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1. Complement system 

As early as in the 1890s, complement was discovered. It was observed to aid antibodies 

to kill pathogenic microorganisms, and was therefore named ‘complement’ [1] 

Complement system is one crucial arm of innate immune system and is the bridge 

between innate and adaptive immunity [2, 3]. It also plays a crucial role in tissue 

homeostasis [4]. Complement system is a group of proteins, which consists of over 50 

proteins [5]. These proteins are mainly produced in the liver and are present in plasma 

as well as on the cell membrane as inactive precursors [6]. Concentrations of these 

proteins in plasma are over 3 g/l, which accounts for a large fraction of plasma proteins 

[2]. Recent studies showed that complement activation occurs not only in plasma and 

at tissue, but also within cells [7]. 

 

 

1.1  The complement activation pathways 

Complement can be activated by three pathways, i.e. classical pathway, lectin pathway 

and the alternative pathway (see figure 1.1). Once complement activation occurs, it 

will lead to a hierarchical proteolytic cascade [3]. The three activation pathways 

converge at the level of complement C3, followed by activation of the shared terminal 

pathway of complement activation [8]. In additional to the three canonical pathways 

of complement activation, a ‘fourth’ pathway of complement activation has been 

proposed in which C3 and C5 are activated by proteases of the coagulation, fibrinolysis 

and kinin system, which may be particularly relevant under pathophysiological 

conditions [9, 10]. Uncontrolled complement activation will lead to self-attack and 

damage of cells. For this reason, many circulating and cell-bound complement 

inhibitors exist that control the different steps of the complement activation cascade 

[6]. 

 The classical pathway: The classical pathway was the first complement pathway 

discovered [6]. The classical complement pathway is initiated via its recognition 
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molecule C1q (the first protein involved in the classical pathway cascade). Binding of 

C1q to its target, e.g. antibody-antigen complexes that contain IgM or IgG, leads to 

activation of the C1q-associated proteases C1r and C1s. These activated serine 

proteases then cleave complement C4 and C2, which then form C4b2a: the classical 

pathway C3 convertase. C4b2a cleaves C3 into C3a and C3b [11]. C3b binds to C4b2a 

to form C4b2a3b: the classical pathway C5 convertase that can activate C5 by cleaving 

it into C5a and C5b. The classical complement pathway activation can also be activated 

independent of antibodies [12-15]. 

The lectin pathway: Mannose-binding lectin (MBL) and ficolins, which are 

multimeric lectin complexes, are the initiating molecules of the lectin pathway. MBL 

and ficolins bind to specific carbohydrate patterns, i.e. PAMPS (pathogen-associated 

molecular patterns) and DAMPS (damage-associated molecular patterns) on foreign 

microbes or altered self-surfaces. Analogous to C1q, the initiation factors of the lectin 

pathway circulate in complex with their serine proteases. Upon target binding, the 

lectin pathway is activated via enzymatic activity of MBL-associated serine proteases 

(MASPs). The lectin pathway shares a pattern with the classical pathway since MBL and 

the C1 complex are similar in structure [16]. The serine protease MASP-2 can cleave C4 

and C2 to form C4b2a, a C3 convertase that is identical to the classical pathway C3 

convertase. 

The alternative complement pathway: Approximate half a century after the discovery 

of the classical pathway, the alternative pathway was proposed [17, 18]. The 

alternative complement pathway is initiated by spontaneous hydrolysis of C3 forming 

C3(H2O) [19]. In the fluid phase, C3(H20) can bind to factor B and interact with factor D 

to form C3(H20)Bb, which is an alternative pathway C3 convertase. This convertase 

cleaves C3 into C3b and C3a. Similar to C3(H2O) in the fluid phase, C3b on the surface 

also binds with factor B and interacts with factor D to form C3bBb, the alternative 

pathway C3 convertase [11]. C3b generated by alternative C3 convertases, but also C3b 

generated by C3 convertases of the classical and the lectin pathway, can generate more 
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C3 convertases by interacting with factors B and D, thus acting as an amplification loop 

[14]. C3bBb cleaves C3 into C3a and C3b, which binds to C3bBb to form C3bBbC3b: the 

alternative pathways C5 convertase.  

