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Full-field digital mammography (FFDM) continues to 
be the primary imaging tool for the detection of breast 

cancer. However, the diagnostic accuracy of FFDM is de-
creased in breasts with dense fibroglandular tissue (1), and 
the specificity of FFDM for detecting cancer is moderate 
(2). Hence, there remains a clinical need to increase the di-
agnostic accuracy of FFDM by using either supplemental 
imaging modalities, such as US or breast MRI, or techni-
cally advanced mammography, such as digital breast tomo-
synthesis or contrast-enhanced mammography (CEM).

Compared with FFDM, CEM has better diag-
nostic performance in terms of both sensitivity and 

specificity. Although CEM has a high sensitivity for 
identifying breast cancer, specificity remains moder-
ate (3). In addition, the currently described diagnostic 
performance of CEM is based on studies (3) using vi-
sual assessment of the images by radiologists without 
the aid of computerized techniques.

Studies suggest that the diagnostic accuracy of 
FFDM might be improved with the help of machine 
learning (ML)–based image analysis. McKinney et  al 
(4) showed that for some FFDM examinations, expert 
radiologists were unable to provide a correct diagnosis, 
whereas the ML model did. However, the ML model 

Background: Handcrafted radiomics and deep learning (DL) models individually achieve good performance in lesion classification (be-
nign vs malignant) on contrast-enhanced mammography (CEM) images.

Purpose: To develop a comprehensive machine learning tool able to fully automatically identify, segment, and classify breast lesions on 
the basis of CEM images in recall patients.

Materials and Methods: CEM images and clinical data were retrospectively collected between 2013 and 2018 for 1601 recall patients at 
Maastricht UMC+ and 283 patients at Gustave Roussy Institute for external validation. Lesions with a known status (malignant or be-
nign) were delineated by a research assistant overseen by an expert breast radiologist. Preprocessed low-energy and recombined images 
were used to train a DL model for automatic lesion identification, segmentation, and classification. A handcrafted radiomics model was 
also trained to classify both human- and DL-segmented lesions. Sensitivity for identification and the area under the receiver operating 
characteristic curve (AUC) for classification were compared between individual and combined models at the image and patient levels.

Results: After the exclusion of patients without suspicious lesions, the total number of patients included in the training, test, and vali-
dation data sets were 850 (mean age, 63 years ± 8 [SD]), 212 (62 years ± 8), and 279 (55 years ± 12), respectively. In the external data 
set, lesion identification sensitivity was 90% and 99% at the image and patient level, respectively, and the mean Dice coefficient was 
0.71 and 0.80 at the image and patient level, respectively. Using manual segmentations, the combined DL and handcrafted radiomics 
classification model achieved the highest AUC (0.88 [95% CI: 0.86, 0.91]) (P < .05 except compared with DL, handcrafted radiomics, 
and clinical features model, where P = .90). Using DL-generated segmentations, the combined DL and handcrafted radiomics model 
showed the highest AUC (0.95 [95% CI: 0.94, 0.96]) (P < .05).

Conclusion: The DL model accurately identified and delineated suspicious lesions on CEM images, and the combined output of the 
DL and handcrafted radiomics models achieved good diagnostic performance.
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In our approach, a DL model was first trained to identify and 
segment suspicious lesions on CEM images and classify them 
as benign or malignant. Furthermore, handcrafted radiomics 
classification models based on both manually and automati-
cally delineated regions of interest and clinical parameters were 
trained, evaluated, and combined with the DL predictions.

Materials and Methods

Study Sample
In this retrospective study, images and clinical data were col-
lected in 1601 consecutive patients who underwent CEM 
mostly for recall assessment of breast lesions following screen-
ing at Maastricht UMC+ between 2013 and 2018. Patients 
with inconclusive findings at FFDM and/or US, suspicious 
(palpable) findings during physical examination, or who un-
derwent mammography as an alternative to breast MRI when 
MRI was contraindicated were also included. The require-
ment for informed consent was waived by the institutional 
review board (approval no. METC 2019–0995). Data were 
collected using the picture archiving and communication 
system and anonymized. Patients were excluded if their ex-
amination was deemed negative (ie, no suspicious lesion was 
found) by an expert radiologist (M.B.I.L., with 13 years of 
experience in CEM) (Fig 1).

