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1.1. Glomerulosclerosis and interstitial fibrosis in 
chronic kidney disease. 

Chronic kidney disease (CKD) represents a complex disease characterized by persistent 
structural (glomerulosclerosis and fibrosis) and functional (proteinuria, deterioration of 
glomerular filtration rate) renal changes (Zoccali et al. 2017). Worldwide, approximately 
10% of the population suffers from CKD and it is predicted that approximately 14 out of 
every 100,000 people worldwide will die from it per year in 2030 (GBD 2019 Diseases and 
Injuries Collaborators 2020). For patients with end-stage CKD, treatment options include 
chronic hemodialysis, which is associated with significantly increased excess mortality, 
or kidney transplantation (Levey and Coresh 2012). However, waiting lists for kidney 
transplantation are currently very long, so many CKD-patients die on dialysis before a 
suitable donor organ can be transplanted. Current therapeutic options are mostly limited 
to systemic immunosuppression and blood pressure control using ACE inhibitors or 
systemic glucocorticoid therapy (Romagnani et al. 2017). Specific treatment options to 
counteract the progression of chronic renal failure are not currently available.

The kidney is composed of approximately 1-1.5 million functional and anatomically 
distinct subunits called nephrons (see Figure 1A). These in turn can be differentiated into 
a glomerular, tubular, or tubulo-interstitial compartment, each of which has a specific 
physiological role in renal function. Damage from, for example, inflammatory or hypoxic 
influences in any one of these compartments can lead to irreversible nephron loss, and 
thus to loss of renal function (Ruggenenti, Cravedi, and Remuzzi 2012) (Figure 1B-C). Two 
stereotypic pathological responses in the different compartments are associated with 
progressive renal function loss: tubulointerstitial fibrosis (TIF) (Zeisberg and Neilson 
2010) and glomerulosclerosis or secondary focal segmental glomerulosclerosis (GS, 
FSGS) (Kriz, Hartmann, and Hosser 2001). A detailed and in-depth understanding of the 
early molecular changes in the different renal cell types is necessary to develop new 
therapeutic approaches. These therapeutic approaches aim to halt the progression of 
chronic renal failure as early as possible.

1.2. Cellular mechanisms of interstitial scarring in 
CKD

Following acute renal failure, reparative mechanisms characterized by consecutive, 
sometimes overlapping tissue responses begin in the kidney (Coelho et al. 2018; 
Basile, Anderson, and Sutton 2012). As part of the reparative process, an inflammatory 
response usually results in extracellular matrix production (fibrogenesis), resolution, and 
regeneration (proliferation of intact tubule epithelium) (Figure 1C). Often, the reparative 
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Fig. 1 Kidney compartment specific CKD adaptive and maladaptive mechanisms. 
A. The functional units of mammalian kidneys can be divided into different compartments: glomerular 
compartment, tubular compartment, and interstitial compartment. B. Upon glomerular injury adaptive 
changes occur due to glomerular hypertension which leads to glomerular hypertrophy. If a certain threshold 
of podocyte stress and podocyte loss is reached, parietal epithelia cells become activated and invade the 
glomerular capillaries causing irreversible scarring and nephron loss.  C.  Upon tubular injury proteinuria 
and misdirected filtration leads to tubular stress and activation as well as to secretion of cytokines and 
chemokines that promote interstitial inflammation and activation of fibroblasts. Compensatory hypertrophy 
of tubules of the remnant nephrons occurs. 

process does not proceed to complete regeneration of renal tissue, resulting in the 
formation of an interstitial scar (IF) that lacks regenerative capacity, leading to irreversible 
loss of renal tissue (Venkatachalam et al. 2015). The cellular origin of fibrogenesis in both 
acute and chronic forms of tubulointerstitial fibrosis is not yet known. It was postulated 
by Frank et al. 1993 that damaged tubular epithelial cells secrete cytokines that activate 
surrounding fibroblasts (Frank et al. 1993). In addition, Hewitson et al. demonstrated that 
the number of intrarenal fibroblasts increases exponentially in the renal interstitium after 
injury (Hewitson 2009). In addition to orthotropic fibroblasts, other cell types have been 
discussed as cells of origin, e.g., renal tubule cells that differentiate into myofibroblasts 
by means of an epithelial-mesenchymal transition (EMT) (Zeisberg et al. 2003). In 
addition, pericytes, circulating bone marrow mesenchymal stem cells, or macrophages 
or endothelial cells have been discussed as progenitor cells involved in fibrogenesis 
(Kramann, DiRocco, and Humphreys 2013). However, that epithelial cells contribute to 
the myofibroblast pool through EMT has been refuted in recent years (Duffield 2014). 
Without doubt, epithelial cells, especially proximal tubule cells, play an important 
role in the development and progression of renal fibrosis through a release of second 
messengers such as cytokines. In this process, termed partial EMT, epithelial cells do 
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not leave the tubular compartment (Lovisa, Zeisberg, and Kalluri 2016). Also 
discussed were endothelial cells as progenitors of myofibroblasts as the so-called 
endothelial-mesenchymal transition (EndoMT) (Piera-Velazquez, Li, and Jimenez 
2011). However, recent data show that the studies describing that phenomenon have 
used Cre-Driver lines that are not specific for endothelial cells. For example, a Tie2Cre 
mouse was used, which is also expressed by hematopoietic cells and pericytes. So-
called fibrocytes are CD45+ cells of the bone marrow that are also thought to contribute 
to fibrosis. After organ injury, these cells migrate into the injured organ via the blood 
circulation and differentiate into myofibroblasts. Another population that has been 
discussed is MSCs (Mesenchymal Stem Cells) from bone marrow, but there is little 
evidence for this to date. In recent years, there is a consensus that resident mesenchymal 
cells, such as pericytes and resident fibroblasts, are the most likely cells from which the 
majority of myofibroblasts arise. Humphreys et al. demonstrated that FoxD1+ 
interstitial pericytes and fibroblasts give rise to nearly 100% of all renal 
myofibroblasts (Humphreys et al. 2010). However, FoxD1 is a relatively non-specific 
marker that is also expressed by other cells that do not differentiate into 
myofibroblasts, such as: vascular smooth muscle cells, mesangial cells, and few tubular 
epithelial cells. Interestingly, it was shown more than a hundred years ago that 
fibrosis very often has a vascular origin. Moreover, cell markers such as alpha-smooth 
muscle actin (aSMA) have been frequently used in various experimental approaches, 
without really knowing whether this cellular marker is exclusively expressed in renal 
myofibroblasts. Which cell types are involved in the development of human 
tubulointerstitial fibrosis has not yet been clarified. Accurate molecular analysis and 
characterization of the activation processes in these cells could not only improve 
understanding and end a decade-long debate about the cell of origin of renal 
fibrosis, but also provide potential therapeutic targets or signaling pathways. 

1.3. Myocardial infarction and heart failure 

Myocardial infarction (MI) and heart failure (HF) are major public health concerns 
worldwide, with high morbidity and mortality rates(Jayaraj et al. 2019). 
Myocardial infarction, also known as a heart attack, occurs when the blood flow to a 
part of the heart is blocked, typically by a build-up of plaque in the coronary arteries 
(Frangogiannis 2015). This results in damage or death of heart muscle cells, which can 
lead to a range of complications, including heart failure. Heart failure is a condition in 
which the heart is unable to pump enough blood to meet the body’s needs. This 
can be caused by a variety of factors, including damage from a heart attack, 
hypertension, diabetes, and other underlying heart conditions. Heart failure is 
characterized by a range of symptoms, 
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including shortness of breath, fatigue, and swelling in the legs and feet. The incidence 
of myocardial infarction and heart failure is increasing globally, due in part to the aging 
population and the rising prevalence of risk factors such as obesity, diabetes, and 
hypertension. Despite advances in treatment, myocardial infarction and heart failure 
continue to be major causes of morbidity and mortality worldwide. The pathophysiology 
of myocardial infarction and heart failure is complex and involves a range of cellular and 
molecular mechanisms (Bergmann 2010). The acute phase of myocardial infarction 
is characterized by the formation of an infarct zone, which is the area of the heart 
muscle that is damaged or killed due to the lack of blood flow. This is followed by a 
series of remodeling processes that occur in the weeks and months following the 
infarction, including inflammation, fibrosis, and changes in the structure and function 
of the heart muscle. Heart failure is characterized by a progressive decline in cardiac 
function, which can be caused by a range of underlying mechanisms, including 
myocardial infarction, hypertension, and other underlying heart conditions. These 
mechanisms can lead to structural changes in the heart, such as hypertrophy and 
fibrosis, as well as changes in the function of the heart muscle, such as decreased 
contractility and relaxation. The management of myocardial infarction and heart failure 
involves a range of interventions, including lifestyle changes, medications, and 
surgical and non-surgical procedures. Lifestyle changes, such as quitting smoking, 
eating a healthy diet, and exercising regularly, can reduce the risk of myocardial 
infarction and heart failure. Medications, such as ACE inhibitors, beta-blockers, and 
diuretics, can be used to manage the symptoms of heart failure and reduce the risk of 
complications. Surgical and non-surgical procedures, such as coronary artery bypass 
surgery and angioplasty, can be used to treat myocardial infarction. In addition, heart 
failure can be treated by implantation of devices such as cardiac resynchronization 
therapy (CRT) or left ventricular assist devices (LVADs) which help to improve the 
function of the heart. In conclusion, myocardial infarction and heart failure are major 
public health concerns worldwide, with high morbidity and mortality rates. Despite 
advances in treatment, myocardial infarction and heart failure continue to be major 
causes of morbidity and mortality worldwide. The pathophysiology of myocardial 
infarction and heart failure is complex and involves a range of cellular and molecular 
mechanisms. The management of myocardial infarction and heart failure involves a 
range of interventions, including lifestyle changes, medications, and surgical and non-
surgical procedures. It is important to continue research to improve our 
understanding of the underlying mechanisms of these conditions and to develop 
new and more effective treatments.
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1.4. Outline of the thesis

The research described in this thesis aims to unravel mechanisms underlying progression 
of chronic kidney and ischemic heart disease. We characterized human kidney and heart 
cells from healthy and diseased human samples using single cell multiomics assays 
and spatial transcriptomics with the specific focus to unravel cellular and molecular 
heterogeneity of disease driving cell states. Moreover, we studied for the first time the 
spatial molecular changes following acute myocardial infarction in humans. 

Chapter 2 provides an overview of the emerging single cell genomics field and 
covers both wet-lab aspects of the technology as well as the different computational 
approaches in order to analyse the data. The article discusses the use of experimental 
and computational technologies to study the kidney at the single-cell level. These 
technologies include single-cell RNA sequencing, imaging, and computational modeling. 
These methods allow for a more detailed and accurate understanding of the complex 
cellular and molecular processes that occur in the kidney. The article also highlights the 
potential benefits of using these technologies in understanding kidney disease and 
developing new treatments.

In Chapter 3 we aimed to understand the origin of myofibroblasts, a type of cell that 
plays a key role in the development of fibrosis in the kidney. We used single-cell RNA 
sequencing and computational analysis to identify and track the origin and progression 
of myofibroblasts in patients with kidney fibrosis. The results of the study revealed that 
myofibroblasts can originate from multiple cell types, including fibroblasts, endothelial 
cells, and pericytes, and that the origin of these cells may vary depending on the specific 
type of kidney fibrosis. We wish to investigate that the myofibroblasts that originate from 
different cell types have distinct gene expression profiles and functional characteristics. 
Our approach may result in the identification of specific novel myofibroblast antigens 
which can be utilized as promising strategy for treating kidney fibrosis.

In Chapter 4 we describe a computational method called scOpen that is used to analyze 
data from single-cell Assay for Transposase-Accessible Chromatin using sequencing 
(scATAC-seq) experiments. The scOpen method enables the estimation of chromatin 
accessibility at the single-cell level, which provides insights into the regulation of 
gene expression and cellular differentiation. We aim to show that the scOpen method 
outperforms existing methods in terms of accuracy and robustness when applied to 
various scATAC-seq datasets from different cell types and organisms. The scOpen method 
enables the identification of cell-type specific cis-regulatory elements and the study of 
chromatin accessibility dynamics across cell states and developmental processes. We aim 
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to suggest that scOpen is a powerful tool for understanding the mechanisms of cellular 
differentiation and gene regulation in different cell types and organisms.

In Chapter 5 we describe a computational method to integrate multi-omics data with prior 
knowledge to generate mechanistic hypotheses about the underlying biology.
Integration of multiple data types and prior knowledge can improve the understanding of 
the relationships between different molecules and processes. The method uses a causal 
inference approach to identify the key regulatory molecules and interactions that are likely 
to be involved in the biological processes of interest, by taking into account the direction 
of the causal effects between variables. The authors demonstrated the usefulness of the 
method by applying it to the analysis of multi-omics data in cancer and demonstrated the 
ability of the method to generate testable hypotheses about the underlying biology. The 
study will describe the method as a powerful tool to integrate multi-omics data with prior 
knowledge to generate testable hypotheses about the underlying biology. 

In Chapter 6 we aimed to generate a detailed map of the human cardiac remodeling 
process following myocardial infarction (MI) using single-cell gene expression, chromatin 
accessibility, and spatial transcriptomic profiling. We will use multimodal data integration 
of physiological zones at distinct time points in myocardium from patients with MI and 
controls. The data integration enables researchers to evaluate cardiac cell-type compositions 
at an increased resolution and yielded insights into changes in the cardiac transcriptome 
and epigenome through the identification of distinct tissue structures of injury, repair, and 
remodeling. The study will identify and validated disease-specific cardiac cell states of major 
cell types, and analyzed them in their spatial context. The study will provide an integrative 
molecular map of human myocardial infarction, represents an essential reference for the 
field, and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.

In Chapter 7 we describe a study that aimed to investigate the origin of adult human 
kidney organoids and their potential as a model for polycystic kidney disease. In this 
study we will use adult human kidney organoids originating from CD24+ cells, which 
are a population of adult renal progenitor cells. The organoids will be analysed for gene 
expression profile to that of polycystic kidney disease. The study aims to reveal that 
organoids derived from polycystic kidney disease patients have different gene expression 
profiles compared to those derived from healthy individuals, providing new insights into 
the disease. Overall, we aim to demonstrate that adult human kidney organoids represent 
an advanced model for studying adult polycystic kidney disease and can be used to gain 
a better understanding of the disease and to identify potential therapeutic targets.

Finally, in Chapter 8, the main conclusions of this thesis will be discussed considering the 
broader context and future perspectives are provided. 
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Chapter 2

Abstract

The field of single-cell technologies, in particular single-cell genomics with transcript
omics and epigenomics, and most recently single-cell proteomics, is rapidly growing 
and holds promise to advance our understanding of organ homoeostasis and disease 
and facilitate the identification of novel therapeutic targets and biomarkers. This review 
offers an introduction to these technologies. In addition, as the size and complexity of 
the data require sophisticated computational methods for analysis and interpretation, we 
will also provide an overview of these methods and summarize the single-cell literature 
specifically pertaining to the kidney.
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Introduction

Next-generation sequencing (NGS) has enabled highthroughput measurements of DNA 
and RNA, and revolutionized biomedical research over the last decade. Performing DNA 
or RNA sequencing from the entire sample, often referred to as bulk sequencing, is an 
approach that has prompted various major breakthroughs in understanding disease 
mechanisms, identifying novel diagnostics and promoting target discovery.

However, bulk sequencing techniques have two major drawbacks. Since they 
measure biomolecules across an entire sample, they contain data originating from many 
different cells likely belonging to a variety of cell types. Another major drawback is that 
cellular resolution is entirely lost in these bulk genomic measurements, especially in 
tissues where cells, even those right next to each other, can have a distinct transcrip-
tomic signature. Thus, some genes might be expressed at a very high level only in certain 
cells, e.g. inflammatory cells that home to a tissue after injury. In the bulk measurements, 
these genes are detected as upregulated without the ability to further determine from 
which cell this information originated.

NGS-based technologies for genomics, transcriptomics and epigenomics have been 
developed recently on the single-cell level, allowing us to study thousands of genes in 
any given single cell. Furthermore, spatial genomic technologies have emerged that 
allow us to study gene expression without losing spatial information within the tissue. 
All these technologies require specific computational pipelines and complex algorithms 
to mine the huge datasets they produce. International efforts that bring together 
different scientific disciplines, like the Human Cell Atlas, aim to create a comprehensive 
map with a cellular resolution of all human cells, including those in the human kidney1. 
The mapping of all different cell types in the human kidney, and specifically where they 
are located in health, will help us acquire a better understanding of kidney homoeo-
stasis. Ultimately, the goal is to identify the complex cellular interactions and networks 
in disease that will enable the development of novel targeted therapies.

These advances have generated a critical rethinking of the concept of cell-type 
definition. Canonical cell types, like proximal tubular cells or podocytes in the kidney, 
were originally defined by their function in the tissue and characteristics such as their 
unique morphology. However, investigations using single-cell RNA-sequencing (scRNA-
seq) data have demonstrated considerable variation in gene expression within defined 
cell types, thus blurring the lines between cell-type distinctions. A first recent example 
in the kidney domain is the discovery of a transitional cell state between principal cells 
and intercalating cells in the collecting duct of mice2.

Various reviews have recently covered scRNA-seq in the kidney, offering a 
broad introduction to the field and presenting the most common approaches3-11. To 
complement these excellent reviews, we now focus on topics that have not yet been 
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extensively discussed in the recent kidney literature, in particular by addressing compu-
tational approaches, spatial transcriptomics and measurement of DNA accessibility. We 
also discuss their promising potential for kidney research to identify disease-driving 
mechanisms, biomarkers and novel therapeutic targets.

Introduduction to sc-RNA-seq

Methods that allow the analysis of the genome-wide transcriptome of individual single 
cells are referred to as scRNA-seq methods. scRNA-seq is an approach that maps cell 
states of heterogeneous samples and has become increasingly popular across many 
biological and biomedical fields. Depending on the scRNA-seq platform used, the costs 
may range from cents per cell to euros per cell, mostly determined by throughput of the 
assays and subsequent sequencing costs. The first critical step in all scRNA-seq protocols 
is the isolation of single cells, which still represents a challenge in complex solid tissues 
like the kidney. Single nuclei can also be utilized for the so-called single nucleus RNA-
sequencing (snRNA-seq), with the advantage that frozen tissue can be used. Depending 
on the starting material (fresh versus frozen tissue), protocols use enzymatic digestion 
combined with mechanical disruption or isolation of nuclei from fresh or frozen tissue 
by bounce homogenization similar to the generation of nuclear lysates for western 
blots. Both methods have advantages and disadvantages, as pointed out recently12,13, 
including potential activation of stress responses using heat-activated enzymes in fresh 
tissue and the lack of immune cell heterogeneity in single nuclei preparations. Enzymatic 
digestion protocols using cold-active enzymes have been developed and have shown a 
decreased activation of stress response-related genes14,15. However, for fibrotic tissue or 
less accessible regions (e.g. glomeruli), this approach might have reached its limitations. 
Enrichment for distinct cell types by antibody staining or genetic tagging in mouse tissue 
followed by sorting fluorescence-activated cell sorting (FACS) from fresh tissue can help 
to remove other cell types and thus obtain a higher resolution for the cells of interest. 
However, this enrichment is more challenging in nuclei, yet recently developed strategies 
like Probe-Seq16 allow the isolation of distinct nuclei from fresh or frozen tissue using in 
situ hybridization for cell type-specific mRNAs followed by FACS. scRNA-seq data from 
isolated nuclei tend to have a higher background signal due to ambient RNA, and the 
RNA contained in the nucleus is mostly unspliced. Therefore, the methods for alignment 
have to be adjusted to include exonic and intronic reads.

The first step of most scRNA-seq protocols (3’) starts with polyA-mRNA capturing 
using oligo-dT primers and subsequent first-strand cDNA synthesis using an Moloney 
Murine Leukemia Virus reverse transcriptase (see schematic in Figure 1). Following the 
second-strand synthesis, which mostly relies on a template-switching oligo reaction, 
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the cDNA is amplified using polymerase chain reaction. Using standard NGS library 
preparation, sequence-ready individually indexed libraries are synthesized. Recent novel 
protocols that combine full-length transcriptome coverage with a 5’-unique molecular 
identifier significantly increase the sensitivity approaching the sensitivity of single-mo-
lecular RNA-fluorescence in situ hybridization (FISH) and will help to overcome the data 
sparsity (increasing the transcript detection per cell) in scRNA-seq data in the near future.

Single-cell epigenome/chromatin organization 
(ATAC-Seq)

Chromatin accessibility is crucial for gene expression regulation and cell fate in 
development, homoeostasis and disease. Regulation of gene expression is a dynamic 

Figure 1: Common scRNA-seq methods. 
(A) Overview of scRNA-seq methods and characteristics. (B) Schematic illustrating the difference between 3‘ 
versus full-length scRNA-seq methods. (C) Main protocol steps used for scRNA-seq. (D) Schematic illustrating 
principles of spatial gene expression. In brief, a tissue section is placed on a detection area. The detection 
area comprises about 5000 detection spots that are individually DNA-barcoded for polyA-mRNA capture. The 
transcripts detected can be later assigned to their corresponding detection spot on the slide, thus resolving 
their spatial organization.
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interaction between chromatin structure regulating chromatin accessibility and 
recruitment of transcription factors to promoter regions, enhancers and activator 
sequences17. Accessible chromatin regions can be determined by DNase-seq or Assay for 
Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq)18. ATAC-
seq uses a mutated Tn5 transposase that identifies open chromatin regions and inserts 
sequencing adapters in the probed DNA region.

Recently, ATAC-seq has been developed on a single-cell level19,20. The investigation of 
the epigenomic landscape by scATAC-seq holds great promise to uncover the heteroge-
neity in gene regulatory programmes between cells21. In a landmark study, Cusanovich et 
al. performed scATAC-seq in 13 adult mouse tissues, including from the kidney, providing 
a first atlas of chromatin accessibility in a variety of identified renal cell types22.

Importantly, scATAC data are even more sparse than scRNA- seq data; therefore, 
the analysis methods need to take this into account and measure accessibility across 
groups of cells or across sets of genomic features. Thus, novel computational tools are 
needed that address the issue of extreme sparsity. scOpen might be such a tool that 
uses positive-unlabelled learning of matrices and estimates the probability that a region 
is open in a given cell23. We have recently performed scATAC sequencing of mouse 
kidney in homoeostasis and at different stages of fibrosis using the unilateral ureteral 
obstruction model23. Using scOpen, we could report gene regulatory programmes 
associated with all major murine kidney cell types in homoeostasis and fibrosis23. Inter-
estingly, we detected various shared regulatory programmes in different kidney cell 
types such as myofibroblasts and tubule epithelium that might drive their expansion 
and or de/differentiation23. Several studies that apply scATAC-seq in human and mouse 
kidneys are ongoing and will certainly shed light on the heterogeneity of chromatin 
accessibility and gene-regulatory programmes in renal cell types during homoeostasis 
and disease.

Spatial Genomic Technologies

Single-cell RNA-seq and ATAC-seq data sets are generated after dissociation of the tissue 
and thus spatial and morphological information of the cells within the tissue environment 
is lost. This information can be critical to understanding the role of different cells in tissue 
functioning, in particular for a complex organ as spatially structured as the kidney.

The field of spatial transcriptomics has recently emerged utilizing technologies that 
can identify the location of several dozens to thousands of mRNAs in intact tissue slices. 
The detection f mRNA in tissues by FISH is widely used but has been limited to only a 
few mRNAs in parallel in the past. However, there have been several recent advances 
to increase the number of mRNAs that can be imaged in a given tissue by stripping and 
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rehybridization and/or by combinatorial barcoding24-26. multiplexed error-robust fluores-
cence in situ hybridization was able to image up to several hundreds of transcripts27 and 
more recently seqFISHþ achieved super-resolution imaging with detection of up to 10 
000 genes in a single cell28. Other approaches include technologies that encode RNA-seq 
with barcoded oligonucleotide capture arrays on a slide such as the so-called spatial 
transcriptomics29, which has been commercialized and improved in the Visium platform 
(10x genomics). Visium allows the capture of several thousands of genes (up to 10 000) in 
a given tissue area using barcoded spots that are 55 mm wide. Five thousand such spots 
are arranged in an imaging area of 6.5 x 6.5 mm. The technology is relatively easy to 
use in virtually all cryopreserved tissue but does not reach the single-cell level given the 
diameter of the individual spots as well as the distance to the next spot (100 mm centre 
to centre). Slide-seq is a similar technique that uses uniquely barcoded microbeads that 
are 10 mm wide and bound to a rubber-coated glass coverslip in a monolayer reaching 
a single-cell resolution in >60% of the beads applied to brain tissue30. One current issue 
with increasing the resolution is that this comes with a decreased depth of gained infor-
mation, for example, number of genes detected. To increase the resolution, the options 
are either to reduce the size of the barcoded spots/beads or to increase the size of the 
tissue, which could potentially be achieved chemically while preserving the mRNA. 
Alternatively, one can use scRNA and known in situ information of certain marker genes 
to computationally and virtually assign cells to a location31-34.

So far, no high-throughput spatial transcriptomic work has been published on 
the kidney that holds promise to give novel insight into kidney homoeostasis and 
disease, especially when used in combination with some of the single-cell technologies 
described here. Integration could potentially be used to increase virtually the resolution 
to the real single-cell level.

Single-cell Proteomics

Beyond genomics, single-cell proteomics technologies have also developed rapidly. Mass 
spectrometry technologies enable a high (yet not complete) coverage of the proteome35. 
The proteome can be a very informative omic between the transcriptome and the 
phenotype36. Obtaining single-cell resolution is technically challenging. Among other 
reasons, there is no method that allows amplification of proteins, in contrast to DNA and 
RNA. However, the amount of material required by mass spectrometry is continuously 
decreasing, such that we can envision that it will soon be possible to measure high-
coverage proteomics in single cells37. Complementarily, antibodybased methods can 
measure single cells, but measured proteins are limited to those for which antibodies are 
available and with limited multiplexing capabilities. Flow cytometry has been available 
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for quite some time, and recent technologies such as mass cytometry allow us to increase 
the multiplexing to several dozens of proteins at a time. This is achieved by marking 
the antibodies with rare metals and subsequently ionizing the sample and measuring 
the metals in a mass spectrometer38. Antibody-based strategies like CITE-Seq (Cellular 
Indexing of Transcriptomes and Epitopes by Sequencing) can also be combined with 
sequencing-based technologies, enabling the simultaneous measurement of proteins 
and transcripts at the single- cell resolution39. Furthermore, antibody-based methods can 
be applied to obtain spatially resolved data. This is done mainly by using two approaches: 
by adapting the mass cytometry approach to tissues40-41 or by using microscopes. For the 
latter, repeating cycles of staining and ‘washing’ of the antibodies enables an increase of 
coverage42-43 akin to the processes for RNA described above. The mass cytometry-based 
approach was recently applied to characterize different cell types in healthy and diseased 
human kidneys44. These single-cell proteomic technologies have only very recently been 
developed, and we expect them to be more broadly applied to the kidney in the near 
future, providing complementary information to other single-cell data.

Data Analysis

All of the new technologies discussed above provide large and complex data sets. In 
contrast to molecular data derived from classical high-throughput technologies on bulk 
samples, single- cell genomics data present novel sources of biological and technical 
variability45. The low amount of starting material from a single-cell hampers the sensitivity 
for the genome-wide profiling, resulting in low gene coverage and sporadic drop out 
measurements (data sparsity)46. Moreover, the cell-to-cell heterogeneity of individualized 
cell profiling at large scale provides a landscape of biological heterogeneity without 
precedent in molecular data analysis. Cellular states and transition phases are embedded 
in a continuous space with the main variability that stems from the differentiated cell 
types47. These aspects have motivated the development of computational methods 
specific to single-cell analysis.

Computational methods for single-cell genomics aim to delineate the relevant 
biological information from the aforementioned confounding factors. As these data 
types are very recent and technologies still in development, the corresponding compu-
tational tools are under very active development. The ratio that single-cell-specific 
methods are being developed is roughly proportional to the number of studies gener-
ating these new data types and is particularly prominent in the field of scRNA-seq48. 
The fact that the bioinformatics community embraces open-source release of code and 
preprints boosts the development and adoption of these methods. At the same time, 
it poses challenges in keeping up with the most suitable methods of each family at the 
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time these are being released. Special issues and articles dedicated to benchmarking 
the different families of methods will help researchers to navigate and choose between 
the alternatives. These benchmark exercises are important to understanding the appli-
cability and limitations of the methods, either adapted from bulk data or bespoke to 
single cells49,50. A method can ‘run’ on the data but this does not mean that the results 
produced are reliable or meaningful.

The majority of these tools are embedded in the most popular analytical 
programming environment in data science, Python and R. Well-established bioinfor-
matics frameworks include Scanpy (Python51), Seurat (R52) and bioconductor packages 
such as Scran and Scater (R53). These toolboxes propose an integrative methodology 
following a pipeline of analyses that covers a low-level conventional single-cell data 

Figure 2: Workflow and milestones of the single-cell data RNA-seq analysis. 
Pre-processing raw sequencing data are the input required for the analysis (Milestone 1). The choice of the 
analytical programing environment will determine the available methods (see Table 1 for a detailed list). 
The use of a well-established toolbox for single-cell analysis supports the performance of a conventional 
standard analysis (Milestone 2). The analysis is driven by the biological interpretation, and it might become 
laborious with several refining loops prior to downstream analysis. Depending on initial and data-driven 
hypotheses, a comprehensive characterization focussed on particular cell types might complete the full 
characterization of the cell populations present in the sample (Milestone 3). Discontinuous lines indicate 
optional steps.



28

Chapter 2

analysis, including the transcriptomics (scRNA-seq), epigenomics (ATAC-seq) and spatial 
data.

As an illustration, we here describe a methodology for a standard analysis of 
scRNA-seq data (Figure 2 and Table 1). It would be similarly applicable to other single-cell 
omics with quantitative data, although the preprocessing of the raw sequencing data 
might differ significantly. The analysis involves data pre-processing (quantification of 
gene expression in single cells, quality control, data normalization and data correction), 
cell clustering and cell identity assignment, and visualization of the distinct cell popula-
tions driven by the use of the single-cell toolbox51-53. Depending on the biological 
hypothesis, downstream analysis might focus on further characterization of certain cell 
populations. If applicable, the trajectory inference of cell lineages with deregulated 
genes along pseudotime could be investigated. Current best practices are described in 
Luecken and Theis54. Downstream analyses might include the functional characterization 
of the cell population in terms of the activity of pathways and transcription factors49—or 
other transcriptome programmes of interest (e.g. cellular states related to a biological 
condition)—and the inference of potential cell–cell communication crosstalk between 
cell populations55,56.

General Advice

•	 For reproducibility and transparency, it is important that the raw and processed data 
be publicly available, along with the code used to process it.

•	 The manuscript should explain the different methods and software used, the values 
chosen for the corresponding parameters and the assumptions made.

•	 Data are typically noisy and incomplete, and findings obtained from downstream 
analysis such as identification of key pathways should be considered in general 
hypotheses to be validated rather than the findings by themselves.

•	 Doublets are inherent to droplet-generated scRNA-seq data sets and beyond 
computational doublet detection tools additional experimental validation (e.g. in situ 
multiplex mRNA hybridization) is needed.

•	 Batch effects have to be carefully taken into account when analysing integrated 
multiple scRNA-seq data sets, and again, findings need to be further validated. 
Multiplexing of several conditions or samples could be used to reduce batch effects a 
priori.

•	 Confirmation experiments of scRNA-seq data can include a second technology to 
identify cell types/states, e.g. scATAC sequencing and also spatial information such as 
in situ hybridization or spatial gene expression data. Furthermore, protein expression 
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data by multiplexed immunostaining can be used. To validate mechanisms, cell-culture 
overexpression and knockdown/knockout experiments in either monolayer, co-culture 
or organoids or in vivo experiments in rodents are state-of-the-art approaches.

Single cell studies in the kidney

Although the single-cell field is quite young, there is already a large number of studies 
that have used single-cell technologies (all mostly restricted to scRNA-seq) in the human 
and mouse kidney as well as in kidney organoids (Table 2). Discussing all these studies 
would be beyond the scope of this review, but we would like to highlight the results of 
a few. The first landmark whole mouse kidney scRNA-seq dataset was generated by the 
Susztak lab2. They identified overall 21 major kidney cell types and demonstrated that 
Mendelian disease genes show cell specificity. Interestingly, they also discovered a new 
transitional cell type in the collecting duct of adult mice and validated these data by 
genetic fate tracing and further demonstrated a role of the Notch signaling pathway in 
collecting duct cell plasticity2. The Humphrey’s lab published several important articles 
including scRNA-seq of a human kidney allograft biopsy71, comparison of scRNA-seq with 
single-nucleus snRNA-seq in the kidney12, first human diabetic nephropathy data from 
tumour nephrectomy samples72 and a comparison of induced pluripotent stem cell (iPSC)-
derived kidney organoids with human kidney data73. This important work has shed light 
on a heterogeneous immune response in mixed rejection71. It has also demonstrated that 
snRNA-seq can be utilized to analyse kidney tissue and might have some advantages, 
including the use of biobanked frozen specimens12. The diabetic nephropathy data 
suggest that epithelial cells of the thick ascending limb, late distal convoluted tubule 
and collecting duct adopt a gene expression profile that is consistent with increased 
potassium secretion, among various other interesting findings72.

Several other labs have also reported very interesting single-cell datasets on either 
human or mouse kidney specimens. Karaiskos et al. reported a single-cell atlas of the 
mouse glomerulus using fixed cells74. Young et al. have sequenced single cells from 
different human kidney cancer types as well as adult and foetal healthy kidney tissue75. 
Their data give important insight into human kidney cancer heterogeneity and novel 
cell types that might be the origin of the cancer, including aberrant foetal cells as the 
origin of Wilms tumour and a subtype of the proximal convoluted tubule in clear cell 
renal cell carcinoma75. Lake et al. provide a map of the human kidney using snRNA-seq 
from tumour nephrectomies and discarded deceased donor specimens describing 30 
distinct cell populations76. The McMahon lab has performed scRNA-seq of the human 
nephrogenic niche and has given novel insights into the early patterning processes and 
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Table 1. Selected computational tools for scRNA-seq analysis

Data pre-processing
CellRanger Private software for the pre-processing of the popular 10genomics chromium raw scRNA-seq data

for the quantification of UMI read counts
Kallisto BUS Fast pseudo-alignment quantification of UMI read counts for scRNA-seq [57]

Single-cell toolbox
Seurat Bioinformatics toolbox for the quality control, normalization and exploration of single-cell data [52]
Scanpy Bioinformatics toolbox for the scalable quality control, normalization and exploration o�arge

single-cell data sets [51]
Bioconductor packagesa Bioconductor packages such as scran and scater for the low-level standard scRNA-seq analysis.

See [53] for a review
Cell marker extraction

Statistical contrastsa Test for di�erential gene expression such as Wilcoxon rank-sum test,t-test, MAST [ 58] or
DESeq2 [59] as stand-alone or their wrappers in single-cell toolbox

GenesorteR Tool to rank marker genes by their specificity scores and conditional expression probabilities from
each cell cluster [60]

Data visualization
Visualization toolsa High dimensionality reduction methods to embed cells into two dimensions to investigate

biological patterns in the local and global structure of the data such as t-Distributed Stochastic
Neighbour Embedding and Uniform Manifold Approximation and Projection. Violin plot and
heat map to show cell-to-cell heterogeneity of selected features

SWNE (Similarity
Weighted
Nonnegative
Embedding)

Method for the visualization of cells and main biological factors in a 2-dimensional space that
captures discrete cell types and continuous lineage trajectories. SWNE combines non-negative
matrix factorization for dimensionality reduction, with shared nearest neighbour networks to
smooth the matrix decomposition of cells by their similarity in the high-dimensional space [61]

Data correction
Combat Correction method based on a linear model to regress out covariates (e.g. batch e�ect) from the

gene expression taking into account both the mean and the variance [62]
Imputation toolsa Family of methods under development for the imputation of gene expression over drop outs,

which are under evaluation in [63]
Functional characterization

DoRothEA Knowledge-based transcription factor regulons for the inference of their activities [64]
PROGENy Footprint-based method for the inference of pathway activities [65]
SCENIC Data-driven workflow for Gene Regulatory Network reconstruction and inference of transcription

factor activities [66]
AUCell Gene set enrichment method specific to single-cell data [66]

Lineage trajectory
Monocle Toolkit for time-series pseudotime single-cell analysis: di�erential expression, clustering and

trajectory with cell fate branch analyses [67]
PAGA Partition-based graph abstraction tool for complex data sets [68]
Slingshot Tree-based method for the lineage trajectory inference [69]

Cell–cell communication
CellPhoneDB Database of curated ligand–receptor interaction coupled with a simple algorithm to select potential

cell–cell interactions based on the actual expression o�igand–receptor pairs [70]
NicheNetR Trained model o�igand–receptor relationships linked to downstream signaling interactions to

estimate the most likely communications between two cell populations (sender and receiver cells)
based on the actual expression o�igand–receptor pairs and downstream footprint of
said interaction [56]

aDenotes broad categories of methods that are implemented in the single-cell toolbox. UMI, unique molecular identifier.
The name of the tool with a short description is shown. Colours on the left indicate the environment the tool is wrapped in: Python¼ yellow, R¼ blue and bioinformatics
pipeline¼ green.

Table1. Selected computational tools for scRNA-seqanalysis

developmental trajectories of nephron progenitor cells in forming a human nephron77. 
Additional work from the same group has provided the most detailed single-cell atlas 
of the mouse kidney using specimens from cortex, medulla and papilla providing novel 
data on sex differences as well as distinct cell composition of nephrons dependent 
on the time of nephron specification and lineage convergence14. Dumas et al. recently 
provided a mouse atlas of endothelial kidney cells describing 24 different subpopula-
tions78. They further reported that endothelial cells upregulate genes involved in hypoxia 
response and oxidative phosphorylation in response to dehydration and hypertonicity78. 
A recent article from the Clatworthy group has performed scRNA-seq of adult and foetal 
human kidneys with a special focus on spatiotemporal immune topology79. They have 
identified anatomically defined expression patterns of immune genes within epithelial 
compartments and describe expression of antimicrobial peptide transcripts in the pelvic 
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epithelium in adult but not in foetal kidneys. These data give novel insight into immune 
cell heterogeneity of the human kidney at unprecedented resolution79.

Der et al. has performed scRNA-seq of renal biopsies and skin specimens of lupus 
nephritis patients80. Their analysis suggests that a high interferon Type I response 
signature in keratinocytes or tubular epithelium distinguishes lupus nephritis patients 
from healthy control patients. Interestingly, a high interferon Type I response signature 
was also associated with a failure to respond to treatment80.

Several groups have performed scRNA-seq experiments in kidney organoids and 
partly compared this data to adult or developmental human kidney specimens. Wu et 
al. have compared iPSC and human embryonic stem cell-derived kidney organoids 

Table 2. Overview of single-cell studies in kidney and or organoids to date [2, 12, 14, 71–106]

References Date Number of cells or nuclei Human Mouse Organoid sc-seq

1 Conway [103] May 2020 > 30 000
2 Menon [104] May 2020 > 100 000
3 Kalucka et al. [83] February 2020 > 30 000
4 do Valle Duraeset al. [84] February 2020 > 50 000
5 Liao et al. [85] January 2020 23 366
6 Dumas et al. [78] January 2020 > 40 000
7 Barry et al. [86] December 2019 5936
8 Ransick et al. [14] November 2019 31 265
9 Subramanianet al. [105] November 2019 450 118
10 Wilson et al. [72] September 2019 23 980
11 Stewartet al. [79] September 2019 27 203
12 Low et al. [87] September 2019 62 506
13 Der et al. [80] July 2019 6041
14 Lake et al. [76] June 2019 17 659
15 Arazi et al. [89] June 2019 2881
16 Combeset al. [90] June 2019 6732
17 Fu et al. [91] April 2019 644
18 Schutgenset al. [92] March 2019 192
19 Harder et al. [93] January 2019 12 000a

20 Combeset al. [81] January 2019 > 8000
21 Wu et al. [10] January 2019 11 391
22 Wu et al. [71] December 2018 83 130
23 Tabula Muris Consortiumet al. [94] October 2018 800a

24 Wang et al. [95] September 2018 3543
25 Cao et al. [96] September 2018 11 296
26 Younget al. [75] August 2018 72 051
27 Karaiskos et al. [74] August 2018 12 954
28 Wu et al. [55] August 2018 8746
29 Menonet al. [97] August 2018 6141
30 Gillies et al. [98] August 2018 4743
31 Lindström et al. [77] June 2018 3367
32 Czerniecki et al. [82] June 2018 10 535
33 Park et al. [2] May 2018 57 979
34 Kramann et al. [99] May 2018 194
35 Lindström et al. [100] March 2018 2800
36 Sivakamasundariet al. [105] December 2017 22 469
37 Chen et al. [102] November 2017 218
38 Pode-Shakkedet al. [106] June 2017 80
39 Der et al. [88] May 2017 899

aEstimated number of cells.

10X 
Genomics

SMART-
Seq1

Cel-Seq2 Drop-Seq InDrop STRT-Seq ddSeq 
Biorad

Sci-CAR

Table 2. Overview of single-cell studies in kidney and or organoids to date [2, 12, 14, 71-106]
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to adult and foetal human kidney by scRNA-seq72. Their analysis indicates that the 
organoid cell types in the protocols used correlate better with foetal human kidneys as 
compared with adult human kidneys and, thus, represent developmental kidney stages. 
Furthermore, the data suggest that the differentiation protocols still lead to around 10% 
or more non-renal, off-target cell types72. Combes et al. have also performed scRNA-seq 
of iPSC-derived kidney organoids demonstrating similarities to foetal human kidneys81. 
In general, the differentiation protocol used highly influences the cell-type composition 
in the kidney organoid (e.g. distal nephron versus glomerular development) and thus 
should be taken into account.

Czernicki et al. have demonstrated a high-throughput screening platform for kidney 
organoid screening and differentiation and performed scRNA-seq from some organoids 
demonstrating an effect of vascular endothelial growth factor on endothelial cell differ-
entiation and abundance82. Subramanian et al. performed scRNA-seq of four human iPSC 
cell line-derived kidney organoids with a total of more than 450 000 cells sequenced105. 
Interestingly, they report that transplantation of the organoids under the renal capsule 
diminishes off-target cell types105.

In summary, several groups have already started to use state-of-the-art single-cell 
genomics tools to study kidney organoids, development, homoeostasis and disease, 
while many more studies with larger sample sizes and improved technologies are 
ongoing. These studies will certainly offer novel insight into kidney function, cell heter-
ogeneity and crosstalk in homoeostasis and disease. This most promising era of novel 
genomic tools is the perfect time to join these efforts to map kidney physiology and 
pathophysiology using single-cell genomic approaches.

Future Developments

The rapidly developing field of single-cell genomics allows insights into kidney 
homoeostasis and disease at unprecedented resolution. Future studies will likely help 
identify novel disease mechanisms, and therapeutic targets as well as diagnostic and 
prognostic biomarkers. Single-cell sequencing of urinary cells might serve as a liquid 
biopsy to help diagnose specific kidney diseases non-invasively. The multiomic analysis 
of single compartments in the kidney, like single glomeruli or single nephrons, might also 
add further insight into physiological changes in gene expression and in diseases. Single-
cell multiomics are developing rapidly107, such as the combined measurement of single-cell 
RNA expression with protein expression and epigenetic changes. These methods provide 
multiple molecular angles on the cells and will likely accelerate the understanding of 
cellular pathophysiology and result in the discovery of novel drug targets.
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Abstract

Kidney fibrosis is the hallmark of chronic kidney disease progression; however, at present 
no antifibrotic therapies exist1–3. The origin, functional heterogeneity and regulation of 
scar forming cells that occur during human kidney fibrosis remain poorly understood1,2,4. 
Here, using single-cell RNA sequencing, we profiled the transcriptomes of cells from 
the proximal and non-proximal tubules of healthy and fibrotic human kidneys to map 
the entire human kidney. This analysis enabled us to map all matrix-producing cells at 
high resolution, and to identify distinct subpopulations of pericytes and fibroblasts as 
the main cellular sources of scar-forming myofibroblasts during human kidney fibrosis. 
We used genetic fate-tracing, time-course single-cell RNA sequencing and ATAC–seq 
(assay for transposase-accessible chromatin using sequencing) experiments in mice, and 
spatial transcriptomics in human kidney fibrosis, to shed light on the cellular origins and 
differentiation of human kidney myofibroblasts and their precursors at high resolution. 
Finally, we used this strategy to detect potential therapeutic targets, and identified NKD2 
as a myofibroblast-specific target in human kidney fibrosis.
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Main Text

Chronic kidney disease (CKD) affects more than 10% of the world population. The final 
common pathway of kidney injury is fibrosis and its extent is inextricably linked to clinical 
outcomes1,4. No approved therapies exist at present, and the cellular origin, functional 
heterogeneity and regulation of scar-producing cells in the human kidney continues to 
be debated1,4. Using single-cell RNA sequencing (scRNA-seq), we profiled approximately 
135,000 human and mouse kidney cells during homeostasis and fibrosis, allowing us 
to determine the heterogeneity of cells that produce extracellular matrix (ECM) at high 
resolution. We identified several subpopulations of mesenchymal cells as the main 
contributors to human kidney fibrosis, whereas injured tubular epithelia, endothelium and 
monocytes only exhibited minor ECM expression. Genetic fate-tracing and time-course 
scRNA-seq and ATAC–seq experiments in mice, and spatial transcriptomics in human 
kidney fibrosis, supported these findings, and shed light on the origin and regulation 
of human kidney myofibroblasts. This approach also identified candidate therapeutic 
targets, such as the myofibroblast-specific naked cuticle homologue 2 (NKD2) gene.

Single-cell atlas of human chronic kidney disease
To understand which resident human renal cell types secrete ECM during homeostasis and 
CKD, we generated a single-cell map of the kidneys, with a focus on the tubulointerstitium. 
More than 80% of renal cortical cells are proximal tubular epithelial cells and have thus 
dominated previous single-cell maps, masking other populations5. We therefore sorted 
for viable, non-proximal tubular cells (CD10−) and CD10+ proximal tubular cells to map 
the entire kidney (Extended Data Fig. 1a, b). Although CD10 is also expressed by other 
cell types, this strategy allows an enrichment or depletion of proximal tubular cells. 
We performed scRNA-seq analysis of both CD10+ and CD10− fractions from 13 patients 
with CKD due to hypertensive nephrosclerosis or control patients without CKD (n = 7; 
estimated glomerular filtration rate (eGFR) > 60 and n = 6; eGFR < 60) (Extended Data Fig. 
1a–i, Supplementary Table 1). We profiled 53,672 CD10− cells from 11 patients (n = 7 eGFR 
> 60; n = 4 eGFR < 60) (Supplementary Table 1). To integrate the data across patients, we 
used an unsupervised graph-based clustering method and identified 50 different CD10− 
cell clusters that were represented in both eGFR groups (Fig. 1a–d). This strategy enabled 
us to determine the heterogeneity of the renal interstitium including the identification 
of rare cell types such as Schwann cells (Fig. 1a–d, Extended Data Figs. 1j–u, 2a–d). Next, 
we profiled 33,690 CD10+ proximal tubular cells (5 patients with eGFR > 60 and 3 with 
eGFR < 60) and arranged these into 7 clusters (Fig. 1e, Extended Data Fig. 2e–j). Cell-
cycle analysis indicated increased cycling in CKD, probably reflecting epithelial repair 
(Extended Data Fig. 2k, l). Analysis of KEGG pathway and Gene Ontology (GO) terms in 
CD10+ cells suggested increased fatty acid metabolism in CKD (Fig. 1f, Extended Data Fig. 
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2m, n). Notably, dysregulated fatty acid metabolism has been shown to cause tubular 
de-differentiation and fibrosis6.

Origin of extracellular matrix in human CKD
To identify the cell types that contribute to the production of ECM in kidney fibrosis, we 
established a single-cell ECM expression score that included collagens, glycoproteins and 
proteoglycans7, and confirmed an increased score in published CKD data8 (Extended Data 
Fig. 2o–u). ECM scores demonstrated a clear shift towards high ECM-expressing cells in 
CKD (Fig. 1g). Mesenchymal cells exhibited the highest ECM expression and this increased 
further in CKD (Fig. 1h, i, Extended Data Fig. 2q–u). All fibroblasts and myofibroblasts 
expanded in CKD (Fig. 1j). Although ACTA2 has been used as a myofibroblast marker 
previously, we defined myofibroblasts as cells that express the most ECM genes. To assess 
the putative myofibroblast differentiation processes, we generated a uniform manifold 
approximation and projection (UMAP) embedding of (myo)fibroblasts and pericytes 
(Extended Data Fig. 3a–c). This embedding supported our unsupervised graph clustering 
(Fig. 1b), highlighting the heterogeneity of the renal mesenchyme. Myofibroblasts were 
identified as cells that express periostin (POSTN) (Extended Data Fig. 3b). Diffusion 
mapping of high ECM-expressing mesenchymal cells suggested that myofibroblasts 
arise from both pericytes and fibroblasts (Fig. 1k, Extended Data Fig. 3d).

Minor upregulation of ECM genes occurred in epithelial cells (Fig. 1h), which suggests 
a minor contribution of the long-debated epithelial-to-mesenchymal transition1,9,10. 
Injured proximal tubules showed the highest expression of ECM genes among CD10− 
epithelium, with various expressed genes and GO terms suggesting de-differentiation 
(Extended Data Fig. 3e–j). In CD10+ proximal tubules, ECM expression increased slightly 
in CKD (Extended Data Fig. 3k-n). Injured cells were defined by expression of SOX9, 
CD24A and CD133 (also known as PROM1) for proximal tubules and VCAM1 and ACKR1 for 
endothelium11–13.

Thus, the vast majority of ECM in human kidney fibrosis originates from mesen-
chymal cells, with a minor contribution from de-differentiated proximal tubule cells.

Cellular source of myofibroblasts
Our CD10− scRNA-seq data identified most COL1A1-expressing cells as PDGFRβ+ 
(Extended Data Fig. 3o). Unsupervised clustering of 37,380 PDGFRβ+ cells sorted from 
human kidneys (n = 4; eGFR > 60 and n = 4; eGFR < 60) (Supplementary Table 1) identified 
mesenchymal populations and some epithelial, endothelial and immune cells, which 
were annotated by correlation with the CD10− populations (Fig. 2a, b, Extended Data Fig. 
4a–e). ECM gene expression again dominated in pericyte, fibroblast and myofibroblast 
clusters (Extended Data Fig. 4f–i). Some macrophage, monocyte, endothelial and injured 
epithelial populations also expressed COL1α1 and PDGFRβ, but at much lower levels (Fig. 
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2a, b, Extended Data Fig. 4f–i). Doublet-likelihood scores were low for endothelial and 
injured epithelial cells, but slightly increased in macrophages (Extended Data Fig. 4j). We 
verified COL1A1 mRNA expression in these cells by in situ hybridization (ISH) (Extended 
Data Fig. 4k–m). These data partially explain the controversy regarding the contributions 
of non-mesenchymal lineages to fibrosis1,14, because we indeed observed minor ECM 
gene expression in these cells, whereas most ECM is derived from mesenchymal cells.