The terminal complement pathway: C5b, which is generated upon activation of 

all complement pathways, binds to C6. This C5b6 complex is inserted in membranes 

and then binds C7 and C8 to form the C5b-7 and C5b-8 complexes, which are more 

firmly embedded in the membrane. Finally, multiple C9 molecules associate with C5b-

8 to form the C5b-9 complex, also known as Membrane Attack complex (MAC) or 

terminal complement complex (TCC). MAC leads bacterial lysis via inserting into its 

membrane and creating functional pores [20, 21]. In addition, and in contrast to this 

lytic effect on pathogens, insertion of MAC in the membrane of nucleated cells will 

generally induce a proinflammatory response [22-24]. 
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Figure 1.1 Schematic overview of the activation of the complement system via the 3 

main pathways. The alternative pathway of complement activation, the amplification 

loop and the complement components that are the focus in this thesis are bold. 
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1.2 Regulation of complement activation 

The activation of the complement system is strictly regulated by both circulating and 

membrane-bound regulatory proteins that prevent excessive complement activation 

and injury from activated complement. The first regulation way is accelerating the rate 

of decay of primarily the C3 convertases which is called decay-acceleration activity. 

Another main regulatory mechanism is preventing the reformation of C3 convertase 

[2, 25]. Complement regulators that are involved in these processes include plasma 

regulatory proteins such as C1-inhibitor, C4 binding protein, factor I, and factor H as 

well as membrane-bound proteins such as CD35, CD46, and CD55 ((also known as 

decay accelerating factor [DAF]) [6, 26-31].  Complement inhibition also occurs at the 

level of the terminal pathway, for instance by CD59 (also known as protectin) which 

inhibits the formation of C5b-9/MAC by preventing the interaction of C5b-8 and 9 [32]. 

 

 

2. Focus of this thesis: Factors C3, D and C3a of the alternative 

complement pathway and cardiometabolic diseases  

The studies in this thesis focus on the alternative pathway of complement activation 

and, therein, particularly on C3, C3a and factor D.  

Complement C3 is the central component of alternative complement pathway. 

Circulating concentration of complement C3 is around 1 to 1.5 g/l , which makes it the 

most abundant complement factor in the circulation [33]. Its structure is highly 

conserved in mammalian species [34, 35]. C3 is mainly produced by hepatocytes [33] 

but it is also synthesized by adipocytes, capillary and vascular endothelium, uterine 

epithelium, kidney tubular epithelium, mononuclear phagocytes, polymorphonuclear 

neutrophils, fibroblasts, type 2 alveolar cells pneumocytes, activated T-cells, 

osteoblastic and marrow-derived stromal cells, and astroglia [33]. 
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C3a is a product of cleavage of C3. C3a is an anaphylatoxin and stimulates 

recruitment and activation of inflammatory cells, thus contributing to the 

inflammatory response [6]. Once C3a is released, circulating carboxypeptidases rapidly 

cleave its C-terminal arginine to generate a more stable and less potent form: C3a 

desArg [36].  

Complement factor D is the rate-limiting enzyme in the activation of alternative 

pathway [37]. Circulating concentration of complement factor D is around 1 to 2 mg/l 

[38], which makes it a low-abundance complement factor [37]. The larger part of factor 

D that circulated in plasma is in the activated form [38]. Hence, the amount of factor D 

in plasma determines the activity of not only the initiation of the alternative pathway, 

but also of the amplification loop. One way to control the overall activity of factor D is 

by maintaining a low concentration via an extremely rapid catabolic rate [39]. Factor D 

is not only synthesized by adipose tissue, may also by e.g. monocytes[40]/ 

macrophages [41] and brain astrocytes [40-42], which makes factor D of importance 

for complement-dependent roles in tissue sites.  

Each of the three main pathways of complement activation have been implicated 

in cardiometabolic diseases, but in the context of this thesis the focus is on the 

alternative pathway and the amplification loop on which all three activations pathways 

converge.  
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Figure 1.2 The complement system in cardiometabolic diseases  

 

2.1 The alternative complement pathway and obesity  

Obesity, which is characterized by abnormal or excessive accumulation of adipose 

tissue, is a chronic disease spread all over the world [43, 44]. According to the World 

Health Organization, nowadays over 1.9 billion adults are overweight of whom more 

than 650 million are obese. Moreover, around 400 million children and adolescents are 

overweight or obese, worldwide. Obesity can contribute to life-threatening medical 

complications, for instance dyslipidaemia, type 2 diabetes (T2D), cardiovascular 

disease (CVD), and metabolic syndrome [45]. These serious consequences make 

research into the etiology of obesity and its related complications urgent.  