Images and clinical data were collected as an external vali-
dation data set from Gustave Roussy Institute between 2015 
and 2019, for which informed consent was waived (approval 
no. 2022–140). The data from both institutes have not been 
 reported in any prior publications.

Imaging
The acquisition protocol for CEM images was as described previ-
ously (10,11). In short, an iodinated contrast agent (iopromide 
[Ultravist 300, Bayer Healthcare] at Maastricht UMC+ and 
mostly iobitridol [Xenetix 350, Guerbet] at Gustave Roussy) 
was intravenously administered 2 minutes before the acquisi-
tion of dual-energy mammograms (Senographe Essential with 

would sometimes be unable to recognize “obvious” cases (ie, 
those easily detected by expert radiologists). Many studies 
using ML on FFDM images have already been performed, 
for example, using handcrafted radiomics models (5,6) to 
classify breast lesions (7) and deep learning (DL) to identify 
and segment lesions (8,9), but the combination of these two 
methods in breast cancer imaging has rarely been reported. 
Briefly, handcrafted radiomics refers to the extraction of 
predefined quantitative features from regions of interest 
within the images, which are subsequently used as input 
into ML algorithms to perform regression or classification 
tasks, while DL uses the entire input image to automatically 
construct internal representations of the phenotype to per-
form detection, localization, and classification predictions.

In this study, we aimed to develop a comprehensive ML 
tool able to fully automatically identify, segment, and classify 
breast lesions on the basis of CEM images in recall patients. 

Abbreviations
AUC = area under the receiver operating characteristic curve, CEM = 
contrast-enhanced mammography, DL = deep learning, FFDM = full-
field digital mammography, ML = machine learning

Summary
A deep learning algorithm was able to accurately identify and delineate 
suspicious lesions on contrast-enhanced mammograms, and the com-
bined outputs of this tool and a handcrafted radiomics model achieved 
good diagnostic performance.

Key Results
 ■ In this retrospective study of 1601 patients, contrast-enhanced 
mammograms that showed suspicious lesions in patients who were 
recalled were used to train (n = 850) and test (n = 212) a deep 
learning (DL) model, which identified 99% of lesions on an exter-
nal data set (n = 279).

 ■ For DL model segmentations, lesion classification (malignant 
vs benign) using the DL model achieved the highest sensitivity 
(90% [319 of 353 lesions]), while the combination of DL and 
handcrafted radiomics achieved the highest area under the receiver 
operating characteristic curve (0.95).

Figure 1: Flowcharts describe patient inclusion for (A) the training and test data sets and (B) the external validation data set of the machine learn-
ing models. PACS = picture archiving and communication system.
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Senobright CEM upgrade or Senographe Pristina, GE Health-
care) of both breasts in the mediolateral oblique and craniocaudal 
views. This resulted in a low-energy image equivalent to FFDM 
(10) and a recombined image in which areas of contrast mate-
rial accumulation could be assessed (11), both of which were 
used for analysis. Lesions on all images were delineated using 
Medical Image Merge software version 4.1 (MIM Software) by a 

research assistant (Y.W.) supervised by a certified breast radiologist 
(M.B.I.L.) aided by information retrieved from the patient records 
and radiology reports. The final ground truth (diagnosis) of each 
delineation was assigned based on results obtained after review 
of the pathology reports and/or 2-year follow-up reports. In our 
study, the term breast lesion comprises architectural distortions, 
asymmetries, masses, and clusters of suspicious calcifications.

Figure 2: Workflow of the identification, delineation, and classification of suspicious lesions as malignant or benign with use of handcrafted radiomics models and deep 
learning (DL). (A) The DL workflow uses preprocessed images for input (see B) and a mask region-based convolutional neural network to predict bounding boxes, segmenta-
tions, and classification of lesions as malignant or benign; the handcrafted radiomics workflow uses as input preselected handcrafted radiomics (see B) with clinical features 
when making predictions with use of manual annotations, and an XGBoost model is trained on this data to predict benign versus malignant, using a grid-search function to 
fine-tune the parameters of this model; those models are then evaluated on the external data set in combination and individually. COCO = common objects in context, IoU 
= intersection over union, 2D = two-dimensional. (B) Data collection and preprocessing: The low-energy and recombined images are preprocessed and combined to use 
as input for the DL workflow; for the handcrafted radiomics workflow, handcrafted radiomics features are extracted from low-energy and recombined images, preprocessed, 
and preselected, and the clinical features are preprocessed using data imputation and preselected.
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Automatic Identification and Delineation of Suspicious 
Lesions with Use of Mask Region-based Convolutional 
Neural Network
The 1062 patients were split randomly into training and test 
data sets at a ratio of 4:1. This split resulted in 850 patients 
for the training data set and 212 patients for the test data 
set.

