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Introduction and outline of thesis
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1.1 Cancer

The worldwide cancer incidence and mortality estimates in 2012 were 14.1 and 8.2 
million, respectively [1]. In 2020, the incidence and mortality were 19.3 and 10 million, 
respectively, which are increases of approximately 37% and 22% in 8 years, indicating that 
the burden of cancer on healthcare is increasing worldwide [2]. 

As most head and neck squamous cell carcinoma (HNSCC) and non-small cell lung cancer 
(NSCLC) tumors show no early symptoms, they are commonly diagnosed at an advanced 
stage [3-6], which drastically lowers the chance of survival. Similarly, symptomatic brain 
metastases (BM) are associated with a decreased quality of life (QoL) and poor prognosis 
(regardless of the primary tumor) [7], and usually have no curative treatment options 
available. Therefore, we chose to focus on these types of cancer in this thesis. HNSCC has a 
large variety of subtypes, induced by differences in genetic profiles, and could benefit from 
a personalized medicine approach [8]. NSCLC, especially advanced disease, is associated 
with a high risk of BM [9, 10]. However, it is currently not possible to reliably predict which 
patients with NSCLC will develop BM, which could help in clinical decision-making. For 
the patients that do develop BM, stereotactic radiotherapy (SRT) is an increasingly used 
treatment modality [11, 12], but it is currently likewise not possible to reliably predict which 
patients may develop radiation necrosis (RN), a common side effect of this treatment. For 
all three types of cancers, artificial intelligence (AI) could be used to improve prognosis, 
using information available in clinical imaging, e.g., scans already performed for staging 
procedures, that is currently not used in the clinic. Identifying patients with HNSCC with 
high or low chance of survival might aid in clinical decision-making, or could be used to 
stratify patients in clinical trials according to prognosis. For NSCLC, predicting the risk of 
BM would allow to identify patients who could benefit from treatment such as prophylactic 
cranial irradiation (PCI). For BM, identifying patients with high risk of RN could allow the 
clinician to opt for systemic therapy instead, if systemic therapy is a reasonable treatment 
option. This thesis will therefore focus specifically on AI applications in advanced stages of 
these types of cancer. To further demonstrate that there is a need for these applications, 
the paragraphs below will first give some background on current staging procedures and 
(selection for) treatment options.

1.2 Clinical diagnosis and staging 

Diagnosis and management of cancer depends on the cancer type. In general, a tissue 
sample is first obtained to determine pathological classification [13]. The type of procedure 
to obtain this tissue sample depends on the type of cancer, the location in the body, and 
the health status of the patient. 
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A clinical staging workup is performed to determine the extent of the disease. This is 
mainly performed through the tumor-nodes-metastasis (TNM) staging system. This 
system describes the primary tumor location, size, and invasiveness (T-status), the number 
of local nymph nodes that the cancer has spread to (N-status), and finally the presence and 
extent of cancer metastases (M-status). This combination of T-, N-, and M-status results in 
an overall cancer staging, ranging from I to IVA/B. A TNM stage can be clinical (c-stage, 
based on imaging) and pathological (p-stage, after surgery). Stage I tumors are generally 
small and have not spread yet to other parts of the body, while stage IV tumors have 
metastasized. It follows that patients with higher stages generally have poorer prognosis, 
and may not be eligible to the same treatment as lower stages. 

In addition to size and location, the genetic and mutational status of the tumor 
are commonly used for deciding treatment, and sometimes also for staging. For 
oropharyngeal HNSCC, human papillomavirus (HPV) status is included in American Joint 
committee of cancer (AJCC) 8th edition staging [14]. For NSCLC, tumor programmed 
death ligand1 (PD-L1) status, as well as the presence of several oncogenic drivers such 
as anaplastic lymphoma kinase (ALK) fusions, B-Raf V600 mutations, epidermal growth 
factor receptor (EGFR) mutations and ROS1 rearrangements influence the choice for 
treatment in metastatic disease and increasingly also in earlier disease stages [15-18]. 
Furthermore, information regarding patient characteristics and preferences is also taken 
into consideration by determining patient performance score, comorbidities, and the 
expected QoL for and risk of complications for the treatment choices available. Lastly, 
patient specific clinical and biological factors are regarded, such as smoking and alcohol 
consumption status, hemoglobin level, sex, and age [19-24].

1.3 Treatment

Treatment is dependent on the type of cancer and the stage of cancer. For smaller, easily 
resectable tumors, patients are usually treated with surgery. For patients with higher 
but potentially still curable cancer stages, often a combination of radiotherapy (RT) or 
surgery with chemotherapy (CTx) is performed, either concurrently or sequentially. Other 
treatments are immunotherapy or targeted therapy, depending on specific mutational 
and genetic markers. 

RT is a treatment wherein ionizing radiation is delivered to the tumor, which destroys cells 
and aims to shrink or remove the tumor entirely. Because of their fast cell division and 
growth, tumor cells are extra susceptible to radiation that can damage these processes. 
The extent to which a tumor reacts to radiation is dependent on the cancer type, as 
different cancers have shown to have different radio sensitivities [25]. Furthermore, the 
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size of the tumor is important, as well as the presence of hypoxia in the core of the tumor, 
which can negatively affect the effectiveness of RT [26, 27]. 

The ionizing radiation has to travel through the body to reach the intended target, and 
will pass through the rest of the body after having reached the target. This causes healthy 
tissues before and behind the target to also be affected by a (similar) dose of ionizing 
radiation, which will damage healthy tissues and may lead to toxicity [28]. To minimize 
the dose to healthy tissues and maximize the target dose, the radiation is delivered to 
the tumor at multiple angles of exposure intersecting in the region of interest (ROI). This 
causes the dose to be focused on the ROI, and spares the rest of the body. The delivery of 
the dose to the ROI needs to be very precise, as missing the target means a large dose is 
delivered to healthy tissue instead. If the intended target is close to organs at risk (OAR), 
this may cause severe and long-lasting (if not permanent) side effects to the patient [29-
31]. Therefore, monitoring of the tumor location, size, and shape throughout the entirety 
of the treatment is very important.

1.4 Specific cancers

An important part of clinical decision-making is the estimation how a patient will respond 
to a certain treatment. Examples include an estimation of the survival chance, the 
chance of recurrence, or the risk of toxicity. Despite improvements in the identification of 
prognostic and predictive factors as well as in treatment itself, many challenges remain as 
discussed below for stage III-IVB (locally advanced and advanced) HNSCC, stage III (locally 
advanced) NSCLC, and BM (regardless of the primary tumor).

1.4.1 Head and neck cancer
HNSCC is a type of cancer that develops in the cells of the mucosal tissues of the upper 
digestive and respiratory tract, which includes laryngeal, hypopharyngeal, oropharyngeal, 
nasopharyngeal, and oral cavity cancer. HNSCC is the sixth most prevalent cancer 
worldwide [32, 33]. Over the last decade, a striking increase in oropharyngeal HNSCC 
incidences has been observed in the Western world, mostly affecting generally young and 
healthy patients. This is due to HPV infection, which is a risk factor for oropharyngeal HNSCC 
(3). One important note is that while HPV infection increases the risk of (oropharyngeal) 
HNSCC, patients with HPV-positive cancer have in general a better treatment response 
than those that are HPV-negative. Other risk factors common to HNSCC in general include 
(excessive) alcohol consumption and smoking. Figure 1 shows an example of a stage IVA 
oropharynx HNSCC tumor.
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Figure 1
in red. 

  

Figure 1. CT of Stage IVA oropharynx HNSCC patient, with the primary tumor outlined in blue and 

a lymph node tumor outlined in red.

HNSCC is generally associated with a poor prognosis, as most are found at advanced 
stages (stage III-IVB). The 5-year median survival chance of patients with advanced 
HNSCC is 25-60% (4). Neoadjuvant immunotherapy has shown promising results in 
studies investigating improvement of survival outcome for advanced HNSCC (8-10). 
However, as immunotherapy seems eligible for only 20% of investigated patients (5), 
barely any increase in 5-year survival has been observed. Lastly, HNSCC is one of the most 
psychologically damaging types of cancers, primarily because of late effects of the cancer 
and its treatment, including disfigurement, swallowing difficulties, and pain [34-36]. 

Diagnosis according to the AJCC tumor staging of HNSCC starts with determining the 
primary tumor location, determination of the size of the primary tumor, the extent of 
invasiveness in surrounding tissues, and the presence of secondary tumor masses (7). 
This is performed through clinical examination in the form of fiberoptic endoscopy and 
by taking biopsies, and through imaging. Imaging involves computed tomography (CT), 
magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasound 
(US). CT and MRI are used to determine tumor size and extent of invasiveness, and the 
metastasis to regional lymph nodes, while PET is used to determine if metastasis occurred 
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to distant locations. Lastly, US is used to assess the lymph nodes through US-guided fine-
needle-aspiration, to perform pathological confirmation (6).

Treatment of HNSC is currently either RT, CTx, surgery, or any combination of these 
three strategies. CTx for advanced HNSCC is mainly cisplatin-based, but cetuximab and 
carboplatin are often used as well (6). However, HNSCC has a large variety in response to 
treatment, induced by the different tumor locations and genetic profiles of the cancer. 
This means patients could benefit greatly from personalized treatment paths, which 
would require accurate prognostic tools. These tools could be used to stratify patients into 
risk-groups. For advanced HNSCC, having three identifiable risk-groups (a low, medium, 
and high-risk group) would allow for selection of those patients who could benefit from 
more intense treatment, or identify patients who could be spared from treatment. 

1.4.2 Non-small cell lung cancer
Lung cancer describes a number of histological subtypes of cancer originating in the lungs. 
These subtypes are commonly divided into two groups: the histological subtyping small 
cell lung cancer (SCLC), and all subtypes that are NSCLC [37]. NSCLC comprises over 80% 
of all lung cancers [38]. The main NSCLC subtypes are adenocarcinoma and squamous cell 
carcinoma [6]. Adenocarcinoma describes cancers that form in glandular tissues of the 
body, while squamous cell carcinomas describe cancers that originate from squamous 
cells that form the surface of the skin, and line the respiratory and digestive tracts. Over 
50% of patients with NSCLC present with metastatic disease (stage IV) and are considered 
incurable, and around half of the patients without metastasis upfront (stage I-III), progress 
to metastatic disease despite curative intent therapy [3]. The long-term survival of patients 
with metastatic NSCLC is in general very poor, with a 5-year survival rate generally below 
10%, although targeted therapies and immune therapies are changing this paradigm with 
5-year survival rates reaching 30-60% [39-41]. 

Recommended staging procedures for NSCLC depend on the suspected stage, but generally 
include a fluorodeoxyglucose 18F (¹⁸F-FDG) PET and CT chest and upper abdomen, often 
brain imaging (preferably MRI, otherwise CT) and if necessary mediastinal staging with 
EUS/EBUS or even mediastinoscopy. Approximately 21% of patients are diagnosed with 
stage III (locally advanced) NSCLC [42]. Standard treatment for patients with unresectable 
stage III NSCLC is concurrent chemoradiation (CCRT) [43]. If a patient is incapable of 
receiving this treatment due to comorbidities or suboptimal performance status, or if the 
tumor volume (and as a result the radiation field) is too large, sequential CRT or only radical 
RT are an option. As of 2018, adjuvant immunotherapy (durvalumab) has become the 
standard of care for patients treated with CCRT, without disease progression after CCRT 
[44]. Unfortunately, despite radical intent therapy, up to 30% of the patients with stage 
III NSCLC will develop BM during the course of their disease [45]. PCI reduces incidence 
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of BM with a relative risk of 0.33, but without improving OS in NSCLC and at a cost of 
neurotoxicity [45]. Durvalumab reduces this incidence with approximately 50%, but still 
BM remains a major problem in NSCLC as the overwhelming majority of these patients 
cannot be treated with curative intent anymore, while QoL decreases with symptomatic 
BM [7]. Being able to determine which patients are at high risk of BM may help in clinical 
decision-making, offering patients with high BM risk PCI. However, conventional risk 
assessment of BM is currently lacking, and more advanced and accurate models are 
required. Figure 2 shows an example of a stage III NSCLC tumor (primary tumor, involved 
lymph nodes not depicted).
 

 
Figure 2: CECT of Stage III NSCLC patient, with the primary tumor outlined in red (N2 lymph nodes not shown). 

  
Figure 2. CECT of Stage III NSCLC patient, with the primary tumor outlined in red (N2 lymph nodes 

not shown).

1.4.3 Brain metastasis
BM means that cancer has spread from a different part of the body to the brain. BM are 
more common than primary brain tumors, with reported incidences of 8.3-11 out of 
100.000 for brain metastases compared to 6.6 out of 100.000 for primary brain tumors 
[46-48]. The most common primary tumor locations are lung cancer, breast cancer, and 
melanoma, which have a cumulative risk of 20-40% to develop BM and which add up to 
67-80% of all BM cases [49-51].
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In general, patients with BM have a poor prognosis and little curative options. The prognosis 
and optimal treatment of BM are dependent on the primary location, and the median 
survival times reported generally fall within an 8-16 month range [52]. The diagnosis 
specific graded prognostic assessment (ds-GPA) is one of the tools to estimate expected 
survival time for patients with BM, dependent on patient age, primary tumor, Karnofsky 
performance score (KPS), the number of metastases, and mutational statuses [53]. For 
lung cancer specifically, an updated tool that includes molecular markers (Lung-molGPA) 
exists [54]. Treatment options are local therapy (RT or surgery, or a combination), or 
systemic therapy. The treatment decision is based on symptoms, the number and volume 
of BM, the presence of extracranial metastases, KPS or similar performance status, the 
options available for local and systemic therapy, and the patient’s preferences. RT has two 
different treatments available: whole brain radiotherapy (WBRT) and stereotactic RT (SRT) 
[11]. WBRT delivers radiation to the entire brain over a relatively long time, to radiate the 
present tumors and any invisible lesions that may be present. However, WBRT has shown 
to have low success in treating BM effectively, and it can induce (severe) neurological side 
effects. SRT instead delivers high doses of radiation with high precision to the BM in one or 
several fractions. SRT has a higher success than WBRT in treating a limited number of BM 
[55, 56], and does not expose the rest of the brain to radiation which prevents neurological 
degradation. However, SRT carries a risk of complications in the form of adverse radiation 
effects (ARE) [57]. One example of an ARE is RN, which is a late side effect that occurs when 
the high radiation dose delivered during SRT inadvertently has been delivered to nearby 
healthy tissue, which causes reversible or irreversible necrotic scarring of this tissue [58]. 
RN can be asymptomatic, in which case no treatment is necessary, or present with severe 
neurological side-effects requiring treatment through steroids, vascular endothelial 
growth factor (VEGF) inhibitors, or local interventions (laser interstitial thermal therapy 
or surgery) [59]. It would therefore be ideal to be able to determine which patients are 
at higher risk of RN to be able to counsel them, as it may lead to the decision to opt for 
systemic therapy instead if this is a reasonable treatment alternative (e.g. in patients with 
NSCLC that are eligible for targeted therapy). Figure 3 shows an example of a BM.
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Figure 3: T1 gadolinium enhanced MRI of a brain with a BM, with the BM outlined in red. 

  

Figure 3. T1 gadolinium enhanced MRI of a brain with a BM, with the BM outlined in red.

Purpose of this thesis

To summarize, advanced stages of NSCLC and HNSCC as well as BM pose several problems 
in the patient journey: during the diagnosis, the effectiveness of treatment, the prediction 
of disease relapse, and late toxicity after treatment. For HNSCC stratifying patients in 
survival risk-groups, even with the implementation of 8th edition staging, remains difficult 
for stage III-IVB patients. For NSCLC, even though effective treatments exist to lower the 
risk of BM, due to the possible side-effects of these treatments determining which patients 
are at a high risk of BM is needed, which is currently not possible clinically. Last, for BM 
determining which patients are at risk of severe RN before delivering SRT is important, as 
this information may be used for risk stratification, informing the patient, or even opting 
for different treatment.

What these patients have in common is the use of medical imaging, either for diagnosis, 
staging, or for treatment planning purpose. Common medical imaging modalities include 
PET, CT, and MRI. The imaging modality used depends mainly on the location of the 
tumor and the aim of the procedure (finding distant metastases, providing local details 
etc.). Currently, these images are generally not used other than for the aforementioned 
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purposes. Quantitative image analysis of these medical images may allow for the 
identification of phenotypical subtypes of tumors that could be investigated for their 
correlation to certain clinical outcomes. 

1.5 Medical Imaging

Medical imaging is the capturing of imaging data of patients, both exterior and interior, 
for diagnostic, prognostic, and intervention purposes. Medical images can be either two-
dimensional (2D) or three-dimensional (3D), depending on the imaging modality. A 2D 
image extends in the x-direction and the y-direction, expressed through number of pixels, 
while the z-direction is generally expressed by the number of 2D slices that combine to 
form a 3D image. Higher numbers of pixels or slices, or to be more precise the number of 
pixels or slices per unit length, mean more information is captured at a higher resolution. 
What follows is a brief description of the imaging modalities mentioned or analyzed in 
this thesis: PET, CT, and MRI. PET

PET is performed through tomography, which is an imaging technique where waves 
penetrate the imaging target, and images are then produced through reconstruction of 
the degree of absorption of these waves. PET is an imaging technique which is able to 
relay information regarding the patient’s metabolism and as such requires a patient to 
be injected with a tracer, which is a radioactive substance that gets absorbed in different 
gradations by different parts of the body. A commonly used tracer for cancer is ¹⁸F-FDG, 
which is a sugar with an attached positron-emitting radionuclide that gets absorbed 
by tissues during metabolism. As cancer cells have a very fast metabolism, relatively 
more FDG gets absorbed by these cells. The radionuclide emits photons, which can be 
detected by detectors located around the patient in the PET-scanner. Body parts with 
higher uptake of the tracer will show with more intensity, which is expressed through the 
semi quantitative standardized uptake value (SUV). This is the ratio of the local measured 
radioactivity and the body concentration of the injected radioactivity, which is displayed 
on a ¹⁸F-FDG-PET scan. Common downsides of PET are low resolution of the images 
compared to techniques such as CT and MRI, and variability in tracer uptake between 
patients and due to differences in protocols.

1.5.1 CT
Similarly to PET, CT is a tomography imaging technique. Specifically, CT is an x-ray imaging 
procedure that creates 2D “slices” of the patient, which are combined to form a 3D image. 
The slices are created by sending a narrow beam of x-rays into the patient, which absorbed 
at different rates in the body depending on the tissues it encounters and are measured 
by detectors opposite to the transmission source. By combining the attenuation of the 
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x-rays over multiple angles, a 2D image of the patient can be reconstructed. The calibrated 
attenuation coefficient, or radio density, of each tissue is expressed in Hounsfield units 
(HU) , with -1000 HU representing air and 0 HU representing water. Pixel values in CTs are 
therefore quantitative measures that correspond to the densities of the displayed tissues. 

CT scans are usually used for imaging regions of the body with high contrast, for example 
within the lungs, or when bone structures need to be displayed. To better display soft 
tissues, intravenous contrast agents are injected, creating contrast-enhanced CT (CECT) 
scans. These contrast agents absorb x-rays, and as they are absorbed at different rates by 
tissues can increase contrast compared to non-CECT scans. Most CT modalities included 
in this thesis are CECT images. Furthermore, a combination of PET and CT (PET/CT) can be 
used, combining the information on the tissues through CT and of the metabolic activity 
of these tissues through PET.

1.5.2 MRI
MRI is an imaging procedure that uses the energy of shifting magnetic fields to produce 
images. MRI employs a strong constant magnetic field over the entire body, which aligns 
all the protons in the body in the same direction. A radiofrequency (RF) pulse is then 
applied, which causes the protons to spin out of equilibrium. When this new field is turned 
off, the atoms return from an excited stage to a relaxed state in the original magnetic field, 
which releases energy measured by the MRI scanner. Depending on the density of the 
hydrogen atoms, tissues will release less or more energy, resulting in a different intensity 
value for different tissues on the images.

A particular setting of the RF pulse or the magnetic field gradients is called a sequence, 
which all have their unique image types. The main types of sequences used clinically 
are T1-weighted, and T2-weighted. The main difference between these sequences is 
that T2-weighted images display a higher intensity for water compared to T1-weighted 
images. The intensity values obtained through MRI are not calibrated and hence cannot 
be connected to meaningful physical or chemical characteristics of tissues - they are 
therefore not strictly quantitative.

1.5.3 Clinical role of medical imaging
Medical imaging has become a fundamental aspect of routine clinical practice, and is used 
for a multitude of purposes. For RT treatment-planning, images are needed to accurately 
deliver radiation to the ROI. For many diseases, such as cancer, ischemic stroke, Alzheimer’s 
disease, lung emphysema, radiological images are used to determine the presence and 
extent of the disease. This is done traditionally by expert radiologists, oncologists, and 
other medical experts by visually grading the disease on an image. Sometimes, semi-
quantitative measures such as Response Evaluation Criteria in Solid Tumors (RECIST) or 
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TNM staging is performed. These measures are performed to stratify patients into risk-
groups and to measure the efficacy of treatment, allowing clinicians to make decisions for 
treatment, and to assess survival or chance of recurrence of disease. 

1.6 Personalizing medicine via medical imaging

The current clinical practice is informed by clinical trials, which are performed on fairly 
homogenous patient populations. Patients, and cancer itself, have proven to be very 
diverse, which may benefit from stratification. The method of stratifying patients into 
groups to tailor medical practice is called stratified or personalized medicine [60]. Patients 
with cancer are currently stratified using TNM staging, which can be more or less accurate 
depending on the type of tumor, the histology, and other factors [61-63]. TNM can broadly 
differentiate patients with large differences, i.e., TNM stage I vs TNM stage III/IV. Within 
stage, and between patients with advanced cancer (stage III/IV), it becomes more difficult 
to differentiate for survival chance and locoregional control (LRC) [64, 65]. Stratifying 
patients more accurately would allow for more options in clinical decision-making, for 
example by sparing those patients from invasive therapy when survival prognosis is 
expected to be low regardless of treatment. To improve stratification, methods using more 
of the available information on the patient and the disease need to be employed. Factors 
such as comorbidities can affect treatment of a patient immensely. However, the onset 
of genomics and the amount of information that this provides clinical decision makers 
has revealed that tumors are more individual that previously believed, but also that the 
amount of information which can be considered by clinicians is currently too limited [66].

AI could be used to analyze this data instead, or be added to the clinical analysis. While AI 
is broadly defined as the ability of a computer to do tasks that normally require human 
intelligence [67], in the context of this area of research and also this thesis it is meant to 
describe the process of drawing statistical inferences from large datasets using machine 
learning techniques. An example of AI in a clinical setting is ECG monitoring of a patient, 
where a computer is able to detect early signs of atrial fibrillation, based on a model which 
was trained on large amounts of ECG data. However, a more complex problem such as 
predicting how a patient with cancer will react to treatment or how their disease will 
develop will require more information. 

Machine learning (ML) is a type of AI that can improve performing tasks through 
experience, through feeding it more and diverse data. Easily understandable examples 
of this are regression models, which are models that tune the variables of a function to 
describe the relationship between input variables and an output response. The data input 
into the regression model consists of one or more variables, and a certain outcome to 
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classify or predict for each sample. By providing many samples, the regression model can 
make an estimation to link the input variables to a certain output, e.g. a patient’s survival, 
or the risk of side-effects due to a certain type of treatment.

For clinical prognostic purposes, these ML methods can be applied to create predictive 
models, which are designed to predict an individual patient’s outcome, such as OS, 
loco-regional failure (LRF), distant metastasis (DM), progression-free survival (PFS), or 
risk of toxicity. The models use data of patients for which the outcome has already been 
determined, either because the patient experienced an event or because the patient 
exceeded a certain follow-up (FU) time. By taking this past data, the chance of a patient 
having an event by a certain time can be predicted for future patients. 

To build these models, prognostic markers of the outcome need to be determined. 
Previously mentioned markers such as tumor size, the presence and number of lymph 
nodes, the presence and number of DM, patient age, patient sex, and more factors can all 
potentially be used for predictive and prognostic purposes [68]. For most cancer types, 
an older age and/or male sex are linked to a poor prognosis [69-71]. For a more specific 
case, adenocarcinoma histology in NSCLC has been linked to an increased likelihood 
of metastasis to the brain [72]. For HNSCC, extranodal extension of the lymph node 
metastases is an indicator for a poor prognosis [73, 74]. For oropharynx specifically, while 
Human papilloma virus (HPV) infection is an important risk factor for incidence, HPV 
positive oropharyngeal cancers have a higher average OS than HPV negative [75]. For BM, 
tumor volume, the volume of healthy brain tissue that has been irradiated, prescription 
dose, and previous radiation of the same ROI have been found to be predictive of ARE [57].

The information used for these predictive models can come from many sources, such 
as clinical patient characteristics, biological characteristics, and radiological semantic 
characteristics. An often-overlooked part is the quantitative information present in 
radiological images. For example, abdominal muscle-mass can be tied to a worse 
prognosis, which is easy to quantify using CT imaging of the chest [76]. The images also 
contain the tumor mass, which contains quantitative information of the cancer itself 
that can be extracted. Besides general descriptions such as tumor size and location, 
more intricate shape features such as the sphericity of the tumor are available, but also 
the textures present inside a tumor, which may indicate heterogeneity can be extracted. 
Radiomics is the quantification of radiological images in a number of features describing 
tumor phenotype, which can be analyzed using ML algorithms.
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1.7 Radiomics

Radiomics as a term was first used in 2012 [77], but the concept of using a computer 
to perform quantitative analysis of a patients’ health is much older. In 1960, automated 
diagnosis of patients was attempted using radiological imaging [78-80], which failed 
ultimately due to a lack of computational power and advanced machine learning methods. 
However, attempts later to instead augment a clinician’s diagnosis through computer-
aided diagnosis (CAD) proved to be more successful [81-83]. Radiomics similarly seeks to 
augment, not replace, a clinician’s judgement. As it has been proven  that certain protein 
expression patterns can be linked to radiological tumor phenotypes [84-86], quantitative 
analysis of medical image data could provide information that a clinical is unable to 
perceive qualitatively.

The radiomics pipeline can be divided into 4 steps: i) imaging and segmentation, ii) image 
pre-processing, iii) feature extraction and iv) data analysis. An overview of these steps can 
be found in Figure 4.

Figure 4. Schematic overview of a typical radiomics pipeline [87].

1.7.1 Imaging and segmentation
Images are acquired using certain imaging and reconstruction parameters. Which 
settings are used depend on the imaging task, the machine used, and the preference 
of technicians/clinicians. The different settings contribute to image quality, and cause a 
large variation in imaging to exist between and within hospitals. Even small differences 
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between parameters can cause large discrepancies between extracted features, negatively 
affecting the generalizability of the created models [88-90].

Radiomics requires the segmentation of a certain ROI to extract features. In most studies, 
this will be the primary tumour volume, but other regions such as the peritumoral 
regions or lymph nodes can also be investigated for predictive value. 3D segmentation 
of a (tumour) volume is usually a time-consuming task, and needs to be performed 
by a radiologist, radiotherapist, or similar expert. In fields such as RT, segmentation of 
the tumour and other ROIs is routine clinical practice. For other fields, segmentations 
would need to be made specifically for the radiomics based model, which may affect the 
feasibility of implementing radiomics in a clinical setting. However, automated methods 
through deep learning (DL) algorithms may allow this process to be (semi-)automatized 
[91-93].

1.7.2 Pre-processing
Pre-processing refers to, among others, the removal of unwanted data, imputing 
missing values within data, and the removal of outliers that negatively affect the data. 
For radiomics, image pre-processing and feature pre-processing take place. Differences 
in imaging and acquisition parameters cause noise and systematic differences between 
images. These factors make models made on certain datasets not generalizable on other 
datasets, and need to be harmonized through image pre-processing, which reduces noise 
in the image and enhances features of the image that are of interest. Radiomics includes 
three standard methods of pre-processing in the pipeline: intensity discretization, pixel 
size resampling, and spatial domain filtering. 

Intensity discretization either resamples the intensity values in the image to a fixed 
number (‘bin number discretization’) or to a number of fixed intensity ranges (‘binwidth 
discretization’). Reducing the number of intensities reduces the noise within the image, 
and the required computational power to extract texture features. 

Pixel size resampling does two things: it changes the number of pixels in the x- and 
y-dimensions (the resolution) in each 2D slice, and changes the number of slices present 
in each 3D image, to set dimensions. This is done by either simply removing pixels and/
or slices when down sampling images from higher resolutions to lower resolutions, or by 
interpolating when up sampling images. This causes radiomics features to be rotationally 
invariant [94, 95].

Lastly, image filtering refers to passing an image filter over every pixel in an image to 
(possibly) change the intensities, enhancing certain features and removing others. The 
filters applied are neighborhood operations, which means that for every pixel in an image 
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a kernel is applied on the pixel and neighboring pixels to determine its new intensity 
value. Two commonly applied image filters for a radiomics pipeline are wavelet and 
Laplacian of Gaussian (LoG) filters. Wavelet filtering applies 3D coif wavelet transforms 
along the three axes of the original images, performed at two spatial frequencies (high 
and low). LoG filtering applies a Laplacian filter that highlights edges in an image, after the 
application of a Gaussian-smoothing filter that reduces noise.

1.7.3 Feature extraction
A handcrafted radiomics feature is a pre-defined quantifiable element that can be extracted 
from a certain ROI within an image. An example of a simple radiomics feature is the mean 
pixel value, which describes the average intensity found within the ROI. On CT-images, this 
feature describes the density of the tumor, as a higher mean pixel value means relatively 
more radiation was absorbed by the tumor. Any formula that describes these pixel values, 
or the relation between different pixel values, can be used in a radiomics analysis. The 
most common radiomics features can be roughly divided in three groups. First order 
and histogram statistics features describe the total distribution of voxel intensities in the 
ROI. Shape and size features describe the 2D and 3D spatial characteristics of the ROI. 
Texture features describe the relative spatial distribution of the intensity values within 
the ROI. Texture features, and are derived from six texture matrices that are imposed over 
the images: gray-level co-occurrence [96], gray-level run length [97], gray-level size-zone 
[98], gray-level distance-zone [99], gray-level dependence [100], and neighborhood gray-
tone difference matrix [101]. A description of each matrix can be found in supplementary 
materials 1. Depending on the feature extraction settings, hundreds of radiomics features 
can be extracted. However, the number of first order statistics and texture features 
are multiplied by the number of different filters applied to the base image, which can 
increase the total number of features to thousands. Supplementary materials 2 provides 
an overview of the most commonly used radiomics features.

1.7.4 Data analysis
The data analysis consists of two main steps:  dimensionality reduction and modelling. 
Dimensionality reduction can be performed in a number of ways, such as eliminating 
redundant features, selecting predictive features, or by grouping features through 
methods such as principal component analysis (PCA) or least absolute shrinkage 
and selection operator (LASSO). Regardless of the method, dimensionality reduction 
shrinks the number of features to a smaller subset of (correlated) features, or a number 
of derivative features, which are predictive of the targeted outcome. Dimensionality 
reduction is necessary, as the number of features extracted from an image is generally 
much larger compared to the number of patients used to train the model. This may result 
in overfitting, which means the model was tailored too much to the data it was trained on, 
resulting in poor performance on other data. [102, 103].
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There are a number of different feature selection methods. Features that produce not 
a number (NaN) can be removed, as well as features that have (close to) no variation. 
Furthermore, features that highly correlate can be removed, as these will have redundant 
information on the outcome. Features that through test-retest studies are proven not 
reproducible can be removed, as features should not be sensitive to small variations 
between scans. Lastly, there exist supervised feature selections methods that test, either 
univariate or multivariate, the correlation of the features to the outcome to select relevant 
features [104], and methods that reduce features to a set of predictive derivatives, such as 
PCA and LASSO [105, 106].

Using the selected features, a ML algorithm needs to be selected to train a model on. The 
models included in this thesis are generalized linear model (GLM) [107], Cox proportional-
hazards [108], Random Forest (RF) [109], and extreme gradient boosting (XGBoost) [110]. 
Most models produce a prediction score from 0 to 1 whether the likelihood a binary event 
is true or not. This prediction score is used to create a receiving operator characteristic 
(ROC) curve, which summarizes the sensitivity and specificity of a binary prediction over 
all possible cut-offs to classify the data as true or false [111]. The area under the curve 
(AUC) of this ROC-curve is a measure of how well the model can discriminate, ranging 
from zero to one. A higher AUC means the classifier is able to better separate the positive 
classes from negative classes. For example, an AUC of 0.8 means there is an 80% chance 
the classifier is able to accurately classify a positive or negative class. The optimal AUC of 
1 means that the classifier is able to perfectly separate the positive cases from negative 
cases, while in a worst case scenario a classifier has an AUC of 0.5, which means it has 
no discriminative capacity, as the chance any positive case gets successfully labelled as a 
positive class is 50%. An AUC below 0.5 means the classifier labels more negative classes 
as positive, and vice versa. This most likely indicates a problem occurred with the model 
building, such as samples being mislabeled. A classifier with an AUC of 0 is perfectly 
reciprocating the classes. 

A Cox proportional-hazards model is a regression model used for survival data. These 
models use right-censored outcome data that include a binary outcome and a time to 
either an event (e.g. death or tumor recurrence) or losing a patient to follow-up. The 
outcome of this model is a prognostic index (PI), which is a measure from 0 to 1, which is 
tied to relative survival in the investigated patient population, with a longer survival time 
having a higher PI. This PI can be used to stratify patients into risk-groups, which shown in 
Kaplan-Meier curves which plot the survival chance of a population against time. Harrell’s 
C-index (CI) is also calculated from the PI, which is a measure of how well the order of PI 
and actual survival times align, ranging from 0 to 1. Similar to AUC, a CI of 1 means that the 
classifier is able to perfectly order patients according to their survival time based on the 
PI. Conversely, a CI of 0.5 means that the ordering of patient survival times is completely 
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random, and a CI below 0.5 means the model is classifying patients reversely, indicating 
an error in model building.

Aerts et al. (2014) used radiomics to significantly predict OS of patients with NSCLC and 
HNSCC , using a cox proportional-hazards regression model trained on stage I to IV NSCLC 
data [112]. Radiomics has further been successfully applied for NSCLC on CT-imaging 
to predict OS [113-119], PFS [120-122], LRC [113, 114, 119, 122-124], DM [114, 119, 125, 
126], and pathological response [127, 128]. Specifically to predict BM development for 
patients with NSCLC, several studies have shown radiomics has predictive value [129-
131]. However, these studies usually suffer from low patient numbers, lack of external 
validation, and a lack of proper staging, meaning BM may have been present at baseline 
but not been detected. For HNSCC, radiomics on CT images has been successfully applied 
to predict HPV status non-invasively [132-136], OS [135, 137-140], PFS [137, 139, 141-143], 
LRC [132, 137, 138, 143, 144], local failure [145], detection of extra-nodal extension [146], 
and predicting treatment-related toxicity [147, 148]. Most of these studies are on smaller 
cohorts, sometimes without external validation, and a large study focussed on advanced 
stages of HNSCC is currently lacking. Lastly, radiomics on T1-MR for BM has proven to be 
able to predict LRC [149]. It has also proven to be able to differentiate RN from tumour 
progression on post-treatment MRI [150, 151]. However, studies on risk stratification of RN 
pre-treatment to our knowledge do not exist. 

1.8 Deep radiomics

An alternative to using (handcrafted) radiomics is to use DL, or deep radiomics [152]. 
DL can directly input images into convolutional neural networks (CNN) [153]. Neural 
networks (NN) are models that consist of an input layer, a number of hidden layers, and 
an output layer. Each layer consists of nodes that connects to all the nodes of the previous 
and next layer. Each node has a certain weight, and if the output of a node passes a certain 
threshold it activates and passes information to the next layer, eventually leading to the 
output layer that produces a certain prediction.

CNNs are a type of NN that use convolutional filters, which are placed systematically over 
a 2D image input. The newly resulting 2D activation layer is used as further input in the 
next layers. CNNs do two things: transform the input image into feature maps, and then 
internally trains a model to produce a prediction. The (C)NN model is trained iteratively 
through backpropagation by minimizing a loss function, which is a measure of the 
discrepancy between predicted values and actual values. By back propagating through 
the model and changing nodal weights according to this loss function, the loss function 
is lowered. This process is then repeated, until the model converges to a minimum loss. To 
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train a model, a metric such as the AUC for prediction models is monitored on a separate 
validation dataset. DL has been used for prognosis prediction is HNSCC [154, 155], NSCLC 
[156-159], and BM [160].

1.9  Thesis outline: predictive modelling using radiomics in 
conjunction with clinical features and deep radiomics on 
advanced stages of cancer.

An important part of clinical decision-making is the estimation how a patient will respond 
to a certain treatment. Examples include an estimation of the survival chance, the chance 
of recurrence, or the chance of toxicity. One method that may allow better stratification 
patients is through radiomics, where tumor subtypes which can enhance the current risk 
stratification may be determined using the large amounts of information contained in 
radiological imaging [161]. In the introduction, several studies applying radiomics for 
HNSCC, NSCLC, and BM were listed. However, we identified several unsolved problems in 
the treatment and follow-up of stage III-IVB HNSCC, stage III NSCLC as well as BM. 

We hypothesize that quantitative information from tumor regions of advanced NSCLC, 
HNSCC, and brain metastases on medical imaging acquired prior to treatment is 
able to be predictive for survival, tumor recurrence, and toxicity related outcomes. 

This thesis is divided in the following chapters.

1.9.1 Chapter 2: current state of handcrafted radiomics
Chapter 2 provides an overview of the current state of handcrafted radiomics and future 
prospects of precision medicine.

1.9.2 Chapter 3 -4: Predictive radiomics for HNSCC
Current risk-stratification of advanced HNSCC patients is lacking. Identifying patients with 
high- and low-chances of survival pre-treatment could improve clinical decision-making. 
In chapter three, the feasibility of extracting radiomics features to improve prognostic 
prediction of patients with stage III-IVB HNSCC is investigated. The features were used 
to train a Cox proportional-hazards model to predict OS. This large-scale, multicenter 
study included retrospective and prospectively collected data, and is compared to risk-
stratification using the gold standard of TNM 8th edition, and models trained on clinical and 
biological predictive variables. Furthermore, in Chapter four, the feasibility of including 
radiomics features extracted from the regions around the tumor, peritumoral regions, to 
improve prediction of OS, DM, and LRF, is investigated.
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1.9.3 Chapter 5: Predictive radiomics for NSCLC
PCI can drastically reduce risk of BM development for patients with stage III NSCLC. 
However, PCI has neurological side effects, and current methods to stratify patients 
for risk of BM are lacking. A model that could identify patients at high risk of BM could 
therefore improve clinical decision-making as well as selection of patients for clinical 
trials evaluating BM prevention strategies. In Chapter five, the feasibility of extracting 
radiomics features to predict BM development in a multicentre cohort of patients with 
stage III NSCLC is investigated. Studies that have investigated the ability of radiomics to 
predict BM or DM risk in patients with NSCLC generally lack a rigorous method of staging 
and imaging to ensure that we know no patients had BM at baseline, and that the primary 
tumour is properly delineated. The data included in this study was staged using PET/CT 
for the lung, and dedicated brain imaging (either MRI or CECT), and was collected from 
multiple different centres to ensure the model is generalizable. The GLM trained on these 
radiomics features is compared to models trained on a list of known clinical risk factors of 
BM development to investigate the complementary value of radiomics. 

1.9.4 Chapter 6: Predictive radiomics for BM
Current risk-stratification of patients treated with SRT for RN is lacking. Identifying patients 
at risk of RN could improve clinical decision-making, for example allowing clinicians and 
patients to opt systemic therapy (if available and having intracranial activity) instead. In 
Chapter six, the feasibility of using handcrafted and deep radiomics to predict ARE before 
treatment with SRT of BM is investigated. This study was performed using a very large 
training dataset (>1400 patients) and an external validation dataset (~240 patients), 
ensuring we have a high-quality model built on a large volume of patients which has 
been tested for generalizability. As the features were extracted from MR images, different 
pre-processing methods to harmonize the image intensity distribution within the dataset 
are tried out. Using the selected radiomics features, an XGBoost model is trained. This 
is compared to a CNN trained directly on the images, and on XGBoost models using DL 
extracted features and a list of clinical, biological, and treatment related predictors of ARE. 

1.9.5 Chapter 7: Image quality
A major source of image quality, and subsequently for the quality of models created 
with radiomics and deep radiomics, is the slice spacing and slice thickness. These two 
parameters are usually linked to each other, with the thickness between slices matching 
the spacing so the image contains the entire scanned volume. A larger slice thickness 
means that information on a larger volume is included in each slice, leading to a lower 
resolution. Slice thickness has been shown to affect DL-based segmentation models 
[162] and predictive radiomics models [163]. Interpolation methods that increase the 
resolution by adding interpolated slices between existing slices could potentially increase 
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performance of these models. In Chapter seven, we conclude the thesis by investigating 
the feasibility of interpolation on chest CT images.

1.9.6  Chapter 8-12: Conclusion, impact statement, summaries, acknowledge-
ments, Curriculum Vitae and List of publications

Chapter 8 provides a general discussion on the problems still facing the field of radiomics, 
future prospects, and recommendations, considering the studies and their included in this 
thesis. To close off the thesis, chapter 9 provides an impact statement, 10 and 11 provide 
summaries in English and Dutch. Finally, chapter 12 contains the acknowledgements to 
friends, family, and colleagues for this thesis, chapter 13 contains a curriculum vitae, and 
chapter 14 provides a list of publications which include me as (co-)author.

 

Figure 5. Table of contents.
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1.10 Supplementary materials

1.10.1 Gray Level Co-occurrence Matrix (GLCM) Features
A Gray Level Co-occurrence Matrix (GLCM) of size 𝑁𝑔 × 𝑁𝑔  describes the second-order 
joint probability function of an image region constrained by the mask and is defined as P(𝑖, 
𝑗|𝛿, 𝜃). The (𝑖, 𝑗)th element of this matrix represents the number of times the combination 
of levels 𝑖and 𝑗 occur in two pixels in the image, that are separated by a distance of 𝛿 pixels 
along angle 𝜃. The distance 𝛿 from the center voxel is defined as the distance according 
to the infinity norm. For 𝛿 = 1, this results in 2 neighbors for each of 13 angles in 3D 
(26-connectivity) and for 𝛿 = 2 a 98-connectivity (49 unique angles).

As a two dimensional example, let the following matrix I represent a 5x5 image, having 5 
discrete grey levels:
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1.10.2 Gray Level Run Length Matrix (GLRLM) Features
A Gray Level Run Length Matrix (GLRLM) quantifies gray level runs, which are defined 
as the length in number of pixels, of consecutive pixels that have the same gray level 
value. In a gray level run length matrix P(𝑖, 𝑗|𝜃), the (𝑖, 𝑗) th element describes the 
number of runs with gray level 𝑖 and length 𝑗 occur in the image (ROI) along angle 
𝜃. 

As a two dimensional example, consider the following 5x5 image, with 5 discrete gray levels:
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A Gray Level Size Zone (GLSZM) quantifies gray level zones in an image. A gray level zone is 
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region in a 3D, 8-connected region in 2D). In a gray level size zone matrix (𝑖, 𝑗) the (𝑖, 𝑗) th 
element equals the number of zones with gray level 𝑖 and size 𝑗 appear in image. Contrary 
to GLCM and GLRLM, the GLSZM is rotation independent, with only one matrix calculated 
for all directions in the ROI. 

As a two dimensional example, consider the following 5x5 image, with 5 discrete gray 
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1.10.4 Neighbouring Gray Tone Difference Matrix (NGTDM) Features
A Neighbouring Gray Tone Difference Matrix quantifies the difference between a gray 
value and the average gray value of its neighbours within distance 𝛿. The sum of absolute 
differences for gray level 𝑖 is stored in the matrix. Let X𝑔𝑙 be a set of segmented voxels and 
𝑥𝑔𝑙(𝑗𝑥, 𝑗𝑦, 𝑗𝑧) ∈ X𝑔𝑙 be the gray level of a voxel at postion (𝑗𝑥, 𝑗𝑦, 𝑗𝑧), then the average 
gray level of the neigbourhood is: 

𝐴𝐴¯ 𝑖𝑖 = 𝐴𝐴¯(𝑗𝑗𝑗𝑗, 𝑗𝑗𝑗𝑗, 𝑗𝑗𝑗𝑗) = 1 𝑊𝑊 ∑︁ 𝛿𝛿 𝑘𝑘𝑗𝑗=−𝛿𝛿 ∑︁ 𝛿𝛿 𝑘𝑘𝑗𝑗=−𝛿𝛿 ∑︁ 𝛿𝛿 𝑘𝑘𝑗𝑗=−𝛿𝛿 𝑗𝑗𝑥𝑥𝑥𝑥(𝑗𝑗𝑗𝑗 + 𝑘𝑘𝑗𝑗, 𝑗𝑗𝑗𝑗 + 𝑘𝑘𝑗𝑗, 𝑗𝑗𝑗𝑗 + 
𝑘𝑘𝑗𝑗), where (𝑘𝑘𝑗𝑗, 𝑘𝑘𝑗𝑗, 𝑘𝑘𝑗𝑗) ̸= (0, 0, 0) and 𝑗𝑗𝑥𝑥𝑥𝑥(𝑗𝑗𝑗𝑗 + 𝑘𝑘𝑗𝑗, 𝑗𝑗𝑗𝑗 + 𝑘𝑘𝑗𝑗, 𝑗𝑗𝑗𝑗 + 𝑘𝑘𝑗𝑗) ∈ X𝑥𝑥𝑥𝑥  

 

Here, 𝑊𝑊 is the number of voxels in the neighbourhood that are also in X𝑥𝑥𝑥𝑥.  

