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Meta-analyses frequently include trials that report multiple outcomes based on a common 
set of study participants. These outcomes will generally be correlated. Cluster-robust 
variance-covariance estimators are a fruitful approach for synthesizing dependent outcomes. 
However, when the number of studies is small, state-of-the-art robust estimators can yield 
inflated Type 1 errors. Therefore, two new cluster-robust estimators are presented, in order 
to improve small sample performance. For both new estimators the idea is to transform the 
estimated variances of the residuals using only the diagonal entries of the hat matrix. The 
proposals are asymptotically equivalent to previously suggested cluster-robust estimators 
such as the bias reduced linearization approach. The methods are applied to a dataset of 81 
trials examining overall and disease-free survival in neuroblastoma patients with amplified 
versus normal MYC-N genes. Furthermore, their performance is compared and contrasted 
in an extensive simulation study. The focus is on bivariate meta-regression, although the 
approaches can be applied more generally.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In psychometric and medical research, studies frequently report multiple dependent outcomes. These outcomes can 
be synthesized across studies, while incorporating study level moderators, via multivariate meta-regression (Berkey et al., 
1998; Mavridis and Salanti, 2013). This is a more sophisticated approach than averaging the effects within studies to create 
aggregate outcomes, which are then synthesized. A fruitful approach to achieve reliable inference in the case of a multivari-
ate meta-regression is to use a cluster-robust (CR) variance-covariance estimator (Hedges et al., 2010). Robust estimators 
are designed to account for potential model misspecification. They can handle dependent effect size estimates and het-
eroscedastic model errors. A frequent problem in multivariate meta-analysis models is that it is difficult to compute the 
variance-covariance matrix of the vector of effect estimates. This is because trials (studies) frequently report neither the 
sampling covariances between study outcomes nor individual patient data (IPD). This is where CR estimators come into 
play: They have multiple advantages, such as providing consistent standard errors and asymptotically valid tests without 
requiring restrictive assumptions regarding the (correlation) structure of the model errors. One example for utilization of 
robust estimators and a working model for the correlation structure is a pseudo-likelihood approach for multivariate meta-
analysis of test accuracy studies (Guolo and To, 2021).

* Corresponding author.
E-mail address: thilo.welz@tu-dortmund.de (T. Welz).
https://doi.org/10.1016/j.csda.2022.107631
0167-9473/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.csda.2022.107631
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2022.107631&domain=pdf
mailto:thilo.welz@tu-dortmund.de
https://doi.org/10.1016/j.csda.2022.107631


T. Welz, W. Viechtbauer and M. Pauly Computational Statistics and Data Analysis 179 (2023) 107631
Cluster-robust estimators are an extension of heteroscedasticity consistent (HC) estimators. HC estimators, proposed by 
White (1980) and later extended in Cribari-Neto (2004) and Cribari-Neto et al. (2007), were first proposed in the meta-
analytic literature by Sidik and Jonkman (2005). They have been examined and applied for use in ANCOVA (Zimmermann 
et al., 2019), ordinary least squares regression (Hayes and Cai, 2007) and mixed-effect meta-regression (Hedges et al., 2010; 
Viechtbauer et al., 2015; Welz and Pauly, 2020). When trials report multiple effects stemming from the same study par-
ticipants, their clustered, i.e. correlated nature should be accounted for. This is where CR estimators come in. The original 
formulations of both HC and CR estimators have been shown to possess a downward bias for variance components, as 
well as yielding highly inflated Type 1 errors of respective test procedures in case of a small number of studies/clusters 
(Viechtbauer et al., 2015; Tipton and Pustejovsky, 2015; Welz and Pauly, 2020). Therefore it is recommended to instead use 
one of various improvements that have been suggested. We discuss some of these, such as the bias reduced linearization 
approach and C R3 as introduced in Bell and McCaffrey (2002), as well as two new proposals in Section 3. These can be 
applied generally for multivariate meta-regression, but we focus specifically on the bivariate case. In the supplement we 
also provide some simulation results for the setting of three correlated effect sizes.

First, we present the statistical model, as well as tests and confidence regions for the model coefficients in Section 2. In 
Section 3, we describe multiple CR estimators, including two new suggestions C R∗

3 and C R∗
4. In Section 4, we conduct a real 

world data analysis. Section 5 describes the design and results of our simulation study. We close with a discussion of the 
results and an outlook for future research (Section 6).