Low-energy and recombined CEM images were first pre-
processed to filter out noise or irrelevant details (eg, removal 
of foreign objects and background), and image size was also 
reduced to limit computational costs (12). Because the pre-
processing of CEM images for DL is not standardized, we 
used a series of preprocessing steps, including contrast ad-
justment, intensity normalization, and merging low-energy 

Table 1: Patient Characteristics

Clinical  
Characteristic

Training  
Data Set  
(n = 850)

Test  
Data Set  
(n = 212)

External  
Data Set  
(n = 279)

P Value for 
Training vs  
Test Data Sets

P Value for  
Test vs External 
Data Sets

P Value for 
Training vs 
External Data Sets

No. of lesions 850 212 319
Age (y)* 63 ± 8 62 ± 8 55 ± 12 .87 .08 .10
Menopause status .99 .88 .92
 Premenopause 96 (11) 18 (8.5) 93 (33)
 Perimenopause 65 (7.6) 14 (6.6) 25 (9.0)
 Postmenopause 504 (59) 136 (64) 156 (56)
 Not reported 185 (22) 44 (21) 5 (1.8)
No. of pregnancies* 1.9 ± 1.3 2.0 ± 1.2 2.2 ± 1.7 .86 <.001 <.001
No. of children* 1.7 ± 1.0 1.8 ± 1.1 1.9 ± 1.5 .95 <.001 <.001
Medication .99 .72 .84
 None 426 (50) 93 (44) 215 (77)
 Oral contraceptive pill 226 (27) 70 (33) 37 (13)
 Hormone replacement 

therapy
17 (2.0) 5 (2.3) 17 (6.1)

 Not reported 181 (21) 44 (21) 10 (3.6)
Family history of breast 

cancer
>.99 .72 .72

 Positive 123 (14) 31 (14) 94 (34)
 Negative 551 (65) 139 (66) 170 (61)
 Not reported 176 (21) 42 (20) 15 (5.4)
Personal history of breast 

cancer
.92 .87 .91

 Positive 10 (1.2) 1 (0.5) 10 (3.6)
 Negative 666 (78) 169 (80) 259 (93)
 Not reported 174 (21) 42 (20) 10 (3.6)
Cup size
 A–C 418 (49) 104 (49) 164 (59) .98 .08 .01
 D–F 241 (28) 62 (29) 72 (26) .80 .38 .40
 Larger than F 10 (1) 3 (1.4) 3 (1.1) .73 >.99 >.99
 Not reported 181 (21) 43 (20) 40 (14) .75 .08 .01
Disease characteristics  

per lesion
 No special type 227 (27) 58 (27) 163 (51) .85 <.001 <.001
 Ductal carcinoma  

in situ 
63 (7.4) 19 (9.0) 9 (2.8) .48 .01 .01

 Other carcinoma 69 (8.1) 10 (4.7) 23 (7.2) .09 .25 .60
 Cyst 310 (36) 80 (38) 75 (23) .73 <.001 <.001
 Fibroadenoma 68 (8.0) 17 (8.0) 29 (9.1) .99 .68 .56
 Negative 6 (0.7) 1 (0.5) 8 (2.5) >.99 >.99 .03
 Not reported 107 (13) 27 (13) 12 (3.8) .95 <.001 <.001

Note.—Unless otherwise specified, data are numbers of patients, with percentages in parentheses. For continuous variables, the Mann-
Whitney U test was used for two independent samples. For categorical variables, if every category had fewer than 10 samples, the Fisher 
exact test was used; otherwise, a two-proportion z test was used. P < .05 was considered to indicate statistically significant difference.
* Data are means ± SDs.
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and recombined images into one image. Details 
of this process are reported in the first section of 
Appendix S1 and in Figure S1.