As a two dimensional example, let the following matrix I represent a 4x4 image, having 5 
discrete grey levels, but no voxels with gray level 4: 
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1 3 5 5
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1.10.5 Gray Level Dependence Matrix (GLDM)  
A Gray Level Dependence Matrix (GLDM) quantifies gray level dependencies in an image. A gray 
level dependency is defined as a the number of connected voxels within distance 𝛿𝛿 that are dependent 
on the center voxel. A neighbouring voxel with gray level 𝑗𝑗 is considered dependent on center voxel 
with gray level 𝑖𝑖 if |𝑖𝑖 − 𝑗𝑗| ≤ 𝛼𝛼. In a gray level dependence matrix P(𝑖𝑖, 𝑗𝑗) the (𝑖𝑖, 𝑗𝑗) th element describes the 
number of times a voxel with gray level 𝑖𝑖 with 𝑗𝑗 dependent voxels in its neighbourhood appears in 
image. 
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1.10.5 Gray Level Dependence Matrix (GLDM) 
A Gray Level Dependence Matrix (GLDM) quantifies gray level dependencies in an 
image. A gray level dependency is defined as a the number of connected voxels within 
distance 𝛿that are dependent on the center voxel. A neighbouring voxel with gray level 
𝑗 is considered dependent on center voxel with gray level 𝑖 if |𝑖 − 𝑗| ≤ 𝛼. In a gray level 
dependence matrix P(𝑖, 𝑗) the (𝑖, 𝑗) th element describes the number of times a voxel with 
gray level 𝑖 with 𝑗 dependent voxels in its neighbourhood appears in image.
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As a two dimensional example, consider the following 5x5 image, with 5 discrete gray 
levels:

𝛿𝛿 that are dependent 
𝑗𝑗 is considered dependent on center voxel 

𝑗𝑗| ≤ 𝛼𝛼. In a gray level dependence matrix P(𝑖𝑖, 𝑗𝑗) the (𝑖𝑖, 𝑗𝑗) th element describes the 
𝑖𝑖 with 𝑗𝑗 dependent voxels in its neighbourhood appears in 
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2.1 Abstract

The growing complexity and volume of clinical data and the associated decision-
making processes in oncology promote the advent of precision medicine. Precision 
(or personalized) medicine describes preventive and/or treatment procedures that 
take individual patient variability into account when proscribing treatment, and has 
been hindered in the past by the strict requirements of accurate, robust, repeatable, 
and preferably non-invasive biomarkers to stratify both the patient and the disease. In 
oncology, tumour subtypes are traditionally measured through repeated invasive biopsies, 
which are taxing for the patient and are cost and labour intensive. Quantitative analysis 
of routine clinical imaging provides an opportunity to capture tumour heterogeneity 
non-invasively, cost-effectively, and on large scale. In current clinical practice radiological 
images are qualitatively analysed by expert radiologists whose interpretation is known to 
suffer from inter- and intra-operator variability. Radiomics, the high- throughput mining 
of image features from medical images [1], provides a quantitative and robust method 
to assess tumour heterogeneity, and radiomics-based signatures provide a powerful tool 
for precision medicine in cancer treatment. This study aims to provide an overview of the 
current state of radiomics as a precision medicine decision support tool. We first provide 
an overview of the requirements and challenges radiomics currently faces in being 
incorporated as a tool for precision medicine, followed by an outline of radiomics’ current 
applications in the treatment of various types of cancer. We finish with a discussion of 
possible future advances that can further develop radiomics as a precision medicine tool.
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2

2.2 Introduction

2.2.1 Background
Technological advances have led to an abundance of novel diagnostic techniques and 
imaging modalities available to oncology. [2] Additional complexity is added by genetic 
[3] and micro-environmental [4] heterogeneity of tumours and between patients. [5] Due 
to the large volumes and complexity of modern data [6], new methods to facilitate clinical 
decision-making are required.

Precision (or personalized) medicine describes preventive and treatment procedures 
that take into account an individual patient’s characteristics together with their specific 
disease(s) [7]. A common approach to precision medicine is data-mining, i.e. discovering 
patterns in large databases of diversified cohorts using powerful computational tools such 
machine learning. Patterns can be discovered within the variability of patient populations 
that allow for the stratification of patient groups and the identification of the ideal 
treatment for the individual patient [8], thus improving patient outcome. [9-11] However, 
this requires large databases of patients in order to cover as much of the variations within 
a population as possible.

An important source of large-scale data that could be used are radiological images derived 
during routine oncological examinations. Tumours exhibit phenotypical differences 
which can be visualized through routine medical imaging [12], which in turn allows for 
visualization of the entire tumour volume or sub-regions on a macroscopic level, at baseline 
and longitudinally. However, imaging in a clinical setting is primarily used qualitatively, 
and clinical decision-making is based on visual assessments of the tumour by radiologists. 
Radiomics offers a quantitative alternative to assess tumour heterogeneity quantitatively. 
Radiomics is an advanced image feature analysis methodology, which formats standard 
clinical images from computed tomography (CT), medical resonance imaging (MRI), and/
or positron emission tomography (PET) into a multidimensional source for data mining. 
[1] A large number of image features are extracted from imaging data using various 
mathematical algorithms. These features, together with gold standard information, are 
used by machine learning algorithms, computational methods that “learn” correlations 
from data, creating models that automate and improve classification of tumour phenotype 
and genomic profile [13-15] as imaging biomarkers.

Radiomics-based imaging biomarkers have shown to outperform common prognostic 
models based on clinical parameters such as TNM [13]. However, radiomics does not intend 
to replace current clinical decision-making, but rather aims to provide a supplement to 
current measures such as clinical, treatment and genomic data, all incorporated into a 



50   |   Chapter 2

decision support system. [16] To do so, a robust, repeatable, and cost-effective method to 
clinically implement radiomics is required.

2.2.2 Radiomics workflow
A typical radiomics analysis starts with data selection: choosing the image to analyse, the 
imaging protocol to use, and the correlated outcome. The image typically contains the 
primary tumour volume, which is analysed and linked a certain outcome, such as tumour 
type, overall survival, or tumour recurrence. Proper data selection is important to create 
useful models, as it needs to be reproducible and applicable across sizeable cohorts. 
Large heterogeneous datasets are required to provide enough data to validate the model 
on different sub-samplings of the data (cross-validation). [17] In addition, the quality of 
the data is dependent on the image acquisition protocols used in clinical centres, which 
can often vary extensively, as well as the imaged site, scanner properties, reconstruction 
methods and motion artefacts. [18, 19] Guidelines for image acquisition and standardized 
protocols are therefore beneficial for producing large, high-quality datasets. [20] In the 
case of non-standardized imaging protocols, sharing of imaging protocols should be 
encouraged.

After image acquisition and volume reconstruction, a region of interest (ROI) is defined, 
usually, but not necessarily, through slice-by-slice delineation of the tumour in the case 
of 3D images. This is a labour- intensive process, and the variance caused by inter- and 
intra-operator variability is an issue. [21, 22] A (semi-) automatic segmentation method 
to reduce workload and uncertainty caused by human error is therefore preferred. 
Besides operator variability, image segmentation, protocol standardization, slice interval, 
reconstruction method, time-point and respiratory motion have all been found to have 
effects on feature reproducibility. [23-35] Methods to improve reproducibility include 
multiple segmentations by different clinicians and phantom studies to determine the 
effects caused by different scanners.

Since the values of extracted features (mostly mathematical formulas using pixel/voxel 
intensities as input) depend on image reconstruction and pre-processing methods, proper 
reporting of methods such as filtering techniques, intensity discretisation and voxel 
resampling is critical for interoperability of the radiomics features. Many of the extracted 
features are noise driven and need to be removed to improve model performance. The 
same applies to features that are highly correlated with other features or existing clinical 
parameters, as they do not provide any meaningful addition to the model. Test-retest 
studies which repeat the imaging processes after a short period of time are indispensable, 
as they measure the amount of variation inherent in the measurements. Stability and 
correlation tests can be used to make a selection based on the most robust, repeatable 
and non-redundant features. [36, 37]
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The extracted features are fed into machine learning methods together with clinical 
outcomes or pathology results to construct classification, predictive, or prognostic 
models. Prognostic models aim to predict a certain outcome regardless of therapy, 
while predictive models provide information about the effects of a certain therapeutic 
intervention. However, the number of extracted features is often larger than the number 
of patients included in a cohort, which risks overfitting the model. The best solution to 
prevent overfitting is to increase the number of samples used to train the model. While 
clinical data is abundant compared to research trial data, sharing between institutes has 
proven to be difficult due to various ethical, political and administrative issues. [38] An 
alternative to large datasets is to reduce the number of features to a subset of the most 
relevant features. Various filtering-based techniques for feature selection can be used, 
such as the univariate Fisher score and Gini index tests, or multivariate algorithms such 
as mutual information or Conditional infomax feature extraction [39], which identify and 
select a sub-set of features based on predictive power. Valid predictive modelling requires 
separate independent datasets for training and validation.

Various different machine learning models are available, such as neural networks, decision 
trees, support vector machines and multiple regression techniques. The modelling 
procedure has been shown to affect performance of prediction models based on radiomics 
features. [39] Common measures of predictive performance of models are discrimination 
and calibration. [40] Discrimination is a measure of the model to assign a higher risk-
prediction to patients positive to a certain outcome, compared to patients without the 
outcome, which can be quantified using the sensitivity, specificity, or through the area 
under the curve (AUC) of the receiver operating characteristic. The AUC is equal to the 
probability that a positive event is correctly labelled as a positive event, and is given in the 
range of 0 to 1. Alternatively, the Concordance Index (CI), a measure of goodness of fit for 
classification models with binary outcome ranging from 0 to 1, can be used. Both AUC and 
CI show a perfect predictive performance at 1, while at 0.5 the predictive performance is 
completely random. Calibration is an internal measure of the model’s agreement between 
observed outcomes and predicted outcomes. The calibration is usually assessed through 
a calibration slope, where different resamplings of observed outcomes are plotted 
against predicted outcomes. If 100% agreement between these two is found at multiple 
samplings, then the calibration slope will be 1. Finally, a log-rank test is usually used to test 
the significance of the difference between survival curves of two patient groups. This is 
used when separating patients in low- and high-risk groups based on radiomics features.

These measures of predictive performance are used to internally and externally validate 
the model. Internal validation is necessary to estimate and reduce the optimism in 
model performance, which is the degree a trained model performs worse when making 
predictions on new data. Internal validation uses the data used to train the model, and 
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can be performed through methods such as bootstrap analysis or cross-validation. [41] 
External validation uses an independent, external dataset to validate the accuracy of the 
predictive model, and to assess the generalizability of a predictive model. [41] Figure 1 
shows an overview of the steps involved to train and validate a predictive model.

Figure 1. Overview of the steps involved to train and validate a predictive model.

Effective and transparent radiomics studies require rigorous compliance with several 
guidelines, including effective validation. The Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Initiative is a set of 
guidelines made for studies creating and/or validating prediction models. [42] There 
are guidelines for the source and specific information of data, the type of predictive 
model, procedures for building the model and the method for internal validation, and 
measurements of model performance. Whereas the TRIPOD initiative covers prediction 
models in general, the Radiomics Quality Score (RQS) [43] is being developed specifically 
for radiomics studies. The RQS assesses the quality of a study using a checklist and reports 
compliance as a percentage. Some of the guidelines include robust segmentations, test-
retest stability of the determined features, the standardization or thorough description of 
imaging protocols used, valid feature selection and internal/external validation. [44] An 
overview of the different steps and the RQS criteria is shown in figure 2.



A review on radiomics   |   53   

2

Figure 2. Overview of steps of a Radiomics analysis (top) with corresponding RQS score criteria for 

each step (bottom).

The aim of these guidelines is to provide key details of model development and validation, 
which in turn allows for better reproducibility and critical appraisal of predictive models. 
For future and past studies, authors should check the RQS score and TRIPOD initiative to 
determine the quality of their methodology and allow the field of radiomics to mature. 
The ultimate objective of precision medicine is to link the tumour phenotype to a certain 
clinical endpoint, with the goal of improving clinical decision making. Therefore, the 
next section will describe the use of radiomics in various studies and their efficacy in 
determining clinical endpoints.

2.2.3 Role in precision medicine
Aerts et al. (2014) performed a radiomics analysis on a large CT dataset (N=1019) of lung- 
and H&N- cancer patients. Using a feature selection algorithm to reduce the number of 
features from 440 to a prognostic signature of 4 features, they found that a model built 
using this signature was significantly more prognostic of overall survival (OS) than a 
measure of tumour volume, and combining the radiomics signature with tumour volume 
also provided a better prognostic ability. The model was validated on different patient 
groups and cancer types. [13]The radiomics signature showed slightly higher prognostic 
performance when validated in an external lung dataset than TNM or tumour volume 
(CI of 0.65 vs. 0.63 and 0.60 respectively). For two external H&N cohorts, the signature 
showed higher performance compared to volume or TNM in one case (CI of 0.69 vs. 0.65 
and 0.66 respectively), and similar performance in the other (CI = 0.69 vs. 0.68 and 0.69 
respectively). This radiomics signature was also externally validated in a study by Leijenaar 
et al. (2015) on a large set of oropharyngeal squamous cell carcinoma patients (N = 542). 
[45] The signature showed good discrimination and calibration (CI = 0.628 and calibration 
slope of 0.855), and after the population were split in two groups using the median value 



54   |   Chapter 2

of the signature score, significant differences in OS (long rank p-value = 2e-5) could be 
observed.

Furthermore, CT radiomics features have been shown to be prognostic of distant 
metastasis and 12- month survival in glioblastoma [46], and pathological response 
to treatment [47], local recurrence [48, 49], histology subtype [50, 51], OS [36, 50] and 
prediction of radiation induced pneumonitis [52, 53] for lung cancer. In head- and neck 
squamous cell carcinomas, radiomics has proven to improve the prediction overall and 
progression free survival, and determining HPV status. [54]

Delta-radiomics is an alternative analysis which measures the change of radiomics features 
longitudinally. Certain features have been proven to change during treatment, indicating 
that this may be an additional source of information [55]. Delta-radiomics on CT has 
shown to be prognostic in non- small cell lung cancer(NSCLC) for OS, local recurrence and 
distant metastasis. [56] For H&N cancer patients, delta-radiomics features have proven to 
be a predictive and prognostic biomarker, as well provide additional information of the 
presence of HPV for patient stratification. [36, 54, 57, 58]

An additional source of routine medical images for radiomics analysis are cone-beam CT 
(CBCT) images, often used in radiotherapy for daily positioning before treatment. Van 
Timmeren et al (2017) have used CBCT data of NSCLC patients to validate a previously 
constructed CT radiomics signature. The signature was found to be predictive of OS 
in three different independent CBCT datasets (CI = 0.59-0.66), indicating CBCT could 
potentially be a useful source of information for radiomics analysis. [59]

FDG-PET-based quantitative image analysis shows promise in improving prognosis in 
pancreatic cancer. A study by Cui et al. used quantitative imaging features to predict OS, 
and showed better prognostic compared to the use of conventional prognostic variables 
of tumour volume and maximum SUV (CI of 0.66 vs 0.48-0.64). [60] FDG-PET-based 
radiomics features correlate to mortality, local failure and distant metastasis for pancreatic 
cancer [61], and have also shown to be predictive in oesophageal cancer [62], tumour 
response in cervical cancer [63, 64] and local control [65] and OS [63] in H&N cancer.
MRI-based radiomics has shown promise in prostate cancer: a study by Shoshana et al. 
(2016) used T2- weighted MRI radiomics features to differentiate between peripheral 
and transition zone prostate tumours (AUC=0.61-0.71), in a patient dataset from three 
different institutions. [66] Furthermore, a study by Vallières et al (2015) use a combination 
of FDG-PET and MRI texture features to predict the lung metastasis in soft-tissue sarcomas. 
They found that a multivariable model was highly predictive of lung metastasis in soft-
tissue sarcomas (AUC=0.98), validated through bootstrapping procedures. However, the 
study lacked external validation for a valid conclusion. [67] In the context of glioblastoma, 
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several studies using MRI data have shown that a radiomics model may accurately detail 
the molecular subtype of the tumour [68-70], OS [69-71] and predicting short versus long-
term survival. [72] Finally, for an imaging method outside of radiology, Zhang et al. (2016) 
proposed a radiomics approach to ultrasound elastography, to use the density of tumour 
tissue for classification as benign or malignant. A signature of seven features, out of a 
total of 364 extracted features, was able to accurately (AUC= 0.92) discriminate between 
benign and malignant tumour tissue. [73]

To reduce inter- and intra-observer delineation variability and to workload, a number of 
(semi-) automatic segmentation methods have been proposed and tested in radiomics 
studies in recent years. Several studies have shown that (semi-) automatic segmentation 
methods reduce inter-observer delineation variability compared to manual segmentation 
of lung lesions. [74-77] For example, a study by Parmar et al. (2014) compared the 
robustness of 56 radiomics features derived with manual segmentation of tumour volume 
by five experts to a semi-automatic method performed two times by three experts, and 
showed that semi-automatically derived features have significantly higher reproducibility 
compared to manually derived features. [77] Full automatic segmentation of tumours 
is also a possibility, as shown by Li et al (2017). This study used radiomics features in a 
random forest model to classify tumour tissue on a voxel level. The algorithm was trained 
and tested on publically available datasets, and showed promising accuracy in classifying 
tumour tissue, necrosis, normal tissueand oedema. [78]

Semantic features, unique qualitative characteristics that provide information about the 
prognosis and (sub) type of lesions, are an alternative method to describe tumour (sub) 
type, and could be useful in improving prediction of certain endpoints. Some examples 
of semantic features are the presence of cavitation or calcification in the tumour, or 
features describing the roundness or spiculation of the tumours. In a study on NSCLC, Yip 
et al. (2017) studied 9 semantic features, consisting of 3 binary features and 6 categorical 
classifiers, and 57 radiomics features describing NSCLC cancer phenotypes. To study the 
correlation between features they used Spearman’s Rank-Order Correlation, which is a 
measure of the strength and direction of association between two variables. Spearman’s 
rank ranges from -1 to 1, with both extremes signifying perfect correlation between two 
variables. The study found significant association between radiomics features and binary 
semantic features (AUC = 0.56-0.76), but no or weak correlation was found between 
classification semantic and radiomics features (Spearman’s correlation = 0.002–0.65). This 
indicates that radiomics and semantic features have complementary but distinct roles in 
outcome prediction, as they have both been proven to be able to significantly improve 
prediction outcomes. [79]
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Lastly, deep learning tools, such as convolutional neural networks (CNNs), could be 
a method to augment radiomics analysis. Deep learning algorithms are able to learn 
features from imaging data without much manual input, provided that a large amount 
of data is available. Deep learning has been successfully implemented in a number of 
different studies using medical imaging data. [80, 81] Orlando et al. (2017) used a 
combination CNN learned and hand-crafted discriminative features to detect red lesions 
(a collective term for micro aneurysms and haemorrhages), one of the earliest signs in 
diabetic retinopathy. The combination of features was used in a random forest classifier to 
discriminate between true and false red lesion candidates, and compared against either 
set of features separately. The combination achieved higher AUC values compared to the 
separate feature prediction models (AUC of 0.89 vs 0.79/0.73 for CNN and handcrafted 
features respectively). Recently published articles have already shown that radiomics 
analysis may benefit from incorporating deep learning methods. [82-85] For example, Lao 
et al. (2017) used a combination of hand-crafted and deep radiomics features to predict OS 
for Glioblastoma Multiforme patients on MRI images. After feature selection, a radiomics 
signature was created, using exclusively deep learned features, that was able to accurately 
predict OS in an independent validation dataset (AUC = 0.71). Deep learning augmented 
radiomics analysis has also been reported to be effective in assessing treatment response 
in bladder cancer [86], where conversely a signature built solely on hand-crafted features 
was found to have better prognostic performance. These results indicate that deep 
learning will have an increasingly important role in predictive modelling [87], and have a 
complementary role with hand-crafted features in a radiomics analysis framework.

2.3 Discussion

Radiomics has been shown to be suitable for classification, prediction and prognosis of 
various clinical endpoints and tumour types. Many studies show a clear improvement 
over conventional measures predicting clinical endpoints, although variation in feature 
stability due to different scanners, imaging protocols and tumour motion still leaves a 
lot of room for improvement. [13, 60] The segmentation of tumours also proves to be a 
small but persistent obstacle, as it is a labour- and time-intensive process and is heavily 
influenced by inter- and intra-segmentation variation [21, 22]. However, numerous studies 
have reported methods to allow for a more automatic approach to segmentation [74-78], 
which in turn could lead to a more robust radiomics analysis.

Combining radiomics features with deep learning features or semantic features may 
be able to further improve prognostic performance. Several studies have proven the 
effectiveness of using these features independently in predictive modelling. [80-87] 
In studies comparing the prognostic performance of these features to hand-crafted 
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radiomics features, results were found to be mixed, indicating these methods may have 
distinct and complementary roles in improving prognosis.

A larger hurdle for radiomics is the transition to clinical implementation. While routine 
delineation is already in place in radiotherapy settings, a clinical platform to easily 
perform radiomics analysis during routine check-up/treatment is not. The main challenge 
of precision treatment is to correctly integrate various sources of data quantitatively and 
subsequently use this data to provide specific clinical predictions that accurately and 
robustly estimate outcomes as a function of the possible decisions.

Numerous methods, besides radiomics, are currently in use that make use of novel 
biomarkers, as well as conventional clinical factors. However, many of these methods lack 
external validation of their legitimacy, reproducibility, or clinical validity. [88] Radiomics 
offers a solution that integrates multiple measures into one prediction of outcome, 
with the added benefit of automation, which could save time and money in a clinical 
environment.

While many radiomics studies include external validation steps, sharing of clinical data 
is still an issue [89]. The difficulty in sharing data may be overcome through a centralised 
database, or conversely through decentralised distributed learning platforms. [90] To 
facilitate a centralised database, data has to be made available in accordance with the 
FAIR principles: Findability, Accessibility, Interoperability and Reusability. [89] An example 
of an effort to increase data shareability is through the development of ontologies to 
describe radiomics features. [29]

The distributed learning method instead aims to solve the problem of sparse data by 
avoiding the numerous ethical, legal and administrative issues involved in sharing data 
between institutes. Instead of the images being collected from numerous institutes in 
one central location, the model is sent and trained on site without any data leaving a 
particular institute. The trained models are then collected, analysed and integrated into 
a single model. Several proof-of-concept studies have proven that a distributed learning 
approach is feasible using clinical parameters [90-92], and the next step would be to 
integrate radiomics features, by sending a platform to extract radiomics features on-
site in conjunction with the untrained predictive model. This way, a distributed learning 
method could provide the necessary volume and variety in data to achieve a machine 
driven approaches to medicine.



58   |   Chapter 2

2.4 Conclusion

In conclusion, radiomics provides a novel non-invasive method of assessing tumour 
subtype, using the mostly untapped source of data of routine clinical images. The technique 
is often hampered by studies with small sample sizes and lack of external validation. In 
addition, variability in features caused by differences in imaging modality, protocols and 
respiratory motion, and a lack of interoperability, may decrease the generalizability of 
the created radiomics models. In the future, research should be informed by guidelines 
such as RQS and TRIPOD, which improve the validity of radiomics as a clinically accepted 
field. The clinical value of the technique has already been described for a wide range of 
tumours and a number of different clinical outcomes. The added fact that the analysis 
can be performed in an automated fashion makes the technique attractive for clinical 
implementation to reduce workload. Performing studies on different tumour sites/types 
in future research may prove the generalizability of the method, and consequently lead 
to radiomics becoming a standard method clinically. In the future, larger volumes of data 
will be available for use in Radiomics studies by means of centralised, publically accessible 
datasets and distributed learning. Combining radiomics with other parameters will 
lead to high quality decision support systems, and deep learning and semantic feature 
approaches may be combined with radiomics analyses to increase predictive accuracies 
of these models even further. Radiomics has a way ahead before full implementation in 
clinic is a reality, but may prove to be invaluable in realizing precision medicine in cancer 
treatment.
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3.1 Abstract 

3.1.1 Background
Patients with locoregionally advanced head-and-neck squamous cell carcinoma 
(HNSCC)  have high relapse and mortality rates. Imaging-based decision support could 
improve outcome by optimizing personalized treatment, and support stratification in 
clinical trials. We hypothesize a  multifactorial prognostic model including radiomics 
features improves risk-stratification for advanced HNSCC compared to TNM 8th edition, 
the gold standard.

3.1.2 Patient and methods
Data of 666 retrospective (training) and 143 prospective (validation) stage III‐IVA/B 
HNSCC patients were collected. A multivariable Cox regression model was trained to 
predict overall survival (OS) based on radiomics features derived from the primary 
tumor on diagnostic CTs. Separate analyses were performed using TNM8, tumor volume, 
clinical and biological variables, and combinations thereof with radiomics features. 
Patient stratification was assessed through Kaplan-Meier (KM) curves and log-rank 
test for significance (P-value<0.05). The prognostic accuracy was reported through the 
concordance-index (CI).

1.3 Results
A model combining an 11-feature radiomics signature, clinical and biological variables, 
TNM8, and volume could significantly stratify the validation cohort into three risk groups 
(P<0∙01), with a CI of 0.79 in validation. 

1.4 Conclusion
A combination of radiomics features with other predictors can predict OS very accurately 
for advanced HNSCC patients and improves on the current gold standard of TNM8.

Simple Summary 
Advanced head and neck cancer patients generally have a high mortality rate. Improving 
prognosis could help with this survival rate as it may improve clinical decision making. 
Radiomics features calculated from images of the tumor describe tumor size, shape and 
pattern. These characteristics may be linked to patient survival, which is investigated in this 
paper. We combined radiomics features with other biomarkers of survival of 809 patients 
to make a prognosis before treatment. We then compared the predicted prognosis with 
the actual outcome to see how well our model performs. Our model was able to make 
three distinct risk groups of low-, medium-, and high-survival patients. With these findings 
doctors may make a better judgement of treatment and follow-up per patient, which 
might improve clinical outcome.
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3.2 Introduction

Head and neck squamous-cell carcinomas (HNSCC) are malignant tumors typically 
occurring in the oral cavity (OC), larynx, and pharynx. In Europe, 140,000 new cases 
are diagnosed yearly leading to approximately 70,000 deaths. [1] Despite advances in 
treatment, 3-years survival for locoregionally-advanced HNSCC remained 40%-50%. [2, 
3] Management of HNSCC patients starts with a diagnostic workup of the tumor, lymph 
node metastases, and distant metastases (TNM) to stage the tumor. [4] Furthermore, p16 
protein expression determined by immunostaining, a surrogate marker of HPV infection, 
has been included as a relevant factor in the American Joint Committee on Cancer (AJCC) 
8th edition for staging of oropharyngeal cancer, in which different staging systems for p16-
positive and p16-negative oropharyngeal carcinomas were introduced. [5] Besides TNM 
stage, prognosis depends on clinical (e.g. patients’ comorbidities, performance status) 
and biological (e.g. invasive growth or gene expression) factors, and for patients treated 
with surgery on microscopic examination of the resection specimen. [4] RNA and DNA 
profiling have identified molecular subtypes of HNSCC with different prognosis. [6] Some 
of these subtypes may include primary tumors with high heterogeneity which may react 
differently to treatment. [7] Defining a robust and clinically viable method to determine 
these subtypes is therefore essential for effective treatment of HNSCC patients. 

Routine pre-treatment radiological imaging provides a source of non-invasively acquired 
information of the primary tumor that could be investigated for the ability to determine 
clinically relevant subtypes. Advanced image analysis methods such as radiomics allow 
for the analysis of radiographic medical images by extracting large amounts of so-called 
features using mathematical algorithms and finding correlations with biological and/
or clinical outcomes using machine learning techniques. Previous studies have shown 
that radiomics in computed tomography (CT) imaging could play a role in improving 
prediction of prognosis of HNSCC. [8-14]

We hypothesize that the multicentric “Big Data and Models for Personalized Head and Neck 
Cancer Decision Support” project (BD2Decide) [15, 16] dataset provides the necessary 
breadth to create statistically significant high-quality models that can add complementary 
information to other well-known but under-utilized clinical and biological factors. [17-19] 
Similar to the inclusion of HPV-status to TNM8, we believe that combining these factors 
may improve prediction of patient prognosis instead of using them independently. We also 
hypothesize that a multifactorial machine learning model, including radiomics features 
derived from the primary tumor, can outperform the current gold standard (TNM8) in 
stratifying locally advanced HNSCC patients into overall survival (OS) risk groups. This new 
signature of radiomics features was compared against an existing signature. Furthermore, 
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mixed models containing TNM, tumor volume, radiomics features, clinical variables, and 
biological variables were developed and validated.

3.3 Materials and Methods

3.3.1 Patient characteristics
Protocol details were registered on Open Science Framework (DOI: 10.17605/OSF.IO/
H4DFB). The study population was composed of locoregionally advanced HNSCC patients 
(stage III‐IVA/B (M0) according to TNM7) receiving treatment with curative intent between 
2008 and 2017, collected within the framework of the BD2Decide project (ClinicalTrial.
gov Identifier NCT02832102, http://www.bd2decide.eu/). [15, 16] The collected patient 
population was originally staged at diagnosis the TNM7 staging system. During the 
BD2Decide project these patients were re-staged to I-IVA/B (M0) using the newly 
developed TNM8 staging system. The ethical approval statement and an overview of the 
inclusion criteria can be found in supplementary materials B. Patients’ data were collected 
both retrospectively (diagnosis between 2008 and 2014) and prospectively (diagnosis 
between 2015 and 2017). The retrospective and the prospective datasets were assigned 
as the training and validation datasets, respectively. OS was defined as the time between 
the primary diagnosis and death or censored at the date of last follow-up while follow-up 
was consequently performed for at least three years. Patients alive with follow-up less 
than 2 years were excluded and defined as “lost to follow-up”. Median follow-up times 
for training and validation datasets were determined separately through the reverse 
Kaplan-Meier (KM) estimate. [20] Similarity in patient characteristics between cohorts 
was assessed through two-proportion z-tests to test whether there is a difference in a 
categorical variable, or unpaired two-sample t-tests to test whether there is a difference 
in a numerical variable. For the latter, the assumptions of the data having a normal 
distribution and possessing the same variance in both cohorts were tested through 
Shapiro-Wilk’s test and f-test, respectively. The significance level was set to 5%.

3.3.2 CT acquisition parameters
CT images were acquired at each center with scanners, acquisition protocols, and 
reconstruction protocols according to standard operating procedures (SOPs) at the 
respective centers for diagnostic imaging. All CT images were either diagnostic or 
radiotherapy treatment planning images of comparable diagnostic quality, all  with an 
intravenous contrast injection protocol. All CT scans within the framework of the BD2Decide 
project had a 3 mm slice thickness or less. Any CT scan with artifacts in more than 50% 
of the slices containing the primary tumor mass was excluded. For patients who received 
radiation therapy, the gross tumor volume (GTV) of the primary tumor was delineated at 
each center according to local delineation protocols by experienced radiation oncologists. 
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The GTV was defined as the visual extent of tumor as described in the radiology report 
and if needed adapted based on the report of the physical examination. Figure 1 gives 
an example of a CT with the primary tumor delineated. For patients who did not receive 
radiation treatment, the primary tumor volume was delineated locally by or supervised 
by  expert radiologists according to local delineation protocols. For all patients treated 
with radiotherapy, all contours were on CT in conjunction with PET/MRI, which has been 
proven to greatly decrease inter observer variation. [21, 22] All contours were additionally 
peer-reviewed by radiation oncologists based on diagnostic information. Lastly, all 
delineations were visually judged by a single observer in the BD2Decide consortium for 
deficiencies. 

 

red.  

 

  

Figure 1. Computed tomography image of patient with stage 3 oral cavity in transverse plane. The 

tumor is shown outlined in red. 
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3.3.3 Feature extraction
Features were extracted from the delineated primary tumor volume of the pre-processed 
images. A full list of software packages used in the present study is shown in table I 
supplementary materials B. Feature extraction was performed in python 3.6.10, with the 
package PyRadiomics version 2.2.0. [23] To lessen the impact of heterogeneity in the 
imaging data caused by differences in scanners and imaging protocols, pre-processing 
of the images and post-processing of the extracted features was performed. An overview 
of pre- and post-processing techniques applied to the data has been described in 
supplementary materials B. Both International Biomarker Standardization Initiative (IBSI)-
compliant [24, 25] and a non-IBSI compliant feature were extracted. Features extracted 
through PyRadiomics contain a single first order feature, first order kurtosis, which differs 
from the IBSI definition. A description of the features can be found in supplementary 
materials B, and the full list in the PyRadiomics documentation. [26] 

3.3.4 Feature selection
Univariate feature selection was performed by fitting a univariate cox model for each 
individual feature. Afterwards, we select features based on the individual feature’s 
association with survival. This is done by choosing features with a testing association 
P-value (Wald-test) lower than the threshold of 0.05. [27] P-values were adjusted for 
multiple testing through false discovery rate (FDR) adjustment. [28] The function used 
100-repeat 10-fold cross-validation to determine the best performing features on average.

.5 Radiomics model
The selected features were used to train a multivariable Cox-model on the training 
dataset. Afterwards, the prognostic model performance was assessed through external 
validation on the validation dataset. This was done according to the principles and 
methods described by Royston and Altman (2013) [29], described in supplementary 
materials B. Model discrimination performance was determined through Harrell’s C-index 
(CI). A CI near 0.5 indicates that the predictions are no better than chance while values 
near 1 indicate almost perfect discriminative performance. Risk-stratified KM curves 
were generated for each model, which allowed for visual comparison between models, 
and provided the opportunity to determine how well the cohort could be stratified into 
risk groups. Three risk-groups were determined using threshold values at the 33rd and 
66th percentile of the calculated prognostic index (PI). A log-rank test was performed to 
determine the significance of the split of the low-risk vs. the medium-risk group, and the 
medium-risk vs. the high-risk group. In addition, predicted survival curves for each risk 
group are determined. The PI was used to estimate the survival curve, which was then 
averaged over the entire risk-group. These curves were plotted alongside the observed 
KM-curves. The observed survival curves and predicted survival curves aligning indicates 
that the model fits correctly to the data.



Radiomics-based prognostic model for locally advanded HNSCC   |   73   

3

3.3.6 Staging, volume, and clinical models
The performance of the radiomics model was compared to risk stratification based on 
TNM8, primary tumor volume, and a model built from clinical and biological features. 
The radiomics feature “original_shape_VoxelVolume” was used as a surrogate for tumor 
volume. This feature was added to the list of selected features and used to create a 
separate model. [30] The clinical and biological model was built from a list of known 
predictors of survival in HNSCC, which can be found in Supplementary materials B. All 
features had less than 10% of values missing. For any missing values imputation was 
performed using the ‘missForest’ package in R. [31] This imputation method trains a 
Random Forest (RF) model on the existing data to predict the missing values. Separate 
imputation was performed for the training dataset and the validation dataset. Feature 
selection on the clinical and biological covariates was performed through univariate Cox 
modelling, selecting univariate significant covariates through chi-square test P-values 
after correcting for multiple testing (FDR). [28] The significant features were added to the 
list of radiomics features and used to create separate models. In addition, a combined 
model using radiomics, tumor volume, and clinical/biological variables was created and 
validated.

3.3.7 Validation of existing radiomics signatures
Aerts et al. reported on a radiomics signature to predict survival in lung cancer patients 
which they validated on HNSCC cohorts. This signature was evaluated both on our 
validation and the full cohort (training and validation) [32] and its performance was 
compared to the radiomics signature created in this study. The four features used to create 
the signature by Aerts were extracted from the primary tumor volume after the appropriate 
pre-processing steps. The feature values were multiplied with the β coefficients reported 
in the article to calculate the linear predictor. The article used a single cut-off value based 
on the median of the linear predictor to stratify the patients into low- and high-risk groups. 
We apply these cut-offs in order to determine two risk-groups and compare these to risk-
stratification using the median of the linear predictor estimated by our novel models. 

3.3.8 Radiomics quality score and TRIPOD
For quality assurance the radiomics quality score (RQS) [33, 34] was calculated and 
transparent reporting of a multivariable prediction model for individual prognosis 
or diagnosis (TRIPOD) [35] recommendations were followed. A description of these 
statements and the results can be found in supplementary materials B. 
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3.4 Results

3.4.1 Clinical, biological, and imaging characteristics
In total, 666 retrospective and 143 prospective patients were collected and analyzed in 
this study. An overview of patient characteristics for both cohorts is presented in table 1.

Table 1. Patient characteristics overview for retrospective and prospective patient cohorts. 
Study Retrospective 

(N=666)

Prospective 

(N=143)

P-value

Sex (% male/N) 72/482 65/93 P = 0.10

Age (Median / range) 63 / 

29-89

64 / 

38-93

P = 0.17

HN tumor site (%/N) - Hypopharynx

- Oropharynx

- Oral cavity

- Larynx

15/96

43/289

15/100

27/181

15/21

36/51

29/42

20/29

P = 0.93

P = 0.11

P < 0.01

P = 0.11
p16+ Oropharynx (%/N) 22/146 26/37 P = 0.36

Stage TNM7th edition (%/N) - III

- IVa

- IVb

31/206

59/390

10/70

28/40

67/96

5/7

P =0.55

P = 0.07

P = 0.06
Stage TNM8th 
edition(%/N)

p16+ oropharynx - I

- II

- III

11/74

6/42

5/30

12/17

9/13

5/7

P = 0.90

P = 0.31

P = 1
Non-oropharynx/
p16- oropharynx

- III

- IVa

- IVb

25/169

37/248

16/103

28/40

38/54

8/12

P = 0.59

P = 0.98

P = 0.04
Treatment (% of patients received 
type of treatment/N)

- RT only

- Surgery only

- CRT

- Surgery + RT

- Surgery + CH + RT

29/191

5/34

37/245

15 (102

14/93

15/22

4/5

36/51

24/34

12/17

P < 0.01

P < 0.01

P = 0.55

P = 0.16

P = 0.60
Order of CH (% of CH patients/N) - Adjuvant

- Concomitant

- Induction

15/51

81/273

4/15

12/8

84/57

4/3

P = 0.61

P = 0.64

P = 1
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ACE-27 Co-morbidity (%/N) = 0

= 1

= 2

= 3

30/204

41/272

20/133

9/57

38/52

38/52

16/21

8/11

P = 0.20

P = 0.37

P = 0.18

P = 0.86
Smoking (%/N) - Current

- Former

- Never

52/350

36/237

12/79

40/55

33/45

27/37

P = 0.01

P = 0.44

P < 0.01
Pack years (Median / range) 35 / 0 - 174 30 / 0-220 P = 1

Alcohol consumption (%/N) - Current

- Former

- Never

66/445

13/84

21/137

48/67

12/17

40/55

P < 0.01

P = 1

P < 0.01
ECOG PS (%/N) = 0

= 1

= 2

= 3

= NA

39/262

16/106

3/21

1/4

41/273

49/68

43/59

8/11

-

4/5

P < 0.01

P < 0.01

P = 0.22

P = -

Hb level (Median / range)  8.8 / 5.0 -15.1 8.7 / 4.8-14.0 P = 0.27

HN = Head and neck, RT = Radiotherapy, CH = Chemotherapy, CRT = Chemoradiotherapy, ECOG PS 
= Eastern cooperative oncology group performance status

The median follow-up of patients in the training and validation cohort was 63 (49-79 
95% CI) and 32 (26-37 95% CI) months, respectively. Two-year survival in the training and 
validation cohort was 78% and 75%, respectively. A log-rank test between survival curves 
shows that the difference between cohorts is not significant (p=0.29). KM plots of the 
cohorts are shown in supplementary materials A figure 1. As oropharyngeal carcinoma 
constituted a significant portion of the dataset (43%/N=294for training, 36% N=51 for 
validation) we decided to build separate models for this group of patients (including 
both p16+ and p16-). A description of this model along with the results can be found in 
supplementary materials A. Supplementary materials B figure 1 shows an overview of the 
different parameters used for image acquisition and reconstruction in the training and 
validation datasets.

3.4.2 Model results
We extracted 1198 radiomics features from the primary tumor volume on all CT images. 
After unsupervised feature selection, 204 features remained. Eleven features were 
selected by supervised selection as being the most predictive of OS in the training 
cohort. The first two features were kurtosis, a first-order statistics feature, and sphericity, 
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a shape feature. The next four features are all LoG-filtered texture features consisting of 
GLSZM Gray level non-uniformity, GLDM entropy, GLRLM run entropy, and GLDM low 
gray level emphasis. Finally, five wavelet-filtered texture features were included: four 
differently wavelet-filtered GLSZM zone entropy features, and GLRLM low gray level run 
emphasis. All selected features were IBSI-compliant, except for the first-order statistics 
feature. Supplementary materials B table 2 shows an overview of the feature names. The 
slope of the PI in validation was 1.35. A log-rank test to see if the slope was significantly 
different from 1 resulted in a P-value of 0.38. This indicates the model calibrates well in 
the validation cohort, meaning the predicted and the expected outcome proportions for 
a certain testing population match. The joint test of all predictors with the offset of the 
PI gives a P-value of 0.86, indicating there is no evidence of a lack of fit on the validation 
cohort. The CI in training and validation were 0.65 and 0.67, respectively. 

For the validation of the Aerts et al. (2014) signature [32], supplementary materials A 
figure 5 depicts KM survival curves for the combined training and validation cohort after 
stratification in two risk groups (p<0.01), with a CI of 0.66. For some patients, one or more 
of the required features failed to extract due to the small size of the volume. Therefore, 
the calculation of the signature was not possible in all available patients, resulting in 633 
patients of the training cohort and 139 patients in validation cohort. The performance of 
the validation in this study is similar to the reported performance of the validation on the 
lung dataset (CI of 0.65), but slightly lower than the performance on the two H&N datasets 
(both CI of 0.69).

Figure 2 shows KM survival graphs of the validation cohort split using the previously 
created signature [32] and the radiomics-only signature from this study. While the CI of 
the model performances are similar (0.66 and 0.67, respectively), the split and hazard ratio 
are significantly better using the newly created signature (p=.22 vs p<0.01).

Figure 2: Kaplan-Meier survival plots of the validation cohort (N=139) stratified based on the previously created signature (left) 
and the newly created signature (right), showing the P-value of the split between risk-groups, model performance through the CI 
and the HR between the risk groups. The solid lines represent the observed survival curves, the dashed line the corresponding 
predicted survival curves. 

  

Figure 2. Kaplan-Meier survival plots of the validation cohort (N=139) stratified based on the 
previously created signature (left) and the newly created signature (right), showing the P-value 
of the split between risk-groups, model performance through the CI and the HR between the risk 
groups. The solid lines represent the observed survival curves, the dashed line the corresponding 
predicted survival curves.
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Figure 3 shows the KM survival graphs of the training and validation cohorts. The P-values 
of the log-rank test of the low and medium and medium and high split were <0.01 for 
both in training, and 0.163 and 0.01 in validation, respectively.

 

 

 

Figure 3: Kaplan-Meier survival curves of the training (left, N=666) validation (right, N=143) patient cohorts stratified into 
low-, medium-, and-high risk groups, showing log-rank test P-value of the split between risk groups and the CI of the radiomics 
features-based model-performance. The solid lines represent the observed survival curves, the dashed line the corresponding 
predicted survival curves. 

  

Figure 3. Kaplan-Meier survival curves of the training (left, N=666) validation (right, N=143) patient 
cohorts stratified into low-, medium-, and-high risk groups, showing log-rank test P-value of the 
split between risk groups and the CI of the radiomics features-based model-performance. The solid 
lines represent the observed survival curves, the dashed line the corresponding predicted survival 
curves.

Table 2. Selected clinical and biological features in the clinical, biological, and combined models, 

with univariate model coefficient, hazard ratio and significance to outcome shown.
Feature name Model coefficient Hazard ratio P-value

TNM8 0.76 2.14 <0.01

Age 0.034 1.035 <0.01

ACE-27 comorbidity score 0.28 1.33 <0.01

Pack years 0.005 1.005 0.02

Alcohol at diagnosis 0.47 1.61 <0.01

P16-status -1.3 0.27 <0.01

Hemoglobin level -0.3 0.74 <0.01

Figure 4 shows KM survival curves of the validation cohort after stratification based on 
tumor volume, the selected clinical and biological parameters, and the selected radiomics 
features, with a CI of 0.71 and 0.79 in training and validation, respectively. The clinical 
features selected through univariate feature selection were TNM8 (higher stage has worse 
prognosis), age at diagnosis (higher age has worse prognosis), ACE-27 comorbidity score 
(higher score has worse prognosis), smoking pack years (higher pack years has worse 
prognosis, and alcohol consumption at time of diagnosis (current has worst prognosis), 
and the biological features were p16-status (p16-negative has worse prognosis) and 
clinical Hb level at baseline (lower Hb level has worse prognosis). The P-value of the log-
rank test of the low and medium and medium and high split were both <0.01 in both 
training and validation. 
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Figure 4: Kaplan-Meier survival cohorts of the training (left, N=666) validation (right, N=143) patient cohorts stratified into 
low-, medium-, and-high risk groups based on radiomics, tumor volume, clinical, and biological parameters, showing the P-
value of the split between risk-groups and CI of the model performance. The solid lines represent the observed survival curves, 
the dashed line the corresponding predicted survival curves. 