2. The set-up

The usual multivariate mixed-effects meta-regression model (Jackson et al., 2011; Mavridis and Salanti, 2013) is given by

Y i = X iβ + ui + εi, i = 1, . . . ,k, (1)

where k is the number of independent studies, β ∈ Rq is a vector of coefficients and X i a pi × q design matrix of study-
level covariates. In the following we will assume that there are p effects (outcomes) of interest per study, but only pi ≤ p
effects are observed (reported) in study i, i.e. Y i ∈ Rpi . Furthermore, ui is a random effect that is typically assumed to 
be multivariate normally distributed with ui ∼ N (0,T i) and εi is the within-study error with εi ∼ N (0,V i). With T i

we refer to the pi × pi submatrix of the matrix T denoting the p × p between-study variance-covariance matrix (under 
complete data). V i refers to the corresponding pi × pi within-study variance-covariance matrix. In practice the sampling 
variance-covariance matrices V i can be difficult to construct, as studies rarely report covariances of effect size measures 
and information needed to compute them is often unavailable. This would require the formulation of a working model 
(Hedges et al., 2010). In our simulation study, presented in Section 5, we utilize estimates of the sampling covariances. We 
also present simulation results based on a working model in the supplementary materials. We rewrite model (1) in matrix 
notation as

Y =Xβ+u+ε, (2)

with β ∈ Rq , Y =(Y ′
1, . . . ,Y ′

k)′ , and design matrix X. Assuming that we have a block diagonal matrix of weights Ŵ =
diag(Ŵ 1, . . . , ̂W k), usually corresponding to the inverse variance weights with Ŵ i = (

T̂ i+V i
)−1

, then the weighted least 
squares estimator for β is given by (Mavridis and Salanti, 2013)

β̂=(X ′Ŵ X)−1 X ′Ŵ Y . (3)

With T̂ i we refer to an estimate of the heterogeneity variance matrix T i . In our implementations we use restricted maxi-
mum likelihood estimation, as is the default in the rma.mv function of the metafor R package.

We will focus on constructing (multivariate) confidence regions for β and confidence intervals for the individual coef-
ficients β j, j = 1, . . . , q based on testing the hypotheses H0 : {β = β0} vs. H1 : {β �= β0}. We set � = Cov(β̂) and denote 
estimates thereof by �̂. We discuss specific choices for estimating � in Section 3.

Neglecting multiplicity, we note that a commonly used confidence interval for β j , j = 1, . . . , q is given by

β̂ j ±
√

�̂ j j z1−α/2. (4)

Here z1−α/2 denotes the 1 − α/2 quantile of the standard normal distribution and �̂ j j denotes the jth diagonal element of 
�̂ = (X ′Ŵ X)−1 . A confidence interval with better small sample performance that is asymptotically equivalent for k → ∞
is given by using the tp(k)−q,1−α/2 quantile instead, which refers to the 1 − α/2 quantile of the t-distribution with p(k) − q

degrees of freedom. Here p(k) := ∑k
i=1 pi is the total number of observed effects, which is equal to the number of studies 

k in the univariate setting (Viechtbauer et al., 2015). Alternatively the degrees of freedom of the t distribution can be 
estimated via a Satterthwaite approximation, as suggested by Bell and McCaffrey (2002).

In order to construct a (1 − α) confidence region for β we consider the usual Wald-type test-statistic (Tipton and 
Pustejovsky, 2015)
2
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Q = (β̂ − β0)
′�̂−1(β̂ − β0). (5)

Under the null hypothesis Q is approximately χ2
q -distributed, assuming � is positive definite. However, it is known that 

tests based on this approximation can perform poorly for small to moderate values of k (Tipton and Pustejovsky, 2015). An 
arguably better alternative is the F -test

1
{

Q > qFq,k−q,1−α

}
, (6)

where Fq,k−q,1−α denotes the 1 − α quantile of an F -distribution with q and k − q degrees of freedom. This is analogous 
to the t-tests for univariate coefficients and is superior to the test based on the asymptotic χ2-approximation (Tipton and 
Pustejovsky, 2015). However, the F -test has been criticized for only performing well in certain scenarios (Tipton, 2015). As 
a remedy for smaller k, Tipton and Pustejovsky (2015) proposed to approximate Q by a Hotelling’s T 2 distribution with 
parameters q and (degrees of freedom) η, such that

η − q + 1

ηq
Q ∼ F (q, η − q + 1). (7)

They discuss different approaches for estimating the degrees of freedom η. Based on their research, they recommend an 
estimation approach, which they call “HTZ”. We briefly summarize this estimator, originally proposed by Zhang (2012) for 
heteroscedastic one-way MANOVA, and refer to their paper for details.

First note that the statistic in (5) can also be written as Q = z′ S−1z with z = �−1/2(β̂ − β0) and S = �−1/2�̂�−1/2. 
Under H0, z is normally distributed with mean 0 and covariance I (Tipton and Pustejovsky, 2015). Moreover, if S is a 
random q × q matrix such that ηS follows a Wishart distribution with η degrees of freedom and scale matrix Iq , the 
estimator is given by

η̂Z = q(q + 1)∑q
a=1

∑q
b=1 Var(sab)

.