The DL model was trained on the prepro-
cessed CEM images to identify (ie, generate 
a bounding box around the lesion of inter-
est), delineate, and classify lesions as either be-
nign or malignant using Mask R-CNN with a 
ResNet101 feature pyramid network backbone 
(13). The details of the DL model and associ-
ated metrics can be found in the second sec-
tion of Appendix S1. The code used during this 
study is accessible on GitHub: https://github.com/
precision-medicine-um/Radiomics_for_CEM/.

After preprocessing of the image data, the 
Mask R-CNN model was trained on 1810 im-
ages from 850 patients in the training data set, 
tested on 454 images from 212 patients, and validated on 
590 images from 279 patients in the  external data set.

The DL model was trained for 30 epochs, and the best 
weights were obtained from epoch 13, at which point the 
model had the lowest total loss on the test data set.

Development and Combination of Models for  
Lesion Classification
Handcrafted radiomics features were selected from both 
the manual and DL-generated segmentations. After feature 
selection, a subset was used to train an ML model, which 
returned a probability of malignancy. To test if the clini-
cal features had any added predictive value, the same fea-
ture selection method was applied on the radiomics and 
clinical features, and the model was retrained. The clinical 
features included were number of pregnancies, number of 
children, family history of breast cancer, personal history 
of breast cancer, age, menopause status,  medication use (ie, 
hormone replacement therapy or oral  contraceptives), and 
cup size. Moreover, for every bounding box  generated by 
the DL model, it also produced a benign or  malignant (ie, 
0 or 1) classification and a confidence score, which, when 
added, yielded a classification probability. To understand 
the importance given to the features selected by the differ-
ent models, Shapley additive explanations, or SHAP, values 
were calculated for the training data set. For details about 
this process, see the third section of Appendix S1.

To combine the DL and handcrafted radiomics models, 
we averaged their classification probabilities to arrive at a 
single classification prediction. We repeated this process for 
the combined radiomics and clinical features model as well as 
for the combined DL, radiomics, and clinical features model.

Statistical Analyses
The statistical analyses were conducted by M.P.L.B. using Py-
thon version 3.7 (Table S1). We reported patients’ characteris-
tics per data set and their differences. For the continuous vari-
ables, we used the Mann-Whitney U test for two independent 
samples. For categorical variables, if every category had fewer 
than 10 samples, we used the Fisher exact test; otherwise, we 

used a two-proportion z test. We considered P < .05 to indicate 
statistically significant difference.

Identification sensitivity, accuracy, and mean Dice coeffi-
cient of the segmentations were reported per image and per 
patient on the test and external data sets. The Dice coefficient 
was computed per lesion and reported in a violin plot (Fig S2). 
We used the same tests as stated in the previous paragraph.

In a post hoc subanalysis of examinations where the DL 
model did not identify the presence of a lesion (ie, false-nega-
tive findings), we calculated proportion z tests (α = .05) on the 
false-negative results and reviewed the images with the same 
breast radiologist as before to establish potential causes for 
these false-negative findings.

Lesion classification performance measures—including area 
under the receiver operating characteristic curve (AUC), sensi-
tivity, specificity, accuracy, and F1 score—were computed for 
human- and DL-generated delineations in the external data 
set at both the lesion and patient levels. The calibration curves 
obtained with the DL and handcrafted radiomics methods on 
the test data set are provided in Figure S3. The method used 
to obtain the predictions per patient is described in the last 
section of Appendix S1. The thresholds used to obtain binary 
predictions for benign versus malignant lesions were selected 
based on the statistics obtained in the training data set with 
the Youden index (14). We listed the results obtained when the 
binary predictions of the two best-performing models were in 
agreement, and we reported the percentage of cases for which 
the models agreed. The 95% CIs were computed for AUCs, 
specificities, and sensitivities with use of bootstrapping, which 
resampled the data sets 2000 times, and Tukey tests were per-
formed between the different metrics to assess significant dif-
ferences for α = .05. The   complete workflow is presented in 
Figure 2.