Pseudotime trajectory and diffusion map analysis of major ECM-expressing cells 
from the PDGFRβ+ populations indicated three main sources of myofibroblasts in human 
kidneys: (1) NOTCH3+ RGS5+PDGFRα− pericytes; (2) MEG3+PDGFRα+ fibroblasts; and (3) 
COLEC11+CXCL12+ fibroblasts (Fig. 2c, Extended Data Fig. 5a). Diffusion mapping places 
non-CKD cells within populations of low ECM-expressing pericytes and fibroblasts, 
indicating a differentiation trajectory from low-ECM, non-CKD pericytes and fibroblasts 
to high-ECM CKD myofibroblasts (Fig. 2c, Extended Data Fig. 5a–i). We confirmed this 
directionality and also the main lineages of the diffusion map, consisting of NOTCH3+ 
pericytes (lineage 1) and MEG3+ fibroblasts (lineage 2), using ISH in human kidneys (Fig. 
2d, Extended Data Fig. 5j–m). We observed a potential intermediate stage of cells that 
co-expressed NOTCH3, MEG3 and POSTN, possibly representing differentiating cells 
in the centre of the diffusion map (Fig. 2d, Extended Data Fig. 5k–m). Distinct spatial 
tissue locations could be identified for the myofibroblast 1 population (POSTN+), which 
increased in fibrosis, and for the myofibroblast 3 population (CCL19+CCL21+), which were 
enriched around glomeruli (Extended Data Fig. 5n–r). The gene expression program of 
pericyte-to-myofibroblast differentiation (lineage 1) demonstrated changes in the cell 
cycle consistent with differentiation and expansion (Fig. 2e). Ordering their pathway 
enrichment along pseudotime yielded early canonical WNT and activator protein-1 
(AP-1), intermediate ATF2, PDGFRA and late integrin, ECM receptor interaction and TGFβ 
signalling among other pathways (Fig. 2e, bottom, Extended Data Fig. 6a). Cessation of 
the cell cycle also characterized fibroblast-tomyofibroblast differentiation, followed by 
increased proliferation (lineages 2 and 3) (Extended Data Fig. 6b, c) with early AP-1, and 
inflammatory pathways, followed by integrin and ECM interaction pathways (Extended 
Data Fig. 6d–g). Late TGFβ signalling was prevalent in the analysis of lineages 1 and 3 (Fig. 
2e, Extended Data Fig. 6a, g). A comparison of ligand and receptor expression within this 
pathway suggested a mechanism in which myofibroblasts promote the differentiation 
of fibroblasts and pericytes by TGFβ signalling (Extended Data Fig. 6h–k).

Many of the above pathways are known regulators of fibrosis, including integrin15 and 
AP-1 signalling16. To further understand transcriptional regulation of mesenchymal 
populations, we performed motif enrichment analysis of transcription factor sequences 
in promoters and distal regions of marker genes. This highlighted a potential key 
regulatory role of AP-1 in the differentiation of fibroblasts to myofibroblasts (Extended 
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Data Fig. 6l). To validate this finding functionally, we generated a human PDGFRβ+ 
kidney cell line (Extended Data Fig. 6m). Inhibition of AP-1 significantly decreased cell 
proliferation and expression of OGN, whereas POSTN expression was increased, which 
suggests myofibroblast differentiation (Extended Data Fig. 6n).

In the human PDGFRβ data, OGN marked fibroblast 1+3 whereas POSTN marked 
myofibroblasts 1 (Extended Data Fig. 6o). Consistent with this, expression of AP-1 
transcription factors negatively correlated with average collagen expression, whereas 
the expression of putative AP-1 target genes positively correlated with average collagen 
expression (Extended Data Fig. 6p), indicating that AP-1 may have a repressor role. 
However, the role of AP-1 is likely to be multifunctional and it may have additional roles 
that could also promote fibrosis.

We next studied which cells signal towards the key ECM-expressing cells (Extended 
Data Fig. 6q). Lowest signalling came from healthy proximal tubule, whereas injured 
proximal tubule cells were among the top signalling partners, suggesting tubule-in-
terstitial signalling as a hallmark of fibrosis17 (Extended Data Fig. 6q). This interaction 
involves Notch, TGFβ, WNT and PDGFα signalling (Extended Data Fig. 6r).

PDGFRα+PDGFRβ+ marks ECM-expressing cells
In genetic fate-tracing experiments in kidneys from Pdgfrb-creER-tdTomato mice, ISH 
and immunostaining confirmed that almost all myofibroblasts are derived from the 
PDGFRβ lineage (Fig. 3a–c, Extended Data Fig. 7a–c). A Smart-Seq2 time-course study 
in Pdgfrb-eGFP mice demonstrated that the abundance of smooth muscle cells and 
pericytes decreased after unilateral ureteral obstruction (UUO), whereas mesangial cells 
and COL1α1+PDGFRα+ matrix-producing cells increased (Fig. 3d–f, Extended Data Fig. 
7d, e). Similar to the human kidney, the main ECM-expressing cell population exhibited 
expression of Pdgfra, Pdgfrb and Postn (Fig. 3g, Extended Data Fig. 7e–g). Other cells 
showed significantly lower ECM expression than the PDGFRα+PDGFRβ+ population 
(Extended Data Fig. 7f, g).

Immunostaining and ISH in mice confirmed double positivity for PDGFRα+ and 
tdTomato in Col1a1-expressing cells, which confirms that cells that express PDGFRα and 
PDGFRβ are the main source of ECM (Extended Data Fig. 7h, i). This was confirmed via 
multiplex ISH in a cohort of 62 patients (Extended Data Fig. 7j, k). Diffusion map embedding 
of matrix-producing cells and pericytes was also consistent with our human PDGFRβ data, 
and suggested that pericytes (PDGFRβ+PDGFRα−NOTCH3+) are one origin of the main 
ECM-producing cells (PDGFRβ+PDGFRα+COL1α1+POSTN+) (Extended Data Fig. 7l–p).

Combined, our data demonstrate that PDGFRα+PDGFRβ+ dual-positive mesenchymal 
cells, including all fibroblast and myofibroblast populations but not non-activated 
PDGFRα−PDGFRβ+ pericytes (low ECM-expressing pericytes), represent most ECM-ex-
pressing cells.
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Heterogeneity of the mesenchyme
We next generated scRNA-seq data from 7,245 PDGFRα+PDGFRβ+ cells in mouse kidney 
fibrosis experiments (Fig. 3h). These cells expanded approximately 140-fold after injury 
and UMAP embedding revealed four major, distinct populations that correspond to 
mesenchyme, epithelial, endothelial and immune cells (Fig. 3i–k, Extended Data Fig. 7q–
r), all of which have been described as origins of kidney fibrosis1,14,18. We did not detect 
undifferentiated pericytes in this data, because pericytes are PDGFRα− in humans and 
mice (Fig. 2c, Extended Data Fig. 7e).

Non-mesenchymal cells expressed markedly lower ECM and collagen levels than 
mesenchymal cells (Fig. 3k, Extended Data Figs. 7r, s, 8a), supporting our human data 
that non-mesenchymal cells contribute little to scarring (Figs. 1, 2). Doublet scores were 
low in these clusters (Extended Data Fig. 8b).

Unsupervised clustering revealed two key classes within mesenchymal cells in this 
dataset: (1) fibroblast 1 marked by Scara5 and Meg3 expression; and (2) myofibroblasts 
consisting of various myofibroblast subpopulations (Fig. 3j, k, Extended Data Fig. 8a). In 
our human data, the myofibroblast 1 subset corresponded to terminally differentiated 
myofibroblasts with the highest ECM expression preceded in differentiation pseudotime 
by myofibroblast 2 (OGN+), whereas the fibroblast 1 cells appeared as a ‘progenitor’ 
non-activated fibroblast population (Fig. 2c). Fibroblast 1 cells differed from myofi-
broblasts in the PDGFRα+PDGFRβ+ data by three main features: first, Col15a1, a mouse 
myofibroblast-specific collagen (Extended Data Fig. 7e), was expressed at lower levels in 
fibroblast 1 cells than in myofibroblasts (Extended Data Fig. 8c); second, although Meg3 
was expressed in some other cells (Extended Data Fig. 8d, e), it was confined to fibroblast 
1 cells within the mesenchyme (Fig. 3k), as validated by ISH in human kidney (Extended 
Data Fig. 8d–f); (3) the fibroblast 1 population is SCARA5+ but FRZB− (Extended Data Fig. 
8g), again demonstrating that they are distinct from myofibroblasts.

Having established fibroblast 1 cells as a distinct population, we generated UMAP 
and diffusion map embeddings and performed pseudotime analyses of all PDGFRα+P-
DGFRβ+ mesenchymal cells to gain insight into their lineage relationships (Fig. 3l–n). This 
analysis suggested fibroblast 1 (MEG3+SCARA5+) and myofibroblast 2 (COL14A1+OGN+) 
as early states, myofibroblast 3a as an intermediate state, and myofibroblast 1a 
(NRP3+NKD2+), myofibroblast 1b (GREM2+) and myofibroblast 3b (FRZb+) as terminal 
states (Fig. 3l–n). Thus, fibroblast 1 and myofibroblast 2 cells are the main source of myofi-
broblasts in mouse kidney fibrosis. The myofibroblast 2 subset (OGN+COL14A1+) might 
exist in healthy mouse kidneys or may arise as an intermediate state via pericyte-to-my-
ofibroblast differentiation (Fig. 2c, human data). Expression of Agtr1a in these cells points 
towards a pericyte origin (Fig. 3n).
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Supervised classification of the mouse PDGFRα+PDGFRβ+ single-cell data based on 
our human PDGFRβ+ cells confirmed the distinctness of fibroblast 1 cells and myofibro-
blasts in both species (Extended Data Fig. 9a, b).

Our data suggest a model in which PDGFRβ+PDGFRα+POSTN+ high-ECM expressing 
myofibroblasts (here termed myofibroblast 1) arise from PDGFRβ+PDGFRα−NOTCH3+ 
pericytes, PDGFRβ+PDGFRα+SCARA5+ fibroblasts (fibroblast 1) and PDGFRβ+PDG-
FRα+CXCL12+ fibroblasts (fibroblast 2) (Extended Data Fig. 9c). Pericytes potentially 
differentiate through an intermediate ECM-expressing PDGFRβ+PDGFRα+OGN+ COL14A1+ 
(myofibroblast 2) state into myofibroblast 1 cells (Extended Data Fig. 9c).

Distinct fibroblast and myofibroblast cell states
We next sought to determine whether the above fibroblast and myofibroblast cell states 
represent distinct cell types with distinct gene regulatory profiles19. We generated bulk 
ATAC–seq20 data from PDGFRα+PDGFRβ+ cells isolated from mouse kidneys after UUO 
and deconvoluted the open chromatin region signatures based on proximity to marker 
genes identified in the scRNA-seq clusters (Fig. 3o). Fibroblast 1 and myofibroblast 2 
cells were distinct from each other and from other myofibroblasts. Myofibroblast 1a 
cells were distinct from myofibroblast 1b and featured enrichment of ATF factors. The 
myofibroblast 2 and 3b subclusters showed enrichment of the orphan receptor Nr4a1, 
previously reported as a regulator of TGFβ signalling and fibrosis21. Fibroblast 1 cells 
showed enrichment of AP-1 motifs (Fig. 3o), in line with the human data (Extended Data 
Fig. 6l). RNA expression of the factors identified by ATAC–seq (Extended Data Fig. 9d–g) 
confirmed the sequence motif enrichment (Fig. 3o), indicating divergent transcriptional 
regulation in these populations.

Consistent with our ATAC–seq data, analysis of signalling pathways based on our 
scRNA-seq data indicated that fibroblast 1 and myofibroblasts are distinct populations 
with different regulatory programs (Extended Data Fig. 9h).

NKD2 as potential therapeutic target
We analysed our data to identify potential therapeutic targets for kidney fibrosis. 
Nkd2 is specifically expressed in mouse PDGFRα+PDGFRβ+ terminally differentiated 
myofibroblasts (Fig. 4a, Extended Data Fig. 9i), and cells positive for both NKD2 and 
PDGFRα constituted more than 40% of all COL1α1+ cells (Fig. 4b). In human PDGFRβ+ cells, 
NKD2 marks high ECM myofibroblasts, its expression correlates positively with POSTN 
and ECM and negatively with genes associated with pericytes and fibroblasts (Fig. 4c, 
Extended Data Fig. 10a, b). NKD2+ myofibroblasts exhibited increased TGFβ, WNT and 
TNF pathway activity compared with NKD2− cells (Extended Data Fig. 10c), using the 
PROGENy method22. Multiplex ISH in 36 patients confirmed that a subpopulation of 
PDGFRα+PDGFRβ+ cells expresses NKD2 and expands in fibrosis (Fig. 4d, e). NKD2 is a 
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modulator of TNF and the WNT pathway23,24. To study the role of NKD2 in kidney fibrosis, 
we used our human PDGFRβ+ data to predict a gene-regulatory network focused on 
genes that correlated with NKD2, using the GRNboost2 framework25 (Extended Data Fig. 
10d–f). This analysis suggests that NKD2 regulates ETV1 and affects paracrine signalling 
through LAMP5 (Extended Data Fig. 10f, g).

Lentiviral overexpression of NKD2 in our human PDGFRβ cell line induced expression 
of ECM molecules in response to TGFβ, whereas knockout of NKD2 markedly reduced 
the expression of COL1A1, FN1 and ACTA2 in the presence or absence of TGFβ (Fig. 4f, 
g, Extended Data Fig. 10h–j). RNA-seq analysis from cells overexpressing NKD2 demon-
strated upregulated ECM regulators and glycoproteins, whereas NKD2-knockout cells 
exhibited loss of ECM regulators, glycoproteins and collagens (Fig. 4h). Pathway and GO 
analysis placed NKD2 in ECM expression programs and suggested an interaction with 
AP-1 and integrin signalling (Extended Data Fig. 10k, l). We further observed strong 
changes in the expression of WNT receptors and ligands after NKD2 knockout (Extended 
Data Fig. 10m).

To validate NKD2 as a therapeutic target, we generated induced pluripotent stem 
(iPS) cell-derived kidney organoids that contained all major compartments of the human 
kidney (Extended Data Fig. 10n–p). IL-1β can induce fibrosis in iPS cell-derived kidney 
organoids26, and short interfering RNA (siRNA)-mediated knockdown of NKD2 inhibited 
IL-1β-induced COL1A1 expression (Fig. 4i–l). Thus, NKD2 marks myofibroblasts in kidney 
fibrosis, is required for collagen expression, and represents a potential therapeutic 
target. However, because these organoids do not contain immune cells, further in vivo 
data will be required to fully verify this finding.

Discussion

Myofibroblasts represent the main source of ECM during kidney fibrosis, but their 
cellular origin was controversial1,9. scRNA-seq analysis allows the dissection of the cellular 
heterogeneity of complex tissues and disease processes, and generates insights into 
disease mechanisms at unprecedented resolution13,27,28.

Genetic fate-tracing data in mice and histology analyses of human tissue have 
suggested that epithelial, endothelial, haematopoietic cells and resident mesenchymal 
cells all contribute to fibrosis1. Here we provide a comprehensive cell atlas of human 
and mouse kidney fibrosis and show that most scar tissue originates from dual-pos-
itive PDGFRα+PDGFRβ+ fibroblasts and myofibroblasts. In both humans and mice, these 
myofibroblasts predominantly derive from pericytes and fibroblasts. Our scRNA-seq 
strategy pointed to new disease mechanisms and potential therapeutic targets, such as 
myofibroblast-expressed NKD2. Although NKD2 has been reported as a WNT inhibitor, 



52

Chapter 3

our data indicate that it may also act as an activator of some aspects of WNT signalling.
Our work highlights the intricate cell differentiation mechanisms involved in fibrosis 

and provides a resource for future clinical research in kidney disease.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, extended data, supplementary information, acknowledgements, peer review 
information; details of author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/s41586-020-2941-1.

Methods

Ethics
The local ethics committee of the University Hospital RWTH Aachen approved all human 
tissue protocols (EK-016/17). Kidney tissue was collected from the Urology Department 
of the Hospital Eschweiler from patients undergoing (partial) nephrectomy due to 
kidney cancer. All patients provided informed consent and the study was performed in 
accordance with the Declaration of Helsinki.

Processing of human tissue
The tissue was snap-frozen on dry-ice or placed in prechilled in University of Wisconsin 
solution (BTLBUW, Bridge to Life). Tissues were sliced into approximately 0.5–1 mm3 
pieces and transferred to a C-tube (Miltenyi Biotec) and processed on a gentle-MACS 
(Miltenyi Biotec) using the program spleen 4. The tissue was digested for 30 min at 37 
°C with agitation at 300 rpm in a digestion solution containing 25 μg ml−1 liberase TL 
(Roche) and 50 μg ml−1 DNase (Sigma) in RPMI (Gibco). After incubation, samples were 
processed again on a gentle-MACS (Miltenyi Biotec) using the same program. The 
resulting suspension was passed through a 70-μm cells strainer (Falcon), washed with 45 
ml cold PBS and centrifuged for 5 min at 500g at 4 °C. Live, single cells were enriched by 
FACS-sorting and gating on DAPI negative cells with further enrichment of epithelial cells 
by CD10 staining or PDGFRβ staining for fibroblasts.

Mice
Pdgfrb-creERt2 (that is, B6-Cg-Gt(Pdgfrb-cre/ERT2)6096Rha/J, JAX Stock 029684) and 
Rosa26tdTomato (that is, B6-Cg-Gt(ROSA) 26Sorttm(CAG-tdTomato)Hze/J, JAX Stock 007909) were 
purchased from Jackson Laboratories. Pdgfrb-BAC-eGFP reporter mice were developed 
by N. Heintz (The Rockefeller University) for the GENSAT project. UUO was performed 
as previously described using male and female mice29. Animal experiment protocols 
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were approved by the LANUV-NRW, Germany, and by the UK Home Office Regulations. 
For Smart-Seq2, Pdgfrb-eGFP male mice born within 10 days of each other were used, 
and between 9 and 11 weeks old at the time of surgery. For inducible fate-tracing 
experiments, Pdgfrb-creER;tdTomato mice (8 weeks of age) received tamoxifen (10 mg 
orally) 3 times via gavage followed by a washout period of 21 days and then subjected 
to UUO surgery or sham (as above) and killed at 10 days after surgery. Mice were housed 
at two to five mice per cage with a 12-h light–dark cycle (lights on from 0700 to 1900) at 
sustained temperature (20 °C ± 0.5 °C) and humidity (approximately 50% ± 10%) with ad 
libitum access to food and water.

Single-cell isolation in mouse
Euthanized mice were perfused via the left heart with 20 ml NaCl 0.9% to remove blood 
residues from the vasculature. To isolate single kidney cells, a combination of enzymatic 
and mechanical disruption was used as described above for human single cell isolation. 
Overall, the viability was more than 80% using this method.

FACS
Cells were labelled with the following antibodies: anti-CD10 human (clone HI10a, 
Biolegend, 1:100), anti-PDGFRβ mouse (clone PR7212, R&D, 1:100), anti-PDGFRα mouse 
(clone APA5, Biolegend, 1:100), anti-CD45 mouse (clone 30_F11). Isolated cells were 
resuspended in 1% FBS in PBS on ice at a final concentration of 1 × 107 cells per ml. 
Cells were pre-incubated with Fc-Block (TruStainFx human, TruStainFx mouse Clone 91, 
Biolegend) and then incubated with the above antibodies for 30 min on ice protected 
from light diluted 1:100 in 2% FBS in PBS. For human anti-PDGFRβ staining, goat anti-
mouse Dyelight 405 (poly24091, Biolegend, 1:100) was used as a secondary antibody.

All compensation was performed at the time of acquisition using single colour staining 
and negative staining and fluorescence minus one controls. The cells were sorted in 
the semi-purity mode targeting an efficiency of more than 80% with the SONY SH800 
sorter (Sony Biotechnology; 100-μm nozzle sorting chip Sony). For plate-based sorting 
for SMART-Seq, cell sorting was performed on a FACS Aria II machine (Becton Dickinson) 
using BD FACSDiva software. FACS data analysis was performed using FlowJo.

Single-cell assays including Smart-Seq2 and 10X Genomics 3’ 
scRNA-seq (V2 and V3)
For Smart-Seq2 single cells were processed by SciLifeLab Eukaryotic Single Cell Genomic 
Facility (Karolinska Institute). Before shipping, single cells were sorted into wells of 
a 384-well plate containing pre-prepared lysis buffer. Libraries were sequenced on 
Illumina HiSeq4000. The single-cell solution of primary human kidney cells was run on a 
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Chromium Single Cell Chip kit and libraries were performed using Chromium Single Cell 
3’ library kit V2/3 and i7 Multiplex kit (PN-120236, PN-120237, PN-120262, 10x Genomics) 
according to the manufacturer’s protocol. The library quality was determined using 
D1000 ScreenTape on a 2200 TapeStation system (Agilent Technologies). Libraries were 
sequenced on a Illumina Novaseq targeting a read depth as suggested by 10X Genomics 
3‘ single-cell RNA kits V2/3.

Human kidney fibrosis evaluation
Periodic acid–Schiff (PAS)-stained sections of the kidneys were analysed and scored in a 
blinded fashion. The extent of interstitial fibrosis and tubular atrophy were assessed as 
two separate parameters as the percentage of affected cortical area. For collagen I and 
III immunohistochemistry (collagen I (Southern Biotech) 1310-01; collagen III (Southern 
Biotech) 1330-01), sections of formalin-fixed and paraffin-embedded renal tissues were 
processed for indirect immunoperoxidase staining as previously described29. Using a 
whole slide scanner (NanoZoomer HT, Hamamatsu Photonics), fully digitalized images 
of immunohistochemically stained slides were further processed and analysed using the 
viewing software NDP.view (Hamamatsu Photonics) and ImageJ (National Institutes of 
Health). The percentage of positively stained area was analysed in the kidney cortex in a 
blinded fashion.

Antibodies and immunofluorescence staining
Kidney tissues were fixed in 4% formalin for 2 h at room temperature and frozen in OCT 
after dehydration in 30% sucrose overnight. Using 5–10-μm cryosections, slides were 
blocked in 5% donkey serum followed by 1-h incubation of the primary antibody, washing 
three times for 5 min in PBS and subsequent incubation of the secondary antibodies for 
45 min. After 4’,6-diamidino-2-phenylindole (DAPI) staining (Roche, 1:10,000), the slides 
were mounted with ProLong Gold (Invitrogen, P10144). The following antibodies were 
used: anti-mouse PDGFRα (AF1062, 1:100, R&D), anti-CD10 human (clone HI10a, 1:100, 
Biolegend), anti-HNF4α (clone C11F12, 1:100, Cell Signaling), anti-Pan-Cytokeratin TypeI/
II (Invitrogen, MA1-82041), anti-DACH1 (Sigma, HPA012672, 1:100), anti-COL1α1 (Abcam, 
ab34710, 1:100), anti-ERG (abcam, ab92513, 1:100), anti-CXCL12/SDF-1 (R&D, MAB350, 
1:100), AF488 donkey antigoat (1:200, Jackson Immuno Research), and AF647 donkey anti-
rabbit (1:200, Jackson Immuno Research)

Confocal imaging
Images were acquired using a Nikon A1R confocal microscope using 40× and 60× 
objectives (Nikon). Raw imaging data were processed using Nikon Software, ImageJ, 
Adobe Photoshop and Adobe Illustrator.
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Human kidney tissue microarray
Paraffin-embedded, formalin-fixed kidney specimens from 98 non-tumorous human 
kidney samples of the Eschweiler/Aachen biobank were selected based on a previously 
performed PAS staining. Areas were randomly selected per sample and one 2-mm core 
was taken from each kidney sample using the TMArrayer (Pathology Devices, Beecher 
Instruments). Each core was arrayed into a recipient block in a 2-mm-spaced grid covering 
approximately 2.5 cm2, and 5-μm thick sections were cut and processed using standard 
histological techniques.

RNA ISH
ISH was performed using formalin-fixed paraffin-embedded tissue samples and the 
RNAScope Multiplex Detection KIT V2 (RNAScope, 323100) following the manufacturer’s 
protocol with minor modifications. The antigen retrieval was performed for 22 min at 
96 °C instead of 15 min at 99 °C in a water bath. Then, 3–5 drops of pre-treatment 1 
solution were incubated at room temperature for 10 min after performing antigen 
retrieval. The washing steps were performed three times for 5 min. The following probes 
were used for the RNAscope assay: Hs-PDGFRβ 548991-C1, Hs-PDGFRα 604481-C3, Hs-
COL1α1 401891, Hs-COL1α1 401891-C2, Hs-MEG3 400821, Hs-NKD2 581951-C2 (targeting 
236-1694 of NM_033120.3), Hs-POSTN 409181-C2 and 409181-C3, Hs-PECAM1 487381-C2, 
Hs-Ccl19 474361-C3, Hs-CCL21 474371-C2, Hs-NOTCH3 558991-C2, Mm-COL1α1 319371, 
Mm-PDGFRα 480661-C2, and Mm-PDGFRβ 411381-C3.

ISH image analysis
Systematic random sampling was applied to subsample at least three representative 
tubulo-interstitial areas per image. Next, every fluorescent dot (transcript) was manually 
annotated using the cell counting tool from Fiji (Max Planck Institute of Molecular 
Cell Biology and Genetics). Single nuclei were then isolated using an in-house made 
tool (https://gitlab.com/mklaus/segment_cells_register_marker) based on watershed 
(limits: 0.1–0.4) to identify neighbouring nuclei, edge detection for incompleteobjects 
andobject sizeselection(limits: 12–180 μm2). The total number of individual dots was then 
retrieved for every isolated nucleus. Dots located outside of nuclei were not included in 
this analysis. For MEG3 and NKD2 analysis of PDGFRα and PDGFRβ cells, images were 
analysed using QuPath after segmenting the nuclei and counting cells based on >1 
positive spot per imaging channel. For quantification of COL1α1 immunofluorescence 
and NKD2 ISH, images were split in RGB channels and the integrated fluorescent density 
was determined per image using ImageJ.
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qRT–PCR
Cell pellets were collected and washed with PBS followed by RNA extraction according 
to the manufacturer’s instructions using the RNeasy Mini Kit (Qiagen). Total RNA (200 
ng) was reverse transcribed with High-Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems) and qRT–PCR was carried out further as previously described29. Data were 
analysed using the 2-Ct method. The primers used are listed in Supplementary Table 3.

Generation of a human PDGFRβ+ cell line
PDGFRβ+ cells were isolated from healthy human kidney cortex of a nephrectomy 
specimen (71-year-old male individual) by generating a single-cell suspension (as above). 
For the isolation, cells were stained in two steps using a specific PDGFRβ antibody (R&D 
MAB1263 antibody, dilution 1:100) followed by Anti-Mouse IgG1-MicroBeads solution 
(Miltenyi, 130-047-102). After magnetic-activated cell sorting (MACS), cells were cultured 
in DMEM medium (Thermo Fisher 31885) for 14 days and immortalized using SV40LT and 
HTERT. Retroviral particles were produced by transient transfection of HEK293T cells using 
TransIT-LT (Mirus). Two types of amphotropic particles were generated by co-transfection 
of plasmids pBABE-puro-SV40-LT (Addgene 13970) or xlox-dNGFR-TERT (Addgene 69805) 
in combination with a packaging plasmid pUMVC (Addgene 8449) and a pseudotyping 
plasmid pMD2.G (Addgene 12259). Retroviral particles were concentrated 100 times using 
Retro-X concentrator (Clontech) 48 h after transfection. Cell transduction was performed 
by incubating the target cells with serial dilutions of the retroviral supernatants (1:1 
mix of concentrated particles containing SV40-LT or hTERT) for 48 h. Next, the infected 
PDGFRβ+ cells were selected with 2 μg ml−1 puromycin at 72 h after transfection for 7 
days.

Culturing human iPS cell-derived kidney organoids
Human iPS cell C-15 clone 0001 was received from the Stem Cell Facility of the Radboud 
University Center. Human iPS cells were grown on Geltrex-coated plates using E8 
medium (Life Technologies). After 70–80% confluency, iPS cells were detached using 0.5 
mM EDTA and cell aggregates were reseeded by splitting 1:3. iPS cells were differentiated 
using a modified published protocol30 and seeded at a density of 18,000 cells per cm2 
on Geltrex-coated plates (Greiner). Differentiation towards intermediate mesoderm was 
initiated using CHIR99021 (6 μM, Tocris) in Essential 6 (E6) medium (Life Technologies) for 
3 and 5 days, followed by FGF9 (200 ng ml−1, RD Systems) and heparin (1 μg ml−1, Sigma 
Aldrich) supplementation in E6 medium up to day 7. After 7 days of differentiation, cell 
aggregates (300,000 cells per organoid, mixture of 3 and 5 day CHIR-differentiated cells) 
were cultured on Costar Transwell inserts to stimulate self-organizing nephrogenesis 
using E6 differentiation medium. On days 7 + 18 (2D culture + 3D culture conditions), 
the kidney organoids were used for siRNA knockdown experiments as described below.
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siRNA knockdown of NKD2 in human iPS cell-derived kidney 
organoids
NKD2 siRNA knockdown was carried out according to the manufacturer protocol 
(DharmaFECT transfection reagent and NKD2-specific smartpool siRNA, both Horizon 
Discovery). The transfection master mix and scrambled controls were prepared in 
E6 medium (Gibco) and added to the organoids. After an initial incubation of 24 h, 
the transfection master mixes were refreshed, and IL-1β (Sigma-Aldrich) was added at 
a concentration of 100 ng ml−1 to induce fibrosis. The addition of IL-1β together with 
fresh transfection master mix was repeated every 24 h for two days. Then, 96 h after 
the initiation of transfection, the organoids were collected and processed for paraffin 
sectioning. Fluorescence in-situ hybridization (FISH) and immunofluorescence staining 
was performed as described above.

TGFβ treatment experiments
TGFβ (100-21-10UG, Peprotech) at 10 ng ml−1 in PBS was added to 75% confluent PDGFRβ 
cells for 24 h after 24 h of serum starvation with 0.5% FCS containing medium. For 
inhibitor experiments, the T-5224 inhibitor (or vehicle) was added to the culture wells 1 h 
before the addition of TGFβ. All experiments were performed in triplicates.

AP-1 inhibitor treatment
T-5224 (c-Fos/AP-1 inhibitor, Cayman Chemicals, 22904) was dissolved in DMSO and 
stored at −80 °C. DMSO was always added in the same proportions to control wells.

Cell proliferation (WST-1 assay)
WST-1 assay with PDGFRβ cells was performed in 96-wells as recommended by the 
manufacturer (Roche Applied Science). In brief, 1 × 104 PDGFRβ cells were seeded into 
each well of 96-well plates and the cells were treated with T-5224 or vehicle (DMSO) with 
the indicated concentrations in triplicates. Cells were incubated with WST-1 reagent for 2 
h before collecting at the indicated time points. Absorbance at both450nm and 650 nm 
(as a reference) was measured.

CRISPR–Cas9 vector construction, virus production and 
transduction
The NKD2-specific guide RNA (forward 5’-CACCGACTCCAG TGCGATGTCTCGG-3’; reverse5’-
AAACCCGAGACATCGCACTGGAGTC-3’) were cloned into pL-CRISPR.EFS.GFP (Addgene 
57818) using BsmBI restriction digestion. Lentiviral particles were produced by transient 
co transfection of HEK293T cells with lentiviral transfer plasmid, packaging plasmid 
psPAX2 (Addgene 12260) and VSVG packaging plasmid pMD2.G (Addgene 12259) using 
TransIT-LT (Mirus). Viral supernatants were collected 48–72 h after transfection, clarified 
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by centrifugation, supplemented with 10% FCS and Polybrene (Sigma-Aldrich, final 
concentration of 8 μg ml−1) and 0.45-μm filtered (Millipore; SLHP033RS). Cell transduction 
was performed by incubating the PDGFRβ cells with viral supernatants for 48 h. eGFP-
expressing cells were single-cell sorted into 96-well plates. Expanded colonies were 
assessed for mutations with mismatch detection assay: gDNA spanning the CRISPR target 
site was PCR amplified and analysed by T7EI digest (T7 Endonuclease, NEB M0302S). To 
determine specific mutation events on both alleles within the clones grown, the PCR 
product was subcloned into the pCR 4Blunt-TOPO vector (Thermo Scientific K287520). 
Minimum 6 colonies per CRISPR-clone were grown and sent for sanger sequencing (clone 
C2: 30 colonies have been sequenced).

Western blot
Cell lysates were prepared by RIPA buffer with protease inhibitor cocktail (Roche). The 
protein concentrations of the lysates were quantified using BCA assay (23225, Pierce, 
ThermoScientific). The protein lysates were heated for 5 min at 95 °C in 4× SDS sample 
loading buffer (BioRad) and loaded into 10% SDS–PAGE gels. Afterwards samples were 
transferred onto PVDF membranes and the blots were probed with primary antibody 
in 5% Blotto (Thermo Fisher): (1:3,000 rabbit anti-human NKD2 polyclonal antibody, 
Invitrogen PA5-61979) for 2 h, followed by incubation with secondary antibody for 1 
h after washing (1:5,000 horseradish-peroxidase (HRP)-conjugated anti rabbit, Vector 
Laboratories) and developed using Pierce ECL Western Blotting Substrate A and B. Mouse 
monoclonal anti-GAPDH antibody (Novus Biologicals NB300-320; 1:1,000) followed by 
HRP-conjugated anti-mouse secondary antibody (Vector Laboratories) was used to stain 
GAPDH as a loading control.

Lentiviral overexpression of NKD2
The human cDNA of NKD2 was PCR amplified using the primer sequences 5’- 
ATGGGGAAACTGCAGTCGAAG-3’ and 5’-CTAGGACGGGTGGAAGTGGT-3’. Restriction 
sites and N-terminal 1xHA-Tag have been introduced into the PCR product using the 
primer 5’-CACTCG AGGCCACCATGTACCCATACGATGTTCCAGATTACGCTGGGAAACTGCA 
GTCGAAG-3’  and  5’-ACGGAATTCCTAGGACGGGTGGAAGTG-3’.

Subsequently, the PCR product was digested with XhoI and EcoRI and cloned 
into pMIG (pMIG was a gift from W. Hahn (Addgene plasmid 9044; http://n2t.net/
addgene:9044; RRID:Addgene_9044). Retroviral particles were produced by transient 
transfection in combination with packaging plasmid pUMVC (pUMVC was a gift from 
B. Weinberg; Addgene plasmid 8449) and pseudotyping plasmid pMD2.G (pMD2.G was 
a gift from D. Trono; Addgene plasmid 12259; http://n2t.net/addgene:12259; RRID:Ad-
dgene_12259) using TransIT-LT (Mirus). Viral supernatants were collected 48–72 h after 
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transfection, clarified by centrifugation, supplemented with 10% FCS and Polybrene 
(Sigma-Aldrich, final concentration of 8 μg ml−1) and passed through a 0.45-μm filter 
(Millipore; SLHP033RS). Cell transduction was performed by incubating the PDGFRβ cells 
with viral supernatants for 48 h. eGFP-expressing cells were single-cell sorted.

Bulk RNA sequencing
RNA was extracted according to the manufacturer’s instructions using the RNeasy Mini Kit 
(QIAGEN). For rRNA-depleted RNA-seq using 1 and 10 ng of diluted total RNA, sequencing 
libraries were prepared with KAPA RNA HyperPrep Kit with RiboErase (Kapa Biosystems) 
according to the manufacturer’s protocol.

ATAC–seq preparation
PDGFRα+PDGFRβ+ cells were sorted by FACS from freshly isolated UUO kidneys 
as described above, washed twice with cold PBS and centrifuged at500gfor5min.
Cellpelletswerelysedin50μlice-coldlysisbuffer(10mM Tris-HCl, pH 7.5; 10mM NaCl, 3mM 
MgCl2, 0.08% NP40 substitute (74385, Sigma), 0.01% Digitonin (G9441, Promega)), and 
immediately centrifuged at 500g for 9 min. Pellets were resuspended in 50 μl of a 
transposase reaction mix as previously described31. Transposed DNA was amplified by 
PCR using NEBNext 2x Master mix (M0541S; New England Biolabs) with custom Nextera 
PCR primers. The first PCR was performed with 50 μl volume and 6 cycles using NEBNext 
2x Master mix and 1.25 μM custom primers; the second RT–PCR was performed with 15 μl 
volume for 20 cycles using 5 μl (10%) of the pre-amplified mixture plus 0.125 μM primers 
to determine the number of additional cycles needed as described previously31. The 
amplified DNA library was purified using MinElute PCR Purification kit (28004, Qiagen) 
and eluted in 20 μl of 10 mM Tris-HCl (pH 8) for subsequent sequencing.

Smart-Seq2 data processing
The initial single-cell transcriptomic data was processed at the Eukaryotic Single-Cell 
Genomics Facility at the Science for Life Laboratory in Stockholm, Sweden. Obtained reads 
were mapped to the mm10 build of the mouse genome (concatenated with transcripts 
for eGFP and the ERCC spike-in set) to yield a count for each endogenous gene, spike-in, 
and eGFP transcript per cell. Ribosomal RNA genes, ribosomal proteins and ribosomal 
pseudo-genes were filtered out. We noticed that cells that did not feature any alignments 
assigned to either eGFP or PDGFRβ clustered into a single cluster after unsupervised 
cell clustering (see ‘Mouse Smart-Seq2 single-cell data integration strategy’). Therefore, 
we opted to remove those cells, and performed all analysis and clustering without 
considering those cells (17 cells).
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10x single cell RNA-seq data processing
Fastq files were processed using Alevin32 and Salmon (Alevin parameters -l ISR, Salmon 
version 0.13.1)33, Gencode v29 human transcriptome, and Gencode vM20 mouse 
transcriptome as reference transcriptomes34. The Alevin expected cells parameter was set 
according to thrice the number of cells estimated according to the knee-method applied 
to the read counts per cell barcodes distribution. Therefore, the unique molecular 
identifier (UMI) count matrix produced by Alevin resulted in a large number of putative 
cells that we could filter later.

10x scRNA-seq cell filtering
We removed ribosomal RNA genes (0–1% on average of detected RNA content per cell) 
and mitochondrially encoded genes (0–80% on average of detected RNA content per cell) 
from the main gene expression matrix. Mitochondrially encoded genes were removed to 
avoid introducing unwanted variation between cells that might be solely dependent on 
changes in mitochondrial content35. The log10(total UMI counts per cell) distribution from 
the count matrix produced by Alevin (see above) typically showed a bimodal distribution, 
therefore log10(total UMI counts per cell) were clustered into two clusters using mclust 
R package v5.4.3 setting modelNames to ‘E’36. Cells that belong to the cluster with the 
higher counts were kept. Then cells were filtered based on mitochondrial RNA content 
and bias towards highly expressed genes as follows:

(1) cells were clustered into two clusters using a bivariate Gaussian mixture with 
two components learned on log10(total UMI counts per cell) and the percentage of 
mitochondrial UMI per cell. Clustering was performed using the R package Mclust setting 
modelNames to ‘EII’. Cells falling into the cluster with higher mitochondrial content cells 
were excluded. This filtering step was followed only for libraries that showed a clear 
bimodal distribution of mitochondrial content (only three 10x libraries in this study). 
(2) The total number of UMIs per cell should correlate with the total number of unique 
detected genes. Cells that do not follow this relationship (outliers) were filtered by 
clustering nuclei using a bivariate Gaussian mixture model on log10(total UMI counts) 
and log10(total unique detected genes) using the mclust R package setting model-
Names to “VEV”,”VEE”. (3) Cells whose percentage of total counts in the top 500 genes 
represented more than 5 times absolute median deviation for all cells were removed. (4) 
Finally, to exclude cells that consisted mainly of ribosomal proteins and pseudogenes, 
we removed cells with a percentage of ribosomal protein and pseudo-gene expression 
that was more than 5 absolute median deviations of all other cells. Mitochondrial-based 
filtering was not performed for CD10+ libraries because libraries from proximal tubule 
epithelial cells are expected to result in a high number of mitochondrial reads. Note that 
not all filtering steps were performed for all libraries as this depends on the quality of 
each library and UMI-cell-gene distribution. The script for quality control, cell filtering is 
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available at: https://github.com/mahmoudibrahim/KidneyMap/blob/master/templates/
process_scRNA.r

Human 10x single-cell data integration strategy
Upon initial analysis of our data, we noted several points: (1) Cell types are not guaranteed 
to be equally represented across patients and across conditions (healthy or CKD). This 
is because the cell types captured in any single 10x Chromium run are determined by 
random sampling of cells. (2) Samples from both healthy controls and patients with CKD 
consisted of cells in healthy and disease states, because this categorization is based 
on clinical parameters and not on molecular data or a controlled in vitro experiment. 
We would expect mainly a change in the proportion of healthy and disease cell states 
between healthy and diseased patient samples. (3) Samples from different patients were 
processed and prepared on different days as dictated by the surgery schedule at the 
Eschweiler Hospital. Therefore, potential technical (batch) effects could not be controlled 
on the experimental side. (4)The ability to discover highly resolved cell clusters in 
underrepresented  cell types might be affected by class imbalance as certain cell types 
may be markedly more abundant than others, and the size of the dataset (number of cells) 
that affects clustering results using unsupervised modularity-based graph clustering 
algorithms37.

Our experimental strategy involved obtaining separate libraries from CD10+ and 
CD10− cell fractions (see main text), which was designed to mitigate class imbalance 
on the level of cell type capturing frequency by the 10x Chromium protocol. To further 
mitigate the points discussed above we aimed to (1) cluster the data on a local level while 
keeping global information on the relation between cell types intact, and (2) correct 
for potential technical (batch) differences between samples while retaining important 
differences, such as different cell types or different states of cell types due to disease. To 
do so, we followed a strategy comprised of the following steps.

Step one: after quality control and cell filtering (see above), cells in each 10x library 
were clustered separately and each cell cluster was assigned to one of six main cell types: 
CD10+ epithelial, CD10− epithelial, immune, endothelial, mesenchymal and neuronal 
cells.

Step two: for each one of the six main cell types, cells from all 10x libraries were 
integrated together. Variability between cells due to technical reasons was corrected 
and cells were clustered using unsupervised graph clustering. This process resulted in 
six separate endothelial, CD10+ epithelial, CD10− epithelial, mesenchymal, immune and 
neuronal maps. Each map consisted of cells from multiple 10x libraries.

Step three: we integrated three single cell maps for: (1) CD10+ cells (proximal tubule; 
Fig. 1), (2) CD10− cells (proximal tubule-depleted; Fig. 1) and (3) PDGFRβ+ cells (mesen-
chymal; Fig. 2), by combining single-cell expression (UMI counts) and clustering infor-
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mation from all main cell type individual maps of each data set from step two. All plots 
presented in this Article are reproducible from those three integrated maps.

This approach accomplished local clustering and technical variability removal, 
and allowed for high-resolution discovery of cell states consisted of 24 cells, whereas 
the largest cluster consisted of 5,355 cells. Relative to ‘a high-level clustering followed 
by sub-clustering’ approach, our approach produces highly resolved clusters in 
a data-driven unbiased manner, while avoiding the question of which clusters to 
subcluster altogether. We note that a similar data integration approach was previously 
described38.

Step one details

Cell clustering
After cell filtering and quality control (see above), we used marker genes previously 
described39,40 and BioGPS41 (for neuronal genes) as a priori defined highly variable gene 
list. Two lists were constructed for human and mouse based on gene symbol conversion 
according to the biomaRt database42,43. We followed a graph-clustering approach to 
determine cell clusters, similar to that of Seurat44 and previously described45,46. The 
clustering approach consisted of dimensionality reduction of the normalized expression 
matrix (restricted to the highly variable gene list) using singular value decomposition 
as a first step. The left singular vectors are Eigengenes that describe gene expression 
programs across single cells47. The top n left singular vectors were selected based on the 
knee of the singular values curve, and used to construct a k-nearest neighbour graph, in 
which the average k per cell was defined as the square root of the number of cells. The 
function nn2 from the R package RANN was first used to define the k-nearest neighbours 
(https://CRAN.R-project.org/package=RANN) and the final graph was constructed based 
on the top n nearest neighbours by similarity in which n = k × number of cells. Cells were 
clustered on the graph using the Infomap graph clustering method48 as implemented in 
the iGraph R package (https://igraph.org). Infomap is a state-of-the-art graph community 
detection method that we selected for this step as we noticed it tends to produce higher 
resolved clusters than other graph-clustering methods. At this step, we also calculated 
a single-cell doublet score for all cells using the doublet score function in the Scran R 
package that implements the doublet score method previously described49. This score is 
aggregated per cluster and reported for each integrated map (Extended Data Figs. 4i, 8e), 
but not used to exclude cells.

Assigning cell clusters to five main types
We obtained a ranking for each gene in each cluster according to whether it is unique 
to a cluster and also highly expressed in this cluster using the function sortGenes in the 
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genesorteR R package50, setting binarize Method to ‘naive’. We intersected the top 50 
genes in each cluster with the a priori highly variable gene list (see above) and used 
this intersection to determine which of the five main cell types (epithelial, endothelial, 
immune, neuronal or mesenchymal) the cell cluster belongs to.

Scripts and metadata 
The a priori putative variable gene list is provided here: https://github.com/
mahmoudibrahim/KidneyMap/blob/master/assets/public/all_markers_Human_MMI_
Apr2020.txt and https://github.com/mahmoudibrahim/KidneyMap/blob/master/
assets/public/all_markers_Mouse_MMI_Mar2020.txt. The script for quality control, 
cell filtering, clustering and cell type assignment is provided here: https://github.com/
mahmoudibrahim/KidneyMap/blob/master/templates/process_scRNA.r

Step two details
Combining data. We combined all cells belonging to each main cell type from all samples 
and patients (all 10x libraries) as well as their clustering information obtained via graph 
clustering in step one. Then, for each main cell type the following steps were followed.

Data integration and iterative clustering. 
We have previously observed that marker genes or differentially expressed genes 
identified after cell clustering can often differ from those used as a feature set input 
o the clustering procedure50. It is also generally established that clustering results will 
vary depending on the input feature set. Therefore, we followed an iterative clustering 
approach that cyclically refines the variable gene set that is input to the clustering 
procedure, the technical effect mitigation parameters and the cell cluster assignments. 
In detail, the algorithm consists of the following steps: (1) Given the clustering obtained 
from step one, we define highly variable features based on gene specificity ranking per 
cluster using the sortGenes function in the genesorteR R package setting binarizeMethod 
to ‘naive’ (see above). We use the combined set of the top 500 genes in each cluster 
as highly variable genes. (2) Technical effects were removed using the mutual nearest 
neighbour (MNN) method51 as implemented in the fastMNN function of the batchelor R 
package35,51, setting the number of dimensions to 30 and auto.order to TRUE. This method 
removes technical differences while retaining differences due to cell types and returns 
reduced dimensions directly. (3) Cells were clustered based on the reduced dimensions 
returned by fastMNN. The clustering approach is similar to that followed for clustering 
in step one except that we use the Louvain algorithm, a widely used algorithm for 
community detection on graphs and for single-cell clustering52. To control the resolution 
at which the clustering occurs, we define the average number of k-nearest neighbours 
used to construct the graph as r.squareroot(n) and vary r between 1 and 0.01. We select 



64

Chapter 3

the r that returns the most informative clustering as determined using the getClassAUC 
function from the genesorteR R package50. This function defines clustering quality by 
an internal evaluation procedure,  and expresses clustering quality as a function of the 
specificity of the marker genes in each cell cluster. The number of nearest neighbours 
that produces the clustering with highest average class AUC is selected. (4) Raw gene 
expression counts (UMI counts) were normalized using the deconvolution strategy for 
scaling normalization53 as implemented in the computeSumFactors function in the Scran 
R package35, setting the clusters argument to the cluster labels obtained from (3). We 
repeated steps (1)–(4) until there was no longer any appreciable increase in agreement in 
cell cluster assignments between consecutive iteration, quantified by the slope of change 
of the adjusted rand index54. We noticed that this algorithm resulted in a progressive 
increase in the rand index (between cluster assignments in the i-th iteration and those 
in the i-1-iteration) and increase in class AUC value measured by the genesorteR getClas- 
sAUC function. Typically, no more than three iterations were needed. An approach to 
refine the variable gene list and cell clustering was previously proposed38,55.

Cluster quality control
We determine low-quality cell clusters as those with no differentially expressed genes 
at a P value cut-off of 0.05, as determined by the getPValues function from genesorteR 
R package50, or those whose differentially expressed genes are dominated by ribosomal 
proteins or genes typically known as housekeeping genes (such as B2M, GAPDH). We also 
controlled for potential doublet clusters based on marker gene expression. For example, 
if a cell cluster expresses both EPCAM (epithelial marker) and PTPRC (encoding CD45, 
immune marker) at high levels simultaneously, we assume it may represent an epithelial 
cell or immune cell doublet. This is a similar approach to that previously described56. We 
repeated the clustering procedure again after this cell removal.

Scripts and metadata. Scripts for data integration and clustering is provided here: https://
github.com/mahmoudibrahim/KidneyMap/ blob/master/templates/clusterCells.r

Step three details
Integrated maps. Integrated maps were generated by combining the clustering results (step 
two), patient or mouse metadata and cell expression (UMI count) information as detailed 
below. For the whole kidney CD10+ or CD10− data, we generated two maps accordingly.

The CD10− map contained all epithelial, immune, endothelial, mesenchymal and 
neuronal cells, whereas the CD10+ combined all epithelial CD10+ sorted cells. PDGFRβ+ 
data were analysed separately from CD10+ or CD10 data. We generated one integrated 
map comprising all cells from all PDGFRβ+ libraries.
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Cluster merging and filtering. We first removed genes that were detected in less than 
0.1% of all cells (that is, at least in 1 out of every 1,000 cells) given the full integrated map, 
and used the remaining genes to produce gene specificity ranking per cell cluster using 
the sortGenes function from the genesorteR R package setting binarizeMethod to ‘naive’. 
Clusters that shared more than 80 out of the top 100 specific genes were merged. We 
have experimented with different ways to merge similar clusters, and this was our choice 
as a conservative method that tended to maintain different cell states and merge only 
very highly similar clusters. Despite our efforts to remove low-quality droplets during cell 
filtering and low-quality clusters in step two, we still noticed the possibility of observing 
low-quality clusters given the entire integrated map. Therefore, having merged the 
cell clusters, we checked cell clusters for differential expression using the getPValues 
function in the genesorteR R package setting numPerm to 20 and removed cell clusters 
with no differentially expressed genes. Those were consistently low-quality cells with 
lower transcript capture rate overall. For the PDGFRβ+ data, we also removed cell clusters 
in which PDGFRβ was detected in less than 1 median absolute deviation of its expression 
in all cell clusters (calculated cut-off was: 4% of cells in the cluster); those were immune 
and epithelial cell clusters. After removing those cell clusters, we reformed an expression 
matrix containing all possible genes and performed gene filtering again (see above). We 
normalized gene expression over the full integrated map using the computeSumFactor 
function from the Scran R package35 using the clustering information from step two.

Scripts and metadata
Scripts for combining data into full integrated maps and producing all subsequent plots 
are available here: https:// github.com/mahmoudibrahim/KidneyMap/tree/master/
make_intergrated_maps. Details for various analyses are described below. Overall, this 
approach was biologically informed, and allowed us to correct for potential technical 
effects during cell clustering such that almost all cell clusters contained cells from more 
than one patient/ library, while preserving interesting differences between patients such 
as diseased cell states (for example injured proximal tubule cells), differences in (myo)
fibroblast states and differences in ECM expression.

Mouse 10x single-cell data integration strategy
Mouse 10x data were analysed and integrated as described for human data. The script 
used to produce the integrated map is available here: https://raw.githubusercontent.
com/mahmoudibrahim/KidneyMap/master/make_intergrated_maps/mouse_
PDGFRABpositive.r
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Mouse Smart-Seq2 single-cell data integration strategy
Because single-cell plate sorting was performed such that cells from all three time 
points were equally represented in all plates, no further batch effect mitigation was 
performed during the analysis. Variable genes were determined using the Scran R 
package decomposeVar function, after running the trendVar function on the ERCC 
transcripts35. Genes with a false discovery rate (FDR) value < 0.01 and biological variance 
component > 1 were kept as highly variable genes. Using those variable genes, we 
followed the same clustering approach as described for the 10x Chromium data, but we 
ran only two clustering iteration and did not vary the number of nearest neighbours. 
Script used for analysis of mouse Smart-Seq2 data are available here: https://github.
com/ mahmoudibrahim/KidneyMap/blob/master/make_intergrated_maps/mouse_
PDGFRBpositive.r.

