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Abstract
Objectives To date, there are no data on the noninvasive surrogate of intratumoural immune status that could be prognostic of
survival outcomes in non-small cell lung cancer (NSCLC). We aimed to develop and validate the immune ecosystem diversity
index (iEDI), an imaging biomarker, to indicate the intratumoural immune status in NSCLC. We further investigated the clinical
relevance of the biomarker for survival prediction.
Methods In this retrospective study, two independent NSCLC cohorts (Resec1, n = 149; Resec2, n = 97) were included to
develop and validate the iEDI to classify the intratumoural immune status. Paraffin-embedded resected specimens in Resec1 and
Resec2 were stained by immunohistochemistry, and the density percentiles of CD3+, CD4+, and CD8+ T cells to all cells were
quantified to estimate intratumoural immune status. Then, EDI features were extracted using preoperative computed tomography
to develop an imaging biomarker, called iEDI, to determine the immune status. The prognostic value of iEDI was investigated on
NSCLC patients receiving surgical resection (Resec1; Resec2; internal cohort Resec3, n = 419; external cohort Resec4, n = 96;
and TCIA cohort Resec5, n = 55).
Results iEDI successfully classified immune status in Resec1 (AUC 0.771, 95% confidence interval [CI] 0.759–0.783; and 0.770
through internal validation) and Resec2 (0.669, 0.647–0.691). Patients with higher iEDI-score had longer overall survival (OS) in
Resec3 (unadjusted hazard ratio 0.335, 95%CI 0.206–0.546, p < 0.001), Resec4 (0.199, 0.040–1.000, p < 0.001), and TCIA
(0.303, 0.098–0.944, p = 0.001).
Conclusions iEDI is a non-invasive surrogate of intratumoural immune status and prognostic of OS for NSCLC patients receiv-
ing surgical resection.
Key Points
• Decoding tumour immune microenvironment enables advanced biomarkers identification.
• Immune ecosystem diversity index characterises intratumoural immune status noninvasively.
• Immune ecosystem diversity index is prognostic for NSCLC patients.

Keywords Non-small cell lung cancer . Immunohistochemistry . Ecosystem . Prognosis . Computed tomography

Abbreviations
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NNE Nearest Neighbor Estimation
NSCLC Non-small cell lung cancer
OS Overall survival
ROC Receiver operating characteristic
TIME Tumour immune microenvironment
TNM Tumour-node-metastasis

Introduction

Non-small cell lung cancer (NSCLC) accounts for approxi-
mately 85% of lung cancer [1]. Although the American Joint
Committee Cancer (AJCC) tumour-node-metastasis (TNM)
staging system provides reliable information regarding routine
prognostication and treatment decision [2], there remains con-
siderable room for improvement, as distinct clinical outcomes
are observed among patients with NSCLC of the same TNM
stage [3, 4]. These facts highlight the unmet clinical require-
ment for robust biomarkers to improve patient stratification.

Accumulating evidence demonstrates that cancer evolution
is strongly dependent on the complex tumour immune micro-
environment (TIME) in which it develops [5–7]. As one of the
notable constituents of the TIME, the prognostic role of
tumour-infiltrating immune cells has been thoroughly investi-
gated in various neoplasms, and emerging data have con-
firmed its superiority to the classical TNM staging system
[8–10]. For example, the densities and location of specific T
cell infiltrations, such as those of CD3+, CD4+, and CD8+ T
cells, were associated with the prognosis of lung cancer [3, 9,
11–14]. This supports the hypothesis that characterisation of
the intratumoural immune status within the TIME may be a
feasible approach for identifying advanced biomarkers [4].