Results

Patient Characteristics
We excluded 543 patients without suspicious lesions (Fig 1). 
The total number of patients included in the training, test, 
and validation data sets were 850 (mean age, 63 years ± 8 

Table 2: Identification and Segmentation Results of the Deep 
Learning Model

Level and Parameter Test Data Set External Data Set P Value
Delineations per lesion
 Accuracy (%) 64 (279/436) 73 (431/590) .002
 Sensitivity (%) 85 (371/436) 90 (532/590) .01
 Mean Dice coefficient 0.65 0.71 <.001
Delineations per patient
 Accuracy (%) 80 (170/212) 88 (245/279) .02
 Sensitivity (%) 94 (200/212) 99 (275/279) .009
 Mean Dice coefficient 0.75 0.80 .007

Note.—Data in parentheses are numbers of lesions or patients, as specified.  
P values were calculated using the z test for the accuracy and sensitivity and 
the Mann-Whitney U test for mean Dice coefficient.
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[SD]), 212 (62 years ± 8), and 279 (55 years ± 
12), respectively. The clinical characteristics of the 
patients are described in Table 1. The training and 
test data sets were nonsignificantly different for 
all patient characteristics. The majority of the pa-
tient characteristics were similar in the three data 
sets, but the distribution of disease characteristics 
per lesion in the external data set was significantly 
different across most categories.

Identification and Delineation of the Lesions
The results presented in Table 2 show that the 
model performed better on the external data set 
than on the test data set. At the patient level, 99% 
of the lesions were found in the external data set, 
and 94% in the test data set (P = .009). The distri-
bution of the Dice scores can be seen in Figure S2.

Analysis of False-Negative Findings
The DL model failed to identify lesions in four of 
279 patients (1.4%) in the external validation data 
set, in 12 of 212 (5.7%) patients in the test data 
set, and in 43 of 850 (5.1%) patients in the train-
ing data set. The proportion of false-negative find-
ings was different in the external data set compared 
with the training (P = .009) and test (P = .009) 
data sets. The expert radiologist’s interpretation of 
lesions not detected by the DL model are displayed 
in Figure S4. An example of a lesion seen on a re-
combined image is available in Figure S5.

Of the false-negative lesions, seven of 12 
(58%) in the test data set and 28 of 43 (65%) in 
the training data set were calcifications. Figures 3 
and 4 show example images of unidentified and 
identified calcifications, respectively, with use of 
the DL model.

Classification of Lesions as Benign or Malignant
The optimal parameters found with grid-search 
for the handcrafted radiomics models are reported 
in Table S2, and the feature importance is avail-
able in Figure S6, which includes the summary 
plot of the SHAP values. The receiver operating 
characteristic curves are available in Figure 5 for 
the manual segmentations and Figure 6 for the automatic 
segmentations. For the predicted classification obtained on 
the manual segmentations, we observed, based on the inter-
sections of the CIs, that all models tested appeared to over-
fit on the training data set.  However, the CIs of the receiver 
operating characteristic curves obtained with the predictions 
on the test data set always overlapped with the CIs based on 
the predictions obtained in the training data set. For the au-
tomatically generated segmentation, the DL model did not 
overfit on the training data set, but the handcrafted radiomics 
model did.

The classification results using the external data set are 
provided in Table 3. For classification per lesion based on the 

manual segmentations, the combination of the handcrafted 
radiomics and DL model classifications yielded the highest 
AUC (0.88 [95% CI: 0.86, 0.91]) and sensitivity (83% [95% 
CI: 79, 87]), and the handcrafted-radiomics model yielded 
the highest specificity (80% [95% CI: 75, 85]). For classifica-
tion per patient based on the manual segmentations, the high-
est AUC (0.88 [95% CI: 0.84, 0.93]) and sensitivity (89% 
[95% CI: 85, 93]) were found with the DL model, and the 
highest specificity (83% [95% CI: 75, 90]) was found using 
the handcrafted radiomics model. For the automatically gen-
erated segmentations at the lesion level, the combined hand-
crafted radiomics and DL model obtained the highest AUC 
(0.95 [95% CI: 0.94, 0.96]) and specificity (86% [95% CI: 