Cluster annotation
A gene ranking per cluster was produced using the sortGenes function in the genesorteR 
R package50 setting binarizeMethod to ‘adaptiveMedian’ (Smart-Seq2 data) or to ‘naive’ 
(10x data). We then annotated our highly resolved cell clusters manually based on 
previous knowledge and information from literature. We refer to this annotation as ‘level 
3 annotation’ in the Supplementary Information. There were 50 such clusters in CD10− 
data, 7 clusters in CD10+ data, 26 clusters in PDGFRβ+ human data, 10 clusters in mouse 
Smart-Seq2 data and 10 clusters in mouse PDGFRα+PDGFRβ+ data. At that highly resolved 
level (level 3), a cell cluster can represent either a bona fide cell type or a different cell state. 
Thus, we also grouped those highly resolved cell clusters into canonical cell types based 
on our annotation. This resulted in 29 cell types in the CD10− map, 1 cell type in the CD10+ 
map, 16 cell types in the PDGFRβ+ map, 5 cell types in the mouse PDGFRα+PDGFRβ+ map 
and 6 cell types in the Smart-Seq2 mouse PDGFRβ+ map. We refer to this cell grouping 
as ‘level 2 annotation’ in the Supplementary Information. We then further annotated the 
cell clusters as epithelial, endothelial, mesenchymal, immune or neuronal for plot and 
figure annotation to allow easier data interpretation.

UMAPs and diffusion maps
Integrated full-map UMAP57 projections (Figs. 1–5) were generated via the UMAP Python 
package (https://github.com/lmcinnes/umap) on the reduced corrected dimensions 
returned from fastMNN setting min_dist to 0.6 and the number of neighbours to square 
root the number of cells. Local UMAP projections (Figs. 1, 4, Extended Data Fig. 5) were 
produced setting min_dist to 1, as those parameters tend to produce more geometrically 
accurate embeddings (see https://umap-learn. readthedocs.io/en/latest/). Diffusion maps 
were produced using the destiny R package (https://github.com/theislab/destiny) also 
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using the reduced dimensions returned from fastMNN as input and setting the number of 
neighbours to square root the number of cells. We tested various randomization seeds for 
UMAP and diffusion map and various diffusion map distance metrics (as recommended 
in the destiny R package manual) and confirmed that no qualitative difference occurs in 
the resulting single cell projections.

Lineage trees or trajectories and pseudotime
The Slingshot R package58 was used for lineage tree inference and pseudotime cell 
ordering inference based on the UMAP/diffusion map projection. The cell clustering (see 
‘Step two details’) was used as input cell clusters. Start and end clusters were chosen 
based on reasonable expectation given our prior knowledge as discussed and described 
previously58 (for example, myofibroblast is the end cluster in a pericyte/ fibroblast/
myofibroblast map).

Gene dynamics along pseudotime
Genes with expression that varied with cell ordering were defined as those in which 
normalized expression correlated with cell ordering as quantified by the Spearman 
correlation coefficient at a Bonferroni–Hochberg corrected P value cutoff of 0.001. Gene 
clusters and expression heat maps (for example, Fig. 2f, top) were produced by ordering 
cells along the pseudotime predicted by SlingShot and using the genesorteR function 
plotMarkerHeat. This function clusters genes using the k-means algorithm, and we set 
the plot and clustering to average every 10 cells along pseudotime. Pathway enrichment 
and cell cycle analyses were calculated by grouping every 2,000 cells along pseudotime.

Pathway enrichment and GO analysis
For the single-cell data, we used KEGG pathway and PID pathway data downloaded 
in November 2019 from MSigDB 359,60 as ‘.gmt’ files. Pathway enrichment analysis was 
performed using the clusterProfiler R package61 using the top 100 genes for each cell 
cluster/group as defined by the sortGenes function from the genesorteR package. The 
enricher function was used setting minGSSize to 10 and maxGSize to 200. The top five 
terms by q value for each cell cluster or group were plotted as heat maps of −log

10
(q 

value). GO biological process62 analysis was performed on the top 200 genes via the same 
method. The enricher function was used setting minGSSize to 100 and maxGSize to 500. 
To compare pathway activity between NKD2+ and NKD2− mesenchymal cells, we used 
PROGENy to estimate the activity of 14 pathways in a single-cell basis22,63, using the top 
500 most responsive genes from the model as it is recommended from a benchmark 
study63.
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Cell cycle analysis
Cell cycle analysis was done following the previously described method64 and explained 
in the tutorial by P.-Y. Tung (https://jdblischak.github.io/singleCellSeq/analysis/cell-
cycle.html), using normalized gene expression as input and setting the gene correlation 
value to 0.1. We used cell cycle gene sets previously provided65. To quantify enrichment/
depletion of single-cell cycle assignments (Fig. 1g), we plot the log

2
-transformed fold-

change of those frequencies relative to the average frequency obtained by randomizing 
the true frequency matrix 1,000 times while keeping row and column sums constant. 
Randomization was performed using the R package Vegan (https://CRAN.R-project. 
org/package=vegan). Positive numbers indicate enrichment relative to what would be 
expected by chance, negative numbers indicate depletion.

ECM and collagen score
The expression of core matrisome genes previously described7 were summarized based 
on normalized gene expression data using the same method used for cell cycle analysis. 
Also see Extended Data Fig. 2g–u.

Gene expression heat maps
Scaled gene expression heat maps such as those in Fig. 2d were produced using the 
plotMarkerHeat and plotTopMarkerHeat functions in the genesorteR R package50. The 
fraction of expressed cells heat maps such as Fig. 3d were produced using plotBinaryHeat 
function from the genesorteR R package. All other heat maps were produced using 
ComplexHeatmap R package (v.2.4.2)66.

ATAC–seq analysis
Illumina Tn5 adaptor sequences were trimmed from ATAC–seq reads using bbduk command 
from BBmap suite (v.38.32, settings: trimq = 18, k = 20, mink = 5, hdist = 2, hdist2 = 0)67. 
STAR (v.2.7.0e) was used to map ATAC–seq reads to the mm10 genome assembly retaining 
only uniquely mapped pairs (settings: alignEndsType EndToEnd, alignIntronMax 1, 
alignMatesGapMax 2000, alignEndsProtrude 100 ConcordantPair, outFilterMultimapNmax 
1, outFilterScoreMinOverLread 0.9, outFilterMatchNminOverLread 0.9)68. The Picard 
MarkDuplicates command (v.2.18.27) was used to remove sequence duplicates (settings: 
remove_duplicates = TRUE, http://broadinstitute.github.io/picard/). Non-concordant 
read pairs were then removed from the BAM file using Samtools (v.1.3.1)69. bedtools 
(v.2.17.0) was used to convert BAM files to BED files and to extend each read to 15 bp 
upstream and 22 bp downstream from the read 5’-end in a stranded manner70, to account 
for steric hindrance of Tn5-DNA contacts71. JAMM (v.1.0.7rev5) was used to identify open 
regions from the final BED files keeping the two replicates separate, retaining peaks 
that were at least 50 bp in width in the all list for further analysis (parameters: -r peak, 
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-f 38,38, -e auto, -b 100)72. ATAC–seq signal bigwig files were produced using JAMM 
SignalGenerator pipeline (settings: -f 38,38 -n depth). To deconvolute ATAC–seq signal 
from bulk ATAC–seq data according to scRNA-seq clustering, we followed the following 
strategy. To deconvolute the ATAC–seq signal three main steps in the data analysis were 
taken: (1) each open chromatin peak (where transcription factors are expected to bind 
DNA) was first assigned to a specific gene.

(2) These genes were ranked per scRNA-seq cluster (Fib, MF1/2 etc) depending on 
their expression in the scRNA-seq dataset. (3) The top 2,000 ATAC peaks were used 
to identify enriched transcription factor motif sequences. In more detail, each open 
chromatin ATAC–seq peak was assigned to a gene according to its closest annotated 
transcription start site using the bedtools closest function, setting 100 kb as the 
maximum possible assignment distance. ATAC–seq peak ranking per scRNA-seq cluster 
was obtained by ranking the peaks according to the ranking of their assigned gene 
in the single cell RNA-seq cluster. The top 2,000 ATAC– seq peaks for each scRNA-seq 
cluster were selected and XXmotif73 was used for de novo motif finding for each 
scRNA-seq cluster open chromatin regions separately (settings:–revcomp–merge-
motif-threshold MEDIUM). We kept only motifs whose occurrence was more than 5%, 
as defined by XXmotif, for further analysis. Motif occurrence from all motifs from all 4 
scRNA-seq clusters were quantified using FIMO74 with default parameters (MEME v.5.0.1) 
in the peaks assigned to the top 200 genes in each scRNA-seq cluster. This produced a 
frequency matrix of motif occurrence in scRNA-seq clusters. To quantify enrich-ment/
depletion of motif occurrence in scRNA-seq clusters we plot the log

2
-transformed fold 

change of those frequencies relative to the average frequency obtained by randomizing 
the true frequency matrix 1,000 times while keeping row and column sums constant. 
Randomization was performed using the R package Vegan (https://CRAN.R-project. 
org/package=vegan). Positive numbers indicate enrichment relative to what would be 
expected by chance, negative numbers indicate depletion (see Fig. 4k). We selected 
Irf8, Nrf1, Creb5, Atf3, Elf or Ets transcription factor family and Klf2 or Klf5 for further 
investigation. We plotted the signal from all peaks that contained those motifs using 
DeepTools v.3.3.175, using the bigwig file generated by JAMM as input (see above and 
Supplementary Fig. 11). We visualized the same bigwig file and motif occurrence in the 
Integrative Genomics Viewer76 (v.2.4.10, Supplementary Fig. 11).

Other visualization analysis
Heat maps that do not quantify gene expression were produced using the heatmap2 
function in the gplots R package (https://CRAN.R-project. org/package=gplots). 
Violin plots were produced using the vioplot R package (https://CRAN.R-project.org/
package=vioplot).
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Quantification and statistical analysis used outside of the single-
cell sequencing data
Data are presented as mean ± s.e.m. if not specified otherwise. Comparison of two groups 
was performed using unpaired t-test. For multiple group comparison, one-way ANOVA 
with Bonferroni’s multiple comparison test was applied or two-way ANOVA with Sidak’s 
multiple comparisons test. Statistical analyses were performed using GraphPad Prism 8 
(GraphPad Software). P < 0.05 was considered significant.

Gene regulatory network analysis
Gene expression was l1-scaled per gene and the Pearson correlation coefficient was 
calculated between Nkd2 and all other genes along pericyte, fibroblast and myofibroblast 
single cells. The top 100 correlating and top 100 anti-correlating genes were selected for 
pathway enrichment analysis. Furthermore, the expression of those 200 genes along single 
cells was used as input to GRNboost2+ python package to predict putative regulatory 
links between genes. The output network was filtered by removing connections with 
strength ≤ 10. The resulting network was plotted as an undirected network (because 
regulators are not known beforehand) using ggraph package (https:// cran.r-project.
org/web/packages/ggraph/index.html) and clustered into 4 modules using the Louvain 
algorithm as implemented in the igraph package.

Transcription factor predictions from single-cell data
To obtain transcription factor scores in distal and proximal regions, we used the top 200 
marker genes for fibroblast, pericyte and myofibroblast cell clusters as input gene lists 
to RCisTarget77. We followed the RCisTarget Vignette to perform the analysis with default 
parameters (available at https://bioconductor.org/packages/release/bioc/ vignettes/
RcisTarget/inst/doc/RcisTarget.html). To quantify AP-1 expression, we used all Jun and 
Fos genes as a geneset and applied the same method to obtain an AP-1 score as we did 
for ECM score. To quantify AP-1 activity (defined as the expression of putative target 
genes78,79, we defined AP-1 target genes according to the Dorothea regulon database63,80 
and applied the same method as ECM score to obtain a single cell AP-1 activity score.

Mouse supervised cell classification
We classified single cells in the mouse PDGFRα+PDGFRβ+ dataset using the human PDGFRβ+ 
dataset as a reference using the CHETAH algorithm with default parameters81. Human gene 
symbols were converted to mouse gene symbols using the biomaRt database43.

CellphoneDB analysis
CellPhoneDB (v.2.1.1) was used to estimate cell–cell interactions among the cell types 
found in the human CD10− fraction using the version 2.0.0 of the database82, and the 
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normalized gene expression as input, with default parameters (10% of cells expressing the 
ligand/ receptor). Interactions with P < 0.05 were considered significant. We consider only 
ligand–receptor interactions based on the annotation from the database, for which only 
and at least one partner of the interacting pair was a receptor, thus discarding receptor–
receptor and other interactions without a clear receptor. Ligand–receptor interactions 
from pathways involved in kidney fibrosis were selected using the membership from 
KEGG database for Hedgehog, Notch, TGFβ and WNT signalling, and REACTOME database 
for EGFR signalling from MSigDB 359,60, and manual curation for PDGF signalling.

Bulk RNA-seq data analysis
Gene expression was quantified at the transcript level using Salmon v1.1.0, with the–
validatMappings and–gcBias parameters switched on, to the human Gencode v29 
transcriptome. Transcript level counts were aggregated to gene level counts using the 
import in tximport R package, setting countsFromAbundance to ‘lengthScaledTPM’83. 
Limma R package (v.3.44.1) was used to test for differential gene expression between 
NKD2-perturbed human kidney PDGFRβ+ as compared to controls using the empirical 
Bayes method after voom transformation84. We found that two out of the three clones 
of CRISPR–Cas9 NKD2 knockout group together in the principal component analysis and 
exhibited a shallow phenotype, whereas the third clone grouped independently and 
presented a more severe phenotype. Thus, we grouped the first two clone knockouts, 
to have two independent knockout conditions for the statistical contrasts. Differentially 
expressed genes were ranked by the moderated t-statistic from the statistical test for 
pathway and GO analysis. P values were adjusted for multiple testing using Benjamini 
and Hochberg method. Genes and pathways with FDR < 0.05 were considered significant.

For pathway and GO analysis, we also used clusterProfiler R package with KEGG 
and PID pathways using genes with adjusted P < 0.01 in the NKD2-perturbed cells as 
compared to the control and absolute log-transformed fold change higher than 1 for 
knockout comparison (higher than 0 for overexpression comparison) with a maximum 
of 200 genes, ranked by the adjusted P value. We used GSEA-preranked to test for an 
enrichment of ECM genes in the phenotypes using fgsea R package (v.1.14.0)85, with 
MatrisomeDB gene set collection7.

Statistics and reproducibility
Data are presented as mean ± s.e.m. if not specified otherwise in the legends. Unless 
otherwise stated, statistical significance was assessed by a two-tailed Student’s t-test 
or one ANOVA with Bonferroni’s multiple comparison with P < 0.05 being considered 
statistically significant. Statistical analyses were performed using GraphPad Prism 8 
(GraphPad Software) or as described in above. Results are presented in dot plots, with 
dots representing individual values, violin plots (horizontal line indicates the median, the 
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box indicates the span of the 25% to the 75% percentiles, whiskers extend to maximum 
1.5× this interquartile range) and Tukey box and whisker plots (horizontal line indicates 
the median, the box indicates the span of the 25% to the 75% percentiles, whiskers extend 
to maximum and minimum values). The number of samples for each group was chosen 
on the basis of the expected levels of variation and consistency. The depicted RNAscope, 
immunofluorescence micrographs and western blot micrographs are representative. All 
studies were performed at least twice, and all repeats were successful.

Reporting summary
Further information on research design is available in the Nature Research Reporting 
Summary linked to this paper.

Data availability
Processed data for all human and mouse RNA-seq and ATAC–seq libraries produced in 
this study are available at the Zenodo data archive (https://zenodo.org/record/4059315, 
https://doi.org/10.5281/ zenodo.4059315). Processed and raw mouse data are available 
via the Gene Expression Omnibus (GEO) under the accessions GSE145173 (for mouse 
PDGFRαβ scRNA-seq and ATAC–seq) and GSE144528 (for mouse PDGFRβ Smart-Seq.).  
Source data are provided with this paper.

Code availability
Custom scripts used in single cell and bulk RNA-seq data analysis are available at: 
https://github.com/mahmoudibrahim/KidneyMap. 
Scripts used for imaging in-situ hybridization data quantification are available at:
 https://gitlab.com/mklaus/segment_cells_register_marker.
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Abstract

A major drawback of single-cell ATAC-seq (scATAC-seq) is its sparsity, i.e., open chromatin 
regions with no reads due to loss of DNA material during the scATAC-seq protocol. Here, 
we propose scOpen, a computational method based on regularized non-negative matrix 
factorization for imputing and quantifying the open chromatin status of regulatory 
regions from sparse scATAC-seq experiments. We show that scOpen improves crucial 
downstream analysis steps of scATAC-seq data as clustering, visualization, cis-regulatory 
DNA interactions, and delineation of regulatory features. We demonstrate the power of 
scOpen to dissect regulatory changes in the development of fibrosis in the kidney. This 
identifies a role of Runx1 and target genes by promoting fibroblast to myofibroblast 
differentiation driving kidney fibrosis.
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Introduction

The simplicity and low cell number requirements of the assay for transposase-accessible 
chromatin using sequencing (ATAC-seq)1 made it the standard method for detection of 
open chromatin (OC), enabling the first study of OC of cancer cohorts2. Moreover, careful 
consideration of digestion events by the enzyme Tn5 allowed insights on regulatory 
elements such  as positions of nucleosomes1-3, transcription factor (TF) binding sites, 
and the activity level of TFs4. The combination of ATAC-seq with single-cell sequencing 
(scATAC-seq)5 further expanded ATAC-seq applications by measuring the OC status of 
thousands of single cells from healthy6-7 and diseased tissues8. Computational tasks for 
analysis of scATAC-seq include detection of cell types with clustering (scABC9, cisTopic10, 
SnapATAC11); identification of TF regulating individual cells (chromVAR12); and prediction 
of co-accessible DNA regions in groups of cells (Cicero13).

Usually, the first step for analysis of scATAC-seq data is the detection of OC regions 
by calling peaks on the scATAC-seq library by ignoring cell information. Next, a matrix 
is built by counting the number of digestion events per cell in each of the previously 
detected regions. This matrix usually has a very high dimension (up to >106 regions) and 
a maximum of two digestion events are expected for a region per cell. As with scRNA-
seq14-16, scATAC-seq is affected by dropout events due to the loss of DNA material during 
library preparation. These characteristics render the scATAC-seq count matrix sparse, 
i.e. 3% of non-zero entries. In contrast, scRNA-seq have less severe sparsity (>10% of 
non-zeros) than scATAC-seq due to smaller dimension (< 20,000 genes for mammalian 
genomes) and lower dropout rates for genes with high or moderate expression levels. 
This sparsity poses challenges in the identification of cell-specific OC regions and is 
likely to affect downstream analysis as clustering and detection of regulatory features. 
Although several computational methods have been developed to address this issue 
for scRNA-seq data (e.g., MAGIC14, scImpute17, DCA18, and SAVER19), these methods were 
not designed to deal with the sparse and low count nature of scATAC-seq data. Until 
date, there are only two approaches for imputation methods for scATAC-seq data e.g., 
SCALE20  and cisTopic10. SCALE, which is based on deep learning, requires a graphics 
processing unit (GPU) for training. The usual small size of GPU memory limits the number 
of cells to be analyzed. cisTopic is a Bayesian-based method, which was reported to 
have an exponential increase of the running time for an increasing number of reads21. 
Therefore, both approaches are likely to have scalability issues with large data sets.

We here present scOpen, an unsupervised learning model for scATAC-seq data 
imputation. It estimates accessibility scores to indicate if a region is open in a particular 
cell. scOpen is based on a non-negative matrix factorization (NMF), which makes no 
assumption on the data distribution as SCALE or cisTopic. It also includes a regulari-
zation, which makes it less prone to overfitting. To speed up the learning, we make use 
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of a cyclic coordinate descent (CCD) algorithm. Moreover, we adopt an elbow detection 
approach to automatically determine the number of dimensions of the input data. The 
imputed matrix can be used as input for usual computational methods of scATAC-seq 
data as clustering, visualization, and prediction of DNA interactions (Fig. 1a). We demon-
strate the power of scOpen on a comprehensive benchmarking analysis using publicly 
available scATAC-seq data with true labels. Moreover, we use scOpen together with 
HINT-ATAC4 footprinting analysis to infer regulatory networks driving the development 
of fibrosis with a scATAC-seq time-course dataset of 31,000 cells in murine kidney fibrosis, 
identifying Runx1 as a regulator of myofibroblast differentiation.

Results

OC estimation with scOpen
scOpen performs imputation and denoising of a scATAC-seq matrix via a regularized NMF 
based on a binarized scATAC-seq cell count matrix, where features represent OC regions 
which are obtained by peak calling based on aggregated scATAC-seq profiles. This matrix 
is transformed using the term frequency-inverse document frequency (TF-IDF), which 
weighs the importance of an OC region to a cell. Next, it applies a regularized NMF using 
a coordinate descent algorithm22. In addition, it provides a computational approach to 
optimize the dataset-specific rank  k  of the NMF approach based on a knee detection 
method23. scOpen provides as results imputed and reduced dimension matrices, which 
can be used for distinct downstream analysis as visualization, clustering, inference of 
regulatory players, and cis-regulatory DNA interactions (Fig. 1a).

First, we made use of simulated scATAC-seq similar as in ref.  21 to evaluate the 
parameterization of two hyper-parameters of scOpen, i.e., the rank  k and the regulari-
zation term λ (see the “Methods” section; Supplementary Fig. 1a–d). Results indicate that 
the scOpen automatic procedure for rank selection obtains close to optimal results, i.e. 
selected rank had similar accuracy than best ranks for both imputation and clustering 
problems. Regarding λ, a value of 1 is optimal in the imputation problem, where values 
in the range [0, 1] were optimal for the clustering problem. This indicates the importance 
of the regularization parameter in scATAC-seq data imputation. The  λ = 1 and the rank 
selection strategy are used as default by scOpen.
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Fig.1 a scOpen receives as input a sparse peak by cell count matrix. 
After matrix binarization, scOpen performs TF–IDF transformation followed by NMF for dimension reduction 
and matrix imputation. The imputed or reduced matrix can then be given as input for scATAC-seq methods 
for clustering, visualization, and interpretation of regulatory features. b Memory requirements of imputation/
denoising methods on benchmarking datasets. The x-axis represents the number of elements of the input 
matrix (number of OC regions by cells). c Same as b for running time requirements. d Boxplot showing the 
evaluation of imputation/denoising methods for recovering true peaks. The y-axis indicates the area under 
the precision-recall curve (AUPR). Methods are ranked by the mean AUPR. The asterisk and the two asterisks 
mean that the method is outperformed by the top-ranked method (scOpen) with significance levels of 0.05 
and 0.01 at a confidence level of 0.95 (Wilcoxon Rank Sum test, paired, two-sided), respectively (n = 1224 
cells for Cell lines,  n = 2210 cells for Hematopoiesis,  n = 765 cells for T-cells, and  n = 10,032 for PBMC). The 
box plot represents the median (central line), first and third quartiles (box bounds). The whiskers present 
the 1.5 interquartile range (IQR) and external dots represent outliers (data greater than or smaller than 
1.5IQR).  e  Barplots showing silhouette score (y-axis) for benchmarking datasets.  f  Barplots showing the 
clustering accuracy for distinct imputation methods. The  y-axis indicates the mean adjusted Rand Index 
(ARI). Dots represent individual ARI values of distinct clustering methods. Error bars represent the standard 
deviation (SD) of ARI. Data are represented as mean ± SD. The asterisk and the two asterisks mean that the 
method is outperformed by the top-ranked method with significance levels of 0.05 and 0.01 at a confidence 
level of 0.95 (n = 8 independent clustering experiments, Wilcoxon Rank Sum test, paired, two-sided), 
respectively. Source data for Fig. 1 are provided as a Source Data file.
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Benchmarking of scOpen for imputation of scATAC-seq
For benchmarking, we made use of four public scATAC-seq data sets: cell lines5, human 
hematopoiesis composing of eight cell types6, four sub-types of T cells8, and a multi-
omics RNA-ATAC from peripheral blood mononuclear cells (PBMCs) with 14 cell types 
(see the “Methods” section). These datasets were selected due to the presence of 
external labels, which were defined independently of the scATAC-seq at hand. After 
processing, we generated a count matrix for each dataset and detected 50k to 120k 
OC regions with 3–7% of non-zero entries, confirming the sparsity of scATAC-seq data 
(Supplementary Table  1). For comparison, we selected top-performing imputation/
denoising methods24 proposed for scRNA-seq (MAGIC14, SAVER19, scImpute17, DCA18, and 
scBFA25); two scATAC-seq imputation methods (cisTopic10  and SCALE20); a PCA-based 
imputation method (imputePCA26); and the raw count matrix (Supplementary Fig. 2a).

We first evaluated the time and memory requirement of imputation methods (see the 
“Methods” section). scOpen had the overall lowest memory requirements, i.e it required 
at least 2 fold less memory as compared to cisTopic, MAGIC, or SCALE (Fig. 1b) and had a 
maximum requirement of 16 GB on the PBMC dataset (Supplementary Data 1). Regarding 
computing time, MAGIC was the fastest followed by SCALE and scOpen. These were the 
only methods performing the imputation of the large PBMCs dataset (10k cells vs. 100k 
peaks) in < 3 h (Fig. 1c), while imputePCA, SAVER, and DCA failed to execute at the PBMCs 
dataset.

We next tested if imputation methods can improve the recovery of true OC regions. 
For this, we created   true  and negative OC labels for each cell type by peak calling of 
bulk ATAC-seq profiles. Next, we evaluated the correspondence between imputed 
scATAC-seq values and peaks of the corresponding cell type with the area under preci-
sion-recall curve (AUPR) (see the “Methods” section). scOpen significantly outperformed 
all competing methods by presenting the highest mean AUPR (Fig. 1 d). The combined 
ranking indicates SCALE and MAGIC as runner-up methods (Supplementary Fig.  2b). 
Next, we evaluated the influence on the number of cells per cluster in the AUPR. Despite 
an overall decrease in AUPR with sample size, we observed that top performing methods 
(scOpen, SCALE, and MAGIC) were less sensible to cell numbers (Supplementary Fig. 2c).

We also investigated the impact of imputation on the estimation of distances 
between cells and the impact on standard clustering methods. Distance between 
cells was evaluated with the silhouette score, while clustering accuracy was evaluated 
with adjusted Rand index (ARI)27 both regarding the agreement with known cell labels. 
scOpen was the best performer in all data sets regarding the silhouette score (Fig. 1e). 
The combined ranking demonstrated that scOpen had significantly better results than 
competing methods, while cisTopic and MAGIC were runner-up methods (Supple-
mentary Fig. 2d). Regarding clustering, scOpen was best in the hematopoiesis and multi-
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omics PBMCs datasets and second-best for cell lines and T cell datasets (Fig. 1f). When 
considering the combined ranking, scOpen performed best followed by cisTopic and 
MAGIC (Supplementary Fig. 2e). Visual representations with UMAP28 projections of these 
datasets and methods are provided in Supplementary Fig.  3. Altogether, these results 
support that scOpen outperforms state-of-the-art imputation methods while providing 
the lowest memory footprint and above-average time performance.

Benchmarking of scATAC-seq clustering methods
Another relevant question was to compare scOpen with top-performing state-of-the-
art scATAC-seq pipelines: cisTopic, SnapATAC and Cusanovich201821 (see the “Methods” 
section; Supplementary Fig. 4a). Here, pipelines were evaluated with the default clustering 
methods, i.e graph-based clustering for SnapATAC11  and density-based clustering for 
other methods10. We also evaluated the use of both reduced and imputed matrices for 
scOpen and cisTopic, as these methods provide both types of representations.

The evaluation of distance matrices with the silhouette score indicated that both 
imputed or low dimension scOpen matrices presented the highest score in all data-sets 
(Fig.  2a) and both scOpen matrix representations tied as first in the combined rank 
(Supplementary Fig.  4b). cisTopic, which was the runner-up method, performed well 
in cell lines, hematopoiesis, and T-cells but poorly for multi-omics PBMCs. Next, we 
evaluated the clustering performance of competing pipelines. Again, scOpen performed 
best on cell lines and hematopoiesis data sets and ranked first/second in the combined 
rank (Supplementary Fig. 4c). Overall, this analysis indicates that both reduced dimension 
and imputed scOpen matrices obtain the best overall results for distance and clustering 
representations on evaluated datasets. Of note, the low-dimensional matrix reduces 
the memory footprint on clustering by more than 1000-fold in comparison to using full 
imputed matrices and serves as an alternative for cluster analysis of large dimensional 
data sets.

Improving scATAC-seq downstream analysis using scOpen 
estimated matrix
Next, we tested the benefit of using scOpen estimated matrices as input for scATAC-
seq computational pipelines, which have as objective the identification of regulatory 
features associated with single cells (chromVAR12), estimation of gene activity scores and 
DNA-interactions (Cicero13), or a clustering method tailored for scATAC-seq data (scABC9) 
(Supplementary Fig. 4d). Both chromVAR and Cicero first transform the scATAC-seq matrix 
to either TFs and genes feature spaces respectively. Clustering was then performed using 
the standard pipelines from each approach. We compared the clustering accuracy (ARI) 
and distance (silhouette score) of these methods with either raw or scOpen estimated 
matrices. In all combinations of methods and datasets, we observed a higher or equal ARI/
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Fig. 2 
a  Bar plot showing an evaluation of distances estimated on distinct scATAC-seq representations with a 
silhouette score. b Bar plots showing the clustering accuracy (ARI) for distinct clustering pipelines. cScatter 
plot comparing silhouette score of datasets by providing raw (x-axis) and scOpen estimated matrices (y-axis) 
as input for Cicero and chromVAR. Colors represent datasets and shapes represent methods. scABC is not 
evaluated as it does not provide a space transformation. d Same as c  for clustering results (ARI) of Cicero, 
chromVAR, and scABC. e Precision-recall curves showing the evaluation of the predicted links on GM12878 
cells using the raw and imputed matrix as input. We used data from pol-II ChIA-PET as true labels. Colors 
refer to methods. We reported the AUPR for the top 3 methods.  f  Same as  e  by using Hi-C data as true 
labels. g Visualization of co-accessibility scores (y-axis) of Cicero predicted with raw and scOpen estimated 
matrices contrasted with scores based on RNA pol-II ChIA-PET (purple) and promoter capture Hi-C (green) 
around the CD79A locus (x-axis). For ChIA-PET, the log-transformed frequencies of each interaction PET cluster 
represent co-accessibility scores, while the negative log-transformed p-values from the CHiCAGO software 
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silhouette whenever a scOpen matrix was provided as input (Fig. 2c, d). Results can be 
inspected with UMAP visualization with and without scOpen imputation (Supplementary 
Fig. 5).

Prior to estimating gene-centric OC scores, Cicero first predicts co-accessible pairs of 
DNA regions in groups of cells, which potentially form  cis-regulatory interactions. We 
compared Cicero predicted interactions on human lymphoblastoid cells (GM12878) by 
using Hi-C and ChIA-PET from this cell type as true labels for all imputation methods 
with data as provided in ref. 13. Both AUPR values and odds ratios indicated that the 
scOpen matrix improves the detection of GM12878 interactions globally (Fig.  2 e, f; 
Supplementary Fig.  6a, b). To evaluate the impact on the number of cell on these 
predictions, we have down-sampled the data to only consider 50% or 25% of cells. We 
observed a residual decrease in the AUPR of scOpen for 25% of cells (Supplementary 
Fig. 6 c). This supports that chromatin conformation prediction works well even for cell 
types with low abundance. The power of scOpen imputation was clear when checking 
the individual locus (Fig.  2g), as previously described by Cicero13. This is evident when 
contrasting accessibility scores between pairs of peak-to-peak links supported by Hi-C 
predictions (Fig.  2h; Supplementary Fig.  6d–h). scOpen obtained highly correlated 
accessibility scores, while other imputation methods showed quite diverse association 
patterns. Together, these results indicated that the use of scOpen estimated matrices 
improves downstream analysis of state-of-the-art scATAC-seq methods.

Applying scOpen to scATAC-seq of fibrosis driving cells
Next, we evaluated scOpen in its power to improve the detection of cells in a complex 
disease dataset. For this, we performed whole mouse kidney scATAC-seq in C57Bl6/WT 
mice in homeostasis (day 0) and at two-time points after injury with fibrosis: 2 and 10 
days after unilateral ureteral obstruction (UUO)29-30. Experiments recovered a total of 
30,129 high-quality cells after quality control with an average of 13,933 fragments per 
cell, a fraction of reads in promoters of 0.46, and high reproducibility (R > 0.99) between 
biological duplicates (Supplementary Fig.  7a, b; Supplementary Table  1). After data 
aggregation, 150,593 peaks were detected, resulting in a highly dimensional and sparse 
scATAC-seq matrix (4.2% of non-zeros). Next, we performed data integration for batch 
effect removal using Harmony31. For comparison, we used a dimension reduced matrix 
from either LSI (Cusanovich2018), cisTopic, SnapATAC, or scOpen. We annotated the 

indicate Hi-C scores.  h  Scatter plot showing single-cell accessibility scores estimated by top-performing 
imputation methods (according to f) for the link between peak 1 and peak 2 (supported by Hi-C data). Each 
dot represents a cell and color refers to density. Pearson correlation is shown on the left-upper corner. Source 
data for Fig. 2 are provided as a Source Data file.
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scATAC-seq profiles using single nuclei RNA-seq (snRNA-seq) data of the same kidney 
fibrosis model from an independent study32  via label transfer33  to serve as cell labels. 
We then evaluated the batch correction results using silhouette score and clustering. 
We observed that clusters based on scOpen were more similar to the transferred labels 
(higher ARI) than clusters based on competing methods (Fig. 3a). Furthermore, scOpen 
also provided better distance metrics and visualization than competing methods 
(Supplementary Figs.  7c–e and  8). These results support the discriminative power of 
scOpen in this large and complex dataset.

Next, we annotated the clusters of scOpen by using known marker genes and transferred 
labels after removing doublets with ArchR34. We identified all major kidney cell types 
including PT cells, distal/connecting tubular cells, collecting duct and loop of Henle, 
endothelial cells (ECs), fibroblasts as well as the rare populations of podocytes and 
lymphocytes (Fig. 3b; Supplementary Fig. 9a). Lymphocytes were not described in the 
previously scRNA-seq study32, which supports the importance of annotation of scATAC-
seq clusters independently of scRNA-seq label transfer. Of particular interest were cell 
types with population changes during the progression of fibrosis (Fig. 3c; Supplementary 
Fig. 9b–d). We observed an overall decrease of normal proximal tubular (PT), glomerular 
and ECs and an increase of immune cells as expected in this fibrosis model with tubule 
injury, the influx of inflammatory cells, and capillary loss35-36. Importantly, we detected 
an increased PT sub-population, which we characterized as injured PT by increased 
accessibility around the PT injury markers  Vcam1  and  Kim1  (Havrc1)37  (Supplementary 
Fig. 9a).

Fig. 3 
a ARI values (y-axis) contrasting clustering results and transferred labels using distinct dimensional reduction 
methods for scATAC-seq. Clustering was performed by only considering UUO kidney cells on day 0 (WT), day 
2, or day 10 or the integrated data set (all days). b UMAP of the integrated UUO scATAC-seq after doublet 
removal with major kidney cell types: fibroblasts, descending loop of Henle and thin ascending loop of 
Henle (DL & TAL); macrophages (Mac), Lymphoid (T and B cells), endothelial cells (EC), thick ascending loop 
of Henle (TAL), distal convoluted tubule (DCT), collecting duct-principal cells (CD-PC), intercalated cells (IC), 
podocytes (Pod) and proximal tubule cells (PT S1; PT S2; PT S3; Injured PT). c Proportion of cells of selected 
clusters on either day 0, day 2 or day 10 experiments. d Heatmap with TF activity score (z-transformed) for 
TFs (y-axis) and selected clusters (x-axis). We highlight TFs with the decrease in activity scores in injured 
PTs (Rxra and Hnf4a), with high TF activity scores in injured PTs (Batf:Jun; Smad2:Smad3) and immune cells 
(Creb1; Nfkb1). eTranscription factor footprints (average ATAC-seq around predicted binding sites) of Rxra, 
Smad2::Smad3 and Nfkb1 for selected cell types. The logo of underlying sequences is shown below and the 
number of binding sites is shown top-left corner. f Transcription factor footprints of Rxra, Smad2::Smad3, and 
Nfkb1 for injured PT cells in day 0, day 2, and day 10. Source data for Fig. 3 are provided as a Source Data file.



90

Chapter 4



91

Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen

4

Dissecting cell-specific regulatory changes in fibrosis
Next, we adapted HINT-ATAC4  to dissect regulatory changes in scATAC-seq clusters. 
For each cluster, we created a pseudo-bulk ATAC-seq library by combining reads from 
single cells in the cluster. We then performed footprinting analysis and estimated TF 
activity scores for all footprint-supported motifs. We only kept TFs with changes (high 
variance) in TF activity scores among clusters. We focused here on clusters associated 
with PT cells, fibroblasts, and immune cells, as these represent key players in kidney 
remodeling and fibrosis after injury. As shown in Fig. 3d, the TF activity scores capture 
regulatory programs associated with these three major cell populations (Supplementary 
Data 2). Injured PTs have overall lower TF activity scores than all TFs of the PT cluster. TFs 
with a high decrease in activity in injured PTs include Rxra, which is important for the 
regulation of calcium homeostasis in tubular cells38, and Hnf4a, which is important in PT 
development39 (Fig. 3d, e). Footprint profile of Rxra in injured PTs display a gradual loss 
of TF activity over time indicating that injured PT acquires a de-differentiated phenotype 
during fibrosis progression and tubular dilatation (Fig. 3f). A group of TFs with high activity 
scores in injured PTs also have increased TF activity scores in fibroblasts (Smad2:Smad3 
and Batf:Jun) indicating shared regulatory programs in these cells. Smad proteins are 
downstream mediators of TGFβ  signaling, which is a known key player of fibroblast 
to myofibroblast differentiation and fibrosis40. The high activity of Smad2:Smad3 also 
indicates a role of TGFβ in the de-differentiation of injured PTs. Also, both Smad2:Smad3 
reach a peak in TF activity level at day 2 after UUO in injured PTs (Fig. 3f), which indicates 

Fig. 4 
a Diffusion map showing sub-clustering of fibroblasts. Colors refer to sub-cell-types and arrow represents 
differentiation trajectory from fibroblast to myofibroblast. Pe pericyte, Fib fibroblast, MF myofibroblast. b Line 
plots showing cell proportion from the day after UUO along the trajectory. c Pseudotime heatmap showing 
gene activity (left) and TF motif activity (right) along the trajectory. d Footprinting profiles of Runx1 and 
Twist2 binding sites along the trajectory.  e  Immuno-fluorescence (IF) staining of Runx1 (red) in PDGFRb-
eGFP mouse kidney. In sham-operated mice, Runx1 staining shows a reduced intensity in PDGFRb-eGFP+ 
cells compared to remaining kidney cells (arrows).  f Immuno-fluorescence (IF) staining of Runx1 (red) in 
PDGFRb-eGFP mouse kidney at 10 days after UUO as compared to sham. Arrows indicate Runx1 staining in 
expanding PDGFRb-eGFP+ myofibroblasts.  g Quantification of Runx1 nuclear intensity in PDGFRb-eGFP+ 
cells in sham vs. UUO mice. Error bars represent the SD of the intensity. Data are presented as mean ± SD. 
Statistical significance was assessed by a two-tailed Student’s  t-test with  p < 0.05 being considered 
statistically significant (n = 3 mice). h Performance of top-performing imputation methods on the prediction 
of Runx1 target genes measured with AUPR.  i  Peak-to-Gene links (top) predicted on scOpen matrix and 
associated to Tgfbr1 in fibroblast cells. The height of links represents its significance. Dash line represents the 
threshold of significance (FDR = 0.001). ATAC-seq tracks (below) were generated from pseudo-bulk profiles of 
fibroblast/myofibroblast cells with increasing pseudo time (0–20, 20–40, 40–60, 60–80, and 80–100). Binding 
sites of Runx1 (B1–B4) supported by ATAC-seq footprints and overlapping to peaks are highlighted on the 
bottom.  j Scatter plot showing gene activity of Tgfbr1 and normalized peak accessibility from raw (upper) 
or scOpen imputed matrix (lower) for peak-to-gene link B4. Each dot represents cells in a given pseudotime 
and the overall correlation is shown in the left-upper corner. Scale bars in e and f represent 50 μm. For details 
on statistics and reproducibility, see the “Methods” section. Source data for Fig. 4 are provided as a Source 
Data file.
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these TFs are activated post-transcriptionally. We also detect the high activity of Nfkb1 
in injured PTs (and lymphocytes), which fits with the known role of Nfkb1 in injured and 
failed repair PTs41-42. Moreover, our analysis also shows a gradual TF activity increase over 
time in injured PT (Fig. 3f), suggesting that Nfkb1 plays an important role in sustaining 
the injured PT phenotype.

scOpen reveals TF driving myofibroblast differentiation
A key process in kidney injury is fibrosis, which is caused by the differentiation of 
fibroblasts and pericytes to matrix secreting myofibroblasts43. To dissect potential 
differentiation trajectories, we performed a diffusion map embedding of the 
fibroblasts (Fig.  4a), which revealed the presence of three major branches formed 
by fibroblasts, pericytes, and myofibroblasts, as supported by the accessibility 
of Scara5, Ng2 (Cspg4), Postn and Col1a1(Supplementary Fig. 10)43,44.

We next created a cellular trajectory across the differentiation from fibroblasts to 
myofibroblasts using ArchR (Fig. 4a; Supplementary Fig. 10c). We observed that there is 
an increase in cells after injury (Day 2 and Day 10) along the trajectory (Fig. 4b). We next 
characterized TFs by correlating their gene activity with TF activity along the trajectory 
(Fig. 4c) and ranked these by their correlation (Supplementary Fig. 10d). The correlation 
of Runx1, which has a well-known function in blood cells45, stood out, besides showing 
a steady increase in activity in myofibroblasts. Another TF with high correlation and 
similar myofibroblast specific activity was Twist2, which has a known role in epithelial to 
mesenchymal transition in kidney fibrosis46 (Fig. 4d).

To validate the yet uncharacteristic role of Runx1 in myofibroblasts, we performed 
immunostaining and quantification of Runx1 signal intensity in transgenic PDGFRb-eGFP 
mice that genetically tag fibroblasts and myofibroblasts43,47. Runx1 staining in 
control mice (sham) revealed positive nuclei in tubular epithelial cells and rarely in 
PDGFRb-eGFP+ mesenchymal cells (Fig. 4e). In kidney fibrosis after UUO surgery (day 10), 
Runx1 staining intensity increased significantly in PDGFRb+ myofibroblasts (Fig.  4f,g). 
Next, we performed retroviral overexpression experiments and RNA-sequencing in a 
human kidney PDGFRb+ fibroblast cell-line that we have generated43  to ask whether 
Runx1 might be functionally involved in myofibroblast differentiation in humans 
(Supplementary Fig. 11a, b). Runx1 overexpression led to reduced proliferation (Supple-
mentary Fig. 11c) and strong gene expression changes (Supplementary Fig. 11d). Gene 
ontology (GO) and pathway enrichment analysis indicated enrichment of cell adhesion, 
cell differentiation, and TGFB signaling following Runx1 overexpression (Supplementary 
Fig.  11e). Various extracellular matrix genes (Fn1,  Col13A1), as well as a TGFB receptor 
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(Tgfbr1) and Twist2, were up-regulated following Runx1 overexpression (Supplementary 
Fig. 11d). Furthermore, we observed increased expression of the myofibroblast marker 
gene  Postn  after Runx1 overexpression. Altogether, this suggests that Runx1 might 
directly drive myofibroblast differentiation of human kidney fibroblasts since overex-
pression reduced cell proliferation and induced expression of various myofibroblast 
genes.

Identification of Runx1 target genes
Another important application of scATAC-seq is the prediction of  cis-regulatory DNA 
interactions (peak-to-gene links) by measuring the correlation between gene activity 
and reads counts in proximal peaks. To compare the impact of imputation on this task, 
we predicted peak-to-gene links in fibroblasts on distinct scATAC-seq matrices using 
ArchR34 after imputation with top-performing imputation methods. The use of imputation 
methods led to improved signals on peak-to-gene links predictions as indicated by higher 
correlation values after imputation (Supplementary Fig.  12a, b). We considered all genes 
with at least one link, where the peak has a footprint supported Runx1-binding site, as Runx1 
targets. We then compared the predicted Runx1 targets from distinct scATAC-seq imputed 
matrices with differentially expressed genes after Runx1 over-expression (true labels). All 
imputation methods obtained higher AUPR values than the use of a raw matrix, while 
scOpen obtained the highest AUPR (Fig. 4h; Supplementary Fig. 12c). Among others, scOpen 
predicted Tgfbr1 and Twist2 as prominent Runx1 target genes (Fig. 4i; Supplementary Fig. 12 
d). We observed several peaks with high peak-to-gene correlation, increasing accessibility 
upon myofibroblast differentiation and presence of Runx1-binding sites. The positive 
impact of imputation was clear when observing scatter plots contrasting gene activity and 
peak accessibility of these peak-to-gene links (Fig. 4j; Supplementary Fig. 12e–i).

Another interesting question is the association of the predicted link with distinct 
regulatory features. While we observed no clear association of the correlation of 
predicted links with the size of the link (Supplementary Fig. 13a), our analysis suggested 
that links associated with active kidney enhancers have a higher correlation than other 
active regulatory regions. This further supports the functional relevance of predicted 
links. These results suggest that Runx1 is an important regulator of myofibroblast differ-
entiation by regulating the EMT-related TF Twist2 and by amplifying TGFB signaling by 
increasing the expression of a TGFB receptor 1 and affecting the expression of extracel-
lular matrix genes. Altogether, these results uncover a complex cascade of regulatory 
events across cells during the progression of fibrosis and reveal a yet unknown function 
of Runx1 in myofibroblast differentiation in kidney fibrosis.
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Discussion

In ATAC-seq, Tn5 generates a maximum of 2 fragments per cell in a small (~200 bp) OC 
region. Subsequent steps of the ATAC-seq protocol cause loss of a large proportion of 
these fragments. For example, only DNA fragments with the two distinct Tn5 adapters, 
which are only present in 50% of the fragments, are amplified in the PCR step48. Further 
DNA material losses occur during single-cell isolation, liquid handling, sequencing, or by 
simple financial restrictions of sequencing depth. Assuming that 25% of accessible DNA 
can be successfully sequenced, we expect that 56% of accessible chromatin sites will 
not have a single digestion event causing the so-called dropout events, assuming that 
digestion events follow a binomial distribution. Despite this major signal loss, imputation 
and denoising have been widely ignored in the scATAC-seq literature5,6,8,9,12,13 and common 
scATAC-seq pipelines (e.g., Signac49 and ArchR34).

We demonstrated here that scOpen estimated matrices have a higher recovery of 
dropout events and also improved distance and clustering results when compared to 
imputation methods for scRNA-seq14,17,18,19,25 and the few available imputations methods 
tailored for scATAC-seq (cisTopic-impute10, SCALE20). scOpen also presented very good 
scalability with the lowest memory requirements and tractable computational time 
on large data sets. From a methodological perspective, scOpen is the only method 
performing regularization of estimated models to prevent over-fitting. This is in line 
with a previous study, which indicated over-fitting as one of the largest issues on 
scRNA-seq imputation50. Moreover, it is also possible to use the scOpen factorized matrix 
as a dimension reduction. We have shown that both dimensions reduced and imputed 
matrices from scOpen displayed the best performance on distance representation and 
clustering when compared to diverse state-of-the-art scATAC-seq dimension reduction/
clustering pipelines (cisTopic, SnapATAC, and Cusanovich et al. 2018). Of note, the ArchR 
pipeline is equivalent to Cusanovich et al. 2018 and based on the same dimension 
reduction method (LSI). It is worth noting that LIGER51 is another method of employing 
NMF for single-cell ATAC-seq analysis. It uses integrative NMF to extract shared factors 
with the objective of multi-modal data integration of scATAC-seq and scRNA-seq. 
Moreover, denoising in bulk ATAC-seq has also been approached with the use of deep 
learning methods52. These closely related approaches, however, have distinct applica-
tions than scOpen and are therefore not evaluated here.

Finally, we have demonstrated that the use of scOpen-corrected matrices improves 
the accuracy of existing state-of-art scATAC-seq methods (cisTopic10, chromVAR12, 
Cicero13). Particularly positive results were obtained in the prediction of chromatin 
conformation with Cicero, where all methods perform better than raw matrices. Cicero 
works by measuring the correlation between pairs of proximal links. Due to the fact that 
dropout events are independent for two regions, it is not surprising that imputation 
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has strong benefits. This is equivalent to observations from van Dijk et al. 201814 in the 
context of scRNA-seq, where the prediction of gene–gene interactions after MAGIC 
imputation was significantly improved. Altogether, these results support the importance 
of dropout event correction with scOpen in any computational analysis of scATAC-seq. 
Of note, a sparsity similar to scATAC-seq is also expected in single-cell protocols based 
on DNA enrichment such as scChIP-seq53,54, scCUT&Tag55, or scBisulfite-seq56. Denoising 
and imputation of count matrices from these protocols represent a future challenge.

Moreover, we used scOpen to characterize complex cascades of regulatory changes 
associated with kidney injury and fibrosis. Our analyses demonstrated that a major 
expanding population of cells, i.e. injured PTs, myofibroblasts, and immune cells, share 
regulatory programs, which are associated with cell de-/differentiation and proliferation. 
Of all methods evaluated, scOpen obtained the best clustering results in the kidney cell 
repertoire using a scRNA-seq on the same kidney injury model as a reference. Trajectory 
analysis identified Runx1 as the major TF driving myofibroblast differentiation, which 
was validated by Runx1 staining in the mouse model and by retroviral over-expression 
studies in human PDGFRb+ kidney cells. Computational prediction with peak-to-gene 
links combined with footprint-supported Runx1-binding sites indicated the role of 
Runx1 in the regulation of  Tgfbr1  and  Twist2. These were validated on over-expression 
experiments in human fibroblasts. Altogether, results suggest that Runx1 makes fibro-
blasts more sensitive to TGFB signaling via increasing expression of the TGFB receptors.

Runx1 has recently been reported as a potential inducer of EMT in PT cells57. 
Furthermore, in vitro data of mesenchymal stem cells (MSCs) isolated from bone marrow 
or prostate gland points towards a potential myofibroblast differentiation role of 
Runx158. In vivo evidence for a functional role of Runx1 in regulating fibrogenesis has 
been demonstrated in zebrafish59. Single-cell RNA-seq data from zebrafish heart after 
cryo-injury suggests that endocardial cells and thrombocytes up-regulate Runx1 while 
Runx1 mutant zebrafish demonstrated enhanced cardiac regeneration after cryoinjury 
with an ameliorated fibrotic response. Here we show for the first time in vivo and in vitro 
evidence that Runx1 in myofibroblasts regulates scar formation following a fibrogenic 
kidney injury in mice. Runx1 deficiency caused reduced myofibroblast formation and 
enhanced recovery. To this end, inhibiting Runx1 could lead to reduced myofibroblast 
differentiation and increased endogenous repair after fibrogenic organ injuries in the 
kidney and heart. Our results shed light on mechanisms of myofibroblasts differenti-
ation driving kidney fibrosis and chronic kidney disease (CKD). Altogether, this demon-
strates how scOpen can be used to dissect complex regulatory processes by footprinting 
analysis combined with peak-to-gene link predictions.
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Methods

UUO data pre-processing. 
We used Cell-Ranger ATAC (v1.1.0) pipeline toperform low-level data processing (https://
support.10xgenomics.com/single-cellatac/ software/pipelines/latest/algorithms/over
view). We first demultiplexed raw base call files using cellranger-atac mkfastq with its 
default setting to generate FASTQ files for each flowcell. Next, cellranger-atac count 
was applied to perform read trimming, filtering, and alignment. We then estimated the 
transcription start site (TSS) enrichment score using the obtained fragment files and 
filtered lowquality cells using a TSS score of 8 and a number of unique fragments of 1000 
as thresholds. The obtained barcodes are considered valid cells for the following analysis.