In clinical practice, a non-invasive approach to assess the
intratumoural immune status in NSCLC is still required
[15–18]. Fortunately, a recent pioneering work has provided
a foundation for future studies focussing on the non-invasive
radiomics approach to infer immune phenotype and predict
outcomes [11]. However, a concern was raised by Sun et al
to account for image acquisition variability in radiomics study,
which calls for methodological refinement for broad applica-
tion. Therefore, the aim of this study was to utilise a new
radiomics approach to characterise the intratumoural immune
status without requiring imaging pre-processing to ensure
enough robustness and generalisation, through the develop-
ment of an immune ecosystem diversity index (iEDI) to de-
code the spatial heterogeneity within the tumour. Sub-region
EDI features were extracted in our approach, instead of
extracting simple ‘average value’ measurements within the
tumour. We further investigated its prognostic value for over-
all survival (OS) prediction for NSCLC patients who under-
went surgical resection.

Materials and methods

Study design and clinical cohorts

Ethical approval was obtained for this retrospective study, and
the informed consent requirement was waived. In this interna-
tional and multi-cohort study, five independent cohorts of
NSCLC patients were included (Fig. 1). The Resec1 training
cohort consisted of 149 resected NSCLC patients. Both pre-
operative CT images and paraffin-embedded sections of the
resected tumour specimens were acquired. This cohort was
used to develop iEDI and characterise intratumoural immune
status. The Resec2 validation cohort consisted of 97 resected
NSCLC patients, with preoperative CT and paraffin-
embedded sections of resected tumour specimens acquired.
This cohort was used to validate the association of iEDI with
intratumoural immune status. And the internal validation was
performed by using 1000 bootstrap resamples of Resec1
cohort.

The remaining 3 cohorts were used to investigate the clin-
ical relevance of iEDI for survival prediction in patients treat-
ed with resection. Cohort Resec3 (n = 419), Resec4 (n = 96),
and Cancer Imaging Archive (TCIA, n = 55) [19, 20]
consisted of patients who had undergone resection, on which
the prediction performance of iEDI for OS was evaluated.

All patients were treated according to the National
Comprehensive Cancer Network (NCCN) [21]. Baseline pre-
treatment contrast-enhanced CT images and clinical data were
acquired. The details of inclusion and exclusion criteria, clin-
ical outcomes of interest, and the follow-up procedure were
described in Supplementary Methods (p2-p3 in the
Supplement). The details of parameters of CT image scanning
for all cohorts were described in Supplementary Methods (p3
in the Supplement).

Procedure

Estimation of intratumoural immune status

IHC staining was performed for tumour tissues in Resec1 and
Resec2 cohorts. The procedure of T cells staining and
counting was described in Supplementary Methods (p4 in
the Supplement).

To decode tumour cell-lymphocyte interaction in TIME
[7], the ratio of lymphocytes (CD3+, CD4+, and CD8+T cells)
to all cells in two regions (tumoural centre [TC] and invasive
margin [IM], Supplementary Fig. 1) was considered the im-
mune features. Regions of tumoural centre and invasive mar-
gin were defined by a board-certified lung cancer pathologist
who also performed the cell counting. Thereby, six immune
features were obtained for each patient (CD3+TC, CD3+IM,
CD4+TC, CD4+IM, CD8+TC, and CD8+IM). After that, the
least absolute shrinkage and selection operator (LASSO) Cox
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regression analysis with 10-fold cross-validation was per-
formed on the Resec1 cohort for immune feature selection,
with which an immune signature was developed. The target
value for this LASSO Cox regression analysis was OS time.
The immune score was computed per patient according to the
immune signature, using a linear combination of selected im-
mune features weighted by their respective coefficients. Then,
the patients were classified into distinct intratumoural immune
status (high-level vs. low-level) according to the immune
score, with the optimal threshold identified by the time-
dependent receiver operating characteristic (ROC) analyses
using the Nearest Neighbor Estimation (NNE) method [22].