Here sab denotes the entry (a, b) of S . This approach corresponds to setting the total variation in S equal to the total 
variation in a Wishart distribution (Tipton and Pustejovsky, 2015).

However, our own simulations showed that there are situations when η̂Z < q −1 and therefore η̂Z −q +1 < 0. Specifically 
this frequently happened in cases with a small number of studies (k ≤ 5). As the degrees of freedom in an F distribution 
cannot be negative the HTZ approach is not applicable here. Therefore we will stick to the classical F -test (6), although we 
propose a small sample adjustment. In our simulations the F -test (6) leads to very liberal or conservative results, depending 
on the variance-covariance estimator used, in settings with k = 5 studies. We therefore propose to truncate the denominator 
degrees of freedom at the value two, i.e. we consider the F -test

1
{

Q > qFq,max(2,k−q),1−α

}
. (8)

The simple motivation behind this adjustment is that for an Fm,n distribution with degrees of freedom m and n the 
expected value n

n−2 only exists when n > 2. We also tested a truncation of the denominator degrees of freedom at three. 
However, simulations indicate superior coverage of respective confidence intervals for a truncation at two.

Confidence regions for β can be derived via test inversion. For example, if (8) is a test for H0 : {β=β0} vs. H1 : {β � =β0}, 
then the set

� :=
{
β ∈Rq : (β̂ − β)′�̂−1(β̂ − β) ≤ qFq,max(2,k−q),1−α

}
(9)

is a corresponding confidence region for β .
A confidence ellipsoid can be obtained following Johnson et al. (2014), based on the eigenvalues λ̂ j and eigenvectors ê j

of �̂. This means � is an ellipsoid centered around β̂ , whose axes are given by

β̂ ±
√

λ̂ jqFq,max(2,k−q),1−α ê j, j = 1, . . . ,q.

This means � extends for 
√

λ̂ jqFq,max(2,k−q),1−α units along the estimated eigenvector ê j for j = 1, . . . , q. Since the 
volume of an n-dimensional ellipsoid with axis lengths a1, . . . , an is given by (Wilson, 2010)

V = 2πn/2

n	(n/2)

n∏
i=1

ai,

the volume of the confidence ellipsoid � is equal to

V� = 2πq/2

q	(q/2)

q∏√
λ̂iqFq,max(2,k−q),1−α.
i=1

3



T. Welz, W. Viechtbauer and M. Pauly Computational Statistics and Data Analysis 179 (2023) 107631
We consider these multivariate confidence regions � in our simulation study in Section 5, as this reduces the number of 
simulation results and yields concise evaluation. In practice, researchers would more likely consider individual confidence 
intervals. However, if the confidence set � yields poor coverage for β , then the individual confidence intervals for the 
components of β cannot all perform well.

3. Cluster-robust covariance estimators

Robust variance-covariance estimators, also known as sandwich estimators or Huber-White estimators, have been rec-
ommended as a promising alternative in the context of meta-regression (Hedges et al., 2010; Tipton, 2015; Welz and Pauly, 
2020). Robust estimators are designed to account for potential model misspecification. They have many desirable proper-
ties, such as consistency under heteroscedasticity or asymptotic normality (Hedges et al., 2010) without making restrictive 
assumptions about the specific form of the effect sizes’ sampling distributions.

The reliability of confidence regions based on the statistic (5) depends on the quality of the estimator �̂ for � =
Cov(β̂). The standard (Wald-type) estimator, which we will refer to as ST , is given by (X ′Ŵ X)−1. The motivation be-
hind this estimator is that the true covariance matrix of β̂ (given correct weights) is equal to � = (X ′W X)−1 with 
W = diag (W 1, . . . , W K ) and W i = T i+V i . However, this ignores the imprecision in the estimation of T ,V and there-
fore in the estimation of W. In fact, if T is estimated poorly, this may lead to deviations from nominal Type 1 error and 
coverage of corresponding confidence regions (Sidik and Jonkman, 2005).