 In individuals with obesity, the adipose tissue becomes hypertrophic. This 

induces a local inflammatory response that contributes to the development of 

cardiometabolic diseases e.g. by promoting adipose tissue insulin resistance and 

attracting more inflammatory cells. Adipose tissue consists of adipocytes, endothelial 

cells, immune cells and fibroblast-like cells [46]. Therefore, adipose tissue cannot only 

store fat and energy, but can also produce and secrete numerous endocrine substances, 

known as adipokines [47]. Many adipokines have been identified to play a role in 



Chapter 1: General Introduction 

 

15 

metabolic disorders [48, 49]. Notably, a substantial number of components of the 

complement system have been identified as adipokines [50], among which are the 

complement components that are the focus of this thesis.  

The most clear-cut adipose-tissue derived complement component is factor D, 

which is also known as adipsin. Factor D was reported to be produced mainly by 

adipose tissue, particularly by adipocytes [51, 52]. While the liver is the main source of 

plasma C3 [53, 54], substantial C3 production also occurs in adipose tissue [50]. C3a on 

the other hand is primarily generated extracellularly, upon generation of C3 

convertases that cleave C3 into C3a and C3b [4]. Consequently, plasma concentrations 

of complement C3, factor D and C3a are strongly and positively associated with 

adiposity in humans [55].  

 

 

2.2. The alternative complement pathway and type 2 diabetes 

T2D is one of the major causes of morbidity and mortality, world-wide [56]. Obesity is 

considered the primary risk factor for T2D. The diagnosis T2D is defined by elevated 

plasma glucose higher than 7.0 mmol/L when fasting and/or higher than 11.1 mmol/L 

when non-fasting [57]. This increased blood glucose results from insulin resistance 

combined with insufficient insulin secretion from (relative) beta cell dysfunction [58]. 

Insulin resistance is defined as decreased physiological responsiveness, in the liver, 

adipose tissue and muscle, to the effect of insulin [59]. In the presence of insulin 

resistance the beta cell must synthesize and secrete more insulin in order to maintain 

the circulating glucose at a normal level. Once an insufficient amount of insulin is 

secreted by the beta cell, the circulating glucose level will increase and prediabetes 

and then T2D occur [60]. 

The complement factors that are studied in this thesis have been reported to be 

involved in the process of insulin resistance and T2D. Firstly, factor D [61] and C3 [62, 

63] have both been implicated in obesity-associated insulin resistance, and we [64]and 
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others [65] have identified C3 as an independent risk factor for incident T2D. On the 

other hand, however, factor D [66, 67], C3 [68] , and C3a [66] also been implicated in 

beta-cell preservation. This combination of potentially opposing effects of complement 

C3, factor D, and C3a on insulin resistance and beta cell function would fit the concept 

that adipose tissue releases beta cell-preserving factors in a situation of enhanced 

insulin resistance. This combination of effects could prevent the development of 

hyperglycemia and thereby post-pone development of T2D. It might, however, at the 

same time prolong period of the prediabetic state that is characterized by insulin 

resistance and hyperinsulinemia. This prediabetic state is known to be related to 

dyslipidemia and the metabolic syndrome which, in turn, are associated with an 

increased risk of CVD. 

 

 

2.3 The alternative complement pathway and cardiovascular 

diseases 

Cardiovascular disease is a major challenge for global health. According to WHO, 

cardiovascular disease is a one of the primary causes of death all over the world. 

Cardiovascular disease is regarded as a low-grade inflammatory disease of the vascular 

wall [69-71]. The pathophysiological processes involved in the development of CVD 

include endothelial dysfunction, atherosclerosis and atherothrombosis. 

Complement activation, including the alternative pathway of complement 

activation, and complement-mediated inflammation has been implicated in CVD in 

humans [49, 72]. Complement activation is shown in atherosclerotic plaques [73]. 