Extraction of ecosystem diversity index feature

The in-house Matlab-based extraction algorithm was applied
to all cohorts, with the images of all cohorts being centralised.
Based on the concept of EDI proposed by Natrajan et al [6],
we utilised volumetric EDI feature extraction on pretreatment
contrast-enhanced CT images to describe TIME (Fig. 2). First,
the tumour contour was delineated on preoperative contrast-
enhanced CT images; then, the tumour region was divided
into multiple non-overlapping sub-regions of m by m pixels.
(To identify regional clusters within a tumour, tumour regions
needed to be small enough so that there were sufficient num-
bers of regions, yet sufficiently large to measure intratumoural
heterogeneity of TIME. In this study, we explored the range of
3 to 10 for the value ofm. We used at least 3 as the value ofm,

because of the minimum unit area to ensure the correct calcu-
lation of features. And the maximum of 10 as the value of m
was used to avoid small subregions groups. The numbers of
sub-regions divided within a single tumour are shown in
Supplementary Table 1. Based on the results described in
Supplementary Fig. 2 and Supplementary Table 3, the optimi-
zation of the region size was 5*5 in our study.) If there were
multiple disconnected tumour volumes, the largest tumour
volume was used for feature extraction.

A total of 45 radiomics features were extracted from each
sub-region (feature extraction algorithm and optimisation of
sub-region size were provided in Supplementary Methods
[p4-p6 in the Supplement], Supplementary Table 2 and
Supplementary Table 3). Therefore, each sub-region would
have 45 radiomics features for clustering. Then for each
radiomics feature, the Gaussian mixture model unsupervised
clustering was used to identify the optimal number (K) of
clusters of sub-regional values within tumour volume in an
unbiased manner [23]. K, ranging from 1 to 5, could describe
the distribution of each feature and reflect the degree of spatial
heterogeneity in the entire tumour volume and was termed the
‘EDI feature’. Through this process, each patient would have
obtained 45 EDI features. The details of the Gaussian mixture
model unsupervised clustering algorithm were provided in
Supplementary Methods p6.

The intra- and inter-observer agreement of the EDI features
extraction were provided in Supplementary Methods (p6-p7
in the Supplement).

Fig. 1 Study design flowchart. EDI, ecosystem diversity index; iEDI, immune ecosystem diversity index; GDPH, Guangdong Provincial People’s
Hospital; YCH, Yunnan Cancer Hospital; MAASTRO, MAASTRO Clinic
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iEDI development

To develop an immune-informed imaging biomarker called
iEDI, the LASSO logistic regression analysis with 10-fold
cross-validation was performed to select the most relevant
EDI features related to the estimated intratumoural immune
status (high level vs. low level) in cohort Resec1. The target
value for this LASSO logistic regression analysis was immune
status. A score of iEDI (iEDI-score) was computed per patient
using a linear combination of selected EDI features weighted
by their respective coefficients.

iEDI assessment and validation

The potential association of iEDI with the intratumoural im-
mune status was first assessed in cohort Resec1 and then val-
idated in an independent cohort, Resec2, using the Mann-
Whitney U test. The iEDI was also subjected to 1000 boot-
strap resamples for internal validation of the Resec1 cohort.

Prognostic value of iEDI for survival prediction on resected
cohorts

We further investigated the prognostic value of iEDI for OS
prediction in patients receiving surgical resection. Kaplan-
Meier analyses were performed on patient groups (high
iEDI-score vs. low iEDI-score), with an optimal cut-off of
the iEDI-score identified by the time-dependent ROC analysis
using the NNE method. Univariate association between iEDI
and OS was evaluated using the log-rank test and Cox propor-
tional hazards model. A multivariate Cox model was used to
assess the associations between iEDI and OS after adjusting
for potential confounders including sex, age, smoking history,
histological type, AJCC/Union for International Cancer
Control (UICC) TNM stage, and tumour volume. Stratified
multivariable Cox model analysis was performed, where the
centre was used as the stratification factor. Prediction perfor-
mance was assessed with respect to the area under the ROC
curve (AUC), the integrated area under the ROC curve
(iAUC), and the integrated Brier score (iBS). The iBS is an