In the case of univariate meta-analysis and meta-regression heteroscedasticity-consistent (HC) estimators can be applied 
(Sidik and Jonkman, 2005; Viechtbauer et al., 2015; Welz and Pauly, 2020). There are various HC estimators that can be used 
for ordinary least squares regression, see Cribari-Neto et al. (2007). For multivariate meta-regression however, the correlated 
nature of the study effects needs to be taken into account. We therefore consider cluster-robust (CR) estimators. A selection 
of CR estimators is, e.g., implemented in the R package clubSandwich (Pustejovsky, 2021). The package recommendation 
is the “bias reduced linearization” approach C R2, which is discussed in detail in Tipton and Pustejovsky (2015); Pustejovsky 
and Tipton (2018). Sandwich estimators (of HC- as well as CR-type) are all of the general form

�̂ = (X ′Ŵ X)−1 X ′Ŵ �̂Ŵ X(X ′Ŵ X)−1, (10)

with the differences lying in the central “meat” matrix �̂, surrounded by the “bread”. This form motivates the name “sand-

wich” estimator. �̂H C1 = k
k−q (X ′Ŵ X)−1

(∑k
i=1 X ′

i Ŵ i ε̂
2
i Ŵ i X i

)
(X ′Ŵ X)−1 is arguably the best known sandwich estimator 

in the context of univariate meta-regression (Hedges et al., 2010; Viechtbauer et al., 2015; Tipton and Pustejovsky, 2015). 
However, the extensions HC3 and HC4 are frequently recommended as superior alternatives in the non meta-analytic liter-
ature, see Cribari-Neto et al. (2007) for details, and have been shown to be superior to HC1 (Long and Ervin, 2000; Hayes 
and Cai, 2007; Zimmermann et al., 2019). A natural extension of HC1 for the multivariate setting and what we will refer to 
as C R∗

1 is defined as

�̂C R∗
1
= k

k−q (X ′Ŵ X)−1

(
k∑

i=1

X ′
i Ŵ i�̂i Ŵ i X i

)
(X ′Ŵ X)−1, (11)

where �̂i = Ei E ′
i with Ei = Y i−X i β̂ and k

k−q is a correction factor that converges to 1 as k goes to infinity. The motivation 
for this factor is to correct for a liberal behavior in case of few studies/clusters k; see the clubSandwich package for 
similar choices.

However, as our simulation study below will show, tests based on C R∗
1 are still quite liberal when k is small. An alter-

native is to instead use a bias reduced linearization approach, which was originally proposed by Bell and McCaffrey (2002)
and further developed by Pustejovsky and Tipton (2018). This estimator, called C R2, is designed to be exactly unbiased 
under the correct specification of a working model. This is achieved via a clever choice of adjustment matrices in the 
formulation of the estimator, see Tipton and Pustejovsky (2015); Pustejovsky and Tipton (2018) for details. This is the rec-
ommended approach in the clubSandwich package (Pustejovsky, 2021). Another alternative is the C R3 estimator, which 
is a close approximation of the leave-one-(cluster)-out Jackknife variance-covariance estimator. C R3 is also implemented in 
the clubSandwich package.

However, all of the estimators above can be unsatisfactory for small k, as our simulations will show. Therefore, in addition 
to these C R-estimators, we propose two others, which are extensions of the HC3 and HC4 estimators. Since HC3 and HC4

often outperform both HC1 and HC2 in the univariate regression setting (Long and Ervin, 2000; Cribari-Neto, 2004; Welz 
and Pauly, 2020), one would suspect their respective cluster-robust extensions to outperform in the case of multivariate 
regression. We therefore define C R∗

3 and C R∗
4 via

�̂C R∗
3
= (X ′Ŵ X)−1

(
k∑

X ′
i Ŵ i�̂3i Ŵ i X i

)
(X ′Ŵ X)−1, (12)
i=1

4
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�̂C R∗
4
= (X ′Ŵ X)−1

(
k∑

i=1

X ′
i Ŵ i�̂4i Ŵ i X i

)
(X ′Ŵ X)−1. (13)

Here �̂3i is defined as

�̂3i = �̂i − 
 + 
 · (I pi − diag(H i)
)−2

, (14)

where H i refers to the submatrix of H with entries pertaining to study i, pi is the number of observed effects in study 
i and 
 = diag(Ei E ′

i). H refers to the hat matrix H = X(X ′Ŵ X)−1 X ′Ŵ . Furthermore, �̂4i is equal to (14) except 
 is 
multiplied with 

(
I pi − diag(H i)

)−δi , where δi = min
{

4,hii/h̄
}

with hii denoting the i-th diagonal element of H and h̄ is 
the average of the values in the diagonal of the hat matrix. This data-dependent exponent stems from the HC4 suggestion 
by Cribari-Neto (2004). HC4 performs well in univariate meta-regression (Welz and Pauly, 2020) and therefore motivates an 
extension to the cluster-robust context.