Figure 3: Example contrast-enhanced mammograms of a false-negative finding of suspicious 
calcifications by the deep learning (DL) model. On the (A) mediolateral oblique low-energy image 
in the left breast of a 58-year-old woman, a cluster of fine linear and branching calcifications was 
observed by a radiologist, but a negative finding was reported by the DL model. (B) On the recom-
bined image, no enhancement was observed. The model did not provide any delineation. However, 
stereotactic vacuum-assisted core-needle biopsy showed ductal carcinoma in situ. (C) Magnifica-
tion of A shows cluster of fine linear and branching calcifications (arrows).
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84, 87]), while the DL model alone yielded the 
highest sensitivity (90% [95% CI: 87, 93]). For 
classification per patient based on the automati-
cally generated segmentations, the handcrafted 
radiomics model yielded the highest specificity 
(74% [95% CI: 64, 84]), while the highest sen-
sitivity was obtained with the DL model alone 
(100% [95% CI: 100, 100]). The combination 
DL and handcrafted radiomics model achieved 
the highest AUC (0.91 [95% CI: 0.86, 0.95]). 
Accuracy and F1 score are presented in Table S3. 
The calibration curves are shown in Figure S3.

The handcrafted radiomics and DL model 
predictions based on manual segmentations 
agreed for 76% of the lesions, and the AUC, 
specificity, and sensitivity within that subset were 
0.95, 80%, and 97%, respectively. For the per-
patient predictions, the handcrafted radiomics 
and DL models agreed 92% of the time, and the 
AUC, specificity, and sensitivity were 0.93, 78%, 
and 96%, respectively, on that subset. For the 
automated segmentations, the models agreed on 
84% of the lesions and all of the patients. The 
AUC, specificity, and sensitivity were 0.96, 89%, 
and 95% per lesion and 0.91, 59%, and 98% per 
patient, respectively. Results achieved with other 
combinations are reported in Table 3.

Discussion
We saw in the literature that handcrafted ra-
diomics and deep learning (DL) models individu-
ally achieve good performance in lesion classifi-
cation (benign or malignant) at full-field digital 
mammography (7–9). In this study, we aimed 
to build and validate a workflow that would find 
suspicious lesions on contrast-enhanced mammo-
grams and give a classification of benign or malig-
nant according to handcrafted radiomics and DL 
models. Additionally, we assessed the added value 
of clinical features and handcrafted radiomics to 
classify the manually delineated and automati-
cally delineated lesions. Our DL model found 532 
of 590 lesions (90%) on the external validation 
data set while correctly identifying 275 of 279 
patients with lesions (99%). For the classification 
of lesions, and for most performance evaluation 
measures, the combined handcrafted radiomics 
and DL model performed best on the manual 
delineations (area under the receiver operating 
characteristic curve [AUC], 0.88) (P < .05 com-
pared with the other methods except for DL com-
bined with radiomics and clinical features, where  
P = .90), as well as on the DL model–generated seg-
mentations (AUC, 0.95) (P < .05 compared with 
the other methods). Hence, we concluded that our 
identification and classification model performed at 
a level that would make it potentially generalizable.

Figure 4: Example contrast-enhanced mammograms of a correct finding of suspicious calcifica-
tions by the deep learning (DL) model. (A, C, D) Low-energy images in the left breast of a 58-year-
old woman show a small cluster of fine calcifications (outlines [green for ground truth, yellow for 
prediction] in C; arrows in C and D) detected by the DL model, with subtle nonmass enhancement at 
the site of the calcifications on the (B) recombined image. Subsequent stereotactic vacuum-assisted 
core-needle biopsy showed ductal carcinoma in situ.
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This is, to our knowledge, the first study to provide a full 
workflow for identification, segmentation, and classification of 
suspicious lesions at CEM and to compare the results between 
handcrafted radiomics and DL models. A similar study was 
performed on FFDM with use of DL only, reporting a sensitiv-
ity of 90% and a false-positive rate of 30% for identification 
of malignant lesions (15), which is similar to our study. It is 
important to note that these imaging modalities (CEM and 

Figure 5: Receiver operating characteristic (ROC) curves for the training, test, 
and external data sets for prediction of benign or malignant lesions per image 
based on the ground truth with the five classifiers. Data in brackets are 95% CIs. 
AUC = area under the ROC curve, CF = clinical features, DL = deep learning.