  

Figure 4. Kaplan-Meier survival cohorts of the training (left, N=666) validation (right, N=143) patient 
cohorts stratified into low-, medium-, and-high risk groups based on radiomics, tumor volume, 
clinical, and biological parameters, showing the P-value of the split between risk-groups and CI of 
the model performance. The solid lines represent the observed survival curves, the dashed line the 
corresponding predicted survival curves.

A full overview of the different combinations of models, with discrimination performance 
and hazard ratios for each model in training and validation, is provided in Table 3. In 
addition, Figure 4 provides an overview of the CI-indices of the validation results.
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Figure 5: Bar-plot of the various models validated on the validation cohort (N=143). The y-axis indicates CI value, while the 
coloured bars above the bar show significant differences between models, with an indent meaning the model is significantly 
different, and no indent meaning no significant difference was found 
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From Table 3 and Figure 5, it can be observed that in the prospective cohort radiomics 
alone does not perform better than TNM8 (CI of 0.67 and 0.74 respectively, p<0.01). 
Combining TNM8 and radiomics results in a higher performance than both separately, with 
a CI of 0.77. In combination with both clinical parameters and tumor volume, the highest 
discrimination performance was found (CI of 0.79). Similarly, oropharynx radiomics does 
not perform better than TNM8 (CI of 0.82 vs. 0.86, p<0.01), but when combining both 
radiomics and TNM8 the highest performance in validation was achieved (CI of 0.90).

3.5 Discussion

For advanced tumors like those investigated in this study, being able to discern groups 
of poor versus good performing patients is key for personalized decision making. In this 
international, multicenter study, we created a multifactorial prediction model, including 
radiomics features extracted from the primary tumor volume, that can significantly 
stratify advanced HNSCC patients in good, average and poor prognostic groups, with a 
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CI of 0.79 in validation on a prospective cohort. These groups could be used in clinical 
decision making and for selecting patients for (de-)escalation trials and/or adjuvant 
treatment. While radiomics alone was not able to improve on TNM8, adding radiomics 
features to a model including TNM8, clinical, and biological variables improved the 
prognostic performance, significantly increasing CI from 0.73 to 0.79. We can therefore 
recommend adding these variables to the current clinical implementation of TNM8. These 
results coincide with other works reporting on the complementary value of radiomics in 
predictive modelling in head and neck cancer. [9, 36]

Eleven radiomics features were selected for the prediction of OS. The first two selected 
features were kurtosis, a first-order statistics feature that measures the ‘peakness’ of the 
distribution of pixel intensity values, and sphericity, a shape feature that measures the 
likeness of the ROI to a sphere. Sphericity being selected implies less spherical tumors 
may have a worse prognosis. The next four features are all LoG-filtered texture features 
consisting of GLSZM Gray level non-uniformity, a feature which measures the variability 
of gray-level intensity values, GLDM entropy and GLRLM run entropy, which both measure 
the heterogeneity in texture patterns, and GLDM low gray level emphasis, which measures 
the concentration of low intensity values. Finally, five wavelet-filtered texture features 
were included: four differently wavelet-filtered GLSZM zone entropy features, which 
measure the heterogeneity in texture patterns, and GLRLM low gray level run emphasis, 
which measures the concentration of low intensity values. Most of these features are 
linked to heterogeneity, reinforcing the theory that tumor heterogeneity correlates with 
a worse prognosis. [37, 38]

For most tested models we found a higher validation accuracy than training accuracy. The 
main reason for this is the smaller size of the validation dataset, which means the result is 
more prone to variance, which is reflected in the larger confidence intervals, especially for 
the smaller oropharyngeal analysis. Another contributing factor could be a larger number 
of ‘hard’ cases in the training dataset compared to the validation dataset. In this paper, we 
chose to validate on a prospectively collected dataset, which is for data splitting purposes 
an arbitrary reason. In a more balanced dataset with more similar patient datasets the 
discrepancy between training and validation may be lower. 

Instead of using radiotherapy planning images only, which is conventional for radiomics 
studies, this study used diagnostic CT images as well, which are made routinely for any 
patient showing a locally advanced HNSCC. From these images radiomics features can 
be extracted in a semi-automatic fashion, making clinical application easy. In addition, 
the combined model was made using simple variables that are routinely determined in 
a clinical setting for every patient (TNM8 stage, ACE-27 comorbidity status, smoking and 
alcohol habits). This makes the potential application of the presented models in a clinical 
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setting relatively easy. For the next step, the created model could be tested in a clinical 
trial. However, as differences in scanners, scan settings, and acquisition settings have 
proven to have significant effects on feature reproducibility, further external validation of 
the models in a prospective study where these variables are controlled may be required. 

Radiomics performs an estimation of the tumor volume using a 3D segmentation, as 
opposed to conventional methods of measuring tumor volume to predict survival. This 
single feature was found to be significantly predictive of OS, albeit with lower performance 
compared to TNM8 or the model based on radiomics features, but was not chosen in 
the multivariable model. The main reason for this is the interaction with other features 
in the correlation dimensionality reduction step. Volume has high correlation with other 
features, mostly shape features, and is therefore removed from the feature dataset before 
univariate selection is performed, revealing a shortcoming of this feature reduction step. 
However, the information provided by this feature should be retained in the remaining 
uncorrelated features. 

The radiomics model in this study shows better performance in stratifying patients in risk-
groups in the validation dataset when compared to the previously created and validated 
signature. [32] One large discrepancy between these models is the risk stratification: the 
previously developed signature was created with two risk-groups, instead of three. Most 
importantly, it was built on lung cancer. The difference in performance on different tumor 
sites demonstrates that prognostic models should be developed on specific tumor sites 
and stages, and with relevant clinical risk groups in mind. 

While the amount of data used in this study was higher than most published radiomics 
studies, this was partially achieved by pooling data from different HNSCC sites. Separating 
these regions resulted in very small datasets in either or both, training and validation sets. 
While we had sufficient data to train an oropharynx model and found a relatively high 
performance of the model using radiomics features of 0.82 CI in validation, the validation 
dataset was relatively limited with respect to the number of patients, and particularly in 
number of events. Collecting more data from an individual tumor site would most likely 
result in more representative models. In addition, the patients in this study received 
different treatments. This can have a major impact on survival chance, and is therefore a 
major limitation. Similar to tumor region, separate models according to treatment would 
be preferred. However, treatment is heavily linked to region of the tumor, as for example 
the majority of surgeries were performed for oral cavity patients.

Compared to extracting radiomics features from just the primary tumor volume, TNM8 
staging takes information from the primary tumor (T-stage), nodal involvement (N-stage), 
and the presence of distant metastases (M-stage) into consideration. In addition, 
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depending on the tumor region, additional information such as p16-status as surrogate 
for HPV-involvement, depth of invasion in surrounding tissues, and presence of extranodal 
extension are important. An improvement could be made by including radiomics features 
extracted from the lymph node metastases. This would require a multifactorial model 
with a binary condition for lymph node stage and would only incorporate features of 
those patients who have lymph node metastases. 

Imaging artefacts caused by dental implants may have affected performance of the 
radiomics model. The artefacts make segmentation difficult, but also affect the radiomics 
features extracted from these images. While there was a limit on the number of artefacts 
allowed on images during patient selection, methods to reduce the artefacts may be 
considered for future studies. In addition, variability caused by the manual segmentation 
of tumors by different experts at each institute may have also affected model performance. 
Previous research has shown that inter- and intra-observer variability can possibly cause 
large differences in delineated volumes.[39] For shape and size radiomics features, this 
can cause a large decrease of their utility, and may affect other features to a lesser degree. 
The repeatability of deep learning based automatic segmentation methods will be able to 
negate inter-observer variabilities in the future.[40]

To compensate for inter-observer variability in the current project, each center performed 
delineations either directly by, or under supervision of, expert radiologists or radiation 
oncologists. And although delineations were performed according to local protocols, 
European guidelines are largely aligned, limiting the inter-observer effects on the 
delineated structures. Conversely, in a clinical application of the proposed model at 
different institutes, inter-observer variabilities will be an inevitability. The discriminative 
performance the model has shown despite these issues strengthens the potential of 
application in a clinical setting. 

3.6 Conclusion

A multifactorial prognostic model for stage III and IV HNSCC (TNM7th edition) based 
on simple variables available for every patient and including CT-radiomics features is 
able to very accurately predict OS and to significantly discern different risk-groups. The 
multifactorial model was found to have higher predictive performance than the current 
gold standard of TNM8. This could be useful in treatment (de-)escalation trials and clinical 
decision-support.
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3.11 Supplementary materials A

 
Figure 1: Kaplan-Meier survival curves of the retrospective and prospective cohorts, with p-value of the log-rank test, and the 
hazard ratio between the two groups. 

Figure 1. Kaplan-Meier survival curves of the retrospective and prospective cohorts, with p-value of 
the log-rank test, and the hazard ratio between the two groups.



Radiomics-based prognostic model for locally advanded HNSCC   |   91   

3

Figure 2 shows Kaplan-Meier survival curves for the prospective cohort after stratification 
based on tumor volume, with a CI of 0.68. The p-values of the log-rank test of the low and 
medium and medium and high split were 0.62 and <0.01, respectively.

 
Figure 2: Kaplan-Meier survival curves prospective cohorts, with p-value of the log-rank test, and the hazard ratio between the 
three groups, stratified based on TNM8. 

Figure 2. Kaplan-Meier survival curves prospective cohorts, with p-value of the log-rank test, and 
the hazard ratio between the three groups, stratified based on TNM8.
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Figure 3: Kaplan-Meier survival cohorts of the prospective patient cohort (N=143) stratified based on tumor volume, showing 
the p-value of the split between risk-groups and CI of the model performance. The solid lines represent the observed survival 
curves, the dashed the corresponding predicted survival curves. 

Figure 3. Kaplan-Meier survival cohorts of the prospective patient cohort (N=143) stratified based 
on tumor volume, showing the p-value of the split between risk-groups and CI of the model 
performance. The solid lines represent the observed survival curves, the dashed the corresponding 
predicted survival curves.

Figure 3 shows Kaplan-Meier survival curves of the prospective cohort after stratification 
based on clinical and biological features, with a CI of 0.73 in validation. The p-value of the 
log-rank test of the low and medium split was <0.01, but the p-value of the log-rank test 
of the medium and high split was not significant 0.57.
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Figure 4: Kaplan-Meier survival cohorts of the prospective patient cohort (N=143) stratified based on clinical and biological 
parameters, showing the p-value of the split between risk-groups and CI of the model performance. The solid lines represent the 
observed survival curves, the dashed the corresponding predicted survival curves.  

Figure 4. Kaplan-Meier survival cohorts of the prospective patient cohort (N=143) stratified based 
on clinical and biological parameters, showing the p-value of the split between risk-groups and CI 
of the model performance. The solid lines represent the observed survival curves, the dashed the 
corresponding predicted survival curves. 

For the oropharynx patient cohort, eight features were selected as being the most 
predictive of OS, consisting of 1 first-order statistics feature, two shape features, 3 wavelet-
filtered texture features, and 2 LoG-filtered texture features. All selected features were 
IBSI-compliant. Supplementary materials B table 3 shows an overview of the features.  
The slope of the PI in validation was 3.01, with a log-rank test p-value of 0.04, indicating 
certainty the slope in validation is larger than unity. The joint test of all predictors with the 
offset of the PI gives a p-value of 0.12, indicating there is no evidence of a lack of fit on the 
validation cohort. Kaplan-Meier survival curves of the prospective oropharynx cohort split 
based on radiomics features is shown in figure 4. 
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Figure 5: Kaplan-Meier survival curves of the oropharynx prospective patient (N=51) cohort using radiomics features without 
ComBat harmonization, showing log-rank test p-value of the split between risk groups and the CI of the model-performance in 
the prospective cohort. Risk group split based on median training prediction value. The solid lines represent the observed 
survival curves, the dashed the corresponding predicted survival curves. 

Figure 5. Kaplan-Meier survival curves of the oropharynx prospective patient (N=51) cohort using 
radiomics features without ComBat harmonization, showing log-rank test p-value of the split 
between risk groups and the CI of the model-performance in the prospective cohort. Risk group 
split based on median training prediction value. The solid lines represent the observed survival 
curves, the dashed the corresponding predicted survival curves.
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Figure 6: Kaplan-Meier survival cohorts of the full patient cohort (N=772) stratified based on the previously created signature, 
showing the p-value of the split between risk-groups, model performance through the CI and the HR between the risk groups. The 
solid lines represent the observed survival curves, the dashed the corresponding predicted survival curves. 

 

  

Figure 6. Kaplan-Meier survival cohorts of the full patient cohort (N=772) stratified based on 
the previously created signature, showing the p-value of the split between risk-groups, model 
performance through the CI and the HR between the risk groups. The solid lines represent the 
observed survival curves, the dashed the corresponding predicted survival curves.
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3.12 Supplementary materials B

3.12.1 Ethical approval
The BD2Decide (H2020-PHC30-689715, IRB P-number P0125, ClinicalTrials.gov Identifier: 
NCT02832102) study procedures were approved by the Ethics Committees according 
to the Declaration of Helsinki, the European and local ethical conventions and legal 
aspects, as well as the European General Data Protection Regulation. The management 
and exchange of data, specimens, and imaging information were regulated between 
the partners through data and material transfer agreements and standard operating 
procedures. Central data, imaging, and material were anonymized  by the centers prior 
to aggregation, and data were stored in a secured and locked information technology 
surrounding according to General Data Protection Regulation (GDPR).  Protocol details 
were registered on Open Science Framework (DOI: 10.17605/OSF.IO/H4DFB).

3.12.2 Data description and inclusion criteria
Patient data were acquired from seven different centers: Fondazione IRCCS Istituto 
Nazionale dei Tumori Milano (INT), Azienda Ospedaliero Universitaria di Parma (AOP), 
Maastricht Radiation Oncology (MAASTRO), Amsterdam UMC, location VUmc, Heinrich-
Heine-Universität Düsseldorf (UDUS), University of Brescia (UB), and University Ulm (UU). 
The data collected included clinical, biological, pathological, and radiological variables 
for each case. The inclusion criteria were: histological confirmation of HNSCC, age 18 
years or above, clinical TNM stage III, IVA, or IVB based on AJCC 7th edition, administration 
of treatment with curative intent (any combination of surgery, radiotherapy, and 
chemotherapy), availability of pre-treatment tumor specimens, and availability of 
contrast-enhanced CT scan of the head and neck region.

3.12.3 Radiomic features description
Features can be can be divided into first-order HU intensity, histogram statistics, shape, 
and texture features. First order HU intensity and histogram statistics describe the total 
distribution of voxel intensities over the CT image. Shape features describe two- and 
three-dimensional size and shape of the GTV. Tumor volume measured through the voxel 
volume of the GTV is also a radiomics feature and can be seen as a more complex and 
complete feature than the size used for TNM staging. Texture features describe the relative 
spatial distribution of intensity values derived from 6 different matrices that are defined 
over the images: gray-level co-occurrence (GLCM)1, gray-level run length (GLRLM)2, grey-
level size-zone (GLSZM)3, gray-level distance-zone (GLDZM)4, gray-level dependence 
(NGLDM)5, and neighborhood gray-tone difference matrix (NGTDM).6 In addition, two 
different image filters were applied to the original image, resulting in extra images to 
extract the earlier described first-order, histogram, and texture features. The first technique 
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is wavelet filtering, which involves 3D coif wavelet transforms along the three axes of the 
original images at 2 spatial frequencies (high and low) to decompose the images into 8 
decomposed scans. The second filtering technique is Laplacian of Gaussian (LoG), which 
highlights regions of intensity change within an image The LoG-filter was applied with 4 
different standard deviation values (2-5 mm) of the Gaussian filter, resulting in 4 different 
LoG-filtered images.  

3.12.4 Pre- and post-processing
As many radiomics features have been found to be dependent on voxel size and the 
number of gray levels7, all images were resampled to uniform 1x1x3 mm2 voxels using 
the ‘sitkBSpline’ interpolator. The choice for voxel dimensions was made based on majority 
ruling, where we found that most patients had a slice spacing of 3mm and pixel spacing 
of ~1mm. Additionally, the intensity values of the images were resampled using a fixed 
bin-size of 25 Hounsfield Units (HU), resulting in images with ranges of 16-128 bins. This 
number of bins was chosen as a balance between reducing noise and limiting the size of the 
texture matrices on one hand and retaining a minimum contrast level in the lesions with 
less intensity ranges on the other. Disconnected voxels were removed to ensure only one 
fully connected structure was used for feature calculations. Z-score normalization metrics 
(mean and scale) for all radiomics features except for shape features were calculated in the 
training dataset and applied to the features in both datasets. To reduce the dimensionality 
of the data, unsupervised and supervised feature selection was performed on the training 
dataset. Any feature that failed to extract for any of the patients, for example because a 
filter was too large to apply to a smaller lesion, was removed. This strategy was adopted 
since all features selected for the signature need to be applicable to all (future) patients. 
Any feature with near-zero variance was also removed, as these features do not contain 
any useful information for a model. Highly correlated features were assumed to contain 
overlapping information about the outcome, so for each correlating feature pair one 
was selected and the other were removed. This was done because these features were 
considered redundant, and to reduce dimensionality and the chance of overfitting. 
Through absolute pairwise Spearman rank correlation highly correlating features (>0·85) 
were determined and the feature with the largest mean absolute correlation with the 
remaining features was removed from the dataset.

3.12.5 Model calibration
The prognostic indices (PI) of the training and validation dataset were determined. The PI, 
or linear predictor, is the sum of variables x in the model, multiplied by the corresponding 
regression coefficients β, defined as 
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 . To determine the calibration slope, Cox 
regression was performed on the PI, and the unity value of the slope was tested through 
a log-rank test. Afterwards, a joint log-rank test on all the predictors plus the offset of the 
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PI was performed, and tested for non-signifi cance, which would indicate a good fi t for our 
model.

3.12.6 Clinical and biological covariates
The full list of clinical covariates was: age at diagnosis, sex, ACE-27 comorbidity score, 
smoking pack years, AJCC 8th edition TNM staging, smoking at time of diagnosis (yes/
no/former, where former is defi ned as having stopped before enrolment), and alcohol 
consumption at time of diagnosis (yes/no/former, where former is defi ned as having 
stopped before enrolment). The list of biological covariates was: Hemoglobin (Hb) level, 
and HPV-status. HPV status was determined by p16 immunostaining followed by HPV DNA 
PCR for p16 positive cases. P16 positive, but HPV DNA negative cases, were considered 
HPV negative.
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Figure 1: Distributions of imaging acquisition parameters for the full patient population (N=809).Figure 1. Distributions of imaging acquisition parameters for the full patient population (N=809).
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Table 1. A Table of used R packages

Purposes Functions Packages Versions

Spearman’s rank correlation ‘cor’ ‘stats’ 3.6.3

ROC plots, AUC values, and test ‘roc’ ‘pROC’ 1.16.2

Feature selection ‘nearZeroVar’, ‘uni.selection’ ‘caret’, ‘compound.cox’ 6.0-86, 3.19

Cox proportional hazard modelling ‘coxph’, ‘Surv’ ‘survival’ 3.1.12

Harrel’s C-index ‘rcorr.cens’ ‘Hmisc’ 4.4.0

Cox Survival Estimates ‘survest’ ‘rms’ 5.1.4

Create survival curves ‘survfit’ ‘survest’ 3.1.12

Drawing survival curves ‘ggsurvplot’ ‘survminer’ 0.4.7

Missing value imputation ‘missForest’ ‘missForest’ 1.4

ROC, receiver operating characteristic curve; AUC, area under the roc curve

Table 2. Selected radiomics features for the retrospective training cohort

# Name feature

1 log.sigma.5.0.mm.3D_glszm_GrayLevelNonUniformity

2 wavelet.HLH_glszm_ZoneEntropy

3 wavelet.HLL_glszm_ZoneEntropy

4 wavelet.LLH_glszm_ZoneEntropy

5 original_shape_Sphericity

6 log.sigma.4.0.mm.3D_gldm_DependenceEntropy

7 wavelet.HHH_glrlm_LowGrayLevelRunEmphasis

8 wavelet.HHL_glszm_ZoneEntropy

9 log.sigma.5.0.mm.3D_gldm_LowGrayLevelEmphasis

10 original_firstorder_Kurtosis

11 log.sigma.2.0.mm.3D_glrlm_RunEntropy

Table 3. Selected radiomics features for the retrospective oropharynx training cohort

# Name feature

1 original_shape_MajorAxisLength

2 wavelet.HHL_glszm_GrayLevelNonUniformity

3 log.sigma.5.0.mm.3D_glszm_GrayLevelNonUniformity

4 original_shape_Sphericity

5 wavelet.LLH_glszm_ZoneEntropy

6 original_firstorder_Maximum

7 log.sigma.4.0.mm.3D_glrlm_RunEntropy

8 wavelet.HLL_glszm_ZoneEntropy
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3.12.7 RQS and TRIPOD
RQS measures metrics of the validity of a radiomics workflow, and the validity of the 
(external) validation. The RQS consists of 16 components, such as segmentation robustness, 
comparison to a gold standard, and cost-effectiveness of the clinical application, which 
together count up to a maximum of 36 points. Similarly, we followed the general 
procedure recommended in transparent reporting of a multivariable prediction model 
for individual prognosis or diagnosis (TRIPOD).8 This guideline consists of a checklist of 
22 points, which cover more general guidelines for articles such as proper reporting and 
structuring of the article. The RQS score calculated for this study was 75%. A significant 
portion of points were lost in criterium 11, as we did not apply for a clinical trial to test the 
signature created in this study. An overview of the point allocation is shown in Table 4. For 
the TRIPOD statement, and adherence of 76% was calculated. An overview of the point 
allocation is shown in Table 5.
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Table 4. Radiomics quality score table. The table displays the different criteria, the maximum 
amount of points that can be acquired (or maximum points that can be deducted) and the points 
calculated in this study.
1 Image protocol quality - well-documented image protocols (for 

example, contrast, slice thickness, energy, etc.) and/or usage of 
public image protocols allow reproducibility/replicability

+ 1 (if protocols are 
well-documented) + 
1 (if public protocol 
is used)

1

2 Multiple segmentations - possible actions are: segmentation 
by different physicians/algorithms/software, perturbing 
segmentations by (random) noise, segmentation at different 
breathing cycles. Analyse feature robustness to segmentation 
variabilities

1 1

3 Phantom study on all scanners - detect inter-scanner differences 
and vendor-dependent features. Analyse feature robustness to 
these sources of variability

1 0

4 Imaging at multiple time points - collect images of individuals at 
additional time points. Analyse feature robustness to temporal 
variabilities (for example, organ movement, organ expansion/
shrinkage)

1 0

5 Feature reduction or adjustment for multiple testing - decreases 
the risk of overfitting. Overfitting is inevitable if the number 
of features exceeds the number of samples. Consider feature 
robustness when selecting features

− 3 (if neither 
measure is 
implemented) + 3 
(if either measure is 
implemented)

3

6 Multivariable analysis with non radiomics features (for example, 
EGFR mutation) - is expected to provide a more holistic model. 
Permits correlating/inferencing between radiomics and non 
radiomics features

1 1

7 Detect and discuss biological correlates - demonstration of 
phenotypic differences (possibly associated with underlying 
gene–protein expression patterns) deepens understanding of 
radiomics and biology

1 1

8 Cut-off analyses - determine risk groups by either the median, a 
previously published cut-off or report a continuous risk variable. 
Reduces the risk of reporting overly optimistic results

1 1

9 Discrimination statistics - report discrimination statistics (for 
example, C-statistic, ROC curve, AUC) and their statistical 
significance (for example, p-values, confidence intervals). One can 
also apply resampling method (for example, bootstrapping, cross-
validation)

+ 1 (if a 
discrimination 
statistic and 
its statistical 
significance are 
reported) + 1 (if a 
resampling method 
technique is also 
applied)

2

10 Calibration statistics - report calibration statistics (for example, 
Calibration-in-the-large/slope, calibration plots) and their 
statistical significance (for example, P-values, confidence 
intervals). One can also apply resampling method (for example, 
bootstrapping, cross-validation)

+ 1 (if a calibration 
statistic and 
its statistical 
significance are 
reported) + 1 (if a 
resampling method 
technique is also 
applied)

1
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11 Prospective study registered in a trial database - provides the 
highest level of evidence supporting the clinical validity and 
usefulness of the radiomics biomarker

+ 7 (for prospective 
validation of a 
radiomics signature 
in an appropriate 
trial)

0

12 Validation - the validation is performed without retraining 
and without adaptation of the cut-off value, provides crucial 
information with regard to credible clinical performance

- 5 (if validation 
is missing) + 2 (if 
validation is based 
on a dataset from the 
same institute) + 3 (if 
validation is based 
on a dataset from 
another institute) 
+ 4 (if validation 
is based on two 
datasets from two 
distinct institutes) 
+ 4 (if the study 
validates a previously 
published signature) 
+ 5 (if validation is 
based on three or 
more datasets from 
distinct institutes)

9

13 Comparison to ‘gold standard’ - assess the extent to which the 
model agrees with/is superior to the current ‘gold standard’ 
method (for example, TNM-staging for survival prediction). This 
comparison shows the added value of radiomics

2 2

14 Potential clinical utility - report on the current and potential 
application of the model in a clinical setting (for example, decision 
curve analysis).

2 2

15 Cost-effectiveness analysis - report on the cost-effectiveness of 
the clinical application (for example, QALYs generated)

1 0

16 Open science and data - make code and data publicly available. 
Open science facilitates knowledge transfer and reproducibility of 
the study

+ 1 (if scans are 
open source) + 1 (if 
region of interest 
segmentations are 
open source) + 1 (if 
code is open source) 
+ 1 (if radiomics 
features are 
calculated on a set of 
representative ROIs 
and the calculated 
features and 
representative ROIs 
are open source)

3

Total score: 36 27
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Table 5. TRIPOD statement checklist form, filled out for the present study.
 

Y=yes; N=no; R=referenced; NA=not applicable

Development 
[D]

External 
validation 

[V]

Combined 
Development 

& External 
validation 

[D+V]

Title and abstract      

1 Identify the study as developing and/or validating 
a multivariable prediction model, the target 
population, and the outcome to be predicted.

    0

i The words developing/development, validation/
validating, incremental/added value (or synonyms) are 
reported in the title

N N N

ii The words prediction, risk prediction, prediction 
model, risk models, prognostic models, prognostic 
indices, risk scores (or synonyms) are reported in the 
title

Y Y Y

iii The target population is reported in the title Y Y Y

iv The outcome to be predicted is reported in the title Y Y Y

2 Provide a summary of objectives, study design, 
setting, participants, sample size, predictors, 
outcome, statistical analysis, results, and 
conclusions.

    0

i The objectives are reported in the abstract Y Y Y

ii Sources of data are reported in the abstract 
E.g. Prospective cohort, registry data, RCT data.

Y Y Y

iii The setting is reported in the abstract 
E.g. Primary care, secondary care, general population, 
adult  care, or paediatric care. The setting should be 
reported for  both the development and validation 
datasets, if applicable.

Y Y Y

iv A general definition of the study participants is 
reported in the abstract 
E.g. patients with suspicion of certain disease, patients 
with a specific disease, or general eligibility criteria. 

Y Y Y

v The overall sample size is reported in the abstract Y Y Y

vi The number of events (or % outcome together with 
overall sample size) is reported in the abstract 
If a continuous outcome was studied, score Not 
applicable (NA).

N N N

vii Predictors included in the final model are reported 
in the abstract. For validation studies of well-known 
models, at least the name/acronym of the validated 
model is reported 
Broad descriptions are sufficient, e.g. ‘all information 
from patient history and physical examination’. 
Check in the main text whether all predictors of the final 
model are indeed reported in the abstract.

Y Y Y

viii The outcome is reported in the abstract Y Y Y
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ix Statistical methods are described in the abstract 
For model development, at least the type of statistical 
model should be reported. For validation studies a 
quote like “model’s discrimination and calibration was 
assessed” is considered adequate. If done, methods of 
updating should be reported.

Y Y Y

x Results for model discrimination are reported in the 
abstract 
This should be reported separately for development and 
validation if a study includes both development and 
validation.

Y Y Y

xi Results for model calibration are reported in the 
abstract 
This should be reported separately for development and 
validation if a study includes both development and 
validation.

N N N

xii Conclusions are reported in the abstract 
In publications addressing both model development and 
validation, there is no need for separate conclusions for 
both; one conclusion is sufficient.

Y Y Y

3a Explain the medical context (including whether 
diagnostic or prognostic) and rationale for 
developing or validating the multivariable 
prediction model, including references to existing 
models.

    1

i The background and rationale are presented Y Y Y

ii Reference to existing models is included (or stated 
that there are no existing models)

Y Y Y

3b Specify the objectives, including whether the study 
describes the development or validation of the 
model or both.

    1

i It is stated whether the study describes development 
and/or validation and/or incremental (added) value

Y Y Y

Methods      

4a Describe the study design or source of data 
(e.g., randomized trial, cohort, or registry data), 
separately for the development and validation 
data sets, if applicable.

    1

i The study design/source of data is described 
E.g. Prospectively designed, existing cohort, existing RCT, 
registry/medical records, case control, case series. 
This needs to be explicitly reported; reference to this 
information in another article alone is insufficient.

Y Y Y

4b Specify the key study dates, including start of 
accrual; end of accrual; and, if applicable, end of 
follow-up.  

    1

i The starting date of accrual is reported Y Y Y

ii The end date of accrual is reported Y Y Y
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iii The length of follow-up and prediction horizon/time 
frame are reported, if applicable 
E.g. “Patients were followed from baseline for 10 years“ 
and “10-year prediction of…”; notably for prognostic 
studies with long term follow-up. 
If this is not applicable for an article (i.e. diagnostic study 
or no follow-up), then score Not applicable (NA).

Y Y Y

5a Specify key elements of the study setting (e.g., 
primary care, secondary care, general population) 
including number and location of centres.

    1

i The study setting is reported (e.g. primary care, 
secondary care, general population) 
E.g.: ‘surgery for endometrial cancer patients’ is 
considered to be enough information about the study 
setting.

Y Y Y

ii The number of centres involved is reported 
If the number is not reported explicitly, but can be 
concluded from the name of the centre/centres, or if 
clearly a single centre study, score Yes.

Y Y Y

iii The geographical location (at least country) of centres 
involved is reported 
If no geographical location is specified, but the location 
can be concluded from the name of the centre(s), score 
Yes.

Y Y Y

5b Describe eligibility criteria for participants.     1

i In-/exclusion criteria are stated 
These should explicitly be stated. Reasons for exclusion 
only described in a patient flow is not sufficient. 

Y Y Y

5c Give details of treatments received, if relevant.  
(i.e. notably for prognostic studies with long term follow-
up)

    1

i Details of any treatments received are described  
This item is notably for prognostic modelling studies 
and is about treatment at baseline or during follow-up. 
The ‘if relevant’ judgment of treatment requires clinical 
knowledge and interpretation.  
If you are certain that treatment was not relevant, e.g. in 
some diagnostic model studies, score Not applicable.

Y Y Y

6a Clearly define the outcome that is predicted by 
the prediction model, including how and when 
assessed. 

    1

i The outcome definition is clearly presented 
This should be reported separately for development and 
validation if a publication includes both. 

Y Y Y

ii It is described how outcome was assessed (including 
all elements of any composite, for example CVD [e.g. 
MI, HF, stroke]).

Y Y Y

iii It is described when the outcome was assessed (time 
point(s) since T0)

Y Y Y

6b Report any actions to blind assessment of the 
outcome to be predicted.    

    0

Table 5. Continued
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i Actions to blind assessment of outcome to be 
predicted are reported 
If it is clearly a non-issue (e.g. all-cause mortality or an 
outcome not requiring interpretation), score Yes. In all 
other instances, an explicit mention is expected.

N N N

7a Clearly define all predictors used in developing 
or validating the multivariable prediction model, 
including how and when they were measured.

    1

i All predictors are reported 
For development, “all predictors” refers to all predictors 
that potentially could have been included in the ‘final’ 
model (including those considered in any univariable 
analyses). 
For validation, “all predictors” means the predictors in the 
model being evaluated.

Y Y Y

ii Predictor definitions are clearly presented Y Y Y

iii It is clearly described how the predictors were 
measured

Y Y Y

iv It is clearly described when the predictors were 
measured

Y Y Y

7b Report any actions to blind assessment of 
predictors for the outcome and other predictors. 

    0

i It is clearly described whether predictor assessments 
were blinded for outcome 
For predictors for which it is clearly a non-issue (e.g. 
automatic blood pressure measurement, age, sex) and 
for instances where the predictors were clearly assessed 
before outcome assessment, score Yes. For all other 
predictors an explicit mention is expected.

N N N

ii It is clearly described whether predictor assessments 
were blinded for the other predictors

N N N

8 Explain how the study size was arrived at.     1

i It is explained how the study size was arrived at 
Is there any mention of sample size, e.g. whether this 
was done on statistical grounds or practical/logistical 
grounds (e.g. an existing study cohort or data set of a RCT 
was used)? 

Y Y Y

9 Describe how missing data were handled (e.g., 
complete-case analysis, single imputation, 
multiple imputation) with details of any 
imputation method. 

    1

i The method for handling missing data (predictors and 
outcome) is mentioned 
E.g. Complete case (explicit mention that individuals with 
missing values have been excluded), single imputation, 
multiple imputation, mean/median imputation. 
If there is no missing data, there should be an explicit 
mention that there is no missing data for all predictors 
and outcome. If so, score Yes. 
If it is unclear whether there is missing data (from e.g. the 
reported methods or results), score No. 
If it is clear there is missing data, but the method for 
handling missing data is unclear, score No.

Y Y Y
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ii If missing data were imputed, details of the software 
used are given 
When under 9i explicit mentioning of no missing data, 
complete case analysis or no imputation applied, score 
Not applicable.

Y Y Y

iii If missing data were imputed, a description of which 
variables were included in the imputation procedure 
is given 
When under 9i explicit mentioning of no missing data, 
complete case analysis or no imputation applied, score 
Not applicable.

Y Y Y

iv If multiple imputation was used, the number of 
imputations is reported 
When under 9i explicit mentioning of no missing data, 
complete case analysis or no imputation applied, score 
Not applicable.

Y Y Y

10a Describe how predictors were handled in the 
analyses. 

    1

i For continuous predictors it is described whether 
they were modelled as linear, nonlinear (type of 
transformation specified) or categorized 
A general statement is sufficient, no need to describe this 
for each predictor separately.  
If no continuous predictors were reported, score Not 
applicable.

NA
Not 

applicable
NA

ii For categorical or categorized predictors, the cut-
points were reported 
If no categorical or categorized predictors were reported, 
score Not applicable.

NA
Not 

applicable
NA

iii For categorized predictors the method to choose the 
cut-points was clearly described 
If no categorized predictors, score Not applicable.

NA
Not 

applicable
NA

10b Specify type of model, all model-building 
procedures (including any predictor selection), and 
method for internal validation. 

    0

i The type of statistical model is reported 
E.g. Logistic, Cox, other regression model (e.g. Weibull, 
ordinal), other statistical modelling (e.g. neural network)

Y
Not 

applicable
Y

ii The approach used for predictor selection before 
modelling is described 
‘Before modelling’ means before any univariable or 
multivariable analysis of predictor-outcome associations. 
If no predictor selection before modelling is done, score 
Not applicable. 
If it is unclear whether predictor selection before 
modelling is done, score No. 
If it is clear there was predictor selection before modelling 
but the method was not described, score No.

Y
Not 

applicable
Y

Table 5: Continued
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iii The approach used for predictor selection during 
modelling is described 
E.g. Univariable analysis, stepwise selection, bootstrap, 
Lasso. 
‘During modelling’ includes both univariable or 
multivariable analysis of predictor-outcome associations.  
If no predictor selection during modelling is done (so-
called full model approach), score Not applicable. 
If it is unclear whether predictor selection during 
modelling is done, score No.  
If it is clear there was predictor selection during modelling 
but the method was not described, score No.

Y
Not 

applicable
Y

iv Testing of interaction terms is described 
If it is explicitly mentioned that interaction terms were 
not addressed in the prediction model, score Yes.  
If interaction terms were included in the prediction 
model, but the testing is not described, score No.

N
Not 

applicable
N

v Testing of the proportionality of hazards in survival 
models is described 
If no proportional hazard model is used, score Not 
applicable.

Y
Not 

applicable
Y

vi Internal validation is reported  
E.g. Bootstrapping, cross validation, split sample. 
If the use of internal validation is clearly a non-issue (e.g. 
in case of very large data sets), score Yes. For all other 
situations an explicit mention is expected.

Y
Not 

applicable
Y

10c For validation, describe how the predictions were 
calculated. 

    1

i. It is described how predictions for individuals (in the 
validation set) were obtained from the model being 
validated  
E.g. Using the original reported model coefficients with 
or without the intercept, and/or using updated or refitted 
model coefficients, or using a nomogram, spreadsheet or 
web calculator. 

Not applicable Y Y

10d Specify all measures used to assess model 
performance and, if relevant, to compare multiple 
models.  
These should be described in methods section of the 
paper (item 16 addresses the reporting of the results for 
model performance). 

    1

i Measures for model discrimination are described 
E.g. C-index / area under the ROC curve.

Y Y Y

ii Measures for model calibration are described 
E.g. calibration plot, calibration slope or intercept, 
calibration table, Hosmer Lemeshow test, O/E ratio.

Y Y Y

iii Other performance measures are described  
E.g. R2, Brier score, predictive values, sensitivity, 
specificity, AUC difference, decision curve analysis, net 
reclassification improvement, integrated discrimination 
improvement, AIC.

Y Y Y

10e Describe any model updating (e.g., recalibration) 
arising from the validation, if done.

   
Not 

applicable



110   |   Chapter 3

i A description of model-updating is given 
E.g. Intercept recalibration, regression coefficient 
recalibration, refitting the whole model, adding a new 
predictor  
If updating was done, it should be clear which updating 
method was applied to score Yes.  
If it is not explicitly mentioned that updating was applied 
in the study, score this item as ‘Not applicable’.

Not applicable NA NA

11 Provide details on how risk groups were created, 
if done.  
If risk groups were not created, score this item as Yes.

    1

i If risk groups were created, risk group boundaries (risk 
thresholds) are specified  
Score this item separately for development and 
validation if a study includes both development and 
validation. 
If risk groups were not created, score this item as not 
applicable.

Y Y Y

12 For validation, identify any differences from the 
development data in setting, eligibility criteria, 
outcome and predictors. 

    0

i Differences or similarities in definitions with the 
development study are described 
Mentioning of any differences in all four (setting, 
eligibility criteria, predictors and outcome) is required to 
score Yes.  
If it is explicitly mentioned that there were no differences 
in setting, eligibility criteria, predictors and outcomes, 
score Yes.

Not applicable N N

Results      

13a Describe the flow of participants through the 
study, including the number of participants with 
and without the outcome and, if applicable, a 
summary of the follow-up time. A diagram may be 
helpful.

    1

i The flow of participants is reported Y Y Y

ii The number of participants with and without the 
outcome are reported 
If outcomes are continuous, score Not applicable.

Y Y Y

iii A summary of follow-up time is presented 
This notably applies to prognosis studies and diagnostic 
studies with follow-up as diagnostic outcome. 
If this is not applicable for an article (i.e. diagnostic study 
or no follow-up), then score Not applicable.

Y Y Y

13b Describe the characteristics of the participants 
(basic demographics, clinical features, available 
predictors), including the number of participants 
with missing data for predictors and outcome. 

    1

i Basic demographics are reported Y Y Y

ii Summary information is provided for all predictors 
included in the final developed/validated model

Y Y Y

iii The number of participants with missing data for 
predictors is reported

Y Y Y

Table 5. Continued
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iv The number of participants with missing data for the 
outcome is reported

Y Y Y

13c For validation, show a comparison with the 
development data of the distribution of important 
variables (demographics, predictors and outcome).

    1

i Demographic characteristics (at least age and gender) 
of the validation study participants are reported along 
with those of the original development study

Not applicable Y Y

ii Distributions of predictors in the model of the 
validation study participants are reported along with 
those of the original development study

Not applicable Y Y

iii Outcomes of the validation study participants are 
reported along with those of the original development 
study

Not applicable Y Y

14a Specify the number of participants and outcome 
events in each analysis. 

    1

i The number of participants in each analysis (e.g. in 
the analysis of each model if more than one model is 
developed) is specified

Y
Not 

applicable
Y

ii The number of outcome events in each analysis is 
specified (e.g. in the analysis of each model if more 
than one model is developed) 
If outcomes are continuous, score Not applicable.

Y
Not 

applicable
Y

14b If done, report the unadjusted association between 
each candidate  predictor and outcome.

    0

i The unadjusted associations between each predictor 
and outcome are reported 
If any univariable analysis is mentioned in the methods 
but not in the results, score No.  
If nothing on univariable analysis (in methods or results) 
is reported, score this item as Not applicable.

N
Not 

applicable
N

15a Present the full prediction model to allow 
predictions for individuals (i.e., all regression 
coefficients, and model intercept or baseline 
survival at a given time point).

    1

i The regression coefficient (or a derivative such as 
hazard ratio, odds ratio, risk ratio) for each predictor in 
the model is reported 

Y
Not 

applicable
Y

ii The intercept or the cumulative baseline hazard 
(or baseline survival) for at least one time point is 
reported

Y
Not 

applicable
Y

15b Explain how to use the prediction model.     0

i An explanation (e.g. a simplified scoring rule, 
chart, nomogram of the model, reference to online 
calculator, or worked example) is provided to explain 
how to use the model for individualised predictions.

N
Not 

applicable
N

16 Report performance measures (with confidence 
intervals) for the prediction model.  
These should be described in results section of the paper 
(item 10 addresses the reporting of the methods for 
model performance).

    1

i A discrimination measure is presented 
E.g. C-index / area under the ROC curve.

Y Y Y
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ii The confidence interval (or standard error) of the 
discrimination measure  is presented

Y Y Y

iii Measures for model calibration are described 
E.g. calibration plot, calibration slope or intercept, 
calibration table, Hosmer Lemeshow test, O/E ratio.

Y Y Y

iv Other model performance measures are presented 
E.g. R2, Brier score, predictive values, sensitivity, 
specificity, AUC difference, decision curve analysis, net 
reclassification improvement, integrated discrimination 
improvement, AIC.

Y Y Y

17 If done, report the results from any model 
updating (i.e., model specification, model 
performance, recalibration). 
If updating was not done, score this TRIPOD item as ‘Not 
applicable’. 

   
Not 

applicable

0 Model updating was done 
If “No”, then answer 17i-17v with “Not applicable”

Not applicable N N

i The updated regression coefficients for each predictor 
in the model are reported  
If model updating was described as ‘not needed’, score 
Yes.

Not applicable NA NA

ii The updated intercept or cumulative baseline hazard 
or baseline survival (for at least one time point) is 
reported  
If model updating was described as ‘not needed’, score 
Yes. 

Not applicable NA NA

iii The discrimination of the updated model is reported Not applicable NA NA

iv The confidence interval (or standard error) of the 
discrimination measure of the updated model is 
reported

Not applicable NA NA

v The calibration of the updated model is reported Not applicable NA NA

Discussion      

18 Discuss any limitations of the study (such as 
nonrepresentative sample, few events per 
predictor, missing data). 

    1

i Limitations of the study are discussed 
Stating any limitation is sufficient.

Y Y Y

19a For validation, discuss the results with reference 
to performance in the development data, and any 
other validation data. 

    1

i Comparison of results to reported performance in 
development studies and/or other validation studies 
is given

Not applicable Y Y

19b Give an overall interpretation of the results 
considering objectives, limitations, results from 
similar studies and other relevant evidence.  

    1

i An overall interpretation of the results is given Y Y Y

20 Discuss the potential clinical use of the model and 
implications for future research. 

    1

Table 5. Continued
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i The potential clinical use is discussed  
E.g. an explicit description of the context in which the 
prediction model is to be used (e.g. to identify high risk 
groups to help direct treatment, or to triage patients for 
referral to subsequent care).

Y Y Y

ii Implications for future research are discussed 
E.g. a description of what the next stage of investigation 
of the prediction model should be, such as ”We suggest 
further external validation”.

Y Y Y

Other information      

21 Provide information about the availability of 
supplementary resources, such as study protocol, 
web calculator, and data sets. 