We highlight that our proposed estimator C R∗
3 is different from the estimator C R3 implemented in the R pack-

age clubSandwich as proposed by Bell and McCaffrey (2002). Whereas the latter uses the entire hat matrix for 
each cluster, we propose to use just the diagonal elements. In contrast, the “meat” matrix for C R3 is given by ∑K

i=1 X ′
i Ŵ i(I−H i)

−1�̂i(I−H i)
−1Ŵ i X i . Furthermore note that C R∗

3 is not even equal to the estimator with meat matrix 
given by

K∑
i=1

X ′
i Ŵ i(I−diag(H i))

−1�̂i(I−diag(H i))
−1Ŵ i X i

because �̂i is in general not a diagonal matrix (only block-diagonal), due to the clustered nature of the data.
For univariate regression we were able to prove the asymptotic equivalence of all HC estimators, which is formulated in 

the supplement of Welz and Pauly (2020). Under some weak regularity conditions it follows that the leverages asymptot-
ically converge to zero, as the number of studies k goes to infinity. Therefore, we expected similar results to hold for C R
estimators with analogous arguments. A theorem regarding the asymptotic equivalence of C R estimators under regularity 
conditions is given in the supplement of this paper, along with a proof.

4. Data analysis

We exemplify the methods presented in this manuscript with the analysis of a dataset containing 81 trials examining 
overall (OS) and/or disease-free survival (DFS) in neuroblastoma patients with amplified (extra copies) versus normal MYC-N 
genes. The dataset is contained in the R package metafor under the name dat.riley2003 and was extracted from Riley 
(2011). The data were also analyzed in Riley et al. (2004, 2007). Amplified MYC-N levels are associated with poorer out-
comes. The effect measures are log hazard ratios with positive values indicating an increased risk of death or relapse/death 
for patients with higher MYC-N levels as compared to patients with lower levels. 17 studies reported both outcomes, 25 
studies only reported DFS and 39 studies only reported OS.

The dataset contains the log hazard ratios and the corresponding sampling variances. However, since no information is 
available on the sampling covariances between OS and DFS we must make some assumptions with regard to our working 
model. Emura et al. (2021) estimated a Kendall’s tau of 0.9 between DFS and OS for a sample of 14 randomized clinical 
trials on resectable gastric cancers. Although using Kendall’s rank correlation coefficient is more common for meta-analyses 
of the survival endpoints DFS and OS (Burzykowski et al., 2001), we stick to the Pearson correlation coefficient (in alignment 
with our simulation study). We thus formulate a working model with a correlation of 0.9 between DFS and OS. In the spirit 
of a sensitivity analysis we will also assume a weaker correlation of �1 = 0.5 in addition to the stronger correlation of 
�2 = 0.9 and then compare the results. This means for a hypothetical study i that reports log hazard ratios for OS and DFS, 
yi,O S and yi,D F S , with an assumed correlation of 0.5 along with respective sampling variances σ 2

i,O S and σ 2
i,D F S , we have 

the sampling variance-covariance matrix V i =
(

σ 2
i,O S 0.5 · σi,O Sσi,D F S

0.5 · σi,O Sσi,D F S σ 2
i,D F S

)
.

We assume a multivariate meta-regression model that includes a random effect as in Section 2 as well as an unstructured 
(but positive definite) variance-covariance matrix. In the following we are interested in testing whether both pooled effects 
are different from zero. When the full dataset is analyzed, the Wald-test for H0 : {β = 0} vs. H1 : {β �= 0} returns a p-value 
< 0.001 for all CR estimators and for both �1 and �2.

However, in order to demonstrate differences in small sample behavior, let us assume we only had data from a subset 
of 5 studies. Such a situation is not unrealistic, considering the median number of studies per meta-analysis in a sample of 
22,453 published meta-analyses from the Cochrane Database was three (Davey et al., 2011). We assume this subset contains 
at least two results for both OS and DFS. An example subset is shown in Table 1. The p-values and volumes of confidence 
ellipsoids (9) at level 95% for the estimators C R∗

1, C R∗
3, C R∗

4, C R2 and ST for assumed correlations �1, �2 are displayed in 
Table 2.
5
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Table 1
Sample of five studies containing log hazard 
ratios (yi ) for disease-free and overall survival 
and their respective sampling variances (vi ).

study yi vi outcome

1 −0.11 0.45 DFS
1 −0.14 0.66 OS
2 0.30 0.07 DFS
2 0.67 0.08 OS
3 0.41 0.77 DFS
3 0.43 0.66 OS
4 0.47 0.29 DFS
4 2.08 0.45 OS
5 0.76 0.24 DFS
5 0.70 0.31 OS

Table 2
p-values and volumes of 95% confidence ellipsoids for 
Wald-tests based on CR estimators and the standard 
variance-covariance estimator (X ′Ŵ X)−1 for assumed cor-
relations of �1 = 0.5 and �2 = 0.9.