FFDM) are not directly comparable and that our model also 
provided automatically generated delineations of the lesions.

Mao et al (16) proposed an attention-based model to classify 
breast lesions and obtained a specificity of 100% with a sensi-
tivity of 85% on their external test set. In the study by Wang 
et  al (17), the authors showed that a handcrafted radiomics 
model extracted from the high-energy contrast image or the 
combinations of all CEM images had the highest performance, 
with an AUC of 0.89 in the test data set. This was significantly 
better than using the low-energy contrast (generally accepted 
to be roughly equivalent to FFDM [18]), which achieved an 
AUC of 0.87. Although these studies showed promising results 
for automatically classifying benign and malignant lesions at 
CEM with use of ML approaches, they were limited by a rela-
tively small training set (n = 159) and lack of external valida-
tion (17), or the external set on which the results were reported 
was relatively small (n = 46) and no CIs were given (16), which 
does not allow the reader to conclude that their models would 
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Figure 6: Receiver operating characteristic (ROC) curves for the training, test, and external data sets for prediction of other or malignant lesions per image based on 
the automatic segmentations with the two classifiers, the (A) radiomics-based model and (B) deep learning model. Data in brackets are 95% CIs. AUC = area under the  
ROC curve.

Table 3: Performance Measures of the Different Model Combinations on the Manual Segmentations and DL-generated 
Segmentations

Model

Per Lesion Per Patient

AUC Specificity (%) Sensitivity (%) AUC Specificity (%) Sensitivity (%)

Manual Segmentations
Radiomics 0.84  

[0.81, 0.88]*
80 (182/227)  

[75, 85]†
67 (242/363) 

[62, 71]
0.83  

[0.77, 0.88]*
83 (83/100) 

[75, 90]
63 (113/179) 

[56, 70]
DL 0.86  

[0.83, 0.89]
75 (170/227)  

[69, 81]
83 (302/363) 

[79, 87]‡
0.88 

[0.84, 0.93]
73 (73/100) 

[64, 81]
89 (160/179) 

[85, 93]
Radiomics +  

clinical features
0.84  

[0.81, 0.88]*
76 (173/227)  

[71, 82]
74 (269/363) 

[69, 79]
0.83 

[0.77, 0.88]*
79 (79/100) 

[71, 86]
66 (119/179) 

[60, 73]
DL + radiomics 0.88  

[0.86, 0.91]§
78 (177/227)  

[72, 84]
83 (302/363) 

[79, 87]‡
0.88 

[0.83, 0.92]§
77 (77/100) 

[69, 85]§
80 (144/179) 

[74, 86]
DL + radiomics + 

clinical features
0.88  

[0.86, 0.91]§
79 (179/227)  

[73, 84]
80 (289/363) 

[76, 84]
0.88 

[0.83, 0.92]§
78 (78/100) 

[70, 86]§
78 (140/179) 

[72, 84]
Agreed labels 0.95  

[0.92, 0.97]
80 (128/160)  

[74, 86]†
97 (279/288) 

[95, 99]
0.93 

[0.89, 0.96]
78 (71/91) 

[69, 86]
96 (161/167) 

[93, 99]

Automatically Generated Segmentations
Radiomics 0.93  

[0.92, 0.94]
82 (2027/2463)  

[81, 84]
89 (315/353) 

[86, 92]
0.89  

[0.85, 0.94]
74 (55/74)  

[64, 84]
88 (150/171) 

[83, 92]
DL 0.93  

[0.92, 0.95]
83 (2043/2463)  

[81, 84]
90 (319/353) 

[87, 93]
0.87  

[0.82, 0.92]
45 (33/74) 

[34, 57]
100 (171/171) 

[100, 100]
DL + radiomics 0.95 

[0.94, 0.96]
86 (2106/2463)  

[84, 87]
90 (317/353) 

[87, 93]
0.91  

[0.86, 0.95]||
59 (44/74) 

[48, 70]||
98 (168/171) 

[96, 100]||

Agreed labels 0.96  
[0.95, 0.97]

89 (1828/2049) 
[88, 91]

95 (297/313) 
[92, 97]