Fig. 2 The workflow showing EDI feature extraction. Image
segmentation is performed on contrast-enhanced computed tomography
(CT) images. Volume of interest (VOI) is delineated initially around the
tumour outline by experienced radiologists. The tumour volume region is
divided into multiple non-overlapping sub-regions of m by m pixels;
Then, 45 radiomics features are extracted from each sub-region. Thus,
each sub-region will have 45 radiomics features for clustering.
Afterwards, the Gaussian mixture model unsupervised clustering is

used to identify the optimal number (K) of clusters of sub-regional
values of each radiomics feature within tumour volume in an unbiased
manner. The optimal K value is describing the distribution for each
radiomics feature within tumour volume, which is termed the ‘EDI
feature’ in our study. Through this process, each patient will have
obtained 45 EDI features, which are reflecting the degree of spatial
heterogeneity in the entire tumour volume.
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integrated measurement of the mean squared error over
time, which ranges from 0 for a perfect predictor to 0.25
for a non-informative predictor with a 50% incidence of
the outcome.

Statistical analysis was conducted using the R software
(version 4.1.3, https://www.r-project.org). R packages were
descr ibed in Supplementary Methods (p7 in the
Supplement). The Mann-Whitney U test, Kruskal-Wallis test,
and chi-square test were used wherever applicable.

Results

Patients

Table 1 summarised the basic patient demographics and clin-
ical characteristics for all cohorts. Data from the international
cohort, the TCIA, which consisted of patients treated at the
MAASTRO Clinic, The Netherlands, was retrieved from the
databases of TCIA [19, 20]. The median OS time was 43.0
(interquartile range (IQR): 21.0–71.5) months in the Resec1
cohort, 46.6 (IQR: 23.8–57.8) months in the Resec2 cohort,
43.0 (IQR: 28.0–60.0) months in Resec3 cohort, 58.9 (IQR:
54.5–66.9) months in Resec4 cohort, and 39.0 (IQR: 20.4–
70.2) months in TCIA cohort, respectively. The median
follow-up time was 53.6 (IQR: 24.9–73.1) months in the
Resec1 cohort, 45.4 (IQR: 22.8–60.5) months in the Resec2
cohort, 49.1 (IQR: 34.7–63.8) months in Resec3 cohort, 58.8
(IQR: 47.2–66.8) months in Resec4 cohort, and 39.0 (IQR:
20.4–70.2) months in TCIA cohort, respectively (Table 1).

Immune status estimation and assessment

No significant differences were observed in the immune fea-
tures between Resec1 and Resec2 (p = .05– .927;
Supplementary Table 4). The immune signature was con-
structed with four immune features, namely the percentile of
CD3+TC, CD4

+
IM, CD8

+
TC, and CD8+IM to all cells. (The

immune score calculation formula was shown in
Supplementary Methods [p7 in the Supplement].) There was
no statistical difference in median immune scores between
Resec1 (−0.410 [interquartile range, IQR: -0.808, -0.126])
and Resec2 (-0.390 [-0.710, 0.088]), (p = .330). The binary
immune status was determined by the derived immune scores
( high-level [immune-score ≥ -0.317] vs. low-level [< −0.317],
Supplementary Fig. 3). Patients with higher baseline immune
score showed improved OS, in both Resec1 (hazard ratio
[HR] 0.190 [95% CI 0.091–0.398], p <0.001) and Resec2
(0.262, [0.127–0.539], p <0.001) (Supplementary Fig. 4).
For OS prediction, the immune signature provided an AUC
of 0.755 (95% confidence interval [CI]: 0.742–0.768) in
Resec1, 0.754 through the internal validation, and 0.712
(0.696–0.728) in Resec2.

iEDI construction, evaluation, and validation

The result ing iEDI consisted of 10 EDI features
(Supplementary Fig. 5), and individual iEDI scores were cal-
culated for every patient using the formula in Supplementary
Methods (p6-p7 in the Supplement). Significant difference
was observed in the iEDI scores between patient groups de-
fined by immune status, in both cohort Resec1 (p < .001) and
Resec2 (p = .004), wherein iEDI scores were higher for pa-
tients with high-level immune status (high-level vs. low-level:
0.70 ± 0.619 vs. -0.04 ± 0.642 in Resec1, 0.875 ± 0.518 vs.
-0.055 ± 0.614 in Resec2; Supplementary Fig. 6). For immune
status discrimination, the iEDI yielded an AUC of 0.771 (95%
CI: 0.759–0.783) in Resec1, 0.770 through the internal vali-
dation, and 0.669 (0.647–0.691) in Resec2.