Estimators p-values Ellipsoid Volume

�1 �2 �1 �2

CR1* 0.073 0.075 0.870 1.103
CR3* 0.069 0.077 0.924 1.178
CR4* 0.076 0.090 0.995 1.114
CR2 0.054 0.055 0.662 0.854
ST 0.138 0.206 1.459 1.797

The results show that when the number of studies is small the p-values can vary substantially, depending on the choice 
of estimator. Furthermore, the results based on CR estimators appear to be more stable and depend much less on the 
underlying V matrix i.e. the assumed correlation between OS and DFS than the standard estimator (X ′Ŵ X)−1 . Additionally, 
the CR estimators yield smaller confidence regions. This motivates the use of a CR approach over the standard variance-
covariance estimator.

5. Simulation study

5.1. Simulation design

In order to assess the performance of the previously discussed methods, we conducted a Monte Carlo simulation. We 
considered k ∈ {5, 10, 20, 40} studies, average study sizes N ∈ {40, 100} with balanced treatment and control groups, co-
efficient vectors β = (β0, β1, β2, β3)

′ ∈ {(0, 0, 0, 0)′, (0.2, 0.2, 0.1, 0.1)′, (0.4, 0.4, 0.2, 0.3)′}, correlations � ∈ {0, 0.3, 0.7} and 
missing data ratios from {0, 0.1, 0.2, 0.3, 0.4}. The latter refers to the number of studies that only report one of the two 
effects of interest and � refers to the IPD correlations between the two observed outcomes. In the coefficient vector β the 
first two entries refer to the population means of the two effects of interest and the other two represent the effect of the 
study-level moderator on each effect respectively. Study sizes were varied, such that for an average study size N , 20% of 
studies had size 0.8N, 0.9N, . . . , 1.2N respectively. Datasets with missing data were generated by first simulating complete 
data and then removing entries completely at random.

The simulated study-level effects are (correlated) standardized mean differences (SMD). We estimated these SMDs via 
the adjusted Hedges’ g (Hedges, 1981)

g := 	(m/2)√
(m/2)	((m − 1)/2)

d

with m = nT +nC −2 and where nT and nC refer to the treatment and control group sizes. Hedges’ g is defined as d = (x̄T −
x̄C )/s∗ , with a pooled standard deviation s∗ =

√
(nT −1)s2

T +(nC −1)s2
C

m , where s2
T , s2

C refer to the variances in the treatment and 
control groups respectively (Hedges, 1981). This adjustment to Hedges’ g yields an unbiased effect estimator (Lin and Aloe, 
2021). We generated the SMDs by first simulating individual participant data (IPD). The treatment and control group IPD 
observations Y T

ij and Y C
ij were drawn from bivariate normal distributions respectively. More precisely, for study i = 1, . . . , k

and participant j = 1, . . . , Ni/2 the observations are drawn from Y T
ij ∼ N (θi, P ) and Y C

ij ∼ N (0, P ) with θi = Xβ+ui and 

P =
(

1 �
� 1

)
is the population correlation matrix of the outcomes in study i. X is a 2 × q design matrix of covariates. In 
6
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our specific simulation design of a single study-level covariate x with potentially different influence on the two study effects 

we have X =
(

1 0 x 0
0 1 0 x

)
.

For the heterogeneity matrix T we consider the two settings(
τ 2 0.2τ 2

0.2τ 2 τ 2

)
and

(
τ 2 0.4τ 2

0.4τ 2 2τ 2

)
.

For M = N/2 (average size of the treatment and control groups), we set τ 2 := 2
M + β2

0
4M = 4

N + β2
0

2N , which is approximately 
equal to the sampling variance of the standardized mean difference (Borenstein et al., 2021). This corresponds to an I2

value of 0.5. Here, I2 refers to the percentage of the total variation across studies that is due to heterogeneity rather than 
sampling variation (Higgins and Thompson, 2002). We estimate T via restricted maximum likelihood (REML) estimation, 
which is the default setting in the rma.mv function of the metafor R package.

We briefly discuss the covariance between two SMDs in the setting where we have a single treatment and control group 
but with different outcome measures. The resulting effect sizes will be correlated because the outcomes are collected from 
the same study participants. Olkin and Gleser (2009) showed that a large sample estimate for the covariance between two 
SMDs d1 and d2 with estimated (raw data) correlation �̂ is given by

Ĉov(d1,d2) = �̂
(

1
nT

+ 1
nC

)
+ �̂2d1d2

m
. (15)

Thus we obtain

Ĉov(g1, g2) =
(

	(m/2)√
(m/2)	((m − 1)/2)

)2 (
�̂

(
1

nT
+ 1

nC

)
+ �̂2d1d2

m

)
. (16)

All results are based on a nominal significance level α = 0.05. For each scenario we performed N = 5000 simulation 
runs. The primary focus was on comparing empirical coverage of the confidence regions (9) with nominal coverage be-
ing 1 − α = 0.95. For 5000 iterations, the Monte Carlo standard error of the simulated coverage will be approximately √

0.95×0.05
5000 ≈ 0.31% and assuming a power of 80% the Monte Carlo standard error of the simulated power will be approxi-

mately 
√

0.8×0.2
5000 ≈ 0.57% (Morris et al., 2019).