     

i Information about supplementary resources is 
provided

Y Y Y

22 Give the source of funding and the role of the 
funders for the present study. 

    1

i The source of funding is reported or there is explicit 
mention that there was no external funding involved

Y Y Y

ii The role of funders is reported or there is explicit 
mention that there was no external funding 

Y Y Y

Number of applicable TRIPOD items     34

Number of TRIPOD items adhered     26

OVERALL adherence to TRIPOD     76%
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4.1 Abstract

4.1.1 Introduction
In this study, we investigate the role of radiomics for prediction of overall survival (OS), 
locoregional recurrence (LRR) and distant metastases (DM) in stage III and IV HNSCC 
patients treated by chemoradiotherapy. We hypothesize that radiomic analysis of (peri-)
tumoral tissue may detect invasion of surrounding tissues indicating a higher chance of 
locoregional recurrence and distant metastasis.

4.1.2 Methods
Two comprehensive data sources were used: the Dutch Cancer Society Database (Alp 
7072, DESIGN) and “Big Data To Decide” (BD2Decide). The gross tumor volumes (GTV) 
were delineated on contrast-enhanced CT. Radiomic features were extracted using the 
RadiomiX Discovery Toolbox (OncoRadiomics, Liege, Belgium). Clinical patient features 
such as age, gender, performance status etc. were collected. Two machine learning 
methods were chosen for their ability to handle censored data: Cox proportional hazards 
regression and random survival forest (RSF). Multivariable clinical and radiomic Cox/ 
RSF models were generated based on significance in univariable cox regression/ RSF 
analyses on the held out data in the training dataset. Features were selected according to 
a decreasing hazard ratio for Cox and relative importance for RSF.

4.1.3 Results
A total of 444 patients with radiotherapy planning CT-scans were included in this study: 
301 head and neck squamous cell carcinoma (HNSCC) patients in the training cohort 
(DESIGN) and 143 patients in the validation cohort (BD2DECIDE). We found that the 
highest performing model was a clinical model that was able to predict distant metastasis 
in oropharyngeal cancer cases with an external validation C-index of 0.74 and 0.65 with 
the RSF and Cox models respectively. Peritumoral radiomics based prediction models 
performed poorly in the external validation, with C-index values ranging from 0.32 to 0.61 
utilizing both feature selection and model generation methods.

4.1.4 Conclusion
Our results suggest that radiomic features from the peritumoral regions are not useful for 
the prediction of time to OS, LR and DM.
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4.2 Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant 
dis-ease worldwide [1]. In the Netherlands, approximately 39,000 men and women were 
diagnosed with HNSCC between 2000 and 2015 [2]. Roughly two thirds of patients have 
advanced stage of disease at diagnosis with debilitating symptoms.

Major progress has been made in the treatment of advanced HNSCC throughout the 
last decade [6]. The “traditional” treatment of these advanced tumors consists of surgical 
excision followed by complementary (adjuvant) radiotherapy or chemoradiotherapy (CRT). 
CRT either applied upfront or postoperatively significantly improves survival in HNSCC 
patients with overall 5-year survival rates up to 61%, 41%, and 69% for oral, pharyngeal 
and laryngeal cancers, respectively [3–6]. The introduction of organ-preserving therapies 
(induction chemotherapy, upfront concomitant CRT, or molecular targeted drugs such as 
cetuximab) has notably changed treatment protocols of advanced stage HNSCC patients, 
especially in patients where surgical resection is considered too invasive and where 
severe problems with speech and swallowing are expected after surgery. Concomitant 
CRT consists of systemic administration of cisplatin in combination with locoregional 
radiotherapy and is the mainstay of organ-preserving treatment for advanced HNSCC.

It has been shown that 40% of patients treated upfront with CRT develop a locoregional 
recurrence or distant metastasis within 2 years after treatment and consequently have 
an unfavourable prognosis [7]. Several studies have found that advanced and human 
papillomavirus (HPV)-16-negative tumors respond poorly to CRT in contrast to HPV 
positive tumors, in particular in oropharyngeal HNSCC [4, 8]. TNM classifications are 
expected to support patient prognosis by clinicians but unfortunately, they are not helpful 
to accurately predict which HNSCC patients treated with CRT will develop locoregional 
recurrences and hence might have benefited from alternative treatment options. Several 
other potentially prognostic factors have been proposed, such as chemotherapy dose, 
radiotherapy dose, co-morbidity, World Health Organization (WHO) Performance Status 
(PS), and HPV-status. Through the use of machine learning algorithms, complex survival 
models can be created that take these clinical factors into account, while accounting for 
e.g. interaction between the predictors and right censored data [9].

Currently used biomarkers comprise tumor size, local tumor extent and a few molecular 
markers (e.g. p16 staining or HPV-PCR). Radiologic imaging, which is routinely performed 
prior to initiation of CRT, provides an additional source of information that can be exploited 
through the use of advanced image analysis methods such as radiomics. Radiomics 
turns radiographic images into a high-throughput data-mining format. The format of 
the extracted data is a set of features, including first-order intensity histogram statistics, 
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shape- and size statistics, and (filtered) texture features. Complex models that combine 
radiomics with clinical parameters may be better in detecting HNSCC patients that have a 
higher likelihood to relapse early after CRT [10].

A growing body of research shows that the tumor microenvironment is a key player in 
head and neck cancer development and progression [11,12] and hence the immediate 
surroundings of the tumor may be a source for the extraction of imaging biomarkers. One 
of the hypotheses is that information about underlying malignancy-associated changes 
(MAC’s) in the tumor microenvironment can be detected by these imaging biomarkers. 
These MAC changes are subtle changes in the nuclear morphology and chromatin 
structure of seemingly normal cells located within the stroma distally to neoplastic lesions 
that have been shown to dictate its ability to grow and spread, evade the body’s immune 
defenses, and resist therapeutic intervention [13].

In this study, we aim to investigate the role of radiomics for prediction of overall survival 
(OS), locoregional recurrence (LRR) and distant metastasis (DM) in stage III and IV HNSCC 
patients, both in a HPV-negative oropharyngeal cohort (high risk) as well as in the 
general HNSCC population. We hypothesize that radiomic analysis of peritumoral tissue 
detects changes associated with malignancy and therefore the likelihood of locoregional 
recurrence and distant metastasis following CRT.

4.3 Methods

4.3.1 Patient characteristics
Two sources of clinical and imaging data were available to us for this study: the Dutch 
Cancer Society Database (Alp 7072, acronym DESIGN) and “Big Data To Decide” (BD2Decide, 
NCT02832102). DESIGN is a Dutch multicenter clinical study to create predictive models 
for stage III and IV HPV-negative HNSCC patients treated by CRT. BD2Decide is a European 
multicenter clinical study to improve clinical decision making in stage III and IV HNSCC 
patients irrespective of treatment. In the present study, we included patients from both 
consortiums with pathologically-confirmed HNSCC, who received contrast-enhanced 
pre-treatment CT and have been treated upfront with CRT.

The DESIGN data consists of contrast enhanced CT images (and associated clinical data) 
acquired from 4 different centers: Amsterdam UMC location VUmc, Netherlands Cancer 
Institute (NKI), Maastricht Radiation Oncology Clinic (MAASTRO), and the University 
Medical Center Utrecht (UMCU). The BD2Decide data consists of contrast-enhanced CT 
images retrospectively acquired from 4 different centers: Fondazione IRCCS Istituto dei 
Tumori Milano (INT), Maastricht Radiation Oncology Clinic (MAASTRO), Amsterdam UMC, 
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location VUmc (VUMC), and the Heinrich-Heine-university in Dusseldorf. There were no 
over-lapping patients between DESIGN and BD2DECIDE.

Both DESIGN and BD2Decide data included clinical, pathological, radiologic imaging, 
and molecular markers for each case. After comparing datasets, a selection was made to 
include patients based on the overlap of available clinical data between the two cohorts. 
These consist of age, sex, performance status, ACE-27 baseline comorbidity, number of 
pack years, alcohol consumption, hemoglobin at baseline, chemotherapy regimen, HPV 
status (defined as p16-status) for oropharyngeal cancer, induction chemotherapy (yes/ 
no), chemotherapy completion (yes/no), and RT dose to the high-risk clinical target 
volume (HR-CTV).

4.3.2 CT acquisition parameters and segmentation
Patients were selected according to the following inclusion criteria: (i) concomitant CRT 
of unresected HNSCC, (ii) hypopharyngeal, laryngeal or (HPV-negative on p16 staining) 
oropharyngeal, (iii) no prior treatment with chemotherapy or with radiotherapy in the 
head and neck area, (iv) availability of contrast-enhanced baseline planning CT imaging 
with a slice thickness ≤ 5mm and artifacts in less than 50% of the GTV slices, and (v) 
availability of patient outcome data for OS, LRR, and DM. A large selection of different 
scanners were used to acquire the images (S1 Appendix).
GTVs were delineated in each center by an assigned radiation oncologist or radiologist. All 
contours were revised by a radiation oncologist with over 18 years experience, using MIM 
soft-ware version 6.9.0 (MIM, Cleveland, United States).

Tumor border regions of interest (ROI) extending 3mm and 5mm from the 3D GTV border 
were generated in MIM (outer ring expansion, see Fig 1). Afterwards, air and bone were 
filtered from the delineation by setting minimum and maximum thresholds, and manually 
adjusting the final ROI’s border (peritumoral) regions.

4.3.3 Ethical approval
This study was performed following the guidelines of the Code of Conduct for Human 
Tissue and Medical Research (https://www.federa.org/codes-conduct) and the EU General 
Data Pro-tection Regulation. Medical Ethics Committee approval was provided by the 
individual centers (full list pro-vided in S2 Appendix). Written informed consent was given 
and was placed under the responsibility of the Princi-pal Investigators of the relevant 
Clinical Participating Centers mentioned above and remain under the custodianship of 
the specific Participating Centers. For reproducibility purposes, our code can be found on: 
https://github.com/PeritumoralRadiomics/Peritumoral-radiomics-HN.git
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4.3.4 Clinical outcome
The clinical endpoints evaluated in this study were overall survival (OS), locoregional 
recur-rence (LRR) and distant metastasis (DM). The missForest (non-parametric missing 
value imputation using Random Forest) function within the R environment (https://
www.R-project. org/) was used to impute missing data. Time to OS was defined as the 
time between CRT start date and date of death, or censored at the last follow-up date

Time to LRR was defined as the time between CRT start date and the first scan date of 
radiologically evident local or regional recurrence (event), or censored at the last follow-
up date or date of death.

Time to DM was defined as the time between CRT start date and the first scan date of radio-
logically evident distant metastasis, or censored at the last follow-up date or date of death.

4.3.5  Image pre-processing, radiomic feature extraction and feature  
harmonization

International Biomarker Standardization Initiative (IBSI)-compliant radiomic features 
as well as other non-IBSI covered features were extracted with our in-house RadiomiX 
research soft-ware (supported by Oncoradiomics, Liège, Belgium) implemented in Matlab 
2017a (Math-works, Natick, Mass). Hounsfield Unit (HU) intensities beyond -1024 and +3071 
HU were clipped (assigned the value -1024 and +3071 respectively). An image intensity 
discretization applying a fixed bin width of 25HU was used for feature extraction in CT. 
Voxel size resampling was performed before feature extraction using cubic interpolation. 
Images were resampled to isotropic voxels of size 3 x 3 x 3 mm3 using cubic interpolation 
(upsampling to highest slice thickness).

Radiomic features were extracted consisting of five main groups: 1) fractal features 2) first 
order statistics, 3) shape and size, 4) texture descriptors including gray level co-occurrence 
(GLCM), gray level run-length (GLRLM) and gray level size-zone texture matrices (GLSZM), 
5) features from groups 1, 3 and 4 after wavelet decomposition of the original image. 
There were no missing feature values. Definitions and detailed feature descriptions are 
described elsewhere [14].

Radiomic feature values are potentially sensitive to inter-scanner model, acquisition proto-
col and reconstruction settings variations. The ComBat statistical feature harmonization 
technique was employed in our analysis. This technique was initially developed by Johnson 
et al. [15] for gene expression microarray data (even for small sample sizes) and was 
recently applied in multicenter PET, MRI and CT radiomic studies [16,17]. Feature values 
were adjusted for the batch effect according to treatment center, without adjustment for 
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other covariates. Finally, features were normalized in the training dataset by the mean and 
standard deviation, which were subsequently used to normalize the validation dataset.

 
Figure 1. Contrast-enhanced CT image from an oropharyngeal cancer patient. Primary gross tumor volume (GTV1) border in 
green, blue: 3mm peritumoral border, yellow: 5mm peritumoral border. 

Figure 1. Contrast-enhanced CT image from an oropharyngeal cancer patient. Primary gross tumor 
volume (GTV1) border in green, blue: 3mm peritumoral border, yellow: 5mm peritumoral border.

4.3.6 Univariable analysis and generation of multivariable models
The prognostic value of the individual radiomic and clinical features was evaluated using 
con-cordance index (CI) with the survival package (Therneau T (2015). A Package for 
Survival Analysis in R. version 2.38, URL: https://CRAN.R-project.org/package=survival) 
and random-ForestSRC package (Ishwaran H (2017) Fast Unified Random Forests for 
Survival, Regression and Classification (RF-SRC) version 2.9.1, URL: https://cran.r-project.
org/web/packages/ randomForestSR).

Noether’s method was applied to assess the statistical significance of the computed CI 
from random chance (CI = 0.5) with the survcomp package (Benjamin Haibe-Kains (2017). 
Performance Assessment and Comparison for Survival Analysis in R. version 1.36.0, URL: 
https:// www.pmgenomics.ca/bhklab/). To account for multiple testing, a false-discovery-
rate (FDR) procedure by Benjamin and Hochberg was applied to adjust the p-values in 
univariate Cox-regression. Two machine learning methods were employed that are able 
to use censored survival data as inputs: Cox proportional hazards based and random 
survival forrest (RSF). Multivariable radiomic Cox models were generated using the 
significant features selected through univariate cox modelling on the training dataset. In a 
100-repeat 2-fold cross-validation on the training data, significant features were selected 
based on univariate significance (p<0.05) adjusted for multiple testing. “These features 
were then ranked according to adjusted hazard ratios, where hazard ratios lower than 1 
were inversed, and were gradually added to a multivariate cox model until the first peak 
in the cross-validation testing C-index or after the first peak until the C-index drops by 
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more than 0.02, depending if there is an oscillation or noise pattern leading to multiple 
peaks. The number of occurrences of each feature in all repetitions was determined, and 
a selection rate > 50% was used as threshold for the final set of features, ensuring that the 
selected features were chosen in the majority of the models.” Multivariable clinical models 
included features selected through Cox-regression based on univariate significance 
(p<0.05) adjusted for multiple testing. The selected clinical features were then used to 
train multivariable Cox or RSF models. Multivariable clinical RSF models were generated 
based on selecting all features with a relative feature importance >0 in the Random 
Survival Forest. RSF strictly adheres to the prescription laid out by Breiman (2003) and 
requires taking into account the outcome (splitting criterion used in growing a tree must 
explicitly involve survival time and censoring information) in growing a random forest 
model. Further, the predicted value for a terminal node in a tree, the resulting ensemble 
predicted value from the forest, and the measure of prediction accuracy must all properly 
incorporate survival information. Multivariable radiomic RSF models were generated 
based on the optimal number of features corresponding to the first peak in C-index 
value in the out-of-bag cases OR after the first peak until the C-index drops by more 
than 0.02, depending if there is an oscillation or noise pattern leading to multiple peaks. 
Hereby features with decreasing relative importance in the Random Survival Forest were 
consecutively added.

4.4 Results

4.4.1 Clinical characteristics
Contrast enhanced CT images from a total of 444 patients were included in this study: 
The training cohort (DESIGN) consisted of 301 head and neck squamous cell carcinoma 
(HNSCC) patients and the validation cohort (BD2DECIDE) of 143 patients. At time of 
diagnosis, the median age in the training cohort (DESIGN) was 61 years (range: 36 to 80 
years), while the median age in the external validation cohort (BD2DECIDE) was 60.5 years 
(range: 41 to 78 years).
In the training dataset the median OS time was 1118 days, the median time to LRR or last 
follow-up was 1042 days and the median time to DM or last follow-up was 1060 days. In 
the external validation dataset the median time to death or last follow-up was 1268 days, 
the median time to LRR or last follow-up was 1217 days and the median time to DM or last 
follow-up was 1189 days.
The full list of patient characteristics and time to progression is presented in Table 1.
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Table 1. DESIGN/ BD2DECIDE patient characteristics.
DESIGN training 
cohort (n = 301)

BD2DECIDE validation 
cohort (n = 143)

P-value

Median (range) Median (range)

GTVprim Volume (cm³) 21.28 (0.65-176.10) 19.82 (0.54-157.28) 0.82

Age (years) 61 (36-80) 60 (41-78) 0.52

Number of pts (%) Number of pts (%)

WHO PS <0.001

0 0 (0) 120 (83.9)

1 79 (26.2) 20 (14.0)

2 139 (46.2) 3 (2.1)

3 10 (3.3) 0 (0)

Missing 73 (24.3) 0 (0)

Clinical TNM (T), 7th Edition 0.08

cTX 0 (0) 0 (0)

cT1 14 (4.7) 3 (2.1)

cT2 63 (20.9) 25 (17.5)

cT3 106 (35.2) 68 (47.6)

cT4 118 (39.2) 47 (32.9)

Clinical Nodal stage (N), 7th Edition 0.01

cNX 1 (0.3) 0 (0)

cN0 41 (13.6) 37 (25.9)

cN1 41 (13.6) 19 (13.3)

cN2 a-b-c 209 (69.5) 79 (55.2)

cN3 9 (3.0) 8 (5.6)

HPV status (P16 stain) <0.001

Negative 207 (68.8) 64 (44.8)

Positive/ Unknown 94 (31.2) 79 (55.2)

Treatment

Chemotherapy regimen <0.001

Platin 292 (97.0) 81 (56.6)

Platin + others 9 (3.0) 23 (16.1)

Cetuximab 0 (0) 39 (27.3)

Cumulative radiotherapy dose high-risk CTV 70 (60-84) Gy 70 (20-76) Gy

Tumor site

Oropharynx 145 (48.2) 49 (34.3) 0.02

Larynx 57 (18.9) 39 (27.3)

Hypopharynx 99 (32.9) 55 (38.5)
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Clinical models (Tables 2 and 3) to predict OS, LR and DM ranged from a C-index of 0.61– 
0.85 in training with both methods and a C-index of 0.49–0.75 in external validation. 

Table 2. Multivariable Cox Regression method, C-index and number of radiomic and (non)-
treatment related prognostic clinical factors in validation dataset (BD2DECIDE). 

C-index  
Prognostic  
(No. feat)

C-index GTVprim 
(No. feat)

C-index TB 
3mm  

(No.feat)

C-index TB 
5mm  

(No. feat)

C-index GTVprim 
+ TB 3mm + TB 

5mm  
(No. feat)

Train Val Train Val Train Val Train Val Train Val

Oropharynx

Clinical-OS 0.61 (1) 0.49 (1)

Clinical-LR 0.61 (1) 0.55 (1)

Clinical-DM 0,67 (1) 0.65 (1)

Radiomics-OS 0.65 (3) 0.57 (3) 0.69 (3) 0.52 (3) 0.79 (1) 0.60 (1) 0.70 (2) 0.56 (2)

Radiomics-LR 0.57 (1) 0.52 (1) 0.70 (2) 0.56 (2) 0.76 (6) 0.51(6) 0.72 (4) 0.48 (4)

Radiomics-DM - - 0.69 (2) 0.61 (2) 0.73 (3) 0.44 (3) 0.72 (2) 0.60 (2)

All subsites

Clinical-OS 0.64 (4) 0.56 (4)

Clinical-LR - -

Clinical-DM 0.67 (1) 0.49 (1)

Radiomics-OS 0.61 (1) 0.60 (1) 0.63 (4) 0.61 (4) 0,61 (2) 0.62 (2) 0.61 (3) 0.59 (3)

Radiomics-LR 0.66 (3) 0.51 (3) 0.67 (3) 0.51 (3) 0,58 (1) 0.47 (1) 0.61 (1) 0.47 (1)

Radiomics-DM 0.63 (2) 0.54 (2) 0.54 (2) 0,47 (4) 0.61 (2) 0.56 (2) 0.64 (3) 0.55(2)
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Details on the clinical variable selected in the final Cox/ RSF models are presented in Table 4.

Table 4. Multivariable clinical Cox/ RSF models.
Outcome Clinical Cox, 

all subsites  
Prognostic

Clinical Cox, 
Oropharynx 
Prognostic

Clinical RSF, 
all subsites  
Prognostic

Clinical RSF, 
Oropharynx  
Prognostic

Clinical RSF,  
all subsites  
Treatment

Clinical RSF,  
Oropharynx  
Treatment

OS N-stage N-stage N-stage N-stage Chemotherapy 
regimen

Chemotherapy 
regimen

Tumor site Tumor site Age Chemotherapy 
completion

Gender Hb baseline Pack Years

Alcohol con-
sumption

Age Alcohol  
consumption

Pack-years Gender

LR N-stage Gender Hb baseline Gender Chemotherapy 
regimen

Chemotherapy 
regimen

Tumor site Alcohol con-
sumption

Chemotherapy  
completion

Gender Age

Pack years

N-stage

DM N-stage N-stage N-stage N-stage Chemotherapy 
regimen

T-stage T-stage

Hb baseline Age

Pack-years Pack years

The highest performing model in external validation was a clinical model (Oropharynx-
DM). With this clinical model a significant survival split was found both in training (Fig 
2a) but not in validation (Fig 2b) based on the median prediction probabilities in training 
accord-ing to the Cox model.
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Figure 2. a. Training Kaplan-Meier (distant metastasis free) survival split for oropharyngeal patients (best performing clinical 
model in validation with Cox regression, oropharynx-DM) based on above (blue line) and below (yellow) median prediction 
probabilities. b. Validation Kaplan-Meier (distant metastasis free) survival split for oropharyngeal patients (best performing 
clinical model in validation with Cox regression, oropharynx-DM) based on above (blue line) and below (yellow) median 
prediction probabilities. Non-significant split in survival according to median in training, though in all of the above median 
cases the time to event is not observed (censoring). 

  

Figure 2. a. Training Kaplan-Meier (distant metastasis free) survival split for oropharyngeal patients 
(best performing clinical model in validation with Cox regression, oropharynx-DM) based on 
above (blue line) and below (yellow) median prediction probabilities. b. Validation Kaplan-Meier 
(distant metastasis free) survival split for oropharyngeal patients (best performing clinical model 
in validation with Cox regression, oropharynx-DM) based on above (blue line) and below (yellow) 
median prediction probabilities. Non-significant split in survival according to median in training, 
though in all of the above median cases the time to event is not observed (censoring).
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4.4.2 Radiomics characteristics
A total of 1298 radiomic features were extracted from all contrast-enhanced CT-images. 
Results of training (DESIGN) and validation (BD2DECIDE) c-index metrics are provided in 
Tables 2 and 3. Both in oropharyngeal cases alone as well as in all tumor subsites combined 
peritumoral radiomics performed poorly in external validation, with C-index ranging from 
0.32 to 0.61 with both feature selection and model generation methods. (Figs 3 and 4). 

 

Figure 3. Error rate stabilizes with increasing number of trees. Features with an importance > 0 on an RFSRC model trained 
with all clinical variables in were eventually combined in the multivariable clinical (prognostic/ treatment-related) RFSRC 
model and externally validated on the BD2DECIDE dataset. 

Figure 3. Error rate stabilizes with increasing number of trees. Features with an importance > 0 on 
an RFSRC model trained with all clinical variables in were eventually combined in the multivariable 
clinical (prognostic/ treatment-related) RFSRC model and externally validated on the BD2DECIDE 
dataset.
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Figure 4. Variable dependence of predicted distant metastasis at 1, 2 and 5 years on the 4 clinical variables of interest (highest 
performing clinical model in validation, oropharyngeal-DM) according to Random Survival Forest. Individual cases are marked 
with blue triangles for censored cases and red circles for distant metastasis events. Loess smooth curve indicates the distant 
metastasis trend with increasing values of the individual clinical feature. 

  

Figure 4. Variable dependence of predicted distant metastasis at 1, 2 and 5 years on the 4 clinical 
variables of interest (highest performing clinical model in validation, oropharyngeal-DM) according 
to Random Survival Forest. Individual cases are marked with blue triangles for censored cases and 
red circles for distant metastasis events. Loess smooth curve indicates the distant metastasis trend 
with increasing values of the individual clinical feature.

Volumetric information was calculated for GTVprim and Spearman correlation coefficients 
between individual selected features and volume were calculated. With the Cox method 
these C-indexes were all <0.60 (all P>0.05 correlation with model features). With the RSF 
method these varied between 0.28–0.45 (all P>0.05 correlation with model features).

4.4.3 Radiomics quality assurance and TRIPOD statement
For quality assurance a radiomics quality score (RQS) was calculated [14] for this study. 
The RQS score for this specific study was 44% (most points allocated for external 
validation and use of feature reduction analysis). Scores were likewise calculated for the 
22-item adherence data extraction checklist of the TRIPOD (Transparent reporting of a 
multivariable prediction model for individual prognosis or diagnosis), which was in the 
range of 0.75–0.86 (See S3 Appendix).
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4.5 Discussion

In this first peritumoral H&N radiomics study we found that the highest performing model 
in external validation was a clinical model which was able to predict distant metastasis in 
oropharyngeal cancer cases with an external validation c-index of 0.65 and 0.75 with the 
RSF and Cox models respectively. Both in oropharyngeal cases alone as well as in all tumor 
subsites peritumoral radiomics performed poorly in external validation, with C-index 
ranging from 0.32 to 0.61 with both feature selection and model generation methods.

The reasoning for choosing a 5mm tumor border is based on radiotherapy margins which 
are defined outside the visible/palpable or imaging-detectable (macroscopic) tumor GTV, 
the clinical target volume (CTV), whereby potential microscopic tumor spread is taken 
into account. Based on experience from pathological examination of surgical resections, 
the Danish Head and Neck Cancer (DAHANCA) group concluded that for primary tumors 
(GTV-T), the risk of subclinical microscopic spread was around 50% of which more than 
99% was within 5 mm and 95% within 4 mm of the rim of GTV-T [18].

Previous studies on peritumoral radiomics in other tumor models have not been able 
to produce promising results in internal cross-validation either. We have not yet seen 
a peritumoral H&N radiomics study with an external validation dataset. Dou et al. [19] 
for instance found a testing C-index of 0.55 with a lung radiomic tumor border model in 
the prediction of distant metastasis, while Shan et al. [20] found that in predicting early 
recurrence in hepatocellular carcinoma (HCC), by comparing AUC values between training 
and validation cohorts, the prediction accuracy in the validation cohort was good for the 
peritumoral radiomics model (0.80 vs. 0.79, P = 0.47) but poor for the tumoral radiomics 
model (0.82 vs. 0.62, P < 0.01).

Despite the poor performance in external validation with both GTVprim, 3mm, and 5 
mm tumor border radiomics, we have found a clinical model for the prediction of distant 
metastasis in oropharyngeal cancer patients performed the best in external validation.

We find an overlapping clinical parameter, namely node-stage, between these two clinical 
models. Indeed high node stage is hypothesized to be one of the major risk factors for 
the development of distant metastasis [21,22]. We also see some discrepancies between 
the two clinical models. For instance, T-stage, age, and packyears (the number of packs of 
cigarettes per day multiplied by the years spent smoking) are also selected as one of the 
predictors of distant metastasis in the RSF model.
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Strengths of the current study include the use of an external validation dataset, the 
extensive clinical data and the rigorous feature selection methods that take into account 
time-to-event outcomes.

One of the limitations is the retrospective nature of the study, leading to several clinical 
variables (e.g. weight loss) to not be comparable between training and validation. 
Another limitation is the heterogeneity between the training and validation dataset, both 
in terms of WHO PS, N-stage, chemotherapy regimen (mostly platin alone regimens in 
DESIGN versus platin + other regimens in BD2DECIDE) as well as tumor site (DESIGN more 
oropharynx, less laryngeal cases compared to BD2DECIDE). We hypothesize that this has 
negatively impacted the model performance.

Another limitation is the omission of valuable semantic imaging features, qualitative 
imaging features that are defined by experienced radiologists (e.g. extracapsular growth, 
necrosis) as well as the omission of radiomics description of the GTV2 (positive lymph 
nodes).

Most radiomic features are designed to be extracted from a fully enclosed 3D volume, as is 
often the case with the primary tumor. In contrast, the peritumoral regions are rings with 
limited volume, especially the 3mm regions. Therefore, features such as those extracted 
from filtered images require a certain volume of the region of interest and therefore have 
limited application in small volumes or disjointed regions. These technical issues may 
have contributed to the relatively poor performance of peritumoral radiomics.

We believe that in the future, to improve clinical use of this kind of signatures, larger 
and more homogenous and prospectively collected data should be sought, taking into 
account imaging features derived from GTV2/ lymph node regions and gene expression 
profiles in order to construct more reliable prognostic biomarkers. An intrinsic problem 
might be that recurrences cannot be predicted well with bulk tumor characteristics. In 
a recent genetics study [23] it was shown that half of the local relapses of CRT treated 
HNSCCs, did not share genetic changes with the index tumors, suggesting that minor 
treatment resistant subclones determine outcome in many cases. Taking this into regard 
we believe that future radiomics studies should derive information not only from the 
planning CT’s, but also during the multi-ple follow-up moments after treatment.
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4.6 Conclusion

In this study, we have investigated whether clinical data as well as computer-extracted 
radio-mic features from peritumoral as well as inter-tumoral derived imaging features on 
CT can predict OS, LRR and DM. Our results show that radiomic features from the primary 
peritumoral regions, as well as from the primary inter-tumoral regions, do not predict OS, 
LRR and DM. More homogenous cohorts, both in patient and imaging characteristics, 
and the combination of clinical, radiomics, and genomics models may increase the 
generalizability and predictive power of prognostic models.
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4.9  Appendix A: Datasets, imaging parameters and missing 
data

Table 1. Datasets and imaging parameters in survival analysis
Dataset
(center)

Nr. patients Nr. With contrast 
enhanced CT  
(CECT)

Original slice thickness 
(mm, median)

Original pixel spacing 
(mm, median)

DESIGN 
(training)

VUMC 88 88 2.5 mm 0.96x0.96

UMCU 81 81 2.0 mm 0.98x0.98

NKI 102 102 3.0 mm 0.98x0.98

MAASTRO 30 30 3.0 mm 0.98x0.98

BD2DECIDE
(validation)

VUMC 55 55 2.5 mm 0.96x0.96

UDUS 10 10 3.0 mm 4.60x4.60

INT 11 11 2.5 mm 4.60x4.60

MAASTRO 40 40 3.0 mm 0.98x0.98

0

5

10

15

20

25

WHO PS Hb baseline Weight loss

Table 2. Top 3 missing variables in training (DESIGN) cohort.
Table 2. Top 3 missing variables in training (DESIGN) cohort.
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4.10  Appendix B: full names of ALL the ethics 
committees/institutional review boards that 
approved study

- Stichting VU-VUmc (VU/VUmc), NL6, 53815211 established in De Boelelaan 1105, 1081 
HV, Amsterdam (The Netherlands), represented by Prof. Johannes Brug, Director and 
Dean

- Heinrich-Heine Universitaetet Duesseldorf (UDUS), CF10657730442, established in 
Universitaetsstrasse 1, 40225 Duesseldorf (Germany), DE811222416), represented by Dr. 
Martin Goch, Chancellor

- Fondazione IRCCS Instituto Nazionale dei tumori (INT), VIII/002398, established in Via 
Venezian 1, Milan 20133, Italy, IT0437635055, represented by mr. Enzo Lucchini, President

- Stichting Maastro Radiation Oncology MAASTRO Clinic (MAASTRO) NL6, 41070330, 
established in Dr. Tanslaan 12, Maastricht 6229 ET, The Netherlands, represented by Mrs. 
Maria Jacobs, Administration Chief

- Stichting het Nederlands Kanker Instituut-Antoni van Leeuwenhoek ziekenhuis 
(Netherlands Cancer Institute/ Antoni van Leeuwenhoek Hospital), established at 
Plesmanlaan 121 1066 CX Amsterdam, in this matter duly represented by Prof. R Medema, 
P.h.d, in his capacity of Scientific Director and Chairman of the Board

- Universitair Medisch Centrum Utrect, established at Heidelberglaan 100, 3584 CX Utrecht, 
in this matter duly represented by Prof. dr. ir. M.A. Viergever, Manager Research, and Mr. 
drs. H.K. Bouwer, Financila Manager

- Maastricht University, more specific its Faculty of Health, Medicine and Life Sciences, 
School of Oncology and Developmental Biology (GROW), having its principle office at 
Minderbroedersberg 4-6, 6211 LK Maastricht, The Netherlands, on behalf of the Executive 
Board represented by Prof Dr. Frans Ramaekers, Scientific Director GROW (third party, 
analysis of data).
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4.11  Appendix C: TRIPOD adherence data extraction checklist 
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B. TRIPOD ITEMS         

 

 

  

[D] 
Develop

ment 
 

[V] 
External 
validatio

n 
 

[IV] 
Increme

ntal 
value 

 

[D+V] 
Developm

ent and 
external 

validation 
(of same 
model) 

Title and abstract 
 

It is suggested to score items 1 and 2 (Title and Abstract) after scoring items 3 to 22, as only after 
reading the whole publication it can be judged whether the reporting in the title and abstract is 
complete.  

Title 

1 

Identify the study as developing and/or 
validating a multivariable prediction 
model, the target population, and the 
outcome to be predicted. 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

i 
The words developing/development, 
validation/validating, incremental/added value 
(or synonyms) are reported in the title 

0 0 0 0 

ii 

The words prediction, risk prediction, prediction 
model, risk models, prognostic models, 
prognostic indices, risk scores (or synonyms) are 
reported in the title 

1 1 0 1 

iii The target population is reported in the title 1 1 0 0 

iv The outcome to be predicted is reported in the 
title 1 1 0 0 

Abstract 

2 

Provide a summary of objectives, study 
design, setting, participants, sample size, 
predictors, outcome, statistical analysis, 
results, and conclusions. 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “NA” 

i The objectives are reported in the abstract 1 1 0 0 
ii Sources of data are reported in the abstract 

E.g. Prospective cohort, registry data, RCT data. 1 1 0 0 

iii The setting is reported in the abstract 
E.g. Primary care, secondary care, general 
population, adult care, or paediatric care. The 
setting should be reported for both the 
development and validation datasets, if 
applicable. 

0 0 0 0 

iv A general definition of the study participants is 
reported in the abstract 
E.g. patients with suspicion of certain disease, 
patients with a specific disease, or general 
eligibility criteria.  

1 1 0 1 
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It is suggested to score items 1 and 2 (Title and Abstract) after scoring items 3 to 22, as only after 
reading the whole publication it can be judged whether the reporting in the title and abstract is 
complete.  

Title 

1 

Identify the study as developing and/or 
validating a multivariable prediction 
model, the target population, and the 
outcome to be predicted. 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

i 
The words developing/development, 
validation/validating, incremental/added value 
(or synonyms) are reported in the title 

0 0 0 0 

ii 

The words prediction, risk prediction, prediction 
model, risk models, prognostic models, 
prognostic indices, risk scores (or synonyms) are 
reported in the title 

1 1 0 1 

iii The target population is reported in the title 1 1 0 0 

iv The outcome to be predicted is reported in the 
title 1 1 0 0 

Abstract 

2 

Provide a summary of objectives, study 
design, setting, participants, sample size, 
predictors, outcome, statistical analysis, 
results, and conclusions. 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “NA” 

i The objectives are reported in the abstract 1 1 0 0 
ii Sources of data are reported in the abstract 

E.g. Prospective cohort, registry data, RCT data. 1 1 0 0 

iii The setting is reported in the abstract 
E.g. Primary care, secondary care, general 
population, adult care, or paediatric care. The 
setting should be reported for both the 
development and validation datasets, if 
applicable. 

0 0 0 0 

iv A general definition of the study participants is 
reported in the abstract 
E.g. patients with suspicion of certain disease, 
patients with a specific disease, or general 
eligibility criteria.  

1 1 0 1 
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v The overall sample size is reported in the 
abstract 1 1 0 1 

vi The number of events (or % outcome together 
with overall sample size) is reported in the 
abstract 
If a continuous outcome was studied, score Not 
applicable.  

0 0 0 0 

vii Predictors included in the final model are 
reported in the abstract. For validation studies of 
well-known models, at least the name/acronym 
of the validated model is reported 
Broad descriptions are sufficient, e.g. ‘all 
information from patient history and physical 
examination’. 
Check in the main text whether all predictors of 
the final model are indeed reported in the 
abstract. 

1 1 1 1 

viii The outcome is reported in the abstract 1 1 1 1 
ix Statistical methods are described in the abstract 

For model development, at least the type of 
statistical model should be reported. For 
validation studies a quote like “model’s 
discrimination and calibration was assessed” is 
considered adequate. If done, methods of 
updating should be reported. 

1 1 1 1 

x Results for model discrimination are reported in 
the abstract 
This should be reported separately for 
development and validation if a study includes 
both development and validation. 

1 1 1 1 

xi Results for model calibration are reported in the 
abstract 
This should be reported separately for 
development and validation if a study includes 
both development and validation. 

0 0 0 0 

xii Conclusions are reported in the abstract 
In publications addressing both model 
development and validation, there is no need for 
separate conclusions for both; one conclusion is 
sufficient. 

1 1 1 1 

Backgrou
nd and 
objective
s 

3a 

Explain the medical context (including 
whether diagnostic or prognostic) and 
rationale for developing or validating the 
multivariable prediction model, including 
references to existing models. 

Score 1 if both 
extraction 
items are 
scored as 
“Y” 

Score 1 if both 
extraction 
items are 
scored as 
“Y” 

Score 1 if both 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

i The background and rationale are presented 1 1 1 1 

ii Reference to existing models is included (or 
stated that there are no existing models) 1 1 1 1 

3b 
Specify the objectives, including whether 
the study describes the development or 
validation of the model or both. 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

i It is stated whether the study describes 
development and/or validation and/or 
incremental (added) value 

1 1 1 1 

Methods         
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Source of 
data 

4a 

Describe the study design or source of 
data (e.g., randomized trial, cohort, or 
registry data), separately for the 
development and validation data sets, if 
applicable. 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

i The study design/source of data is described 
E.g. Prospectively designed, existing cohort, 
existing RCT, registry/medical records, case 
control, case series. 
This needs to be explicitly reported; reference to 
this information in another article alone is 
insufficient. 

1 1 1 1 

4b 
Specify the key study dates, including start 
of accrual; end of accrual; and, if 
applicable, end of follow-up.   

Score 1 if 
all 
extraction 
items are 
scored as 
”Y”, “NA”, 
or “R” 

Score 1 if 
all 
extraction 
items are 
scored as 
”Y”, “NA”, 
or “R” 

Score 1 if 
all 
extraction 
items are 
scored as 
”Y”, “NA”, 
or “R” 

Score 1 if 
all 
extraction 
items are 
scored as 
”Y”, “NA”, 
or “R” 

i The starting date of accrual is reported 1          1           NA 1 

ii The end date of accrual is reported 1          1           NA 1 

iii The length of follow-up and prediction 
horizon/time frame are reported, if applicable 
E.g. “Patients were followed from baseline for 10 
years“ and “10-year prediction of…”; notably for 
prognostic studies with long term follow-up. 
If this is not applicable for an article (i.e. 
diagnostic study or no follow-up), then score Not 
applicable. 

NA           NA           NA NA 

Participa
nts 

5a 

Specify key elements of the study setting 
(e.g., primary care, secondary care, 
general population) including number and 
location of centres. 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “R” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “R” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “R” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “R” 

i The study setting is reported (e.g. primary care, 
secondary care, general population) 
E.g.: ‘surgery for endometrial cancer patients’ is 
considered to be enough information about the 
study setting. 

1         1          1 1 

ii The number of centres involved is reported 
If the number is not reported explicitly, but can 
be concluded from the name of the 
centre/centres, or if clearly a single centre study, 
score Yes. 

1         1          1 1 

iii The geographical location (at least country) of 
centres involved is reported 
If no geographical location is specified, but the 
location can be concluded from the name of the 
centre(s), score Yes. 

1        1          1 1 

5b Describe eligibility criteria for participants.  

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

i In-/exclusion criteria are stated 
These should explicitly be stated. Reasons for 
exclusion only described in a patient flow is not 
sufficient.  

1        1        0 1 
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5c 
Give details of treatments received, if 
relevant.  
 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

i Details of any treatments received are described  
This item is notably for prognostic modelling 
studies and is about treatment at baseline or 
during follow-up. The ‘if relevant’ judgment of 
treatment requires clinical knowledge and 
interpretation.  
If you are certain that treatment was not 
relevant, e.g. in some diagnostic model studies, 
score Not applicable. 

1          1              1 1 

Outcome 

6a 
Clearly define the outcome that is 
predicted by the prediction model, 
including how and when assessed.  

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “R” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “R” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “R” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “R” 

i The outcome definition is clearly presented 
This should be reported separately for 
development and validation if a publication 
includes both. 

1          1             1 1 

ii It is described how outcome was assessed 
(including all elements of any composite, for 
example CVD [e.g. MI, HF, stroke]). 

1          1             1 1 

iii It is described when the outcome was assessed 
(time point(s) since T0) 1          1             1 1 

6b Report any actions to blind assessment of 
the outcome to be predicted.     

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

i Actions to blind assessment of outcome to be 
predicted are reported 
If it is clearly a non-issue (e.g. all-cause 
mortality or an outcome not requiring 
interpretation), score Yes. In all other instances, 
an explicit mention is expected. 

 1             1             1 1 

Predictor
s 

7a 

Clearly define all predictors used in 
developing or validating the multivariable 
prediction model, including how and when 
they were measured. 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “R” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “R” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “R” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “R” 

i All predictors are reported 
For development, “all predictors” refers to all 
predictors that potentially could have been 
included in the ‘final’ model (including those 
considered in any univariable analyses). 
For validation, “all predictors” means the 
predictors in the model being evaluated. 

   1 1           1 1 

ii Predictor definitions are clearly presented    1              1           1 1 
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iii It is clearly described how the predictors were 
measured    1              1           1 1 

iv It is clearly described when the predictors were 
measured    1             1           1 1 

7b 
Report any actions to blind assessment of 
predictors for the outcome and other 
predictors.  

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

i It is clearly described whether predictor 
assessments were blinded for outcome 
For predictors for which it is clearly a non-issue 
(e.g. automatic blood pressure measurement, 
age, sex) and for instances where the predictors 
were clearly assessed before outcome 
assessment, score Yes. For all other predictors 
an explicit mention is expected. 

0 0         0 0 

ii It is clearly described whether predictor 
assessments were blinded for the other 
predictors 

0 0 0 0 

Sample 
size 

8 Explain how the study size was arrived at. 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

i It is explained how the study size was arrived at 
Is there any mention of sample size, e.g. 
whether this was done on statistical grounds or 
practical/logistical grounds (e.g. an existing 
study cohort or data set of a RCT was used)?  

1 1 1 1 

Missing 
data 

9 

Describe how missing data were handled 
(e.g., complete-case analysis, single 
imputation, multiple imputation) with 
details of any imputation method.  

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “NA” 

i The method for handling missing data 
(predictors and outcome) is mentioned 
E.g. Complete case (explicit mention that 
individuals with missing values have been 
excluded), single imputation, multiple 
imputation, mean/median imputation. 
If there is no missing data, there should be an 
explicit mention that there is no missing data for 
all predictors and outcome. If so, score Yes. 
If it is unclear whether there is missing data 
(from e.g. the reported methods or results), 
score No. 
If it is clear there is missing data, but the 
method for handling missing data is unclear, 
score No. 

1 1 1 1 

ii If missing data were imputed, details of the 
software used are given 
When under 9i explicit mentioning of no missing 
data, complete case analysis or no imputation 
applied, score Not applicable. 

1 1 1 1 

iii If missing data were imputed, a description of 
which variables were included in the imputation 1 1 1 1 
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procedure is given. 
When under 9i explicit mentioning of no missing 
data, complete case analysis or no imputation 
applied, score Not applicable. 

iv If multiple imputation was used, the number of 
imputations is reported 
When under 9i explicit mentioning of no missing 
data, complete case analysis or no imputation 
applied, score Not applicable. 

NA NA NA NA 

Statistica
l analysis 
methods 

10a Describe how predictors were handled in 
the analyses.  

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

 Not 
applicable 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “NA” 

i For continuous predictors it is described whether 
they were modelled as linear, nonlinear (type of 
transformation specified) or categorized 
A general statement is sufficient, no need to 
describe this for each predictor separately.  
If no continuous predictors were reported, score 
Not applicable. 

1 Not 
applicable 1 1 

ii For categorical or categorized predictors, the 
cut-points were reported 
If no categorical or categorized predictors were 
reported, score Not applicable. 

NA Not 
applicable NA NA 

iii For categorized predictors the method to choose 
the cut-points was clearly described 
If no categorized predictors, score Not 
applicable. 

NA Not 
applicable NA NA 

10b 

Specify type of model, all model-building 
procedures (including any predictor 
selection), and method for internal 
validation.  

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

 Not 
applicable 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “NA” 

i The type of statistical model is reported 
E.g. Logistic, Cox, other regression model (e.g. 
Weibull, ordinal), other statistical modelling (e.g. 
neural network) 

1 Not 
applicable 1 1 

ii The approach used for predictor selection before 
modelling is described 
‘Before modelling’ means before any univariable 
or multivariable analysis of predictor-outcome 
associations. 
If no predictor selection before modelling is 
done, score Not applicable. 
If it is unclear whether predictor selection before 
modelling is done, score No. 
If it is clear there was predictor selection before 
modelling but the method was not described, 
score No. 

