disorders: future research has to dedicate more attention 

to the individual and his/her unique body, brain, behavioral variabilities.  

These formulations may not have an immediate impact on society and ongoing scientific 

research, but hopefully contribute to and motivate a movement towards novel holistic and 

individualized research and therapeutic approaches. In fact, the findings on intra- and inter-

individual variabilities (Chapters 2-4) have raised substantial interest in the neuroscientific 

community. Similarly, the framework provided by the BBDS (Chapter 5) is of cross-

disciplinary interest and has been welcomed with great enthusiasm by a large crowd of 

scientists of different backgrounds.  

 

Public outreach and education 

This work has been presented publicly in more than 10 internal conferences and more than 10 

talks in research groups across the world. Importantly, this research has reached both the 
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neuroscientific community, as well as the general public via in-person events, as well as 

through an active presence on social media (e.g., Twitter, LinkedIn, Facebook) and websites 

(e.g., the BAND-lab and Waves conference). Our work has further attracted the interest of 

NeuroTech companies, who are in contact with us to explore future applications of mobile 

body-brain imaging setups in future research lines. What I am mostly proud of, however, is 

that I recently went back to my secondary school in Salerno (southern Italy) to discuss my 

research on rhythm. There is where I started to play music, and where my journey to becoming 

a professional musician started, some years ago. It was a great pleasure bringing there my own 

research on rhythm and music, and meeting the sparking interest in the crowd: my family, my 

teachers, and many more school teachers across the Province and Campania region.  

Finally, our research is being published in high-impact factor journals, a process which 

allowed us to receive high-standard feedback and advice to further improve the quality of our 

work. Through the PhD, however, I have learnt that the publication process sometimes suffers 

from subjective views, egoistic interests (e.g., you cannot provide evidence against a 

reviewer’s theory) and significant delays (it may take a year to go through revisions). 

Consequently, receiving fair, critical and timely feedback often remains an utopia.  

My research lines have also inspired my teaching: I try to convince my students that the focus 

on the individual and individual variabilities is important to advance science. Thus, across 

BSc and MSc courses, I often engage in critical discussions with students discussing the why 

and how examining variability is important, in healthy and clinical populations. The how is 

further implemented in my programming and signal processing courses, during which I offer 

ad-hoc examples on how to analyze and visualize single-participant and -trial data, and how 

to summarize findings with statistics.  
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