Prognostic value of iEDI for survival prediction on
resected cohorts

Higher baseline iEDI score was associated with improved OS
(cut-off value: -0.291; Resec1 [unadjusted HR 0.112, 95% CI
0.053–0.239, p <0.001], Resec2 [0.271, 0.096–0.763, p
<0.001], Resec3 [0.335, 0.206–0.546, p <0.001], Resec4
[0.199, 0.040–1.000, p <0.001], TCIA [0.303, 0.098–0.944,
p = 0.001], Fig. 3). The OS and survival rate in the high iEDI-
score and low iEDI-score group for all cohorts were listed in
Table 2. For the discrimination of OS prediction, iEDI provid-
ed an AUC of 0.790 (95% CI 0.780–0.800) in Resec1, 0.789
through the internal validation, 0.701 (0.684–0.718) in
Resec2, 0.692 (0.687–0.697) in Resec3, 0.705 (0.678–
0.732) in Resec4, and 0.745 (0.721–0.769) in TCIA. The
iAUC was 0.755 in Resec1, 0.684 in Resec2, 0.655 in
Resec3, 0.707 in Resec4, and 0.687 in TCIA. And the iBS
was 0.138 in Resec1, 0.146 in Resec2, 0.142 in Resec3, 0.087
in Resec4, and 0.170 in TCIA. Multivariate analysis showed
that iEDI remained a significant predictor of OS even after
adjusting for clinicopathological confounders (Table 3, all
p <0.05). The results of stratified multivariable Cox regression
analysis showed that iEDI was a predictor independent of
tumour volume and TNM staging (Supplementary Table 5
and Supplementary Table 6, all p <0.05).

Discussion

In this study, we utilised sub-region radiomics analysis of
pretreatment CT to develop a non-invasive biomarker for
NSCLC, called iEDI. With clear biological interpretability
related to intratumoural immune status, the proposed iEDI
was shown to be an independent prognostic factor for OS on
independent cohorts of patients with NSCLC who underwent
surgical resection.
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Despite strong clinical indications, the immune-informed
biomarker has to be reliable and standardised to ensure its
generalised usage across various sources of technical variabil-
ity. In particular, methodological refinement for broad appli-
cation is warranted to account for image acquisition variability
in retrospective radiomics studies [24]. Therefore, sub-region
analysis of the tumour volume was adopted in our radiomics
approach, instead of extracting simple ‘average value’ mea-
surements within tumour. Sub-regional EDI features were
generated in our approach to quantify the degree of spatial
heterogeneity. The concept of ‘EDI’ was put forward by
Natrajan et al, who applied it to cancer research to decode
the spatial heterogeneity within the tumour microenvironment
based on histological sample analysis [6, 25], while its origin
can be traced back to the diversification of tumour ecosystem
[26–28]. To the best of our knowledge, this is the first study to
utilise EDI analysis in radiomics study. The final clustered
value of K was determined as a EDI feature, to describe the

distribution of each feature within tumour volume so as to
characterise the heterogeneity of each feature across the tu-
mour volume. Our strategy has a dual advantage: first, the
extracted features are small-scale, which will reduce
overfitting; second, the input EDI features can be considered
standardised features. This will reduce variability to ensure
broad application.