1 Not 
applicable 1 1 
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iii The approach used for predictor selection during 
modelling is described 
E.g. Univariable analysis, stepwise selection, 
bootstrap, Lasso. 
‘During modelling’ includes both univariable or 
multivariable analysis of predictor-outcome 
associations.  
If no predictor selection during modelling is done 
(so-called full model approach), score Not 
applicable. 
If it is unclear whether predictor selection during 
modelling is done, score No.  
If it is clear there was predictor selection during 
modelling but the method was not described, 
score No. 

1 Not 
applicable 1 1 

iv Testing of interaction terms is described 
If it is explicitly mentioned that interaction terms 
were not addressed in the prediction model, 
score Yes.  
If interaction terms were included in the 
prediction model, but the testing is not 
described, score No. 

0 Not 
applicable 0 0 

v Testing of the proportionality of hazards in 
survival models is described 
If no proportional hazard model is used, score 
Not applicable. 

1 Not 
applicable 1 1 

vi Internal validation is reported  
E.g. Bootstrapping, cross validation, split sample. 
If the use of internal validation is clearly a non-
issue (e.g. in case of very large data sets), score 
Yes. For all other situations an explicit mention is 
expected. 

1  Not 
applicable 1  1 

10c For validation, describe how the 
predictions were calculated.  

 Not 
applicable 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

i. It is described how predictions for individuals (in 
the validation set) were obtained from the model 
being validated  
E.g. Using the original reported model 
coefficients with or without the intercept, and/or 
using updated or refitted model coefficients, or 
using a nomogram, spreadsheet or web 
calculator.  

Not 
applicable 

 
 
1 

 
 

 
 
1 

 
 

1 

10d 

Specify all measures used to assess model 
performance and, if relevant, to compare 
multiple models.1  
These should be described in the methods 
section of the paper (item 16 addresses the 
reporting of the results for model performance).  

Score 1 if 
extraction 
items 10di 
and 10dii 
are scored 
as “Y” 

Score 1 if 
extraction 
items 10di 
and 10dii 
are scored 
as “Y” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
extraction 
items 10di 
and 10dii 
are scored 
as “Y” 

i Measures for model discrimination are described 
E.g. C-index / area under the ROC curve.              1  1 1 1 

ii Measures for model calibration are described 
E.g. calibration plot, calibration slope or 
intercept, calibration table, Hosmer Lemeshow 
test, O/E ratio. 

0 0 0 0 
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iii Other performance measures are described  
E.g. R2, Brier score, predictive values, sensitivity, 
specificity, AUC difference, decision curve 
analysis, net reclassification improvement, 
integrated discrimination improvement, AIC. 

1  1  1  1 

10e 

Describe any model updating (e.g., 
recalibration) arising from the validation, 
if done. 
 

 Not 
applicable 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

i A description of model-updating is given 
E.g. Intercept recalibration, regression 
coefficient recalibration, refitting the whole 
model, adding a new predictor  
If updating was done, it should be clear which 
updating method was applied to score Yes.  
If it is not explicitly mentioned that updating was 
applied in the study, score this item as ‘Not 
applicable’. 

Not 
applicable NA NA NA 

Risk 
groups 

11 
Provide details on how risk groups were 
created, if done.  
 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

i If risk groups were created, risk group 
boundaries (risk thresholds) are specified  
Score this item separately for development and 
validation if a study includes both development 
and validation. 
If risk groups were not created, score this item 
as not applicable. 

NA NA NA NA 

Develop
ment vs. 
validatio
n 

12 
For validation, identify any differences 
from the development data in setting, 
eligibility criteria, outcome and predictors.  

 Not 
applicable 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” or 
“NA” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

i Differences or similarities in definitions with the 
development study are described 
Mentioning of any differences in all four (setting, 
eligibility criteria, predictors and outcome) is 
required to score Yes.  
If it is explicitly mentioned that there were no 
differences in setting, eligibility criteria, 
predictors and outcomes, score Yes. 
For incremental value reports, in case additional 
predictors are not added to a previously 
developed prediction model but rather  added to 

Not 
applicable 0 0 0 
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conventional predictors in a newly fitted model, 
score Not applicable. 

Results        

Participa
nts 

13a 

Describe the flow of participants through 
the study, including the number of 
participants with and without the outcome 
and, if applicable, a summary of the 
follow-up time. A diagram may be helpful. 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
the 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or “NA” 

i The flow of participants is reported  1 1 1 1 

ii The number of participants with and without the 
outcome are reported 
If outcomes are continuous, score Not 
applicable. 

1               1               1 1 

iii A summary of follow-up time is presented 
This notably applies to prognosis studies and 
diagnostic studies with follow-up as diagnostic 
outcome. 
If this is not applicable for an article (i.e. 
diagnostic study or no follow-up), then score Not 
applicable. 

1               1              1 1 

13b 

Describe the characteristics of the 
participants (basic demographics, clinical 
features, available predictors), including 
the number of participants with missing 
data for predictors and outcome.  

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

i Basic demographics are reported 0 0 0 0 
ii Summary information is provided for all 

predictors included in the final 
developed/validated model 

1 1 1 1 

iii The number of participants with missing data for 
predictors is reported 1 1 1 1 

iv The number of participants with missing data for 
the outcome is reported 1 1 1 1 

13c 

For validation, show a comparison with 
the development data of the distribution 
of important variables (demographics, 
predictors and outcome). 

 Not 
applicable 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

i Demographic characteristics (at least age and 
gender) of the validation study participants are 
reported along with those of the original 
development study 
For incremental value reports, in case additional 
predictors are not added to a previously 
developed prediction model but rather added to 
conventional predictors in a newly fitted model, 
score Not applicable. 

Not 
applicable 1 1 1 

ii Distributions of predictors in the model of the 
validation study participants are reported along 
with those of the original development study 
For incremental value reports, in case additional 

Not 
applicable 0 0 0 
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predictors are not added to a previously 
developed prediction model but rather added to 
conventional predictors in a newly fitted model, 
score Not applicable. 

iii Outcomes of the validation study participants 
are reported along with those of the original 
development study 
For incremental value reports, in case additional 
predictors are not added to a previously 
developed prediction model but rather  added to 
conventional predictors in a newly fitted model, 
score Not applicable. 

Not 
applicable 1 1 1 

Model 
develop
ment 

14a Specify the number of participants and 
outcome events in each analysis.  

Score 1 if both 
extraction 
items are 
scored as 
“Y” or 
“NA” 

 Not 
applicable 

Score 1 if both 
extraction 
items are 
scored as 
“Y” or 
“NA” 

Score 1 if both 
extraction 
items are 
scored as 
“Y” or 
“NA” 

i The number of participants in each analysis (e.g. 
in the analysis of each model if more than one 
model is developed) is specified 

1 Not 
applicable 1 1 

ii The number of outcome events in each analysis 
is specified (e.g. in the analysis of each model if 
more than one model is developed) 
If outcomes are continuous, score Not 
applicable. 

1 Not 
applicable 1 1 

14b 

If done, report the unadjusted association 
between each candidate  predictor and 
outcome. 
 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

 Not 
applicable 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

Score 1 if 
extraction 
item is 
scored as 
“Y”; score 
Not 
applicable 
if 
extraction 
item is 
scored as 
“NA” 

i The unadjusted associations between each 
predictor and outcome are reported 
If any univariable analysis is mentioned in the 
methods but not in the results, score No.  
If nothing on univariable analysis (in methods or 
results) is reported, score this item as Not 
applicable. 

NA Not 
applicable NA NA 

Model 
specifica
tion 

15a 

Present the full prediction model to allow 
predictions for individuals (i.e., all 
regression coefficients, and model 
intercept or baseline survival at a given 
time point). 

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

 Not 
applicable 

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

i The regression coefficient (or a derivative such 
as hazard ratio, odds ratio, risk ratio) for each 
predictor in the model is reported  

0 Not 
applicable 0 0 

ii The intercept or the cumulative baseline hazard 
(or baseline survival) for at least one time point 
is reported 

1 Not 
applicable 1 1 

15b Explain how to use the prediction model. 
Score 1 if 
extraction 
item is 
scored as 

 Not 
applicable 

Score 1 if 
extraction 
item is 
scored as 

Score 1 if 
extraction 
item is 
scored as 
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“Y” “Y” “Y” 
i An explanation (e.g. a simplified scoring rule, 

chart, nomogram of the model, reference to 
online calculator, or worked example) is 
provided to explain how to use the model for 
individualised predictions. 

1 Not 
applicable 1 1 

Model 
performa
nce 

16 

Report performance measures (with 
confidence intervals) for the prediction 
model.2  
These should be described in results section of 
the paper (item 10 addresses the reporting of 
the methods for model performance). 

Score 1 if 
extraction 
itemsare 
scored as 
“Y” 

Score 1 if 
extraction 
items  are 
scored as 
“Y” 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
extraction 
items are 
scored as 
“Y”  

i A discrimination measure is presented 
E.g. C-index / area under the ROC curve. 1               1 1 1 

ii The confidence interval (or standard error) of 
the discrimination measure  is presented 1               1 1 1 

iii Measures for model calibration are described 
E.g. calibration plot, calibration slope or 
intercept, calibration table, Hosmer Lemeshow 
test, O/E ratio. 

1 1 1 1 

iv Other model performance measures are 
presented 
E.g. R2, Brier score, predictive values, sensitivity, 
specificity, AUC difference, decision curve 
analysis, net reclassification improvement, 
integrated discrimination improvement, AIC. 

1 1 1 1 

Model 
updating 

17 

If done, report the results from any model 
updating (i.e., model specification, model 
performance, recalibration). 
If updating was not done, score this TRIPOD 
item as ‘Not applicable’.  

 Not 
applicable 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

 Not 
applicable 

Score 1 if 
all 
extraction 
items are 
scored as 
“Y” 

i The updated regression coefficients for each 
predictor in the model are reported  
If model updating was described as ‘not 
needed’, score Yes. 

Not 
applicable NA Not 

applicable NA 

ii The updated intercept or cumulative baseline 
hazard or baseline survival (for at least one time 
point) is reported  
If model updating was described as ‘not 
needed’, score Yes. 

Not 
applicable NA Not 

applicable NA 

iii The discrimination of the updated model is 
reported 

Not 
applicable NA Not 

applicable NA 

iv The confidence interval (or standard error) of 
the discrimination measure of the updated 
model is reported 

Not 
applicable NA Not 

applicable NA 

v The calibration of the updated model is reported Not 
applicable NA Not 

applicable NA 

Discussion         

Limitatio
ns 

18 
Discuss any limitations of the study (such 
as nonrepresentative sample, few events 
per predictor, missing data).  

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

i Limitations of the study are discussed 
Stating any limitation is sufficient. 1 1 1 1 
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Interpret
ation 

19a 

For validation, discuss the results with 
reference to performance in the 
development data, and any other 
validation data.  

 Not 
applicable 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

i Comparison of results to reported performance 
in development studies and/or other validation 
studies is given 

Not 
applicable 1 1 1 

19b 

Give an overall interpretation of the 
results considering objectives, limitations, 
results from similar studies and other 
relevant evidence.   

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

Score 1 if 
extraction 
item is 
scored as 
“Y” 

i An overall interpretation of the results is given 1 1 1 1 

Implicati
ons 

20 
Discuss the potential clinical use of the 
model and implications for future 
research.  

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

i The potential clinical use is discussed  
E.g. an explicit description of the context in 
which the prediction model is to be used (e.g. to 
identify high risk groups to help direct 
treatment, or to triage patients for referral to 
subsequent care). 

1 1 1 1 

ii Implications for future research are discussed 
E.g. a description of what the next stage of 
investigation of the prediction model should be, 
such as ”We suggest further external validation”. 

1 1 1 1 

Other information         

Supplem
entary 
informati
on 

21 
Provide information about the availability 
of supplementary resources, such as study 
protocol, web calculator, and data sets.  

Not 
included 
in overall 
scoring 

Not 
included 
in overall 
scoring 

Not 
included 
in overall 
scoring 

Not 
included in 
overall 
scoring 

i Information about supplementary resources is 
provided 1 1 1 1 

Funding 

22 Give the source of funding and the role of 
the funders for the present study.  

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

Score 1 if 
both 
extraction 
items are 
scored as 
“Y” 

i The source of funding is reported or there is 
explicit mention that there was no external 
funding involved 

1 1 1 1 

ii The role of funders is reported or there is 
explicit mention that there was no external 
funding  

1 1 1 1 

Total 
Adherance 

23 Calculates the total Adherance ti the TRIPOD 
statement 0.86 0.86 0.75 0.80 

 
Source: https://www.tripod-statement.org/ 
 
 

Source: https://www.tripod-statement.org/
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5.1 Abstract 

5.1.1 Introduction 
Despite radical intent therapy for patients with stage III non-small cell lung cancer (NSCLC), 
cumulative incidence of brain metastases (BM) reaches 30%. Current risk stratification 
methods fail to accurately identify these patients. As radiomics features have been shown 
to have predictive value, this study aims to develop a model combining clinical risk factors 
with radiomics features for BM development in patients with radically treated stage III 
NSCLC.  

5.1.2 Methods 
Retrospective analysis of two prospective multicenter studies. Inclusion criteria: 
adequately staged (18-FDG-PET-CT, contrast-enhanced chest CT, contrast-enhanced 
brain MRI/CT) and radically treated stage III NSCLC, exclusion criteria: second primary 
within 2 years of NSCLC diagnosis, prior prophylactic cranial irradiation. Primary endpoint 
was BM development any time during follow-up (FU). CT-based radiomics features 
(N=530) were extracted from the primary lung tumor on 18-FDG-PET-CT images, and a 
list of clinical features (N=8) was collected. Univariate feature selection based on the area 
under the curve (AUC) of the receiver operating characteristic was performed to identify 
relevant features. Generalized linear models were trained using the selected features, and 
multivariate predictive performance was assessed through the AUC.  

5.1.3 Results 
In total 219 patients were eligible for analysis. Median FU was 59.4 months for the 
training cohort and 67.3 months for the validation cohort; 21 (15%) and 17 (22%) patients 
developed BM in the training and validation cohort, respectively. Two relevant clinical 
features (age and adenocarcinoma histology), and four relevant radiomics features were 
identified as predictive. The clinical model yielded the highest AUC value of 0.71 (CI 95% 
0.58-0.84), better than radiomics or a combination of clinical parameters and radiomics 
(both an AUC of 0.62, 95% CIs of 0.47-076 and 0.48-0.76, respectively).

5.1.4 Conclusion  
CT-based radiomics features of primary NSCLC in the current setup could not improve 
on a model based on clinical predictors (age and adenocarcinoma histology) of BM 
development in radically treated stage III NSCLC patients.
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5.2 Introduction

The brain is a frequent site of disease relapse in patients with non-small cell lung cancer 
(NSCLC). Risk factors for brain metastases (BM) are advanced stage, adenocarcinoma 
histology, and younger age1-3. For radically treated patients, locally advanced (stage III) 
NSCLC has the highest risk for BM, with a cumulative incidence of BM of approximately 
30% 4. The majority of BM present within two years of diagnosis, despite brain imaging 
without BM during initial staging for NSCLC4. Brain magnetic resonance imaging (MRI) is 
recommended in clinical guidelines (and if not possible, contrast enhanced computed 
tomography (CECT) 5-8. The type of chemotherapy administered during chemoradiation 
therapy does not influence the incidence of BM2. Curative treatment of (symptomatic) BM 
is seldom possible and for the overwhelming majority of patients overall survival (OS) is 
limited9. Moreover, BM are associated with a devastating impact on Quality of Life (QoL) 10, 

11. Therefore, strategies to prevent BM and to predict who is at risk for their development 
are necessary, especially taking into consideration that treatments that reduce the 
incidence of BM are possible.

Prophylactic cranial irradiation (PCI) has been shown to reduce the incidence of BM in 
patients with NSCLC with a relative risk of 0.334. PCI prolongs progression free survival 
(PFS) in stage III NSCLC, but not OS4. Furthermore, PCI leads to neuro-cognitive impairment 
(mostly grade 1-2) in about 25-27% of patients12, 13. Ideally, only those patients with an a 
priori high risk of BM should undergo PCI and those with a low risk could avoid the risk 
of neurocognitive decline. An alternative approach to preventive treatment would be to 
closely monitor patients at high risk for BM through MRI surveillance, although there is 
no evidence that this improves outcome14. Hence, identifying predictive biomarkers, and 
thereby stratifying patients at high vs low risk for BM development, is key to personalize 
follow-up and treatment.

Although clinical risk factors are identified as described above, it remains challenging to 
discriminate between patients at high and low risk of BM15, 16. Won et al. (2015) developed 
a prediction model using clinical and pathological risk factors, such as histology, 
pathological T- and N-stages, and smoking status to predict the probability of BM 
development after curative surgery in a large group of patients with NSCLC17. This study 
used dedicated brain imaging (majority brain MRI, subset brain CECT) at baseline to verify 
that no BM were present. However, the model only had a moderate discriminative power 
in predicting BM development at 2 and 5 years (Harrell’s C-index (CI) of 0.670 and 0.674, 
respectively), and was verified only through internal validation, showing a clear need for 
more studies investigating BM prediction models.
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Metastases develop through a “wiring“ of the primary tumour to spread to certain organs 
(“seed and soil” hypothesis) 18-20. Therefore, analysis of the primary tumour could provide 
valuable feedback in identifying those patients at risk of developing BM. Indeed, molecular 
biomarkers, such as microRNAs (miRNA) expression patterns were previously associated 
with BM development in patients with NSCLC21, 22. However, these markers were not 
investigated in a prospective predictive study. Furthermore, they require invasive biopsies, 
and small tumour biopsies disregard the heterogeneous nature of tumours23. Therefore, 
an approach that takes the entirety of the tumour into account (i.e. the whole primary 
tumour and not only a small biopsy) is preferred.

Radiomics refers to the extraction of quantitative data from medical images using 
mathematical algorithms and finding correlations with biological or clinical outcomes 
via machine learning techniques24-26. When radiomics is applied to oncology, radiological 
images (e.g., CT, MRI, or positron emission tomography [PET]) performed during routine 
clinical workflow can be used to non-invasively extract imaging features describing 
the tumour and patient phenotypes27. These features can have significant diagnostic, 
prognostic, and predictive value, and hold the potential to assist clinical decision-making28.

Coroller et al. (2015) found that a model based on the primary tumour in locally advanced 
adenocarcinomas of the lung was predictive of distant metastases29. However, this study 
tried to predict distant metastases in general, not BM specifically. Three other studies 
showed that CT -based radiomics models on primary lung tumours might have positive 
value to predict BM in patients with NSCLC30-32. Models of clinical features and radiomics 
features were compared and combined, and in all three studies complementary value 
for the radiomics models were found. However, sample sizes were small (N = 85-124), no 
external validation was performed, not all patients were adequately staged according 
to guidelines5-8, and patient groups included were heterogeneous (e.g. different disease 
stages(, which may affect the reliability of the created models.

Therefore, the aim of the current study is to develop a prediction model for BM 
development (low vs high risk) in patients with adequately staged, radically treated stage 
III NSCLC, based on clinical patient characteristics only, and combined with CT-based 
radiomics analysis of the primary lung tumour. We hypothesize that a model based on CT-
radiomics and clinical variables can assist medical professionals in the decision-making 
process, and facilitate precision medicine for the treatment of NSCLC.
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5.3 Materials and methods 

5.3.1 Study population 
This was a post hoc analysis of two prospective, multicentre studies (NVALT-11, 
NCT01282437) [inclusion 2009-2015] and NL3335 [inclusion 2012-2017]) enrolling 
patients with stage III NSCLC (IASLC 7th edition). NCT01282437 (N = 175) was a multicentre 
randomized phase III study evaluating PCI vs no PCI in patients with radically treated 
stage III NSCLC. Primary endpoint was the development of symptomatic BM 24 months 
after randomization. Approximately half of these patients had baseline brain CECT, the 
remaining brain MRI. Only patients without baseline BM were eligible33. NL3335 was a 
prospective multicentre observational study, evaluating whether performing a brain MRI 
after a negative dedicated CECT had additive value in the diagnosis of asymptomatic 
BM34. One of the secondary endpoints was development of BM after radical treatment 
for stage III NSCLC. For NL3335, patients with stage III NSCLC and an available 18F-FDG-
PET-CT were screened, and only those with a dedicated brain CT (with contrast, arms at 
thorax level, correct field of view, and delayed imaging35) performed before or together 
with the 18F-FDG-PET-CT available, and followed by a brain MRI, were deemed eligible. 
For the current study, all patients who were staged with 18F-FDG-PET-CT and dedicated 
brain imaging (MRI and/or CECT), and treated with radical intent therapy (i.e. sequential 
or concurrent chemoradiation with/without surgery, or radical radiotherapy), were 
eligible. The collection of the imaging data for the current study was approved by the 
Medical Ethics Review Committee of Maastricht UMC+ (2017-0317), and, if applicable, 
by institutional review boards of the other participating centres. The ethics committee 
approved the waiver of informed consent. For both studies, additional eligibility criteria 
consisted of availability of baseline chest CECT (i.e. at diagnosis of stage III NSCLC), and 
a distinct primary tumour (primary tumour not detectable [Tx] or primary tumour not 
definable due to surrounding atelectasis were excluded). Furthermore, all patients that 
received PCI or had a second primary within 2 years of NSCLC diagnosis were excluded.

The dataset was split into a training and a validation dataset. The patient data obtained 
from the NL3335 study from the hospitals in Heerlen (Zuyderland MC) and Maastricht 
(Maastricht UMC+) were assigned to the training dataset. This dataset was used to select 
relevant features and to train the model. To test the performance on data not yet seen by 
the model, a validation dataset was also defined comprising data from one of the centres 
participating in the NL3335 study (VieCuri Medisch Centrum) and from the NVALT-11 
study.

5.3.2 Patient characteristics 
Baseline characteristics recorded in the two prospective studies and extracted for this 
analysis included age, gender, World Health Organization Performance Status (WHO 
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PS), smoking status, pack years, TNM-stage (IASLC 7th edition, IIIA vs. IIIB), histology, and 
follow-up data regarding BM development. The primary endpoint of this study was the 
development of BM (binary: yes/no), which was defined as disease progression to the 
brain assessed by MRI or CECT anytime during follow-up.

ge acquisition
Pre-treatment diagnostic chest CT-images were acquired with a Philips Gemini TF64 
(Philips Medical Systems, Best, Netherlands), Siemens Somatom Force scanner (Siemens 
Healthineers, Erlangen, Germany), GE Discovery STE (GE Medical systems, Chicago, United 
States), and Toshiba Aquilion (Toshiba, Tokyo, Japan). The scanning parameters were 
80-140 kVp tube voltage, 37-462 mAs tube current, and 512×512 matrix. An overview 
of the imaging characteristics can be found in supplementary figure S1. CT-images 
were obtained through the picture archiving and communication system in the Digital 
Imaging and Communications in Medicine format. For each patient an 18F-FDG-PET-CT 
with a non-diagnostic low-dose CT for attenuation correction and diagnostic CECT were 
available. Generally, the injection of contrast induces noise in the images and hence in 
some radiomics features due to differences between patients in diffusion of the contrast 
agent. However, the CECT scan was finally chosen for the analysis, as several tumours 
were difficult to contour on the low-dose CT due to mediastinal invasion and undefined 
tumour borders. Furthermore, the lower spatial resolution of low-dose CT could lead to 
the loss of important radiomics information. The CECT scans were obtained with different 
imaging parameters (e.g. spatial resolution, slice thickness, reconstruction kernel) due to 
variation in acquisition protocols of hospitals and different scanners available. Therefore, 
imaging parameters that were the most common throughout all images were set as the 
standard imaging parameters, e.g. 3mm slice thickness, soft reconstruction kernel, which 
were used to select the appropriate CECT scan for each patient accordingly.

5.3.4 Tumour segmentation 
The region of interest (ROI), i.e. the primary lung tumour, was manually delineated on the 
CT-images using MIM Software Inc. (Version 6.9.4, Cleveland, Ohio, USA). 18F-FDG-PET-CT 
imaging was used alongside the CT-image to locate the tumour, and to identify tumour 
borders adjacent to atelectasis or tumours invading extra-pulmonary structures. The lung 
window was used to identify tumour-lung borders, while tumour regions adjacent to 
extra-pulmonary tissues were contoured in the mediastinal window. In cases of tumours 
completely (or for a greater part) surrounded by atelectasis (i.e. reliable contouring not 
possible) the CT-scan was excluded from radiomics analysis. All tumour segmentations 
were performed and checked for accurate delineation by an experienced pulmonary 
oncologist or thoracic radiologist.
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5.3.5 Pre-processing and feature extraction 
In order to homogenize the datasets prior to feature extraction all images were resampled 
to the mode of the unprocessed scans (1x1 mm2 pixel size and 3mm slice thickness). 
Furthermore, to reduce noise and computational burden, the intensity values inside the 
ROI were discretized with a fixed bin width of 25 Hounsfield units (HU) which has been 
reported to yield the most reproducible radiomics features for CT images36.
Feature extraction for every 3-D ROI on each baseline CECT was performed using 
PyRadiomics version 2.2.0 on both the original images as well as filtered images. Laplacian 
of Gaussian (LoG) convolution filtering was applied to the original image in order to 
highlight regions of intensity change within an image. The LoG was applied with five 
different Gaussian standard deviation values ranging from 1mm to 5mm resulting in five 
different LoG images. The radiomics features extracted from the images can be divided 
into 3 main groups: first-order intensity and histogram statistics features, shape and 
size features, and texture features. First-order intensity and histogram statistics features 
describe the voxel intensity distribution within the ROI. Shape- and size features describe 
the spatial characteristics of the ROI itself, such as volume and sphericity, and are thus 
independent of the image contents. Texture features describe the spatial relationships 
of voxel intensities and are derived from six different matrices that are defined over the 
ROIs: grey-level co-occurrence (GLCM), grey-level run length (GLRLM), grey-level size-
zone (GLSZM), grey-level distance-zone (GLDZM), neighbourhood grey-level dependence 
(NGLDM), and neighbourhood grey-tone difference matrix (NGTDM).

The total number of features that can be extracted with the PyRadiomics package, without 
using highly correlating/depreciated features and without any further manipulation of 
the image is 107. However, the application of image filters, either Wavelet-based or Log-
based with different kernel sizes can multiply this number to thousands of features. The 
wavelet-based features were omitted from this analysis, as with a relatively low number of 
patients adding more features would increase the risk of overfitting and finding spurious 
correlations, and because wavelet-based features have shown to have low reproducibility 
compared to Log-filtered images37.

5.3.6 Feature selection and predictive modeling
The radiomics features were first normalized on the training dataset through z-score 
normalization: the mean and standard deviation (SD) of each feature were determined 
over the entire training population and used to perform normalization on the training 
dataset, as well as on the validation dataset. For the clinical features, a list of known 
clinical predictors for BM defined by Won et al (2015) were used17. These included 
histology (adenocarcinoma vs. others), age, stage (IIIA vs. IIIB), WHO PS (0 vs. 1 or higher, 
0-1 vs. 2 or higher, and 0-2 vs. 3), smoking status (ever vs. never, and current vs. former or 
ever), packyears, and treatment received (concurrent chemoradiation vs. other). As the 
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volume of the tumour is also a radiomics feature, it was not included as a clinical variable. 
Dimensionality reduction through feature selection was performed on both the radiomics 
and clinical variables.

Feature selection and modelling were performed using R software (Version 3.3.2, R Core 
Team, Vienna, Austria) on the training dataset38. Supervised univariate feature selection 
was performed on all clinical and radiomics features, using the occurrence of BM as the 
binary outcome. For each feature, the area under the curve (AUC) of the receiving operating 
characteristic (ROC) was calculated. The ROC-curve shows the sensitivity and specificity of 
the model at different classification thresholds on the feature score. The AUC of this curve 
was a metric of the predictive performance of the feature, ranging from 0.5 to 1, where 
1 indicates a perfect prediction and 0.5 a prediction equal to chance. As an AUC > 0.6 
indicates a feature has some predictive power, this cut-off was chosen to select features. 
Features that are highly correlated (Spearman’s correlation > 0.8) were determined, and 
the feature with the highest average correlation with all other features remaining in the 
set was excluded. To verify that radiomics features are not simply surrogates for tumour 
volume, the correlation with volume was also determined. Three separate models were 
created: using the selected radiomics features, using the selected clinical features, and 
using a combination of selected radiomics and clinical features.

Using the selected features, a generalized linear model (GLM) was trained on the training 
dataset using BM status as outcome calculated. Without changing its parameters, the 
model was then validated on the validation dataset, and the prediction score created as 
output. This prediction score is the probability a patient will develop a BM, and ranges 
from 0 to 1. By selecting a threshold on this prediction score, the binary classification of 
the validation patients was performed.

5.3.7 Patient inclusion 
A total of 467 patients with stage III NSCLC were reviewed for selection, and 248 patients 
were excluded for several reasons: not fully staged (N = 15, no adequate brain imaging, i.e. 
no brain MRI or dedicated brain CT as defined in the methods section); no radical therapy 
performed (N = 69); history of previous cancer (N = 10); no CECT of the chest available (N 
= 90); atelectasis surrounding primary tumour (N = 17); no detectable primary tumour (N 
= 8). Lastly, from the NVALT-11 study, all patients with available imaging who underwent 
PCI were excluded (N = 39). As a result, 219 patients with stage III NSCLC with segmented 
CECT images were included for radiomics analysis. The CONSORT diagram depicting the 
selection process is depicted in Figure 1.
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Figure 1: CONSORT diagram for patient selection. NSCLC, non-

  

Figure 1. CONSORT diagram for patient selection. NSCLC, non-small cell lung cancer; CE, contrast-
enhanced; CT, computed tomography; MRI, magnetic resonance imaging; ROI, region of interest; 
PCI, Prophylactic Cranial Irradiation. 

5.3.8 Statistical analysis 
Baseline patient characteristics were analysed using standard descriptive statistics. 
Statistical analysis of continuous variables was performed with the independent two-
sample t-test, whereas differences in categorical variables were analysed using a c2-test. 
The reported statistical significance levels were all two-sided set at a < 0.05.

The predictive performance of the model was quantified through the AUC of the ROC. 
Calibration of the model on the external dataset was tested using the calibration curve, and a 
c2-test to see if the slope and intercept are significantly different from 0 and 1, respectively. If 
this test is significant, it indicates the model does not fit on the external dataset. The ROC-curve 
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was plotted, and its confidence interval of 95% was calculated on 2000 stratified bootstrap 
replicates. Additionally, the binary classification was used to create a confusion matrix, which 
visualizes the performance of the model by comparing the predicted BM status to the true 
BM status. The binary classification was performed by determining an optimal threshold on 
the prediction score, calculated on 2000 stratified bootstrap replicates. The metric calculated 
to determine the optimal cut-off was the F1-score, which takes both precision and recall into 
account. From this binary prediction the sensitivity, specificity, precision, negative predictive 
value, accuracy, balanced accuracy, and F1-score were determined. Lastly, a two-proportion 
z-test was performed to determine if there was a significant difference between the true 
proportions of cases in the two predicted risk-groups.

The Transparent Reporting of a multivariable prediction model for Individual Prognosis 
or Diagnosis (TRIPOD) guidelines were adhered to39. To test this adherence the adherence 
form was filled in, and the TRIPOD score is reported (supplementary materials table S1). 
This score is a grade from 0 to 100% that gives an indication of the compliance to the 
TRIPOD guidelines.

5.4 Results 

5.3.1 Patient characteristics 
Of the resulting 219 patients, 142 were assigned as the training dataset and 77 as the 
validation set. These datasets are completely independent. An overview of baseline 
patient characteristics is listed in Table 1. In the training set, 21 patients developed BM 
(incidence of 15%); in the validation dataset, 17 patients had BM development (22%). 
In the training dataset, 100% of the patients received a brain MRI at staging. For the 
validation dataset, 85.7% of the patients received an MRI, while the remaining 14.3% (11 
patients) only received a CECT scan of the brain. Additionally, the median follow-up time 
in the training dataset was 59.4 months (interquartile range (IQR) 40.4-71.2), and in the 
validation dataset 67.3 months (IQR 42.0-83.3) (p = 0.05). In the entire population, patients 
were mostly male (61%) and mean age was 67 years at the time of NSCLC diagnosis, with 
75% of patients > 60 years. The majority of patients (~88%) had a WHO performance score 
of 0 or 1. Most patients were either current (45%) or former smokers (50%), while 3% had 
never smoked (2% unknown smoking status). Patients were evenly distributed in the 
stages IIIA and IIIB (51% and 49%, respectively), and 38% had adenocarcinoma histology. 
No significant differences were found in patient characteristics between the training and 
validation sets, except for age, where the mean age was significantly higher (p < 0.001) 
and the proportion of patients over 60 years old was significantly larger (p of 0.005) in 
the training dataset. In addition, the validation dataset received a significantly lower 
proportion of brain MRI (p < 0.001).
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Table 1. Baseline characteristics of patients assigned to training and validation sets. 
Characteristic Training set Validation set Total p

N = 142 (%) N = 77 (%) N = 219 (%)

Gender    0.939

Male 87 (61.3) 46 (59.7) 133 (60.7)  

Female 55 (38.7) 31 (40.3) 86 (39.3)  

Age (years)     

Mean ± SD 68.6 ± 8.3 63.6 ± 8.2 66.8 ± 8.6 < 0.001

Range 47.5-88.6 47.2-85.0 47.2-88.6  

< 60 years 26 (18.3) 28 (36.4) 54 (24.7) 0.005

> 60 years 116 (81.7) 49 (63.6) 165 (75.3)  

WHO PS    0.293

0 53 (37.3) 26 (33.8) 79 (36.1)  

1 68 (47.9) 45 (58.4) 113 (51.6)  

2 16 (11.3) 3 (3.9) 19 (8.7)  

3 2 (1.4) 2 (2.6) 4 (1.8)  

Unknown 3 (2.1) 1 (1.3) 4 (1.8)  

Smoking status    0.163 

Never 5 (3.5) 2 (2.6) 7 (3.2)  

Former 64 (45.1) 45 (58.4) 109 (49.8)  

Current 69 (48.6) 30 (39.0) 99 (45.2)  

Unknown 4 (2.8) 0 (0) 4 (1.8)  

TNM-stage    0.415 

IIIA 76 (53.5) 36 (46.8) 112 (51.1)  

IIIB 66 (46.5) 41 (53.2) 107 (48.9)  

Histology    0.382 

Adenocarcinoma 55 (38.7) 28 (36.4) 83 (37.9)  

Squamous cell carcinoma 62 (43.7) 30 (39.0) 92 (42.0)  

Large cell carcinoma 5 (3.5) 7 (9.1) 12 (5.5)  

Sarcomatoid 1 (0.7) 0 (0) 1 (0.5)

LCNEC 2 (1.4) 0 (0) 2 (0.9)

NOS 17 (12.0) 12 (15.6) 29 (13.2)  

Brain metastasis diagnosed    0.241

Yes 21 (14.8) 17 (22.1) 38 (17.4)  

No 121 (85.2) 60 (77.9) 181 (82.6)  

Baseline brain MRI or brain CECT    < 0.001

MRI 142 (100) 66 (85.7) 208 (95) 

Only CECT 0 (0) 11 (14.3) 11 (5) 

Treatment received 0.233

CCRT +/- Surgery 100 (70.4) 61 (79.2) 161 (73.5) 

SCRT +/- Surgery 35 (24.6) 15 (19.5) 50 (22.8) 

Radical RT 7 (4.9) 1 (1.3) 8 (3.7) 

SD, standard deviation; TNM, tumour, node, metastasis; NOS, not otherwise specified; WHO PS, World Health 
Organization Performance Status: 0-1: Good, 2-3: Poor; LCNEC, large cell neuroendocrine carcinoma; NOS, 
not otherwise specified; CCRT, concurrent chemo radiotherapy; SCRT, sequential chemo radiotherapy; RT, 
radiotherapy.
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5.3.2 Feature selection
In total, 530 radiomics features were extracted from each CT-image, and 8 clinical features 
were collected for each patient. After testing for univariate predictive performance and 
selecting features with AUC > 0.6, and excluding features with high correlation (Spearman 
correlation > 0.8), four relevant radiomics features (see supplementary materials section 
1), and two relevant clinical features (adenocarcinoma vs other tumour types, and age 
as a continuous variable) were identified. None of the radiomics features showed high 
correlation (Spearman’s correlation > 0.8) with tumour volume. Table 2 shows an overview 
of the selected features with their respective univariate AUC, and Spearman’s correlation 
values with the volume.

Table 2. Selected clinical and radiomics features with corresponding univariate AUC, and Spearman’s 
correlation with volume. LoG = Laplacian of Gaussian; GLSZM = grey-level size-zone matrix; GLCM 
= grey-level correlation matrix
Feature names AUC Correlation with 

volume
Clinical features Adenocarcinoma vs. other tumour type 0.66 -

Age (continuous) 0.73 -
Radiomics features 1mm LoG GLSZM normalized size-zone non-

uniformity
0.60 -0.24

2mm LoG GLCM correlation 0.62 0.52 
2mm LoG GLCM informational measure of 
correlation 1

0.61 -0.55

2mm LoG GLCM informational measure of 
correlation 2

0.62 0.30

5.3.3 Clinical model
The performance of the predictive model built on the clinical features was evaluated in the 
validation set with an ROC curve, yielding an AUC of 0.71 (95% CI 0.58-0.84), as presented 
in Figure 2A. The calibration test yielded a p of 0.76, indicating the model fits on the 
external validation data. The calibration slope can be found in supplementary materials, 
figure S3. The binary prediction determined through bootstrapping gave a sensitivity and 
specificity of 0.82 and 0.57, respectively, which are shown in the figure represented by the 
dashed lines. The F1-score, the metric used to determine this cut-off, was 0.49.

The confusion matrix, shown in figure 2B, shows the number of correct and incorrect 
predictions. Of the control cases, 34 were predicted correctly; of the event cases, 14 
were predicted correctly. The precision was 0.35, and the negative predictive value was 
0.92. The accuracy and balanced accuracy were 0.62 and 0.70, respectively. Finally, the 
proportion of cases between predicted risk-groups were significantly different (p = 0.01).
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Figure 2: (A) Receiver operator characteristic curve and the corresponding confidence interval of 95% in blue of the 
clinical model, with area under the curve (AUC) and 95% confidence interval shown. On the y-axis is the sensitivity and 
on the x-axis the specificity of the model at different classification thresholds. The dashed lines show the sensitivity and 
specificity for the threshold that was used to make the binary prediction. (B) Confusion matrix with proportions of 
correct and wrong predictions made by the clinical model (y-axis) relative to the true labels (x-axis). 

  

Figure 2. (A) Receiver operator characteristic curve and the corresponding confidence interval of 
95% in blue of the clinical model, with area under the curve (AUC) and 95% confidence interval 
shown. On the y-axis is the sensitivity and on the x-axis the specificity of the model at different 
classification thresholds. The dashed lines show the sensitivity and specificity for the threshold 
that was used to make the binary prediction. (B) Confusion matrix with proportions of correct and 
wrong predictions made by the clinical model (y-axis) relative to the true labels (x-axis).

5.3.4 Radiomics model
The performance of the predictive model was evaluated in the validation set with an ROC 
curve, yielding an AUC of 0.62 (95% CI 0.47-0.76), as presented in Figure 3A. The calibration 
test yielded a p < 0.001, indicating the model does not fit on the external validation data. 
The calibration slope can be found in supplementary materials, figure S4. The binary 
prediction determined through bootstrapping gives a sensitivity and specificity of 0.65 
and 0.6, respectively, which are shown in the figure represented by the dashed lines. The 
F1-score, the metric used to determine this cut-off, was 0.42.

The confusion matrix, shown in figure 3B, shows the number of correct and incorrect 
predictions. Of the control cases, 36 were predicted correctly; of the event cases, 11 were 
predicted correctly. The precision was 0.31, and the negative predictive value was 0.86. The 
accuracy and balanced accuracy were 0.61 and 0.62, respectively. Finally, the proportion 
of cases between predicted risk-groups were not significantly different (p = 0.13).
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Figure 3: (A) Receiver operator characteristic curve and the corresponding confidence interval of 95% in blue of the 
radiomics model, with area under the curve (AUC) and 95% confidence interval shown. On the y-axis is the sensitivity 
and on the x-axis the specificity of the model at different classification thresholds. The dashed lines show the sensitivity 
and specificity for the threshold that was used to make the binary prediction. (B) Confusion matrix with proportions of 
correct and wrong predictions made by the radiomics model (y-axis) relative to the true labels (x-axis). 

  

Figure 3. (A) Receiver operator characteristic curve and the corresponding confidence interval of 
95% in blue of the radiomics model, with area under the curve (AUC) and 95% confidence interval 
shown. On the y-axis is the sensitivity and on the x-axis the specificity of the model at different 
classification thresholds. The dashed lines show the sensitivity and specificity for the threshold that 
was used to make the binary prediction. (B) Confusion matrix with proportions of correct and wrong 
predictions made by the radiomics model (y-axis) relative to the true labels (x-axis).

5.3.5 Radiomics & Clinical model
The performance of the predictive model was evaluated in the validation set with an ROC 
curve, yielding an AUC of 0.62 (95% CI 0.48-0.76), as presented in Figure 4A. The calibration 
test yielded a p of 0.03, indicating the model does not fit on the external validation data. 
The calibration slope can be found in supplementary materials, figure S5. The binary 
prediction determined through bootstrapping gives a sensitivity and specificity of 0.82 
and 0.52, respectively, which are shown in the figure represented by the dashed lines. The 
F1-score, the metric used to determine this cut-off, was 0.47.

The confusion matrix, shown in figure 4B, shows the number of correct and incorrect 
predictions. Of the control cases, 31 were predicted correctly; of the event cases, 14 
were predicted correctly. The precision was 0.33, and the negative predictive value was 
0.91. The accuracy and balanced accuracy were 0.58 and 0.67, respectively. Finally, the 
proportion of cases between predicted risk-groups were significantly different (p = 0.03).
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Figure 4: (A) Receiver operator characteristic curve and the corresponding confidence interval of 95% in blue of the 
clinical & radiomics model, with area under the curve (AUC) and 95% confidence interval shown. On the y-axis is the 
sensitivity and on the x-axis the specificity of the model at different classification thresholds. The dashed lines show the 
sensitivity and specificity for the threshold that was used to make the binary prediction. (B) Confusion matrix with 
proportions of correct and wrong predictions made by the clinical & radiomics model (y-axis) relative to the true labels 
(x-axis). 

  

Figure 4. (A) Receiver operator characteristic curve and the corresponding confidence interval of 
95% in blue of the clinical & radiomics model, with area under the curve (AUC) and 95% confidence 
interval shown. On the y-axis is the sensitivity and on the x-axis the specificity of the model at 
different classification thresholds. The dashed lines show the sensitivity and specificity for the 
threshold that was used to make the binary prediction. (B) Confusion matrix with proportions of 
correct and wrong predictions made by the clinical & radiomics model (y-axis) relative to the true 
labels (x-axis).

5.3.6 TRIPOD statement
The TRIPOD adherence for 22 guidelines was determined, and the adherence score was 
calculated to be 93%. The adherence form for this study can be found in supplementary 
materials table s1.

5.5 Discussion 

The prediction and prevention of BM development in patients with radically treated stage 
III NSCLC is a major issue, as BM has a detrimental effect on survival and QoL 10, 11. Preventive 
strategies such as PCI exist, but come at a cost of neurocognitive decline, and PCI has 
been shown to not be associated with an OS benefit in patients with stage III NSCLC not 
selected for BM risk4. Therefore, future studies evaluating new preventive treatments or 
the effects of regular screening should focus on those at high risk of BM. Patients with a 
low risk of BM could be spared PCI or intense imaging follow-up. This strategy requires a 
model that accurately separates high risk from low risk stage III NSCLC patients. 

In this multicentre study, we developed a radiomics model based on four radiomics 
features extracted from the primary lung tumour on CECT-imaging and combined this 
with existing clinical predictors of BM. The first feature is based on a GLSZM matrix, which 
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quantifies the number and size of homogenous intensity patches found within the ROI. 
The normalized size-zone non-uniformity (NSZNU) feature based on this matrix measures 
variability of these size zones, with a higher score meaning less homogenous areas with 
the same intensity present in the ROI, i.e., more heterogeneity. The remaining three 
features are based on a GLCM matrix, which measures the frequency in which certain 
combinations of pixel intensity values are found. The features correlation, Informational 
Measure of Correlation 1 (IMC1), and Informational Measure of Correlation 2 (IMC2) based 
on this matrix all measure whether correlations between certain intensity values can be 
found within the ROI. A higher value would mean that more homogenous areas exist 
within the ROI, while a lower value means the intensity values are more randomly spread 
throughout the ROI, which is again a measure of heterogeneity.

We found that in a patient population of 219 (training N=142, validation N=77) the 
addition of radiomics was not able to improve the predictive performance of a model 
based solely on clinical factors. This result may indicate that, for the aforementioned 
population size, factors other than phenotypical characteristics of the tumour are more 
important in the incidence of BM, such as histology and age, as shown in the features 
selected for the clinical model.