Moreover, a large array of complement factors, primarily of classical and alternative 

pathway, is strongly upregulated in human early atherosclerotic tissue [74], suggesting 

that complement activation may be an early event in the atherosclerotic process. 
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3. Outline of the thesis and study populations  

 

3.1 Aims  

The main aim of this thesis was to investigate the potential roles of components of the 

alternative complement pathway in (i) processes that underlie CVD, including arterial 

stiffness and vascular dysfunction and (ii) processes that underlie T2D, including fasting 

glucose and insulin resistance. In addition, we investigate the effect of weight loss on 

circulating levels of alternative complement factors. 

The added value of the analyses presented in this thesis to information that is 

already available in the literature is (i) the simultaneous measurements of three 

components of the alternative pathway in the observational cohort and randomized 

controlled trial, which allow more direct comparisons, in contrast to measurements in 

separate cohorts,  (ii) the availability of several measures of sub-clinical disease in the 

deeply-phenotyped Maastricht Study, and (iii) the large number of participants in The 

Maastricht study, which provides sufficient power to evaluate potential differences 

between the sexes and between persons with and without diabetes. 

 

 

3.2 Study populations 

 

3.2.1 The Maastricht Study  

The Maastricht Study is an observational prospective population-based cohort study. 

The rationale and methodology have been described previously [75]. In brief, the study 

focuses on the aetiology, pathophysiology, complications and comorbidities of T2D and 

is characterized by an extensive phenotyping approach. Eligible for participation were 

all individuals aged between 40 and 75 years and living in the southern part of the 

Netherlands. Participants were recruited through mass media campaigns and from the 

municipal registries and the regional Diabetes Patient Registry via mailings. 
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Recruitment was stratified according to known T2D status, with an oversampling of 

individuals with T2D, for reasons of efficiency. The analyses in this thesis include cross-

sectional data from the first 7689 participants, who completed the baseline survey 

between November 2010 and December 2017. The examinations of each participant 

were performed within a time window of three months. The study has been approved 

by the institutional medical ethical committee (NL31329.068.10) and the Minister of 

Health, Welfare and Sports of the Netherlands (Permit 131088-105234-PG). All 

participants gave written informed consent. 

 

 

3.2.2 Weight loss study 

Caucasian men were recruited via advertisements in local newspapers or among 

participants involved in earlier studies [76, 77]. They were included if they met the 

following inclusion criteria: age between 18 and 65 years, weight change <3 kg within 

the previous 3 months, non-smokers, without diabetes, without cardiovascular disease, 

no drug or alcohol abuse, no use of medication known to affect lipid or glucose 

metabolism or hypertension, and no participation in another biomedical trial during 

the past 30 days. Twenty-five normal-weight (waist circumference: <94 cm) and 53 

men with abdominal obesity (waist circumference: 102-110 cm) completed the 

baseline measurements. The men with obesity were allocated into 2 age groups (18-

49 years or 50-65 years). Men in the same age group were randomly divided into the 

weight stable control group or to the weight loss group. All participants gave written 

informed consent before entering the study. The study was approved by the Medical 

Ethics Committee of the Maastricht University Medical Center, performed in 

accordance with the Declaration of Helsinki, and registered at clinicaltrials.gov as 

NCT01675401. 

Study design: At the start of the study, all men with normal weight and with 

abdominally obesity underwent baseline measurements at the research facilities [77]. 
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Briefly, participants in the weight loss group visited our research dietitian every week 

and had a very-low-calorie diet (VLCD, Modifast; Nutrition et Sante Benelux) for at least 

4 weeks, under strict guidance. After the VLCD period, a period of 1-2 weeks followed 

in which they were provided a calorie-restricted diet in line with the Dutch dietary 

guideline. In week 7 and week 8 the participants were kept in energy balance (weight-

maintenance period). Participants in the weight stable control group maintained their 

normal diet, physical activities, and alcohol consumption, and were also monitored by 

the dietician through whole period. 

 

 

3.3 Outline of the thesis 

As indicated paragraph 3.1 and figure 1.3, the potential roles of factor C3, C3a and 

factor D in obesity, T2D and CVD were investigated.  