As a benchmark for the utility of our EDI features, we also
extracted volume-averaged radiomics features; results showed
that the iEDI demonstrated better discrimination performance
for survival prediction across all datasets than the immune-
informed radiomics signature (Supplementary Methods [p7-
p8 in the Supplement]; Supplementary Table 7). This suggests
that EDI features are not sensitive to image acquisition vari-
ability across cohorts, and have superior prediction ability
compared to that of the current practice of radiomics analysis.
As such, this reproducible method that does not require any
imaging pre-processing can be used to reach the full potential

Table 1 Baseline characteristics and clinical characteristics of resected NSCLC cohorts

Characteristics Resec1
(GDPH; 149)

Resec2
(YCH; 97)

Resec3
(GDPH; 419)

Resec4
(YCH; 96)

TCIA
(MAASTRO; 55)

p

Age (y, median[IQR]) 61 (55, 68) 56 (48, 63) 61 (54, 68) 56 (49, 64) NA < 0.001

Sex

Male 86 (57.7%) 60 (61.9%) 273 (65.2%) 61 (63.5%) 36 (65.5%) 0.245

Female 63 (42.3%) 37 (38.1%) 146 (34.8%) 35 (36.5%) 19 (34.5%)

Smoking status

Yes 40 (26.8%) 43 (44.3%) 153 (36.5%) 43 (44.8%) NA 0.01

No 109 (73.2%) 54 (55.7%) 266 (63.5%) 53 (55.2%)

Histological type

Adenocarcinoma 109 (73.2%) 69 (71.1%) 319 (76.1%) 78 (81.3%) 29 (52.7%)

Others 40 (26.8%) 28 (28.9%) 100 (23.9%) 18 (18.8%) 26 (47.3%)

T stage

T1 57 (38.3%) 58 (59.8%) 170 (40.6%) 71 (74.0%) NA < 0.001

T2 72 (48.3%) 31 (32.0%) 204 (48.7%) 20 (20.8%)

T3 19 (12.8%) 4 (4.1%) 38 (9.1%) 3 (3.1%)

T4 1 (0.7%) 4 (4.1%) 7 (1.7%) 2 (2.1%)

N stage

N0 113 (75.8%) 58 (59.8%) 318 (75.9%) 78 (81.3%) NA 0.007

N1 12 (8.1%) 19 (19.6%) 34 (8.1%) 8 (8.3%)

N2 24 (16.1%) 20 (20.6%) 67 (16.0%) 10 (10.4%)

N3 0 0 0 0

Follow-up time (mo)

Median 53.6 45.4 49.1 58.8 39.0 < 0.001

IQR (24.9, 73.1) (22.8, 60.5) (34.7, 63.8) (47.2, 66.8) (20.4, 70.2)

iEDI score

Median −0.564 −0.784 −0.648 −0.821 −0.653 < 0.001

IQR (−0.904, 0.013) (−1.116,− 0.343) (−0.999, −0.098) (−1.139, −0.442) (−1.072, −0.327)

Note: NA, not available; y, years; mo, month; iEDI, image-based ecosystem diversity index; IQR, interquartile range. GDPH, Guangdong Provincial
People’s Hospital; YCH, Yunnan Cancer Hospital; MAASTRO, MAASTRO Clinic
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of radiomics and address the challenges regarding the
harmonisation and standardisation of image acquisition proto-
cols associated with retrospective or multi-centre studies [29].

Using this innovative approach, we continued the recent
ongoing research effort of making radiomics more interpret-
able, by presenting iEDI as a surrogate of intratumoural im-
mune status [7, 11, 30, 31]. Motivated by the recent pioneer-
ing work of Sun et al, our study did not focus only on reveal-
ing the biological basis of the radiomic biomarker regarding
immune infiltration, but also provided a step forward out-
comes prediction [11]. Notably, this study is one of the few
investigations utilising an immune-informed approach to es-
tablish a link between underlying pathology and clinical out-
comes [11, 19, 30, 32]. For resectable NSCLC, iEDI success-
fully achieved patient stratification with respect to OS on five
cohorts and remained an independent predictor adjusted for
clinicopathological parameters (including T and N staging,
and tumour volume). This observation was consistent with
previous studies on NSCLC, indicating the strong potential
of the immune-informed biomarker to stratify risk beyond
staging [3, 4, 9, 33]. In addition, iEDI showed superior pre-
diction performance compared with TNM stage and tumour
volume (Supplementary Methods [p8-p9 in the Supplement];
Fig. 4; Supplementary Table 8). Furthermore, iEDI provided
incremental predictive value when incorporated into a predic-
tion model integrating all independent risk factors, including