All simulations were performed using the open-source software R. The R scripts written by the first author especially 
make use of the metafor package for meta-analysis (Viechtbauer, 2010) as well as James Pustejovsky’s clubSandwich
package.

5.2. Results

Figs. 1–4 display the empirical coverage based on the adjusted F -test (8) and estimators C R∗
1, C R∗

3, C R∗
4, C R2 and ST . 

The figures summarize the results for all combinations of N, β, � and missing data ratios. C R∗
1 and C R2 yield much less than 

nominal coverage 95% in all settings, but especially for k < 40. C R2 gives around 50% coverage for five studies, between 70-
80% for ten, 82-87% for twenty and 88-91% coverage for forty studies. The C R∗

1 estimator yields between 25-50% coverage 
for five studies, 65-75% for ten, 80-86% for twenty and 87-91% for forty studies. It is interesting to observe a clustering 
of coverage results for the estimator C R∗

1 and k = 5 (depending on the inter-study correlation of effects) that cannot be 
observed for any other setting or estimator. The standard estimator ST gives approximately correct coverage for k ≥ 20 but 
is highly conservative for k ≤ 10 studies, especially for five. C R∗

3 very consistently yields slightly more coverage than C R∗
4

in all settings except for k = 40 where the difference between the two is negligible. For k = 5 coverage based on C R∗
4 is 

approximately nominal and when based on C R∗
3 slightly conservative. For k = 10 and k = 20 C R∗

4 gives coverage around 
91-92% and C R∗

3 around 93-94%. For k = 40 both yield coverage around 92-94%.
In addition to these empirical coverage results, we also consider the power related to the respective tests and confidence 

regions. The power plots are provided in Figs. 5 and 6 for β = (0.2, 0.2, 0.1, 0.1)′ and β = (0.4, 0.4, 0.2, 0.3)′ respectively. We 
show box plots to summarize the various simulation settings. For β = (0.4, 0.4, 0.2, 0.3)′ power is monotone increasing in 
the number of studies k for all estimators. For β = (0.2, 0.2, 0.1, 0.1)′ power is monotone increasing in k for C R∗

3, C R∗
4 and 

ST , whereas for C R∗
1 and C R2 power decreases from a median of approximately 70% and 60% to 55% and 52% respectively, 

when going from five to ten studies and then increases in k beyond this point.
The differences in power between the considered estimators are small for a large number of studies and become more 

pronounced as the number of studies decreases. For forty studies the power based on all estimators is nearly identical for 
both choices of β . For twenty studies power based on C R∗

1 and C R2 is slightly higher than for the other estimators. C R∗
3, C R∗

4
and ST yield approximately the same power for both choices of β and twenty studies. For k = 10 and β = (0.2, 0.2, 0.1, 0.1)′
the median power for C R∗

1 and C R2 is around 55% and 52% respectively, whereas for C R∗
3, C R∗

4 and ST it is around 25%, 31% 
and 20% respectively. For k = 10 and β = (0.4, 0.4, 0.2, 0.3)′ the median power for C R∗

1 and C R2 is around 87%, whereas 
for C R∗ , C R∗ and ST it is around 70%, 74% and 73% respectively. For k = 5 and β = (0.2, 0.2, 0.1, 0.1)′ the median power 
3 4
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Fig. 1. Coverage of the confidence set (9) based on an inversion of the adjusted F -test for k = 5 studies.

Fig. 2. Coverage of the confidence set (9) based on an inversion of the adjusted F -test for k = 10 studies.

for C R∗
1 and C R2 is around 70% and 60% respectively, whereas for C R∗

3, C R∗
4 and ST it is only around 8%, 12% and 0% 

respectively. For k = 5 and β = (0.4, 0.4, 0.2, 0.3)′ the median power for C R∗
1 and C R2 is around 83% and 70% respectively, 

whereas for C R∗
3, C R∗

4 and ST it is around 13%, 24% and 1% respectively.
In the accompanying supplement we also present simulation results for the case p = 3 (see Section 2). In our main 

simulation, we assumed that estimation of the sampling covariances between study effects were available, implying approx-
imately correct specification of the within-study variance-covariance matrix V̂ i for i = 1, . . . , k. In the extra simulations for 
dimension 3, we also check the effect of possible model misspecification, when only the sampling variances of the study 
effects are available but within-study correlations must be assumed, resulting in a (possibly incorrect) working model. Our 
results are similar to the bivariate case. The new estimators C R∗

3 and C R∗
4 outperform the other considered estimators with 

regard to empirical coverage of confidence regions for β and the results are stable under model misspecification. However, 
further work is necessary to check performance of the new estimators in even higher dimensions or when more extreme 
errors are made in the specification of the working model for the within-study variance-covariance matrix V i .