To our knowledge, few studies have been undertaken on the topic of BM prediction using 
a combination of clinical and radiomics features. We found three radiomics studies with a 
comparable study design, shown contrasted to our study in Table 329-31. While one of the 
radiomics models has significantly higher performance (AUC of 0.85 vs. 0.62), these studies 
shared a low number of patients as well as BM events, a lack of external validation, and a 
lack of full staging compared to the current study, resulting in low reliability of the results.

Data quality should be a priority when selecting the study population40. Especially, the 
large disease heterogeneity in stage III NSCLC emphasizes the importance of correct 
staging with the appropriate imaging modalities, as disease stage directly influences 
treatment options and prognosis5. For the previously reported studies either 18F-FDG-
PET-CT or dedicated brain imaging (brain MRI or dedicated brain CT) were not mandatory, 
while in the present study only adequately staged patients were included for analysis. 
Therefore, in the previously reported studies, patients with occult BM could have been 
enrolled. For example, 15-21% of patients with stage III NSCLC have asymptomatic BM and 
without dedicated imaging, these will be missed41, 42. Asymptomatic BM are diagnosed on 
MRI in approximately 5% of patients that underwent a dedicated brain CT (with contrast 
and the correct field of view), and in 16% of patients that underwent an 18F-FDG-PET-CT 
with a low dose CT of the brain34, 42. All patients in our study received dedicated brain 
imaging, with 95% MRI and 5% CECT. Therefore, risk of bias due to undetected baseline 
BM is low in our study.



Enhancing brain metastases prediction for NSCLC Patients through CT-Based radiomics   |   169   

5

Table 3. Study parameters of radiomics studies on BM or DM prediction in NSCLC. 
Study name Coroller et al. (2015) Chen et al. (2019) Xu et al. (2019) Present study 

(2021) 
Study population Stage II-III / 

adenocarcinoma 
T1-stage / 
adenocarcinoma 

Stage III-IV / ALK-
positive 

Stage IIIA/B

Sample size N = 182 N = 89 N = 105 N = 219
Primary outcome DM BM BM BM 
Number of events 
in FU

69 (37.9%) 35 (39.3%) 27 (25.7%) 38 (17.4%)

Staging ? T1/N-stage based on 
non-CECT 

‘by medical images’ Full imaging

18F-FDG-PET-CT - - ? +
Brain MRI / CECT 
(% MRI received) 

- (N/A) + (not reported) + (not reported) + (95)

Chest CECT - - + +
Pathological 
analysis

Pathologically-
confirmed lung 
adenocarcinoma

‘Pathologically 
confirmed disease’ 

Pathologically 
confirmed ALK

-

Imaging modality Planning CT + GTV 
(patients excluded if 
CTx/surgery was before 
RTx scheduled date) 

Pretreatment non-
CECT 

Pretreatment CECT 
+ RTstruct 

Pretreatment 
CECT + 
RTstruct 

Predictive 
performance (95% 
CI)

CI > 0.6 (-) AUC 0.85 (0.767-
0.933)

AUC 0.64 (0.501-
0.783)

AUC 0.62 (0.47-
0.76)

Strengths (+) Pathologically 
confirmed 

(+) Pretreatment CT 

(+) Pathologically 
confirmed 

(+) BM exclusion at 
baseline 

(+) Pretreatment CT 

(+) Pathologically 
confirmed 

(+) BM exclusion at 
baseline 

(+) Diagnostic chest 
CECT / Pretreatment 

 

(+) 
Pathologically 
confirmed

(+) BM 
exclusion at 
baseline 

(+) Diagnostic 
chest CECT / 
Pretreatment 

(+) External 
validation 

Limitations (-) Unclear staging 

(-) Small sample size 

(-) GTV not specified 
(LN included?) 

(-) DM locations not 
specified 

(-) Planning CT 

(-) Unclear staging; 
T1/N-stage 
determined with 

non-CECT 

(-) Small sample size 

(-) Unclear staging; 
PET-CT not reported 

(-) Small sample size 

(-) GTV not specified 
(LN included?) 

 (-) relatively low 
number of BM

 (-) relatively 
low number 
of BM

NSCLC, non-small cell lung cancer, DM, distant metastasis; BM, brain metastasis; 18F-FDG-PET-CT, 
18F-Fluorodeoxyglucose positron emission tomography-computed tomography; MRI, magnetic 
resonance imaging; (CE-)CT, contrast-enhanced computed tomography; CTx, chemotherapy; RTx, 
radiotherapy; T1, tumour stage 1; N, lymph node stage; LN, lymph node; ALK, anaplastic lymphoma 
kinase.



170   |   Chapter 5

A further point of strength of this study is the use of 18F-FDG-PET-CT alongside CECT 
images during contouring. In the field of radiation therapy, the differentiation of lung 
tumour from post obstructive atelectasis is a well-recognized problem, which even 
contrast enhancement cannot always resolve. As 18F-FDG-PET-CT has proven utility during 
tumour delineation for radiation planning purposes, this may have significantly increased 
the delineation accuracy of the CECT-images in our study43.

There may be a number of different reasons why the radiomics model failed to accurately 
predict patients at risk for BM. This study primarily focused on the selection of CECT 
images in consideration of delineation accuracy, as CECT is more specific in differentiating 
different tissue types, especially in case of mediastinal invasion, which often occurs in 
stage III NSCLC44. However, this may have diminished the discriminatory performance 
of the model, since recent studies have found differences between CECT and non-CECT 
radiomics features45, 46. In addition, CECT was associated with variability of radiomics 
features due to differences in contrast uptake; a concept which is strongly influenced by 
patient variables which impact contrast distribution, e.g. age and weight 47. Given that 
patient-related factors are a permanent source of variability (with any imaging modality), 
efforts should be directed at homogenizing datasets in terms of contrast-enhancement 
and investigating CECT robust features. Furthermore, despite the strict selection of CECT 
with the same reconstruction protocol and slice spacing, there were still differences in 
imaging parameters and the images were not fully standardized. The collected images 
were not standardized to one acquisition and reconstruction protocol before or during 
the studies. Furthermore, due to the retrospective nature of the study, we were not able 
to perform phantom scans on the different scanners. Performing phantom studies or 
applying a different harmonization method is likely needed to harmonize images and 
make reproducible models. This should be standard practice in a radiomics protocol48-50.

This study was performed on a homogenous patient group regarding stage, only including 
stage IIIA and IIIB tumours. However, stage III NSCLC is known for its heterogeneity 
regarding varying tumour sizes and the pattern of lymph node metastasis (e.g. a T1N3 vs 
a T4N0 tumour) 51. This could further explain the inability of the model to predict BM, and 
while it was not in the scope of the current study due to a lack of data in the NCT01282437 
study, investigating further clinical features that describe the risk of high T-status vs high 
N-status, or total tumour volume could be investigated, as Won et al (2015) have shown 
these features have predictive power17. The clinical features selected, age and histology, 
are not directly affected by this shortcoming. Although selection based on stage may 
increase homogeneity, it could also overlook the complexity of BM risk. For instance, 
primary tumour size alone is inadequate in predicting disseminating tumour behaviour, 
i.e. small tumours with extensive N-status have previously been described to metastasize 
early, whereas large tumours with limited N-stage may not at all52. Therefore, a critical 
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evaluation of the target population and the associated clinical implications is necessary in 
conducting relevant research.

Compared to previous studies that report a BM incidence of approximately 30%, the 
incidences of BM in the training and validation set were significantly lower at 15% and 
22%, respectively4. Both NVALT11 and NL3335 had a median follow-up time largely 
exceeding two years, while most BM occur within two years of the initial staging of NSCLC 
33. Therefore, inadequate follow-up time is not an explanation. For NVALT11 (control arm 
28% BM in follow-up), not all scans could be retrieved, and indeed more scans were 
retrieved from patients without BM. In addition, almost all patients included had a baseline 
brain MRI and not only a CECT. It is known that MRI is slightly superior (in 5% of patients 
additional BM detected after negative CECT) in detecting asymptomatic BM in stage III 
NSCLC and this also could have resulted in a lower BM incidence in the follow-up34.

The small sample size, even though larger datasets were used compared to previous 
studies, and different imaging parameters are both well-known sources of variability 
in radiomics that limit reproducibility53. Furthermore, manual tumour delineations are 
prone to inter-observer variability, which affect the stability of radiomics features54. Taken 
together, these aspects may explain the limited performance of the radiomics model 
and require further attention. Therefore, our future work will address these limitations by 
optimizing the radiomics model through expanding the sample size and reducing data 
heterogeneity, by using imaging phantoms and standardization methods in the radiomics 
pipeline, and through image and feature harmonization. While clinical factors seem to 
outperform radiomics features, with the current sample size the results are inconclusive 
with regard to the complementary predictive role of CT-based radiomics.

Future radiomics studies could also focus on utilizing the additional imaging performed 
during the standard diagnostic workup of patients with stage III NSCLC. These imaging 
modalities, e.g., dedicated brain MRI or CECT together with18F-FDG-PET-CT, may 
have additional value in BM prediction. For instance, brain MRI features might reveal 
micro metastases indiscernible to the human eye, and may aid in the early detection, 
whereas tumour heterogeneity captured by 18F-FDG-PET-CT uptake pattern may further 
characterize tumour aggressiveness55. Accordingly, imaging modality-specific features 
could be integrated to form a robust radiomics signature. 

-Finally, other AI approaches, such as deep learning models, have shown to be able to 
perform risk prediction on clinical images56. While these methods usually require larger 
datasets to achieve significant results, they should be investigated in future studies for their 
complementary value in predicting the risk of BM. Other machine learning methods such 
as recursive feature elimination (RFE) or least absolute shrinkage and selection operator 
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(LASSO) to select features exist, which have shown to be able to improve performance 
of predictive models. However, with the current study setup and study population size, 
the feature selection through univariate predictive performance was found to achieve the 
highest performance.

5.6 Conclusion

A model based on known clinical predictors of BM development (age and tumour 
histology) is able to predict BM development in patients with radically treated stage III 
NSCLC with moderate precision, with an AUC of 0.71 (model available on www.ai4cancer.
ai). This model did not improve with the addition of CT-based radiomics features. Future 
work will focus on optimizing the radiomics model by expanding the dataset, investigating 
more clinical features, other imaging modalities, data harmonization, and reducing data 
heterogeneity.
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5.10 Supplementary materials 

 

Figure S1: Tube current, peak kilo voltage peak (KVP) pixel spacing, and slice thickness histograms for the entire patient cohort. Figure S1. Tube current, peak kilo voltage peak (KVP) pixel spacing, and slice thickness histograms 
for the entire patient cohort.

 
Figure S2: Reverse Kaplan-Meier plot of the training and validation dataset. 

Figure S2. Reverse Kaplan-Meier plot of the training and validation dataset.



180   |   Chapter 5

Section 1
The four selected radiomics features were: 1mm sigma LoG-filtered three dimensional 
GLSZM normalized size-zone non-uniformity (NSZNU), 2mm sigma LoG-filtered three-
dimensional GLCM correlation, 2mm sigma LoG-filtered three-dimensional GLCM 
informational measure of correlation (IMC)1, and 2mm sigma LoG-filtered three-
dimensional GLCM IMC2, 
 

 
Figure S3: Calibration belt plot of the clinical model on the external validation dataset, with p-value of the calibration slope test. Figure S3. Calibration belt plot of the clinical model on the external validation dataset, with 

p-value of the calibration slope test.
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Figure S4: Calibration belt plot of the radiomics model on the external validation dataset, with p-value of the calibration slope 
test. 

Figure S4. Calibration belt plot of the radiomics model on the external validation dataset, with 
p-value of the calibration slope test.

 
Figure S5: Calibration belt plot of the combined model on the external validation dataset, with p-value of the calibration slope 
test. 

  

Figure S5. Calibration belt plot of the combined model on the external validation dataset, with 
p-value of the calibration slope test.
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Table S1. TRIPOD adherence form.

Y=yes; N=no; R=referenced; NA=not applicable [Study ID]

Title and abstract  

1 Identify the study as developing and/or validating a multivariable prediction model, 
the target population, and the outcome to be predicted.

1

i The words developing/development, validation/validating, incremental/added value (or 
synonyms) are reported in the title

Y

ii The words prediction, risk prediction, prediction model, risk models, prognostic models, 
prognostic indices, risk scores (or synonyms) are reported in the title

Y

iii The target population is reported in the title Y

iv The outcome to be predicted is reported in the title Y

2 Provide a summary of objectives, study design, setting, participants, sample size, 
predictors, outcome, statistical analysis, results, and conclusions.

1

i The objectives are reported in the abstract Y

ii Sources of data are reported in the abstract 
E.g. Prospective cohort, registry data, RCT data.

Y

iii The setting is reported in the abstract 
E.g. Primary care, secondary care, general population, adult  care, or paediatric care. The 
setting should be reported for  both the development and validation datasets, if applicable.

Y

iv A general definition of the study participants is reported in the abstract 
E.g. patients with suspicion of certain disease, patients with a specific disease, or general 
eligibility criteria. 

Y

v The overall sample size is reported in the abstract Y

vi The number of events (or % outcome together with overall sample size) is reported in the 
abstract 
If a continuous outcome was studied, score Not applicable (NA).

Y

vii Predictors included in the final model are reported in the abstract. For validation studies 
of well-known models, at least the name/acronym of the validated model is reported 
Broad descriptions are sufficient, e.g. ‘all information from patient history and physical 
examination’. 
Check in the main text whether all predictors of the final model are indeed reported in the 
abstract.

Y

viii The outcome is reported in the abstract Y

ix Statistical methods are described in the abstract 
For model development, at least the type of statistical model should be reported. For 
validation studies a quote like “model’s discrimination and calibration was assessed” is 
considered adequate. If done, methods of updating should be reported.

Y

x Results for model discrimination are reported in the abstract 
This should be reported separately for development and validation if a study includes both 
development and validation.

Y

xi Results for model calibration are reported in the abstract 
This should be reported separately for development and validation if a study includes both 
development and validation.

Y

xii Conclusions are reported in the abstract 
In publications addressing both model development and validation, there is no need for 
separate conclusions for both; one conclusion is sufficient.

Y

3a Explain the medical context (including whether diagnostic or prognostic) and 
rationale for developing or validating the multivariable prediction model, including 
references to existing models.

1

i The background and rationale are presented Y

ii Reference to existing models is included (or stated that there are no existing models) Y
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3b Specify the objectives, including whether the study describes the development or 
validation of the model or both.

1

i It is stated whether the study describes development and/or validation and/or 
incremental (added) value

Y

Methods  

4a Describe the study design or source of data (e.g., randomized trial, cohort, 
or registry data), separately for the development and validation data sets, if 
applicable.

1

i The study design/source of data is described 
E.g. Prospectively designed, existing cohort, existing RCT, registry/medical records, case 
control, case series. 
This needs to be explicitly reported; reference to this information in another article alone is 
insufficient.

Y

4b Specify the key study dates, including start of accrual; end of accrual; and, if 
applicable, end of follow-up.  

1

i The starting date of accrual is reported Y

ii The end date of accrual is reported Y

iii The length of follow-up and prediction horizon/time frame are reported, if applicable 
E.g. “Patients were followed from baseline for 10 years“ and “10-year prediction of…”; notably 
for prognostic studies with long term follow-up. 
If this is not applicable for an article (i.e. diagnostic study or no follow-up), then score Not 
applicable (NA).

Y

5a Specify key elements of the study setting (e.g., primary care, secondary care, 
general population) including number and location of centres.

1

i The study setting is reported (e.g. primary care, secondary care, general population) 
E.g.: ‘surgery for endometrial cancer patients’ is considered to be enough information about 
the study setting.

Y

ii The number of centres involved is reported 
If the number is not reported explicitly, but can be concluded from the name of the centre/
centres, or if clearly a single centre study, score Yes.

Y

iii The geographical location (at least country) of centres involved is reported 
If no geographical location is specified, but the location can be concluded from the name of 
the centre(s), score Yes.

Y

5b Describe eligibility criteria for participants. 1

i In-/exclusion criteria are stated 
These should explicitly be stated. Reasons for exclusion only described in a patient flow is not 
sufficient. 

Y

5c Give details of treatments received, if relevant.  
(i.e. notably for prognostic studies with long term follow-up)

1

i Details of any treatments received are described  
This item is notably for prognostic modelling studies and is about treatment at baseline or 
during follow-up. The ‘if relevant’ judgment of treatment requires clinical knowledge and 
interpretation.  
If you are certain that treatment was not relevant, e.g. in some diagnostic model studies, score 
Not applicable.

Y

6a Clearly define the outcome that is predicted by the prediction model, including how 
and when assessed. 

1

i The outcome definition is clearly presented 
This should be reported separately for development and validation if a publication includes 
both. 

Y

ii It is described how outcome was assessed (including all elements of any composite, for 
example CVD [e.g. MI, HF, stroke]).

Y
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iii It is described when the outcome was assessed (time point(s) since T0) Y

6b Report any actions to blind assessment of the outcome to be predicted.    1

i Actions to blind assessment of outcome to be predicted are reported
If it is clearly a non-issue (e.g. all-cause mortality or an outcome not requiring interpretation), 
score Yes. In all other instances, an explicit mention is expected.

Y

7a Clearly define all predictors used in developing or validating the multivariable 
prediction model, including how and when they were measured.

1

i All predictors are reported 
For development, “all predictors” refers to all predictors that potentially could have been 
included in the ‘final’ model (including those considered in any univariable analyses). 
For validation, “all predictors” means the predictors in the model being evaluated.

Y

ii Predictor definitions are clearly presented Y

iii It is clearly described how the predictors were measured Y

iv It is clearly described when the predictors were measured Y

7b Report any actions to blind assessment of predictors for the outcome and other 
predictors. 

1

i It is clearly described whether predictor assessments were blinded for outcome 
For predictors for which it is clearly a non-issue (e.g. automatic blood pressure measurement, 
age, sex) and for instances where the predictors were clearly assessed before outcome 
assessment, score Yes. For all other predictors an explicit mention is expected.

Y

ii It is clearly described whether predictor assessments were blinded for the other 
predictors

Y

8 Explain how the study size was arrived at. 1

i It is explained how the study size was arrived at 
Is there any mention of sample size, e.g. whether this was done on statistical grounds or 
practical/logistical grounds (e.g. an existing study cohort or data set of a RCT was used)? 

Y

9 Describe how missing data were handled (e.g., complete-case analysis, single 
imputation, multiple imputation) with details of any imputation method. 

1

i The method for handling missing data (predictors and outcome) is mentioned 
E.g. Complete case (explicit mention that individuals with missing values have been excluded), 
single imputation, multiple imputation, mean/median imputation. 
If there is no missing data, there should be an explicit mention that there is no missing data for 
all predictors and outcome. If so, score Yes. 
If it is unclear whether there is missing data (from e.g. the reported methods or results), score 
No. 
If it is clear there is missing data, but the method for handling missing data is unclear, score 
No.

Y

ii If missing data were imputed, details of the software used are given 
When under 9i explicit mentioning of no missing data, complete case analysis or no 
imputation applied, score Not applicable.

Y

iii If missing data were imputed, a description of which variables were included in the 
imputation procedure is given 
When under 9i explicit mentioning of no missing data, complete case analysis or no 
imputation applied, score Not applicable.

Y

iv If multiple imputation was used, the number of imputations is reported 
When under 9i explicit mentioning of no missing data, complete case analysis or no 
imputation applied, score Not applicable.

Y

Table S1. Continued
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10a Describe how predictors were handled in the analyses. 1

i For continuous predictors it is described whether they were modelled as linear, nonlinear 
(type of transformation specified) or categorized
A general statement is sufficient, no need to describe this for each predictor separately. 
If no continuous predictors were reported, score Not applicable.

Y

ii For categorical or categorized predictors, the cut-points were reported 
If no categorical or categorized predictors were reported, score Not applicable.

Y

iii For categorized predictors the method to choose the cut-points was clearly described 
If no categorized predictors, score Not applicable.

Y

10b Specify type of model, all model-building procedures (including any predictor 
selection), and method for internal validation. 

0

i The type of statistical model is reported 
E.g. Logistic, Cox, other regression model (e.g. Weibull, ordinal), other statistical modelling (e.g. 
neural network)

Y

ii The approach used for predictor selection before modelling is described 
‘Before modelling’ means before any univariable or multivariable analysis of predictor-
outcome associations. 
If no predictor selection before modelling is done, score Not applicable. 
If it is unclear whether predictor selection before modelling is done, score No. 
If it is clear there was predictor selection before modelling but the method was not described, 
score No.

Y

iii The approach used for predictor selection during modelling is described 
E.g. Univariable analysis, stepwise selection, bootstrap, Lasso. 
‘During modelling’ includes both univariable or multivariable analysis of predictor-outcome 
associations.  
If no predictor selection during modelling is done (so-called full model approach), score Not 
applicable. 
If it is unclear whether predictor selection during modelling is done, score No.  
If it is clear there was predictor selection during modelling but the method was not described, 
score No.

NA

iv Testing of interaction terms is described 
If it is explicitly mentioned that interaction terms were not addressed in the prediction model, 
score Yes.  
If interaction terms were included in the prediction model, but the testing is not described, 
score No.

N

v Testing of the proportionality of hazards in survival models is described 
If no proportional hazard model is used, score Not applicable.

NA

vi Internal validation is reported  
E.g. Bootstrapping, cross validation, split sample. 
If the use of internal validation is clearly a non-issue (e.g. in case of very large data sets), score 
Yes. For all other situations an explicit mention is expected.

Y

10c For validation, describe how the predictions were calculated. Not 
applicable

10d Specify all measures used to assess model performance and, if relevant, to compare 
multiple models.  
These should be described in methods section of the paper (item 16 addresses the reporting of 
the results for model performance). 

1

i Measures for model discrimination are described 
E.g. C-index / area under the ROC curve.

Y

ii Measures for model calibration are described 
E.g. calibration plot, calibration slope or intercept, calibration table, Hosmer Lemeshow test, 
O/E ratio.

Y
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iii Other performance measures are described  
E.g. R2, Brier score, predictive values, sensitivity, specificity, AUC difference, decision curve 
analysis, net reclassification improvement, integrated discrimination improvement, AIC.

Y

10e Describe any model updating (e.g., recalibration) arising from the validation, if 
done.

Not 
applicable

11 Provide details on how risk groups were created, if done. 
If risk groups were not created, score this item as Yes.

1

i If risk groups were created, risk group boundaries (risk thresholds) are specified  
Score this item separately for development and validation if a study includes both 
development and validation. 
If risk groups were not created, score this item as not applicable.

Y

12 For validation, identify any differences from the development data in setting, 
eligibility criteria, outcome and predictors. 

Not 
applicable

Results  

13a Describe the flow of participants through the study, including the number of 
participants with and without the outcome and, if applicable, a summary of the 
follow-up time. A diagram may be helpful.

1

i The flow of participants is reported Y

ii The number of participants with and without the outcome are reported 
If outcomes are continuous, score Not applicable.

NA

iii A summary of follow-up time is presented 
This notably applies to prognosis studies and diagnostic studies with follow-up as diagnostic 
outcome. 
If this is not applicable for an article (i.e. diagnostic study or no follow-up), then score Not 
applicable.

Y

13b Describe the characteristics of the participants (basic demographics, clinical 
features, available predictors), including the number of participants with missing 
data for predictors and outcome. 

1

i Basic demographics are reported Y

ii Summary information is provided for all predictors included in the final developed/
validated model

Y

iii The number of participants with missing data for predictors is reported Y

iv The number of participants with missing data for the outcome is reported Y

13c For validation, show a comparison with the development data of the distribution of 
important variables (demographics, predictors and outcome).

Not 
applicable

14a Specify the number of participants and outcome events in each analysis. 1

i The number of participants in each analysis (e.g. in the analysis of each model if more 
than one model is developed) is specified

Y

ii The number of outcome events in each analysis is specified (e.g. in the analysis of each 
model if more than one model is developed) 
If outcomes are continuous, score Not applicable.

Y

14b If done, report the unadjusted association between each candidate  predictor and 
outcome.

1

i The unadjusted associations between each predictor and outcome are reported 
If any univariable analysis is mentioned in the methods but not in the results, score No.  
If nothing on univariable analysis (in methods or results) is reported, score this item as Not 
applicable.

Y

Table S1. Continued
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15a Present the full prediction model to allow predictions for individuals (i.e., all 
regression coefficients, and model intercept or baseline survival at a given time 
point).

1

i The regression coefficient (or a derivative such as hazard ratio, odds ratio, risk ratio) for 
each predictor in the model is reported 

Y

ii The intercept or the cumulative baseline hazard (or baseline survival) for at least one time 
point is reported

Y

15b Explain how to use the prediction model. 0

i An explanation (e.g. a simplified scoring rule, chart, nomogram of the model, reference 
to online calculator, or worked example) is provided to explain how to use the model for 
individualised predictions.

N

16 Report performance measures (with confidence intervals) for the prediction model. 
These should be described in results section of the paper (item 10 addresses the reporting of 
the methods for model performance).

1

i A discrimination measure is presented 
E.g. C-index / area under the ROC curve.

Y

ii The confidence interval (or standard error) of the discrimination measure  is presented Y

iii Measures for model calibration are described 
E.g. calibration plot, calibration slope or intercept, calibration table, Hosmer Lemeshow test, 
O/E ratio.

Y

iv Other model performance measures are presented 
E.g. R2, Brier score, predictive values, sensitivity, specificity, AUC difference, decision curve 
analysis, net reclassification improvement, integrated discrimination improvement, AIC.

Y

17 If done, report the results from any model updating (i.e., model specification, model 
performance, recalibration). 
If updating was not done, score this TRIPOD item as ‘Not applicable’. 

Not 
applicable

Discussion  

18 Discuss any limitations of the study (such as nonrepresentative sample, few events 
per predictor, missing data). 

1

i Limitations of the study are discussed 
Stating any limitation is sufficient.

Y

19a For validation, discuss the results with reference to performance in the development 
data, and any other validation data. 

Not 
applicable

19b Give an overall interpretation of the results considering objectives, limitations, 
results from similar studies and other relevant evidence.  

1

i An overall interpretation of the results is given Y

20 Discuss the potential clinical use of the model and implications for future research. 1

i The potential clinical use is discussed  
E.g. an explicit description of the context in which the prediction model is to be used (e.g. 
to identify high risk groups to help direct treatment, or to triage patients for referral to 
subsequent care).

Y

ii Implications for future research are discussed 
E.g. a description of what the next stage of investigation of the prediction model should be, 
such as ”We suggest further external validation”.

Y

Other information  

21 Provide information about the availability of supplementary resources, such as 
study protocol, web calculator, and data sets. 

 

i Information about supplementary resources is provided Y

22 Give the source of funding and the role of the funders for the present study. 1
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i The source of funding is reported or there is explicit mention that there was no external 
funding involved

Y

ii The role of funders is reported or there is explicit mention that there was no external 
funding 

Y

Number of applicable TRIPOD items 30

Number of TRIPOD items adhered 28

OVERALL adherence to TRIPOD 93%

Table S1. Continued
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6.1 Abstract

6.1.1 Introduction
There is a cumulative risk of 20-40% of developing brain metastases (BM) in solid cancers. 
Stereotactic radiotherapy (SRT) enables application of high focal doses of radiation to a 
volume, and is often used for BM treatment. However, SRT can cause adverse radiation 
effects (ARE) such as radiation necrosis, sometimes causing irreversible damage to the 
brain. It is therefore of clinical interest to identify patients at high-risk of developing ARE. 
We hypothesized that models trained with radiomics features, deep learning (DL) features, 
patient characteristics, or a combination, can predict ARE risk in patients with BM before 
SRT.

6.1.2 Methods
Gadolinium-enhanced T1-weighted MRIs and characteristics from patients treated with 
SRT for BM were collected for a training and testing cohort (N=1404), and a validation 
cohort (N=237) from a separate institute. From each lesion in the training set, radiomics 
features were extracted and used to train an extreme gradient boosting (XGBoost) model. 
A DL model was trained on the same cohort to make a separate prediction, and to extract 
the last layer of features. Different models using XGBoost were built using only radiomics 
features, DL features and patient characteristics, or a combination of them. Evaluation was 
performed using the area under the curve (AUC) of the receiver operating characteristic 
curve on the external dataset. Predictions for individual lesions and per-patient developing 
ARE were investigated.

6.1.3 Results
The best performing XGBoost model on a lesion-level was trained on a combination 
of radiomics features and DL features (AUC of 0.71, recall of 0.80). On a patient-level, a 
combination of radiomics features, DL features, and patient characteristics obtained the 
best performance (AUC of 0.72, recall of 0.84). The DL model achieved an AUC of 0.64 and 
recall of 0.85 per-lesion, and an AUC of 0.70 and recall of 0.60 per-patient. 

6.1.4 Conclusion
Machine learning models built on radiomics features and DL features extracted from BM 
combined with patient characteristics show potential to predict ARE at the patient and 
lesion level. These models could be used in clinical decision making, informing patients on 
their risk of ARE, and allowing physicians to opt for different therapies. 
radiation effects
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6.2 Introduction

Brain metastases (BM) are the most common intracranial malignancies, accounting for 
more than 50% of all brain tumors, and occurring in 10 to over 40% of patients with 
solid malignancies (Walker, Robins and Weinfeld, 1985; Johnson and Young, 1996; Wen 
and Loeffler, 1999). BM occur most often in patients with lung cancer, breast cancer, and 
melanoma, which have a cumulative risk ranging from 20% to 40% of developing BM 
(Schouten et al., 2002; Barnholtz-Sloan et al., 2004; Rangachari et al., 2015; Huber et al., 2020). 
BM can be treated locally by surgery or radiotherapy, or with systemic anticancer therapy. 
Treatment depends on several factors, such as patient performance status, number and 
volume of metastases, presence of extracranial metastases, symptoms, and presumed 
efficacy of available systemic therapy (‘Systemic therapy for brain metastases’, 2018; 
Vogelbaum et al., 2022). Radiotherapy of BM can be either stereotactic radiotherapy (SRT) 
or whole brain radiotherapy (WBRT), with SRT being guideline recommended treatment 
for a limited number of BM. As WBRT is associated with neurocognitive deterioration, SRT 
is increasingly used in multiple BM as well (McTyre, Scott and Chinnaiyan, 2013; Kraft et 
al., 2019, 2021). SRT is either delivered in a single fraction, with stereotactic radiosurgery 
(SRS), or as fractionated stereotactic radiotherapy (FSRT), and results in a high dose within 
the target volume with a steep dose gradient to the surrounding healthy tissue (Badiyan, 
Regine and Mehta, 2016).

Even though most of the healthy brain is spared from high doses of radiation, a major 
shortcoming of SRT is a chance of high toxicity in the immediate surrounding tissues, 
which may lead to adverse radiation effects (ARE) such as radiation necrosis (RN), subacute 
edema, structural changes in the white matter, and vascular lesions (Walker et al., 2014). 
ARE is a relatively late reaction to irradiation of healthy tissues where either reversible or 
irreversible injury has occurred (Sneed et al., 2015). Risk of ARE after SRT and SRS is found to 
be similar, and ranges from 5-10% at patient level (Gerosa et al., 2002; Lawrence et al., 2010; 
Minniti et al., 2014; Vellayappan et al., 2018), or approximately 3% at lesion level (Sneed 
et al., 2015). Known predictors of ARE are tumor volume, isodose volume, and previous 
SRT to the same lesion (Sneed et al., 2015). ARE of the tumor area and tumor progression 
(TP) as two different post-therapeutic events require different treatment strategies: while 
steroids are often indicated for the initial treatment of ARE, true progression or relapse 
requires repeated radiotherapy, surgery, or effective intracranial systemic therapy for 
tumor control. Being able to differentiate between ARE and TP is therefore of utmost 
clinical interest.

Unfortunately, the (neurological) symptoms of ARE and TP are usually indistinguishable. 
Furthermore, the appearances of ARE and TP are very difficult to discern through qualitative 
radiological imaging, requiring multiple successive magnetic resonance images (MRI), 
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specialized MRI sequences such as perfusion-weighted or MR spectroscopy, and trained 
experts to evaluate the findings (Petrovich et al., 2002; Vellayappan et al., 2018). The 
clinical workflow is time- and labor-intensive, and while it is unfeasible to perform for 
every lesion, a definitive confirmation of the presence of ARE requires tissue acquisition 
(Vellayappan et al., 2018). 

SRT requires routine pretreatment MRI for accurate target volume delineation. This 
imaging provides a source of non-invasively acquired information about BM and brain 
phenotypes that could be investigated for their potential to determine before treatment 
which patient has a high risk of developing ARE. The early identification of these patients 
is an unmet clinical need which may help in clinical decision making by informing the 
patients of the risk of ARE, early risk stratification of patients that may develop ARE, and 
consideration of ARE-risk mitigating strategies such as deferring radiotherapy for central 
nervous system-penetrant systemic therapy.

Advanced quantitative medical image analysis methods such as radiomics and deep 
learning (DL) extract large amounts of imaging features and associate these with 
biological and/or clinical outcomes using machine learning (ML) techniques (Lambin 
et al., 2012; Aerts et al., 2014; Zhou et al., 2018; Morin et al., 2019; Avanzo et al., 2020; 
Rogers et al., 2020). Thus, radiological images from routine imaging procedures could 
potentially be used to non-invasively quantify the lesion phenotype providing clinically 
necessary information for patient management decisions. Several studies have indicated 
that MRI radiomics analysis is able to differentiate BM from glioblastoma (Abidin et al., 
2019; Dong et al., 2020), to predict local recurrence (Huang et al., 2020; Mouraviev et al., 
2020), to predict the origin of metastases (Ortiz-Ramón et al., 2018; Kniep et al., 2019), and 
overall survival (Bhatia et al., 2019; Della Seta et al., 2019). DL has also shown potential in 
predicting treatment response on brain MRI (Cho et al., 2021). Moreover, DL and radiomics 
can have a complementary value, potentially establishing a more robust classifier (Parekh 
and Jacobs, 2019). 

We hypothesize that models trained with radiomics features, DL features, and patient 
characteristics, or a combination thereof, can predict occurrence of ARE in patients with 
BM, both lesion specific and patient specific. 
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6.3 Materials and methods

6.3.1 Patient characteristics
All data from patients with BM treated with SRT between 1997 and 2017 for which 
imaging, outcome data, and patient data were available were collected retrospectively 
from the University of California-San Francisco (UCSF) medical center’s picture archiving 
and communication system. Available imaging data, outcome data, and patient data of all 
patients with BM treated with SRS/SRT between 2014 and 2019 at the University Hospital 
Zürich (USZ) were collected retrospectively. The data included clinical and biological 
information for both the patient and the lesion. The eligibility criteria included radical 
treatment for metastatic brain cancer using Gamma Knife SRS for the UCSF patients and 
SRS/FSRT for the USZ patients. The inclusion of patients was regardless of the number of 
BM, but pathohistological or imaging-based confirmation of ARE during the follow-up was 
required in addition to pathohistological confirmation of the primary tumor. For the USZ 
cohort, in case of imaging-based suspicion of RN, positron emission tomography imaging 
was additionally used to exclude TP. The effort obtained ethical approval for observational 
research using anonymized linked care data for supporting medical purposes that are in 
the interests of individuals and the wider public. UCSF Institutional Review Board (https://
irb. ucsf.edu) and Cantonal Ethics Committee Zurich approval with waiver of informed 
consent was obtained.

The UCSF dataset was divided randomly into sub-cohorts for training (70%)and testing 
(30%)while maintaining the ratios of events to non-events equal in both groups. The 
USZ dataset was used as an independent external validation dataset, i.e., it was entirely 
unseen by the models during the training and testing phases. The binary outcome used 
in training and validation was ARE per lesion, defined as either pathologically or imaging-
based confirmation of RN occurring at any time after treatment. For both the USCF and 
USZ patients, ARE was confirmed by histopathology when treated with open surgery. In all 
other cases, ARE was confirmed either at routine re-staging 3 months after radiotherapy 
for asymptomatic patients or at the onset of new symptoms. When patients presented 
new symptoms, imaging was performed usually after awaiting the effects of cortisone 
administration. As the time of BM formation is unknown, the outcome was not defined as 
right-censored. As every lesion is able to independently develop ARE after treatment, every 
lesion was considered to be an independent sample. The probability of ARE occurring for 
any lesion within a patient as an outcome was also investigated, whereby each patient 
was treated as an independent sample instead.

6.3.2 MR acquisition parameters and lesion segmentation
All images were axial gadolinium-enhanced T1-weighted MRI acquired prior to the 
treatment of BM. All included lesions were three-dimensionally delineated for curative 
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Gamma Knife SRS treatment purposes for the UCSF cohort and for curative SRS/ FSRT 
purposes for the USZ cohort according to local protocols by an experienced radiation 
oncologist. Figure 1 shows two T1weighted gadolinium-enhanced MRI with lesions 
delineated for SRT purposes.

Figure 1: T1-weighted gadolinium enhanced MRIs of the brain with delineated in red (A) a lesion that developed adverse 
radiation effects after stereotactic radiotherapy and (B) a lesion that did not develop adverse radiation effects after stereotactic 
radiotherapy.  

  

Figure 1. T1-weighted gadolinium enhanced MRIs of the brain with delineated in red (A) a lesion 
that developed adverse radiation effects after stereotactic radiotherapy and (B) a lesion that did not 
develop adverse radiation effects after stereotactic radiotherapy. 

To perform segmentations of the brain and the ventricles on the entire dataset, an atlas-
based segmentation strategy was chosen. To create the atlas in the MIM software package 
(MIM v. 6.9.4, MIM Software Inc., Cleveland, OH, USA), 50 randomly chosen MRI were 
manually segmented by an expert radiologist.

6.3.3 Pre-processing of brain MRI data
Bias-field correction was performed in the MIM software package using the N4 algorithm, 
which required brain segmentations (37). A bias field is a low-frequency signal distributed 
over an MR image, which is caused by inhomogeneities in the magnetic field of the MRI 
scanner. This causes shifts of intensity value ranges across the image (38). The ventricle 
mask was subtracted from the brain mask to obtain a white- and gray-matter segmentation. 
This segmentation was used to determine and correct the bias field present in the image 
using the N4 algorithm (37) using the MIM software package.

Following the bias correction, all remaining pre-processing, feature extraction, model 
training, and evaluation were performed in Python (version 3.7). The different Python 
packages used during this study can be found in Supplementary Table S1. Pre-processing 
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of MRI is essential for ML purposes, for reducing scanner dependence, and for ensuring 
reproducibility(39–41) As there is, to date, no consensus regarding the best way to pre-
process MRI for our purposes, three different pre-processing workflows were applied and 
compared: “minimalist”, standardization, and “harmonization”. The descriptions of these 
pre-processing workflows can be found in the supplementary materials (Section 1)
 

 

Figure 2: Pre-processing strategies for the “minimalist”, “standardization” and “harmonization” approaches. 

Figure 2. Pre-processing strategies for the “minimalist”, “standardization” and “harmonization” 
approaches.

6.3.4 Pre-processing for radiomics and feature
Feature extraction was performed according to the image biomarker standardization 
initiative (IBSI) guidelines (Duron et al., 2019; Carré et al., 2020; Zwanenburg et al., 2020) 
on the three different sets of processed MRI scans using the BM segmentations. All images 
were resampled to uniform 1x1x1 mm3 voxels using the ‘sitkBSpline’ interpolator to correct 
for differences in pixel size and slice spacing. The choice for voxel dimensions was made 
based on majority ruling, as it was found that most patients had a pixel spacing of ~1mm. 
To achieve isotropic voxels, the choice for resampling in the z-direction was also chosen as 
1mm. Pixel intensity values were resampled to a fixed number of 64 bins, as the number 
of gray levels was found to affect interchangeability of MRI radiomics features, and a fixed 
bin number of 64 has been found recommended in previous studies (Duron et al., 2019; 
Carré et al., 2020; Zwanenburg et al., 2020). 

A total of 106 IBSI features were extracted from each segmentation. Features were 
extracted from the BM segmentations of the pre-processed images and can be divided 
into first-order intensity, histogram statistics, shape, and texture features. A full list and 
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description of the features can be found in the PyRadiomics documentation (Radiomic 
Features — pyradiomics documentation, 2019) , and a description of the feature groups 
in supplementary materials section 2.Pre-processing for deep learning

6.3.5 Pre-processing for deep learning
To inform the DL model on the location and extension of the lesions, lesion masks were 
used to highlight the ROI. A Gaussian smoothing filter was applied to the image, gradually 
decreasing the intensity values around the lesion from a factor of 1.0 to 0.2 to still include 
information of the voxels immediately around the lesion masks.

Otsu thresholding was performed to create a mask containing the brain and skull. This 
mask was used to determine the largest three-dimensional bounding box containing 
the brain and skull to crop the images. Anything outside this mask was defined as the 
image background, for which all pixel values were set at 0. For the “minimalist” and the 
“standardization” datasets, the intensities were resampled in a range between 0 and 255. 
Finally the scans were rescaled at 256x256x64 with spline interpolation order 3. As an 
example, the steps of the pre-processing workflow for the “minimalist” normalization is 
illustrated in figure 3.

6.3.6 Machine learning models
The mean and SD of each feature over the entire training population were determined. 
These values were used to apply z-score normalization to the features of the training, 
testing, and external validation datasets (Chatterjee et al., 2019). Next, features with low 
variance (<0.01) were determined and excluded from the dataset. Lastly, the correlation 
between features was determined using absolute pairwise Spearman rank correlation. 
As highly correlated features (>0.85) were assumed to contain overlapping information 
about the outcome, the feature with the highest mean absolute correlation with the rest 
of the features was excluded. Lastly, supervised feature selection was performed through 
recursive feature elimination (RFE). RFE uses a ML algorithm to build a multivariate model 
and determine predictive performance using the currently selected features. It recursively 
drops and adds features, determining the optimal number of features and the selection 
of most predictive features.

An extreme gradient boosting (XGBoost) model was used for RFE and ARE prediction. A 
description of the XGBoost architecture, and the methodology to determine the optimal 
hyperparameters for the trained models, can be found in supplementary materials section 
3. 
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Figure 3: Example of pre-processing strategy: deep learning on the “minimalist” approach. The different steps of pre-processing 

were (A) z-score normalization, (B) shift to positive values only (C) pixel attenuations with Gaussian smoothing filtering (D) 
cropping around the largest bounding box and background set to 0 (E) resizing at 256x256 (F) rescaling the pixel value range to 
0-255. 

 

Figure 3. Example of pre-processing strategy: deep learning on the “minimalist” approach. The 
different steps of pre-processing were (A) z-score normalization, (B) shift to positive values only (C) 
pixel attenuations with Gaussian smoothing filtering (D) cropping around the largest bounding box 
and background set to 0 (E) resizing at 256x256 (F) rescaling the pixel value range to 0-255.

6.3.7 Deep learning model
An Xception three-dimensional model was trained and tested on the same datasets as 
the handcrafted radiomics-based model. Xception is the extreme version of an Inception 
model (Chollet 2017), which uses depthwise separable convolutions. The architecture can 
be found in supplementary figure 1. Adam optimization was used (Kingma and Ba, 2014) 
with an initial learning rate of 10-5 which updated the learning rate during training and 
used for loss function binary cross-entropy. This model produced a score ranging from 
0 to 1, indicating the estimated probability that a lesion develops ARE. The area under 
the curve (AUC) of the receiver operating characteristic (ROC) was monitored on the test 
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dataset. The ROC displays the discriminative performance of a model expressed through 
the sensitivity and specificity as the threshold for binary classification is shifted. The 
AUC of the ROC is a metric from 0 to 1, where 1 means the model has perfect predictive 
performance and 0.5 is equivalent to guessing. To limit the imbalance of the outcomes to 
affect the model training, the model was only trained on lesions for those patients who 
had at least a single ARE, and tested on the scans of the patients who had ARE in the test 
dataset. To combine DL and radiomics, the last fully connected layer consisting of 256 
features obtained after training the model was extracted. These features were then used 
to train a ML model similarly to using radiomics features, and used in models combining 
radiomics features and patient characteristics.

6.3.8 Clinical and treatment-related feature model
As the training and testing datasets contained patient characteristics not available in 
the external validation dataset, any feature not overlapping between these datasets 
was dropped. The list of remaining features was: primary tumor location, primary tumor 
histology, primary tumor controlled, extra-cranial metastases (ECM) present, patient 
age, patient sex, SRS to same location, prior external beam radiotherapy (EBRT), prior 
radiosurgery (RS), neurological symptoms, headaches, seizures, hypertension, diabetes, 
connective tissue disorder (CTD), Karnofsky performance status (KPS), prescription 
dose, and isodose-lines. For XGBoost to be able to handle categorical variables, one-hot 
encoding was performed on two categorical clinical features (primary tumor location and 
primary tumor histology). 

Missing values were imputed using MissForest. MissForest is an imputation algorithm that 
uses RandomForest to train a model on the non-missing data for each feature with missing 
values, to predict the missing values. In the first iteration, all values are set to the mean 
value present for each variable (i.e., each column). Then, over multiple iterations, each 
data column with missing values will be predicted, using all the data except for the rows 
containing the missing values in question. This process is repeated over several iterations.