In chapter 2, we investigated the associations of complement factor D with 

vascular dysfunction and cardiovascular disease in the Maastricht Study. In chapter 3, 

we investigated the associations of factor D and C3 with arterial stiffness represented 

by carotid-femoral pulse wave velocity (cfPWV), carotid distensibility coefficient (DC) 

and carotid Young’s elastic modulus (YEM) in the Maastricht Study. In chapter 4, we 

investigated whether complement C3, factor D and C3a could explain (part of) the 

association of obesity with disturbed metabolism homeostasis represented by fasting 

glucose, insulin resistance, prevalence of T2D in the Maastricht Study. Finally, in 

chapter 5 the effects of weight loss intervention in obese men on the plasma 

concentration of C3, factor D and C3a were investigated. The data are summarized and 

reflected upon in chapter 6 

 

 



Chapter 1: General Introduction 
 

20 

Figure 1.3 Thesis outline 
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Abstract  

 

Background: Arterial stiffness predicts cardiovascular outcomes. The complement 

system, particularly the alternative complement pathway, has been implicated in 

cardiovascular diseases. We herein investigated the associations of factor D, the rate-

limiting protease of the alternative pathway, and C3, the central complement 

component, with arterial stiffness.  

Methods: In 3019 population-based participants (51.9% men, 60.1±8.2 years, 27.7% 

type 2 diabetes [T2D], oversampled]) we measured carotid-femoral pulse wave 

velocity (cfPWV), carotid distensibility coefficient (DC) and carotid Young’s elastic 

modulus (YEM), and plasma concentrations of factor D and C3. We conducted multiple 

linear regression to investigate the association of factor D and C3 (main independent 

variables, standardized) with cfPWV (primary outcome) and DC and YEM (secondary 

outcomes), adjusted for potential confounders. 

Results: Per SD higher factor D and C3, cfPWV was 0.41 m/s [95%CI: 0.34;0.49] and 

0.33 m/s [0.25;0.41] greater respectively. These associations were substantially 

attenuated when adjusted for age, sex, education, mean arterial pressure, and heart 

rate (0.08 m/s [0.02;0.15] and 0.11 m/s [0.05;0.18], respectively), and were not 

significant when additionally adjusted for T2D, waist circumference and additional 

cardiovascular risk factors (0.06 m/s [-0.01;0.13] and 0.01 m/s [-0.06;0.09], 

respectively). Results were comparable for carotid YEM and DC. In persons with T2D, 

but not in those without, the association between factor D and cfPWV was significant 

in the fully adjusted model (0.14 m/s, [0.01;0.27], p=0.038，Pinteraction<0.05). 

Conclusion: The strong association of plasma factor D and C3 with arterial stiffness in 

this population-based cohort was not independent of T2D and other metabolic risk 

factors. Our data suggest that a possible causal pathway starting from alternative 

complement activation may via hypertension and T2D contribute to greater arterial 

stiffness.   
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Introduction  

Arterial stiffening is one of the key processes in the development of cardiovascular 

diseases (CVD). Greater arterial stiffness may contribute to a higher risk CVD via an 

increase in systolic blood pressure but the association of arterial stiffness with CVD is, 

at least in part, independent of blood pressure [1]. Arterial stiffness is higher in obese 

individuals of all ages than in their non-obese peers [2]. Arterial stiffness is, among 

others, determined by properties of elastin and collagen in the arterial wall [3]. It is 

also affected by changes in endothelial cell signaling and vascular smooth muscle cell 

tone [4].  

The complement system, an intricate protein network that is part of the innate 

immune system, has been suggested as a potential modulator of arterial stiffness. 

Complement factor D and C3 comprise major components of the alternative pathway 

of complement activation which has consistently been implicated in CVD in humans [5]. 

Complement factor D is the rate-limiting serine-protease in activation of the 

alternative complement pathway. Complement activation results in the activation of 

C3, the central complement component.  

Factor D, also known as adipsin, is produced in high amounts in adipocytes as 

well as monocytes/macrophages of adipose tissue [6]. It is also expressed in the aortic 

endothelium and its expression is higher in endothelial cells derived from diabetic mice 

[7]. Notably, in a mouse model of vascular calcification, factor D was identified as the 

major elastase involved in elastin fragmentation and subsequent elastocalcinosis [8]. 

In line with the above, we previously showed that higher factor D concentration was 

associated with worse endothelial dysfunction [9]. We also showed that a greater 

plasma factor D concentration was significantly associated with incident cardiovascular 

events after adjustment for age, sex and glucose metabolism status, although the 

association was strongly attenuated upon full adjustment for potential confounders 

[9]. Factor D was also identified as a biomarker for poor prognosis in patients with 

coronary artery disease [10]. The Women’s Health Initiative observational study cohort 
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confirmed factor D as a risk marker for coronary heart disease (CHD), but not for stroke 

[11] while in another large cohort consisting only of men, factor D was positively 

associated with the risk of developing stroke [12] but not with risk of CHD [13].  