UUO data dimension reduction, data integration, and clustering. We next performed 
peak calling using MACS2 for each sample and merged the peaks to generate a union 
peak set, which was used to create a peak by cell matrix. For comparison, we applied 
distinct methods, i.e., scOpen, cisTopic, SnapATAC, and LSI/Cusanovich2018, to the matrix 
and used the dimension reduced matrix for data integration, clustering, and visual-
ization. Next, we used Harmony31 to integrate the scATAC-seq profiles from different 
conditions (day 0, day 2, and day 10) using either LSI/Cusanovich2018, cisTopic, scOpen, 
or SnapATAC dimension reduced matrix as input. Specifically, we created a Seurat object 
for each of the lowdimension matrices and ran the Harmony algorithm with the function 
RunHarmony. We then used k-medoids to cluster the cells taking batch-corrected lowdi-
mension matrix as input. The number of clusters was set to 17 given that the single-nu-
cleus RNA-seq that we used as a reference for annotation identified 17 unique cell types 
(see below).

UUO label transfer. 
To evaluate and annotate the clusters obtained from data integration, we downloaded 
a publicly available snRNA-seq dataset of the same fibrosis model (GSE119531) and 
performed label transfer using Seurat333. This dataset contains 6147 single-nucleus 
transcriptomes with 17 unique cell types32. For label transfer, we used the gene activity 
score matrix estimated by ArchR and transferred the cell types from the snRNA-seq 
dataset to the integrated scATACseq dataset by using the function FindTransferAnchors 
and TransferData in Seurat333. For benchmarking purposes, the predicted labels were 
used as true labels to compute ARI for evaluation of the clustering results and silhouette 
score for evaluation distances after using different dimension reduction methods as input 
for data integration (Supplementary Fig. 7c–e). We also performed the same analysis for 
each sample separately and evaluated the results (Fig. 3a).
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UUO cluster annotation. 
For the biological interpretation, we estimated doublet scores using ArchR34 and 
removed cells with a doublet score higher than 2.5. Next, we named the cluster by 
assigning the label with the highest proportion of cells to the cluster and checking marker 
genes (Supplementary Fig. 9a). In total, we recovered 16 unique cell types from the 17 
labels, as two clusters (2 and 17) were annotated as TAL cells. Specifically, we denoted 
clusters 6, 1, 3 as proximal tubule (PT) S1, S2, and S3 cells. We annotated cluster 2 as thick 
ascending limb (TAL), cluster 5 as distal convoluted tubule (DCT), cluster 7 as collecting 
duct-principal cell (CD-PC), cluster 8 as an EC, cluster 9 as connecting tubule (CNT), cluster 
10 as an intercalated cell (IC), cluster 11 as fibroblast, cluster 12 as descending limb + thin 
ascending limb (DL and TAL), cluster 13 as macrophage (MAC), cluster 16 as podocytes 
(Pod). Cluster 14 was identified as injured PT, which was not described in ref. 32, given 
the increased accessibility of marker Vcam1 and Havcr1 (Supplementary Fig. 9a). We also 
renamed the cells of cluster 15, which were label as Mac2 in ref. 32, as lymphoid cells 
given that these cells express B and T cell markers Ltb and Cd1d, but not macrophage 
markers C1qa and C1qb. Finally, cluster 4 was removed based on the doublet analysis. 

UUO Cell-type-specific footprinting with HINT-ATAC. 
We have adapted the footprinting-based differential TF activity analysis from HINT-
ATAC for scATACseq. In short, we created pseudo bulk atac-seq libraries by combining 
reads of cells for each cell type and performed footprinting with HINT-ATAC. Next, we 
predicted TF binding sites by motif analysis (FDR = 0.0001) inside footprint sequences 
using RGT (v0.12.3; https://github.com/CostaLab/reg-gen). Motifs were obtained from 
JASPAR Version 202073. We measured the average digestion profiles around all binding 
sites of a given TF for each pseudo-bulk ATAC-seq library. We used then the protection 
score4, which measures the cell-specific activity of a factor by considering the number of 
digestion events around the binding sites and depth of the footprint. Higher protection 
scores indicate higher activity (binding) of that factor. Finally, we only considered TFs 
with more than 1000 binding sites and variance in activity score higher than 0.3. We 
also performed smoothing for visualization of average footprint profiles. In short, we 
performed a trimmed mean smoothing (5 bps window) and ignored cleavage values in 
the top 97.5% quantile for each average profile.

Identifying trajectory from fibroblast to myofibroblast. 
We performed further sub-clustering of fibroblast cells on batch-corrected low-dimension 
scOpen matrix. In total, 3 clusters were obtained and annotated as pericyte (cluster 1), 
myofibroblast (cluster 2), and Scara5+ fibroblast (cluster 3) using known marker genes 
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(Supplementary Fig. 10a), respectively. For visualization, a diffusion map 2D embedding 
was generated using R package density74. Next, a trajectory from Scara5+ fibroblast to 
myofibroblast was created using function addTrajectory and visualized using function 
plotTrajectory from ArchR (Supplementary Fig. 10c).

Identifying key TF drivers of myofibroblast differentiation. 
To identify TFs that drive this process, we first performed peak calling based on all 
fibroblasts using MACS2 to obtain specific peaks and then estimated motif deviation 
per cell using chromVAR. The deviation scores were normalized to allow for comparison 
between TFs. Next, we selected the TFs with high variance of deviation and gene 
activity score along the trajectory and calculated the correlation of TF activity and gene 
activity. This was done by using the function correlateTrajectories from ArchR. We only 
consider the 31 TFs with significant correlation (FDR < 0.1) (Fig. 4c). We then sorted the 
TFs by correlation, which identifies Runx1 as the most relevant TF for the differentiation 
(Supplementary Fig. 10d).

Prediction of peak-to-gene links. 
We obtained TSS from annotation BSgenome. Mmusculus.UCSC.mm10 for each gene 
and extended it by 250 kbps for both directions. Then, we overlapped the peaks from 
fibroblasts and the TSS regions using function findOverlaps to identify putative peak-to-
gene links. We next created 100 pseudo-bulk ATAC-seq profiles by assigning each cell to 
an interval along the trajectory of myofibroblast differentiation. The gene score matrix 
and peak matrix were aggregated according to the assignment to generate two pseudo-
bulk data matrices. For each putative peak-to-gene link, we calculated the correlation 
between peak accessibility and gene activity. The p-values are computed using. 
distribution and corrected by Benjamini–Hochberg method. For comparison, we also 
performed matrix imputation using the four top methods, i.e., scOpen, SCALE, MAGIC, 
and cisTopic, as evaluated by peaks recovering (Supplementary Fig. 2b) and computed 
the correlation based on the imputed matrix. To compare the scOpen predicted peak-
to-gene correlation from different types of peaks, we used the annotation generated by 
R package ArchR34 and classified the peaks as distal, exonic, intronic, and promoter. We 
also tested if the correlation is different between activate enhancers and nonenhancers. 
For this, We obtained H3K27ac (ENCSR000CDG) and H3K4me1 (ENCSR436FYE) ChIP-seq 
peaks of mouse kidneys from ENCODE. The peaks were classified as active enhancers if 
they are overlapping with H3K27Ac and H3K4me1, and other active regions if they are 
only overlapping with H3K27Ac.
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Prediction and evaluation of Runx1 target genes. 
With each peak being associated with genes, we next sought to link Runx1 to its target 
genes. For this, we first performed a footprinting pseudo-bulk ATAC-seq profile to identify 
TF footprints inside peaks linked to genes in the previous peak-to-gene analysis. Next, we 
identified Runx1-binding sites using a motif-matching approach. We defined the genes 
that have at least one footprint-support binding site of Runx1 in their associated peaks as 
Runx1 target genes. We then used the peak-to-gene correlation as a prediction between 
Runx1 and the target genes. This procedure was for the peak to gene links predicted 
by distinct imputation approaches, thus generating various predictions. To evaluate the 
results, we used the DE genes obtained from RNA-seq of Runx1 overexpression as true 
labels (see below), and computed the AUPR (Fig. 4h).



Affiliations
1	 Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, 

Heidelberg, Germany
2	 Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, 

Aachen, Germany
3	 Faculty of Medicine, Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
4	 Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
5	 Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
6	 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
7	 Faculty of Health and Medical Sciences, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, 

University of Copenhagen, Copenhagen, Denmark
8	 Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
9	 Department of Urology and Pediatric Urology, St. Antonius Hospital Eschweiler, Academic Teaching Hospital of RWTH 

Aachen, Eschweiler, Germany
10	 Department of Urology and Kidney Transplantation, Martin Luther University, Halle (Saale), Germany
11	 Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
12	 Institute for Research and Innovation in Health (i3s), Porto, Portugal
13	 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
14	 Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg University, Heidelberg, Germany



Causal integration of multi-omics data 
with prior knowledge to generate 

mechanistic hypotheses

5

Aurelien Dugourd1,2,3,4,  Christoph Kuppe3,4,5,  Marco Sciacovelli6,  Enio Gjerga1,2,  Attila 
Gabor1, Kristina B. Emdal7, Vitor Vieira7, Dorte B. Bekker-Jensen7, Jennifer Kranz3,9,10, Eric.M.J. 
Bindels11, Ana S.H. Costa6,15,  Abel Sousa12,13,  Pedro Beltrao13,  Miguel Rocha8,  Jesper V. 
Olsen7, Christian Frezza6, Rafael Kramann3,4,5 and Julio Saez-Rodriguez1,2,14 



102

Chapter 5

Abstract

Multi-omics datasets can provide molecular insights beyond the sum of individual omics. 
Various tools have been recently developed to integrate such datasets, but there are 
limited strategies to systematically extract mechanistic hypotheses from them. Here, we 
present COSMOS (Causal Oriented Search of Multi-Omics Space), a method that integrates 
phosphoproteomics, transcriptomics, and metabolomics datasets. COSMOS combines 
extensive prior knowledge of signaling, metabolic, and gene regulatory networks with 
computational methods to estimate activities of transcription factors and kinases as 
well as network-level causal reasoning. COSMOS provides mechanistic hypotheses for 
experimental observations across multi-omics datasets. We applied COSMOS to a dataset 
comprising transcriptomics, phosphoproteomics, and metabolomics data from healthy 
and cancerous tissue from eleven clear cell renal cell carcinoma (ccRCC) patients. COSMOS 
was able to capture relevant crosstalks within and between multiple omics layers, such 
as known ccRCC drug targets. We expect that our freely available method will be broadly 
useful to extract mechanistic insights from multi-omics studies.

SYNOPSIS

A new approach integrates multi-omics datasets with a prior knowledge network 
spanning signaling, metabolism and allosteric regulations. Application to a kidney cancer 
patient cohort captures relevant cross-talks among deregulated processes.
·	 A causal multi-omics network is built by integrating multiple ressources spanning 

signaling, metabolism and allosteric regulations.
·	 Transcriptomics, phosphoproteomics and metabolomics data are integrated in a set 

of coherent mechanistic hypotheses using CARNIVAL, a tool contextualizing causal 
networks.

·	 This set of coherent mechanistic hypotheses can be mined to identify disease 
mechanisms and therapeutic targets.

·	 A network built for a cohort of kidney cancer patients shows coherence with other 
studies and known therapeutic targets.
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Introduction

“Omics” technologies measure at the same time thousands of molecules in biological 
samples, from DNA, RNA, and proteins to metabolites. Omics datasets are an essential 
component of systems biology and are made possible by the popularization of 
analytical methods such as next-generation sequencing or mass spectrometry. Omics 
data have enabled the unbiased characterization of the molecular features of multiple 
human diseases, particularly in cancer (preprint: Jelinek & Wu,  2012; Iorio  et al,  2016; 
Subramanian  et al, 2017). It is becoming increasingly common to characterize multiple 
omics layers in parallel, with so-called “trans-omics analysis”, to gain biological insights 
spanning multiple types of cellular processes (Sciacovelli et al, 2016; Kawata et al, 2018; 
Vitrinel  et al,  2019). Consequently, many tools are developed to analyze such data 
(Tenenhaus et al, 2014; Argelaguet et al, 2018; Sharifi-Noghabi et al, 2019; Singh et al, 2019; 
Liu et al, 2019c), mainly by adapting and combining existing “single omics” methodologies 
to multiple parallel datasets. These methods identify groups of measurements and derive 
integrated statistics to describe them, effectively reducing the dimensionality of the 
datasets. These methods are useful to provide a global view of the data, but additional 
processing is required to extract mechanistic insights from them.

To extract mechanistic insights from datasets, some methods (such as pathway 
enrichment analysis) use prior knowledge about the players of the process being 
investigated. For instance, differential changes in the expression of the genes that 
constitute a pathway can be used to infer the activity of that pathway. Methods that a 
priori define groups of measurements based on known regulated targets (that we call 
footprints (Dugourd & Saez-Rodriguez,  2019)) of transcription factors (TFs; Alvarez  et 
al,  2016; Garcia-Alonso  et al,  2019), kinases/phosphatases (Wiredja  et al,  2017), and 
pathway perturbations (Schubert  et al,  2018) provide integrated statistics that can be 
interpreted as a proxy of the activity of a molecule or process. These methods seem 
to estimate more accurately the status of processes than classic pathway methods 
(Cantini et al, 2018; Schubert et al, 2018; Dugourd & Saez-Rodriguez, 2019). Since each of 
these types of footprint methods works with a certain type of omics data, finding links 
between them could help to interpret them collectively in a mechanistic manner. For 
example, one can use a network diffusion algorithm, such as TieDIE (Paull et al, 2013), to 
connect different omics footprints together (Drake et al, 2016). This approach provides 
valuable insights, but diffusion (or random walk) based algorithms do not typically take 
into account causal information (such as activation/inhibition) that is available and are 
essential to extract mechanistic information. TieDIE partially addressed this problem by 
focusing the diffusion process on causally coherent subparts of a network of interest, 
but it is thus limited to local causality.
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Recently, we proposed the CARNIVAL tool (Liu et al, 2019b) to systematically generate 
mechanistic hypotheses connecting TFs through global causal reasoning supported by 
Integer Linear Programming. CARNIVAL connects activity perturbed nodes such as drug 
targets with deregulated TFs activities by contextualizing a signed and directed Prior 
Knowledge Network (PKN). We had hypothesized how such a method could potentially 
be used to connect footprint-based activity estimates across multiple omics layers 
(Dugourd & Saez-Rodriguez, 2019).

In this study, we introduce COSMOS (Causal Oriented Search of Multi-Omics Space). This 
approach connects TF and kinase/phosphatases activities (estimated with footprint-based 
methods) as well as metabolite abundances with a novel PKN spanning across multiple 
omics layers (Fig 1). COSMOS uses CARNIVAL’s Integer Linear Programming (ILP) optimi-
zation strategy to find the smallest coherent subnetwork causally connecting as many 
deregulated TFs, kinases/phosphatases, and metabolites as possible. The subnetwork is 
extracted from a novel integrated PKN spanning signaling, transcriptional regulation, and 
metabolism of > 117,000 edges. CARNIVAL’s ILP formulation effectively allows to evaluate 
the global network’s causal coherence given a set of known TF, kinases/phosphatases 
activities and metabolite abundances. While we showcase this method using transcrip-
tomics, phosphoproteomics, and metabolomics inputs, COSMOS can theoretically be 
used with any other additional inputs, as long as they can be linked to functional insights 
(for example, a set of deleterious mutations). As a case study, we generated transcrip-
tomics, phosphoproteomics, and metabolomics datasets from kidney tumor tissue and 
corresponding healthy tissue out of nine clear cell renal cell carcinoma (ccRCC) patients. 
We estimated changes of activities of TFs and kinase/phosphatases as well as metabolite 
abundance differences between tumor and healthy tissue. We integrated multiple curated 
resources of interactions between proteins, transcripts, and metabolites together to build 
a meta PKN. Next, we contextualized the meta PKN to a specific experiment. To do so, we 
identified causal pathways from our prior knowledge that connect the observed changes 
in activities of TFs, kinases, phosphatases, and metabolite abundances between tumor and 
healthy tissue. These causal pathways can be used as hypothesis generation tools to better 
understand the molecular phenotype of kidney cancer. We also refactored all functions to 
run the COSMOS approach into an R package.

Results

Building the multi-omics dataset
To build a multi-omics dataset of renal cancer, we performed transcriptomics, 
phosphoproteomics, and metabolomics analyses of renal nephrectomies and adjacent 
normal tissues of 11 renal cancer patients (for details on the patients see Dataset EV1). 
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First, we processed the different omics datasets to prepare for the analysis. For the 
transcriptomics dataset, 15,919 transcripts with average counts  >  50 were kept for 
subsequent analysis. In the phosphoproteomics dataset, 14,243 phosphosites detected 
in at least four samples were kept. In the metabolomics dataset, 107 metabolites detected 
across 16 samples were kept. Principal component analysis (PCA) of each omics dataset 
independently showed a clear separation of healthy and tumor tissues on the first 
component (transcriptomics: 40% of explained variance (EV), phosphoproteomics: 26% of 
EV, metabolomics: 28% of EV, Fig EV1), suggesting that tumor sample displayed molecular 
deregulations spanning across signaling, transcription and metabolism. Each omics 
dataset was independently submitted to differential (tumor vs. healthy tissue) analysis 
using LIMMA (Ritchie et al, 2015). Consistently with the PCA, a volcano plot overlapping 
the results of the differential analysis of each omics showed that the transcriptomics 
dataset led to larger differences and smaller  P-values than phosphoproteomics and 
metabolomics extracted from the same samples (Fig  EV2). This is further apparent by 
the number of hits under a given false discovery rate (FDR, Benjamini & Hochberg, 1995) 
threshold. We obtained 6,699 transcripts and 21 metabolites significantly regulated with 
FDR < 0.05. While only 11 phosphosites were found under 0.05 FDR, 447 phosphosites 
had an FDR  <  0.2. This result confirmed the deep molecular deregulations of tumors 
spanning across signaling, transcription, and metabolism. Then, the differential statistics 
for all tested (not just the ones under the FDR threshold) transcripts, phosphopeptides, 
and metabolites were used for further downstream analysis, as explained below.

Transcriptomic 
(15919 genes)
Phosphoproteomic 

(14242 p-sites)
Metabolomic 

(107 metabolites)

Mass 
spectrometry 
and RNA seq

Kinase P-site

Transcription 
factor
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Activation
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Inhibition
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Figure 1. Overview of analysis pipeline. 
From left to right: We sampled and processed 11 patient tumors and healthy kidney tissues from the same 
kidney through RNA-sequencing and 9 of those same patients through mass spectrometry to characterize 
their transcriptomics, phosphoproteomics, and metabolomics profiles. We calculated differential abundance 
for each detected gene, phosphopeptide, and metabolite. We estimated kinase and transcription factor 
activities using the differential analysis statistics and footprint-based methods. We used the estimated 
activities alongside the differential metabolite abundances to contextualize (i.e., extract the subnetwork 
that better explains the phenotype of interest) a generic trans-omics causal prior knowledge network (meta 
PKN).
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Footprint-based transcription factor, kinase, and phosphatase 
activity estimation
We then performed computational footprint analysis to estimate the activity of proteins 
responsible for changes observed in specific omics datasets. By the term “activity”, we refer 
to a quantifiable proxy of the function of a protein, estimated based on the footprint left by 
said activity. This definition can apply, but is not limited to, an enzyme’s catalytic activity. 
Footprint-based activity estimation (Dugourd & Saez-Rodriguez, 2019) relies on the concept 
that the measured abundances of molecules (such as phosphopeptides or transcripts) 
can be used as a proxy of upstream (direct or indirect) regulator activities responsible for 
those changes (Rhodes et al, 2005; Casado et al, 2013; Ochoa et al, 2016). In the case of TF 
activity estimation, this means that measured changes in the abundances of transcripts 
give us information about the changes of activities of the transcription factors that regulate 
their abundance. An activity estimation only depends on the changes of the abundances 
measured in its target transcripts, not its own transcript abundance. In this study, we used 
the VIPER algorithm (Alvarez  et al,  2016) to estimate the activity of transcription factors 
and kinases based on transcript and phosphopeptide abundances changes, respectively. 
For transcriptomics and phosphoproteomics data, this analysis estimates transcription 
factor and kinases/phosphatase activity, respectively. 24,347 transcription factors (TFs) 
to target interactions (i.e., transcript under the direct regulation of a transcription factor) 
were obtained from DoRothEA (Garcia-Alonso  et al,  2019), a meta-resource of TF-target 
interactions. Those TF-target interactions span over 365 unique transcription factors. In 
parallel, 33,616 interactions of kinase/phosphosphate and their phosphosite targets (i.e., 
phosphopeptides directly (de)phosphorylated by specific kinases (phosphatases)) were 
obtained from OmniPath (Türei  et al,  2016) kinase substrate network, a meta-resource 
focused on curated information on signaling processes. Only TFs and kinases/phosphatases 
with at least 10 and 5 detected substrates, respectively, were included. This led to the activity 
estimation of 328 TFs and 174 kinases. In line with the results of the differential analysis, 
where fewer phosphosites were deregulated than transcripts, TF activities displayed a 
stronger deregulation than kinases. TF activity scores reached a maximum of 8.7 standard 
deviations (sd) for Transcription Factor Spi-1 Proto-Oncogene (SPI1) (compared to the null 
score distribution; sd compared to null is also referred to as a normalized enrichment 
score, NES), while kinase activity scores reached a maximum of 4.6 NES for Casein Kinase 
2 Alpha 1 (CSNK2A1). In total, 102 TFs and kinases/phosphatase had an absolute score over 
1.7 NES (P < 0.05) and were considered significantly deregulated in kidney tumor samples 
(Fig 2A). The presence of several known signatures of ccRCC corroborated the validity of 
our analysis. For instance, hypoxia (HIF1A), inflammation (STAT2,Fig  2B), and oncogenic 
(MYC, Cyclin Dependent Kinase 2 and 7 (CDK2/7,  (Fig  2C)) markers were up-regulated in 
tumors compared to healthy tissues (Zeng et al, 2014; Schödel et al, 2016; Clark et al, 2020). 
Furthermore, among suppressed TFs we identified, the HNF4A gene has been previously 
associated with ccRCC (Lucas et al, 2005).
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Figure 2. Differentially regulated transcription factor, kinase, and phosphatase activities 
cancer vs. healthy tissue. 
A Bar plot displaying the normalized enrichment score (NES, proxy of activity change) of the 25 up- or down-
regulated TF and top 25 up- or down-regulated kinase and phosphatases activities between kidney tumor and 
adjacent healthy tissue. B Right panel shows the 10 most changing RNA abundances of the STAT2 regulated 
transcripts . Left panel shows the change of abundances of all STAT2 regulated transcripts that were used to 
estimate its activity change. X-axis represents log fold change of regulated transcripts multiplied by the sign 
of regulation ( 1 for inhibition and 1 for activation of transcription). Y-axis represents the significance of the 
log fold change ( log10 of P-value, LIMMA moderated unpaired t-test Pvalues). The black line is defined by 
the following function when fold change is negative : y = abs(hAss 1 + x/(x + vAss)); and y = abs(hAss   1 + x/(x   
vAss)) when fold change is positive. abs() is the absolute value, hAss is the horizontal asymptote (hAss = 1.3) 
and vAss is the vertical asymptote (vAss = 0.3). C Right panel shows the 10 most changing phosphopeptide 
abundances of the CDK7 regulated phosphopeptides. Left panel shows the change of abundances of all 
CDK7 regulated phosphopeptides that were used to estimate its activity change. X-axis represents log fold 
change of regulated transcripts multiplied by the sign of regulation ( 1 for inhibition and 1 for activation of 
transcription). Y-axis represents the significance of the log fold change ( log10 of P-value, LIMMA moderated 
unpaired t-test P-values). The black line is defined by the following function when fold change is negative : y = 
abs(hAss   1 + x/(x + vAss)); and y = abs (hAss   1 + x/(x   vAss)) when fold change is positive. Where abs() is the 
absolute value, hAss is the horizontal asymptote (hAss = 1.3) and vAss is the vertical asymptote (vAss = 0.3).

Causal network analysis
We set out to find potential causal mechanistic pathways that could explain the changes 
we observed in TF, kinases/phosphatase activities, and metabolic abundances. Thus, 
we developed a systematic approach to search in public databases, such as OmniPath, 
for plausible causal links between significantly deregulated TFs, kinases/phosphatases 
and metabolites. In brief, we investigated if changes in TF, kinase/phosphatase 
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activities, and metabolite abundance can explain each other with the support of 
literature-curated molecular interactions. An example of such a mechanism can be the 
activation of the transcription of MYC gene by NFKB1. Since both NFKB1 and MYC display 
increased activities in tumors, and there is evidence in the literature that  NFKB1  can 
regulate MYC transcription (FANTOM4 database), it may indicate that this mechanism is 
responsible for this observation.

First, we needed to map the deregulated TFs, kinases, and metabolites on a causal 
prior knowledge network spanning over signaling pathways, gene regulation, and 
metabolic networks. Hence, we combined multiple sources of experimentally curated 
causal links together to build a meta causal prior knowledge network. This meta PKN 
must include direct causal links between proteins (kinase to kinase, TF to kinase, TF to 
metabolic enzymes, etc…), between proteins and metabolites (reactants to metabolic 
enzymes and metabolic enzymes to products) and between metabolites and proteins 
(allosteric regulations). High confidence (≥  900 combined score) allosteric regulations 
of the STITCH database (Szklarczyk  et al,  2016) were used as the source of causal links 
between metabolites and enzymes (Fig  3A). The directed signed interactions of the 
OmniPath database were used as a source of causal links between proteins (Fig 3B). The 
human metabolic network Recon3D (Brunk et al, 2018) (without cofactors and hyper-pro-
miscuous metabolites, see Material and Methods) was converted to a causal network and 
used as the source of causal links between metabolites and metabolic enzymes (Fig 3C). 
The resulting meta PKN consists of 117,065 interactions and contains causal paths linking 
TFs/kinases/phosphatases with metabolites and vice versa in a machine readable format. 
This network is available in the COSMOS R package.

We then used the meta PKN to systematically search causal paths between the 
deregulated TFs, kinases/phosphatases, and metabolites using an ILP optimization 
approach (see Material and Methods, Meta PKN contextualization). Here, we used 
CARNIVAL with our meta PKN to find the smallest sign-coherent subnetwork connecting 
as many deregulated TFs, kinases/phosphatases, and metabolites as possible. First, we 
filtered out all interactions that do not involve genes expressed in our samples. Then, we 
removed nodes beyond a given number of steps downstream of inputs. We also removed 
any edge that leads to an incoherence between a TF activity score and the transcript 
abundance change of its targets (Appendix Fig  S1A). We then performed a CARNIVAL 
run from TFs/kinases/phosphatases to metabolites to estimate the activity of TFs in the 
COSMOS solution network. These activities are used to filter out incoherent transcriptional 
regulation events from the meta PKN. Then, CARNIVAL is used to find causal paths going 
from TFs/kinases/phosphatases to the metabolites (the “forward network”). Finally, 
CARNIVAL is used to go from metabolites to TFs/Kinases/phosphatases (“backward 
network”). The choice of TFs/Kinases/phosphatases and metabolites to be included is 
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detailed in Appendix Note 1. We combined the two networks (making union of the two 
sets edges and the union of the two sets of node attributes) to obtain a network with 449 
unique edges (Appendix Fig S2, Dataset EV5). CARNIVAL finds a direct path connecting 
downstream measurements with upstream nodes, and thus, the solution networks do 
not contain loops. Loops can however appear in the final merged network when nodes 
are overlapping between “forward” and “backward” runs.

We then used our network to investigate the regulation of relevant signaling 
cascades and metabolic reactions in ccRCC. An over-representation analysis of the 
network solution nodes (with the hallmark genesets of MSigDB) displayed the interferon 
gamma (IFNg) response as the top significant pathway in our COSMOS network. Hence, 
we focused on the interaction members of this pathway (such as NFKB1, HIF1A, and PNP) 
and their crosstalks with metabolic deregulations to assess the relevance of the mecha-
nistic hypotheses generated by COSMOS. We found that  NFKB1, a central actor of the 
IFNg pathway is activated in ccRCC, consistently with other reports (Zhang  et al,  2018; 
Rodrigues  et al,  2018) where it was also demonstrated to be regulated by the  PI3K/
AKT  pathway (An & Rettig,  2007). Interestingly, COSMOS also proposed the activation 

Figure 3. Graphical explanation of meta PKN sources. 
A–C Schematic representation of the meta generic network (meta PKN) created combining STITCH, OmniPath 
and Recon3D. (A) STITCH provides information on inhibition/activation of enzyme activities mediated by 
metabolites. (B) OmniPath provides information inhibition/activation of enzyme activities mediated by other 
enzymes based mainly on curated resources. (C) Recon3D provides information on reactants and products 
associated with metabolic enzymes. To make this information compatible with the causal edges from 
OmniPath and STITCH, the interactions of recon3D are converted so that reactants “activate” their metabolic 
enzymes, which themselves “activate” their products.
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of BCAT1, one of the key enzymes of the branched-chain amino acid metabolism, orches-
trated by HIF1A and MYC (Gordan et al, 2008; Ananieva & Wilkinson, 2018). Both mecha-
nisms are shown in Fig 4 (1) and (2).
Of note, COSMOS provided deeper insights into these molecular mechanisms by 
linking  MYC  activation to  NFKB1. The COSMOS model suggests that  MYC  up-regulates 
the expression of the metabolic enzyme  BCAT1, potentially leading to the observed 
higher levels of glutamate, glutamine and reduced glutathione in ccRCC (marked as (2) in 
Fig 4). A strong role of MYC and glutamine metabolism in ccRCC development is known 
(Shroff et al, 2015). Consistently with what was hypothesized in a recent proteogenomics 
ccRCC study (Clark  et al,  2020), we were able to capture crosstalks between members 
of the interferon gamma pathway (such as  JUN),  YY1  and metabolic down-regulation 
observed in our data ((3) in Fig  4). COSMOS highlighted how  YY1  inhibition might be 
connected with the depletion of adenine, hypoxanthine, and inosine through regulation 
of the ADA and PNP metabolic enzyme (Popławski et al, 2017). The low levels of adenosine 
predicted by COSMOS might also be potentially linked to the down-regulation of AKT3 and 
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Figure 4. COSMOS subnetwork centered on the interferon gamma response pathway. 
The figure includes the main members of the interferon gamma response pathway, the most enriched cancer 
hallmark in the full COSMOS network. We also display the metabolic enzymes that were hypothesized to be 
influenced downstream of this pathway, such as BCAT1 and PNP. The numbered mechanisms are discussed 
in the main text.
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up-regulation of  YES1, through a cascade which involves both  ADORA2B  and  GNAI1, 
downstream of s-Adenosyl-L-homocysteine and inhibition of KMT2A ((4) in Fig 4). Finally, 
the COSMOS model showed a significant activation of MAPK1 and SMAD4 downstream 
of YES1 (a member of the SRC family) ((5) in Fig 4).

Consistency, robustness, and flexibility
Due to the combined effect of experimental noise and incompleteness of prior knowledge 
(kinase/substrate interactions, TF/targets interactions and meta PKN), it is critical to assess 
the performance of the pipeline presented above.

One way to estimate the performance is to check if the COSMOS mechanistic 
hypotheses correspond to correlations observed in tumor tissues (Appendix Fig  S1B). 
Thus, on the one hand, a topology-driven co-regulation network was generated from 
the COSMOS network. The assumption behind this network is that direct downstream 
targets of the same enzymes should be co-regulated. On the other hand, a data-driven 
correlation network of TFs, kinases, and phosphatases was generated from tumor tissues 
alone. Assuming thresholds of absolute values of correlation ranging between 0 and 1 
to define true positive co-regulations, the comparison between the topology-driven 
co-regulation network and the data-driven correlation network yielded a TPR ranging 
between 0.55 and 0 (n = 269 pairs of predicted/measured co-regulations) for the predic-
tions (Appendix Fig  S3). It performed consistently better than a random baseline (see 
Material and Methods) over the considered range of correlation coefficient thresholds. 
We also compared the results with network solutions obtained hiding either TFs or 
kinases/phosphatases. When TFs were hidden, COSMOS performed consistently better 
than the random baseline and reached a maximum TPR of 0.62. Of note, this curve was 
estimated from only n = 21 co-regulation events. When kinases and phosphatases were 
hidden, COSMOS performed again consistently better than the random baseline and 
reached a maximum TPR of 0.58 (n = 228). In both cases, the performance of COSMOS 
was slightly larger than the full COSMOS performance (TPR = 0.55). This could be due to 
a lack of consistency across the omics data, although due to the low number of compar-
isons we could not make a conclusive statement. These results suggest that COSMOS’ 
performance is relatively robust to removing either the phosphoproteomics or transcrip-
tomics layers when trying to find connection between signaling and metabolism. 
However, using the three omics layers together yielded a larger network (367 edges (full) 
vs. 294 (hidden kinases) and 135 edges (hidden TFs)) and denser (1.67 edge/node ratio 
vs. 1.54 and 1.19 edge/node ratio, respectively) than when one omics layer was removed 
(Dataset EV3). Hence, using all layers yield a greater number of mechanistic hypotheses, 
even if not necessarily of higher quality.

To study the robustness of COSMOS to changes in the PKN, we generated a series 
of partially degraded PKN by randomly shuffling an increasing number of edges in the 
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original PKN (2, 10, 20, 30, 40, 50% of all edges shuffled completely randomly). We ran 
COSMOS with each version of the PKN. We first compared the results of the “forward” 
COSMOS runs (connecting TFs and kinases with downstream metabolites). We calcu-
lated the absolute difference between the edge weight of the results (see Materials 
and Methods, meta PKN contextualization) obtained from each shuffled PKN with the 
result obtained from the original PKN. The edge weight represents the frequency of 
appearance (in %) of an edge across all the networks in the pool of network solutions. 
This showed that for the 2% shuffled network, the differences were relatively small 
(median of the absolute weight difference = 10), with 4% of edges flipped (i.e., 0 weight 
in shuffled network and 100 weight in original network, or vice versa). As expected, the 
differences were higher regarding the other shuffled networks, with medians weight 
differences of 10, 14, 23, 50, 28, and 35 for the 2, 10, 20, 30, 40, and 50% shuffled PKN, 
respectively (Appendix Fig S4A).

We then compared the results of the “backward” COSMOS runs (connecting metab-
olites with downstream TFs and kinases). Here, the comparison was far less quantitative 
because the optimization reported only a single solution for all runs except in the case 
of the 20% shuffled PKN (Appendix Fig  S4B). 61, 31, 18, 12, 8, and 8% of edge weight 
differences were equal to 0 for the 2, 10, 20, 30, 40, and 50% shuffled PKN, respectively.

In both “forward” and “backward” runs, the network results had a relatively similar 
number of edges from the original and shuffled PKNs (min = 142, max = 342, mean = 263, 
SD = 63). The optimization thus consistently excluded a common set of edges covering 
the vast majority of the network, that contains over 56,000 edges.

We also compared the results we obtained from our samples with results obtained 
using another independent ccRCC dataset. We obtained the transcriptomics and 
phosphoproteomics dataset of the Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) ccRCC patient cohort (Clark  et al,  2020). Following the same approach as with 
our patient samples, we performed the differential analysis between tumor and healthy 
tissue for both omics datasets and estimated TFs and kinase/phosphatase activities. 
Then, we ran COSMOS to find mechanistic hypotheses explaining the connections 
between deregulated transcription factors and kinases/phosphatases. The resulting 
COSMOS network was coherent with the results shown in the original publication and 
also provided additional information on the crosstalks between deregulated kinases and 
transcription factors. In particular, COSMOS captured the signaling crosstalks between 
EGF, VEGF, AKT, MAPK, MTOR, NFKB, and MYC  (Dataset EV4). Finally, we compared which 
biological processes were captured in the COSMOS network generated from the data 
of our patient samples and the COSMOS network generated from the CPTAC ccRCC 
patient cohort. As shown in Fig  EV3, the top over-represented pathways were very 
consistent between the two studies. Notably, PI3K-AKT-MTOR signaling and G2M check-
point (Clark et al, 2020), TNFA signaling via NFKB (Al-Lamki et al, 2010), interferon gamma 
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response (Thapa  et al,  2013),  WNT  beta catenin signaling (Xu  et al,  2016), and  IL6 JAK 
STAT3 signaling pathway were all significantly over-represented (P < 0.02).

Finally, we applied COSMOS to a public breast cancer dataset including transcriptomics 
and fluxomics measurements (Katzir  et al,  2019) to connect signaling directly with 
metabolic flux estimation, instead of metabolite abundance measurements as done in 
the previous cases. We performed a differential analysis of transcript abundance and flux 
values between tumor cells cultured with and without glutamine. We then looked for 
mechanistic hypotheses connecting TF activity deregulations and changes in flux values. 
Coherently with the original study, almost all metabolites of the TCA cycle, glycolysis 
and pentose phosphate pathway were predicted to be down-regulated by COSMOS 
(Appendix Fig S5). Interestingly, COSMOS finds HIF1A as a master regulator of glycolysis 
through his effect on HK1/2, GAPDH, GCK, ENO1, and LDHA transcription. This is consistent 
with the known role of  HIF1A  in breast cancer (Samanta  et al, 2014; Masoud & Li, 2015; 
Zhang et al, 2015; Singh et al, 2017). The down-regulation of MYC is also in line with the 
decreased activity of HK2 and LDHA and GLS1 enzymes which are important in aerobic 
glycolysis and glutamine catabolism (Dong et al, 2020).

Discussion

In this paper, we present COSMOS, an analysis pipeline to systematically generate 
mechanistic hypotheses by integrating multi-omics datasets with a broad range of 
curated resources of interactions between protein, transcripts, and metabolites.

We first showed how TF, kinase, and phosphatase activities could be coherently 
estimated from transcriptomics and phosphoproteomics datasets using footprint-
based analysis. This is a critical step before further mechanistic exploration. Indeed, 
transcript and phosphosite usually offer limited functional insights by themselves 
as their relationship with corresponding protein activity is usually not well charac-
terized. Yet, they can provide information on the activity of the upstream proteins 
regulating their abundances. Thus, the functional state of kinases, phosphatases, and 
TFs is estimated from the observed abundance change of their known targets, i.e., their 
molecular footprint. Thanks to this approach, we could simultaneously characterize 
protein functional states in tumors at the level of signaling pathway and transcriptional 
regulation. Key actors of hypoxia response, inflammation pathway, and oncogenic genes 
were found to have especially strong alteration of their functional states, such as HIF1A
, EPAS1, STAT1/2, MYC, and CDK2. Loss of VHL is a hallmark of ccRCC and is directly linked 
to the stability of the HIF (HIF1A and EPAS1) proteins found deregulated by our analysis 
(Maxwell  et al,  1999; Ivan  et al,  2001; Jaakkola  et al,  2001). Finding these established 
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signatures of ccRCC to be deregulated in our analysis is a confirmation of the validity of 
this approach.

We then applied COSMOS with a novel meta causal Prior Knowledge Network 
spanning signaling, transcription, and metabolism to systematically find potential 
mechanisms linking deregulated protein activities and metabolite concentrations. To 
the best of our knowledge, this is the first attempt to integrate these three omics layers 
together in a systematic manner using causal reasoning. Previous methods studying 
signaling pathways with multi-omics quantitative datasets (Drake et al, 2016) connected 
TFs with kinases but they were limited by the preselected locally coherent subnetwork of 
the TieDIE algorithm. Introducing global causality along with metabolomics data allows 
us to obtain a direct mechanistic interpretation of links between proteins at different 
regulatory levels and metabolites. The goal of our approach is to find a coherent set 
of such mechanisms connecting as many of the observed deregulated protein activities 
and metabolite concentrations as possible. Using COSMOS is particularly interesting 
as all the proposed mechanisms between pairs of molecules (proteins and metab-
olites) have to be plausible not only in the context of their own pairwise interaction 
but also with respect to all other molecules that we wish to include in the model. For 
example, the proposed activation of  MYC  by  NFKB1  and  MAPK1  is further supported 
by STAT3 activation, because MAPK1 is also known to activate STAT3. Thus, we developed 
COSMOS to scale this type of reasoning up to the entire PKN with all significantly dereg-
ulated protein activities and metabolites. We relied on an ILP optimization through 
the CARNIVAL R package (Liu  et al, 2019b) to contextualize this PKN with our data. We 
refined the optimization procedure to handle this very large PKN and built an R package 
to facilitate others to use it with their own data. Given a set of deregulated TFs, kinases/
phosphatases, or metabolites, COSMOS provides the users with a set of coherent mecha-
nistic hypotheses to explain changes observed in a given omics layer with upstream 
regulators from other omics layers. Thus, its aim is to integrate measured data with prior 
knowledge in a consistent and systematic manner, not to explicitly predict the outcome 
of new experiments.

Since the interferon gamma response pathway was the most over-represented cancer 
hallmark in the COSMOS network solution, we investigated further the relevance of the 
mechanistic hypothesis connecting members of this pathway. The network showed that 
the crosstalks between  MAPK1,  NFKB1,  MYC,  HIF1A,  and  YY1  could explain the deregu-
lation in glutamine and reduced glutathione metabolism, as well as inosine, hypoxan-
thine, and adenine. These were particularly relevant as they were important interactions 
in ccRCC. MYC and glutamine metabolism appear to be an interesting therapeutic target 
of ccRCC (Shroff et al, 2020). YY1 is a known indirect inhibitor of MYC involved in cancer 
development (Austen et al, 1998). The COSMOS network showed YY1 could also poten-
tially have a role in the down-regulation of the  ADA and  PNP metabolic enzyme activ-
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ities. Coherently,  PNP has been shown to be non-essential in ccRCC cell lines, which is 
expected from down-regulated metabolic enzymes (Gatto  et al, 2015). In addition, the 
link shown by COSMOS between NFKB1 and MYC can have implications for the treatment 
of ccRCC, due to its pivotal role in arsenite (a drug used in chemotherapy) treatment of 
cancer (Huang et al, 2014). Furthermore, the activation of the NFKB1-MYC link in FBW7-de-
ficient cells seems to sensitize them to Sorafinib (a  MEK-Raf  inhibitor), a drug used in 
treatment of primary kidney cancer (Huang et al, 2014). In addition, NFKB1 and MYC are 
both promising ccRCC treatment targets (Peri et al, 2013; Bailey et al, 2017). The link shown 
by COSMOS between  KMT2A  and adenosine is interesting, because  KMT2A  mutations 
have been reported in a number of ccRCC patients (Yan  et al,  2019), suggesting that 
this enzyme might play a functional role in ccRCC development. Moreover, it has been 
proposed, at least in vitro, that ccRCC cell lines with low basal levels of phospho-AKT were 
sensitive to treatment with an adenosine analog (Kearney  et al,  2015). The link betwe
en  YES1,  MAPK1, and  SMAD4  in the COSMOS network is especially relevant considering 
that  YES1  is a known targetable oncogene (Hamanaka  et al,  2019). These examples 
illustrate the ability of COSMOS to extract mechanistic hypotheses to understand and 
potentially improve treatment of cancer by integration of multiple omics data and prior 
knowledge.

However, it is important to mention that COSMOS is only aimed at providing 
hypotheses to further explore experimentally. COSMOS does not aim at recapitulating all 
the molecular interactions that may be happening in a given context. Currently, COSMOS 
simply provides a large set of coherent mechanistic hypotheses, given the data and prior 
knowledge available. We argue that this facilitates the interpretation of a complex multi-
omics dataset and guides the exploration of biological questions.

We assessed the performances and robustness of our approach. We computed 
a tumor specific correlation network of TF and kinase activities and compared it to 
the co-regulation predicted by COSMOS. This yielded encouraging results, though 
imperfect, underscoring the fact that the mechanisms proposed by COSMOS—like those 
by any similar tool—are hypotheses. It also highlighted that adding more omics data to 
integrate allows to generate more hypotheses and connect them together, but does not 
necessarily improve their predictive performances.

There are three main known limits to the predictions of COSMOS. First, the input 
data are incomplete. Only a limited fraction of all potential phosphosites and metab-
olites are detected by mass spectrometry. This means that we have no information on 
a significant part of the PKN; part of the unmeasured network is kept in the analyses 
and the values are estimated as intermediate “hidden values”. Second, not all regulatory 
events between TFs, kinase, and phosphatases and their targets are known, and activity 
estimation is based only on the known regulatory relationships. Thus, many TFs, kinase, 
and phosphatases are not included because they have no curated regulatory interactions 
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or no detected substrates in the data. Third, and conversely, COSMOS will find putative 
explanations within the existing prior knowledge that may not be the true mechanism.

These problems mainly originate from the importance that is given to prior 
knowledge in this method. Since prior knowledge is by essence incomplete, the next 
steps of improvement could consist of finding ways to extract more knowledge from the 
observed data to weight in the contribution of prior knowledge. For instance, one could 
use the correlations between transcripts, phosphosites and metabolites to quantify the 
interactions available in databases such as OmniPath. Importantly, any other omics that 
relate to active molecules (such as miRNAs or metabolic enzyme fluxes) can be used to 
estimate protein activities through footprint approaches (such as DNA accessibility or 
PTMs other than phosphorylation) can be seamlessly integrated (as we showed with the 
fluxomic of the breast cancer dataset). Moreover, COSMOS was designed to work with 
bulk omics datasets, and it will be very exciting to find ways of applying this approach to 
single cell datasets. Encouragingly, the footprint methods that bring data into COSMOS 
seem fairly robust to the characteristics of single-cell RNA data such as dropouts 
(Holland  et al,  2020). Related to the importance of prior knowledge, the PKN can also 
depend on how we interpret the information we have about molecular interactions. In 
particular, we converted the reaction network of Recon3D into a causal network where 
metabolite reactants “activate” metabolic enzymes, and metabolic enzymes “activate” 
metabolite products. This first approximation assumes that metabolite abundances 
are only driven by their production rates. We plan to refine this in the future to include 
that metabolite abundances can change as a result of consumption as well. Finally, we 
expect that in the future, data generation technologies will increase coverage and our 
prior knowledge will become more complete, reducing the mentioned limitations. In the 
meantime, we believe that COSMOS is already a useful tool to extract causal mechanistic 
insights from multi-omics studies.

Methods and Protocols

Sample collection and processing
We included a total of 22 samples from 11 renal cancer patients (6 men, age 65.0 ± 14.31, 
5 women, age 65.2  ±  9.257 (mean  ±  SD)) for transcriptomics. Phosphoproteomics was 
also measured in a subset of 18 samples from 9 of these patients (6 men, age 65 ± 14.31; 
3 women, age 63.33 ± 11.06 (mean ± SD)), and metabolomics was also measured in 16 
samples from 8 out of these 9 patients (5 men, age 62 ± 13.23; 3 women, age 63.33 ± 9.89 
(mean ± SD), Fig EV4, Dataset EV1). Patients underwent nephrectomy due to renal cancer. 
We processed tissue from within the cancer and a distant unaffected area of the same 
kidney. The tissue was snap-frozen immediately after nephrectomy within the operation 
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room. The clinical data of the included patients is outlined in Dataset EV1. Histological 
evaluation showed clear renal cell carcinoma in all patients.

Ethics
The local ethics committee of the University Hospital RWTH Aachen approved all human 
tissue protocols for this study (EK-016/17). The study was performed according to the 
declaration of Helsinki. Kidney tissues were collected from the Urology Department of 
the University Hospital Eschweiler from patients undergoing partial/- or nephrectomy 
due to kidney cancer. All patients gave informed consent.

Human tissue processing
Kidney tissues were sampled by the surgeon from normal and tumor regions. The tissue 
was snap-frozen on dry-ice or placed in prechilled University of Wisconsin solution 
(#BTLBUW, Bridge to Life Ltd., Columbia, U.S.) and transported to our laboratory on ice.

RNA Isolation, library preparation, NGS sequencing
RNA was extracted according to the manufacturer ‘s instructions using the RNeasy Mini Kit 
(QIAGEN). For rRNA-depleted RNA-seq using 1 and 10 ng of diluted total RNA, sequencing 
libraries were prepared with KAPA RNA HyperPrep Kit with RiboErase (Kapa Biosystems) 
according to the manufacturer’s protocol. Sequencing libraries were quantified using 
quantitative PCR (New England Biolabs, Ipswich, USA). Equimolar pooling of the libraries 
was normalized to 1,4 nM, denatured using 0.2 N NaOH and neutralized with 400 nM Tris 
pH 8.0 prior to sequencing. Final sequencing was performed on a Novaseq6000 platform 
(IIlumina) according to the manufacturer’s protocols (Illumina, CA, USA).

Metabolomics
Snap-frozen tissue specimens were cut and weighed into Precellys tubes prefilled with 
ceramic beads (Stretton Scientific Ltd., Derbyshire, UK). An exact volume of extraction 
solution (30% acetonitrile, 50% methanol, and 20% water) was added to obtain 40 mg 
specimen per mL of extraction solution. Tissue samples were lysed using a Precellys 
24 homogenizer (Stretton Scientific Ltd., Derbyshire, UK). The suspension was mixed 
and incubated for 15  min at 4°C in a Thermomixer (Eppendorf, Germany), followed by 
centrifugation (16,000 g, 15 min at 4°C). The supernatant was collected and transferred 
into autosampler glass vials, which were stored at −80°C until further analysis.

Samples were randomized to avoid bias due to machine drift and processed blindly. 
LC-MS analysis was performed using a Q Exactive mass spectrometer coupled to a 
Dionex U3000 UHPLC system (both Thermo Fisher Scientific). The liquid chromatog-
raphy system was fitted with a Sequant ZIC-pHILIC column (150 mm × 2.1 mm) and guard 
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column (20 mm × 2.1 mm) from Merck Millipore (Germany) and temperature maintained 
at 45 °C. The mobile phase was composed of 20  mM ammonium carbonate and 0.1% 
ammonium hydroxide in water (solvent A), and acetonitrile (solvent B). The flow rate 
was set at 200 µL/min with the gradient described previously (Mackay et al, 2015). The 
mass spectrometer was operated in full MS and polarity switching mode. The acquired 
spectra were analyzed using XCalibur Qual Browser and XCalibur Quan Browser software 
(Thermo Scientific).

Phosphoproteomics
Snap-frozen tissues were heat inactivated (Denator T1 Heat Stabilizor, Denator) and 
transferred to a GndCl solution (6 M GndCl, 25 mM Tris, pH 8.5, Roche Complete Protease 
Inhibitor tablets (Roche)) and homogenized by ceramic beads using 2 steps of 20  s at 
5,500 rpm (Precellys 24, Bertin Technologies). The tissues were heated for 10 min at 95°C 
followed by micro tip sonication on ice and clarified by centrifugation (20 min, 16,000 g, 
4°C). Samples were reduced and alkylated by adding 5 mM tris(2-carboxyethyl)phosphine 
and 10 mM chloroacetamide for 20 min at room temperature.

Lysates were digested by Lys-C (Wako) in an enzyme/protein ratio of 1:100 (w/w) for 
1  h, followed by a dilution with 25  mM tris buffer (pH 8.5), to 2  M guanidine-HCl and 
further digested overnight with trypsin (Sigma-Aldrich; 1:100, w/w). Protease activity 
was quenched by acidification with TFA, and the resulting peptide mixture was concen-
trated on C18 Sep-Pak Cartridges (Waters). Peptides were eluted with 40% ACN followed 
by 60% ACN. The combined eluate was reduced by SpeedVac, and the final peptide 
concentration was estimated by measuring absorbance at A280 on a NanoDrop (Thermo 
Fisher Scientific). Peptide (300 μg) from each sample was labeled with 1 of 11 different 
TMT reagents according to the manufacturer’s protocol (Thermo Fisher Scientific) for a 
total of four TMT sets. Each set comprised 10 samples and a common internal reference 
(composed of equal amounts of digested material from all samples).