6.3.9 Metrics used for data analysis
Patient and tumor characteristics in the UCSF and USZ cohorts were assessed 
through a two-proportion z-test to test for significant differences in categorical 
variables between the cohorts, or the unpaired two-sample t-test to test for 
significant differences in numerical variables. For the latter, the assumptions of the 
data having a normal distribution and possessing the same variance in both cohorts 
were tested through Shapiro-Wilk’s test and f-test, respectively. The significance 
level was set at 5%. 
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To determine which method ensured best performance for the radiomics-based and DL 
models, models were trained on the three different pre-processed datasets, and the best 
AUC of the ROC on the testing set was used to determine the best pre-processing methods 
for ML and DL separately. The 95% confidence intervals (CI) displayed on the ROC curves 
were obtained using bootstrapping (n=2000). For the radiomics-based model, the results 
were reported on the full train dataset and the entire test dataset. For the DL model, the 
results were reported on the balanced train dataset (which served to train the different DL 
models) and the full test dataset. 

Once the best models were selected, the models were validated on the external dataset. 
Predictive performance of each model was expressed through the ROC curve, and its 
AUC, on the training, testing, and external data. By determining an optimal threshold 
value using the Youden’s J statistic (Youden, 1950) based on the training dataset, a binary 
classification was performed on the external dataset. From this binary classification, the 
balanced accuracy, precision, recall, and F1-score were determined. The confusion matrices 
were also derived from the binary classification. To determine model performance and to 
compare between models, the recall was investigated specifically, which is the proportion 
of true positives of the total number of true cases. As the number of events was relatively 
low and not missing any patients at risk of ARE is crucial, a high recall of the models was 
desirable. The CI obtained for all metrics were obtained using bootstrapping, resampling 
the results 2000 times. Moreover, analysis of the agreement prediction between the DL 
model and the radiomics-based model was performed. To give a prediction per patient, 
the maximum prediction of ARE among the different lesion predictions of the patient was 
selected. The ground truth to which the prediction was compared to was the ARE status of 
the patient, meaning the patient had at least one ARE lesion. An overview of the models 
tested can be found in figure 4. 

 

Figure 4: general workflow of the model training process: first the MRI data was pre-processed, using 3 pre-processing, 
selecting the most suitable pre-processed set of images according to the radiomics-based model or the DL model performance on 
the internal test dataset, then models are ensemble or trained separately, and finally the performance of each model is computed 
on the external dataset. 
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radiomics-based model or the DL model performance on the internal test dataset, then models 
are ensemble or trained separately, and finally the performance of each model is computed on the 
external dataset.
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We evaluated on the external dataset for which cases the DL model and the best radiomics 
classifier obtained the same predictions and reported the amount of cases for which those 
models agreed on the label. The metrics based on the data for which the models agreed 
was also reported.

6.4 Results

6.4.1 Patient characteristics
A total of 1404 patients with 7974 lesions were included from UCSF, and 237 patients 
with 646 lesions from USZ. Table 1 shows an overview of the patient characteristics of 
the UCSF and USZ data. Significant differences between the proportion of males and 
females between the datasets (P < 0.01), median age (P = 0.03), KPS status (P < 0.01), 
and the number of lesions per patient at treatment (P < 0.01) were found. Furthermore, 
the proportions of primary tumor (lung, melanoma, and breast) were different between 
the datasets, and the data from USZ did not have kidney, GI, sarcoma, or other types of 
primary locations that were present in the UCSF dataset. For the histology of the primary 
tumor, only the melanoma histology subtype was found to be present in a significantly 
different proportion. 

Table 1. Patient characteristics of University of California - San Francisco (UCSF) and University 
Hospital Zurich (USZ) datasets. P value of two-proportion z-test or unpaired two-sample t-test for 
significant differences between datasets was reported for each characteristic if applicable. 

Patient/Tumor Characteristic Total UCSF data USZ data P

N = 1404 N = 237

Sex (%) Male 571 (41) 128 (54) <0.01

Female 833 (59) 109 (46)  

Median Age ± SD 59 (13) 62 (12) 0.03

KPS (%) 80-100 1053 (75) 198 (83) <0.01

40-80 351 (25) 37 (16) <0.01

10-40 0 (0) 2 (1) -

Primary tumor location (%) Lung 530 (38) 136 (58) <0.01

Breast 357 (25) 27 (11) <0.01

Melanoma 272 (19) 74 (31) <0.01

Kidney 91 (7) 0 (0) -

Gastrointestinal 57 (4) 0 (0) -

Gynecologic 27 (2) 0 (0) -

Sarcoma 20 (1) 0 (0) -

Other 50 (4) 0 (0) -
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Histology primary tumor (%) Adenocarcinoma 802 (57) 124 (52) 0.17

Melanoma 272 (19) 74 (31) <0.01

Renal cell carcinoma 88 (6) 0 (0) -

Small cell carcinoma 44 (3) 0 (0) -

Squamous cell carcinoma 40 (3) 10 (4) 0.26

Sarcoma 18 (1) 0 (0) -

Large cell carcinoma 9 (0.6) 2 (1) 0.72

Bone carcinoma 8 (0.6) 0 (0) -

Adeno squamous carcinoma 6 (0.4) 0 (0) -

Broncho alveolar cell carcinoma 5 (0.4) 0 (0) -

Germ cell carcinoma 2 (0.1) 0 (0) -

Lymphoma 1 (0.1) 0 (0) -

Other/NOS 109 (8) 27 (11) 0.06

Primary controlled 974 (70) 149 (63) 0.05

ECM present 1097 (78) 190 (80) 0.48

#Lesions per patient at treatment Median ± SD 3 (7) 2 (3) <0.01

Symptoms Headaches 437 (31) 31 (13) <0.01

Hypertension 407 (29) 0 (0) < 0.01

Seizures 134 (10) 16 (7) 0.17

Diabetes 98 (7) 13 (6) 0.4

CTD 21 (2) 2 (1) 0.43

#Lesions in total 7974 646 -

#ARE cases (% of total lesions) 217 (2.7) 20 (3.1) 0.61

#Patients with ARE (% of total patients) 155 (11) 19 (8) 0.16

Prescription dose ± SD (Gy) 18.5 (1.5) 20 (5.0) -

SD = standard deviation; KPS = Karnofsky performance score: 80-100 good performance, 50-
70 medium performance, 10-40 bad performance; ECM = extracranial metastasis; BM = brain 
metastasis; CTD = connective tissue disorder; ARE = adverse radiation effect; Gy = gray.

6.4.2  Radiomics-based model and DL model results based on the three diffe-
rent preprocessing of the dataset

The best AUC on the test dataset for the radiomics-based models was found using the 
“harmonization” normalization, with an AUC of 0.76 (CI of 0.70-0.81), compared to 0.75 
(CI of 0.70-0.80) and 0.73 (CI of 0.67-0.79) for “minimalist” and “standardization” methods, 
respectively. 

The best AUC on the test dataset for the DL models was found using the “standardization” 
normalization, with an AUC of 0.72 (CI of 0.66-0.78), compared to 0.63 (CI of 0.57-0.70) and 
0.65 (CI of 0.58-0.71) for “minimalist” and “harmonization” methods, respectively. Figure 
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5 shows the ROC-curves of the training and testing datasets for the three different pre-
processing methods for radiomics based ML and for DL.

6.4.3 Results of the combined best performing models
We calculated the AUC and CI for each model combination on the external validation 
dataset. The DL model, built on images pre-processed with the “standardization” 
method, achieved an AUC of 0.64 (CI of 0.50-0.76). The model built on radiomics features, 
extracted from the images pre-processed with the “harmonization” method, achieved 
an AUC of 0.73 (CI of 0.63-0.83). The model was built on 20 features selected through 
RFE. Supplementary figure 2A provides an overview of the selected features and the 
corresponding importance in the XGBoost model. Supplementary table 2 provides an 
overview of the hyperparameters determined through grid search cross-validation. The 
model based on the combination of the DL features extracted from the last layer and 
radiomics features achieved an AUC of 0.71 (CI of 0.60-0.82). The model was built on 10 
features selected through RFE. Supplementary figure 2B provides an overview of the 
selected features and the corresponding importance in the XGBoost model. The model 
built on radiomics features, extracted from images pre-processed with the “harmonization” 
method, combined with patient characteristic features achieved an AUC of 0.70 (CI of 0.57-
0.80). The model was built on 19 features selected through RFE. Supplementary figure 
2C provides an overview of the selected features and the corresponding importance in 
the XGBoost model. Finally, the model built on radiomics features, extracted from images 
pre-processed with the “harmonization” method, combined with DL features, extracted 
from images pre-processed with the “standardization” method, and patient characteristics 
achieved an AUC of 0.69 (CI of 0.56-0.81). The model was built on 20 features selected 
through RFE. Supplementary figure 2D provides an overview of the selected features and 
the corresponding importance in the XGBoost model. Figure 6 shows the ROC-curves 
with CI of the training, testing datasets, and validation datasets for these models. 

The combination of radiomics and DL features achieved the highest combination of 
balanced accuracy and recall of 0.67 (CI of 0.56-0.76) and 0.80 (CI of 0.62-0.96), respectively, 
of the externally validated models. For a patient-level prediction, the DL model achieved 
an AUC of 0.70 (CI of 0.56-0.80), and the radiomics model an AUC of 0.72 (CI of 0.60-0.83). A 
combination of radiomics and DL achieved an AUC 0.71 (CI of 0.57-0.83), a combination of 
radiomics and patient characteristics an AUC of 0.71 (CI of 0.59-0.81), and a combination 
of radiomics features, DL features, and patient characteristics an AUC of 0.72 (CI of 0.58-
0.84). The model combining radiomics features, DL features, and patient characteristics 
achieved the highest combination of balanced accuracy and recall of 0.65 (CI of 0.55-0.74) 
and 0.84 (CI of 0.65-1.00), respectively, of the externally validated models.
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Figure 5: Comparison of predictive performance through receiver operating characteristic curves for (A) radiomics-based 
machine learning and (B) deep learning models using three different pre-processed image datasets. The shaded areas represent 
the 95% confidence intervals of the corresponding receiver operating characteristic curves. 
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Figure 6: Receiver operating characteristic curves of the training, testing, and external validation datasets for the different 
model combinations. The shaded areas represent the 95% confidence intervals of the corresponding receiver operating 
characteristic curves. 
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The DL model predictions and the radiomics-based model predictions per lesion agreed for 
32% of the external dataset. For the per-patient classification, the DL model predictions and 
the radiomics combined with clinical feature-based model predictions agreed for 19% of 
the external dataset. Because the amount of patients for which the models agreed was low 
(47 patients, 6 with ARE), no CI could be derived. Table 2 provides an overview of the AUC, 
balanced accuracy, precision, recall, and F1 score metrics for all DL and ML models, on a 
lesion and patient level, and for the agreed labels on the external validation. Supplementary 
tables 3 and 4 contain the same metrics for the training and testing datasets, respectively. 
The corresponding confusion matrices are in supplementary figure 3 and 4, respectively.

6.5 Discussion

Patients with BM treated with SRT are at risk of developing ARE, such as RN. Early 
identification of these patients can help in clinical decision making. The MRIs required 
for SRT planning provide an opportunity to identify these patients through quantitative 
imaging methods. In this large-scale study ML models that can successfully predict ARE 
were trained on T1-weighted MR imaging features from secondary brain tumors treated 
with SRT. As no consensus to harmonize MR images within and between centers exists, 
multiple methods were tested for the DL and ML pipeline, resulting in two optimal pre-
processing methods (“harmonization” for the ML pipeline, “standardization” for the DL 
pipeline). A ML model trained with radiomics features combined with DL features yielded 
the highest predictive performance, with a combination of ROC AUC, balanced accuracy, 
and recall of 0.71, 0.67 and 0.80, respectively. At the patient level the best performing ML 
model was clearly a combination of radiomics, clinical (age at treatment, prior RS, and sex), 
and DL features achieving the highest predictive performance (AUC of 0.72), a balanced 
accuracy of 0.65, and recall of 0.84. 

Performing an aggregate prediction (i.e., using only those predictions that agreed on the 
outcome) did not improve predictive performance for the lesion level prediction (AUC of 0.67), 
nor the binary prediction (balanced accuracy of 0.65). However, using this method the highest 
recall of 0.90 was achieved, making this method very robust in detecting true positives. 

The models pave the way for clinical decision making of patients at risk of ARE before 
treatment. The information on the risk of an individual patient may be used by clinicians 
to inform patients of the risk of ARE when SRT is used as treatment. Furthermore, this 
information may be used to perform an early stratification of those patients at high risk, 
or may allow the patient and clinician to pursue alternative therapy, such as systemic 
therapy or alternate radiotherapy approaches (e.g., dose de-intensified SRT or WBRT) if 
the risk of ARE outweighs the possible benefits of SRT (Alvarez-Breckenridge et al., 2022). 
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To our knowledge, this is the first study that performs pre-treatment prediction of ARE 
using quantitative image analysis. Several studies have investigated the possibility of 
differentiating between tumor recurrence and RN after treatment, which is nominally 
similar in purpose to identify those patients who may have ARE. Zhang et al. (Zhang et al. 
2018) used radiomics features extracted from four different MR sequences (T1, T1 post-
contrast, T2, and fluid-attenuated inversion recovery (FLAIR)) at two different time-points 
during follow-up to differentiate RN from TP, confirmed pathologically. A model was built 
on a dataset of 87 patients with 97 lesions using 5 delta-radiomics features from T1 and 
T2 sequences. The AUC and binary prediction accuracy of the model were both 0.73. 
However, this result was obtained using leave-one-out cross validation, as no external 
validation was used. Similarly, Peng et al. created a model on radiomics features extracted 
from T1 and T2 FLAIR, on 66 patients with 77 lesions in total (Peng et al. 2018). The model 
was compared to a neuroradiologist’s performance. No external validation was used, and 
instead a leave-one-out cross validation was performed, which gave an AUC of 0.81. The 
sensitivity and specificity of the neuroradiologist were 0.97 and 0.17, compared to 0.65 
and 0.87 for the radiomics-based model. In (Park et al. 2021), the study compared the 
results obtained after training radiomics-based models using different MRI sequences (T1, 
T2 and apparent diffusion coefficient (ADC)). The models were trained using the data from 
86 patients and tested on an external dataset of 41 patients. The best AUC was found on 
the ADC-based data with 0.80, when the other sequences had AUCs around 0.65. These 
results are similar or higher than the results obtained with our model, though within the 
range of the confidence intervals for the model based on radiomics and DL, and the lack 
of an external dataset on two of the studies makes the validity of these models difficult to 
determine (Peng et al., 2018). Most other studies have a similar lack of external validation 
and total number of included patients, further making the results difficult to compare to 
the present study (Salvestrini et al., 2022). These results show that the model presented 
in this study is able to perform similarly or even outperform models that perform 
classification (post treatment) instead of prediction (pre-treatment) of ARE. 

One of the strengths of the present study is the large number of included patients and 
subsequent lesions, with 7974 lesions (2.7% ARE) of 1404 patients in training and testing, 
and 646 lesions (3.1% ARE) of 237 patients in the external validation. This provides a large 
volume of data for our models to train on, ensuring it covers the wide variability found 
between patients. In addition, the inclusion of an external validation is another strength, 
especially seeing the general lack of one in most other studies investigating ARE. This 
ensures that the reported result is not too optimistic, and shows that our model can be 
generalizable to populations from a different hospital in a different country, and even with 
different treatment from the training and testing set. While the difference in treatment 
between the training (exclusively SRS) and external validation (a mix of SRS and FSRT) 
may induce variability due to small differences in treatment planning for these methods, 



6

Predictig radionecrosis after stereotactic radiotherapy using radiomics and deep learning   |   209   

literature has shown that these methods carry the same risk of ARE and were therefore 
considered interchangeable (Gerosa et al., 2002; Lawrence et al., 2010; Vellayappan et al., 
2018).

The large confidence interval on the external validation is partially due to the low number 
of positive findings in this dataset (n=20). This is because of the large imbalance in 
outcomes for both ARE and tumor failure. One of the major problems that may arise from 
this imbalance is a skewed view of predictive performance. However, this was addressed 
in the present study through multiple measures. The DL model was trained on a balanced 
subset of the data that only included patients that suffered at least 1 ARE. For ML, the 
XGBoost model was trained while scaling the weights of positive and negative classes and 
the respective proportion of the labels. Finally, through analysis of the confusion matrix, 
precision recall curves, and the recall metric, we ensured that the performance of the 
model was not entirely driven by labeling the data as the majority class.

While the models have been successfully validated on a dataset from an external center, 
further validation on multiple centers is required to ensure the models are generalizable. 
Future research could therefore focus on validating the present model on other datasets, 
potentially with recalibration of the model. At a later stage, a clinical trial to test the 
efficacy of the model is needed to be able to incorporate the model in a clinical setting.

In the present study, only one sequence of the MRI scan was used. Previous studies showed 
that a combination of radiomics computed on T1 and T2 sequences perform the best to 
differentiate ARE and TP (Peng et al., 2018; Zhang et al., 2018), and ADC sequence seems 
to also show a higher performance (Park et al., 2021). Investigating more sequences in a 
future study may therefore improve performance of the imaging based models.

Lastly, for ARE (and to a lesser degree TP), treatment is one of the primary factors. In this study 
multiple dose treatment related variables have been included, such as prior treatments to 
the same patients, as well as dose variables and the volumes encompassing certain dose 
levels. However, a more thorough ‘dosiomics’ analysis would probably improve prediction 
of ARE. Liang et al (2019) described a method to extract spatial and texture radiomics 
features from dose maps (Liang et al., 2019). They found several radiomics features which 
have significant predictive value of radiation pneumonitis. Using a similar method for ARE 
in BM may result in improved prediction results. Our predictions could also be combined 
with models automatically classifying tumors and RN on brain MRI such as in (Zhang et al., 
2018), potentially strengthening the results of those studies. 
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6.6 Conclusion     

Radiomics is able to predict lesions at high risk of ARE, especially when combined with 
DL features. When predicting ARE on a patient level, the highest performance was found 
using a combination of radiomics, DL, clinical, and treatment-related features. These 
models could potentially be used to aid clinical decision making for patients with BM 
treated with either Gamma Knife or EBRT.
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6.8 Abbreviations

ARE = Adverse radiation effects
AUC = area under the curve
AUCPR = Area under the precision recall-curve
BM = brain metastasis
CI = Confidence interval
CLAHE = contrast limited adaptive histogram equalization
CTD = Connective tissue disorder
DICOM = Digital Imaging and Communications in Medicine
DL = Deep learning
EBRT = External beam radiotherapy
ECM = Extra cranial metastases
FSRT = Fractionated stereotactic radiotherapy
GLCM = Gray-level co-occurrence matrix
GLDZM = Gray-level distance-zone matrix
GLRLM = Gray-level run length matrix
GLSZM = Gray-level size-zone matrix
HU = Hounsfield unit



6

Predictig radionecrosis after stereotactic radiotherapy using radiomics and deep learning   |   211   

IBSI = Image biomarker standardization initiative
KPS = Karnofsky performance score
ML = Machine learning
NGLDM = Neighborhood gray-level dependence matrix
NGTDM = Neighborhood gray-tone difference matrix
NRRD = Nearly raw raster data
RFE = Recursive feature elimination
RN = Radiation necrosis
ROC = receiver operating characteristic
ROI = Region of interest
RS = Radiosurgery
SD = standard deviation
SRS = Stereotactic radiosurgery
SRT = Stereotactic radiotherapy
TP = Tumor progression
UCSF = University of California – San Francisco
USZ = University Hospital Zürich
WBRT = Whole brain radiotherapy
XGBoost = extreme gradient boosting
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6.10 Supplementary materials

 

 
Figure 1. Architecture of Xception 3D.
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Figure 2. Feature importance lists of the ML models, respectively: (A) radiomics, (B) radiomics and 
deep learning, (C) radiomics and patient characteristics, and (D) radiomics, patient characteristics, 
deep learning.
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Figure 2. Normalized confusion matrices on the external validation dataset per target for the following approaches: (A) deep
learning, (B) radiomics, (C) radiomics and deep learning, (D) patient characteristics and radiomics and (E) radiomics, deep learning
and patient characteristics, (F) agreed labels.

Figure 3.  Top 3 missing variables in training (DESIGN) cohort.

 

  

Figure 4. Normalized confusion matrices on the external validation dataset per patient for the 
following approaches: (A) DL, (B) radiomics, (C) radiomics and DL, (D) patient characteristics and 
radiomics, and (E) radiomics, DL and patient characteristics.
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Table 1. Python packages used and their versions.
purpose packages versions

pre-processing imutils 0.5.4

intensity-normalization 2.0.2

numpy 1.19.2

opencv 4.1.0.25

os n/a

pandas 0.25.0

pydicom 2.2.2

scikit-image 0.17.2

scikit-learn 0.24.2

scipy 1.5.2

simpleITK 2.1.1

deep learning keras 2.3.1

tensorflow-gpu 2.1.0

feature processing and calculation precision-medicine-toolbox 0.0.0

missingpy 0.2.0

pyradiomics 3.0.1

machine learning xgboost 1.5.1

statistics statsmodels 0.13.0

visualisation matplotlib 3.3.4
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Table 2. Overview of hyperparameters optimized through gridsearch cross-validation.
parameters/data radiomics 

only
radiomics + patient 

characteristics
radiomics + 

deep learning
radiomics + patient 

characteristics + deep 
learning

gamma 0,3 0,3 0,3 0,3

learning rate 0,01 0,1 0,01 0,1

max depth 3 3 4 1

min child weight 1 1 1 5

n estimators 173 10 173 227

number of features 
selected

20 10 20 20
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7.1 Abstract

Quantitative image analysis models are used for medical imaging tasks such as registration, 
classification, object detection, and segmentation. For these models to be capable of 
making accurate predictions, they need valid and precise information. We propose 
PixelMiner, a convolution-based deep-learning model for interpolating computed 
tomography (CT) imaging slices.

PixelMiner was designed to produce texture-accurate slice interpolations by trading off 
pixel accuracy for texture accuracy. PixelMiner was trained on a dataset of 7,829 CT scans 
and validated using an external dataset. We demonstrated the model’s effectiveness by 
using the structural similarity index (SSIM), peak signal to noise ratio (PSNR), and the root 
mean squared error (RMSE) of extracted texture features. Additionally, we developed and 
used a new metric, the mean squared mapped feature error (MSMFE). The performance 
of PixelMiner was compared to four other interpolation methods: (tri-linear, (tri-)cubic, 
windowed sinc (WS), and nearest neighbor (NN).

PixelMiner produced texture with a significantly lowest average texture error compared 
to all other methods with a normalized root mean squared error (NRMSE) of 0.11 (p<.01), 
and the significantly highest reproducibility with a concordance correlation coefficient 
(CCC) ≥ 0.85 (p<.01).

PixelMiner was not only shown to better preserve features but was also validated using an 
ablation study by removing auto-regression from the model.
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7.2 Introduction

Radiological images are an important prognostic and diagnostic tool used by clinicians 
in clinical decision-making. Radiological imaging is primarily used through qualitative 
or semi-quantitative assessment by physicians, however, there have been recent 
advancements in image acquisition, standardization, and analysis that have enabled 
the discovery of quantitative biomarkers, for example through radiomics [1]. Qualitative 
image analysis (QIA) provides the means not only to diagnose oncological disorders [2-4], 
but also to personalize treatment [5] without the use of invasive procedures.

QIA is dependent on the quality of the analyzed images. Image quality is determined by 
an image’s contrast and spatial resolution, as well as the level of noise and the presence of 
artifacts. Image quality affects the ability to discern different structures and low-frequency 
signals within an image [6], and low-quality images may therefore have a negative effect 
on QIA by either the loss of information or altering the true features of an image [7]. 
Computed Tomography (CT) scans are acquired and reconstructed with a broad scope of 
imaging-specific parameters which can affect image quality, including differences in dose 
settings, reconstruction kernel [8], slice thickness and spacing. Different CT reconstruction 
protocols cause slice thicknesses and spacings to vary considerably between hospitals, 
creating challenges for QIA in multicenter studies. Differences in pixel size and slice 
spacing have for example been shown to impact the stability, robustness, and repeatability 
of radiomic features [9]. Reproducing features robustly contributes to better performing 
classification models [9] that rely on machine learning to make accurate predictions.

To overcome issues with heterogeneity, CT scans are often interpolated to a common 
resolution. Commonly used interpolation methods include nearest neighbors (NN), 
trilinear, and tricubic interpolation [10]. Medical scans are continuous latent images, 
where there is still uncaptured information between slices that can be predicted. 
Common interpolation models cause artifacts to appear on the interpolated slices, 
such as blurring or ghosting [11]. These artifacts have been shown to lead to errors in 
image registration [12]. Furthermore, during interpolation high-frequency information 
can be lost [13], and signal reproductions can be too low which leads to distortions [14]. 
Texture information is represented in a wide range of spatial frequencies which are very 
important for image classification [15]. Studies such as these suggest it is important to 
use an algorithm capable of capturing frequency signal information to generate accurate 
synthetic textures. PixelMiner was designed to probabilistically predict pixel intensities 
that most likely fit within a signal.

The aim of this research is to improve the interpolation quality of medical imaging to 
allow for more homogeneous datasets through preprocessing. The proposed method is 
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a deep learning convolutional autoregressive model that predicts a slice between two 
adjacent slices from a three-dimensional input including the target slice. The model 
outputs a single slice prediction of the target and the loss is determined by the diff erence 
between the target slice and the output slice. We hypothesize that our approach has major 
advantages over other methods as it is autoregressive, and as such, it is able to include 
information about the interpolated slice in its predictions, in contrast to other models that 
rely solely on surrounding slices. An ablation study was done by removing autoregression 
from the model to prove its effi  cacy. We also hypothesize that since textures can be well 
summarized by their component spatial frequencies [15], a model designed specifi cally 
for processing signals will achieve improved performance. PixelMiner was compared to 
other existing interpolation methods by comparing the sharpness, shape, and accuracy of 
texture generation using standard metrics and texture feature analysis.

7.2.1. Background
PixelRNN, PixelCNN, PixelCNN++, and PixelSNAIL are instances of a class of deep learning 
generative models used both for image generation [16, 17, 18, 19] and interpolation [20]. 
PixelCNN-like models diff er from other generative models in that it uses an explicit density 
function, through an explicit specifi cation of the distribution of the random variable [17]. 
Most models in machine learning and statistics are in this form [21], whereas generative 
adversarial networks (GAN) instead use an implicit density function, in which a generator 
implicitly defi nes a probability distribution based on a latent vector [22, 23]. PixelCNN can 
further be distinguished from other generative models in that it uses a tractable density 
function that optimizes the likelihood of the training data. Variational auto-encoders 
(VAE) on the other hand defi ne an intractable density, because it makes either variational 
approximations, Monte Carlo approximations, or both [24]. PixelCNNs also diff er greatly 
from other generative models because they optimize the likelihood of training based on 
the individual pixels [17]. PixelCNN is an autoregressive model, that predicts pixels one 
by one and bases the prediction based on all previous predictions [17]. The PixelCNN 
objective function can be expressed as the product of the probabilities of a pixel based on 
all previous pixels [17]:
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7.3 Methods
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7.3 Methods

7.3.1 Data
The dataset used for training at the time of publication was a publicly available dataset 
from the Radiological Society of North America (RSNA) Pulmonary Embolism Detection 
Challenge © RSNA 2020 [25]. At training time, the dataset consisted of 7,829 chest 
CT scans, with pixel spacing and slice thickness of 1mm and 1.25mm, respectively. The 
dataset’s terms and conditions allowed the dataset to be shared or redistributed in any 
form. There were fi ve institutions contributing data, including AlfredHealth, Koç University 
Hospital, Center for Artifi cial Intelligence in Medicine & Imaging (AIMI) at Stanford, Unity 
Health Toronto, and Universidade Federal de São Paulo. All CT scans were retrospectively 
collected and anonymized at each institution and approved by the respective institutional 
review boards in accordance with relevant guidelines and regulations. All participants 
were provided a statement on written informed consent.

At the time of use, the dataset used for validation was the publicly available dataset from 
the Early Lung Cancer Action Program (ELCAP) Public Lung Image Database [26]. This 
database consisted of 50 low-dose CT scans, with a slice thickness of 1.25mm. The dataset’s 
terms and conditions allowed use for non-commercial purposes only, including academic 
research and education. All CT scans were collected by ELCAP in collaboration with Weill 
Cornell Medical College and approved by its institutional review board in accordance 
with relevant guidelines and regulations. All participants provided a statement on written 
informed consent.

Additionally, the Lung Image Database Consortium image collection (LIDC-IDRI) dataset 
[27] initiated by the National Cancer Institute (NCI) was used to evaluate the model on 
the downstream task of nodule detection. The dataset comprises 1018 patients from lung 
cancer screenings in which the dataset was annotated for lesions in the lung by three 
independent radiologists. All CT scans were retrospectively collected and anonymized at 
each institution and approved by the respective institutional review boards in accordance 
with relevant guidelines and regulations. All participants were provided a statement on 
written informed consent.
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7.3.2 Model
 

Figure 1: A comparison of how PixelCNN based models and PixelMiner function. PixelCNN has three masked causal 
convolutions with three inputs and three outputs. In contrast, PixelMiner uses a combination of 3d masked causal convolutions 
and 2d unmasked non-causal convolutions with three inputs and a single output. 
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three inputs and a single output.

The proposed model, PixelMiner, is a causal autoregressive model based on PixelCNN++ 
[18] with an altered objective function. PixelMiner includes many of the features of 
PixelCNN++, including vertically and horizontally stacked convolutions and which are 
gated for effi  cient computation and multiplicative units in the form of LSTM gates for long 
and short term memory. Gated convolutions are defi ned as:
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Additionally, PixelMiner uses the logistic mixture likelihood loss [18], which takes the 
continuous univariate distribution as a mixture of logistic distributions to be used to 
calculate the probability of a given pixel intensity, defined as:
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and for the edge case 0 replace .

Unlike PixelCNN, PixelMiner is not limited to making predictions based on only the 
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the output slices so that the model learned to replicate the input slice given all the 
information from three slices. With the resolution of a single slice being 512 x 512 pixels,
it is not feasible to use entire slices due to memory limitations. However, because 
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Therefore, patches of 64 x 64 were used for training and slice interpolation. Patches are 
generated by beginning at the top left corner and then expanding out based on the initial 
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previous pixels. The PixelMiner function can be expressed as the product of the 
probabilities of a pixel based on all previous pixels for the target slice and all pixels for 
the external slices:

where are the top, middle, and bottom slices respectively.

The model was trained using batches of three sequential slices as inputs on patches of 64 
x 64 pixels to generate a single output slice. The middle input slices were used to evaluate 
the output slices so that the model learned to replicate the input slice given all the 
information from three slices. With the resolution of a single slice being 512 x 512 pixels,
it is not feasible to use entire slices due to memory limitations. However, because 
PixelMiner is an autoregressive model, it is capable of generating slices in patches. 
Therefore, patches of 64 x 64 were used for training and slice interpolation. Patches are 
generated by beginning at the top left corner and then expanding out based on the initial 
patch. Autoregressive models require enough observations to capture a signal to make 
optimal predictions [27]. With this in mind, PixelMiner uses patches of 64 x 64 with 
incomplete 32 x 32 sub-patches. An example of this process is given in figure 2.
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Figure 2: An example of an interpolated slice being generated in patches. The region contained in the red box indicates the next 
patch of 64 x 64 to be fed into the model. The yellow patch of 32 x 32 in the bottom right of the red box is the sub-patch of pixels 
that are to be generated next. 
  

Figure 2. An example of an interpolated slice being generated in patches. The region contained in 
the red box indicates the next patch of 64 x 64 to be fed into the model. The yellow patch of 32 x 32 
in the bottom right of the red box is the sub-patch of pixels that are to be generated next.

PixelCNN based models were designed to generate RGB images and cannot be adapted 
directly to perform slice interpolation due to stability issues, such as warping and artifacts. 
To overcome these issues PixelMiner incorporates 3d causal convolutions and 2d non-
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causal convolutions. Figure 1 provides a schematic overview of the differences between 
pixel predictions performed by PixelCNN and PixelMiner.

PixelMiner also uses a combination of 2D and 3D convolutions, where the 3D convolutions 
are used to learn the relationships between the slices. This architecture creates a pathway 
for non-masked non-causal filters in the outer channels using only the external slices, 
while using masked causal filters in the middle. The causal channel receives information 
from both the middle and external slices. This allows the outer slices to provide complete 
information to the middle and prevents the 2D convolutions’ tendency to ignore the outer 
slices. A schematic overview of this convolutional block is provided in figure 3A.

PixelMiner further utilized residual blocks, each of which consists of six downsampling 
and upsampling layers which utilized long-range skip connections. Feature maps were 
down-sampled using 2 stride PixelMiner convolutions from 64x64 to 32x32 to 16x16, 
and then upsampled again using transposed convolutions. The final model was made 
with the input convolutional layer, n residual blocks, and an output convolutional layer 
using an identity convolution to combine the final output. A schematic depiction of the 
architecture can be found in figure 3B.

The model is able to upsample a scan using two slices. An empty slice is then inserted 
between the top and bottom slices. These three slices are then provided to the model, 
which generates an interpolated slice pixel by pixel until the entire middle slice is 
complete. This process is repeated until every slice of the scan is interpolated.
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Figure 3: Diagram A.) is a schematic depiction of the PixelMiner convolutional block. Diagram B.) is the entire architecture 
where the input goes through a 2D convolution and the output goes through an identity convolutional. The architecture is made 
up of N residual blocks with two down samples using two stride convolutions and two up samples using transposed convolutions. 

Figure 3. Diagram A.) is a schematic depiction of the PixelMiner convolutional block. Diagram B.) is 
the entire architecture where the input goes through a 2D convolution and the output goes through 
an identity convolutional. The architecture is made up of N residual blocks with two down samples 
using two stride convolutions and two up samples using transposed convolutions.

7.3.3 Training and Validation
Training was performed in an unsupervised fashion with the objective being the 
reproduction of the middle input slice without the need for labels. The model received 
three randomly selected slices in sequence and output a single slice, which was then used 
together with the middle input slice to calculate the loss.

PixelMiner was trained using three GTX 1080ti GPUs using an Adam optimizer with a 
starting learning rate of 8E-6 and a decay of 0.95. No learning rate scheduler was used and 
the learning rate was reduced manually over time. Due to hardware limitations, the batch 
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size was kept to 18 and two residual layers were used with 128 channels. Dropout was used 
at a rate of 0.25. With regard to the logistic mixture likelihood loss, 10 mixture components 
were used. All weights were initialized by sampling from a uniform distribution.
To validate the proposed model, the interpolated synthetic slices and ground truth slices 
were compared. In addition, synthetic slices were generated using four other interpolation 
methods: (tri-)linear [28, 29], (tri-)cubic [30, 31], window sinc (WS) [32], and NN [33] 
interpolation. Linear and BSpline (cubic) interpolation are methods commonly used in 
radiomic studies [34]. WS and NN were done using the open source project the Insight 
Toolkit or ITK [35] with tools designed specifi cally for medical imaging.

7.3.4 Evaluation
PixelMiner was evaluated using several evaluation metrics including the full reference IQA 
metrics peak signal-to-noise ratio (PSNR) and the Structural Similarity Index (SSIM) as well 
as feature extraction comparisons using  gray-level co-occurrence matrix (GLCM), gray-
level run length matrix (GLRLM), and gray-level size zone matrix (GLSZM). All analyses 
were done using 50 generated slices, one randomly selected slice from each of the 50 
patients from the ECLAP dataset. In addition, an ablation study was performed to show 
the effi  cacy of autoregression over a non-autoregression model.

7.3.4 Peak Signal-to-Noise Ratio
The PSNR is the ratio between the highest power of a signal and the power of the 
corrupting noise. It is a widely used full reference image quality assessment metric used 
to determine the fi delity of an image based on the level of noise. PSNR is defi ned as:
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7.3.5 Structural Similarity Index Measure
The SSIM is a full-reference image quality metric for predicting the perceived quality of 
images. It is a perception-based model designed to consider the degradation of images 
based on three different properties. The formula itself contains terms for luminance, 
contrast, and structural information. The terms are defined as:

7.3.5 Structural Similarity Index Measure
The SSIM is a full-reference image quality metric for predicting the perceived quality of 
images. It is a perception-based model designed to consider the degradation of images 
based on three diff erent properties. The formula itself contains terms for luminance, 
contrast, and structural information. The terms are defi ned as:
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images. It is a perception-based model designed to consider the degradation of images 
based on three different properties. The formula itself contains terms for luminance, 
contrast, and structural information. The terms are defined as:

where , and 

The combined terms are defined as:

where as parameterized weights.

With all weights set to 1, the formula can be reduced to:

where the SSIM was calculated for each generated slice.
7.3.6 Texture Features

To test the interpolation methods’ ability to retain texture information GLCM, GLRLM, 
and GLSZM texture features were extracted. Feature extraction was performed in Python 
3.7 with Pyradiomics 3.0.1 [37]. Features were extracted with pixel intensities at standard 
houndsfield units with a window of -1024 and 3071, and a bin width of 32. Features 
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7.3.6 Texture Features
To test the interpolation methods’ ability to retain texture information GLCM, GLRLM, and 
GLSZM texture features were extracted. Feature extraction was performed in Python 3.7 
with Pyradiomics 3.0.1 [37]. Features were extracted with pixel intensities at standard 
houndsfi eld units with a window of -1024 and 3071, and a bin width of 32. Features 
extraction was performed for the synthetic and ground truth slices to act as references. 
Pixel intensities for images were in Masks of regions of interest (ROI) were used for feature 
extraction to avoid subjectivity. A single image mask was created for the area around the 
lungs. A simple automated segmentation algorithm was created using thresholding and 
binary morphology operations to dilate or erode or close openings in the mask using the 
morphology module in the Scikit-image package [38]. Lungs were segmented using a 
threshold < -320 Houndsfi eld units. Texture based measurements features were extracted 
and compared to synthetic slices and ground truth using the normalized root mean square 
error (NRMSE) of all GLCM, GLRLM and GLSZM texture features which aggregates all the 
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errors of the predicted variables into a single metric and normalized using the range of 
the observed variables, defi ned as:
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where is the standard deviation.

To further test texture information across patches of the image instead of through a single 
metric across the whole image, a new metric is proposed: the mean squared mapped 
feature error (MSMFE). For each texture feature, a feature map was generated using a 
sliding window with a size of 5x5 and step of 1 calculating texture features for every 
window. The RMSE is calculated on the reference ground truth feature map and the 
feature map of the evaluated scan. The
MSMFE is then defined as the NRMSE of all texture feature maps.
7.3.7 Ablation
A key component of PixelMiner is auto-regression, which is an ideal method for 
generating images with regard to slice interpolation. To gauge the efficacy of PixelMiner, 
we compared the autoregressive model to a model converted to be non-autoregressive, 
while staying as close to the same architecture as possible. To accomplish this, vertically 
and horizontally stacked masked convolutions were converted to standard unmasked 2d 
and 3d convolutions, and gated convolutions were removed. The model was additionally 
modified to accept 2d inputs and to provide an output of a 1d target prediction. The 
logistic mixture likelihood loss was designed for predicting pixels autoregressively and 
was therefore changed to RMSE.
A noticeable problem with the non-autoregressive model is the difficulty of training on 
patches, whereas autoregression is able to continue a patch from where the last patch left 
off. Non-autoregression does not have this capability which leads to frame artifacts 
throughout the image.
7.3.7 Statistical Tests
All evaluation metrics were determined for each generated slice and compared across 
interpolation methods. Results were statistically tested using a binomial test to test 

where 

225

-
segmented using a threshold < -320 Houndsfield units. Texture based measurements 
features were extracted and compared to synthetic slices and ground truth using the 
normalized root mean square error (NRMSE) of all GLCM, GLRLM and GLSZM texture 
features which aggregates all the errors of the predicted variables into a single metric and 
normalized using the range of the observed variables, defined as:

where is the standard deviation.

To further test texture information across patches of the image instead of through a single 
metric across the whole image, a new metric is proposed: the mean squared mapped 
feature error (MSMFE). For each texture feature, a feature map was generated using a 
sliding window with a size of 5x5 and step of 1 calculating texture features for every 
window. The RMSE is calculated on the reference ground truth feature map and the 
feature map of the evaluated scan. The
MSMFE is then defined as the NRMSE of all texture feature maps.
7.3.7 Ablation
A key component of PixelMiner is auto-regression, which is an ideal method for 
generating images with regard to slice interpolation. To gauge the efficacy of PixelMiner, 
we compared the autoregressive model to a model converted to be non-autoregressive, 
while staying as close to the same architecture as possible. To accomplish this, vertically 
and horizontally stacked masked convolutions were converted to standard unmasked 2d 
and 3d convolutions, and gated convolutions were removed. The model was additionally 
modified to accept 2d inputs and to provide an output of a 1d target prediction. The 
logistic mixture likelihood loss was designed for predicting pixels autoregressively and 
was therefore changed to RMSE.
A noticeable problem with the non-autoregressive model is the difficulty of training on 
patches, whereas autoregression is able to continue a patch from where the last patch left 
off. Non-autoregression does not have this capability which leads to frame artifacts 
throughout the image.
7.3.7 Statistical Tests
All evaluation metrics were determined for each generated slice and compared across 
interpolation methods. Results were statistically tested using a binomial test to test 

is the standard deviation.

To further test texture information across patches of the image instead of through a 
single metric across the whole image, a new metric is proposed: the mean squared 
mapped feature error (MSMFE). For each texture feature, a feature map was generated 
using a sliding window with a size of 5x5 and step of 1 calculating texture features for 
every window. The RMSE is calculated on the reference ground truth feature map and the 
feature map of the evaluated scan. The MSMFE is then defi ned as the NRMSE of all texture 
feature maps.

7.3.7 Ablation
A key component of PixelMiner is auto-regression, which is an ideal method for 
generating images with regard to slice interpolation. To gauge the effi  cacy of PixelMiner, 
we compared the autoregressive model to a model converted to be non-autoregressive, 
while staying as close to the same architecture as possible. To accomplish this, vertically 
and horizontally stacked masked convolutions were converted to standard unmasked 2d 
and 3d convolutions, and gated convolutions were removed. The model was additionally 
modifi ed to accept 2d inputs and to provide an output of a 1d target prediction. The 
logistic mixture likelihood loss was designed for predicting pixels autoregressively and 
was therefore changed to RMSE.
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left off . Non-autoregression does not have this capability which leads to frame artifacts 
throughout the image.

7.3.7 Statistical Tests
All evaluation metrics were determined for each generated slice and compared across 
interpolation methods. Results were statistically tested using a binomial test to test 
frequency of higher ratios, and a Wilcoxon signed rank test to test pairs of ratios for 
competing methods on the test dataset.

Texture analysis was accompanied by the concordance correlation coeffi  cient (CCC) which 
was determined for each feature. The CCC expresses the concordance between paired 



7

Improving medical image slice interpolation using PixelMienr   |   237   

ground truth feature values and generated image feature values, which quantifi es the 
agreement and reproducibility, shown as:
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Figure 4: Five interpolation methods that are enlarged and compared side by side for two example slices. Scans to the left are 
the slices used and the red box indicates the region used for comparison. Methods include A.) linear, B.) windowed sinc, C.) 
nearest neighbor D.) BSpline and E.) PixelMiner with the corresponding F.) ground truth slice on the bottom right. 

Figure 4. Five interpolation methods that are enlarged and compared side by side for two example 
slices. Scans to the left are the slices used and the red box indicates the region used for comparison. 
Methods include A.) linear, B.) windowed sinc, C.) nearest neighbor D.) BSpline and E.) PixelMiner 
with the corresponding F.) ground truth slice on the bottom right.
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7.4.1 Image Quality Assessment Metrics
For completeness we include the common IQA metrics PSNR and SSIM. PixelMiner had a 
lower PSNR and SSIM value for 100% (p < 1E-6) of the scans compared to all other methods, 
and the lowest mean PSNR and SSIM values. Table 1 provides an overview of the PSNR and
SSIM values for each tested interpolation method.

Table 1. Mean and standard deviation of the PSNR and SSIM (P < 1E-7).

PSNR SSIM

Mean SD Mean SD

PixelMiner 31.466 ± 3.268 0.908 ± 0.048

Windowed Sinc 32.726 ± 3.440 0.928 ± 0.038

BSpline 32.754 ± 3.441 0.928 ± 0.038

Nearest Neighbor 32.779 ± 3.439 0.929 ± 0.037

Linear 33.158 ± 3.225 0.933 ± 0.034

7.4.2 Segmentation Extracted Texture Feature Outcomes
NRMSE was used as an aggregation of all GLCM, GLRLM and GLSZM texture features. 
PixelMiner had the lowest NRMSE at 0.109 (p<0.01), and a lower NRMSE value for 62.2% 
(p<0.01) of the scans in the validation dataset compared to the next best performing 
interpolation method WS. PixelMiner also had the highest amount of reproducible 
features (74.5% with CCC ≥ 0.85), and the highest mean CCC at 89.8. An overview of these 
metrics for the tested interpolation methods can be found in Table 2.

Table 2. Average RMSE values for the tested interpolation methods, and the percent of slices each 
interpolation method has lower an RMSE (horizontally) and a higher RMSE (vertically) in comparison 
to the other methods. Also displayed for each interpolation method are the percentage of features 
with CCC ≥ .85, and the mean CCC.