C3 is mainly synthesized in the liver, but is also produced by e.g. the vascular 

endothelium [14] and adipocytes, including perivascular adipocytes [15, 16]. In humans, 

circulating C3 is strongly associated with adiposity [17, 18], is longitudinally associated 

with cardiovascular disease [5] and was identified as a risk factor for myocardial 

infarction [19]. C3 was also identified as a risk factor for hypertension, at least in men 

[20], and recently an association between complement C3 and carotid-femoral pulse 

wave velocity (cfPWV) was proposed in a large population-based cohort [21], which 

awaits confirmation in a large independent study. C3 binds to collagen and elastin 

fibers within the adventitia and may, thereby, contribute to vascular stiffening [22]. C3 

is also produced by aortic smooth muscle cells of spontaneously hypertensive rats and 

contributes to vascular smooth muscle cell proliferation and extracellular matrix 

synthesis [23]. 

Taken together, experimental data suggest that factor D and C3 may be 

associated with changes in the vascular wall that are functionally involved in processes 

related to large artery function [8, 22] but human data to support this are limited for 

complement C3 and, to the best of our knowledge, absent for factor D. In our current 

study we addressed, in a large human cohort enriched for individuals with type 2 

diabetes (T2D), the cross-sectional associations of plasma factor D and C3 with aortic 

stiffness defined as cfPWV, and carotid stiffness defined as carotid distensibility 

coefficient (DC) and carotid Young’s elastic modulus (YEM).   

 

 

Research design and methods  

 

Study population and design 
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We used data from The Maastricht Study, an observational prospective population-based 

cohort study. The rationale and methodology have been described previously.[24]. In brief, 

the study focuses on the etiology, pathophysiology, complications and comorbidities of T2D 

and is characterized by an extensive phenotyping approach. Eligible for participation were all 

individuals aged between 40 and 75 years and living in the southern part of the Netherlands. 

Participants were recruited through mass media campaigns and from the municipal registries 

and the regional Diabetes Patient Registry via mailings. Recruitment was stratified according 

to known T2D status, with an oversampling of individuals with T2D, for reasons of efficiency. 

A flow-chart of the inclusion of study participants in the current analyses is presented in Figure 

3-1. The present report includes cross-sectional data from the first 7689 participants, who 

completed the baseline survey between November 2010 and December 2017. The 

examinations of each participant were performed within a time window of three months. The 

study has been approved by the institutional medical ethical committee (NL31329.068.10) and 

the the Minister of Health, Welfare and Sports of the Netherlands (Permit 131088-105234-

PG). All participants gave written informed consent.  
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Figure 3-1. Derivation of final study population. MAP indicates mean artery pressure; HbA1C, hemoglobin A1c 

(glycated hemoglobin); cfPWV, carotid-femoral pulse wave velocity; DC, distensibility coefficient; YEM, Young’s 

elastic modulus. 

 

 

Factor D and C3 measurement  

After overnight fasting, venous blood samples were collected in EDTA on ice.  Blood 

was immediately centrifuged and plasma samples were stored at -80°C until use. 

Complement factor D was measured in EDTA plasma using an R&D duoset kit assay, as 

described before [9]. The inter-assay variation was 4.6%. Complement C3 was 

measured in EDTA plasma using an MSD R-plex Human Complement C3 Antibody Set. 
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The assay was performed according to the manufacturer's instruction except for the 

use of a 1:20.000 instead of 1:300.000 dilution, which resulted in better stability of the 

measurements. The inter-assay variation was 8.9%. 

 

Arterial Stiffness Measurements 

All measurements were done by trained vascular technicians unaware of the 

participants’ clinical or diabetes mellitus status, in a dark, quiet temperature-

controlled room (21°C–23°C), as described previously [25]. Participants were asked to 

refrain from smoking and drinking coffee, tea or alcoholic beverages 3 hours before 

the measurements. Participants were allowed to have a light meal (breakfast or lunch). 