After labeling, the samples were mixed and phosphopeptides were further enriched 
using titanium dioxide beads (5 μm Titansphere, GL Sciences, Japan). TiO2 beads were 
pre-incubated in 2,5-dihydroxybenzoic acid (20 mg/ml) in 80% ACN and 1% TFA (5 μl/
mg of beads) for 20 min. Samples were brought to 80% ACN and 5% TFA. 1.5 mg beads 
(in 5  μl of DHB solution) were added to each sample, which was then incubated for 
20 min while rotating. After incubation, the beads were pelleted and fresh TiO2 beads 
were added to the supernatant for a second enrichment step. Beads were washed with 
five different buffers: (i) 80% ACN and 6% TFA, (ii) 10% ACN and 6% TFA, (iii) 80% ACN 
and 1% TFA, (iv) 50% ACN and 1% TFA, (v) 10% ACN and 1% TFA. The final washing step 
was performed on a C8 stage tip, from which the phosphopeptides were with 20 μl 5% 
NH4OH followed by 20 μl 10% NH4OH with 25% ACN. Eluted peptides were fractionated 
using a reversed-phase Acquity CSH C18 1.7  μm 1  ×  150  mm column (Waters, Milford, 
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MA) on an UltiMate 3000 high-pressure liquid chromatography (HPLC) system (Dionex, 
Sunnyvale, CA) operating at 30  μl/min. Buffer A (5  mM ammonium bicarbonate) and 
buffer B (100% ACN) were used. Peptides were separated by a linear gradient from 5% B 
to 35% B in 55 min, followed by a linear increase to 70% B in 8 min and 12 fractions were 
collected in a concatenated manner.

The peptide solution was adjusted in volume to an appropriate concentration 
and kept in loading buffer (5% ACN and 0.1% TFA) prior to autosampling. An in-house 
packed 15 cm, 75 μm ID capillary column with 1.9 μm Reprosil-Pur C18 beads (Dr. Maisch, 
Ammerbuch, Germany) was used with an EASY-nLC 1200 system (Thermo Fisher Scien-
tific, San Jose, CA). The column temperature was maintained at 40°C using an integrated 
column oven (PRSO-V1, Sonation, Biberach, Germany) and interfaced online with a Q 
Exactive HF-X mass spectrometer. Formic acid (FA) 0.1% was used to buffer the pH in the 
two running buffers used. The gradients went from 8 to 24% acetonitrile (ACN) in 50 min, 
followed by 24–36% in 10  min. This was followed by a washout by a 1/2  min increase 
to 64% ACN, which was kept for 4.5  min. Flow rate was kept at 250 nL/min. Re-equili-
bration was done in parallel with sample pickup and prior to loading with a minimum 
requirement of 0.5 μl of 0.1% FA buffer at a pressure of 600 bar.

The mass spectrometer was running in data-dependent acquisition mode with the 
spray voltage set to 2  kV, funnel RF level at 40, and heated capillary at 275°C. Full MS 
resolutions were set to 60,000 at m/z 200 and full MS AGC target was 3E6 with an IT of 
25 ms. Mass range was set to 375–1500. AGC target value for fragment spectra was set 
at 1E5, and intensity threshold was kept at 2E5. Isolation width was set at 0.8 m/z and a 
fixed first mass of 100 m/z was used. Normalized collision energy was set at 33%. Peptide 
match was set to off, and isotope exclusion was on.

Raw MS files were analyzed by MaxQuant software version 1.6.0.17 using the 
Andromeda search engine. Proteins were identified by searching the higher-energy colli-
sional dissociation (HCD)–MS/MS peak lists against a target/decoy version of the human 
UniProt protein database (release April 2017) using default settings. Carbamidomethyl-
ation of cysteine was specified as fixed modification, and protein N-terminal acetylation, 
oxidation of methionine, pyro-glutamate formation from glutamine, and phosphoryl-
ation of serine, threonine, and tyrosine residues were considered as variable modifi-
cations. The “maximum peptide mass” was set to 7,500 Da, and the “modified peptide 
minimum score” and “modified maximum peptide score” were set to 25. Everything else 
was set to default values. The mass spectrometry proteomics data have been deposited 
to the ProteomeXchange Consortium via the PRIDE partner repository. 

Data normalization and differential analysis
In the phosphoproteomics dataset, 19285 unique phosphosites were detected across 18 
samples. Visual inspection of the raw data PCA first 2 components indicated two major 
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batches of samples (1st batch : “38KI”, “38TU”, “15KI”, “15TU”, “29KI”, “29TU”, “16KI”, “16TU”, 
“32KI”, “32TU”, “35KI”, “35TU”; 2nd batch : “40KI”, “40TU”, “24KI”, “24TU”, “11KI”, “11TU”). 
Thus, each batch was first normalized using the VSN R package (Huber  et al,  2002; 
Välikangas et al, 2018). We removed p-sites that were detected in < 4 samples, leaving 
14,243 unique p-site to analyze. Visual inspection of the PCA first two components of the 
normalized data revealed that the first batch of samples could itself be separated in 3 
batches (4 batches across all samples). Thus, we used the removeBatchEffect function of 
LIMMA to remove the linear effect of the 4 batches. Differential analysis was performed 
using the standard sequence of lmFit, contrasts.fit and eBayes functions of LIMMA, with 
FDR correction.

For the transcriptomics data, counts were extracted from fast.q files using the 
RsubRead R package and GRCh37 (hg19) reference genome. Technical replicates were 
averaged, and genes with average counts under 50 across samples were excluded, 
leaving 15919 genes measured across 22 samples. To allow for logarithmic transfor-
mation, 0 count values were scaled up to 0.5 (similar to the voom function of LIMMA). 
Counts were then normalized using the VSN R package function and differential analysis 
was performed with LIMMA package, in the same way as the phosphoproteomics data.

For the metabolomics data, 107 metabolites were detected in 16 samples. Intensities 
were normalized using the VSN package. Differential analysis was done using LIMMA in 
the same manner as for phosphoproteomics and transcriptomics. All data are available 
at: https://github.com/saezlab/COSMOS.

Footprint-based analysis
TF-target collection was obtained from DoRothEA A,B,C and D interaction confidence 
levels from the DoRothEA R package (version 1.1.0). For the enrichment analysis, the viper 
algorithm (Alvarez et al, 2016) was used with the LIMMA moderated t-value as gene level 
statistic (Zyla et al, 2017). The eset.filter parameter was set to FALSE. Only TFs with at least 
25 measured transcripts were included.

Kinase substrate collection was obtained using the default resource collection 
of OmniPath, with the URL “http://omnipathdb.org/ptms?fields=sources,referenc-
es&genesymbols=1” (version of 2020 Feb 05). For the enrichment analysis, the viper 
algorithm was used with the LIMMA moderated  t-value as phosphosite level statistic. 
The eset.filter parameter was set to FALSE. Only TFs with at least 5 measured transcripts 
were included. All data are available at https://github.com/saezlab/COSMOS_MSB/tree/
main/data.

Meta PKN construction
To propose mechanistic hypotheses spanning through signaling, transcription and met-
abolic reaction networks, multiple types of interactions have to be combined together in 
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a single network. Thus, we built a meta Prior Knowledge Network (PKN) from three on-
line resources, to incorporate three main types of interactions. The three types of inter-
actions are protein–protein interactions, metabolite-protein allosteric interactions, and 
metabolite-protein interactions in the context of a metabolic reaction network. Protein–
protein interaction was imported from OmniPath with the URL http://omnipathdb.org/
interactions?types=post_translational,transcriptional&datasets=omnipath,pathwayex-
tra,dorothea&fields=sources,references,curation_effort,dorothea_level,type&genesym-
bols=yes (version of 2020 July 17), and only signed directed interactions were included 
(is_stimulation or is_inhibition columns equal to 1). Metabolic-protein allosteric inter-
actions were imported from the STITCH database (version of 2019 November 06), with 
combined confidence score ≥ 900 after exclusion of interactions relying mainly on text 
mining.

For metabolic-protein interactions in the context of metabolic reaction network, 
Recon3D was downloaded from https://www.vmh.life/#downloadview (version of 2019 Feb 
19). Then, the gene rules (“AND” and “OR”) of the metabolic reaction network were used to 
associate reactants and products with the corresponding enzymes of each reaction. When 
multiple enzymes were associated with a reaction with an “AND” rule, they were combined 
together as a single entity representing an enzymatic complex. Then, reactants were 
connected to corresponding enzymatic complexes or enzymes by writing them as rows of 
simple interaction format (SIF) table of the following form: reactant;1;enzyme. In a similar 
manner, products were connected to corresponding enzymatic complexes or enzymes 
by writing them as rows of simple interaction format (SIF) table of the following form: 
enzyme;1;product. Thus, each row of the SIF table represents either an activation of the 
enzyme by the reactant (i.e., the necessity of the presence of the reactant for the enzyme 
to catalyze it’s reaction) or an activation of the product by an enzyme (i.e., the product 
presence is dependent on the activity of its corresponding enzyme). Most metabolite–
protein interactions in metabolic reaction networks are not exclusive, thus measures have 
to be taken in order to preserve the coherence of the reaction network when converted to 
the SIF format. First, metabolites that are identified as “Coenzymes” in the Medical Subject 
Heading Classification (as referenced in the PubChem online database) were excluded. 
Then, we looked at the number of connections of each metabolite and searched the 
minimum interaction number threshold that would avoid excluding main central carbon 
metabolites. Glutamic acid has 338 interactions in our Recon3D SIF network and is the 
most connected central carbon metabolite, thus any metabolites that had more than 338 
interactions was excluded. An extensive list of Recon3D metabolites (PubChem CID) with 
their corresponding number of connections is available in Dataset EV2. Metabolic enzymes 
catalyzing multiple reactions were uniquely identified for each reaction to avoid cross-links 
between reactants and products of different reactions. Finally, exchange reactions were 
further uniquely identified according to the relevant exchanged metabolites, as to avoid 
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confusion between transformation of metabolites and simply exchanging them between 
compartments.

Finally, each network (protein–protein, allosteric metabolite–protein, and reaction 
network metabolite–protein) was combined into a single SIF table. This network is 
available in the COSMOS R package.

Meta PKN contextualization
COSMOS uses the CARNIVAL R package to perform the network optimization via an ILP 
algorithm. In brief, we try to minimize the value of an objective function that depends 
on two main factors: (i) the mismatch between the simulated values of kinases, TFs, and 
metabolites for a given causal network and the corresponding available values estimated 
from the measurements and (ii) the size of the solution network. For each run, given 
the prior knowledge network and the input and measurements, a set of constraints are 
generated to define the solution space (based on the objective function) that the ILP 
solver (IBM CPLEX in our study) explores to find an optimal solution (Melas  et al, 2015; 
preprint: Liu et al, 2019a). After a given amount of time (decided by the user), the search is 
stopped and the best solution at this point is returned by CPLEX. The solution is typically 
a pool (or family) of networks that are all equally optimal with respect to the objective 
function. Thus, CARNIVAL reports the solution as a set of edges with an associated weight 
that represent their frequency of appearance in the current network pool. CARNIVAL 
needs a set of starting and end nodes to look for paths in between. TFs, kinases, and 
phosphatases absolute normalized enrichment scores greater than 1.7 standard deviation 
were considered deregulated. Coherently, metabolites with uncorrected P-values smaller 
than 0.05 were considered deregulated. We give more information on the rational to 
choose an appropriate threshold in the Appendix Note  1. This yielded a set of 98 TFs, 
25 kinases/phosphatase, and 41 metabolites to be used as input and measurements for 
COSMOS.

Then, the PKN is pre-processed in three steps to make it easier for CARNIVAL to find a 
solution network, as detailed below.

Filtering
The generic meta PKN contained 117,065 edges. We first filtered the meta PKN to keep only 
genes that are expressed. With the main dataset presented in this paper, we considered the 
15,919 genes that remained after removing the lowly expressed genes (defined as those 
with average count under 50 across the 22 samples, based on the count distribution) as 
expressed. This reduced the size of the meta PKN from 117,065 edges to 66,749 edges.
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Reduction
At this stage, the meta PKN may contain independent network modules that do not 
include any of the actual input nodes (the significant TF, kinase/phosphatase activities, 
and metabolites). Thus, we filter out any gene that cannot be connected to any input 
node. We define a maximum given number of steps to avoid excessively long causal paths 
that would be un-plausible and thus have unclear biological relevance. We chose 8 steps 
downstream of signaling inputs for the “forward” run (signaling to metabolism) and 7 
steps downstream of metabolic inputs for the “backward” run (metabolism to signaling) 
as > 90% of the PKN could be captured in that number of steps.

Correction
We use the transcriptomics data differential gene expression analysis results to directly 
remove any edge that leads to an incoherence between a TF activity and its target 
transcript abundance change (which is a wrongly predicted transcriptional regulation 
event). This is done once before running CARNIVAL, using TF activities predicted with 
DoRothEA. Then, we do a pre-run of CARNIVAL (TFs/kinases/phosphatases -> metabolites) 
to generate a first solution network. We can subsequently use TF activities predicted by 
CARNIVAL to filter out any wrongly predicted transcriptional regulation event from the 
meta PKN (Appendix Fig S3A).

Then, we first set the deregulated kinases, phosphatases, and TFs as starting points 
and deregulated metabolites as end points (“forward” run). This direction represents 
regulations first going through the signaling and transcriptional part of the cellular 
network and stops at deregulated metabolites in the metabolic reaction network. 
However, since metabolite concentration can also influence the activity of kinases and 
TFs through allosteric regulations, we also ran CARNIVAL by setting deregulated metab-
olites as starting points and deregulated TFs, kinases, and phosphatases as end points 
(“backward” run). The “forward” run was performed with a time limit of 7,200  s and 
yielded a network of 162 edges. The “backward” run was performed with a time limit of 
21,800 s and yielded a network of 302 edges.

There was a single incoherence in the predicted sign of ARNT2  transcription factor 
(−1 in “forward” run, 1 in “backward” run) between the common part of the two resulting 
networks. We made the union of the two networks, resulting in a combined network of 
449 unique edges, while preserving the incoherent sign of ARNT2 in the corresponding 
node attributes of the network (Dataset EV5).
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Coherence between COSMOS mechanistic hypotheses and omics 
measurements
To assess the robustness of COSMOS predictions, we compared co-regulations predicted 
by the COSMOS solution network with co-regulations estimated from correlation 
between kinase, phosphatase, and TF activities. When multiple nodes are co-regulated 
by a common parent node in the COSMOS network, we can assume that the activity of 
the co-regulated nodes should be correlated. Thus, we created a correlation network 
with the TF and kinase/phosphatase activities estimated at a single sample level. To 
estimate the single sample level activities, normalized RNA counts and phosphosite 
intensities were scaled (minus mean over standard deviation) across samples. Thus, the 
value of each gene and phosphosite is now a z-score relative to an empirical distribution 
generated from the measurements across all samples. We used these z-scores as input for 
the viper algorithm to estimate kinase/phosphatases and TF activities at single sample 
level. Thus, the resulting activity scores in a sample are relative to all the other samples. 
Then, a correlation network was built using only tumor samples. Thus, the correlation 
calculated this way represents co-regulations that are supported by the available data 
in tumor. We defined the ground truth for co-regulations as over a range of absolute 
correlation coefficients between 0 and 1 with a 0.01 step. Thus, a True Positive here 
is a co-regulation predicted from the topology of the COSMOS network that also has 
a corresponding absolute correlation coefficient in tumor samples above the given 
threshold. Since defining a ground truth in such a manner can yield many false positives 
(a correlation can often be spurious), the TPR of COSMOS was always compared to a 
random baseline. This approach was repeated for COSMOS solution networks obtained 
after hiding either kinase and phosphatases or TFs.

Robustness analysis
We generated a series of subsets of the original meta PKN where increasing amounts of 
interactions are shuffled randomly. Starting from the full meta PKN, we shuffled 2, 10, 
20, 30, 40, and 50% of interactions. Each shuffling is independent from the others (the 
missing interactions are all selected randomly at each percentage case). Then, COSMOS 
was run for each meta PKN subset with the same parameter as the original run.

CPTAC ccRCC data analysis
The CPTAC ccRCC transcriptomics and phosphoproteomics datasets of the 
proteogenomics study of ccRCC (Clark et al, 2020) were obtained from the CPTAC data 
portal. We kept 20,284 phosphosites that were detected across at least 10% of the 185 
patient and healthy samples (110 and 75, respectively).

We filtered out lowly expressed genes (RPKM (Reads Per Kilobase of transcript, per 
Million mapped reads) < 170, based on the inflexion point observed in the RPKM distri-
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bution) from the transcriptomics dataset, keeping 14,921 genes for further analysis.
LIMMA was used for both phosphoproteomics and transcriptomics to perform a 

differential analysis between healthy and tumor samples.
Kinase and transcription factor activities were performed with the same parameters 

as with our own ccRCC patient samples (see footprint-based analysis). 57 kinases and 
97 TFs with absolute NES > 1.7 were used as input and measurements in the COSMOS 
pipeline. The meta PKN was reduced to keep only nodes with a maximum distance 
of 8 steps downstream of input kinases and TFs. The kinase to TF CARNIVAL run was 
performed with a time limit of 7,200 s. The TF to kinase run was performed with a time 
limit of 21,800 s. The union of the “forward” and “backward” run networks resulted in a 
final COSMOS network of 480 edges.

Breast cancer data analysis
Multi-omics experimental data for breast cancer cell lines was obtained from (Katzir et 
al, 2019). The authors performed experimental measurements on the MCF7 cell line under 
normal growth conditions, glutamine deprivation, and oligomycin supplementation.

We obtained mRNA expression quantification of 1,905 metabolic genes and filtered 
those whose mean across all conditions was at least 0.1% of the maximum observed 
expression value. The experiments were split in 2 batches, leading us to regress this 
effect out. We then fit a linear model using the LIMMA package, from which we obtained 
t-statistic values at the gene level for a given comparison pair. Finally, TF activity scores 
were estimated using regulon confidence A, B, and C with a minimum of 25 targets per 
TF with the VIPER package, using the pleiotropy correction.

Fluxomics measurements estimated from 13C-assisted metabolomics were available 
for 44 metabolic reactions included in the Recon 3D genome-scale metabolic model. We 
computed the log

2
 fold change between each pair of conditions to be analyzed.

COSMOS was then used to generate context-specific sub-networks using the 
transcription factor NES and the fluxomics log

2
 fold change as inputs and measurements. 

It was run without using the correction and reduction step, with a time limit of 7,200 s on 
the “forward” and “backward” runs.
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Abstract

Myocardial infarction is a leading cause of death worldwide1. Although advances have 
been made in acute treatment, an incomplete understanding of remodelling processes 
has limited the effectiveness of therapies to reduce late-stage mortality2. Here we 
generate an integrative high-resolution map of human cardiac remodelling after 
myocardial infarction using single-cell gene expression, chromatin accessibility and 
spatial transcriptomic profiling of multiple physiological zones at distinct time points 
in myocardium from patients with myocardial infarction and controls. Multi-modal data 
integration enabled us to evaluate cardiac cell-type compositions at increased resolution, 
yielding insights into changes of the cardiac transcriptome and epigenome through the 
identification of distinct tissue structures of injury, repair and remodelling. We identified 
and validated disease-specific cardiac cell states of major cell types and analysed them in 
their spatial context, evaluating their dependency on other cell types. Our data elucidate 
the molecular principles of human myocardial tissue organization, recapitulating a 
gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our 
study provides an integrative molecular map of human myocardial infarction, represents 
an essential reference for the field and paves the way for advanced mechanistic and 
therapeutic studies of cardiac disease.
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Main

Coronary heart disease driving acute myocardial infarction is the largest contributor 
to cardiovascular mortality, which in turn is the leading cause of death worldwide1. 
Substantial progress has been made in the acute therapy of myocardial infarction, 
focusing primarily on percutaneous coronary intervention resulting in decreased acute 
mortality. However, the morbidity and mortality caused by left ventricular cardiac 
remodelling after myocardial infarction remain unacceptably high2. Cardiac remodelling 
after myocardial infarction involves immune cell recruitment and demarcation of the 
infarcted area followed by resorption of necrotic tissue, phagocytosis, myofibroblast 
activation, scar formation and neovascularization3. Understanding the exact cellular and 
molecular mechanisms of cardiac remodelling processes from the acute ischaemic event 
to the chronic cardiac scar formation in their spatial context will be key to developing 
novel therapeutics.

Here we used a combination of single-cell gene expression, chromatin accessibility 
and spatially resolved transcriptomics to study the events of cardiac tissue reorgani-
zation and to characterize the cell-type-specific changes in gene regulation, providing 
an integrated spatial multi-omic map of cardiac remodelling after myocardial infarction. 
Our multi-omic data-driven approach, including spatial context, enables us to under-
stand how a given cell state changes based on the cells’ neighbourhood and how this 
relates to transcriptional and regulatory variations. By deconvoluting spatial transcrip-
tomics spots into cell-type abundances, we characterized cell niches occurring in 
different stages following acute myocardial infarction. We identified different cell states 
of cardiomyocytes, endothelial cells, myeloid cells and fibroblasts that are associated 
with disease progression on the basis of the integrated single-cell multi-omics data. 
Moreover, we inferred the gene-regulatory networks differentiating these cell states 
and projected this information onto specific tissue locations, thus mapping putative 
regulators controlling gene expression on specific myocardial tissue zones and disease 
stages. This enabled us to gain novel insights into the gene-regulatory programmes 
driving injury of cardiomyocytes, activated phagocytic macrophages and their relation 
to myofibroblast differentiation in cardiac tissue remodelling. Our results provide a 
comprehensive spatially resolved characterization of gene regulation of the human 
heart in homeostasis and after myocardial infarction. We have released our spatial multi-
omics data through publicly available platforms to enable users to interactively explore 
the dataset. We anticipate that this data will be a reference map for future studies and 
ultimately for the development of novel therapeutics.
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Multi-omic map of myocardial infarction
We applied an integrative single-cell genomics strategy with single-nucleus RNA 
sequencing (snRNA-seq) and single-nucleus assay for transposase-accessible chromatin 
sequencing (snATAC-seq) together with spatial transcriptomics from the same tissue 
mapping human cardiac cells in homeostasis and after myocardial infarction at 
unprecedented spatial and molecular resolution (Fig. 1a-c and Supplementary Table 1). 
We profiled a total of 31 samples from 23 individuals, including four non-transplanted 
donor hearts as controls, and samples from tissues with necrotic areas (ischaemic zone and 
border zone) and the unaffected left ventricular myocardium (remote zone) of patients 
with acute myocardial infarction (Fig. 1a). These acute myocardial infarction specimens 
were collected from heart tissues obtained at different time points after the onset of 
clinical symptoms (chest pain), before the patients received an artificial heart or a left-
ventricular assist device because of cardiogenic shock and as a bridge to transplantation 
(Supplementary Fig. 1a-c). We also analysed nine human heart specimens at later stages 
after myocardial infarction (fibrotic zone; Fig. 1b) that exhibited ischaemic heart disease 
and were available from heart transplantation recipients at the time of orthotopic heart 
transplantation.

For each cardiac sample, we obtained 10-µm cryo-sections and isolated nuclei from the 
remaining tissue directly adjacent to the cryo-section with subsequent fluorescence-
activated nuclei sorting (FANS) for snRNA-seq and snATAC-seq (Fig. 1c). After filtering 
out low-quality nuclei, we obtained a total of 191,795 nuclei from all samples for snRNA-
seq, with an average of 2,020 genes per nucleus, together with chromatin accessibility 
data from 46,086 nuclei overall with an average of 28,066 fragments per nucleus 
(Supplementary Fig. 2a,b and Supplementary Tables 2–5). After controlling for data 
quality, the spatial transcriptomics datasets contained a total of 91,517 spots (average 
of 3,389 spots per specimen and 2,001 genes per spot) (Supplementary Figs. 2c,e–g and 
3a,b). Quantification based on histology revealed an average of four nuclei per spatial 
transcriptomic spot from all slides (Supplementary Fig. 2c and Supplementary Table 6). 
Samples from the ischaemic zone had the lowest abundance of nuclei and an enriched 
expression of genes associated with cell death and the regulated necrosis pathway, 
suggesting increased necrotic cell death (Supplementary Fig. 2d). This integrated dataset 
represents, to our knowledge, the largest and most comprehensive multi-modal profiling 
of human myocardial infarction tissue including spatial information and samples at 
distinct disease progression stages. We devised an integrative data analysis approach 
spanning all three modalities of our single-cell experiments to study cardiac cell-specific 
information and cell-specific interactions in their spatial and disease progression context 
(Extended Data Fig. 1a).
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Fig. 1 
a, Study schematic. RZ, remote zone; BZ, border zone; IZ, ischaemic zone; FZ, fibrotic zone.  b, Sampling 
time points. P indicates patient number. Asterisks indicate snRNA-seq samples that were used for validation 
only (P21–P23).  c, Data modalities. GEX, gene expression.  d, UMAP of snRNA-seq data from all samples 
(n = 191,795). vCMs, ventricular cardiomyocytes.  vSMCs, vascular smooth muscle cells.  e, Average marker 
gene expression after z-score transformation. Colours along the bottom correspond to the cell types in d. f, 
Uniform manifold approximation and projection (UMAP) of snATAC-seq data for all samples (n = 46,068). g, 
Chromatin accessibility of marker genes after z-score transformation. Colours along the bottom correspond 
to the cell types in d. h–j, Characterization of spatial transcriptomics data using cell-type deconvolution (h), 
pathway activity (i) and transcription factor (TF) binding activity (j) for control (Ctrl), border zone, ischaemic 
zone and fibrotic tissue samples. Max, maximum; min, minimum.
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We established a map of major human heart cell types using the snRNA-seq and 
snATAC-seq datasets independently. First, we clustered cells on the basis of the integrated 
snRNA-seq data from all samples after batch correction (Extended Data Fig. 1b). Clusters 
were annotated with curated marker genes from the literature4,5,6 and ten major cardiac 
cell types were identified (Fig. 1d,e). We also found an additional cluster with enriched 
expression of the cell-cycle marker gene MKI67, which showed a high score of cell-cycle 
G2/M and S phases and was mainly recovered in ischaemic zone samples (Extended 
Data Fig. 1c,d). To validate the annotations, we compared the data with a recent study 
on healthy human hearts4 and an independent novel dataset of ischaemic heart samples 
(n = 3, generated during this study) and observed a high agreement and correlation in 
terms of molecular profiles and cellular composition (Extended Data Fig. 1e–g). Of note, 
the cycling cells were also captured in the independent ischaemic dataset (Extended 
Data Fig. 1f).

We next integrated and clustered the snATAC-seq data from all samples (Extended 
Data Fig. 2a). These clusters were annotated on the basis of gene chromatin accessibility 
with the same markers as for snRNA-seq. This approach identified eight major cell types, 
matching all cell types from snRNA-seq data with the exception of two rare cell types (that 
is, mast cells and adipocytes) (Fig. 1f,g). Label transfer from snRNA-seq to snATAC-seq 
indicated that the annotations between these two modalities were consistent (Extended 
Data Fig. 2b,c). This was further supported by a high correlation of cellular composition 
between snRNA-seq and snATAC-seq and the presence of the same eight cell types in 
the majority of samples (Extended Data Fig. 2d,e). To explore regulatory information 
provided by the snATAC-seq, we performed transcription factor footprinting analysis 
using cell-type-specific pseudo-bulk ATAC-seq profiles. This revealed footprinting-based 
binding activity of known transcription factors such as MEF2C (ref. 7) in cardiomyocytes, 
CEBPD)8 in myeloid cells, FOS–JUNB9 in fibroblasts and SRF10 in vascular smooth muscle 
cells (vSMCs), which correlated with the expression of their predicted target genes in 
snRNA-seq data (Extended Data Fig. 2f). Together, our integrative analysis of transcrip-
tomic and chromatin accessibility data defined a robust catalogue of cell types in the 
adult human heart across multiple modalities and samples.

Molecular mapping of cell types in space
Using these data, we first identified overrepresented biological processes for each 
major histomorphological region (control, remote zone, border zone, ischaemic zone 
and fibrotic zone) using spatially variable genes (Supplementary Table 7). We identified 
cardiac muscle contraction in remote zones and controls, with adaptive immune system 
in the border and ischaemic zones and with matrisome processes in the fibrotic zones 
(Extended Data Fig. 2g). Overall, this analysis confirmed that the spatial data clearly reflect 
typical zones of biological processes following acute human myocardial infarction.
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Since each spatial transcriptomics spot captured a group of cells, we increased 
its resolution by estimating the cell-type compositions of each spot. To this end, we 
deconvoluted each spot on the basis of the annotated snRNA-seq data from the same 
sample (Fig. 1h, Supplementary Figs. 2e–g and 3a,b, Supplementary Tables 8 and 9 and 
Methods). The estimated cell-type compositions from spatial transcriptomics of each 
patient generally agreed with their respective observed compositions in the snRNA-seq 
and snATAC-seq data (Extended Data Fig. 2h). We then estimated signalling pathway 
activities with PROGENy (Methods) for each spot from the spatial gene expression data. 
The comparison of spatially localized pathway activities with the estimated cellular 
abundance per spot enabled us to link the information on spatial cell composition to 
cellular function for each slide. For example, in areas with an abundance of fibroblasts, 
we detected increased TGFβ signalling activity, and in ischaemic regions, increased 
myeloid cell abundance occurred in areas of higher NFκB signalling activity (Fig. 1h,i).

Mapping the information obtained from the snATAC-seq data to space resulted in 
spatially resolved footprinting-based transcription factor binding activity, as exemplified 
by the previously described transcription factors associated with cardiomyocytes (for 
example, MEF2C; ref. 7), myeloid cells (for example, CEBPD8 and ATF111), fibroblasts 
(for example, FOS–JUNB9) and vSMCs (for example, SRF10) (Fig. 1j). To test the associ-
ation of genetic variants with cell types, we performed enrichment analysis based on 
cell-type-specific pseudo-bulk ATAC-seq profiles and cardiomyopathy-related single 
nucleotide polymorphisms (SNPs) obtained from genome-wide association studies12 
(GWAS). We focussed on SNPs relevant to left ventricular function, since we hypothe-
sized that these might provide the most biologically relevant information for the cellular 
composition of myocardial tissue. This analysis revealed that SNPs associated with 
stroke volume and left ventricular end-diastolic volume were enriched in endothelial 
cells (Extended Data Fig. 2i), consistent with the role of the endothelial cells in cardiac 
relaxation and dilation13. SNPs associated with left ventricular end-systolic volume 
and left ventricular ejection fraction were enriched in cardiomyocytes, supporting the 
relationship between contraction and these left ventricular measures. We also visualized 
the spatial distribution of GWAS signals by mapping SNPs associated with left ventricular 
ejection fraction to each spot from spatial transcriptomics (Extended Data Fig. 2j). In 
summary, our integrated spatial atlas enabled us to map cell-type abundance, signalling 
pathway activities, transcription factor binding activity and GWAS signals across the 
complete spectrum of cardiac tissue zonations, providing an in-depth view at tissue 
remodelling processes following myocardial infarction in humans.

Spatial organization of myocardial tissue
To explore the spatial organization of the myocardial tissue, we leveraged the spatial 
transcriptomics data. Unsupervised clustering of spots from all samples on the basis 
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Fig. 2 
a, Schematic of cell-type niche definition and UMAP of spatial transcriptomics spots based on cell-type 
compositions. b, Mapping of cell-type niches in a control and an ischaemic zone sample. Arrows show niche 
8 (left) and niche 4 (right).  c, Scaled median cell-type compositions (comp.) within each niche. Asterisks 
indicate increased composition of a cell type in a niche compared with other niches (one-sided Wilcoxon 
rank sum test, adjusted (adj.) P < 0.05). Bold asterisks and outlines show the tissue modules discussed in the 
main text.  d, Median importance of cell-type abundance in the prediction of abundances of other cell types 
within a spot. e, UMAP of all patient samples from spatial transcriptomics and visualization of abundance of 
the major cell types in myogenic (control, remote zone and border zone), ischaemic and fibrotic groups. f, 
Top left, importance of vSMC abundance in the immediate neighbourhood for prediction of fibroblast (Fib) 
abundance in myogenic, ischaemic and fibrotic groups (adj. P-value using a two-sided Wilcoxon rank-sum 
test is shown). In all box plots in this Article, the centre line corresponds to the median, the bottom and 
top hinges delineate the first and third quartiles, respectively, the top whisker extends from the hinge to 
the largest value no further than 1.5× the inter-quartile range (IQR) from the hinge and the bottom whisker 
extends from the hinge to the smallest value at most 1.5× IQR from the hinge; data beyond the end of the 
whiskers are outlying points and are plotted individually. Myogenic group:  n = 14, ischaemic group:  n = 9, 
fibrotic group: n = 5. Deconvoluted vSMCs and fibroblast abundance in a myogenic sample (top right) and 
in an ischaemic sample (bottom). For details on visualization, statistics and reproducibility, see Methods. NS, 
not significant. Adipo, adipocytes; CM, cardiomyocytes; PC, pericytes; Endo, endothelial cells.

of their cell-type compositions identified nine clusters, which we defined as major cell-
type niches (Fig. 2a and Extended Data Fig. 3a–d). We hypothesized that these niches 
represent potential structural building blocks that are shared between different slides 
and could facilitate comparisons between subjects. Visualization of these niches in 
space revealed that some niches aligned closely with the underlying sample condition; 
for example, cell-type niche 8 was equally distributed across a control slide, whereas 
cell-type niche 5 localized to distinct regions on the ischaemic slide (Fig. 2b). We then 
tested the overrepresentation of the annotated cell types derived from snRNA-seq in the 
cell-type niches. We observed 4 myogenic cell-type niches (1, 7, 8 and 9), which were 
enriched with cardiomyocytes, endothelial cells, and pericytes (Fig. 2c); an inflammatory 
cell-type niche (niche 5); and a fibrotic cell-type niche (niche 4) containing fibroblasts, 
myeloid and lymphoid cells. The fibrotic cell-type niche (4) contained a higher proportion 
of fibroblasts, whereas the inflammatory cell-type niche (5) contained more myeloid 
and lymphoid cells (Fig. 2c). Finally, we observed niches associated with rare cell types 
of the myocardium, such as vSMCs (cell-type niches 3 and 6), adipocytes, lymphoid 
and cycling cells (cell-type niche 2) (Fig. 2c and Extended Data Fig. 3d). Our integrated 
results provide a comprehensive description of cellular colocalization events, enabling 
downstream molecular comparisons within this atlas across all tissue zonations. We next 
tested whether the abundances of major cell types within spots could be predicted by 
their spatial context described by the cell-type compositions of their neighbourhood. We 
evaluated three different neighbourhood area sizes using MISTy: (1) the importance of cell-
type abundances within a spot (colocalization) (Fig. 2d), (2) in the local neighbourhood 
(radius of 1 spot), and (3) in an extended neighbourhood that expanded to a radius of 15 
spots. We observed that endothelial cells were the most predictive of the abundance of 
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vSMCs, pericytes, adipocytes and cardiomyocytes within all spots, probably reflecting 
dependencies between cell types of the vasculature (Fig. 2d). Lymphoid and myeloid 
cells showed strong dependencies with each other in line with zones of immune cell 
infiltration and inflammation—similarly captured by cell-type niche 5 (Fig. 2d). Notably, 
we observed strong dependencies between myeloid cells and fibroblasts, which were 
strongly co-enriched in niche 4 (Fig. 2d and Extended Data Fig. 3e), in line with a known 
key role of macrophages in fibroblast activation14 and fibroblasts in macrophage 
attraction15. Between immediate and extended neighbouring spots (Extended Data Fig. 
3f–h), we observed stronger dependencies between cells associated with the cardiac 
vasculature (vSMCs, endothelial cells, pericytes and fibroblasts) indicating that the 
myocardial vascular network dominates cardiac tissue structural organization.

To link tissue organization to function, we analysed spatial dependencies between 
signalling pathways and cell types. Modelled importance of colocalized pathways 
captured relationships between PI3K and p53 signalling (Extended Data Fig. 4a–e), 
which showed a mutually exclusive spatial distribution (Extended Data Fig. 4c). Both 
pathways were related to the abundance of cardiomyocytes (Extended Data Fig. 4a). 
PI3K signalling in cardiomyocytes controls the hypertrophic response to preserve cardiac 
functions16, whereas p53 is known to act as a master regulator in cardiac homeostasis17. 
Spatial segregation of these cardiomyocyte-related pathways points towards functional 
cardiomyocyte heterogeneity. We observed colocalized and extended neighbourhood 
relationships of known key pathways in fibrosis including TGFβ and NFκB predicted 
by fibroblasts, and JAK–STAT and NFκB predicted by immune cells (Extended Data 
Fig. 4a–e). Overall, cardiomyocytes were the best predictor cell types of the activities 
of the estimated pathways. Hypoxia and WNT pathways showed a colocalization to 
cardiomyocytes in ischaemic specimens (Extended Data Fig. 4b–e), highly consistent 
with the cardiomyocyte differentiation events occurring after myocardial infarction18. 
Our results compiled principles of tissue organization of the human heart that relate to 
coordinated cellular processes and provide a basis for comparative analysis.

Structural variation of cardiac tissue
To identify general tissue differences during remodelling after myocardial infarction, we 
compared the samples of distinct histomorphological regions, time points and individuals 
at the molecular and compositional level. We defined three major sample groups: 
myogenic-enriched (including control, border zone and remote zone), fibrotic-enriched 
(including all fibrotic zone samples, except one) and ischaemic-enriched (including all 
ischaemic zone samples) samples. Hierarchical clustering of their pseudo-bulk spatial 
transcriptomics supported this grouping and was displayed as a UMAP embedding (Fig. 
2e and Extended Data Fig. 4f). Co-clustering of control, border zone and remote zone 
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samples can be explained by the large abundance of functional myocardial tissue within 
these specimens (Fig. 2e). Since the pseudo-bulk profile of each spatial transcriptomic 
dataset combines information of multiple cell types, we next tested how differences in 
cellular composition determined by all modalities (that is, snRNA-seq, snATAC-seq and 
spatial transcriptomics) are associated with these three groups. Ischaemic-enriched 
samples showed a larger proportion of myeloid, lymphoid and cycling cells, with the 
lowest proportions of cardiomyocytes, representing cellular compositional changes 
expected after myocardial infarction. By contrast, fibroblasts and vSMCs were enriched in 
fibrotic-enriched samples (Extended Data Fig. 4g). These results indicate that the spatial 
transcriptomic data align with major histomorphological sample annotation and capture 
compositional hallmarks following myocardial infarction across our datasets.

We then analysed whether the cell-type compositional changes between sample 
groups were also reflected as changes in the spatial dependencies between the major 
cell types in spatial transcriptomics. To this end, we contrasted the importance, previ-
ously computed using MISTy, of each major cell type in predicting the others in the 
three different neighbourhood area sizes (colocalization, immediate and extended 
neighbourhood) between the three different sample groups (Extended Data Fig. 4h). We 
observed an increased spatial dependency in the immediate neighbourhood between 
lymphoid and myeloid cells in ischaemic samples compared with myogenic-enriched 
samples, reflecting the expected role that immune cell interactions have in cardiac 
repair following myocardial infarction (Extended Data Fig. 4i). Moreover, an increased 
colocalization of cardiomyocytes and pericytes in fibrotic-enriched samples revealed an 
exclusion of pericytes from scar tissue areas (Extended Data Fig. 4j). Similarly, the distri-
bution of fibroblasts was better predicted by the presence of vSMCs in the immediate 
neighbourhood only in myogenic-enriched samples, where fibroblasts surrounded the 
vasculature, in contrast to ischaemic and fibrotic tissue specimens, where more extensive 
tissue scarring processes were captured (Fig. 2f).

We next compared compositions of cell-type niches between groups and observed 
differences in six out of nine cell-type niches (Extended Data Fig. 4k). Cell-type niches 
8 and 9 (Extended Data Fig. 4k–l), mostly representing cardiac muscle structures, were 
more present in myogenic- and fibrotic-enriched samples compared with ischaemic-en-
riched samples, whereas cell-type niche 7, enriched in cardiomyocytes and pericytes 
(Extended Data Fig. 4k), was reduced in fibrotic-enriched samples. Niche 4, mainly 
associated with fibrotic structures (more fibroblasts than myeloid cells and thus termed 
fibrotic niche), was observed in higher proportions in fibrotic-enriched samples, whereas 
niche 5 (more myeloid cells than fibroblasts and thus termed inflammatory niche) was 
mainly present in ischaemic-enriched samples (Extended Data Fig. 4k). In summary, the 
major cell-type niches enabled us to categorize and compare interindividual spatial 
differences. Overall, this demonstrates the importance of cardiac vasculature in defining 
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the overall myocardial architecture and the unique spatial dependencies of fibroblasts 
and myeloid cells, which facilitates gaining molecular insights of disease-specific spatial 
tissue remodelling.

Molecular variation following infarction
To study the molecular differences between similar tissue structures in an unbiased 
manner across samples, we generated a set of molecular niches by clustering of spots on 
the basis of their gene expression (Fig. 3a,b and Extended Data Fig. 5a–d). We identified 
molecular niches associated with inflammatory and fibrotic processes (molecular niches 
3, 6 and 9), vSMCs (molecular niche 11) and myogenic-enriched regions (molecular niches 
1, 2, 4, 5 and 12) (Fig. 3c). The molecular niches enriched in cardiomyocytes were depleted 
in ischaemic-enriched samples, whereas the fibrotic- and inflammatory-enriched 
molecular niches were depleted in myogenic-enriched samples (Fig. 3d and Extended 
Data Fig. 5e,f). The vSMC-enriched molecular niche 11 had a more distinct cell-type 
marker gene expression of vSMCs (MYH11) compared with the cell-type defined niche 6 
(Fig. 3b versus Extended Data Fig. 3d).

Of note, we observed molecular niches that enabled us to differentiate border zone, 
remote zone and control samples (Extended Data Fig. 5g), which were indistinguishable 
using the major cell-type niches (Extended Data Fig. 4m). Molecular niche 3, enriched 
in fibroblasts and immune cells, was more present in remote zones and border zones 
compared with control samples. Moreover, we observed differences in the proportions of 
the molecular niches 1, 2 and 4 among border zone, remote zone and controls (Extended 
Data Fig. 5g). These three molecular niches were enriched mainly in cardiomyocytes (Fig. 
3c), but with a distinct molecular profile: among the top 5 upregulated genes of niche 
2 was XIRP1, which encodes an intercalated-disc ion-channel-interacting protein and 
RRAD, which encodes a GTPase known to regulate L-type Ca2+ channels and contractile 
functions of the heart19; molecular niche 4 was enriched for SLC8A1 (also known as 
NCX1), which encodes the Na+/Ca2+ exchanger that is the major regulator of the Ca2+ 
efflux in cardiomyocytes and is critical to maintain Ca2+ homeostasis during excitation–

Fig. 3 
a, Schematic of molecular niche definition  and  UMAP of spatial transcriptomics  spots based on gene 
expression.  b, Spatial mapping of molecular niches. Arrows highlight molecular niche 11 (enriched 
in  MYH11+  vSMCs) surrounded by molecular niche 3 (enriched in  PDGFRA+  fibroblasts).  c, Scaled median 
cell-type compositions within each molecular niche. Asterisks indicate increased composition of a cell type 
in a niche compared with other niches (one-sided Wilcoxon rank-sum test, adj.  P < 0.05). d, Distribution of 
molecular niches in three different patient groups. Note the differential abundance of molecular niches 
1 (red) and 6 (yellow). e,f, Haematoxylin and eosin (H&E) staining and visualization of molecular niches 1, 2 
and 4 and gene expression (MYBPC3 and ANKRD2) of a control (e) and a border zone (f). Scale bars, 10 mm. For 
details on visualization, statistics and reproducibility, see Methods.
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contraction coupling20, and MPC1, which encodes mitochondrial pyruvate carrier, a 
known mitochondrial metabolic regulator of heart function21 (Extended Data Fig. 5h). 
Overall, molecular niche 1 was enriched in control and remote zone samples and niche 2 
was enriched in the damaged tissue areas in border zone samples (Fig. 3e,f and Extended 
Data Fig. 5g). We observed slight changes in enrichment of molecular niches 2 and 4, 
and a depletion of niche 1 in border zones compared with controls (Extended Data Fig. 
5g,i,j), suggesting that differences in cardiomyocyte phenotypes might also be present 
between these groups. In summary, the comparison of molecular niches pointed towards 
subtle changes between the remote myocardium and controls, and expected differences 
between border zone and both controls and remote zone that were not detectable in 
the cell-type niche comparison. Overall, this suggested the existence of functional 
differences between cardiomyocyte states in our data.
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Fig. 4 
a, Sub-clustering of cardiomyocytes. b, Gene expression of ANKRD1 and NPPB. c, Left, smFISH staining of vCM3 
marker genes. Scale bar, 50 µm. Right, quantification of NPPB and ANKRD1 signal relative to the TNNT2 signal. 
Two-sided Wilcoxon rank-sum test (control donors: n = 7, patients with myocardial infarction (MI): n = 10).  d, 
Proportion of stressed vCM3 cells. Wilcoxon rank-sum test (unpaired, two-sided; myogenic: n = 13 myogenic, 
ischaemic: n = 7, fibrotic: n = 4). e–g, Expression of ANKRD1 and NPPB (e), TGFβ and hypoxia signalling activities 
(f) and expression of vCM-state marker genes (g) in a border zone sample. h, eGRN analysis including vCM1, 
vCM2 and vCM3. Each node represents a transcription factor (regulator) or a gene (target).  i, Transcription 
factor activity and expression over pseudotime. Norm., normalized.  j, Expression of transcription factor 
target genes in the border zone sample, as in e. k,l, Mean importance of the abundance of major cell types 
within a spot (k) and the local neighbourhood (within a 5-spot radius) (l) in the prediction of vCM3 in spatial 
transcriptomics.  m, Importance of vSMC abundance predict vCM3 in myogenic, ischaemic and fibrotic 
groups within a spot (adj.  P-value, two-sided Wilcoxon rank-sum test; myogenic:  n = 9, ischaemic:  n = 7, 
fibrotic: n = 4). n, Deconvoluted abundance of vSMCs or fibroblasts and vCM3 state scores in a border zone 
(left) and a control human heart (right). o, Importance of myeloid cell abundance in the local neighbourhood 
for predicting vCM3 in control and remote zone samples (two-sided t-test; controls: n = 3, remote zones: n = 3). 
For details on visualization, statistics and reproducibility, see Methods.

Disease-specific cardiomyocyte states
To further investigate distinct cardiomyocyte states, we aimed to understand the molecular 
heterogeneity of cardiomyocytes after myocardial infarction. We co-embedded the 
snRNA-seq and snATAC-seq data from cardiomyocytes into a common low-dimensional 
space and clustered the cells (Extended Data Fig. 6a). This uncovered five cell states of 
ventricular cardiomyocytes (vCM1–5), spanning multiple samples and modalities (Fig. 4a 
and Supplementary Table 10). Differential gene expression analysis revealed a significant 
upregulation of ANKRD1 in both vCM2 and vCM3, whereas NPPB showed a distinct 
upregulation and increased chromatin accessibility in vCM3 (Fig. 4b and Extended 
Data Fig. 6b,c). We validated this upregulation by single-molecule fluorescence in situ 
hybridization (smFISH) in an independent patient cohort (Fig. 4c and Extended Data Fig. 
6d). Both NPPB and ANKRD1 have been reported to be upregulated in the border zone 
after myocardial infarction in mice22. vCM2 additionally showed enhanced expression of 
MYH7 (Extended Data Fig. 6b), a cardiomyocyte-associated stress gene that encodes the 
β-myosin heavy chain23. Thus, we annotated the vCM2-state as ‘pre-stressed’. In addition, 
we observed a higher correlation between ion-channel-related genes and vCM1 marker 
genes compared with ‘stressed’ vCM3 marker genes in spatial transcriptomics, which 
further highlights the functional differences between these two cardiomyocyte states 
(Extended Data Fig. 6e). Accordingly, we annotated the vCM3 state as stressed. Moreover, 
when comparing the differential expression of individual genes belonging to these ion-
channel-related gene sets in snRNA-seq data, we observed mostly upregulations in 
vCM1 compared with vCM3 (Extended Data Fig. 6f,g). Cellular composition comparison 
between sample groups revealed that vCM1 was associated with myogenic-enriched 
samples and vCM3 was significantly associated with ischaemic-enriched samples. This 
was validated in an independent cohort using in situ hybridization, suggesting that these 
cardiomyocyte states represent distinct cellular stress states within the acute myocardial 
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infarction phase (that is, vCM1, ‘non-stressed’; vCM2, ‘pre-stressed’; and vCM3, ‘stressed’) 
(Fig. 4c,d and Extended Data Fig. 6h,i).

Next, we checked vCM marker genes in spatial transcriptomics in border zone samples, 
since spatial remodelling of this area is inextricably linked to the recovery of cardiac 
function. Interestingly, despite homogenous H&E staining and unique molecular 
identifier (UMI) distribution across spots (Supplementary Fig. 2g), we observed 
extensively heterogeneous spatial gene expression patterns of ANKRD1 and NPPB (Fig. 
4e). Pathway analysis of the spatial gene expression data indicated an increased TGFβ 
signalling activity within the injured area (lower right), but a homogeneous distribution 
of hypoxia pathway activity (Fig. 4f). Mapping of cell states to space in a border zone 
sample revealed that vCM1 were solely located in the top left uninjured corner, vCM2 
were located in the middle–top area, serving as a transition zone from injured towards 
remote myocardium, and vCM3 were primarily located below the transition zone within 
the injured area (Fig. 4g). Of note, such a spatially distributed pattern was also observed 
in another border zone sample, indicative of a similar remodelling process (Extended 
Data Fig. 6j).

Variability of cardiomyocyte states
To infer an enhancer-based gene-regulatory network (eGRN), we leveraged our multi-
omics data to further investigate molecular mechanisms differentiating the relevant 
cardiomyocyte states (that is, vCM1–vCM3) (Methods and Supplementary Table 11). To 
this end, we paired the cells between snATAC-seq and snRNA-seq data and studied gene-
regulatory changes along the cellular continuum from vCM1 to vCM3 (Extended Data 
Fig. 7a). Next, we estimated an enhancer-mediated transcription factor–target network 
by considering transcription factor activity (from snATAC-seq), expression of transcription 
factor and target genes (from snRNA-seq), and motif-supported peak-to-gene links 
(Extended Data Fig. 7b–d). Clustering of these transcription factors to the target network 
revealed three major modules, with each corresponding to a distinct cardiomyocyte 
state (Extended Data Fig. 7e).

We next used network analysis to visualize and detect major transcription factors 
(Fig. 4h). We identified the mineralocorticoid receptor (NR3C2), a major target of therapy 
for common heart failure, as a major regulator of the vCM1 state (Fig. 4h). Decreased 
NR3C2 expression has been associated with the development of severe heart failure and 
cardiac fibrosis24, and we observed decreased transcription factor binding activity and 
gene expression along the pseudotime of vCM1 to vCM3 differentiation (Fig 4i). Target 
genes of NR3C2 include several ion channel genes (such as SLC8A1), which also showed 
decreased gene expression along the pseudotime axis (Fig. 4i). Notably, these target 
genes were also differentially expressed in cardiomyocyte-enriched molecular niches 
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(Fig. 3e,f and Extended Data Fig. 5h) and aligned spatially in the border zone with the 
vCM1 state (Fig. 4j). Notably, we also observed transcription factors (TBX3 and MEF2D) 
that were associated with pre-stressed stages of cardiomyocyte differentiation (Fig. 
4h). Our analysis suggests that MEF2D, a cardiomyocyte factor controlling pacemaker 
function25, regulates the expression of the sarcomere protein MYBPC3 (Fig. 4i). MYBPC3, 
in turn, has been reported to regulate cardiomyocyte proliferation postnatally26. Of note, 
we identified MYBPC3 independently in our spatial data as being enriched in molecular 
niche 1 (Fig. 3e and Extended Data Fig. 5h).

We also identified ANKRD1, a mediator of cardiomyocyte response to stress27, as a 
target of MEF2D, suggesting a key regulatory role of MEF2D in the transition from vCM1 to 
vCM327 (Extended Data Fig. 7f). For vCM3 (stressed cardiomyocytes), we identified ATF3 
as a regulator of the GTPase and Ca2+ regulator gene RRAD (Fig. 4h). We independently 
identified RRAD in molecular niche 2 (Extended Data Fig. 5h), which supports its relevance 
as a spatially differentially expressed gene of a distinct cardiomyocyte state, especially 
in border zone samples (Fig. 4i). We additionally identified the transcriptional regulator 
JDP2—which has a function in preventing cardiomyocyte hypertrophy and cell death28—
as an important regulator of the vCM3 cardiomyocyte state, with TGFB2 as one of its 
target genes (Extended Data Fig. 7g,h). In summary, our cardiomyocyte states and major 
transcription factor regulators identified from the integrated snRNA-seq and snATAC-seq 
data reflect expression patterns associated with molecular niches supporting spatial 
changes of cardiomyocyte states during remodelling.