the TNM stage (Supplementary Table 8). Altogether, our ob-
servations demonstrated the potential of iEDI to translate our
evolving understanding of TIME into better patient stratifica-
tion beyond TNM staging.

Despite the widespread interest in various malignancies
regarding the characterisation of TIME, such studies on
NSCLC are sparse, with no general recommendations on im-
mune cell markers [4, 9, 17], whereas studies on colorectal
cancer and breast cancer are about to achieve that goal [4,
34–37]. Particularly in colorectal cancer, multinational efforts
had demonstrated that immunoscore, which is derived based
on the density of CD3+ and CD8+ T cells in both tumor centre
and invasive margins, had been proposed as a standardised,
reliable measurement of immune prognostic markers [34–37].
Serial studies had demonstrated that CD3+, CD4+, CD45RO+,
and CD8+ T cells had prognostic value in NSCLC [3, 4, 9].
With regard to the CD45RO cells, recent studies revealed that
their prognostic values remained uncertain. Hence, the im-
mune cell markers of interest in our study included CD3+,
CD4+, and CD8+ T cells in both TC and IM regions.
Considering the intricate interaction between cancer cells
and lymphocytes [34], we also had validated whether the im-
mune biomarker by using the ratios (percentile) of lympho-
cytes to all cells was showing better prognostic value for OS
predicting compared with the immune biomarker based on the
number of immune cells. The results showed that the immune

Fig. 3 Kaplan-Meier curves for overall survival (OS) according to iEDI
score. Cohort Resec1 (A), Resec2 (B), Resec3 (C), Resec4 (D), and
TCIA (E). Patients were stratified into high iEDI-score or low iEDI-

score group according to individual iEDI-score based on the cut-off
value (-0.291) identified in Resec1. nr, not reached at maximal follow-
up time
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biomarker based on the number of immune cells has lower
values than the immune biomarker constructed using the ra-
tios (percentile) of lymphocytes to all cells for classifying
high-risk vs. low-risk patient groups based on OS
(Supplementary Table 9 and Supplementary Table 10).
Thus, we constructed and validated the immune signature
using the percentiles of lymphocytes in all cells.

Our study has some limitations. First, the analyses were
based on retrospective data collection. Second, no consensus
had been reached regarding a consent framework on the quan-
tification of immune infiltration in NSCLC, with few compa-
rable results available; hence, we believed that the task force
dedicated to establishing a well-standardised paradigm should
be initiated in the near future. This would subsequently under-
score the necessity of further readjusting the iEDI for clinical
practice. Lastly, though iEDI was valid for prediction across
various treatment regimens, the best cut-offs were established
regarding each individual therapy, and were different as ex-
pected, since the pretreatment baseline condition of the pa-
tients receiving various therapies was distinct and the bio-
marker was derived based on pretreatment images.
Additionally, the corresponding best cut-off had been validat-
ed using independent cohorts.

In conclusion, we established and validated a biomarker
based on pretreatment CT, called iEDI, to interpret the
intratumoural immune status of TIME in NSCLC. Our

findings showed that this novel biomarker might be an effi-
cient, non-invasive, and reliable tool for clinical outcome pre-
diction, which will potentially assist in personalised treatment
regimen selection for patients with NSCLC. Our work had
expanded the frontiers of radiomics into the area, revealing
causality to clinical outcomes by inferring both the biological
basis of immune infiltration and clinical relevance regarding
survival outcomes.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-08873-6.
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