0.91  
[0.86, 0.95]||

59 (44/74) 
[48, 70]||

98 (168/171) 
[96, 100]||

Note.—Data in parentheses are numbers of lesions or patients, and data in brackets are 95% CIs. The clinical feature used in the model 
was age. “Agreed labels” metrics are calculated for the cases in which the deep learning (DL) and handcrafted radiomics models agreed on 
the predicted label (benign or malignant). Unless specified otherwise, for each of the columns separately, every table entry is significantly 
different from the rest of the data presented in that column (P < .05). AUC = area under the receiver operating characteristics curve.
* The handcrafted radiomics model was not statistically significantly different from the radiomics + clinical features model for AUC.
† The handcrafted radiomics model was not statistically significantly different from the agreed labels.
‡ The DL model was not statistically significantly different from the DL + radiomics model.
§ The DL + radiomics model was not statistically significantly different from the DL + radiomics + clinical features model.
|| The DL + radiomics model was not statistically significantly different from the agreed labels.
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perform similarly on a data set acquired externally. Our study 
is notable for its large training data set, the validation of the 
model on an external data set, and the combination of hand-
crafted radiomics and DL.

Regarding the classification performance achieved by our 
best-performing model on manual segmentations, the AUC 
is comparable with those obtained by radiologists across 
multiple studies. In the meta-analysis by Suter et al (19), the 
pooled AUC for eight studies classifying suspicious lesions 
was 0.89, similar to the result obtained by our model based 
on the combination of DL and handcrafted radiomics (AUC, 
0.88). In fact, for the cases in which our models are most cer-
tain (ie, for which the DL and handcrafted radiomics models 
agree), we report an AUC of 0.95 per lesion and 0.93 per pa-
tient for the manual segmentations and an AUC of 0.96 per 
lesion and 0.91 per patient for the automated segmentations.

Our study had several limitations. First, the models in this 
study were not optimized to identify calcifications, which do 
not always enhance at CEM. Most false-negative findings 
were a result of this limitation. In the literature, contradictory 
results regarding the benefit of CEM compared with FFDM 
for the classification of calcifications by radiologists have been 
reported. It is also possible that the resolution of the images 
was too low for our model to identify certain calcifications. 
A solution to this problem could be to combine the model 
for the identification and classification of lesions at CEM 
with a different model that would specifically target calcifica-
tions with FFDM (or the low-energy images) only. Second, 
we only evaluated the delineations of lesions for which there 
was either a biopsy or prolonged follow-up, which can be a 
potential source of bias, but it is theoretically possible that 
other benign lesions of nonclinical importance were present 
on the image, potentially making false-positive identifica-
tions actually true-positive findings. Moreover, we did not 
further analyze the external validation cases, as privacy legis-
lation did not permit us to retrospectively assess the in-depth 
data of these patients. Third, the identification algorithm was 
not tested on images that did not depict lesions, as the CEM 
scans were acquired after suspicious lesions had already been 
identified during screening. Fourth, the segmentations and 
the evaluation of the models were made by one certified ra-
diologist with 13 years of experience reviewing CEM images. 
Independent review by multiple breast radiologists would be 
preferable to limit bias. Fifth, the systems used in this study 
are not yet equipped with automated breast density measure-
ment software, nor are other available tools validated for use 
in CEM. Hence, we were not able to present our results per 
breast density category. Sixth, we hypothesized that the im-
ages were independent and could be used independently to 
train a model. However, the data sets contained two different 
views for each patient and were likely correlated. To overcome 
this, a follow-up study could use our best model, train two 
models on the two different views, and combine the result 
with a voting algorithm. The final limitation was the use of 
the same data to choose the method to combine the DL and 
handcrafted radiomics models and then to evaluate the per-
formance of that combination. This could have led to some 

degree of overestimation. As a future direction, to confirm 
our findings and support the utility of our model, a follow-up 
study in which FFDM is replaced by CEM might be interest-
ing to conduct to compare the performance of those systems 
and to test our algorithm’s capacity to detect lesions.

In conclusion, our deep learning algorithm was able to au-
tomatically delineate and identify the majority of suspicious 
lesions seen at contrast-enhanced mammography and showed 
good performance for finding malignant lesions.
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