We next estimated the cell dependencies of the stressed cardiomyocyte state 
vCM3 with other cell types within each spatial spot and its local neighbourhood 
(radius of five spots) between sample groups (Fig. 4k–o). We observed that there was 
an increased importance of vSMCs in predicting vCM3 within a spot in myogenic and 
ischaemic samples (Fig. 4k), whereas fibroblasts and myeloid cells had a larger role in 
fibrotic samples (Fig. 4k). The local neighbourhood modelling of vCM3 revealed that 
the abundance of fibroblasts better explained vCM3 in myogenic-enriched samples 
compared with fibrotic samples (Fig. 4l and Extended Data Fig. 7i). To gain further 
insight, we visualized the dependencies of vSMCs and fibroblasts on vCM3 in myogen-
ic-enriched samples and observed that their colocalization occurred in the perivascular 
niches (Fig. 4n). Overall, this demonstrates that the stressed cardiomyocyte state vCM3 
occurs in the perivascular niche of larger blood vessels, highlighting the interaction 
of mesenchymal cells29 of the perivascular niche with stressed cardiomyocytes in this 
tissue area. Furthermore, we noticed that when comparing remote zone with control 
samples, stressed vCM3s are best predicted by myeloid cells (Fig. 4o). This underlines 
the importance of immune–cardiomyocyte interactions that could additionally explain 
the increased arrhythmia susceptibility in the remote regions of the post-infarct heart, 
since it has been shown that cardiac macrophages influence normal and aberrant 
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cardiac conduction30. Our results showed that the stressed-cardiomyocyte vCM3 can be 
found in distinct spatial cell-type neighbourhoods enriched by different compositions of 
vSMCs, fibroblasts, adipocytes or myeloid cells.

Cardiac endothelial cell heterogeneity
Co-embedding of snRNA- and snATAC-seq data identified five subtypes of endothelial 
cells from all major vascular beds, namely capillary endothelial cells, arterial endothelial 
cells, venous endothelial cells, lymphatic and endocardial endothelial cells (Fig. 5a, 
Extended Data Fig. 8a–d, and Supplementary Table 12). Subtype-based pseudo-bulk 
ATAC-seq signals also revealed distinct chromatin accessibility of these marker genes 
(Extended Data Fig. 8c). Our analysis suggested POSTN as a characteristic marker for 
endocardial endothelial cells, which we validated using smFISH (Extended Data Fig. 
8e). Analysis of cell proportions among the myogenic-enriched, ischaemic-enriched 
and fibrotic-enriched samples revealed a reduction of capillary endothelial cells in the 
ischaemic samples associated with a concordant increase in venous endothelial cells (Fig. 
5b and Extended Data Fig. 8f,g). Furthermore, we observed that lymphatic endothelial 
cells were overall less abundant than the other populations, as expected, but were 
significantly increased in the ischaemic zone, suggesting an increased abundance of 
lymphatics modulating the immune response following cardiac injury31 (Fig. 5b).

We modelled the association of the different endothelial cell subtypes with the 
abundances of the other major cell types in spatial transcriptomics. We observed that 
the markers of arterial endothelial cells were best predicted by vSMCs within a spot and 
in the local neighbourhood (radius of five spots) reflecting the anatomy of arteries and 
arterioles in the heart (Fig. 5c,d and Extended Data Fig. 8h). Moreover, the expression of 
markers of capillary endothelial cells were best predicted by the presence of pericytes in 
the tissue, in line with the known presence and role of pericytes in direct contact with 
capillary endothelium32 (Extended Data Fig. 8i). The other endothelial subtypes were 
mainly predicted by the presence of fibroblasts within a spot and in the local neigh-
bourhood (Extended Data Fig. 8h). Additionally, we observed that the abundance of 
myeloid cells correlated with the expression of markers of lymphatic endothelial cells 
(Extended Data Fig. 8h). Focusing on molecular niche 10, which contained the highest 
cell proportion of endothelial cells and additionally pericytes and mast cells (Extended 
Data Fig. 8j), we observed a significant enrichment of capillary endothelial cells 
(Extended Data Fig. 8k). Pathway analysis revealed a significantly higher hypoxia and 
TGFβ signalling activity in ischaemic and in fibrotic samples, underlining the importance 
of these processes in chronic fibrotic cardiac remodelling processes (Extended Data Fig. 
8l). Pathways important for endothelial signalling in homeostasis such as PI3K and TRAIL 
showed a reduction in the fibrotic and ischaemic groups, respectively, highlighting 
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Fig. 5
a, Sub-clusters of human endothelial (endo) cells using the integrated snRNA-seq and snATAC-seq data. b, 
Comparison of capillary endothelial cells and lymphatic endothelial cell proportion between donor 
and patient groups. Wilcoxon rank-sum test (unpaired, two-sided; myogenic:  n = 13, ischaemic:  n = 7, 
fibrotic: n = 4). c, Median importance of the abundance of major cell types within a spot (left) and the local 
neighbourhood (effective radius of 5 spots) (right) in the prediction of endothelial cell-state scores in spatial 
transcriptomics. d, Spatial distribution of the abundance of vSMCs and the state score of arterial endothelial 
cells in an ischaemic (left) and control (right) sample. Arrows point at colocalization events. For details on 
visualization, statistics and reproducibility, see Methods.

further the differential endothelial cell signalling changes. Gene set enrichment 
analysis further revealed an altered metabolism (for example, fatty acid metabolism 
and oxidative phosphorylation) of this endothelial cell niche in diseased samples which 
was further associated with an increased inflammatory response via the TNF and NFκB 
pathways and increased apoptosis signalling33 (Extended Data Fig. 8m). In summary, 
we resolved all major endothelial cells states, localized them in space and described 
their spatial dependencies. Further, we identified a spatial niche enriched in capillary 
endothelial cells with complex metabolic and signalling changes.
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Cardiac myofibroblast differentiation
To dissect molecular and cellular mechanisms of fibrogenesis in the human heart, we 
clustered all fibroblasts using the integrated snRNA-seq and snATAC-seq data and 
identified four sub-clusters (Fib1–4) (Fig. 6a, Extended Data Fig. 9a and Supplementary 
Table 13). Fib1 was marked by SCARA5, which we recently reported as a marker for 
myofibroblast progenitors in the human kidney34. Fib2 was marked by POSTN, COL1A1 
and FN1, which, together with the fact that this population expresses most extracellular 
matrix (ECM)-related genes, suggests that Fib2 indeed comprises terminally differentiated 
myofibroblasts (Fig 6b and Extended Data Fig. 9a–c). Notably, Fib2 also exhibited 
an upregulation of RUNX1, which we recently reported as being involved in kidney 
myofibroblast differentiation35. Overexpression of RUNX1 in human heart PDGFRβ-
expressing cells led to increased myofibroblast differentiation and matrix expression 
(Extended Data Fig. 9d). We validated the presence of high SCARA5 expression in 
fibroblasts by co-staining with the pan-fibroblast and myofibroblast marker COL15A1 
as well as POSTN and COL1A1 in human heart tissues, and demonstrated that POSTN is 
significantly enriched in COL1A1+ cells compared with SCARA5+ cells (Extended Data 
Fig. 9e). Visualization of these markers in our spatial transcriptomics dataset suggested 
that Fib1 and Fib2 were enriched in mutually exclusive regions of the heart following 
injury (Fig. 6c and Extended Data Fig. 9f). Additionally, we observed that Fib1 comprised 
the highest proportion in myogenic-enriched samples, whereas Fib2 (myofibroblasts) 
were significantly enriched and Fib3 slightly reduced in ischaemic samples (Fig. 6d and 
Extended Data Fig. 9 g,h).

To precisely understand differentiation trajectories of fibroblasts and transfer this 
knowledge to the human data, we performed inducible lineage tracing in mice using 
the pan-mesenchymal Cre driver Pdgfrb-CreER (crossed to a R26-tdTomato reporter) 
combined with scRNA-seq at different time points following myocardial infarction 
(Extended Data Fig. 9i–l). We integrated and annotated the cells by label transfer (Fib1–4) 
from human to mouse (Extended Data Fig. 9m,n). We observed an overall increase of the 
Fib2 population and collagens and ECM genes over time, whereas the Fib1 proportion was 
decreased, pointing towards a differentiation trajectory from SCARA5+ fibroblasts (Fib1) 
to myofibroblasts (Fib2) in mice (Extended Data Fig. 9o,p). Based on these observations, 
we inferred a pseudotime trajectory from Fib1 (SCARA5+) to Fib2 (myofibroblast) in the 
human samples, which was further supported by an increased enrichment of the ECM 
score (Fig. 6e,f) and of ECM biological gene ontology processes consistent with fibroblast-
to-myofibroblast differentiation (Extended Data Fig. 9q).

To understand the regulatory mechanisms of these stromal cell differentiation 
processes we inferred a fibroblast eGRN (Fig. 6g, Extended Data Fig. 10a,b and Supple-
mentary Table 14). Clustering resolved two eGRN modules that each corresponded to 
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Fig. 6
a, UMAP of human cardiac fibroblasts (integrated snRNA-seq and snATAC-seq data).  b, Expression 
of  SCARA5,  COL1A1,  POSTN  and  FN1.  c, Visualization of the markers in spatial transcriptomics data.  d, 
Comparison of Fib1 and Fib2 compositions. Wilcoxon rank-sum test (unpaired, two-sided; myogenic: n = 13; 
ischaemic: n = 8, fibrotic: n = 5). e, Diffusion map of Fib1 and Fib2 populations. Colours refer to pseudotime 
points.  f, Same as  e, with colours referring to ECM score.  g, eGRN analysis, including Fib1 and Fib2. Each 
node represents a transcription factor (regulator) or gene (target). Targets are coloured by clustering 
results and regulators are coloured by pseudotime with maximum transcription factor activity. The size of 
regulator nodes represents centrality. h, Transcription factor activity and expression over pseudotime and 
their corresponding target gene over pseudotime. i, Visualization of KLF4 and TEAD3 target genes and TGFβ 
pathway activity in a remote zone (left) and ischaemic zone (right) sample. j, UMAP of sub-clusters of human 
cardiac myeloid cells using the integrated snRNA-seq and snATAC-seq data. cDC, classical dendritic cell; 
MQ, macrophage.  k, Gene expression of  LYVE1,  CCL18,  ZBTB46  and  SPP1.  l, Median importance of myeloid 
cell states in the local neighbourhood in the prediction of fibroblast cell states.  m, Cell-state scores of 
myofibroblasts (Fib2) and  SPP1+  MQs in a remote zone sample. Arrows point to regions where there is an 
observed colocalization. n, In situ staining of CD163, POSTN and SPP1 on human cardiac myocardial infarction 
tissue. Arrows indicate  CD163+SPP1+  macrophages near myofibroblasts. Scale: 10 µm. Quantification 
of SPP1+ macrophages relative to CD163+ macrophages from the in situ hybridization images (adj. P-value 
from a two-sided Wilcoxon rank-sum test, n = 8 control group, n = 6 fibrotic group, n = 12 ischaemic group). 
For details on visualization, statistics and reproducibility, see Methods.
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a distinct fibroblast state (Extended Data Fig. 10c) and identified potential regulators 
of myofibroblast differentiation (Fig. 6g). Among the transcription factors regulating 
the Fib1 module was KLF4, which regulates diverse cellular functions including cellular 
growth arrest, and is also one of the original reprogramming factors of induced pluri-
potent stem cells. Our network analysis highlighted the role of KLF4 in regulating SCARA5 
and PCOLCE2 expression in Fib1, and it also targets MBLN1, an important regulator of 
cardiac wound healing36 and fibroblast-to-myofibroblast transition37. Concordantly, 
we observed reduced KLF4 binding activity and reduced SCARA5 expression in our 
pseudotime analysis (Fig. 6h), highlighting the role of KLF4 as a putative inhibitor of 
fibroblast activation. Among the transcription factors identified in the Fib2 module were 
TEAD3 (an effector of the Hippo pathway), GLI2 (in the hedgehog pathway) and RUNX2, 
which have been previously identified as regulators of myofibroblast differentiation38 
(Fig. 6h and Extended Data Fig. 10d,e). Our network analysis revealed that both TEAD3 
and GLI2 regulate bona fide myofibroblast target genes including COL1A1, TGFB1 and 
POSTN. Additionally, our network analysis identified the key anti-angiogenic regulator 
THBS139 as a direct target of TEAD3 and the recently identified cardiac fibrosis regulator 
MEOX1 in human cardiac myofibroblasts40. We next visualized the expression of the KLF4 
and TEAD3 target genes in spatial transcriptomics slides and observed gradients and 
mutually exclusive spatial expression in defined cardiac regions of fibrotic responses, 
highlighting their differential spatial activity in the human heart (Fig. 6i and Extended 
Data Fig. 10d).

Fibro-myeloid spatial relations
Myeloid-derived cells have been reported to have key roles in cardiac remodelling 
following myocardial infarction41. To understand their heterogeneity, we sub-clustered 
them using the multi-omic data and identified five sub-clusters across all myocardial 
infarction samples (Fig. 6j,k, Extended Data Fig. 11a–d and Supplementary Table 15). 
We observed that two clusters showed expression of resident myeloid cell markers42 
(LYVE- and FOLR-expressing myeloid clusters), as well as a CCL18- and SPP1-expressing 
macrophage cluster and a monocyte and classical dendritic cell cluster (Fig. 6j and 
Extended Data Fig. 11b–d). We used an independent snRNA-seq dataset of three 
acute human myocardial infarction samples as reference for validation and found high 
concordance in terms of myeloid cell populations based on marker gene expression 
(Extended Data Fig. 11e). Cell proportion analysis revealed an increased abundance of 
a macrophage population defined by SPP1 expression in the ischaemic sample group, 
whereas CCL18+ macrophages were increased in fibrotic samples (Extended Data Fig. 
11f). SPP1+ macrophages have been described in pulmonary fibrosis and COVID-1943,44, 
and recent work suggests a role of these cells in cardiac tissue remodelling in zebrafish45. 
We observed an upregulation of CD36 in the SPP1+ myeloid population; CD36 encodes 
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a macrophage receptor known to be important for macrophage phagocytosis, binding 
to apoptotic and dead neutrophils and having a unique role in cardiac remodelling 
following myocardial infarction46 (Extended Data Fig. 11b). Indeed, smFISH staining of 
SPP1+ macrophages suggests increased phagocytic activity, since multiple intracellular 
vacuoles could be observed (Extended Data Fig. 11g,h). Quantification of multiplex 
in situ hybridization of SPP1, TREM2 and CCR2 in human myocardial infarction tissue 
specimens revealed that approximately half of all TREM2-expressing myeloid cells also 
express SPP1, whereas CCR2+ myeloid cells where less frequent (Extended Data Fig. 11i). 
Cell-dependency analyses of myeloid cell states revealed a close interaction for two 
identified LYVE+ resident macrophage populations, whereas the disease-enriched SPP1+ 
macrophages predicted the presence of CCL18+ macrophages (Extended Data Fig. 11j,k).

Following acute myocardial infarction, an inflammatory response is triggered, 
resulting in tissue remodelling that can lead to heart failure47. It has been demonstrated 
that SPP1 itself can activate fibroblasts in vitro48, highlighting the fibro-myeloid signalling 
interaction as a crucial driver of the cardiac remodelling process. To further gain insights 
about the spatial dependencies of the myeloid and fibroblasts states, we modelled their 
marker expression using the spatial transcriptomics data. We observed that the presence 
of SPP1+ macrophages better predicted all fibroblasts states compared to other myeloid 
cell states, with a higher importance for myofibroblasts within a spot and in the local 
neighbourhood (Fig. 6l and Extended Data Fig. 12a). Myofibroblast marker expression 
aligned with a gradient of expression of the markers of SPP1+ macrophages (Fig. 6m). 
This pattern was also recovered by our cell-type niche definition, in which the inflam-
matory niche 5 was surrounded by the fibrotic-rich niche 4 (Extended Data Fig. 12b), 
which we could confirm by a higher expression of SPP1+ macrophages and myofibro-
blast marker genes in niche 5 compared with niche 4 (Extended Data Fig. 12c). As our 
data pointed towards a clear spatial association of myeloid cells and fibroblasts, and 
spatially associated cells are presumably more likely to communicate with each other, 
we next used receptor–ligand interaction analysis to study their cellular crosstalk. We 
observed an overall complex myeloid–fibroblast interaction (Extended Data Fig. 12d), 
and detected distinct changes in crosstalk between SPP1+ macrophages and Fib2. This 
included increased PDGF-C, PDGF-D and THBS1 signalling in ischaemic versus myogenic 
samples and increased ADAM17 and TGFB1 in fibrotic versus myogenic samples 
(Extended Data Fig. 12e). Of note, we observed enhanced TGFβ1 signalling in ischaemic 
versus myogenic samples towards Fib3 (Extended Data Fig. 12f). To validate the spatial 
interaction of SPP1+ macrophages and Fib2, we performed RNA in situ hybridization 
on human cardiac tissues following myocardial infarction and could confirm the spatial 
interaction and enrichment of SPP1+ macrophages in an independent tissue cohort 
(n = 26 patients) using an orthogonal method (Fig. 6n and Extended Data Fig. 12g).
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In summary, we have decoded cellular fibroblast and myeloid heterogeneity and 
spatial modelling of the fibro-myeloid cell states, revealing a unique interaction of SPP1+ 
macrophages with myofibroblasts across the different stages of human cardiac tissue 
remodelling.

Discussion

In multicellular organs, such as the human heart, normal cellular function and tissue 
homeostasis depend on the interaction between neighbouring individual cell types. 
Single-cell technologies can profile the molecular heterogeneity of the different cell 
types and changes that occur during disease. However, without spatial context it is 
unclear how these different cell types interact in space to coordinate tissue functions. 
Here we provide a comprehensive map of the human heart at early and late stages after 
myocardial infarction compared to control hearts (non-transplanted donor hearts) by 
integrating spatial transcriptomics with single-nucleus gene expression and chromatin 
accessibility data.

Our computational analyses enabled an increased resolution of spatial transcrip-
tomics by estimating cell-type compositions for each location and by estimating 
pathway activities, mapping transcription factor binding activities, and projecting GWAS 
SNPs. These different layers of biological information enabled us to link the organization 
in human heart tissue specimens of different histomorphological regions, different 
time points after myocardial infarction and different individuals to cellular functions. 
Here we characterized inflammatory and fibrotic remodelling events that differentiated 
functional myocardium from ischaemic and chronically remodelled tissue. We explored 
the effects that these remodelling events had on cardiac architecture, specifically on the 
vasculature and the dependencies between fibroblasts and myeloid cells. Furthermore, 
we identified spatial enrichment of different functional states of myogenic regions in 
control, remote and border zones that were not captured by looking at cell-type compo-
sitions or histology only.

Analysis of the integrated snRNA-seq and snATAC-seq data identified different cell 
states and subtypes for cardiomyocytes, endothelial cells, fibroblasts and myeloid cells. 
We observed distinct cardiomyocyte cell states associated with spatial distribution, 
pathway activity and disease condition. Leveraging our multi-omic data, we inferred 
an eGRN and identified potential regulators of cardiomyocytes and fibroblasts, which 
were also reflected in spatial transcriptomics data. Our data revealed a distinct niche 
of the border zone surrounding the injured myocardium, with a sharp border between 
injured and uninjured cell types and were marked by a gradient of ANKRD1 and NPPB 
expression. Late-stage remodelling after myocardial infarction was driven by fibrosis, 



155

Spatial multi-omic map of human myocardial infarction

6

with fibroblast-to-myofibroblast differentiation in distinct tissue areas. Our data provide 
novel insights into myofibroblast differentiation in human hearts after myocardial 
infarction, with distinct gene expression and gene-regulatory programmes driving this 
process. In addition, we decoded the fibroblast myeloid cellular heterogeneity after 
human myocardial infarction and identified a distinct cellular dependency between 
myofibroblasts and activated phagocytic macrophages (SPP1+CD36+). The combination 
of spatial technologies with single-cell data represented an opportunity to study how 
cardiac cell states are influenced by their tissue microenvironment. The identified inter-
actions between cell types largely reflect the spatial organization of the tissue and, 
although many other factors are involved, these interactions provide hypotheses for 
further analysis. Of note, we observed high levels of cell death in the ischaemic samples, 
as expected, and thus also higher levels of ambient RNA, which could introduce a bias 
in the analyses. Furthermore, we cannot exclude an overestimation of cardiomyocytes 
in our cell-type proportion analysis, since about 25% of adult human cardiomyocytes 
are binucleated49, although multiple nuclei in a cell are reported to be transcriptionally 
homogenous50.

We envision that our publicly available atlas will serve as a reference for future 
studies integrating single-cell genomics and epigenomics with spatial gene expression 
data of the human heart. Furthermore, we believe that our data will facilitate the under-
standing of spatial gene expression and gene-regulatory networks within the human 
myocardium and will be a resource for future studies that aim to understand the function 
of distinct cardiac cell types in cardiac homeostasis and disease.

Methods

Ethics
The local ethics committee of the Ruhr University Bochum in Bad Oeynhausen, the RWTH 
Aachen University, Utrecht University and WUSTL approved all human tissue protocols 
(no. 220-640, EK151/09, 12/387 and no. 201104172 respectively). Human myocardial tissue 
was collected from non-transplanted donor hearts, patients after myocardial infarction 
undergoing heart transplantation, implantation of a total artificial heart or left ventricular 
assist device (LVAD) implantation. The study met all criteria of the code of conduct for 
responsible use of human tissue that is used in the Netherlands. The collection of the 
human heart tissue was approved by the scientific advisory board of the biobank of the 
University Medical Center Utrecht, The Netherlands (protocol no. 12/387). All patients 
provided informed consent and the study was performed in accordance with the 
Declaration of Helsinki. Written informed consent for collection and biobanking of tissue 
samples was obtained prior to LVAD implantation.
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Human tissue processing and screening
Heart tissues were sampled by the surgeon and immediately frozen in liquid nitrogen. 
Tissues were homogenized in liquid nitrogen and 7–10 mm3 pieces were embedded in 
OCT compound (Tissue-Tek) and frozen on dry-ice. Ten-micrometre tissue cryosections 
were stained with H&E and the appropriate tissue regions were selected for further 
processing. In total 52 human tissue samples were screened this way and evaluated by 
a cardiac pathologist. For RNA quality control we minced a 3 × 3 mm3 heart tissue piece 
in liquid nitrogen and isolated the RNA using Qiagen RNeasy Mini kit (Qiagen) using 
a proteinase K digestion step as suggested in RNeasy Fibrous Tissue Mini Kit (Qiagen, 
74704). RNA integrity number (RIN) analysis (Agilent) was performed using Bioanalyzer 
RNA 6000 Nano kits (Agilent, No. 5067). RIN ranged from >2 to a maximum of 8.8.

Spatial gene expression assay
Frozen heart samples were embedded in OCT (Tissue-Tek) and cryosectioned (Thermo 
Cryostar). The 10-µm section was placed on the pre-chilled Optimization slides (Visium, 
10X Genomics, PN-1000193) and the optimal lysis time was determined. The tissues were 
treated as recommended by 10X Genomics and the optimization procedure showed an 
optimal permeabilization time of 12 or 18 min of digestion and release of RNA from the 
tissue slide. Spatial gene expression slides (Visium, 10X Genomics, PN-1000187) were 
used for spatial transcriptomics following the Visium User Guides. Brightfield histological 
images were taken using a 10X objective on the Nikon Eclipse TiE and a Leica Aperio 
Versa 200 scanner. Stitching of the raw images was performed using the NIS-Elements 
software. Next generation sequencing libraries were prepared according to the Visium 
user guide. Libraries were loaded at 300 pM and sequenced on a NovaSeq 6000 System 
(Illumina) as recommended by 10X Genomics.

Single-nuclei isolation of human hearts
Single-nuclei isolation was performed as previously described51. Briefly, heart tissue was 
cut into small pieces (0.5 mm3) in a sterile petri dish on ice and transferred to a tissue 
homogenizer. Nuclei isolation buffer 0.5 ml (EZ lysis buffer, NUC101, Sigma-Aldrich) plus 
RNase inhibitor (Protector RNase Inhibitor, Roche) were added to the tissue, and 10-15 
strokes with pestle A were applied followed by 10–15 strokes of pestle B. The nuclei 
were stained with DAPI and FANS sorted using a Sony SH800 to enrich the nuclei. Nuclei 
isolation from three acute myocardial infarction samples from the WUSTL biobank was 
performed as described52.

scRNA-seq
Nuclei suspensions with a concentration ranging from 400–1000 nuclei per μl were 
loaded into the chromium controller (10X, Genomics, PN-120223’) on a Single Cell B chip 
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(10X Genomics, PN-120262) and processed following the manufacturer’ original protocol 
to generate single-cell gel beads in the emulsion. The sequencing library was generated 
using the Chromium Single cell 3’ reagent Kit v3 (10X, PN-1000092) and Chromium i7 
Multiplex Kit (10X Genomics, PN-120262). Quality control for the constructed library was 
performed by Tape Station. Libraries were sequenced on NovaSeq targeting 50,000 
reads per cell 2 × 150 paired-end kits using the following read length: 28 bp Read1 for cell 
barcode and UMI, 8-bp I7 index for sample index, and 91-bp Read2 for transcript.

sc-ATAC-seq
The remaining nuclei after processing for 3’ scRNA-seq assay were centrifuged at 500g at 
4 °C for 5 min and resuspended in 10 μl of nuclei suspension buffer. After tagmentation 
the nuclei suspension was loaded on the Chromium Chip E (10X Genomics, PN-1000082) 
in the Chromium controller according to the manufacturer’s protocol. The library was 
sequenced on an Illumina NovaSeq 6000 using the following read length: 50 bp Read1 
for DNA fragments, 8 bp for i7 index for sample index, 16 bp i5 index for cell barcodes, 
and 50 bp Read2 for DNA fragments.

RNA in situ hybridization and image quantification
In situ hybridization was performed using formalin-fixed paraffin embedded tissue 
samples and the RNAscope Multiplex Detection KIT V2 (RNAscope, cat. no. 323100) and 
RNAscope 4-Plex Ancillary Kit (RNAscope, cat. no. 323120) following the manufacturer’s 
protocol with minor modifications. The antigen retrieval was performed for 30 min at 99 °C 
in a water bath (VWR). Tissue pretreatment and washing was performed as suggested by 
the RNAscope staining protocol. The following probes were used for the RNAscope assay: 
Hs-CD163 cat. no. 417061-C1, Hs-CCR2 cat. no. 438221-C1, Hs-ANKRD1 cat. no. 524241-C1, 
Hs-POSTN cat. no. 575941-C1, Hs-Col15a1 cat. no. 484001-C2, Hs-Col1a1 cat. no. 401891-
C2, Hs-PECAM1-O2 cat. no. 487381-C2, Hs-NPPB cat. no. 448511-C2, Hs-TREM2 cat. no. 
420491-C2, Hs-SPP1 cat. no. 420101-C2, Hs-NPR3 cat. no. 431241-C3, Hs-POSTN cat. no. 
409181-C3, Hs-SCARA5 cat. no. 574781-C3, Hs-TNNT2 cat. no. 518991-C3, Hs-SPP1 cat. no. 
420101-C4 and Hs-NFE2L1 cat. no. 53850.

Nuclei quantification of H&E stained Visium slides
To quantify nuclei from the H&E staining, we used VistoSeg53, an automated MATLAB 
pipeline for image analysis. Using this pipeline, the individual TIFF files were used for 
nuclei segmentation using k-means colour-based segmentation in the image processing 
toolbox. Next, the binary images were refined with the refineVNS() function for accurate 
detection of the nuclei. Then a CSV and JSON file was generated that contained the 
metrics to reconstruct the spot grid to allow for nuclei quantification per 10X Visium 
detection spot. Counting of nuclei was performed with the countNuclei() function. The 
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images were checked individually with the spotspotcheck() function. Code is available at 
http://research.libd.org/VistoSeg.

Animal model of myocardial infarction
Myocardial infarction was performed as previously described54. In brief, 12-week-
old male and female C57Bl/6J Pdgfrb-creER;tdTomato mice were subjected to chronic 
left anterior descending artery ligation. The mice were anaesthetized using isoflurane 
(2–2.5%). The mice were injected 30 min before surgery with metamizole (200 µg g−1 
body weight) subcutaneously. Then they were intubated and ventilated with oxygen 
using a mouse respirator (Harvard Apparatus). Before incision, we injected bupivacaine 
(2.5 µg g−1 body weight) subcutaneously and intercostally for local analgesia. Then a left 
thoracotomy was performed, and myocardial infarction was induced by ligature of the 
left anterior descending artery with 0/7 silk (Seraflex, IO05171Z). The ribs, muscle layer 
and skin incision were closed. Metamizole was administered for three days via drinking 
water (1.25 mg ml−1, 1% sucrose) post-surgery. All mice were housed under standardized 
conditions in the Animal Facility of the University Hospital Aachen (Germany). The 
operating procedure was in accordance with European legislation and approved by local 
German authorities (LANUV, reference no. 81-02.04.2017.A410.). Mice were euthanized at 
different time points (sham, 4 days, 7 days and 14 days). As control, hearts from sham-
operated, age-matched mice were taken (2 sham female and 2 sham male mice).

Inducible fate-tracing experiments
For inducible fate tracing, male and female Pdgfrb-creER;tdTomato mice (8 weeks of age) 
received tamoxifen (3 mg intraperitoneally) 4 times followed by a washout period of 21 
days and were then subjected to myocardial infarction surgery or sham (12 weeks of age) 
as described above and euthanized at 4 days, 7 days and 14 days after surgery.

Echocardiography
Left ventricular heart function was determined by echocardiography performed on a small-
animal ultrasound imager (Vevo 3100 and MX550D transducer, FUJIFILM Visualsonics). 
Recordings of short and long cardiac axis were taken in B mode (2D real-time) using a 40 
MHz transducer (MX550D). During the procedure, mice were anaesthetized with 1–2% 
isoflurane. Ejection fraction (EF) and global longitudinal strain (GLS) were recorded and 
analysed with the VevoLab Software. The Simpson method was used to assess EF. The 
GLS was measured in the B-mode of the long axis.

smFISH spot quantification and nuclear segmentation
Images for smFISH were exported in native Nicon format (.nd2). Images were split by 
channel using bfconvert55 for further processing. RNA spots were quantified using the 
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command line version of Radial Symmetry-FISH (RS-FISH)56. The sigma parameter from 
RS-FISH, determining spot size, was set to 2.9 for all images. Threshold settings in RS-
FISH were manually determined for each channel and were set to the following values 
for cardiomyocyte state analysis: channel 1 (TNNT2) = 0.0107, channel 2 (ANKRD1) = 
0.005, channel 3 (NPPB) = 0.0066. To remove spot counts resulting from low signal, high 
background images, we removed spots with an intensity lower than the 25th percentile 
of the channel intensity distribution across all images and applied a minimum intensity 
threshold of 600. For the quantification of CD163+SPP1+ macrophages, while we were 
not able to perform full cell segmentation, we performed nuclear segmentation using 
Mesmer57 with pre-trained nuclear segmentation models to identify all detectable 
nuclei in each image based on DAPI staining. We subsequently assigned spots to the 
closest nuclei based on euclidean distance and classified cells as positive or negative for 
the different markers (POSTN, CD163 and SPP1). Cells with more than 2 spots for a given 
marker were considered positive for that marker.

Masson trichrome staining
Masson’s trichrome staining was conducted using a ready-to-use kit (Trichrome Stain 
(Masson) Kit, HT15, Sigma-Aldrich) as described by the manufacturer.

Antibodies and immunofluorescence staining
Heart tissues were fixed in 4% formalin for 4 h at room temperature and then embedded 
in paraffin. For staining slides were blocked in 5% donkey serum followed by 1 h of 
incubation with the primary antibody, washing 3 times for 5 min in PBS, and subsequent 
incubation of the secondary antibodies for 45 min. Following DAPI (4’,6’-diamidino-2-
phenylindole) staining (Roche, 1:10.000) the slides were mounted with ProLong Gold 
(Invitrogen, cat. no. P10144). The following antibodies were used: anti-ACTA2(aSMA)-
Cy3 (C6198,1:250, Sigma-Aldrich), anti-SEMA3G (HPA001761, 1:100, Sigma-Aldrich), AF647 
donkey anti-rabbit (1:200, Jackson Immuno Research).

Confocal imaging
Acquisition of images was performed using a Nikon A1R confocal microscope using 40× 
and 60× objectives (Nikon). Image processing was performed using the Nikon Software 
or ImageJ58.

Generation of a human PDGFRB + cardiac cell line
PDGFRB+ cells were isolated from a 69-year-old male patient, undergoing left ventricular 
assist device surgery. To generate a single-cell suspension, the tissue was homogenized in 
a gentleMACS dissociator (Miltenyi) and digested with liberase (200 µg ml−1, Roche cat. no. 
5401020001) and DNase (60 U ml−1), for 30 min at 37 °C. After filtering the cell suspension (70 µm 
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mesh), cells were stained in two steps using a specific PDGFRB antibody (R&D cat. no. MAB1263 
antibody, dilution 1:100) followed by Anti-Mouse IgG1-MicroBeads solution (Miltenyi, cat. no. 
130-047-102). Following MACS isolation, cells were cultured in DMEM media (Thermo Fisher 
cat. no. 31885) for 20 days and immortalized using SV40-LT and HTERT. Retroviral particles 
were produced by transient transfection of HEK293T cells using TransIT-LT (Mirus). Two types 
of amphotropic particles were generated by co-transfection of plasmids pBABE-puro-SV40-LT 
(Addgene #13970) or xlox-dNGFR-TERT (Addgene #69805) in combination with a packaging 
plasmid pUMVC (Addgene #8449) and a pseudotyping plasmid pMD2.G (Addgene #12259). 
Retroviral particles were 100x concentrated using Retro-X concentrator (Clontech) 48 h 
post-transfection. Cell transduction was performed by incubating the target cells with serial 
dilutions of the retroviral supernatants (1:1 mix of concentrated particles containing SV40-LT 
or rather hTERT) for 48 h. Subsequently at 72 h after transduction, the transduced PDGFRb+ 
cells were selected with 2 μg ml−1 puromycin for 7 days.

Lentiviral overexpression of RUNX1
The human cDNA of RUNX1 was PCR amplified using the primer sequences 5’- 
atgcgtatccccgtagatgcc −3’ and 5’- tcagtagggcctccacacgg −3’. Restriction sites 
and N-terminal 1xHA-Tag were introduced into the PCR product using the primer 
5’- cactcgaggccaccatgtacccatacgatgttccagattacgctcgtatccccgtagatgcc −3’ and 5’- 
acggaattctcagtagggcctccacac −3’. Subsequently, the PCR product was digested with 
XhoI and EcoRI and cloned into pMIG (pMIG was a gift from W. Hahn) (Addgene plasmid 
#9044 ;http://n2t.net/addgene:9044; RRID:Addgene_9044). Retroviral particles were 
produced by transient transfection in combination with packaging plasmid pUMVC 
(pUMVC was a gift from B. Weinberg (Addgene plasmid #8449)) and pseudotyping 
plasmid pMD2.G (pMD2.G was a gift from D. Trono (Addgene plasmid #12259 ; http://n2t.
net/addgene:12259; RRID:Addgene_12259)) using TransIT-LT (Mirus). Viral supernatants 
were collected at 48–72 h post-transfection, clarified by centrifugation, supplemented 
with 10% FCS and Polybrene (Sigma-Aldrich, final concentration of 8 µg ml−1) and 
filtered with a 0.45-µm PES filter membrane (Millipore; SLHP033RS). Cell transduction 
was performed by incubating the PDGFB+ cells with viral supernatants for 48 h. eGFP-
expressing single cells were sorted with a SH800 Cell Sorter.

Quantitative PCR with reverse transcription
Cell pellets were collected and washed with PBS followed by RNA extraction using the 
RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. Two-hundred 
nanograms total RNA was reverse transcribed with High-Capacity cDNA Reverse 
Transcription Kit (Applied Biosystems) and quantitative PCR with reverse transcription 
was carried out as described29 Data were analysed using the 2Ct method. The primers 
used are listed in Supplementary Table 18.
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Preprocessing of snRNA-seq, snATAC-seq and spatial 
transcriptome data
For snRNA-seq data, CellRanger software (v6.0.2) was used to perform the alignment 
with default options. Since the input consists of nuclei, we enabled the option ‘–
include-introns’ to include intronic reads. For snATAC-seq data, the CellRanger ATAC 
pipeline (v2.2.0) was used with the default settings. For spatial transcriptome data, the 
SpaceRanger software (v1.3.2) was used to pre-process the sequencing data. The option 
‘–reorient-images’ was enabled to allow for automatic image alignment. hg38 was used 
as the reference genome for human data alignment.

snRNA-seq data processing
To identify the major lineages representative of all of our specimens, we created a single-
nuclei atlas analysing and integrating each snRNA-seq dataset using Seurat59 (v4.0.1).

Each dataset went through identical quality control processing. We discarded 
nuclei (1) in the top 1% in terms of the number of genes, (2) with less than 300 genes 
and less than 500 UMIs, (3) with more than 5% of mitochondrial gene expression, and 
(4) doublets as estimated using scDblFinder (v1.4.0)60 with default parameters. Count 
matrices were log-normalized for downstream analyses using a scaling factor of 10,000. 
We calculated a dissociation score for each cell using Seurat’s module score functions 
with a gene set provided by O’Flanagan et. al.61 and discarded the nuclei that belonged 
to the top 1%. To generate an integrated atlas of all samples, log-normalized expression 
matrices were merged and dimensionality reduction was performed on the collection 
of the top 3,000 most variable genes that were shared with most of the samples using 
principal component analysis (PCA). To select the collection of shared variable genes 
between samples, first we estimated the top 3,000 most variable genes per sample and 
then selected the top 3,000 most-recurrent genes from them across all samples. PCA 
correction was performed with harmony62 (v1.0) using as covariates the patient, sample, 
and batch labels. A shared nearest neighbour (SNN) graph was built with the first 30 
principal components using Seurat’s FindNeighbors, and the cells were clustered with 
a Louvain algorithm with FindClusters. A high resolution (1) was selected to generate 
a large collection of nuclei clusters to capture representative major cell lineages, even 
if present in low proportions. Cluster markers were identified with Wilcoxon tests as 
implemented in Seurat’s FindAllMarkers function. Final assignment of cells to major cell 
lineages was based on literature marker genes. We filtered out small clusters (median 
number of nuclei across filtered clusters = 269) with low gene count distributions 
(median counts across filtered clusters = 756) or feature recovery (median number of 
genes across filtered clusters = 695), with marker genes that could not be assigned to 
known cell types of the heart. To visualize all nuclei in a two-dimensional embedding, 
a UMAP was created with Seurat’s RunUMAP function using the first 30 principal 
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components of harmony’s PCA correction embedding. Major cell-type markers were 
estimated by performing differential expression analysis of cell-type and patient-specific 
pseudo-bulk profiles. Pseudo-bulk profiles were calculated by summing up the counts 
of all cells belonging to the same cell type and patient. Profiles coming from less than 10 
cells or profiles from which the maximum gene expression was of less than 1,000 counts 
per library were discarded. Differentially expressed genes were calculated by fitting a 
quasi-likelihood negative binomial generalized log-linear model as implemented in 
edgeR (v3.32.1)63 (false discovery rate (FDR) < 0.15). Each cell type was compared against 
the rest.

Comparison with independent healthy and ischaemic human 
heart cell atlases
We compared our generated atlas with another reference human single-nuclei RNA-seq 
atlas4 at the molecular and compositional level. The counts matrix was downloaded 
directly from https://www.heartcellatlas.org and we selected the data coming from 
single-nuclei  and left ventricle samples. Nuclei with fewer than 200 genes, and genes 
expressed in less than 3 nuclei were excluded. Log normalization with a scaling factor of 
10,000 was performed with scanpy’s64 (v1.7.0) normalize_total function.

To evaluate our major cell-type annotation, we calculated the enrichment of the top 
200 marker genes based on log fold change of each cell type defined in the reference 
atlas in the list of the top 200 marker genes of each of our defined cell types with hyper-
geometric tests. Marker genes of the reference atlas were calculated with Wilcoxon tests as 
implemented in scanpy’s 64 (v1.7.0) rank_genes_groups (adj. P < 0.01). Each cell type was 
compared against the rest. To evaluate the compositional stability of our control samples, 
we calculated the Pearson correlation between the median proportion of each shared cell 
type of the reference atlas and our control, border zone, and remote zone samples. Similarly, 
we compared our atlas to an independent collection of human heart nuclei derived from 
three ischaemic specimens. First, we analysed and integrated the smaller collection of 
samples using identical procedures as the ones used in our provided atlas. After nuclei 
clustering, we assigned each cluster to a cell type using literature markers. Cell-type 
markers were calculated with Wilcoxon tests (adj. P < 0.01) and the top 200 genes based on 
log fold change were selected. Marker overlap and compositional stability comparison with 
ischaemic specimens from our atlas were performed as described previously.

snATAC-seq data processing
To control the data quality, the fragment files were used as input for the package ArchR 
(v1.0.1)65, and low-quality cells were filtered out based on transcription start site (TSS) 
enrichment (> 4) and the number of unique fragments (> 3,000 and < 100,000). Doublets 
were identified and removed by using the functions addDoubletScores and filterDoublets 
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from ArchR with default settings. Next, peaks were identified by using the function 
addReproduciblePeakSet for each sample. All peaks were merged to create a union peak 
set of which each peak was annotated as distal, promoter, exonic and intronic. A count 
matrix was constructed with the function addPeakMatrix. For dimensionality reduction, 
the method scOpen (v1.0.0)35 was used to generate a low-dimensional matrix of the cells. 
The algorithm Harmony62 was applied to correct the batch effects and integrate the data 
and UMAP was used to generate a 2D embedding for visualization. Cells were clustered 
using the Leiden algorithm with a resolution of 1. To annotate the clusters, a gene activity 
score matrix was created using the function addGeneScoreMatrix and marker genes were 
detected for each cluster using the function getMarkerFeatures. The same markers from 
snRNA-seq data were used to annotate the clusters.

Comparison between snRNA-seq and snATAC-seq data
The Seurat66 label-transferring approach was used to compare the annotation of 
snRNA-seq and snATAC-seq. To do so, the snRNA-seq data were used as reference and 
the function FindTransferAnchors was applied to identify a set of anchors using gene 
expression from snRNA-seq and gene activity score from snATAC-seq. Next, the cell labels 
from snRNA-seq were transferred to snATAC-seq by running the function TransferData. 
An adjusted rand index was calculated to evaluate the agreement between annotated 
and predicted cell labels for snATAC-seq data.

Cell-type-specific transcription factor binding and regulon 
activity
To estimate transcription factor binding activity for each major cell type identified 
from snATAC-seq data, we first aggregated the reads within each cell type and created 
a pseudo-bulk profile. Next, we used MACS2 (v2.2.7)67 to perform peak calling and 
removed the peaks from chrY, mitochondrial and unassembled ‘random’ contigs. We 
then predicted the transcription factor binding sites and estimated transcription factor 
binding activity using HINT-ATAC (v0.13.2)68 based on the JASPAR2020 database69. We 
linked the transcription factor binding sites to the nearest genes to create a cell-type-
specific transcription factor–gene interaction. The number of ATAC-seq reads in the 
region with 100 bp up-stream and downstream of the the transcription factor binding 
site were used to indicate how strong the interaction was: each transcription factor–gene 
interaction was weighted as the ratio between the number of ATAC-seq reads around the 
transcription factor binding site associated with that gene and the maximum number 
of reads observed in any binding site of the transcription factor. All interactions with a 
weight larger than 0.3 were considered in downstream analysis. This generated weighted 
and filtered cell-type-specific regulons. To infer a transcription factor regulon activity 
score, we estimated the mean expression of the target genes in each cell-type-specific 
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regulon. Cell-type pseudo-bulk profiles were filtered to contain only genes with at least 
10 counts in 5% of the samples, before the estimation of normalized weighted means 
using decoupleR’s70 (v1.1.0) wmean function with 1,000 permutations. Regulon activities 
were standardized and correlated with transcription factor binding activities using 
Spearman correlations. The minimum correlation of 0.5 was used as threshold and the 
top 5 transcription factors per cell type were selected for visualization.

Cell-type-specific GWAS signal enrichment
GWAS summary statistics for 4 MRI based left ventricle function parameters12 were 
downloaded from the Cardiovascular Disease Knowledge Portal (https://cvd.hugeamp.
org/). For each phenotype, GWAS summary statistics were clumped with Plink (v1.9)71 
to identify index SNPs (clump-p1 = 0.0001, clump-kb = 250, clump-r2 = 0.5) using the 
European samples from 1000 Genomes as a reference population.

Next, we lifted over the coordinates of index SNPs from hg19 to hg38 using the 
LiftOver tools. For each major cell type, we generated an average chromatin acces-
sibility profile by using snATAC-seq data from all cells. The cell-type-specific GWAS 
signal enrichment was performed using gchromVAR (v0.3.2)72 and enrichment scores 
were normalized to z-scores. P-values were calculated based on the z-scores and were 
corrected by the Benjamini–Hochberg method.

Cell-type-specific integration of snATAC-seq and snRNA-seq data 
and sub-clustering
For each major cell type that was recovered by both snATAC-seq and snRNA-seq, we 
aimed to identify sub-clusters spanning multiple samples and modalities. To do so, we 
devised a multi-step approach to integrate and cluster the data by controlling quality 
from sample-, cell-type- and modality-specific aspects.

(1)	 To minimize the sample-specific effects, we only considered samples with a minimum 
number of cells in both snATAC-seq and snRNA-seq: for cardiomyocytes and endothelial 
cells (n_cells_ATAC > 300 and n_cells_RNA > 400); for fibroblasts (n_cells_ATAC > 100 
and n_cells_RNA > 400); and for myeloid (n_cells_ATAC > 50 and n_cells_RNA > 200). 
This step controls for samples with low recovery of cells in a particular modality.

(2)	 To further filter cell-type-specific low-quality cells from snRNA-seq and snATAC-
seq data, we integrated the samples as selected in step 1 using Harmony to correct 
batch effects from patients and regions based on PCA space (30 dimensions) for 
snRNA-seq and LSI space (30 dimensions) for snATAC-seq data. We then clustered 
the cells using Seurat (resolution = 0.4) for each modality independently. We next 
excluded the clusters that were (i) enriched in a single sample; (ii) showed a lower 
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data quality; (iii) showed a higher doublet score compared with others. Specifically, 
for cardiomyocytes, we removed 3 clusters from snATAC-seq data: 2 clusters (481 
cells) were enriched in a single sample and another cluster (171 cells) showed a low 
number of unique fragments (average = 8,102). For fibroblasts, we removed 1 cluster 
(49 cells) from snATAC-seq (98% of cells from a single sample) and 1 cluster (1,172 cells) 
from snRNA-seq (average doublet score of 0.12). This step controls for cell type and 
modality-specific low-quality cells.

(3)	 We next integrated the cells from snATAC-seq and snRNA-seq data. To this end, we 
used the gene activity score matrix of snATAC-seq estimated by ArchR and the gene 
expression data from snRNA-seq data as input for canonical component analysis by 
Seurat. The integrated data were projected into a PCA space (30 dimensions) and 
Harmony was used to correct the batch effects from samples and modalities. This 
step generated a co-embedded and batch-corrected dataset composed of cells from 
snRNA-seq and snATAC-seq samples.

(4)	 For each major cell type, we defined the sub-clusters based on the co-embedded 
data using the Seurat (resolution = 0.9 or 1). Marker genes were identified by using 
the function FindAllMarkers. We next filtered clusters that were mainly driven by a 
single sample or modality. Finally, we merged and annotated the clusters based on 
the markers. The final statistics of the sub-clustering results for each major cell type 
were provided in Supplementary Table 16.

Analysis of snRNA-seq data from mouse fibroblasts
Cellranger mkfastq and count functions (version v6.0.2) with default parameters were 
used for demultiplexing and aligning the reads, respectively. Reads were aligned to 
the mouse reference transcriptome (mm10, Version=2020-A). Prior to alignment, reads 
for tdTomato were added to the reference. Quantified counts from each sample were 
aggregated and cells with counts <1,500 and >20,000 were filtered out. Further, cells 
with >5% reads mapped to mitochondrial genes, as well as cells with <500 genes were 
removed. Scrublet73 was used to detect potential doublets and only the resulting 40,495 
cells with <0.2 scrublet score were kept for further analyses. The highly_variable_genes() 
function with seurat_v3 flavour implemented in Scanpy (version 1.8.1) was used to obtain 
the top 2,000 most highly variable genes. Count data was log-normalized using sc.pp.
normalize_total(target_sum=1e4) followed by sc.pp.log1p(). The data was subset to the 
2,000 genes, unwanted sources of variation from n_umi and mito_fraction were regressed 
out using sc.pp.regress_out(), and the top 30 principal components were estimated using 
sc.tl.pca(). Harmony was then used to account for large differences across samples using 
‘sample’ as the batch indicator. Network neighbourhood graph was constructed using 
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the function sc.pp.neighbors() with 30 adjusted principal components, cosine distance 
and n_neighbors = 10. Leiden clustering with resolution 1.0 was used to cluster the cells 
into 17 clusters. Marker genes were identified using the Wilcoxon test implemented in 
sc.tl.rank_genes_groups() function in Scanpy. Clusters were manually annotated using 
the marker genes. We next cleaned up the data by removing clusters with low data 
quality and re-clustered the data with resolution of 0.2. To annotate the cells, we used 
the label transfer approach from Seurat based on the sub-clustering results from human 
fibroblasts.

Gene-regulatory network inference for cardiomyocytes and 
fibroblasts
We inferred an eGRN for cardiomyocytes and fibroblasts using a multi-step approach 
including modality pairing, transcription factors and genes selection, and network 
construction.

(1)	 We first paired the cells between snATAC-seq and snRNA-seq based on the previously 
described co-embedding space using an optimal matching approach74. This method 
returns a matching of a snATAC-seq cell to a unique cell in snRNA-seq. Next, we 
produced a diffusion map75 and created trajectories in this space using the function 
addTrajectory from ArchR (v1.0.1)65. For cardiomyocytes, we inferred a trajectory 
from clusters vCM1, vCM2 and vCM3, where vCM1 were considered as roots and vCM3 
as the terminal state. For fibroblasts, we built a trajectory with SCARA5+ fibroblasts as 
root and myofibroblasts as terminal state.

(2)	 Next, we predicted a single-cell-specific transcription factor binding activity score 
using the R package chromVAR (v1.16)76 from the snATAC-seq data based on motif 
from the JASPAR2020 database69. In contrast to HINT-ATAC, chromVAR provides 
transcription factor activity scores at single-cell level. We next selected transcription 
factors that display concordant binding activity (snATAC-seq) and its gene expression 
(snRNA-seq) (Pearson correlation > 0.1). This analysis identified 65 transcription factors 
for cardiomyocytes and 44 transcription factors for fibroblasts. We considered these 
transcription factors to be potential regulators. We sorted the transcription factors 
along the trajectory as defined in step 1 and assigned a pseudotime label to each 
transcription factor. Next, we selected highly variable genes using the snRNA-seq 
data along the trajectories as described65. We kept the top 10% variable genes and 
considered them as potential transcription factor targets.

(3)	 To associate regulators with targets (that is, transcription factors with genes), we 
explored the correlation of peak accessibility and gene expression to identify peak-
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to-gene links. Specifically, for each gene, we consider peaks that are within 125 kb 
on either side of the transcription start sites, while excluding the promoter regions. 
This analysis generated a list of enhancer-to-promoter links. We only considered 
significantly correlated links (FDR < 0.0001) with a positive correlation as before65. 
Finally, we associated a transcription factor with a target gene if this gene was linked 
to an enhancer and this enhancer was predicted to be found by this transcription 
factor.