All measurements were performed in supine position after 10 minutes of rest. Talking 

or sleeping was not allowed during the examination. During the vascular 

measurements (≈45 minutes), brachial systolic, diastolic, and mean arterial pressure 

(MAP) were determined every 5 minutes with an oscillometric device (Accutorr Plus, 

Datascope Inc, Montvale, NJ). The mean MAP and heart rate (HR) during these 

measurements were used in the statistical analysis. A 3-lead ECG was recorded 

continuously during the measurements to facilitate automatic signal processing. 

Carotid-Femoral Pulse Wave Velocity: Carotid-femoral pulse wave velocity 

(cfPWV) was determined according to guidelines with the use of applanation 

tonometry (SphygmoCor, Atcor Medical, Sydney, Australia). Pressure waveforms were 

determined at the right common arteries and right common femoral arteries. 

Difference in the time of pulse arrival from the R-wave of the ECG between the 2 sites 

(transit time) was determined with the intersecting tangents algorithm. The pulse 

wave travel distance was calculated as 80% of the direct straight distance (measured 

with an infantometer) between the 2 arterial sites. The median of 3 consecutive cfPWV 

(defined as traveled distance/ transit time) recordings was used in the analyses. 

Local Carotid Arterial Properties: Diameter and distension of the left common 

carotid artery were measured with an ultrasound scanner equipped with a 7.5-MHz 
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linear probe (MyLab 70, Esaote Europe B.V., Maastricht, The Netherlands). Exactly as 

reported before [25], during the ultrasound measurements a B-mode image on the 

basis of 19 M-lines was captured on screen and an online echo-tracking algorithm 

showed real-time anterior and posterior arterial wall displacements. The M-mode 

recordings were comprised of 19 simultaneous recordings at a frame rate of 498 Hz. 

The distance between the M-line recording positions was 0.96 mm; therefore, a total 

segment of 18.24 mm of each artery was covered by the scan plane. For offline 

processing, the radiofrequency signal was fed into a dedicated PC-based acquisition 

system with a sampling frequency of 50 MHz. Data processing was conducted in 

MatLab. The distension waveforms were acquired from the radio frequency data with 

the use of a wall track algorithm. The median diameter and distension of 2 

measurements were used in the analyses. Local arterial elastic properties were 

quantified by calculating the following indices: 

Distensibility coefficient (DC) 

DC = (2ΔD * D + ΔD2) / (PP * IAD2) [in 103 kPa-1] 

Young’s elastic modulus (YEM) 

YEM= D / (IMT * DC) [in 103 kPa] 

where ΔD is distension; D, arterial diameter; and PP, brachial pulse pressure (calculated 

as systolic BP minus diastolic BP); and IMT, intima-media thickness. DC represents 

arterial distensibility and YEM represents the stiffness of the arterial wall material at 

operating pressure. 

 

Other characteristics of participants  

Covariates were measured as reported before [24]. In short, smoking (never, former 

or current smoker), alcohol consumption (none, low (women ≤7 and men ≤14 

glasses/week,) and high (women >7 and men >14 glasses/week)), physical activity 

(hours/week) and education status (low, medium, high) were obtained through web-

based questionnaires. Use of lipid-modifying and antihypertensive medication was 
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collected by means of an interview. Weight and height were measured to calculate 

body mass index (BMI, kg/m2) and waist circumference was measured midway 

between the lower rib margin and the iliac crest. T2D was diagnosed according to 

World Health Organization criteria, using a 75 g oral glucose tolerance test [26]. Serum 

total cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides were 

measured using an automatic analyzer (Beckman Synchron LX20, Beckman Coulter 

Inc.). MAP was calculated as 1/3 Systolic Blood Pressure + 2/3 Diastolic Blood Pressure. 

Twenty-four-hour blood pressure was measured using an ambulatory device (WatchBP 

O3, Microlife, Switzerland). Readings were taken each 15 minutes between 8.00-

23.00h and each 30 minutes from 23.00-8.00h. A validated food frequency 

questionnaire [27] was administered and used to derive the Dutch Healthy Diet 

(DHD)15-index that contains 15 components representing the 15 food-based Dutch 

dietary guidelines of 2015 [28]. Since the FFQ did not distinguish between filtered and 

unfiltered coffee, the DHD score in the present study ranged from 0-140. Kidney 

function can be affected by arterial stiffness [29], and therefore, the glomerular 

filtration rate (eGFR) was included as descriptive variable, estimated by means of CKD-

EPI equation based on the combination of serum creatinine and serum cystatin C [24]. 