6. Discussion

Multivariate Meta-Regression is an important tool for synthesizing and interpreting results from trials reporting multiple, 
correlated effects. However, information on these correlations is rarely available to analysts, making it difficult to construct 
the variance-covariance V matrix of the studies’ sampling errors. Cluster-robust estimators allow for a correction of the 
standard errors, therefore enabling more reliable inference. In this paper we introduced two new proposals of CR estimators 
T. Welz, W. Viechtbauer and M. Pauly Computational Statistics and Data Analysis 179 (2023) 107631
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Fig. 3. Coverage of the confidence set (9) based on an inversion of the adjusted F -test for k = 20 studies.

Fig. 4. Coverage of the confidence set (9) based on an inversion of the adjusted F -test for k = 40 studies.

Fig. 5. Box plots of power based on adjusted F -test for all settings with β = (0.2,0.2,0.1,0.1)′ .
9



T. Welz, W. Viechtbauer and M. Pauly Computational Statistics and Data Analysis 179 (2023) 107631
Fig. 6. Box plots of power based on adjusted F -test for all settings with β = (0.4,0.4,0.2,0.3)′ .

for use in multivariate meta-regression. We performed a simulation study, comparing these estimators with results based 
on two alternative CR estimators and the standard variance-covariance estimator with a focus on coverage and power of 
confidence sets and tests, as well as an illustrative real life data analysis. In our manuscript we only investigated the bivariate 
meta-regression setting, although all methods discussed are also applicable in higher dimensions. Further work is necessary 
to assess the viability of our suggestions in other settings, such as when the number of effects per study is greater than 
two.

Our main findings can be summarized as follows: The Zhang estimator, discussed in Tipton and Pustejovsky (2015), can 
lead to a negative estimate of the denominator degrees of freedom in the F -distribution. This can occur when the number 
of studies is very small. The AHZ approach is therefore not recommendable for bivariate meta-regression if the number of 
studies is small (k ≤ 5). Furthermore, when using the classical F -test in the bivariate setting, we recommend truncating the 
denominator degrees of freedom at two. The C R∗

1 and C R2 estimators yield an empirical coverage that lies far below the 
nominal level 1 − α and the coverage based on the other estimators, especially for smaller numbers of studies. On the flip 
side the tests based on these two C R-estimators unsurprisingly have superior power. The ST estimator has approximately 
correct coverage for k ≥ 20 studies but is highly conservative for k ≤ 10 studies. C R∗

3 and C R∗
4 yield approximately correct 

coverage for five studies. C R∗
3 also gives nearly correct coverage for ten studies whereas C R∗

4 becomes slightly liberal in this 
case.

Based on our results we recommend using either the C R∗
3 or C R∗

4 estimator for bivariate meta-regression if k ≤ 10 with 
a very slight preference for C R∗

3. For an analysis with k ≥ 20 studies the ST estimator seems to work best.
A limitation of our simulation study is that the sampling covariances between study-level effects were available for the 

construction of weight matrices. As mentioned in the introduction, this is often not feasible in practice, requiring analysts 
to calculate weights using a specified working model for the covariance structure. Hedges et al. (2010) provide possible 
working models likely to be found in meta-analyses. They propose the use of approximately inverse variance weights, based 
on these working models.

An open question that requires further research is what the best testing procedure is when the number of studies k
is no greater than around five. Neither the adjusted Hotelling’s T 2 approach in combination with Zhang’s estimator for 
the degrees of freedom, which was recommended by Tipton and Pustejovsky (2015), nor the naive or adjusted F -tests 
used in our simulations seem to be the ideal approach. This requires more intensive work that is outside the scope of 
this manuscript. For a discussion of alternative estimation approaches for the degrees of freedom in the adjusted Hotelling 
approach, we refer to Tipton and Pustejovsky (2015). Another question for future research is whether other statistics or 
resampling approaches that have shown promising small sample approximations for heterogeneous MAN(C)OVA settings 
(Friedrich et al., 2017; Friedrich and Pauly, 2018; Zimmermann et al., 2020) can also help in multivariate meta-regression 
models.
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