(4)	 To build a quantitative transcription factor–gene-regulatory network, we estimated 
the correlation of the transcription factor binding activity from snATAC-seq and target 
gene expression from snRNA-seq data and only considered those interactions with 
Pearson correlation >0.4. We visualized the network based on a force-layout, which 
places transcription factors (or target genes) with similar interactions close together. 
We coloured transcription factor nodes in the networks using the assigned pseudotime 
labels as inferred in step 2. To characterize the importance of transcription factors, 
we computed two measures: node betweenness (denoted by b)77 and pagerank 
(denoted by p)78. A final importance score for transcription factor i was calculated as:

(5)	 Finally, to map the inferred GRN into spatial transcriptomics data, we used the target 
genes for each transcription factor and calculated a module score by using the 
function AddModuleScore from Seurat (v4.1.0).

Characterization of spatial transcriptomics datasets

Single-slide processing

Filtered feature-barcode expression matrices from SpaceRanger (v1.3.2) were used 
as initial input for the spatial transcriptomics analysis using Seurat (v4.0.1). Spots with 
less than 300 measured genes and less than 500 UMIs were filtered out. Ribosomal and 
mitochondrial genes were excluded from this analysis. Individual count matrices were 
normalized with sctransform79, and additional log-normalized (size factor = 10,000) and 
scaled matrices were calculated for comparative analyses using default settings.

Cell-type compositions were calculated for each spot using cell2location80 (v0.05). 
Reference expression signatures of major cell types were estimated using regularized 
negative binomial regressions and our integrated snRNA-seq atlas. We fitted a model in 
six downsampled iterations of our snRNA-seq atlas (30%) and generated a final reference 
matrix by taking the mean estimation. Each slide was later deconvoluted using hierar-
chical bayesian models as implemented in run_cell2location. We provided the following 
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(5)  Finally, to map the inferred GRN into spatial transcriptomics data, 
we used the target genes for each transcription factor and calcu-
lated a module score by using the function AddModuleScore from 
Seurat (v4.1.0).

Characterization of spatial transcriptomics datasets
Single-slide processing. Filtered feature-barcode expression matri-
ces from SpaceRanger (v1.3.2) were used as initial input for the spatial 
transcriptomics analysis using Seurat (v4.0.1). Spots with less than 300 
measured genes and less than 500 UMIs were filtered out. Ribosomal 
and mitochondrial genes were excluded from this analysis. Individual 
count matrices were normalized with sctransform79, and additional 
log-normalized (size factor = 10,000) and scaled matrices were calcu-
lated for comparative analyses using default settings.

Cell-type compositions were calculated for each spot using cell2lo-
cation80 (v0.05). Reference expression signatures of major cell types 
were estimated using regularized negative binomial regressions and 
our integrated snRNA-seq atlas. We fitted a model in six downsampled 
iterations of our snRNA-seq atlas (30%) and generated a final reference 
matrix by taking the mean estimation. Each slide was later deconvoluted 
using hierarchical bayesian models as implemented in run_cell2location. 
We provided the following hyperparameters: 8 cells per spot, 4 factors 
per spot, and 2 combinations per spot. Additionally, for each spot we 
calculated cell-type proportions using the cell-type-specific abundance 
estimations. Cell-type compositions of the complete slide were calcu-
lated adding the estimated number of cells of each type across all spots. 
To compare the stability of estimated cell compositions between our 
different data modalities, we calculated Spearman correlations between 
the estimated cell type proportions of each slide and the observed cell 
type proportions in its corresponding snRNA-seq and snATAC-seq  
dataset.

Estimation of functional information from spatial data. For each 
spot, we estimated signalling pathway activities with PROGENy’s81,82 
(v1.12.0) model matrix using the top 1,000 genes of each transcrip-
tional footprint and the sctransform normalized data. Spatially vari-
able genes were calculated with SPARKX83 (v1.1.1) using log-normalized 
data (FDR < 0.001). To obtain overrepresented biological processes 
from each list of spatially variable genes, we performed hypergeomet-
ric tests using the set of canonical pathways provided by MSigDB84 
(FDR < 0.05).

Estimation of cell death molecular footprints from spatial data. To 
associate the differences in nuclei capture in snRNA-seq between the 
different samples to cell death processes, we leveraged the informa-
tion from spatial transcriptomics to estimate the general expression of 
genes associated to cell death for each sample. For each unfiltered slide 
we estimated per spot the normalized gene expression of BioCarta’s84 
‘death pathway’ and Reactome’s85 ‘regulated necrosis pathway’ using 
the decoupleR (v1.1.0) wmean method and the sctransform normalized 
data. To have a final pathway score per slide, we calculated for each slide 
the mean ‘pathway expression’ across all spots.

Mapping transcription factor binding activity and GWAS enrich-
ment to spatial data. To visualize the transcription factor binding ac-
tivity estimated from snATAC-seq data in space, we used the estimated 
cell type proportion calculated from cell2location scores for mapping. 
Specifically, for each spot i and transcription factor j, we calculated the 
transcription factor binding activity as follows:

∑ACT = Proportion × ACT′ ,ij k

K

ik kj=1

where Proportionik is the estimated proportion of cell type k, K is the 
number of cell types, and ACT′kj is the binding activity of transcription 
factor j in cell type k from snATAC-seq data. An equivalent approach 
was used to map GWAS scores into space.

Cell-state spatial mapping. To map the functional states of each cell 
type into spatial locations, we leveraged the deconvolution results of 
each slide and the set of differentially expressed genes of each recov-
ered cell state. Given the continuous nature of cell states, we assumed 
that the collection of up and downregulated genes of a cell state rep-
resented its transcriptional fingerprint and could be summarized in 
a continuous score in locations where we could reliably identify the 
major cell type from which the state was derived. For a given major 
cell type of interest k, we identified spots where its inferred abundance 
was of at least 10%. To estimate state scores associated with cell type k,  
we used decoupleR’s (v1.1.0) normalized weighted mean method 
(wmean) and the set of the upregulated genes of each state defined 
with snRNA-seq and snATAC-seq (log fold change > 0; Wilcoxon tests, 
FDR < 0.05). The log fold change of each selected gene was used as the 
weight in the wmean function.

Analysis of ion channel-related genes. We related the expression of 
ion channel-related gene sets to the different cardiomyocyte cell states 
and their location in spatial transcriptomics. First we selected two dif-
ferent gene sets containing ion channel-related genes: (1) Reactome’s85 
‘ion channel transport’ and a curated list of transmural ion channels 
from Grant et al.86. Gene sets are provided in Supplementary Table 17. 
First, we calculated gene set scores for each spatial transcriptomics 
spot using decoupleR’s wmean function. Then we correlated these 
gene set scores to the spatial mapping of cardiomyocyte cell states 
in regions where we observed at least 10% of cardiomyocytes. Addi-
tionally, we evaluated if any of the genes belonging to these gene sets 
were differentially expressed between the vCM1 and stressed vCM3 
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hyperparameters: 8 cells per spot, 4 factors per spot, and 2 combinations per spot. 
Additionally, for each spot we calculated cell-type proportions using the cell-type-spe-
cific abundance estimations. Cell-type compositions of the complete slide were calcu-
lated adding the estimated number of cells of each type across all spots. To compare the 
stability of estimated cell compositions between our different data modalities, we calcu-
lated Spearman correlations between the estimated cell type proportions of each slide 
and the observed cell type proportions in its corresponding snRNA-seq and snATAC-seq 
dataset.

Estimation of functional information from spatial data

For each spot, we estimated signalling pathway activities with PROGENy’s81,82 (v1.12.0) 
model matrix using the top 1,000 genes of each transcriptional footprint and the 
sctransform normalized data. Spatially variable genes were calculated with SPARKX83 
(v1.1.1) using log-normalized data (FDR < 0.001). To obtain overrepresented biological 
processes from each list of spatially variable genes, we performed hypergeometric tests 
using the set of canonical pathways provided by MSigDB84 (FDR < 0.05).

Estimation of cell death molecular footprints from spatial data

To associate the differences in nuclei capture in snRNA-seq between the different samples 
to cell death processes, we leveraged the information from spatial transcriptomics 
to estimate the general expression of genes associated to cell death for each sample. 
For each unfiltered slide we estimated per spot the normalized gene expression of 
BioCarta’s84 ‘death pathway’ and Reactome’s85 ‘regulated necrosis pathway’ using the 
decoupleR (v1.1.0) wmean method and the sctransform normalized data. To have a final 
pathway score per slide, we calculated for each slide the mean ‘pathway expression’ 
across all spots.

Mapping transcription factor binding activity and GWAS enrichment to spatial 
data

To visualize the transcription factor binding activity estimated from snATAC-seq data in 
space, we used the estimated cell type proportion calculated from cell2location scores 
for mapping. Specifically, for each spot i and transcription factor j, we calculated the 
transcription factor binding activity as follows:

where Proportionik is the estimated proportion of cell type k, K is the number of cell 
types, and ACT’kj is the binding activity of transcription factor j in cell type k from snATAC-
seq data. An equivalent approach was used to map GWAS scores into space.
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(5)  Finally, to map the inferred GRN into spatial transcriptomics data, 
we used the target genes for each transcription factor and calcu-
lated a module score by using the function AddModuleScore from 
Seurat (v4.1.0).

Characterization of spatial transcriptomics datasets
Single-slide processing. Filtered feature-barcode expression matri-
ces from SpaceRanger (v1.3.2) were used as initial input for the spatial 
transcriptomics analysis using Seurat (v4.0.1). Spots with less than 300 
measured genes and less than 500 UMIs were filtered out. Ribosomal 
and mitochondrial genes were excluded from this analysis. Individual 
count matrices were normalized with sctransform79, and additional 
log-normalized (size factor = 10,000) and scaled matrices were calcu-
lated for comparative analyses using default settings.

Cell-type compositions were calculated for each spot using cell2lo-
cation80 (v0.05). Reference expression signatures of major cell types 
were estimated using regularized negative binomial regressions and 
our integrated snRNA-seq atlas. We fitted a model in six downsampled 
iterations of our snRNA-seq atlas (30%) and generated a final reference 
matrix by taking the mean estimation. Each slide was later deconvoluted 
using hierarchical bayesian models as implemented in run_cell2location. 
We provided the following hyperparameters: 8 cells per spot, 4 factors 
per spot, and 2 combinations per spot. Additionally, for each spot we 
calculated cell-type proportions using the cell-type-specific abundance 
estimations. Cell-type compositions of the complete slide were calcu-
lated adding the estimated number of cells of each type across all spots. 
To compare the stability of estimated cell compositions between our 
different data modalities, we calculated Spearman correlations between 
the estimated cell type proportions of each slide and the observed cell 
type proportions in its corresponding snRNA-seq and snATAC-seq  
dataset.

Estimation of functional information from spatial data. For each 
spot, we estimated signalling pathway activities with PROGENy’s81,82 
(v1.12.0) model matrix using the top 1,000 genes of each transcrip-
tional footprint and the sctransform normalized data. Spatially vari-
able genes were calculated with SPARKX83 (v1.1.1) using log-normalized 
data (FDR < 0.001). To obtain overrepresented biological processes 
from each list of spatially variable genes, we performed hypergeomet-
ric tests using the set of canonical pathways provided by MSigDB84 
(FDR < 0.05).

Estimation of cell death molecular footprints from spatial data. To 
associate the differences in nuclei capture in snRNA-seq between the 
different samples to cell death processes, we leveraged the informa-
tion from spatial transcriptomics to estimate the general expression of 
genes associated to cell death for each sample. For each unfiltered slide 
we estimated per spot the normalized gene expression of BioCarta’s84 
‘death pathway’ and Reactome’s85 ‘regulated necrosis pathway’ using 
the decoupleR (v1.1.0) wmean method and the sctransform normalized 
data. To have a final pathway score per slide, we calculated for each slide 
the mean ‘pathway expression’ across all spots.

Mapping transcription factor binding activity and GWAS enrich-
ment to spatial data. To visualize the transcription factor binding ac-
tivity estimated from snATAC-seq data in space, we used the estimated 
cell type proportion calculated from cell2location scores for mapping. 
Specifically, for each spot i and transcription factor j, we calculated the 
transcription factor binding activity as follows:

∑ACT = Proportion × ACT′ ,ij k
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where Proportionik is the estimated proportion of cell type k, K is the 
number of cell types, and ACT′kj is the binding activity of transcription 
factor j in cell type k from snATAC-seq data. An equivalent approach 
was used to map GWAS scores into space.

Cell-state spatial mapping. To map the functional states of each cell 
type into spatial locations, we leveraged the deconvolution results of 
each slide and the set of differentially expressed genes of each recov-
ered cell state. Given the continuous nature of cell states, we assumed 
that the collection of up and downregulated genes of a cell state rep-
resented its transcriptional fingerprint and could be summarized in 
a continuous score in locations where we could reliably identify the 
major cell type from which the state was derived. For a given major 
cell type of interest k, we identified spots where its inferred abundance 
was of at least 10%. To estimate state scores associated with cell type k,  
we used decoupleR’s (v1.1.0) normalized weighted mean method 
(wmean) and the set of the upregulated genes of each state defined 
with snRNA-seq and snATAC-seq (log fold change > 0; Wilcoxon tests, 
FDR < 0.05). The log fold change of each selected gene was used as the 
weight in the wmean function.

Analysis of ion channel-related genes. We related the expression of 
ion channel-related gene sets to the different cardiomyocyte cell states 
and their location in spatial transcriptomics. First we selected two dif-
ferent gene sets containing ion channel-related genes: (1) Reactome’s85 
‘ion channel transport’ and a curated list of transmural ion channels 
from Grant et al.86. Gene sets are provided in Supplementary Table 17. 
First, we calculated gene set scores for each spatial transcriptomics 
spot using decoupleR’s wmean function. Then we correlated these 
gene set scores to the spatial mapping of cardiomyocyte cell states 
in regions where we observed at least 10% of cardiomyocytes. Addi-
tionally, we evaluated if any of the genes belonging to these gene sets 
were differentially expressed between the vCM1 and stressed vCM3 



169

Spatial multi-omic map of human myocardial infarction

6

Cell-state spatial mapping

To map the functional states of each cell type into spatial locations, we leveraged the 
deconvolution results of each slide and the set of differentially expressed genes of each 
recovered cell state. Given the continuous nature of cell states, we assumed that the 
collection of up and downregulated genes of a cell state represented its transcriptional 
fingerprint and could be summarized in a continuous score in locations where we could 
reliably identify the major cell type from which the state was derived. For a given major 
cell type of interest k, we identified spots where its inferred abundance was of at least 
10%. To estimate state scores associated with cell type k, we used decoupleR’s (v1.1.0) 
normalized weighted mean method (wmean) and the set of the upregulated genes of 
each state defined with snRNA-seq and snATAC-seq (log fold change > 0; Wilcoxon tests, 
FDR < 0.05). The log fold change of each selected gene was used as the weight in the 
wmean function.

Analysis of ion channel-related genes

We related the expression of ion channel-related gene sets to the different cardiomyocyte 
cell states and their location in spatial transcriptomics. First we selected two different 
gene sets containing ion channel-related genes: (1) Reactome’s85 ‘ion channel 
transport’ and a curated list of transmural ion channels from Grant et al.86. Gene sets 
are provided in Supplementary Table 17. First, we calculated gene set scores for each 
spatial transcriptomics spot using decoupleR’s wmean function. Then we correlated 
these gene set scores to the spatial mapping of cardiomyocyte cell states in regions 
where we observed at least 10% of cardiomyocytes. Additionally, we evaluated if any of 
the genes belonging to these gene sets were differentially expressed between the vCM1 
and stressed vCM3 population using Wilcoxon tests as implemented in scran’s (v1.18.5) 
findMarkers function (area under the curve (AUC) < 0.4, AUC > 0.6, FDR < 0.05).

Spatial map of cell dependencies

We used MISTy’s87 implementation in mistyR (v1.2.1) to estimate the importance of the 
abundance of each major cell type in explaining the abundance of the other major cell 
types. Cell-type cell2location estimations of all slides were modelled in a multi-view 
model using three different spatial contexts: (1) an intrinsic view that measures the 
relationships between the deconvolution estimations within a spot, (2) a juxta view 
that sums the observed deconvolution estimations of immediate neighbours (largest 
distance threshold = 5), and (3) a para view that weights the deconvolution estimations 
of more distant neighbours of each cell type (effective radius = 15 spots). The aggregated 
estimated standardized importances (median) of each view of all slides were interpreted 
as cell-type dependencies in different spatial contexts, such as colocalization or mutual 
exclusion. Nevertheless, the reported interactions did not imply any causal relation. 
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Before aggregation, we excluded the importances of all predictors of target cell types 
whose R2 was less than 10% for each slide.

To associate tissue structures with tissue functions, we fitted a MISTy model to 
explain the distribution of PROGENy’s pathway activities standardized scores. The 
multi-view model consisted of the following predictors: (1) an intrinsic view to model 
pathway crosstalk within a spot, (2) a juxta view to model pathway crosstalk between 
neighbouring spots (largest distance threshold = 5), (3) a para view estimating pathway 
relations in larger tissue structures (effective radius = 15), (4) an intrinsic view and (5) 
a para view containing cell2location estimations (effective radius = 15). These last 
two views model explicitly the relations between cell-type compositions of spots and 
pathway activities. Cycling cells and TNF were not included in the described analyses. 
Before aggregation, we excluded the importances of all predictors of target pathway 
activities whose R2 was less than 10% for each slide.

Niche definitions from spatial transcriptomics data

To identify groups of spots in the different samples that shared similar cell-type 
compositions, we transformed the estimated cell-type proportions of each spatial 
transcriptomics spot and slide into isometric log ratios (ILR)88, and clustered spots into 
groups. These niches represent groups of spots that are similar in cell composition and 
represent potential shared structural building blocks of our different slides; we refer to 
these groups of spots as cell-type niches. Louvain clustering of spots was performed by 
first creating a shared nearest neighbour graph with k different number of neighbours 
(10, 20, 50) using scran’s89 (v1.18.5) buildSNNGraph function. Then, we estimated the 
clustering resolution that maximized the mean silhouette score of each cluster. We 
assigned overrepresented cell types in each structure by comparing the distribution of 
cell-type compositions within a cell-type niche versus the rest using Wilcoxon tests (FDR 
< 0.05). We tested if a given cell state was more representative of a cell-type niche by 
performing Wilcoxon tests between each niche and the rest (FDR < 0.05). Only positive 
state scores were considered in this analysis.

Additionally, to complement the repertoire of niches identified with cell-type 
compositions, we integrated and clustered the Visium spots of all slides using their 
log-normalized gene expression. We called these clusters molecular niches. Integration 
and clustering of spots was performed with the same methodology as the one used to 
create the snRNA-Seq atlas. A low resolution was used (0.2) to have a similar number of 
molecular niches as cell-type niches. Cell-type and cell-state enrichment was performed 
as mentioned before.
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Differential expression analysis of molecular niches enriched with cardiomyocytes

Differential expression analysis between molecular niches enriched in cardiomyocytes 
(niche 0, niche 1, niche 3) was performed using the log-transformed expression of all 
spots belonging to a given niche. Wilcoxon tests were performed with scran’s89 (v1.18.5) 
findMarkers function. Genes with a summary AUC >0.55 and FDR <0.05 were considered 
upregulated genes.

Differential molecular profiles of the molecular niche 10 enriched with capillary 
endothelial cells

Differential expression analysis between ischaemic, fibrotic and myogenic-enriched 
spatial transcriptomic spots was performed with Wilcoxon tests as implemented in 
scran’s89 (v1.18.5) findMarkers function. To obtain overrepresented biological processes 
from upregulated genes, we performed hypergeometric tests using the set of hallmark 
pathways provided by MSigDB84. Normalized PROGENy’s pathway activities for each 
spot were calculated using decoupleR’s wsum method with 100 permutations on log-
transformed data. Mean normalized pathway scores were calculated per slide and 
comparisons between groups were performed with Wilcoxon tests. Reported P-values 
were adjusted for multiple testing using the Benjamini–Hochberg procedure.

General differences in tissue organization

We annotated the different spatial transcriptomic slides into three groups based on 
histological differences with the help of pathologists: myogenic-enriched, fibrotic-
enriched and ischaemic-enriched. A general comparison of the sampled patient 
specimens was performed at the compositional and molecular level.

Hierarchical clustering, with euclidean distances and Ward’s algorithm, was used to 
cluster the pseudo-bulk profiles of the spatial transcriptomics datasets (replicates where 
merged, n = 27). Genes with less than 100 counts in 85% of the sample size were excluded 
for this analysis. Log normalization (scale factor = 10,000) was performed. To visualize 
the general molecular differences between our samples, log-normalized pseudo-bulk 
profiles of the spatial transcriptomics datasets were projected in an UMAP embedding.

To identify compositional differences between our sample groups, we compared 
cell-type and niche compositions. To identify cell-type composition changes associated 
to the sample groups, mean cell-type compositions across single-cell and spatial datasets 
were compared with Kruskal–Wallis tests (FDR < 0.1). Pairwise comparisons of sample 
groups were performed with the Wilcoxon test. Additionally, to test which cell-type and 
molecular niches had different distributions between our group samples, we performed 
Kruskal–Wallis tests over the compositions of cell-type or molecular niches (FDR < 0.1). 
Additional pairwise comparisons were performed with Wilcoxon tests (P-values adjusted 
with Benjamini–Hochberg procedure). For this, we only consider slides where no single 
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niche represents more than 80% of the spots. Also, we only consider niches representing 
more than 1% of the composition of at least 5 slides.

To identify differences between the structurally similar tissues captured in the 
myogenic-enriched group, we separated the samples into remote, border, and control 
zones and repeated the niche composition comparison described previously.

To identify patterns of tissue organization associated with a sample group, we tested 
if differential cell dependencies were captured by the MISTy models used to predict 
cell-type abundance (see ‘Spatial map of cell dependencies’). First, we filtered the 
standardized importance matrices of each sample’s MISTy model fitted to predict the 
abundance of major cell-types to contain only the values of target cell types predicted 
with an R2 greater than 0.05. Then, for each slide we created a spatial dependency 
vector where each element contains the importance of each possible pair of target and 
predicted cell types. Finally, we tested which cell interactions had higher importances 
in one of the sample groups compared to the rest using Wilcoxon tests (FDR < 0.25). 
To prioritize interactions, we only performed pairwise comparisons between sample 
groups for cell-type dependencies from which the maximum median importance across 
all groups was greater than 0.

Estimation of the effects of the spatial context on gene expression

We used mistyR (v1.2.1) to find the associations between the tissue organization and the 
spatial distribution of stressed cardiomyocytes and the different endothelial, myeloid 
and fibroblast cell states. We hypothesized that the distribution of specific cell states in 
the spatial transcriptomics slides could be modelled by the cell-type composition or cell-
state presence of individual spots and their neighbourhood.

For a given collection of cell states of interest, we first defined regions of interest in 
every single slide as the collection of spots where the inferred abundance of the cell type 
from which the cell state was derived was at least 10%. These regions limit the target 
spots used in the MISTy model, however the whole slide is used to spatially contextu-
alise the predictors. We used as predictors the abundances of cell types estimated with 
cell2location or cell states scores. To account only for the effects of the activation of a cell 
state, the state scores of predictor cell states were masked to 0 whenever their score was 
lower than 0. In all models we included two classes of spatially contextualized predictive 
views: an intrinsic (intra) and a local neighbourhood view (para, effective radius = 5).

Specifically we fitted the following models to answer four questions:

(1)	 What are the main cell types whose abundance within a spot or in the local 
neighbourhood predict the stressed vCM3?
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vCM3 ~ intra(cell-type abundance) + para(cell-type abundance)

(2)	 What are the main cell types whose abundance within a spot or in the local 
neighbourhood predict the endothelial subtypes? How do the different subtypes 
relate to each other?

	 ECsubtypes ~ intra(ECsubtypes) + para(ECsubtypes) + intra(cell-type abundance) + 
para(cell-type abundance)

(3)	 What are the myeloid cell states within a spot or in the local neighbourhood that 
better predict fibroblasts cell states? How do fibroblasts cell states relate to each 
other?

	 FibroblastStates ~ intra(FibroblastStates) + para(FibroblastStates) + intra(MyeloidStates) 
+ para(MyeloidStates)

(4)	 What are the main cell types whose abundance within a spot or in the local 
neighbourhood predict the myeloid cell states? How do the different states relate to 
each other?

	 MyeloidStates ~ intra(MyeloidStates) + para(MyeloidStates) + intra(cell-type 
abundance) + para(cell-type abundance)

Specific view importances were compared between patient groups as described 
previously with an R2 filter of 0.1.

Cell–cell communication analysis
To estimate ligand–receptor interactions between the sub-populations of fibroblasts 
and myeloid cells, we extracted gene expression matrix from the integrated snRNA-seq 
and snATAC-seq data for each sample group (that is, myogenic, ischaemic and fibrotic) 
and combined the matrices from all sub-populations. We next used LIANA (v0.0.9)90, a 
framework that compiles the results of state-of-the-art cell communication inference 
methods, to infer ligand–receptor interactions. We focused on the CellPhoneDB91 
ligand–receptor method with Omnipath’s ligand–receptor database92 implemented in 
LIANA90. This was done by combining snRNA-seq samples of myogenic, ischaemic and 
fibrotic groups and subsetting only the fibroblasts and myeloid cells sub-states. Next, 
we used CrossTalker (v1.3.1)93 to find changes in cell–cell communication by contrasting 
ligand–receptor interactions predicted in myogenic vs. ischaemic samples and myogenic 
vs. fibrotic samples. The interactions considered by CrossTalkeR were obtained by filtering 
the output of LIANA90 (P > 0.01).
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Visualization, statistics, and reproducibility
In data represented as box plots (Figs. 2f, 4c,d,m,o, 5b and 6d,n) the middle line corresponds 
to the median, the lower and upper hinges describe the first and third quartiles, the upper 
whisker extends from the hinge to the largest value no further than 1.5 × inter-quartile 
range (IQR) from the hinge and the lower whisker extends from the hinge to the smallest 
value at most 1.5 × IQR of the hinge, and data beyond the end of the whiskers are outlying 
points that are plotted individually. In Figs. 4b and 5b,k, Colours refer to gene-weighted 
kernel density as estimated by using R package Nebulosa94. All reported P-values based 
on multi-comparison tests were corrected using the Benjamini–Hochberg method95. 
The depicted immunofluorescence micrographs are representative (Figs. 4c and 6n). The 
number of samples for each group was chosen on the basis of the expected levels of 
variation and consistency. The depicted RNAscope, immunofluorescence micrographs 
are representative and were performed at least twice, and all repeats were successful. Fig. 
1a contains a panel from BioRender.com.
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Abstract

Adult kidney organoids have been described as strictly tubular epithelia and termed 
tubuloids. While the cellular origin of tubuloids has remained elusive, here we report 
that they originate from a distinct CD24+ epithelial subpopulation. Long-term-cultured 
CD24+cell-derived tubuloids represent a functional human kidney tubule. We show that 
kidney tubuloids can be used to model the most common inherited kidney disease, 
namely autosomal dominant polycystic kidney disease (ADPKD), reconstituting the 
phenotypic hallmark of this disease with cyst formation. Single-cell RNA sequencing of 
CRISPR–Cas9 gene-edited PKD1- and PKD2-knockout tubuloids and human ADPKD and 
control tissue shows similarities in upregulation of disease-driving genes. Furthermore, 
in a proof of concept, we demonstrate that tolvaptan, the only approved drug for ADPKD, 
has a significant effect on cyst size in tubuloids but no effect on a pluripotent stem cell-
derived model. Thus, tubuloids are derived from a tubular epithelial subpopulation and 
represent an advanced system for ADPKD disease modeling.
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Main

Various groups have reported kidney organoids derived from human pluripotent stem 
cells (hPSCs), and improved differentiation protocols have led to mini-kidney structures 
in a dish that contain many cellular constituents of the adult kidney1,2,3,4. However, hPSC-
derived organoids resemble early stages of human kidney development and contain 
nonkidney cell types5. They might therefore not be the ideal system to model adult 
human disease or to study potential regenerative therapies. Recently, organoids of the 
human adult kidney have been reported as cells outgrowing from tubular fragments or 
from urine. They were termed tubuloids to reflect their strictly tubulo-epithelial origin 
and differentiation6. Such structures might be superior to model features of epithelial 
kidney disease, as they are derived from adult human kidneys. However, the exact cellular 
origin of these tubuloids remains elusive, and it is unclear whether they can be used to 
induce the phenotype for an inherited, highly prevalent human kidney disease by gene 
editing.

Here we report that a distinct CD24+ kidney epithelial cell population gives rise to 
tubuloids and that these cells possess distinct metabolic and gene regulatory programs. 
CD24+ cells are scattered throughout the nephron. Their proximal tubule (PT) and loop 
of Henle (LOH) fraction shows the strongest in vitro expansion and long-term growth 
of largely functional tubular structures. We also demonstrate that CD24+ cell-derived 
tubuloids can be used to model autosomal dominant polycystic kidney disease (ADPKD) 
using multiplex CRISPR–Cas9 gene editing, which leads to rapid cyst formation. Using 
single-cell RNA sequencing (scRNA-seq) of tissue from patients with ADPKD and healthy 
donors as well as gene-edited tubuloids compared to controls, we demonstrate similar-
ities in upregulation of reported disease-driving genes. Furthermore, we demonstrate 
that tolvaptan treatment reduces cyst size in tubuloids, while it does not have any effect 
on cyst size in gene-edited induced pluripotent stem cell (iPSC)-derived organoids. 
Therefore, tubuloids represent an advanced model of human ADPKD and are useful for 
drug studies to identify new treatment candidates.

Results

CD24+ cells are metabolically distinct
CD24+ cells that coexpress CD133 have been described as a potential progenitor 
population in human kidney7,8,9,10. As reported11, we detected CD24-expressing cells as 
a small scattered subset mainly among PT epithelium in human kidneys (Fig. 1a). We 
established primary cultures of isolated human CD13+ PT cells and primary CD24+ cells 
(Fig. 1b and Supplementary Fig. 1). It is widely accepted that adult progenitors reside in 



180

Chapter 7

a niche that is defined by a low partial oxygen pressure and physiologic hypoxia12. We 
therefore asked whether CD24+ cells have a different energy metabolism as compared to 
regular PT epithelium (CD13+). Interestingly, we detected decreased basal and maximal 
oxygen consumption rates (OCRs) in CD24+ cells as compared to CD13+ PT cells and 
changes in several other metabolic parameters (Fig. 1c,d and Extended Data Fig. 1a–h). 
These data suggest specialized metabolism in CD24+ cells different from that in PT cells.

Distinct gene regulatory program in CD24+ cells
We analyzed the chromatin accessibility of CD24+ cells compared to CD13+ PT cells using 
an assay for transposase-accessible chromatin with sequencing (ATAC-seq). CD24+ and 
CD13+ cells were sorted by fluorescence-activated cell sorting (FACS; Extended Data 
Fig. 1i) from adult human kidney nephrectomy specimens and immediately subjected 
to ATAC-seq. When compared to CD13+ PT cells, CD24+ cells exhibited a distinct gene 
regulatory program (Fig. 1e and Extended Data Fig. 1j) with increased accessibility of 
genes associated with progenitor cells and dedifferentiation as well as inflammation. 
Gene ontology (GO) term analysis indicated cell cycle activity, cellular responses to stress 
and dedifferentiation (loss of normal tubule transport activity) of CD24+ cells (Extended 
Data Fig. 1k).

scRNA-seq of CD24+ and CD13+ cells
To understand the differences between CD13+ and CD24+ cells at the single-cell level, 
we performed scRNA-seq of freshly sorted CD13+ and CD24+ cells from human kidneys. 
Unsupervised clustering and cell type assignment revealed that CD13 strictly labels 
PT (segment S1–S3) and the thin limb of the LOH (Fig. 1f,h and Supplementary Fig. 2a, 
left), while CD24 sorting captures cells from various parts of the nephron (Fig. 1g,i and 
Supplementary Fig. 2a, right). Two large CD24+ populations (41.1%) showed expression 
of markers from the PT S3 segment and the thin limb of the LOH (Fig. 1g–i). We termed 
these populations scattered tubule epithelial cells (STC1, STC2). We further identified 
type A intercalated cells from the collecting duct (IC-A: SLC4A1+), parietal epithelial cells 
(PECs: VCAM1+, CLDN1+, KLK6+), distal convoluted tubule cells (DCTs: SLC12A3+) and two 
thick ascending limb populations of the LOH (TAL_1 and TAL_2: SLC12A1+). These data 
indicated that only about half of the CD24+ cells were derived from PT and the thin LOH 
limb and thus showed overlap with the source of CD13+ cells.

To determine whether metabolic differences of the CD24+ cells as compared to the 
CD13+ cells can be caused by the CD24+ cells that are located in more distal parts of the 
nephron (TAL, DCT, IC-A), we next sorted CD24+CD13+ double-positive cells as well as 
CD24−CD13+ cells and repeated the metabolic analysis. These data indicated that CD24+ 
cells as a subpopulation of the CD13+ cells are metabolically distinct from CD13+ cells with 
decreased maximal OCR and spare respiratory capacity (Supplementary Fig. 2b,c).
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Fig.1
a, Human kidney tissue stained for LTL, CD13, CD24 (arrows) and DAPI (nuclei). Arrows indicate CD24 
costaining with CD13/LTL. Scale bar, 50 µm.  b, Scheme of cell isolation.  c,d, OCR in CD24+  and CD13+cells. 
Basal, unstimulated OCR; ATP linked, oligomycin OCR; max, FCCP (carbonyl cyanide-4 (trifluoromethoxy) 
phenylhydrazone) OCR; non-mitochondrial (non-mito), rotenone/antimycin A (ROT/AA) OCR. Statistical 
analysis in n = 12 (mean ± s.d.) (c) and n = 12 (mean ± s.e.m.) (d); two-way ANOVA with Tukey’s post hoc test, 
*P = 0.0226 for ATP-linked OCR; ****P < 0.0001 for basal and maximum OCR; nonsignificant, P > 0.9999 for non-
mitochondrial OCR (d). Hum., human (c,d).  e, Heatmap displaying ATAC-seq peak count data in the TSS of 
selected genes of CD13+ or CD24+ cells. f, Scheme of the human nephron with PT, LOH, DCT and IC-A of the 
collecting duct and UMAP embedding for sorted CD13+ cells from the human kidney. n = 7,121 cells from the 
PT (PT_1, PT_2, PT_3, PT_4) and S3 segment/thin limb of the LOH (S3/TL).  g, UMAP embedding for sorted 
CD24+ cells from the human kidney. n = 868 cells from the DCT, TAL cells from the LOH (TAL cells 1 and 2), 
PEC, STC_1 and STC_2, and collecting duct IC-A. h,i, Scaled gene expression of the reported KPMP marker 
genes of the identified clusters in scRNA-seq of CD13+ cells (h) and CD24+ cells (i). j, Representative difference 
interference contrast (DIC) microscopy images of 30-day tubuloids. Arrows mark cysts and cyst borders. Scale 
bars, 200 µm.  k, Comparison of organoid formation rate.  n = 4 (mean ± s.e.m.); unpaired two-tailed  t-test, 
***P = 0.0002. l,m, Early (l) and late (m) organoid growth curves. Two-way ANOVA with Bonferroni’s post hoc 
test, n = 2 from separate experiments; the graph shows the mean of the two experiments.
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CD24+ cells as the source of adult kidney tubuloids
Recently reported tubuloids from adult human kidneys have been established as 
outgrowing structures from digested tissue6. However, the cellular origin of these 
tubuloids remains unknown. We sought to establish adult kidney tubuloids from isolated 
CD24+ cells and from regular PT (CD13+) cells. The Wnt target gene LGR5 is one of the most 
widely used adult stem cell markers13,14. While we did not detect expression of LGR5 in 
CD24+ cells, we observed higher accessibility in the transcriptional start site (TSS) of the 
LGR4 gene and increased expression of LGR4 mRNA in CD24+ cells (Supplementary Fig. 
2d,e). We thus used Wnt3a and R-spondin 1 (RSPO1) treatment in our organoid protocol.

The organoid formation rate and population doubling of CD24+ cells were increased 
compared to CD13+ cells (Fig. 1j–m). We observed four phases of CD24+ cell growth and 
expansion into tubulo-epithelial organoids referred to as tubuloids (Fig. 2a,b, Extended 
Data Fig. 2a–f, Supplementary Videos 1–4 and Supplementary Notes). The tubuloid 
culture showed robust growth for >6 months (187 days; 23 passages). Compared to the 
one-phase protocol in ref. 6, we observed an increased organoid formation rate using the 
four-phase protocol and also more tubules within each tubuloid (Fig. 2c–e and Extended 
Data Fig. 2g,h). We further tried a protocol that solely uses epidermal growth factor 
(EGF) and fibroblast growth factor 2 (FGF2)15 and demonstrated a reduced organoid 
formation rate in the absence of Wnt3a and RSPO1 as compared to the four-phase 
protocol, confirming the importance of these factors for tubuloid formation (Extended 
Data Fig. 2i–k).

In summary, these data indicate that CD24+ cells are the origin of tubuloids and 
possess an increased in vitro growth and maintenance capacity compared to CD13+ 
PT cells. Because CD24+ cells can be found in several parts of the nephron, we next 
asked whether indeed their PT S3 and LOH fraction (CD24+CD13+) shows an enhanced 
organoid formation rate as compared to other CD24+ cells (CD24+CD13–), CD13+ cells 
without CD24 expression (CD24–CD13+) or any other kidney cell type (CD24–CD13–). 
Notably, we observed organoid formation only from CD24+ cells (Extended Data Fig. 
3a–l), with CD24+ cells from the PT and thin limb of the LOH (CD24+CD13+) showing 
the best organoid formation rate as compared to CD24+ cells from any other location 
(CD24+CD13−; Extended Data Fig. 3m).

Tubuloids mainly represent the proximal nephron
To understand the composition and differentiation of tubuloids, we next performed 
scRNA-seq from early (day 21) and late (day 97) tubuloids obtained using the four-
phase protocol (Fig. 2a). Most tubuloid populations had high expression of CD24 and 
CD13 (ANPEP), in line with their origin (Fig. 2f–i). The majority of cells (62.7%) in the 
early tubuloid were similar to the STC population in the human kidney (Fig. 1i) and 
characterized by expression of PT S3 markers such as PDZK1IP1 as well as markers of the 
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Fig. 2
a, Timeline of tubuloid generation (four-phase protocol). Black arrows indicate the change of conditioned 
medium (CM) and growth factors, and red arrows indicate time points for scRNA-seq. b, Representative images 
of CD24+  cell-derived tubuloids using the four-phase protocol. Scale bars, 200 µm (days 30, 145), 100 µm 
(day 0) and 50 µm (days 5, 7, 12 and 17). c, Schematic timeline of tubuloid generation using the one-phase 
protocol. d,e, Quantification of tubuloid formation rate on day 22 (d) and number of tubuli within a tubuloid 
on day 25 (e) of CD24+ cells comparing the four-phase and one-phase protocol. Statistical analysis in  n = 4 
(mean ± s.d.); unpaired two-tailed  t-test with Welch’s correction, **P = 0.0020 (d) and  n = 10 (mean ± s.d.); 
unpaired two-tailed t-test with Welch’s correction, ***P = 0.0002; mean = 18.60 tubuli per four-phase tubuloid, 
95% confidence interval = 9.464–22.34 tubuli, indicating that 95% of four-phase tubuloids contained around 
9–22 tubuli (e). f, UMAP embedding of cells from an early tubuloid (day 21, four-phase protocol). n = 2,291 
cells in eight clusters: TPC_1–TPC_3, proliferating TPC, DCT_1 and DCT_2, and PT/PEC_1 and PT/PEC_2.  g, 
UMAP embedding of cells from a late tubuloid (day 97, four-phase protocol).  n = 3,693 single cells in eight 
clusters: TPC_1–TPC_5, proliferating TPC (prolif. TPC_1 and TPC_2), and cells that showed markers of PEC and 
PT (PT/PEC). h, UMAP embedding of cells from an early tubuloid (day 21, one-phase protocol). n = 5,631 cells 
in 11 clusters identified: TPC (TPC_1–TPC_7), proliferating TPCs, (prolif. TPC_1 and TPC_2), DCT-like-1, and 
PT/PEC. i, Heatmap of marker gene expression for different nephron parts using KPMP marker genes as well 
as selected general marker genes and proliferation markers of the early-stage (day 21) and late-stage (day 
97) tubuloids (four phase) and an early (day 21) tubuloid (one-phase protocol). For details on statistics and 
reproducibility, see Methods.
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thin limb of the LOH (descending thin limb and ascending thin limb (ATL); Fig. 2i and 
Supplementary Fig. 3a). The annotation was based on marker genes from the Kidney 
Precision Medicine Project (KPMP)16. We termed these populations tubuloid progenitor 
cells (TPC_1–TPC_3 and proliferating TPC) as these are the cells that form the largest parts 
of the tubuloids. We further detected smaller populations of DCT cells (DCT-like 1 and 
DCT-like 2) characterized by SLC12A3 expression and two small populations that showed 
expression of PT and PEC marker genes (PT/PEC_1 and PT/PEC_2; Fig. 2f,i, Supplementary 
Fig. 3a and Supplementary Notes).

Notably, we observed strong expression of genes that are associated with proliferation 
(MKI67, BIRC5, CDKN3) only among the TPC populations (proliferating TPC; Fig. 2i). 
This suggested that primarily cells derived from the PT (S3) and thin limb of the LOH 
sustain long-term growth in the tubuloids. In line with this, we primarily detected TPC 
and proliferating TPC (TPC_1–TPC_5, proliferating TPC_1 and TPC_2) in the late-stage 
tubuloid (day 97, 97.9% of cells; Fig. 2g,i and Supplementary Fig. 3b). We further detected 
one small PT/PEC population in the late-stage tubuloid (Fig. 2g,i, Supplementary Fig. 
3b and Supplementary Notes). We also performed scRNA-seq of a tubuloid generated 
from isolated CD24+ cells that were subjected to the published one-phase protocol6. 
Again, the majority of the cells (85.6%) showed a transcriptional marker profile consistent 
with the PT S3 segment and the thin limb of the LOH and were thus annotated as TPC 
(TPC_1–TPC_7), with only TPC populations showing expression of proliferation marker 
genes (proliferating TPC_1 and TPC_2) (Fig. 2h,i and Supplementary Fig. 3c). We further 
detected one population with minor expression of SLC12A3 that we termed DCT-like 1 as 
well as one small PT/PEC population (Fig. 2h,i, Supplementary Fig. 3c and Supplementary 
Notes). Of note, due to dedifferentiation, the cell type annotation within these organoids/
tubuloids is difficult, and similarly, in the data reported by ref. 6, no classical marker genes 
are used for the cell type annotation. However, using the reported KPMP guideline marker 
genes for the human nephron, the annotation indicates that the majority of tubuloids are 
derived from CD24+ cells within the PT S3 and LOH.

Tubuloids consist of functional polarized tubule epithelium
Immunostaining of tubuloids on day 21 confirmed that CD24+ cell-derived tubuloids 
retain epithelial differentiation and express E-cadherin (CDH1) and β-catenin (Fig. 3a and 
Supplementary Fig. 4a,b,f). Staining of the sodium/potassium ATPase (Na+/K+-ATPase) 
showed a distinct basolateral pattern, while F-actin was expressed at the apical side of 
the cells (Fig. 3b), indicating cell polarity within the tubuloids. Staining for acetylated 
tubulin indicated primary cilium formation at the luminal surface (Fig. 3c). We observed 
a Villin1 (VIL1)-positive brush border toward the lumen of the tubuloids (Fig. 3d). By 
electron microscopy, epithelial cells in the tubuloids showed typical features of human 
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Fig. 3
a, Representative images of tubuloids (four phase) derived from CD24+ cells stained for CDH1 (E-cadherin), 
β-catenin and DAPI (nuclei). Scale bars, 50 µm. b, Representative images of tubuloids (four phase) stained for 
basolateral Na+/K+-ATPase, apical filamentous actin (F-actin) and DAPI. Scale bars, 50 µm. c, Representative 
images of tubuloids (four phase) stained for apical acetylated tubulin (Ac-tub), Na+/K+-ATPase and DAPI. Scale 
bars, 50 µm.  d, Representative images of tubuloids (four phase) stained for Villin1 (brush border), Na+/K+-
ATPase and DAPI. Scale bars, 50 µm.  e–h, Representative transmission electron microscopy (TEM) images 
of tubuloids (four phase, day 21). Arrows mark cell borders and microvilli. N, nucleus; TJ, tight junction; 
AJ, adherens junction; BB, brush border; Mi, mitochondria; Chr, chromosome; RTE, renal tubule epithelium; 
red dashed squares indicate brush border; black dashed squares mark cilia. Black arrows mark the apical 
side and white arrows mark the basolateral side of epithelial cells. Scale bars, 100 µm (e), 5 µm (f) and 1 µm 
(g,h).  i–k, Representative images (i,j) and quantification (k) of intracellular calcein-AM accumulation in 
tubuloids in the presence of the P-gp transporter inhibitor PSC833 or vehicle (0.2% DMSO). Unpaired two-
tailed  t-test with Welch’s correction,  n = 4 (mean ± s.e.m.), *P = 0.0207. Scale bars, 50 µm (i,j). AU, arbitrary 
units. l–t, Representative images of human iPSC-derived kidney organoids stained for NMIIB (l), acetylated 
tubulin (m,r), Zo1 (n,p), CDH1 and β-catenin (o), CD133 and LTL (q), AQP1 (s) and AQP1 with PODXL (t). DAPI 
was used to counterstain nuclei in all images. Scale bars, 50 µm (o–t), 25 µm. Asterisks in all images indicate 
renal tubule lumen (a–h). Arrows indicate positive staining in immunofluorescence images (a–d,i,j,l–t). For 
details on statistics and reproducibility, see Methods.
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adult PT epithelium, including tight and adherens junctions, lumen formation and 
polarization (Fig. 3e–h). CD24+ cell-derived tubuloids showed Zonula occludens protein 
1 (Zo1) expression (Supplementary Fig. 4c). Nonmuscle myosin IIB (NMIIB), a motor 
protein interacting with the actin cytoskeleton, was also strongly expressed in tubuloids 
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Fig. 4
a, Scheme of lentiviral paired CRISPR–Cas9. b,c, Representative western blots of gene-edited tubuloids. M1, 
two U6-driven paired gRNAs; M2 and M3, U6- and 7SK-driven paired gRNAs; Ctr, no transduction; GAPDH was 
used as a loading control. Uncropped western blots in Supplementary Fig. 18a–d. d, Timeline of gene editing 
in tubuloids. Blebb, blebbistatin; Forsk, forskolin. e, Representative images of EV, PKD1−/− and PKD2−/− tubuloids 
at 10 days after transduction. Scale bars, 100 µm (e(middle and right)) and 50 µm (e (left)). f–h, Representative 
images (f,g) and quantification of cyst formation rate (h) using two-way ANOVA with Bonferroni’s post 
hoc test in n = 3 (mean ± s.e.m.), nonsignificant for EV forskolin or blebbistatin versus Ctr; PKD1−/−  forskolin 
versus Ctr, ***P = 0.0007;  PKD1−/−  blebbistatin versus forskolin, ***P = 0.0001;  PKD1−/−  blebbistatin versus Ctr 
and PKD2−/−forskolin or blebbistatin versus Ctr and blebbistatin versus forskolin, ****P < 0.0001 (h). Scale bars, 
100 µm (f  (left),  g  (middle)) and 50 µm (f  (middle and right),  g  (left and right)). Ctr tubuloids were treated 
with DMSO.  i,j, Quantification of cysts with Welch and Brown–Forsythe and Welch ANOVA test post hoc 
Tamhane’s T2 in  n = 43 PKD1−/−  or  PKD2−/−  tubuloids + blebbistatin and  n = 34  PKD1−/−  or  PKD2−/−  tubuloids 
alone versus  n = 16 EV tubuloids + blebbistatin (mean ± s.d.), ****P < 0.0001 in PKD1−/−  tubuloids for 
blebbistatin versus tubuloids alone and blebbistatin or tubuloids alone versus EV (i) and in PKD2−/− tubuloids 
for blebbistatin or tubuloids alone versus EV (j); ***P = 0.0004 in  PKD2−/−  tubuloids for blebbistatin versus 
tubuloids alone (j). k,l, Representative images of PKD1−/− (k) and PKD2−/− (l) tubuloids at days 10 and 20 treated 
with blebbistatin. Scale bars, 200 µm (k,l (right)) and 100 µm, (k,l (left)). m, Statistical analysis of cysts using 
two-way ANOVA with Bonferroni’s post hoc test at day 10 in n = 26 PKD1−/− or n = 21 PKD2−/− versus n = 9 EV 
tubuloids (mean ± s.d.), day 15 in  n = 29  PKD1−/−  or  n = 26  PKD2−/−  versus  n = 11 EV tubuloids (mean ± s.d.) 
and day 20 in  n = 38  PKD1−/−  or  n = 27  PKD2−/−  versus  n = 11 EV tubuloids (mean ± s.d.), ***P = 0.0004 at day 
20 for PKD2−/− versus EV tubuloids; ****P < 0.0001 at day 10 for PKD1−/− or PKD2−/− versus EV tubuloids, day 15 
for PKD1−/− or PKD2−/− versus EV tubuloids and day 20 for PKD1−/− versus EV tubuloids. For details on statistics 
and reproducibility, see Methods.

(Supplementary Fig. 4d). The epithelium of the tubuloids also showed expression of 
CD133 and aquaporin 1 (AQP1), while the podocyte marker podocalyxin (PODXL) was not 
expressed (Supplementary Fig. 4e,f), as expected. The percentage of tubuloids that were 
positively stained for the markers described above was quantified, and human kidney 
tissue was used as validation of staining (Supplementary Fig. 4g,h).

P-glycoprotein (P-gp) is an ATP-dependent efflux transporter located at the apical 
membrane of the renal PT and can be blocked using the compound PSC833. To 
evaluate whether CD24+ cell-derived tubuloids contain P-gp transporter function, we 
exposed them to PSC833 and then incubated them with the P-gp substrate calcein-AM. 
Fluorescent calcein prominently accumulated in the tubuloids when the P-gp efflux 
transport function of the tubuloids was inhibited by PSC833 (Fig. 3i–k), confirming the 
activity of P-gp.

We next compared the adult kidney tubuloids with iPSC-derived kidney organoids 
(Fig. 3l–t). As expected, iPSC-derived organoids contained segments of tubule-like struc-
tures with expression of E-cadherin and β-catenin and PT-like segments that stained 
positive for Lotus tetragonolobus lectin (LTL) and AQP1 (Fig. 3l–t), while various other 
parts did not stain for these markers. Zo1, NMIIB and acetylated tubulin were also 
detectable in tubule-like segments of the iPSC organoids (Fig. 3l–t). In sharp contrast to 
the tubuloids, a population of epithelial cells in the iPSC-derived organoids expressed 
the podocyte marker PODXL (Fig. 3t). Taken together, we demonstrate a strict tubule 
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epithelial origin and differentiation of tubuloids in contrast to iPSC-derived kidney 
organoids, which differentiate into various different parts of the kidney as well as other 
nonkidney off-target cell types5.

Modeling adult polycystic kidney disease in tubuloids
One key advantage of organoids is human disease modeling in the dish. While this has 
been successfully accomplished with hPSC-derived kidney organoids for certain disease 
states, tubuloids may constitute a more accurate model for the adult human tubule 
and do not contain early developmental stage cell types or off-target cell types from 
differentiation protocols.