CCC NRMSE Percent of features with a lower error 
(%)

Mean ≥ .85 Mean SD Linear Nearest 
Neighbor

BSpline Windowed
Sinc

PixelMiner

Linear 68.8 17.6% 0.342 ± 0.267 - 18.6 17.2 14.7 13.6

Nearest 
Neighbor

89.0 64.6% 0.143 ± 0.133 81.4 - 52.1 49.1 32.4

BSpline 87.9 64.7% 0.138 ± 0.131 82.8 47.9 - 46.0 32.8

Windowed
Sinc

86.7 64.7% 0.136 ± 0.133 85.3 50.9 54.0 - 37.8

PixelMiner 89.8 74.5% 0.109 ± 0.123 86.4 67.6 67.2 62.2 -
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Figure 5: Five interpolation methods that are compared by NRMSE and all GLCM, GLRLM and GLSZM texture features. 

Figure 5. Five interpolation methods that are compared by NRMSE and all GLCM, GLRLM and 
GLSZM texture features.

7.4.3 Mean Squared Mapped Feature Error
PixelMiner had a lower average MSMFE compared to the other interpolation methods at 
0.434 (p < .01). For 68.19% of the features, PixelMiner had the lowest MSMFE compared 
with the next best interpolation method (p < .01). Table 3 provides an overview of the 
MSMFE for each texture feature for the different interpolation methods.

Table 3. The lowest average MSMFE for all GLCM features with p < .01. Alongside it is the reported 
percent of texture features for which the listed interpolation method had a lower MSMFE
(horizontally) and higher MSMFE (vertically) in comparison to the other interpolation methods.

MSMFE Percent of features with lower average error  (%)

Mean SD Linear Windowed
Sinc

Nearest 
Neighbor

BSpline PixelMiner

Linear 0.507 ± 0.236 - 36.3 36.5 36.4 34.8

Window
Sinc

0.463 ± 0.217 63.7 - 44.1 40.7 31.5

Nearest 0.462 ± 0.217 63.5 55.9 - 38.6 31.2

Neighbor

BSpline 0.462 ± 0.217 63.6 59.3 61.4 - 31.0

PixelMiner 0.434 ± 0.222 65.2 68.5 68.8 69.0 -
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Figure 6: Five interpolation methods and six hand-picked GLCM features with there mapped out error given a matrix based on a 
window size of five pixels. Lower error is dark and higher error is bright. 
  

Figure 6. Five interpolation methods and six hand-picked GLCM features with there mapped out 
error given a matrix based on a window size of five pixels. Lower error is dark and higher error is 
bright.

7.4.4 Ablation
Two versions of PixelMienr was compared, an autoregressive model and a non-
autoregressive model, where the non-autoregressive model was shown to be inferior 
based on SSIM, PSNR GLCM texture features, and MSMFE. PixelMiner with autoregression 
had a higher mean PSNR (31.47) and SSIM (0.91). In addition, PixelMiner had a lower 
GLCM texture error (0.11) and a lower MSMFE (0.434). Table 4 provides an overview of the 
comparison between autoregression and non-autoregression.
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Table 4. Mean and standard deviation of the SSIM, PSNR, GLCM Texture, and MSMFE (P < 1E-10).

SSIM PSNR GLCM Texture MSMFE

Mean SD Mean SD Mean SD Mean SD

PixelMiner without
autoregression

0.684 ± 0.042 20.206 ± 2.400 0.504 ± 0.2585 0.516 ± 0.251

PixelMiner with
autoregression

0.908 ± 0.048 31.466 ± 3.268 0.109 ± 0.123 0.434 ± 0.222

Non-autoregressively generated images produce noticeably more blurry compared 
images to autoregressively generated images. Figure 7 shows two examples of an 
autoregressively and non-autoregressively generated slice compared to the ground truth 
slice.
 

 
Figure 7: Image A.) is interpolation being performed non-autoregressively, B.) is the ground truth, and C.) is interpolation being 
performed autoregressively. 
  

Figure 7. Image A.) is interpolation being performed non-autoregressively, B.) is the ground truth, 
and C.) is interpolation being performed autoregressively.
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7.5 Discussion

The goal of this study was to create a model that can perform slice interpolation with a 
high degree of texture accuracy compared to other interpolation methods. Because pixel 
miner makes the tradeoff of texture accuracy over pixel accuracy the result from the SSIM 
and PSNR does not well reflect real-world performance in texture accuracy. SSIM and PSNR 
evaluate images by pixel-to-pixel comparisons in relation to mean squared error (MSE). 
PSNR uses MSE explicitly in its equation, whereas SSIM has been shown to be closely 
related to PSNR through their shared link to MSE [49]. Because PixelMiner doesn’t attempt 
to generate images with pixel-to-pixel accuracy, the metrics fail to accurately capture 
the accuracy of PixelMiners ability to generate slices with improved texture accuracy. To 
overcome this we used texture based feature extraction techniques to better evaluate the 
model based on texture.

PixelMiner had a significantly lower NRMSE for compared to all other models, the lowest for 
65.2% of the features compared to the next best method. Furthermore, the reproducibility 
of PixelMiner using a CCC ≥ 0.85 was shown to be 80% with a mean of 91.42, greater than 
all other models. PixelMiner does not outperform other methods for every feature type, 
so if the features for a particular radiomics signature are known it would be worth doing 
some research beforehand to determine which interpolation method would complement 
the model being developed first. If the signature is unknown, or a practitioner is using 
deep learning, the results indicate PixelMiner to be the best choice for slice interpolation.
Though not quantified and reported in results, contributors to this paper were able 
to observe a pattern of a reduction in the bleeding effect caused by other types of 
interpolation methods. Averaging type mathematical operations can lead to this effect, 
whereas PixelMiner is a probabilistic model which makes it able to avoid these types of 
artifacts. Examples of this can be observed in figure 4.
PixelCNNs have been used to perform super-resolution on 2d images [20], but to the best 
of our knowledge it has never been used on 3d images and it’s the first time it has been 
used to generate high fidelity images. Deep learning based super resolution has been an 
active area of research and includes many models such as SRGAN [39], MFTV [40], FSRCNN 
[41], SRResNet-V54 [42], LapSRN [43], and multiple dense residual block based GANs [44]. 
These types of models are designed for 3d images by doing grid based upsampling using 
transposed convolutions. They are unable to be compared directly with PixelMiner since 
they would require downsampling in 3 dimensions to be evaluated, causing the models to 
lose valuable information that slice interpolation is able to retain. These super-resolution 
models could also potentially be used in conjunction with PixelMiner, by upsampling 
after slices have already been interpolated. We chose to use an auto-regressive model 
as opposed to a GAN-based model for two reasons. First, we believe that autoregression 
could force a model to better learn texture information better than other methods. 
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Additionally, PixelMiner has an explicit density function rather than the implicit density 
function used in GANs, making it more suitable in medical imaging. GANS have been 
shown to be unreliable for use in medical imaging by sacrificing accuracy for fidelity
[45].

Quantitative analysis in medical imaging relies on high-quality images that are harmonious 
across many types of scanners. There is a potential for quantitative analysis of medical 
imaging to have a profound effect on prognosis, but it requires high-quality data for 
training machine learning models. Medical imaging slice spacing is only one factor in the 
overall quality of images but it affects many different areas of quantitative analysis, such 
as image registration, detection, segmentation, and classification.

PixelMiner was assessed using radiomics texture features. Due to some computational 
constraints of the MSMFE, only GLCMs were used. Future work could allow for the use of 
MSMFE including additional texture features, such as gray level run length matrix (GLRLM) 
and gray level size zone matrix (GLSZM).
A disadvantage to using PixelMiner is that it is slower compared to other interpolation 
methods. Using three 1080ti graphical processing units (GPU), it should be possible to 
interpolate a full scan with 2mm slice spacing within 24 to 48 hours. Future improvements 
could be made through better parallelization of GPUs at generation, but also through 
more efficient models using methods similar to MobileNet [46] or EfficientNet [47]. 
Furthermore, advancements in graphical processing units continue to grow exponentially, 
and modern GPUs could considerably bring down generation times. Using the current 
state-of-the-art GPUs could potentially considerably speed up generation times. Without 
access to peer reviewed performance on GPUs and deep learning it is not possible to give 
accurate estimates of generation times but we estimate generation times to be roughly 
half using an Nvidia RTX 3090 GPU. This additionally makes it difficult to test downstream 
tasks such as segmentation, detection, and classification. We hypothesize that the model 
should have a positive effect on segmentation based on qualitative analysis showing fixes 
to ghosting and bleeding effects and leave this to future work once generation times can 
be optimized.

It is also well known that convolutional neural networks (CNN) have a dependency on 
large amounts of data and there is no guarantee that the data a model has been trained 
on will allow the model to generalize to unseen data. In addition, CNNs are known for 
being affected long-range dependence, which makes pixels that are farther apart 
more difficult to predict. This could be partially alleviated by using self-attention which 
showed modest improvements in the PixelSnail model [48]. Self-attention was omitted 
from the current version of PixelMiner due to time constraints. With the development 
of the attention-based model called a transformer [49], it could be possible to build an 
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improved version of PixelMiner similar to the transformer based image generation model 
ImageGPT [50]. Transformers perform faster than RNNs but also address the issues with 
long-range dependencies in PixelCNN and PixelRNN. Transformer based image models 
are a relatively new development in computer vision models, but have the potential to 
push the capabilities of PixelMiner much further. We were unable to find any evidence 
with statistical significance that PixelMiner showed improvements in downstream tasks, 
though we hypothesize with improvements to PixelMiner it could be possible in the near 
future.
The nature of PixelMiner makes the results very difficult to assess and further 
research needs to be done with regard to evaluation. Full reference IQA metrics are 
of no use for so an algorithm where the goal is to retain texture at the expense of 
pixel-wise accuracy. Further work is needed to not only better evaluate PixelMiner 
but also any other types of generative models for images in which texture accuracy 
may be the main focus.

7.6 Conclusion

PixelMiner provides a new state-of-the-art method for performing slice interpolation on 
medical imaging capable of improving imaging resolution while better preserving texture 
features, an important set of features in quantitative medical imaging analysis. PixelMiner 
performs well not only on the training dataset but also on the validated external dataset.
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8

Radiomics is an exponentially growing field of research, with an increase of almost 2247% 
in yearly articles published on PubMed in 2021 compared to 2016 (2183 [2021] versus 93 
[2016]). Figure 1 shows a diagram of the increase of radiomics studies over the past years 
(PubMed, accessed 19th of April 2022). Deep learning (DL) for predictive and classification 
tasks in the medical field is also rapidly expanding, while DL based segmentation has 
become an established method for automatic delineation [1-3]. For radiomics, there have 
been a large amount of proof-of-concept, model development, and validation studies on 
different tumor histology’s and disease sites, using numerous different methodologies 
and different regions of interest (ROI) as input.  In this thesis, we investigated the potential 
of (deep) radiomics to identify tumor phenotypical subtypes that can subsequently be 
used for predictive and prognostic purposes for three different tumor subtypes: (locally) 
advanced head and neck squamous cell carcinoma (HNSCC), locally advanced non-small 
cell lung cancer (NSCLC), and brain metastases (BM) from any primary origin.

 

Figure 
1: 

Radiomics publications per year. 
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Figure 1. Radiomics publications per year.

The tumor, nodes, and metastases (TNM) staging system (American Joint Committee on 
Cancer (AJCC) TNM 8th edition for HNSCC, and the International Association for the Study 
of Lung Cancer (IASLC) TNM 8th edition for NSCLC) is currently used to classify patients 
according to different prognosis, and used for treatment decision-making [4, 5]. However, 
even within a certain disease stage or with a specific treatment, the disease course for a 
specific patient can vary significantly, with some patients cured and some not [6, 7]. Even 
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though newer editions consider for certain disease types genomic/mutational statuses to 
further refine the TNM staging system [8], the limited number of stages incorporated by 
the TNM-staging system does not accurately represent the huge variation in patients and 
tumor subtypes, resulting in different treatment outcomes (cure / no cure, toxicity / no 
toxicity). Predictive models including more information on the tumor through quantitative 
imaging methods such as radiomics could potentially identify these subtypes.

Our goal in this thesis was therefore to attempt to prove the following hypothesis: 
Quantitative information from tumor regions of advanced HNSCC, NSCLC, and BM on 
medical imaging acquired prior to treatment is predictive for survival, tumor recurrence, 
and toxicity related outcomes. The basis of this thesis is an overview of the current role of 
radiomics in a clinical setting and its future therein (Chapter two). Next, for several types of 
cancers, all at a (locally) advanced stage, we tested the possibility of using radiomics to aid 
in prediction and prognosis, which may help clinical decision-making.  We first attempted 
to improve the prediction of overall survival (OS) by extracting radiomics features from 
the primary HNSCC tumor on baseline computed tomography (CT) images. We  compared 
and combined this with the current gold standard of the AJCC TNM 8th edition, and known 
clinical (age, sex, smoking/alcohol status) and biological (HPV, hemoglobin level) predictors 
(Chapter three). We found that radiomics has complementary value in predicting OS, 
and was able to identify three significantly different survival risk-groups. Furthermore, 
to test if the peritumoral tissues surrounding primary HNSCC tumors contain predictive 
information on OS, distant metastasis (DM), and locoregional failure (LRF), we trained a 
radiomics signature on baseline CT using expanding rings around the gross tumor volume 
(GTV) (Chapter four). However, no significant predictive value of radiomics was found. For 
the next tumor type, stage III NSCLC, we compared and combined a radiomics signature 
with known predictors (age, adenocarcinoma histology, smoking status, the type of 
chemotherapy administered, and WHO performance status) for the development of BM 
on baseline contrast-enhanced computed tomography (CECT) (Chapter five). We found 
that, while predictive, radiomics did not outperform, nor did it complement, a ML model 
built on simple clinical predictors of BM development. Furthermore, for BM, we tested and 
compared the feasibility of handcrafted and deep radiomics to predict adverse radiation 
effects (ARE) after stereotactic radiotherapy (SRT) on baseline T1-weighted magnetic 
resonance images (MRI) (Chapter six), and found that a combination of handcrafted and 
deep radiomics is significantly predictive. Lastly, we explored the possibility of improving 
data quality by interpolating chest CT images using DL focusing on texture accuracy to 
predict slices (Chapter seven). 

In the following sections, the challenges radiomics faces as a field and the future 
perspectives are discussed. First, we discuss generalizability, reproducibility, and the need 
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for harmonization. Next, we discuss the need for high data quantity and quality, and finally 
we discuss future areas for research needed for radiomics to advance as a scientific field.

8.1  Generalizability, reproducibility, and the need for 
harmonization

A crucial aspect of predictive modelling is the feasibility of a signature to be applied 
to other patient populations. For radiomics based signatures, this means models can 
be applied to imaging data using different settings, collected from different centers, 
machines, and countries. This is important, as the gold standards of most clinical predictive 
models are based on clinical, biological, and genomic variables that can be applied to 
many different populations, depending on the complexity of the methods to retrieve the 
necessary variables. However, for the different TNM staging systems, which are constantly 
updated with new guidelines, discrepancies in survival between hospitals also exist [9-
13]. Nonetheless, we want to ensure that the models created in this thesis can be applied 
as widely on different patient populations similarly to TNM staging and other clinical 
predictors.

In Chapter 5, we aimed to develop a predictive model of the risk of BM development in 
radically treated stage III NSCLC patients using handcrafted radiomics on CECT images. 
Patients with NSCLC, especially with adenocarcinoma subtype, have a high risk of BM [14], 
which drastically lowers quality of life (QoL), while curative treatment is seldom possible.  
Prophylactic cranial irradiation (PCI) has shown to reduce the risk of BM by 0.33 [15], and 
increase the PFS in stage III NSCLC, without a significant improvement in OS. However, the 
treatment carries a 25-27% risk of neurocognitive impairment (mainly grade 1-2), which 
can influence quality of life [16, 17]. Therefore, being able to determine which patients 
are higher at risk of BM before treatment is important, as this may prevent administering 
PCI for patients who will most likely do not obtain benefit. Furthermore, a more intense 
follow-up with brain MRI could be used for those at high risk. We trained models on data 
from two different centers, and externally validated these on data from two other centers.  
However, when comparing the model trained on radiomics features (AUC of 0.62) to a 
model (AUC of 0.71) trained on known clinical predictors (lower age and adenocarcinoma 
histology), we found radiomics unable to outperform, or provide complementary value, 
to clinical variables. 

One explanation for the low performance of radiomics is the large variability of acquisition 
and reconstruction protocols, and the differences in machines in general, which have 
all been proven to induce differences in feature values that negatively affect feature 
reproducibility and generalizability [18, 19]. This is in contrast to models trained using 
clinical and biological models, which in general have simpler and similar methods with set 
clinical protocol to obtain the variable. Genomics is an exception to this and is susceptible 
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to the testing setup used to acquire the gene signatures [20], which can affect the value of 
the genomic variable extracted, similarly to quantitative imaging. For genomic variables, 
a harmonization method called Combine Batches (ComBat) was introduced that can 
remove these differences, called batch effects, through an empirical Bayes framework 
[21]. This method is designed to determine and adjust for a single batch affecting the 
values, while keeping effects induced by biology (biological covariates) intact. This allows 
genomic signatures between different populations acquired with different testing setups 
to be compared.

Implementing a similar harmonization method for radiomics could standardize features 
affected by scanner effects (i.e., first order and texture features), allowing radiomics 
models to be used between different patient populations. Orlhac et al (2018) implemented 
ComBat to compare reproducibility of data from one center to two other centers, using the 
center from which the images were obtained as batch effect, for nine different radiomics 
features extracted from fluorodeoxyglucose 18F (¹⁸F-FDG) positron emission tomography 
(PET) images of breast cancer patients [22]. Before harmonization, four or six features out 
of nine, depending on the center used to compare reproducibility, showed significant 
differences in distributions, while after ComBat harmonization zero features showed 
significant differences. These results show ComBat allows for an increased reproducibility 
between centers.

However, ComBat as a method was designed for gene-expression array harmonization, 
where the type of array was the sole batch effect to remove while considering all the 
biological covariates. For medical imaging, and subsequently radiomics features, the effects 
of the acquisition and reconstruction parameters and the differences between brands of 
scanners are much larger than one. This means a single batch effect, for example center 
or scanner, is not the correct approach. Furthermore, the equation of ComBat requires the 
list of possible biological covariates to be provided that may have an effect on radiomics 
values. When these are not provided, ComBat cannot by itself differentiate between the 
effects the batch or the biological covariates has on the feature [23]. To account for this, 
estimating the batch effects on phantom data for the scanners and settings that will be 
corrected prevents biological effects on influencing the effect, which in turn allows this 
effect to be applied to radiomics features [24]. 

Although the clinical data used for the study in Chapter 5 study was collected prospectively 
(one phase III randomized clinical trial and a prospective series), the primary aim of both 
studies was not to develop a radiomics signature. Therefore, a phantom study was not 
performed and there were no strict guidelines to use a certain type of CT scanner with a 
specific scanning protocol, and settings for reconstruction and acquisition were not pre-
specified. The possible application of ComBat as a result was limited, and was not tried 
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extensively. Nonetheless, the remaining studies in this thesis did include limited attempts 
at controlling the acquisition and reconstruction parameters, such as slice spacing and 
pixel spacing. In addition, other preprocessing methods have shown to be able to address 
some of the differences between datasets [25, 26].

In Chapter 6, we aimed to develop a predictive model for ARE of patients with BM using 
deep and handcrafted radiomics on pre-treatment MRIs. Patients with BM are often not 
eligible for surgery as the number of BM and the average age of the patient makes surgery 
unfeasible. As an alternative, SRT can accurately treat patients with multiple BM [27]. 
However, this treatment carries the risk of late onset ARE which are difficult to discern 
from tumour progression and require a trained neuroradiologist and often advanced 
imaging techniques to diagnose. Predicting which patients have a higher chance of ARE 
before treatment can be beneficial, as it might change the choice of treatment or identify 
patients who will require more intense follow-up. 

Both handcrafted radiomics and DL approaches on MRI data were used separately to predict 
ARE for patients with BM treated with SRT, and in combination with each other and with 
a list of known clinical predictors of ARE. External validation was performed on data from 
a different hospital in a different country. To adjust for the differences in acquisition and 
reconstruction parameters between the datasets, different pre-processing methods were 
tried for both methods: z-score normalization [28], contrast limited adaptive histogram 
equalization (CLAHE) [29], and whitestripe normalization [30]. By performing an internal 
validation pre-processing method, the ideal one was chosen for both radiomics and DL. 
The models created on this pre-processed data could significantly predict ARE on an 
external dataset. This indicates as an alternative to methods such as ComBat, which adjust 
feature values after extraction of features, methods that instead adjust intensity values 
could be used to improve model generalizability.

8.2 Data quantity and quality
Another reason for low performance of the model in Chapter 5 could be due to the 
complexity of radiomics data, which necessitates large datasets. Radiomics, and 
quantitative imaging in general, is data-hungry, requiring large datasets in both training 
and validation to achieve high performance, and to verify if the model performance is 
significant. The numbers of training (N = 142) and validation (N = 77) samples from the 
study in Chapter 5 are considered low for quantitative imaging studies, which could have 
negatively affected the results. However, data curation, collection, and segmentation is a 
time-consuming process, meaning not all imaging data may be fit for analysis. Instead, 
using data from routine clinical practice that gets segmented helps with acquiring the 
necessary data volume. However, as was shown in this Chapter, it can be challenging to 
collect the necessary number of patients with adequate scans available as only a subset of 
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scans was eligible. Setting up protocols for hospitals to standardize image acquisition and 
storage could help future studies with acquiring data, but would require a tremendous 
amount of coordination between hospitals and countries.  

In Chapter 3 a predictive model for OS in stage III-IVB HNSCC patients using radiomics on 
CT images. The study included patients with oropharynx, larynx, hypopharynx, and oral 
cavity cancer, with and without HPV-infection, and these patients were treated mostly 
with radiotherapy. The imaging data was therefore from routine clinical practice with 
segmentations available. Similarly to the study in Chapter 5, this study contained data 
from multiple centers, and besides all the data collected having a requirement of a 3mm 
maximum slice spacing, and a 1mm2 maximum pixel spacing, no harmonization or strict 
guidelines for imaging was set. 

However, the number of patients included was relatively much larger, with 666 
retrospectively collected patients and 143 prospectively collected patients. The results of 
this study are therefore in contrast with Chapter 5, as for this study we found radiomics 
was able to significantly predict OS and stratify the validation cohort in three distinct 
risk-groups, and the radiomics model contained complementary value to a model based 
on clinical and biological covariates. This result indicates that radiomics has a place the 
clinical decision-making process, adding to the available knowledge clinicians have, not 
replacing it. The important difference with the model from Chapter 5 is the source of the 
data, as this allowed volume large volume of data that in turn allows the training data to see 
the necessary variability between populations and within populations to make effective 
predictive models. To acquire this necessary volume of data, a large-scale, multinational 
project spanning over 5 years was required, which is indicative of the required effort.

Similarly, the model in Chapter 6, to predict ARE for patients with BM on MRI data, was 
built on a large volume of data. The outcome of the study was defined in two ways: 
ARE per lesion after treatment, and ARE for any lesion a patient has. Outcomes of both 
predictions would allow clinicians to use this information for treatment decision-making, 
opting for example for systemic therapy, and would allow for better informing of the 
patient of the risk of SRT. The individual lesions were all treated using SRT, and therefore 
had segmentations readily available needed for treatment planning. This give a large 
volume of over 6000 lesions to train our model on. Radiomics was found to be predictive 
of ARE. In fact, a combination of radiomics features and DL features, which are features 
extracted from the last layer of the DL model after training it to predict ARE, was found 
to be most predictive. This indicates radiomics for this task can outperform patient and 
lesion characteristics. However, when predicting on a patient-level, including patient and 
lesion characteristics resulted in the highest performance. Moreover, the ML models in 
general outperformed the DL models for patient-level and lesion-level.
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Data quality is another important factor, with especially slice thickness being reported 
as having a large impact on model performance [31, 32]. Acquiring images with small 
slice thickness (0.5-1.5mm), and therefore acquiring more images per scan, is preferable, 
but can be unfeasible due to extra time needed to capture these images, and because of 
the amount of storage which would be required for images with these resolutions. While 
data storage will increase over time as technology progresses, large amounts of data are 
available now with lower resolution that could still be a valuable source of information. 
Therefore, in Chapter 7 we developed a tool to interpolate these images, which increases 
the number of slices in a scan to increase the data quality. The DL model was trained to 
produce images that are texture-accurate, to preserve information that might be present 
in the images [33]. The model was able to create images that with a lower average texture 
error compared to other common interpolation methods. This indicates the model could 
potentially be used to lower slices spacing, and therefore increasing image quality, and 
to harmonize the slice spacing in a dataset using an interpolation method more accurate 
than conventional techniques. A next step of this study would be to test the method in 
a study where a predictive model is made using radiomics. Comparing the performances 
of models trained with and without interpolation would be a good test on the impact the 
method would have on predictive performance.

Besides quantity of imaging data and the settings used to acquire the images, another 
important aspect of data quality is the number of events available in the entire population. 
Many ML algorithms without human intervention wrongly assume that the number of 
events and controls in a binary model are balanced [34, 35]. This may result the model 
training to converge in such a way that a large amount of predictions will be made for 
the majority class, as this may lead to a high performance. Chapter 6 involves data with 
an extremely imbalanced outcome, as only 2-3% of the samples had an event. However, 
methods such as undersampling of the majority class, and adjusting the weights of the 
outcomes before training, were able to successfully adjust for this imbalance.

Radiomics as a field has moved on from being a novel technique with inflated expectations 
to a field that, while having shown successes in many different prediction and classification 
tasks, has encountered many pitfalls along the way. Figure 2 shows a curve of the typical 
expectations of any new field or discovery over time. Radiomics, after a peak of inflated 
expectations, has to overcome many problems, such as reproducibility, generalizability, 
explainability, and the lack of access to the data used for many radiomics studies to 
allow verification of the created models. However, as the increasing number of radiomics 
studies show, and the increasing amount of efforts trying to address some of these issues, 
radiomics is at the forefront of a phase of “enlightenment”, which could push the field to 
be clinically viable in the future. This is represented by the arrow in Figure 2.
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Figure 2: Graph explaining scientific fields’ expectations over time. The blue arrow points to the approximate location of 
radiomics in this time graph. 

 

Figure 2. Graph explaining scientific fields’ expectations over time. The blue arrow points to the 
approximate location of radiomics in this time graph.

As previously mentioned, for many quantitative imaging studies the collection and 
curation of data is one of the most time-consuming processes, especially if the data needs 
to be segmented. What is still lacking in most studies is the ability to reproduce the results 
by having access to the data the studies used. Using the data, and the created models, to 
validate other models and to recalibrate models using new data could further advance 
the field, especially as new ML and DL methods are continuously being developed. Having 
data available now and data collected in the future set up according to a set of guidelines, 
such as the Findable, Accessibility, Interoperability, and reusability (FAIR) principles, would 
therefore be ideal to enhance model reproducibility [36].

The proposed signatures that have proven predictive value should be further developed 
to be able to implement clinically. The next needed step therefore is to ensure the proper 
procedure and testing of implementation in a clinical setting takes place. As previously 
mentioned, models that use radiomics features are ideally implementable in routine 
clinical practice, without the need for extra imaging and segmentation. This would allow 
for models that are broadly applicable, and do not add extra burden to the clinicians. 
Furthermore, the models need to be implemented in such a way as to complement, not 
replace doctors. A method could be through digital patient/clinical decision aids, which 
allow for a digital implementation of the models and direct interaction. Explainability 
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of the models is also crucial in a clinical settings, which could for example be achieved 
through the use of SHapley Additive exPlanations (SHAP) modelling [37]. 

While we have discussed that some of the data collected in these studies come from 
routine clinical practice, indicating there is room for implementing a radiomics workflow, 
full integration of radiomics on a technical level, and for a clinician to use the information 
in a clinical setting would require more evidence. A logical next step to further the field 
of radiomics is to test radiomics in a clinical trial, either as a separate standalone trial or as 
inclusion as a secondary objective. Inclusion in these trials would further allow for control 
over the acquisition and reconstruction protocols required for quantitative imaging, and 
for the inclusion of phantom studies required for methods such as ComBat. It should 
be noted, however, that even for clinical trials following guidelines for imaging can be 
challenging, and should be put under a lot of scrutiny [38]. Nonetheless, inclusion in 
clinical trials would test the feasibility of including radiomics in a clinical workflow. For 
predictive studies such as presented in this thesis, in silico clinical trials are currently not 
feasible, but could be a valid replacement of in vivo clinical trials. As a last step, acquiring 
medical device certification, such as the CE marking, should be pursued. Obtaining this 
marking means a device or technology meets the safety and performance requirements 
of the European medical device regulations, and is therefore suitable to be used within 
the European Union.

8.3 Conclusion

The findings of this thesis have shown that quantitative imaging through radiomics and 
DL, extracted from clinical CT and MR imaging, can be used for a number of different 
predictive purposes. However, the field faces large limitations, mainly because of 
harmonization and generalization issues, data quality limits, and a lack of accessibility of 
data. Efforts to overcome these issues through  methods such as ComBat, and the FAIR 
principles are being investigated With this thesis, we have introduced some large-scale 
studies of known unmet clinical needs in Chapter 3 and 6, where efforts were made 
to collect large amounts of data and to analyze these systematically using appropriate 
guidelines, while the results of Chapter 4 and 5 show that with smaller datasets radiomics 
may not be the optimal approach. The results indicate that radiomics has complementary 
value to currently used methods for prognosis and predictions, and could support clinical 
decision making in the future. The next stop for quantitative imaging analysis to develop 
as a field would be to set up prospective clinical trials, where the factors inducing the 
aforementioned limitations can be controlled, and to test the practicality of including 
(deep) radiomics in a routine clinical setting.
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Quantitative image analysis through artificial intelligence (AI) has made great leaps in 
the past years, both through the development of machine learning (ML) methods using 
semantic and handcrafted (radiomics) features extracted from images, and through direct 
application of deep learning (DL) algorithms on images. While the development of these 
models requires a lot of time, coordination, and resources, the final product could be a 
tool that seamlessly integrates in the current clinical routine without adding workload. 
Ideally, when a patient enters the clinic and receives a scan, an automatic algorithm 
would (possibly after automatically delineating any regions of interest) analyze the image 
and combine this with other patient information in a prediction of any relevant clinical 
outcome. This is therefore not a tool that would replace a clinician, but rather augment 
them by condensing the available imaging, clinical, biological, and other information in a 
single understandable metric. In this thesis, we have contributed to this goal by attempting 
to solve relevant unmet clinical needs with routine imaging data. Several types of cancers 
were investigated for the predictive value of radiomics and DL in predicting future events 
and their complementary value to existing predictors, using large, multi-center datasets 
to create generalizable models.

All the studies included in this thesis are published in peer-reviewed open-access journals 
(Cancers, Frontiers in Oncology, Therapeutic advancements in oncology, British journal 
of radiology, PLOS ONE), and contribute to the field of science, specifically to precision 
medicine and cancer therapy because of a number of varying reasons. The study in chapter 
2 provides an introduction to radiomics and the overview of the current radiomics as a 
scientific field. The studies in chapter 3 and 4 showed both a positive and negative result 
in predicting survival and tumor recurrence outcomes for patients with head and neck 
squamous cell carcinoma. This contrast in results highlights the downsides of radiomics, 
among others the need for high quality and high volume data to make effective models, 
and the existing problems in generalizability and reproducibility, and may serve as 
guidelines for future research. The study in chapter 5 shows that radiomics, while being 
able to predict development of brain metastases for patients with non-small cell lung 
cancer, could not outperform models based on clinical predictors. This emphasizes the 
relevance of existing data that radiomics does not seek to replace, but rather complement 
existing predictors built on clinical findings. The study in chapter 6 was a study on a large 
scale dataset of patients with brain metastasis to predict risk of radiation necrosis. In this 
study we thoroughly investigated pre-processing of MRI data, and the complementary 
value DL and radiomics have for prediction studies. Lastly, the study in chapter 7 was a 
study into slice spacing, which is one of the largest causes of quality discrepancy between 
images. A DL model to interpolate CT images can potentially address this by increasing 
the number of slices. In these studies, we have shown the potential of radiomics to be 
complementary to other clinical predictors, but also the need for future research mainly in 
the generalizability of the features from different scanners or different imaging protocols. 
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We further think the next step for radiomics would be the inclusion in multi-center clinical 
trials, where control over the imaging parameters and inclusion of phantom scans could 
properly test the feasibility and generalizability of the developed models. 

The results presented further have a number of (potential) societal impacts. We believe 
that radiomics, through the identification of tumor and patient subtypes, can play 
an important role in the realization of personalized medicine, instead of the current 
broader staging systems used based on clinical information. The risk stratification 
models presented would further allow for better informing of patients of their chance 
of survival or risk of side effects, and would allow for better selection of patients that are 
eligible for clinical trials. In addition, radiomics can be integrated clinically to perform, 
in an automated fashion, highly specific tasks done by a clinician now. This would lower 
clinicians’ workloads, would save on time and money by using a machine that could do 
tasks in a fraction of the time a human could, and reduce the variability between doctors 
and clinics in performing these tasks. Lastly, radiomics would not replace clinicians by 
doing these tasks, but instead augment them, transforming the current clinician in an 
“AI-enhanced” clinician which would be better equipped to face the increasing workload 
in hospitals.
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Most patients with head and neck squamous cell carcinoma (HNSCC) and non-small cell 
lung cancer (NSCLC) show no early symptoms, and are therefore commonly diagnosed at 
an advanced stage of the cancer, which drastically lowers the chance of survival and the 
quality of life (QoL). Similarly, symptomatic brain metastases (BM), which are tumors that 
have spread from a different part of the body to the brain, are also associated with a poor 
prognosis and drastically decreased QoL and poor prognosis. Advanced stages of HNSCC, 
NSCLC, and BM usually have no curative treatment options available.

Current risk-stratification of patients with these types of cancer happens through the 
tumor-nodes-metastasis (TNM) staging system. This system describes the primary tumor 
location, size, and invasiveness (T-status), the presence of and extent the cancer has 
spread to local nymph nodes (N-status), and finally the presence of cancer metastases to 
distant parts of the body (M-status). This combination of T-, N-, and M-status results in an 
overall cancer staging, ranging from I to IVA/B. In addition to size and location, the genetic 
and mutational status of the tumor are commonly used for deciding treatment, and 
sometimes also for staging. Furthermore, information regarding patient characteristics 
and preferences is also taken into consideration by determining patient performance 
score, comorbidities, the expected QoL, and risk of complications for the treatment 
choices available. Lastly, patient specific clinical and biological factors are regarded, such 
as smoking and alcohol consumption, hemoglobin level, sex, and age.

Advanced stages of NSCLC and HNSCC, as well as BM, have several unmet clinical needs. 
For advanced (stage III-IVB) HNSCC patients stratification in overall survival (OS) risk-
groups, even with the implementation of the 8th edition staging, remains difficult. For 
stage III NSCLC, even though effective treatments exist to lower the risk of BM, due to the 
possible side-effects of these treatments determining which patients are at a high risk of 
BM is needed, which is currently clinically not feasible. Last, for BM determining which 
patients are at risk of adverse radiation effects (ARE) such as radiation necrosis (RN) before 
delivering stereotactic radiotherapy (SRT) is important, as this information may be used 
for risk stratification, for informing the patient, or to opt for different a treatment.

What these patients have in common is the use of medical imaging, either for diagnosis, 
staging, or for treatment planning purpose. Common medical imaging modalities 
include positron emission tomography (PET), computed tomography (CT), and magnetic 
resonance imaging (MRI). The imaging modality used depends mainly on the location 
of the tumor and the aim of the procedure (finding distant metastases, providing local 
details etc.). Quantitative image analysis through radiomics and deep learning of these 
medical images may allow for the identification of phenotypical subtypes of tumors that 
could be investigated for their correlation to certain clinical outcomes, and subsequently 
improve prognosis. 
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In this thesis, we investigated this through a number of studies involving radiomics and 
deep learning. We first attempted to improve the prediction of OS by extracting radiomics 
features from advanced HNSCC tumors on baseline computed tomography (CT) images 
(chapter 3). We  compared and combined this with the current gold standard of the 
American Joint Committee on Cancer (AJCC) TNM 8th edition, and known clinical (age, 
sex, smoking/alcohol status) and biological (HPV, hemoglobin level) predictors of OS. We 
found that radiomics has complementary value in predicting OS, and was able to identify 
three significantly different survival risk-groups. Furthermore, to test if the peritumoral 
tissues surrounding primary HNSCC tumors contain predictive information on OS, distant 
metastasis (DM), and locoregional failure (LRF), we trained a radiomics signature on 
baseline CT using expanding rings around the gross tumor volume (GTV) (chapter 4). 
However, no significant predictive value of radiomics was found. For the next tumor type, 
stage III NSCLC, we compared and combined a radiomics signature with known predictors 
(age, adenocarcinoma histology, smoking status, the type of chemotherapy administered, 
and WHO performance status) for the development of BM on baseline contrast-enhanced 
computed tomography (CECT) (chapter 5). We found that, while predictive, radiomics 
did not outperform or complement a ML model built on simple clinical predictors of 
BM development. Lastly, for BM, we tested and compared the feasibility of handcrafted 
and deep radiomics to predict ARE after stereotactic radiotherapy (SRT) on baseline 
T1-weighted MRI, and found that a combination of handcrafted and deep radiomics is 
significantly predictive (chapter 6).

We therefore conclude that quantitative imaging through radiomics and DL, extracted 
from clinical CT and MR imaging, can be used for a number of different predictive 
purposes. With this thesis, we have introduced some large-scale studies of known unmet 
clinical for HNSCC and BM, where efforts were made to collect large amounts of data and 
to analyze these systematically using appropriate guidelines, and were able to improve 
prognosis significantly In contrast, for studies with smaller datasets radiomics may not 
be the optimal approach, as the studies for NSCLC and peritumoral HNSCC were not able 
to produce significant results. These results indicate that radiomics has complementary 
value to currently used methods for prognosis and predictions, and could support clinical 
decision making in the future.
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Samenvatting

De meeste patiënten met hoofd-hals plaveiselcelcarcinoom (HNSCC) of niet-kleincellig 
longcarcinoom (NSCLC) presenteren zich niet met vroegtijdige symptomen, waardoor de 
ziekte vaak in een laat stadium wordt ontdekt. Patiënten met deze typen kanker hebben 
hierdoor een lage kans op overleving, en een verslechterde kwaliteit van leven (QoL). 
Daarnaast zijn symptomatische hersenmetastasen (BM), tumoren die naar de hersenen 
vanaf een andere primaire tumor locatie zijn uitgezaaid, ook geassocieerd met een slechte 
prognose en een zeer lage QoL. Patiënten met deze typen kanker hebben vaak geen kans 
op genezing. 

Risicostratificatie gebeurt nu klinisch aan de hand van het tumor-lymfeklier-metastase 
(TNM) classificatiesysteem. Dit systeem duidt aan of en hoe in hoeverre de tumor 
plaatselijk is uitgebreid (T-stadium), of en in hoeverre de tumor is uitgezaaid naar de 
lymfeklieren (N-stadium), en of er uitzaaiingen zijn gevonden die zich via het bloed naar 
de rest van het lichaam hebben verspreid (M-stadium). De combinatie van het T-, N-, en 
M-stadium resulteert in een TNM-stadiëring van de tumor van stadium I tot stadium IVA/B. 
Naast de grootte en locatie van de tumor(en), wordt het genetische en mutatie profiel 
van de tumor ook in overweging genomen bij de keuze van behandeling, en mogelijk 
tijdens de stadiëring. Daarnaast worden de voorkeuren van de patiënt, en informatie over 
het functioneren van de patiënt, zoals co-morbiditeit, performance-scores, de verwachtte 
QoL, en het risico op complicaties, meegenomen bij keuze voor behandeling. Tenslotte 
zijn klinische en biologische factoren zoals leeftijd, geslacht, hemoglobine waarde, en 
rook- en alcoholconsumptie van belang.

Late stadia van HNSCC en NSCLC, en BM, hebben verscheidene onvervulde klinische 
behoeften. Voor patiënten met late stadia (III-IVB) HNSCC is stratificatie naar een 
algemeen overlevingskans (OS) risicogroep, zelfs met de invoering van de 8ste editie van 
het American Joint Committee on Cancer (AJCC) TNM-stadiëring, moeilijk. Voor stadium 
III NSCLC patiënten bestaan behandelingsopties die effectief het risico op metastasering 
naar de hersenen verlagen. Maar omdat deze behandelingen gepaard gaan met mogelijke 
ernstige bijwerkingen, is een methode die patiënten met een verhoogd risico op 
metastasering naar de hersenen kan identificeren van groot belang. Zo kan er geselecteerd 
worden op patiënten met een hoog risico voor metastasering naar de hersenen. Tenslotte 
is het voor patiënten met bestaande BM moeilijk om te bepalen wie een verhoogd risico 
heeft op stralingsnecrose (RN) na behandeling met stereotactische radiotherapie (SRT). 
Patiënten met een verhoogd risico voor ARE zouden met deze informatie kunnen worden 
geïnformeerd over de mogelijke bijwerkingen van SRT, of worden geadviseerd om een 
andere behandeling te ondergaan.
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Wat deze patiëntgroepen gemeen hebben is het gebruik van medische beeldvorming 
voor diagnose, stadiëring, of het plannen van de behandeling. Veelgebruikte modaliteiten 
zijn positronemissietomografie (PET), computertomografie (CT), en magnetic resonance 
imaging (MRI, ook wel aangeduid als kernspintomografie). De modaliteit die gebruikt 
wordt hangt af van de locatie van de tumor, en het doel van de beeldvorming (bijvoorbeeld 
stadiëring, lokaliseren van metastasen, of gebruik voor behandelingsdoeleinden). 
Kwantitatieve analyse van medische beelden door middel van radiomics en deep learning 
(DL) zou het mogelijk kunnen maken om fenotypische subtypen van tumoren te kunnen 
onderscheiden en correleren met bepaalde klinische uitkomsten, en zo de prognose te 
verbeteren.

In dit proefschrift hebben wij dit onderzocht aan de hand van een aantal studies naar 
radiomics en DL. We hebben als eerste getracht de voorspelling van OS te verbeteren 
met radiomics kenmerken van late stadia HNSCC tumoren op pre-behandeling CT 
beelden (hoofdstuk 3). We vergeleken en combineerden deze kenmerken met de gouden 
standaard voor risico stratificatie (8ste AJCC editie TNM-stadiëring) en bekende klinische 
(leeftijd, geslacht, rook en alcohol consumptie) en biologische (humaan papillomavirus 
infectie, hemoglobine niveau) voorspellers. De uitkomst van deze studie was dat 
radiomics kenmerken complementaire waarde hebben voor het voorspellen van OS, en 
drie significant verschillende risicogroepen kunnen onderscheiden. We hebben verder 
onderzocht of de weefsels die de tumor direct omringen voorspellende waarde hebben 
voor OS, locoregionaal tumor falen, en uitzaaiingen van de primaire tumor naar andere 
gebieden in het lichaam (hoofdstuk 4). We vonden echter dat radiomics kenmerken 
die geëxtraheerd zijn van deze weefsels op CT-beelden geen voorspellende waarde 
hadden. Voor de volgende tumor soort, stadium III NSCLC, werd onderzocht of radiomics 
kenmerken op CT-beelden, na toediening van een contrastvloeistof, voorspellende 
waarden hebben voor het risico op BM (hoofdstuk 5). Deze kenmerken werden vergeleken 
en gecombineerd met bekende risicofactoren (leeftijd, adenocarcinoom histologie, rook 
status, het type chemotherapie, en Wereldgezondheidsorganisatie (WHO) performance 
status) voor de ontwikkeling van BM (hoofdstuk 6). We vonden dat, hoewel radiomics 
kenmerken voorspellende waarde hebben, ze niet een model gebaseerd op simpele 
klinische voorspellers voor het risico op BM konden overtreffen, en geen toegevoegde 
waarde hadden voor dit model.  Tenslotte hebben we voor patiënten met BM getest of 
met radiomics kenmerken en DL op T1-gewogen MRI beelden adverse straling effecten 
(ARE) kunnen voorspellen na behandeling met SRT, en vonden dat een combinatie van 
radiomics en DL kenmerken significant voorspellend was.

Wij concluderen daarmee dat kwantitatieve beeldvorming op klinische CT en MRI beelden 
een rol kunnen spelen voor verschillende klinische doeleinden. In dit proefschrift hebben 
wij aan de hand van enkele grootschalige studies naar onvervulde klinische behoeften 



Samenvatting   |   281   

11

voor HNSCC en BM aangetoond dat de prognose verbeterd zou kunnen worden met 
behulp van radiomics en DL kenmerken. In tegenstelling daarmee concluderen wij met 
de onderzoeken naar weefsels rond HNSCC en naar NSCLC dat voor studies met kleinere 
datasets radiomics een minder ideale methode is voor risico stratificatie. Deze resultaten 
laten zien dat radiomics complementaire waarde bezit, en klinische besluitvorming in de 
toekomst zou kunnen ondersteunen.
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