ADPKD is the most common hereditary kidney disease17 and accounts for about 10% 
of all patients with end-stage renal disease. Mutations in two large multi-exon genes, 
PKD1 and PKD2, cause the disease. Tolvaptan has recently been approved for treatment, 
but potent and truly curative therapies with no or limited adverse effects are still missing. 
We therefore aimed to model ADPKD in tubuloids to develop an in vitro platform that 
resembles cyst formation. As CRISPR–Cas9-induced insertions and deletions (indels) 
are often still in frame, which reduces knockout efficiency18, we established a lentiviral 
multiplex CRISPR cloning vector (Supplementary Figs. 5a and 6) for effective trans-
duction of organoids and then used it to establish a paired CRISPR–Cas9 construct for 
targeting two locations of either the PKD1 or PKD2 gene locus (Fig. 4a and Supple-
mentary Figs. 5b,c, 7 and 8). We compared different promoter assembly strategies for 
the paired lentiviral PKD1 and PKD2 gene editing (Supplementary Figs. 5d–i and 9–12). 
Western blot analysis indicated that a U6- and 7SK-driven guide RNA (gRNA) expression 
system led to sufficient knockout of PC1 protein (M3 clone; Fig. 4b) or PC2 protein (M2 
and M3 clones; Fig. 4c), whereas using a U6 promoters for both gRNA pairs did not result 
in sufficient protein loss (M1 clone; Fig. 4b,c).

We therefore used U6- and 7SK-driven gRNA expression for gene editing of PKD1 
and PKD2 in tubuloids and observed considerable GFP expression at 48 h after trans-
duction (Supplementary Fig. 13a). As a control (empty vector (EV)), we used the same 
virus without gRNA. We verified transduction efficacy by flow cytometry (Fig. 4d,e and 
Supplementary Fig. 13b–i). Efficient knockout was validated in sorted GFP+ cells from 
tubuloids on day 10 after transduction (Fig. 4d,e) by PCR (Extended Data Fig. 4a–d) and 
Sanger sequencing, indicating a deletion of 265 bp in the PKD1 gene (Extended Data Fig. 
4e and Supplementary Fig. 7) and 165 bp in the PKD2 gene (Extended Data Fig. 4f and 
Supplementary Fig. 8).

Cyst formation in PKD1 −/− and PKD2 −/− tubuloids
We noticed cyst formation in the paired PKD1 or PKD2 CRISPR–Cas9 transduced tubuloids 
on day 10 after transduction (Fig. 4e and Supplementary Video 5). However, cyst formation 
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rates remained very low at 9–20%. It has been reported that elevated renal cyclic AMP 
(cAMP) levels promote cyst growth and that the cAMP agonist forskolin can induce 
rapid and dose-dependent cyst formation in organoids derived from PKD−/− hPSCs19. 
Furthermore, the myosin II ATPase inhibitor blebbistatin as well as removal of adherent 
cues reportedly increases cyst growth in hPSC-derived kidney organoids19,20. Interestingly, 
we observed a significant increase in the cyst formation rate by both substances using a 
suspension culture (Fig. 4f–h). Blebbistatin treatment yielded the highest cyst formation 
rate (Fig. 4h) and also increased the cyst size (Fig. 4i,j). Next, we also quantified the 
percentage of GFP+ cysts, which was markedly higher in gene-edited PKD−/− tubuloids 
(40–50%, on day 10 after transduction as compared to control; Extended Data Fig. 4g and 
Supplementary Notes). We next asked whether blebbistatin treatment of tubuloids in 
three-dimensional (3D) culture can affect subsequent cyst growth in suspension culture. 
Interestingly, the cysts that originated from PKD−/− tubuloids exhibited an increase in 
size proportional to the timespan of prior blebbistatin exposure (Fig. 4k–m).

Cysts in PKD-knockout tubuloids resemble human ADPKD tissue
Confocal analysis confirmed that cyst formation occurred in GFP+ cells of PKD−/− 
tubuloids but not in control tubuloids (Supplementary Fig. 14a–j). The GFP signal intensity 
was increased within the cysts (Supplementary Fig. 14c). Cysts of PKD−/− tubuloids in the 
absence or presence of blebbistatin were formed by single- or double-lined epithelial 
cells, which costained for Zo1 and NMIIB (Supplementary Fig. 14b–h) as well as E-cadherin 
(CDH1) and acetylated tubulin (Supplementary Fig. 14i,j). The cyst lining epithelial cells 
were oriented with the primary cilia toward the cyst lumen (Supplementary Fig. 14i). 
When comparing the cyst morphology of the gene-edited tubuloid with cysts in human 
ADPKD kidney tissue, we observed striking similarities (Supplementary Fig. 15a–d).

Single-nucleus RNA sequencing of human ADPKD tissue
We next performed single-nucleus RNA-seq (snRNA-seq) of human ADPKD tissue (n = 3 
patients with PKD1 or PKD2 mutations) and two kidney donor biopsies as healthy controls 
(Fig. 5a and Extended Data Fig. 5a–c). We observed an enrichment of specific immune 
cell clusters in ADPKD (Extended Data Fig. 5d,e). Using differential gene expression 
analysis, we observed increased expression of genes with a proposed role in processes 
associated with ADPKD, including upregulation of AKAP12 in the PT and LOH, MET and 
LRRK2 in the DCT and VCL in the DCT and collecting duct (Fig. 5b, Extended Data Fig. 5f 
and Supplementary Notes).

Using PROGENY, we observed increased hypoxia, mitogen-activated protein kinase 
(MAPK), epidermal growth factor receptor (EGFR), nuclear factor (NF)-kB and tumor 
necrosis factor α (TNFα) signaling activity, particularly in the LOH and collecting duct 
clusters of the human ADPKD tissue (Extended Data Fig. 5g). We detected increased 
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Adult human kidney organoids originate from CD24+ cells and  
represent an advanced model for adult polycystic kidney disease

7

expression of mTOR, MYC and cAMP target genes in several epithelial cell populations 
from the ADPKD tissue (Extended Data Fig. 5h), suggesting that these epithelial popula-
tions represent cyst-lining epithelial cells. Gene set enrichment and GO term analyses 
pointed toward proinflammatory pathways in various immune cell populations and 
enrichment of terms associated with cytoskeleton, focal adhesion and tight junctions as 
well as MAPK signaling in epithelial cell clusters (Extended Data Fig. 6).

Over-representation analysis of the ADPKD data compared to the healthy kidney 
data pointed toward phosphoinositide 3-kinase (PI3K)–Akt and MET signaling in PT, 
PI3K–Akt, BRAF, MAPK and RHO GTPase signaling in DCT and MET and MAPK signaling 
among various other pathways in TAL and collecting duct epithelium (Supplementary 
Fig. 16). Many of these pathways have been reported as key players in ADPKD21,22,23,24. 

CrossTalkeR25  analyses indicated increased signaling between epithelial cell types 
and immune cells as well as fibroblasts in ADPKD (Extended Data Fig. 7a-f). We further 
performed subclustering analysis of the epithelial populations (Extended Data Fig. 
8 and Supplementary Notes). Overall, these data provide an unbiased snRNA-seq atlas of 
human ADPKD as compared to healthy human kidneys.

Transcriptomic comparison between PKD-knockout tubuloids 
and human tissue
To compare the gene-edited ADPKD tubuloid model to the human disease, we next 
performed scRNA-seq from tubuloids after transduction with the PKD1- or PKD2-targeted 
paired CRISPR–Cas9 editing construct (Fig.  5c  and Supplementary Fig.  17a-c). We 
mapped the tubuloid cell clusters to the human kidney tissue data using Symphony26 and 
observed that most tubuloid clusters mapped to PT_4 and TAL_2 (Extended Data Fig. 9a-
e). This analysis also confirmed our annotation and indicated that tubuloids are mainly 
representing the proximal part of the nephron. Staining of human ADPKD kidney tissue 

Fig. 5
a, Overview of the human kidney tissue and  PKD1  and  PKD2  genotypes used for snRNA-seq and UMAP 
embedding of n = 26,509 single cells from the five human kidney samples. Labels refer to identified cell types. 
EC, endothelial cells; Mac, macrophages; Fib, fibroblasts; PT, proximal tubular cells; Pod, podocytes; vSMC, 
vascular smooth muscle cells; IC-A/B, intercalated cells A/B; DCT, distal convoluted tubular cells; PC-CD/CNT, 
principal cells of connecting tubule/collecting duct; TAL, thick ascending limb tubular cells; unk, unknown. WT, 
wild type. b, Top five most upregulated genes in human ADPKD versus donor biopsies. c, Top, scheme of gene 
editing and scRNA-seq in tubuloids. Bottom, UMAP embedding of n = 496 single cells from PKD1 gene-edited 
tubuloids (four phase, PKD1−/−) (left) and n = 1,483 cells from PKD2 gene-edited tubuloids (PKD2−/−) (right). d, 
Common dysregulated pathways obtained from gene set enrichment with KEGG pathway analysis using all 
differentially expressed genes in human ADPKD versus donor biopsies in PT_4 and TAL_2 cells with the cells 
of the tubuloids that mapped to PT_4 and TAL_2 using Symphony. NES, normalized enrichment score. e,f, 
Select top commonly upregulated genes in human ADPKD versus donor biopsies and the cells that mapped to 
PT_4 (e) and TAL_2 (f) in gene-edited tubuloids (PKD−/− tubuloids) versus control tubuloids. g, Gene set over-
representation analysis with Reactome pathways for the common upregulated genes in human tissue (ADPKD 
versus donor biopsies) and tubuloids (PKD−/− versus control). List. mono. entry, Listeria monocytogenes entry.
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Chapter 7
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indicated that cysts can also be derived from proximal parts of the nephron (Extended 
Data Fig. 9f-h), in line with the literature27,28,29. 

We then compared all genes that were differentially expressed in PT_4 and TAL_2 of 
the human tissue to the cells that were mapped to PT_4 and TAL_2 from the tubuloids 
(>94% of the tubuloid cells; Extended Data Fig.  10a). Common enriched pathways 
included MAPK signaling and retinol metabolism, among others (Fig. 5d and Extended 
Data Fig. 10b). MAPK signaling has been reported to be active in cyst-lining cells, and 
it has been suggested that cAMP could contribute directly to extracellular signal-regu-
lated kinase (ERK) activation via protein kinase A (PKA), Rap-1 and B-Raf to promote cyst 
growth23,30. Retinoic acid has been demonstrated to induce transcription of  PKD1  (ref. 
31), and transgenic mice overexpressing a functional human  PKD1  gene develop renal 
cysts32,33.

We next focused on the top common markedly and differentially expressed genes in 
PT_4 and TAL_2 between human tissue (ADPKD versus healthy donor biopsies) and the 
tubuloid-derived cells that mapped to human tissue PT_4 and TAL_2 using Symphony. 
Among the common markedly upregulated genes in human disease and gene-edited 
tubuloids as compared to controls, we identified SYNE2, PLEKHA1, BIRC3, RHOU and EGR1 
(Fig. 5e,f  and Supplementary Notes). Common downregulated genes included ANPEP, S
LC20A1 and CDH6, among others, pointing toward epithelial dedifferentiation (Extended 
Data Fig. 10c).

To compare the common Reactome terms enriched in PT_4 and TAL_2, we 
performed an over-representation analysis of the markedly common upregulated genes 
in gene-edited tubuloids and human disease. This analysis indicated enrichment of terms 

Fig. 6
a–d, Representative images (a–c) and quantification of cyst size (d) in EV, PKD1−/− and PKD2−/−tubuloids treated 
with AVP versus control. Two-way ANOVA with Bonferroni’s post hoc test in n = 12 (mean ± s.e.m.), *P = 0.0165 
for EV + AVP versus control; ****P < 0.0001 for PKD1−/− or PKD2−/− + AVP versus control (d). Scale bars, 200 µm 
(b,c) and 100 µm (a). e, Quantification of cAMP in EV, PKD1−/−and PKD2−/− tubuloids treated with tolvaptan (0.1–
40 µM) or DMSO (0.0) as control. Two-way ANOVA with Tukey’s post hoc test in n = 3 (mean ± s.d.), P = 0.9779 
in EV,  P = 0.5354 in  PKD1−/−  and  P > 0.9999 in  PKD2−/−  versus control with 0.1 µM tolvaptan;  P = 0.4963 for 
EV, P = 0.5975 for PKD1−/− and P = 0.0956 for PKD2−/− with 1 µM tolvaptan; nonsignificant for 10–40 µM tolvaptan 
in EV;  P = 0.1868 for  PKD1−/−and ****P < 0.0001 for PKD2−/−  with 10 µM tolvaptan; *P = 0.0136 for  PKD1−/−  and 
****P < 0.0001 for PKD2−/−  with 20 µM tolvaptan; ***P = 0.0007 for  PKD1−/−  and **P = 0.0015 for  PKD2−/−  with 
40 µM tolvaptan. f–h, Representative images (f,g) and quantification (h) of EV, PKD1−/− and PKD2−/− tubuloids 
subjected to tolvaptan or DMSO with different durations. Two-way ANOVA with Tukey’s post hoc test 
in n = 3 (mean ± s.e.m.); for tolvaptan treatment: 0.0 h: ****P < 0.0001 for PKD1−/− versus EV and ***P = 0.0001 
for  PKD2−/−  versus EV; 24 h: ***P = 0.0003 for  PKD1−/−  versus EV and ***P = 0.0002 for  PKD2−/−versus EV; 48–
72 h: nonsignificant in cyst size for  PKD1−/−  or  PKD2−/−  versus EV (P = 0.4014 for 48 h and  P = 0.5268 for 72 h 
in  PKD1−/−  versus EV;  P = 0.0818 for 48 h and  P = 0.9403 for 72 h in  PKD2−/−  versus EV); 24–72 h for DMSO: 
****P < 0.0001 for PKD1−/−  or  PKD2−/−  versus EV; comparing 72 h after treatment with before treatment: 
nonsignificant for EV and ****P < 0.0001 for PKD1−/− or  PKD2−/−  (h). Scale bars, 200 µm (f,g).  i, Quantification 
of cyst size in iPSC-derived ADPKD organoids (PKD2  gene editing) treated with tolvaptan or DMSO.  n = 88 
versus n = 17 (mean ± s.e.m.), unpaired two-tailed t-test. j, Expression of AVPR1A and AVPR2 in tubuloids and 
published scRNA-seq datasets from iPSC-derived organoids.5,41,42,43 For details on statistics and reproducibility, 
see Methods.
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such as tight junction interaction and cell junction organization in PT_4 and RHO GTPase 
cycle in TAL_2 (Fig. 5g). Tight junction composition has been reported to be altered in 
ADPKD34, and impaired formation of desmosomal junctions has also been reported in 
ADPKD35. Furthermore, work from several groups has demonstrated an important role of 
the Rho family of GTPases in cystogenesis24,36.

In summary, our data indicate that  PKD1−/−  and  PKD2−/−  tubuloids resemble human 
ADPKD cyst formation and cyst morphology and that some of the reported molecular 
mechanisms of ADPKD are also altered in the  PKD−/−  tubuloids. Of note, ADPKD in 
humans develops over many years in a heterogeneous environment with immune cells 
and inflammation as well as mesenchymal cells, perfusion and altered filtration, which 
we are obviously lacking within the gene-edited tubuloids.

Tolvaptan reduces cyst size in ADPKD tubuloids
Increased intracellular cAMP levels have a central role in ADPKD, and vasopressin 
promotes intracellular cAMP generation via its AVPR2 receptor. Tolvaptan has been 
demonstrated to lower cAMP levels as an AVPR2 antagonist, resulting in reduced cyst 
growth and disease progression37. Incubation with arginine vasopressin (AVP) markedly 
increased the growth of  PKD−/−  cysts (Fig.  6a-d), while we detected a dose-dependent 
effect of tolvaptan on cAMP levels in  PKD1−/− and  PKD2−/−  tubuloids (Fig. 6e). Based on 
these results and cytotoxicity data (Extended Data Fig. 10d), we next used a dosage of 
15 µM tolvaptan to study the potential effect on cyst size. We observed a time-dependent 
effect of tolvaptan treatment on cyst size in both PKD1−/− and PKD2−/− tubuloids (Fig. 6f-
h). Notably, we did not observe an effect of tolvaptan treatment on iPSC-derived ADPKD 
cysts (Fig. 6i), in line with published experiments38. The reason for this might be that 
AVPR2, the primary target of tolvaptan, is expressed in tubuloids, while it is not expressed 
in iPSC-derived kidney organoids (Fig. 6j  and Extended Data Fig.  10e,f). Interestingly, 
we detected an increased expression level of AVPR2 in  PKD1−/−  or  PKD2−/−  tubuloids as 
compared to control tubuloids (Extended Data Fig. 10g), in line with studies by Torres et 
al.39. and others40 showing upregulation of AVPR2 in ADPKD. Single-molecule fluorescence 
in situ hybridization and immunostaining suggested widespread AVPR2 expression in 
cyst-lining cells in human ADPKD tissue (Extended Data Fig. 10h-j).

Discussion

Tubuloids have been recently reported as a tool to study human kidney epithelial 
homeostasis and disease6. However, their exact cellular source in the human kidney 
remained unclear. In this study, we report that kidney tubuloids originate from CD24+ 
cells. Notably, we could demonstrate that other renal cells are not able to generate 
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tubuloids, while CD24+ cells from the PT and LOH have the overall highest organoid 
formation capacity and outcompete CD24+ cells from other nephron parts in long-term 
tubuloid cultures. Human CD24+ cells maintain low rates of oxygen metabolism in vitro 
and display a distinct gene regulatory program with increased accessibility of various 
genes that have previously been associated with a progenitor-like phenotype. While 
early-stage tubuloids contained proximal and distal tubule cells with a potential minor 
contribution of PECs, only cells from the S3 part of the PT and the downstream thin limb 
of the LOH ultimately expanded and formed the vast majority of late-stage tubuloids 
with features of a functional and polarized tubule. We further demonstrate the use of a 
four-phase tubuloid protocol that results in a higher organoid formation rate and more 
tubules within a given organoid as compared to the published one-phase protocol. 
Tubuloids generated with the four-phase protocol presented here contain different parts 
of the tubule with PT, LOH and DCT at early time points, while we only identified PT and 
thin limb of the LOH at late time points. The original tubuloid paper10 reports similar 
findings and also the presence of collecting duct cells, which we did not observe. This 
difference might be due to the use of different marker genes for cell type annotation 
and is likely also due to the use of different protocols for generation of tubuloids from 
purified CD24+ cells in our study compared to culture of tubular fragments by Schutgens 
et al.10.

hPSC-derived kidney organoids have recently emerged as a tool for disease 
modeling. However, these organoids still contain various cell types that lack kidney-spe-
cific differentiation (off-target). Transcriptionally, they also appear to represent an 
earlier developmental stage than the adult human kidney, as recently shown by scRNA-
seq5,20. Therefore, it is questionable whether disease modeling in hPSC-derived kidney 
organoids generated by currently available protocols sufficiently mimics certain features 
of the adult human kidney situation and thus can serve for disease modeling, target 
identification and validation approaches. Kidney tubuloids derived from CD24+ cells 
may be more useful to model features of diseases such as ADPKD that originate from the 
tubule epithelium and thus can become a valuable translational tool to study disease 
mechanisms and identify new therapeutics. Indeed, comparing snRNA-seq data with 
human ADPKD and control tissue and scRNA-seq data of gene-edited PKD1−/− or PKD2−/− 
tubuloids suggests specific similarities within important pathways associated with 
cystogenesis. Furthermore, we could demonstrate that tolvaptan treatment reduces cyst 
size in PKD−/− tubuloids, while it does not affect cyst size in iPSC-derived PKD−/− kidney 
organoids.

Taken together, our data indicate that CD24+ cells are the source of kidney tubuloids 
and that these adult kidney tubuloids represent an advanced model of adult human 
polycystic kidney disease that will hopefully be useful for the development of interven-
tional strategies.
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Methods

Ethics statements and patient tissue collection
The study complies with all relevant ethical regulations and was approved by the ethical 
board of the RWTH Aachen University (EK016/17) and the Erasmus Medical Center, 
Rotterdam (no. 196.927/2000/235, MEC20130-188). For full details on patients, see 
Supplementary Notes.

Plasmid construction
The LentibbCas9v2eGFP vector was assembled using LentiCRISPRv2GFP originally 
developed by David Feldser’s laboratory (82416, Addgene) as a backbone. We used 
paired gRNAs for targeting exon 36 and 37 of the PKD1 gene or exon 1 of the PKD2 gene. 
Lentiviral paired gRNA CRISPR–Cas9 engineering assembly was performed similarly to 
recent publications44 with some modifications: first, gRNA-1 or gRNA-a was cloned 
into pX330 expression vectors, provided by Feng Zhang’s laboratory (42230, Addgene); 
gRNA-2 or gRNA-b was introduced into the ph7SK-gRNA expression vector, developed 
by Charles Gersbach’s laboratory (53189, Addgene); and fragments containing gRNA-1 
and gRNA-2 expression cassettes (or fragments including gRNA-a or gRNA-b expression 
cassette) were then simultaneously transferred into upstream EFS promoter of the 
LentibbCas9v2eGFP vector by Golden Gate assembly. For full details, see Supplementary 
Notes.

Preparation of Wnt3a and RSPO1 conditioned medium
Preparation of Wnt3a and RSPO1 conditioned medium was performed similarly to 
previous studies45,46. For full details, see Supplementary Notes.

Isolation of cells from human kidneys
Human nephrectomy tissue specimens were used to establish CD13+ and CD24+ primary 
cell culture and tubuloids. The tissue was dissected and minced. The fragments were 
digested with 1 mg ml−1 of collagenase (C-4-22, Millipore) in DMEM/F12 medium with 
DNase I (D5025, Sigma) plus 1:50 Liberase (540102001, Roche) for 45 min at 37 °C with 
shaking at 160 r.p.m. using a thermal shaker. The digested fragments were passed through 
70-µm and 40-µm cell strainers (352350 and 431750, Corning). MACS isolation of CD24+ 
cells was performed using the CD24 microBeads kit (130-095-951); CD13+ cells were first 
labeled by biotin-conjugated mouse anti-human CD13 antibody (130-119-572) and then 
anti-biotin microBeads (130-090-485, Miltenyi Biotec). CD24+ cells or CD13+ cells were 
purified by positive selection with LS columns (130-042-401, Miltenyi Biotec). For FACS, 
the freshly isolated kidney single-cell suspension was first incubated with 5 µl of Human 
TruStain FcX (422302, Biolegend) in 100 µl of cell suspension at room temperature for 
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10 min and then incubated with Pe/Cy7 or BV421 anti-human CD24 antibody (311120 and 
311122, Biolegend) and PE anti-human CD13 antibody (301704, Biolegend). Following this, 
the cells were washed twice with cell staining buffer (420201, Biolegend), resuspended in 
500 µl of cell staining buffer and sorted using an SH800 Cell Sorter (Sony, Biotechnology). 
For full details, see Supplementary Notes.

Primary kidney tubular cell culture
Isolated CD24+ cells or CD13+ cells were seeded to T25 flasks in advanced DMEM/F12 
medium supplemented with 20 ng ml−1 EGF (AF-100-15, Peprotech) and 500 ng ml−1 
insulin (8923023, Sanofi) plus 1% B27 minus vitamin A, 1% penicillin/streptomycin, 1% 
l-glutamine and 20 mM HEPES (Thermo Fisher Scientific). The primary cell cultures were 
split after 7–8 d. The P2 cells were used for various experimental analyses.

Cell viability, metabolism assays and ATAC-seq
To optimize ATAC-seq library preparation with decreased mitochondrial DNA content and 
low cell numbers, we developed a two-step lysis method. CD24+ or CD13+ cells (1,000–
8,000) were FACS sorted from human kidneys and centrifuged at 500g for 5 min. Pellets 
were then resuspended in 50 µl ice-cold hypotonic buffer, incubated for 3 min on ice and 
centrifuged at 500g for 9 min. Pellets were lysed in 50 µl lysis buffer plus 0.01% digitonin, 
centrifuged at 500g for 9 min and resuspended in 50 µl of a transposase reaction mix, 
including 25 µl 2XTD buffer, 0.5 µl tagment DNA enzyme 1 and 24.5 µl nuclease-free 
water. The transposition reaction was incubated at 37 °C for 30 min. Following this, the 
transposed DNA was purified and eluted in 15 µl nuclease-free water. Transposed DNA 
was amplified by two rounds of PCR using NEBNext 2× Master mix with custom Nextera 
PCR primers. The quality of the library was checked by Agilent D1000 ScreenTape on 
the 2200 TapeStation system. The ATAC-seq libraries of CD24+ or CD13+ primary kidney 
cells were loaded on an Illumina NextSeq 500 for 75-bp paired-end sequencing. For full 
details, see Supplementary Notes.

Adult kidney tubuloid culture
Freshly purified cells were plated into single wells of 12-well plates with 50% Wnt3a 
conditioned medium in advanced DMEM/F12 medium supplemented with 50 ng ml−1 
EGF, 5 ng ml−1 Noggin (120-10C, Peprotech), 10 µM Y27632 (S1049, Selleckchem) and 
2% B27 minus vitamin A. On day 4, single cells were prepared using Accutase (A6964, 
Sigma) and resuspended at 5 × 104 cells in 50 µl of 10% RSPO1 conditioned medium 
plus 50 ng ml−1 EGF, 5 ng ml−1 Noggin, 10 µM Y27632 and 2% B27 minus vitamin A with 
150 µl of Matrigel (356231, Corning) on ice. The cell–Matrigel mixture was transferred into 
tissue culture plates (40 µl per well in 24-well plates or 25 µl per well in a µ-Slide 8-well 
chamber (80826, ibidi)). After 36–48 h, the RSPO1/EGF/Noggin conditioned medium was 
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replaced by organoid differentiation medium composed of 10% RSPO1 conditioned 
medium supplemented with 100 ng ml−1 FGF10 (100-26, Peprotech) and 50 ng ml−1 EGF 
and cultured for 15 days, with a medium exchange every 2–3 d. For long-term culture, 
the tubuloids were grown in maintenance medium consisting of advanced DMEM/F12 
supplemented with 50 ng ml−1 EGF, 50 ng ml−1 FGF2, 100 ng ml−1 IGF1, 500 ng ml−1 
insulin and 2 % B27 minus vitamin A. For full details, see Supplementary Notes.

iPSC-derived kidney organoid differentiation and staining
hPSC stocks were maintained in mTeSR1 medium with daily medium changes and 
weekly passaging using Accutase or ReLeSR (STEMCELL Technologies, Vancouver). For 
differentiation into organoids, iPSCs (WTC-11 cell line; Coriell, GM25256) bearing knockout 
mutations in PKD2 were plated at 2,000 cells per well in 24-well plates or 200 cells per 
well in 384-well plates, precoated with 300 µl of DMEM-F12 containing 0.2 mg ml−1 
Matrigel and sandwiched the following day with 0.2 mg ml−1 Matrigel in 500 µl of 
mTeSR1 (STEMCELL Technologies, Vancouver) to produce scattered, isolated spheroid 
colonies. Coating and plating of 384-well plates was performed using a Matrix Wellmate 
liquid handling robot. Forty-eight hours after sandwiching, hPSC-derived spheroids were 
treated with 12 µM CHIR99021 (Tocris Bioscience) for 36 h in 1,000 µl of advanced RPMI 
+ 1× Glutamax + Pen-strep (all from Thermo Fisher Scientific) and then changed to RB 
(Advanced RPMI + 1× Glutamax + 1× B27 Supplement, all from Thermo Fisher Scientific). 
For full details, see Supplementary Notes.

Real-time RT–qPCR
Total RNA was purified from primary kidney cells or tubuloids using the RNeasy mini kit 
(74104, Qiagen). Five hundred nanograms of RNA was used as a template to synthesize 
cDNA with the SuperScript III First-Strand Synthesis System (18080051, Thermo Fisher 
Scientific). RT–qPCR was performed in quadruplicate with cDNA (1:10 dilution), 300 nM 
primers and iTAQ SYBR Green Supermix (172-524, Bio-Rad) using the CFX Connect Real-
time PCR Detection System (Bio-Rad). GAPDH was used as the housekeeping gene. For 
full details, see Supplementary Notes.

Transmission electron microscopy
The tubuloids were embedded in pure epon and polymerization of epon was performed 
at 90 °C for 2 h. Ultrathin sections were cut using an ultramicrotome (Reichert Ultracut 
S, Leica), and contrast was enhanced by staining with 0.5% uranyl acetate and 1% lead 
citrate (both EMS). The sections were visualized using an acceleration voltage of 60 kV 
with a Zeiss Leo 906 transmission electron microscope (Carl Zeiss). For full details, see 
Supplementary Notes.
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P-gp transport assay
Tubuloids were disrupted using a P200 pipette and cultured overnight with 5 µM P-gp 
inhibitor PSC833 (4042, Tocris) in organoid maintenance medium or 0.2% DMSO in 
organoid maintenance medium as control. After washing in Hank’s buffer (14025050, 
Gibco), tubuloids were treated with 1 µM calcein-AM (C1430, Invitrogen) in Hank’s buffer 
supplemented with 5 µM P-gp inhibitor or 0.2% DMSO for 1 h at 37 °C. After washing, 
tubuloids were fixed in 4% paraformaldehyde (PFA), and they were counterstained with 
1 µg ml−1 DAPI for 15 min. P-gp transport image analyses were performed on an LSM 710 
(Zeiss). For full details, see Supplementary Notes.

PKD gene editing in tubuloids
Lentiviral particles were produced by transfecting 293FT cells (R70007, Thermo Fisher 
Scientific) grown in 60-mm dishes with 1 µg lentiviral paired CRISPR–Cas9, 750 ng psPAX2 
(12260, Addgene) and 250 ng pMD2.G (12259, Addgene) using TransIT-LT1 (MIR 2300, 
Mirusbio). The filtered virus-containing supernatants were used to infect tubuloids. For 
full details, see Supplementary Notes.

Western blotting
Cells were lysed in RIPA buffer and boiled at 95 °C for 5 min. After quantification, they were 
loaded onto 4–15% mini-Protean TGX gels (4568086, Bio-Rad) and transferred to PVDF 
membranes (162-0177, Bio-Rad). The membranes were blotted for PC1 (rabbit polyclonal 
antibody, 1:2,000, ABT128, Millipore) or PC-2 (mouse monoclonal antibody, 1:1,000, 
sc-47734, Santa Cruz Biotechnology). GAPDH was used for a loading control (mouse 
monoclonal antibody, 1:2,000, NB300-221, NovusBio). For full details, see Supplementary 
Notes.

Cytogenesis assays
PKD1−/−, PKD2−/− and EV tubuloids were plated in 24-well plate or µ-Slide 8-well 
chamber as above and cultured in a 3D culture system with EGF, FGF2, IGF1 and insulin in 
RSPO1 conditioned medium. Cysts were counted at ×4 magnification (smaller cysts were 
confirmed by ×10 or ×20 magnification) using a Nikon Eclipse Ts2 inverted microscope 
on day 21 after initiating 3D culture. Chemical cyst formation was stimulated by liquid 
handling robots as described previously19,20 with some modifications. In detail, 
tubuloids were cultured in 3D with EGF/FGF2/IGF1/insulin conditioned medium and 
moved to 48-well plates in suspension culture on days 10, 15 and 20 of 3D culture after 
transduction, respectively. Then, 5 µM forskolin or 10 µM blebbistatin was added to the 
culture in suspension and cultures were incubated for 72 h with a medium exchange 
every 2–3 d. The cysts were imaged using a Nikon Eclipse Ts2 inverted microscope, and 
cyst size was quantified using Fiji-ImageJ. For full details, see Supplementary Notes.
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Immunostaining and imaging
For whole-mount staining of tubuloids, samples were washed in PBS and fixed with 4% 
PFA in a µ-Slide 8-well chamber for 20 min. After blocking in 5% normal donkey serum at 
room temperature for 1 h, tubuloids were incubated with primary antibodies in antibody 
dilute buffer (0.3% Triton X-100 and 1% BSA in PBS) at 4 °C overnight, followed by washing 
and incubation at 4 °C overnight with the secondary antibodies and subsequent DAPI 
staining (1 mg ml−1 at 1:1,000). For immunofluorescence staining of paraffin sections, the 
sections were deparaffinized and rehydrated and then antigen retrieval was performed 
using a microwave in 1× Antigen Unmasking Solution (H-3300, Vector labs) followed by 
staining using standard protocols. For full details, see Supplementary Notes.

RNA in situ hybridization
In situ hybridization was performed as previously described47. For full details, see 
Supplementary Notes.

Cell viability assay
The CellTiter-Glo 3D cell viability assay was used as previously described with some 
modifications48. For full details, see Supplementary Notes.

cAMP assay
PKD−/− tubuloids and EV tubuloids were cultured in organoid growth medium 
supplemented with 1 µM AVP. After a 3-day incubation with AVP, five different doses 
(0.1–40 µM) of tolvaptan dissolved in DMSO or DMSO (vehicle) was added in triplicate. 
To measure intracellular cAMP level, PKD−/− tubuloids and EV tubuloids treated for 
72 h were collected and pelleted at 300g for 5 min and then incubated in 500 µl of Cell 
Recovery Solution on ice for 1 h. The cells were counted in organoid growth medium via a 
hemocytometer and subsequently washed twice in PBS. Each condition received 1 × 105 
cells transferred into tubes of 1.5 ml, with cells washed three times in PBS, resuspended 
in 125 µl of 1× cell lysis buffer and frozen at −20 °C. Following two additional freeze-thaw 
cycles, cells were centrifuged at 600g (4 °C) for 10 min and the supernatants were carefully 
transferred into 96-well plates. The cAMP levels were measured at 450 nm in a plate 
reader (Cytation 5, Biotek) and assessed according to the manufacturer’s instructions for 
the cAMP Parameter assay kit (KGE002B, R&D Systems).

Time-course imaging of cyst size after tolvaptan treatment
PKD1 and PKD2 gene-edited tubuloids and EV tubuloids were cultured in organoid 
growth medium supplemented with 1 µM AVP as described above. After a 3-day 
incubation of tubuloids with AVP, the tubuloids were treated with tolvaptan or DMSO 
(vehicle) in triplicates. For time-course imaging, the tubuloids were treated with 15 µM 
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tolvaptan or DMSO plus 1 µM AVP in triplicates. Images were taken on an inverted Nikon 
ECLipse, Ts2-FL immediately before treatment and at 24-, 48- and 72 h after treatment.

scRNA-seq of tubuloids
Single-cell suspensions of tubuloids and primary human kidney cells were run on a 
Chromium Single Cell Chip kit with subsequent library preparation using 10x Genomics 
reagents (PN-120236, PN-120237, PN-120262). The library quality was determined using 
D1000 ScreenTape on the 2200 TapeStation system (Agilent Technologies). Sequencing 
was performed on an Illumina Novaseq platform using S1 and S2 flow cells. For full 
details, see Supplementary Notes.

Nuclei isolation
For snRNA-seq, nuclei were isolated with Nuclei EZ Lysis buffer (NUC-101, Sigma-Aldrich) 
supplemented with protease inhibitor (Roche) and RNase inhibitor (AM2696, Life 
Technologies). Samples were homogenized using a Dounce homogenizer (885302-0002, 
Sigma-Aldrich) in 1 ml of ice-cold Nuclei EZ Lysis buffer and incubated on ice for 2 min 
with an additional 1 ml of lysis buffer. The pellet was resuspended and washed with 4 ml 
of buffer. Following centrifugation, the pellet was resuspended in nuclei suspension 
buffer (1× PBS, 1% BSA, 0.1% RNase inhibitor). For full details, see Supplementary Notes.

Genotyping of PKD1 and PKD2 genes from ADPKD kidney tissue
For analysis of the PKD1 (NM_001009944.3) and PKD2 (NM_000297.4) genes, a custom-
targeted next-generation sequencing panel was used. Library preparation was done with 
the Lotus DNA Library Prep Kit, and a probe-based capture protocol was used to enrich 
target regions (IDT, Custom Gene Panel). Subsequent sequencing of pooled libraries was 
performed on a MiSeq sequencing platform (Illumina). Annotation and bioinformatic 
prioritization of variants was performed using KGGSeq (v1.0; http://pmglab.top/kggseq/
index.htm). For full details, see Supplementary Notes.

Analysis of ATAC-seq data
Generation of fastq files and adaptor removal were completed with the Illumina software 
bcl2fastq (v2.20) (https://support.illumina.com/sequencing/sequencing_software/
bcl2fastq-conversion-software.html). Library complexity was evaluated with Preseq 
(version 2.0)49. Sequence quality control was performed with FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc). Reads were aligned to the human 
reference genome (GRCh38/hg38) using bwa (version 0.7.17)50 with default parameters. 
Mitochondrial reads were filtered out using samtools51 (version 0.1.19). Peak calling 
was performed using common software MACS2 (version 2.2.5)52. BigWig track files for 
visualization of peaks in genome browsers were generated using the rtracklayer package 
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(version 1.44.2)53 and normalized with 1 million as a scaling factor. After generating a 
merged peak file from all samples, peak annotation was performed using ChIPseeker 
(version 1.20.0)54. For downstream analysis, only peaks overlapping a 1-kb region around 
a TSS were selected. The featureCounts software from the Rsubread package (version 
1.34.7)55 was used to count reads mapping on a region overlapping the selected peaks. 
Analysis of differential chromatin accessibility was performed using DESeq2 (version 
1.24.0)56. For full details, see Supplementary Notes.

Analysis of single-cell and single-nucleus RNA-seq data
Demultiplexing and alignment were performed using the cellranger mkfastq utility with 
the default/mandatory parameters. FastQ files were aligned to the human reference 
genome (GRCh38 assembly), and the UMI expression was quantified using CellRanger 
(10x Genomics, version 3.1). The dataset was analyzed using the Seurat R package 
(version 3.1.0)57. The cell type assignment among the resulting cell clusters was manually 
curated. For this, gene specificity scores and gene conditional probabilities for each 
cluster were obtained using genesorteR (version 0.3.1)58. The human tissue samples 
were integrated using Harmony (v.1.0) with default parameters and considering every 
sample library and laboratory as an individual batch59. Differentially expressed genes 
were tested by pseudobulking expression profiles59. Each subset of pseudobulk profiles 
was processed separately by a filtering step of lowly expressed genes, Trimmed Mean of 
M-values normalization60. Then, the count data were fitted using the negative binomial 
generalized linear model with quasi-likelihood dispersion estimation and tested for 
differences using the edgeR quasi-likelihood pipeline (v.3.26.7)61. Differentially expressed 
genes were considered at a false discovery rate of 5% after multiple-testing correction. 
The enrichment of biological pathways was tested using fgsea (v.1.0.1)62, with an ad 
hoc collection of gene sets related to ADPKD (MYC targets, mTOR1 signaling and cAMP) 
from MSigDB63, on the ranking of differential expression of each cystic cell population. 
Footprint-based pathway activity was estimated using PROGENy64,65, applied on 
the ranking of differential expression. MAST (v1.10.0) was used to find differentially 
expressed genes in each major cluster and perform gene set enrichment analysis with 
KEGG, Reactome, PID and BIOCARTA, and over-representation analysis of upregulated 
genes in ADPKD cells as compared to control cells as described below. To compare cell 
types found in the human tissue to the tubuloid cells from the organoids, Symphony 
(v.0.1.0)26 was used to compress the integrated reference of the human tissue samples, 
which was created with Harmony before. Ligand–receptor analysis was performed using 
the CellphoneDB method implemented in LIANA66, followed by Crosstalkr to identify the 
most relevant ligand–receptor pairs per condition. For full details, see Supplementary 
Notes.
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Statistical analysis and reproducibility
Data are presented as mean ± s.e.m. if not specified otherwise in the legends. A comparison 
of two groups was performed using an unpaired t-test. For multiple group comparison, 
one-way ANOVA with Bonferroni’s multiple-comparison test or two-way ANOVA with 
Bonferroni or Tukey’s multiple-comparisons test was applied. Statistical analyses were 
performed using GraphPad Prism 8 (GraphPad Software), and a P value of less than 
0.05 was considered significant. The number of samples for each group was chosen on 
the basis of the expected levels of variation and consistency. The depicted RNAscope, 
immunofluorescence micrographs and western blot micrographs are representative. All 
studies were performed at least twice, and all repeats were successful.

Data availability

Processed gene expression values from the scRNA-seq are available at https://doi.
org/10.6084/m9.figshare.11786238. Processed data from the ATAC-seq analysis are available 
for peer review under the private link at https://figshare.com/s/728705bc42446275044d in 
FigShare. These data have a reserved DOI (https://doi.org/10.6084/m9.figshare.11848281). 
All raw data are available in the controlled EGA access repository EGAS00001006551. 
Source data are provided with this paper.

Code availability

The code for reproducible analysis of the single-cell data is available at https://github.com/
saezlab/Xu_tubuloid and https://github.com/KramannLab/kidney_human_organoids in 
GitHub repositories. The computer code to reproduce the analysis of ATAC-seq data is 
available at https://github.com/ATA82/ATAC_Seq_Xu in GitHub. The specific software 
and methods used for the analysis are described in the README file of the repository.
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Discussion

The advancement of experimental and computational technologies in recent years 
has enabled the ability to dissect biological systems at the single-cell level, providing 
unprecedented insights into the complexity and diversity of cellular populations 
(Chapter 1). Single-cell RNA sequencing represents a powerful technology to decode 
the complex cellular heterogeneity of tissues as the human kidney. Several studies have 
utilized this technology to characterize the cellular heterogeneity of human healthy 
kidney tissue, yet a study focusing on diseased human kidney tissue was lacking. Unlike 
traditional transcriptomics techniques that measure the average expression of genes 
across many cells, scRNA-Seq allows for the measurement of gene expression at the 
single-cell level. Kidney fibrosis represents a common consequence of various kidney 
injuries and diseases and is associated with significant loss of kidney function due to 
progression of the disease (Duffield et al. 2013; Meng, Nikolic-Paterson, and Lan 2016; 
Duffield 2014). Understanding the cellular and molecular mechanisms underlying kidney 
fibrosis is critical for the development of new treatments. Myofibroblasts represent the 
culprit cell type which promote fibrosis including the deposition of excessive amounts of 
extracellular matrix components (Falke et al. 2015). However, the origin of myofibroblasts 
in the kidney has remained unclear. Furthermore, recent advances in multi-omic 
technologies have made it possible to study the molecular changes that occur in tissues 
not only based on singlecell data but including spatial coordinates into the data analysis 
(Moses and Pachter 2022; Chen, Teichmann, and Meyer 2018). Particularly myocardial 
infarction (MI), also known as heart attack, is a leading cause of death worldwide (Jayaraj 
et al. 2019). We thought that a better understanding of the molecular changes that occur 
in the heart during an MI is critical for the development of new treatments for this very 
important human disease. Next to the spatial information chromatin accessibility plays a 
critical role in regulating gene expression (Buenrostro et al. 2015; Ma et al. 2020). Through 
recent developments the study of chromatin accessibility at single-cell level has become 
available generating data of thousands of cells in an unbiased manner. Even though 
several computational methods have been developed for the analysis of single-cell ATAC-
Seq. including Cell Ranger ATAC, SCRAT (Ji, Zhou, and Ji 2017) and scARCHEs (Lotfollahi et 
al. 2022) these methods have limitations in their ability to accurately predict chromating 
accessibility states and linking them to distinct transcription factor activities. Two major 
studies (Chapter 3+6), “Decoding myofibroblast origins in human kidney fibrosis” and 
“Spatial multi-omic map of human myocardial infarction” we have utilized these above 
described technologies to gain a deeper understanding of human kidney and heart 
diseases. In addition, “Chromatin-accessibility estimation from single-cell ATAC-seq 
data with scOpen” (Chapter 4) describes a computational method for analyzing whole 
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genome epigenomic data from single-cell ATAC sequencing experiments. The study 
“Decoding myofibroblast origins in human kidney fibrosis” (Chapter 3) used single-
cell sequencing techniques to investigate the origins of myofibroblasts, a cell type 
that plays a key role in the development of kidney fibrosis. Here we performed single-
cell transcriptomics and epigenomics sequencing assays on renal tissue samples from 
both healthy individuals and those with kidney fibrosis. We found that myofibroblasts 
in fibrotic kidneys were derived from both interstitial fibroblasts and pericytes, rather 
than solely from fibroblasts as previously thought. Furthermore, we identified distinct 
epigenetic signatures that distinguished myofibroblasts from fibroblasts and pericytes, 
providing new insights into the mechanisms of myofibroblast activation. 

The study “Spatial multi-omic map of human myocardial infarction” (Chapter 6) 
used a combination of single-cell sequencing and spatial transcriptomics to create a 
highresolution map of cardiac remodeling after myocardial infarction. We analyzed 
multiple physiological zones of myocardium from patients with myocardial infarction and 
controls at different time points using single-cell gene expression, chromatin accessibility 
and spatial transcriptomics. By integrating data from these different technologies, we 
were able to evaluate cardiac cell-type compositions at increased resolution and identify 
disease-specific cardiac cell states. 

The study “Chromatin-accessibility estimation from single-cell ATAC-seq data with 
scOpen” (Chapter 4) describes a computational method for analyzing data from single-
cell sequencing experiments, particularly ATAC-seq (Assay for Transposase- Accessible 
Chromatin) data. ATAC-seq is a technique for measuring chromatin accessibility, which 
can provide insight into gene regulation and cellular diversity. The authors of the study 
demonstrate that scOpen can accurately predict chromatin accessibility states in various 
cell types and can also identify subtle changes in accessibility associated with different 
cell states. The method is based on a deep learning model that utilizes a convolutional 
neural network (CNN) to analyze single cell ATAC-seq data. We trained the model on a 
large dataset of single-cell ATAC-seq data from multiple cell types and used it to predict 
chromatin accessibility in new single-cell ATAC-seq datasets. The results of the study show 
that scOpen can accurately predict chromatin accessibility states in various renal cell 
types, including proximal tubular cells, podocytes and immune cells like macrophages. 
We also demonstrate that scOpen can identify subtle changes in accessibility associated 
with different cell states, such as the transition from a pluripotent to a differentiated 
state. Thus scOpen, a computational method for estimating chromatin accessibility from 
single-cell ATAC-seq data, can be used to identify cell types and subpopulations, and to 
study the dynamics of chromatin accessibility during development or disease.
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In addition, single-cell sequencing and spatial sequencing have been used to study the 
kidney organoids, which are laboratory-grown three-dimensional structures that mimic 
the structure and function of the kidney. The study “Adult human kidney organoids 
originate from CD24+ cells and represent an advanced model for adult polycystic kidney 
disease” (Chapter 7) used single-cell sequencing and spatial sequencing to study the 
kidney organoids and found that they originate from CD24+ cells and can be used as an 
advanced model for adult polycystic kidney disease. 

Understanding the underlying mechanisms of complex diseases, such as heart and 
kidney diseases, requires the integration of multiple layers of data including genetic, 
epigenetic, transcriptomic, and proteomic information. However, the sheer volume of 
data generated by high-throughput sequencing technologies can be overwhelming, 
making it difficult to extract meaningful insights. This is where multi-omics integration 
comes into play.

In recent years, there has been a growing interest in using multi-omics integration to 
generate mechanistic hypotheses. This approach combines information from multiple 
layers of data in order to gain a more comprehensive understanding of the underlying 
biology. One study, “Causal integration of multi-omics data with prior knowledge to 
generate mechanistic hypotheses” (Chapter 5) highlights the importance of integrating 
data with prior knowledge in order to generate meaningful hypotheses. The study’s 
main focus is on integrating data from multiple sources in order to identify genes that 
are associated with specific diseases. We used a combination of transcriptomic data, 
genetic data, and prior knowledge to identify genes that are likely to be involved in 
the development of heart and kidney diseases. Further we used a machine learning 
approach to integrate the data and identify genes that are associated with specific 
diseases. We found that by integrating data with prior knowledge, we were able to 
identify genes that were not previously known to be associated with the disease. This 
highlights the importance of integrating data from multiple sources in order to identify 
new targets for drug development. Furthermore, the study also demonstrated the value 
of using a causal inference method to integrate the data. This approach allows for the 
identification of causal relationships between genes and diseases, which can provide a 
deeper understanding of the underlying biology. This can help to identify new targets 
for drug development, which can ultimately improve the treatment of heart and kidney 
diseases. Overall, the study highlights the importance of multi-omics integration in 
the identification of new targets for drug development. By integrating data from 
multiple sources with prior knowledge, researchers can gain a more comprehensive 
understanding of the underlying biology of complex diseases. This can ultimately lead to 
the development of new and more effective treatments. 
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Overall, these studies demonstrate the power of single-cell sequencing and spatial 
transcriptomics in uncovering new insights into human disease. The ability to analyze 
individual cells and their spatial context allows for a more detailed understanding 
of cellular heterogeneity and the underlying mechanisms of disease. In addition, the 
integration of multiple omics data and the use of computational methods like scOpen are 
essential in the interpretation and understanding of these large and complex datasets. 
The knowledge gained from these studies will undoubtedly lead to new opportunities 
for the development of targeted therapies for kidney and heart diseases.
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In conclusion, the studies “Spatial multi-omic map of human myocardial infraction” 
and “Decoding myofibroblast origins in human kidney fibrosis” have provided valuable 
insights into the mechanisms of human heart and kidney disease. The former study 
has generated an integrative high-resolution map of human cardiac remodelling after 
myocardial infarction using single-cell gene expression, chromatin accessibility, and 
spatial transcriptomic profiling, revealing disease-specific cardiac cell states and their 
dependencies on other cell types. The latter study has decoded the origins of myofibroblast 
in fibrosis by using single-cell RNA sequencing, identifying novel myofibroblast subtypes 
and their lineage relationships. 

Additionally, the study “Adult human kidney organoids originate from CD24+ cells” which 
validated the use of adult human kidney organoids as an advanced model for the study 
of adult polycystic kidney disease. This study has highlighted the potential of organoids 
in the study of disease mechanisms and drug development. 

Furthermore, the study “Causal integration of multi-omics data with prior knowledge to 
generate mechanistic hypotheses” demonstrated the potential of integrating multiomics 
data with prior knowledge to generate mechanistic hypotheses in disease. 

Overall, these studies have highlighted the power of single-cell sequencing and spatial 
sequencing in understanding disease mechanisms and the potential of integrating multi-
omics data with prior knowledge for generating mechanistic hypotheses in disease. 
These findings pave the way for more advanced studies in the future and hold promise 
for the development of new and more effective therapies.
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The studies “Spatial multi-omic map of human myocardial infraction” and “Decoding 
myofibroblast origins in human kidney fibrosis” have significant potential for drug 
discovery and therapeutic development. The use of cutting-edge single-cell sequencing 
and spatial sequencing techniques, as well as the integration of multiple omics data, 
allows for a more comprehensive and detailed understanding of the underlying molecular 
mechanisms of these human diseases for the first time. 

One key aspect of the myocardial infarction study is the identification of disease specific 
cardiac cell states, which can be targeted for therapeutic intervention. For example, it has 
been recently demonstrated that engineered CAR-T cells directed against the antigen FAP 
(fibroblast activating protein) on fibroblasts can be used therapeutically to treat heart 
fibrosis (Ruel et al. Science). Additionally, the study provides an integrative molecular 
map of human myocardial infarction, which can serve as a valuable reference for the field 
and pave the way for advanced mechanistic and therapeutic studies of cardiac disease. 

The kidney fibrosis study also contributes to the understanding of the underlying 
molecular mechanisms of disease, specifically in the identification of specific cell 
populations that drive fibrosis. By pinpointing these myofibroblast origins, new targets 
for therapeutics can be identified and developed. NKD2, a WNT-regulator, has already 
been identified and using in-vitro organoid models showed involvement in regulating 
fibrosis pathways. Furthermore, the study highlights the potential of using organoids as 
a model for disease, which can aid in drug discovery and development.

The “Adult human kidney organoids originate from CD24+ cells and represent an advanced 
model for adult polycystic kidney disease” and COSMOS paper also provide insights into 
the use of organoids in disease modeling, specifically in the case of polycystic kidney 
disease. This can provide a valuable tool for drug discovery and understanding disease 
progression. 

Additionally, the “Causal integration of multi-omics data with prior knowledge to 
generate mechanistic hypotheses” demonstrates the importance of integrating multiple 
omics data with prior knowledge to generate more accurate mechanistic hypotheses, 
which can aid in the identification of new drug targets. Using such models based on 
spatially resolved multi-omics data will be an important step forward towards reaching 
personalized medicine not only in the field of cancer but also other fields like nephrology 
and cardiology. 
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Overall, these studies demonstrate the power of cutting-edge technologies and 
multiomics data integration in advancing our understanding of human diseases, leading 
to new opportunities for drug discovery and therapeutic development.
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