 

Statistical analyses 

All analyses were performed using IBM SPSS Statistics 27 for windows (version 27; IBM 

Corp, Somers, NY). A two-tailed p value <0.05 was considered significant. Normality of 

variable distribution was tested. Normal distributed variables are presented as mean ± 

SD. Categorical variables are presented as proportions (%). Characteristics were 

compared across quartiles of factor D and C3, using an ANOVA for continuous variables, 

or X2-test in case of categorical variables.  

Multiple linear regression was used to investigate the associations of plasma 

concentrations of factor D and C3 (main independent variables) with cfPWV (primary 

outcome), and carotid DC and YEM (secondary outcomes). Regression models were as 
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follows: (I) Model 1 was the crude association; (II) Model 2 was additionally adjusted 

for age (years) and sex (male or female), education status (medium high, each yes/no); 

(III) Model 3 was additionally adjusted for MAP (mmHg) and HR (bpm); (IV) model 4 

was additionally adjusted for T2D (as yes/no, because of oversampling of T2D) (V) 

Model 5 was additionally adjusted for waist circumference (in cm) Model 6 was 

additionally adjusted for smoking habits (current or former smoker, each yes/no), lipid-

modifying and/or anti-hypertensive medication (each yes/no), total/HDL cholesterol 

ratio triglycerides (mmol/l) and HbA1c (mmol/mol).  

Note model 4 and model 5 may be overadjusted for the association of factor D 

and arterial stiffness, because factor D [30, 31] has been implicated in β-cell 

preservation, strongly expressed in adipose tissue, and additionally implicated in 

adipocyte differentiation and progression of obesity [32]. Model 3 and 4 may be 

overadjusted for the association of C3 and arterial stiffness, because complement C3 

has been implicated in development of hypertension [20], and T2D [33]. 

We tested for interaction with T2D because of the oversampling of T2D in The 

Maastricht Study and for interaction with sex to explore potential differences in these 

relationships between men and women, by including interaction terms of interest, i.e. 

factor D*T2D, factor D*sex, C3*T2D, C3*sex, respectively, plus T2D or sex*all 

confounders included in the model [34]  

To assess the robustness of the findings in the main analyses, we performed 

several sensitivity analyses. First, associations between factor D or C3 and arterial 

stiffness were re-evaluated using income level and occupation status substituted for 

education status. Second, associations between factor D or C3 and arterial stiffness 

were re-evaluated using MAP calculated from 24 hours blood pressure measurements 

substituted for MAP at the time of ultrasound measurement. Third, associations 

between complement factor D or C3 and arterial stiffness were re-evaluated using BMI 

instead of waist circumference. Fourth, associations between complement factor D or 

C3 and arterial stiffness were re-evaluated by additionally adjusting for physical activity 
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(hours/week), and for DHD15 (score). This reduced the number of participants in the 

analyses because of a relatively large number of missing in these variables. We also 

substituted energy intake (kJ/day) and alcohol consumption (low alcohol consumption 

and high alcohol consumption, each yes/no) for DHD15 (score).  
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Results 

 

General characteristics of the study population 

Factor D concentration was 0.92 ± 0.23 mg/l (range 0.33 to 2.32), C3 concentration was 

1.15 ± 0.23 g/l (range 0.45 to 2.50). The correlation between factor D and C3 was 

r=0.123, p<0.001 (n=3019). General characteristics of the study population across 

quartiles of factor D and C3 are presented in Table 1. Participants in the higher 

quartiles of both factor D and C3 were older, which was more pronounced for factor D. 

Those with higher factor D were more often men, while this was less so for C3. Both 

were strongly and positively associated with measures of obesity (BMI and waist). The 

higher prevalence of prediabetes and T2D in those with higher factor D and C3 was 

more pronounced for C3. The prevalence of CVD was comparable for factor D and C3, 

and was higher in the higher quartiles. Higher C3 was more prominently than higher 

factor D characterized by higher fasting triglycerides and glucose, which was also 

reflected in the use of medication. With respect to the primary and secondary 

outcomes of this study, those with higher factor D and C3 had higher cfPWV, lower 

carotid DC and higher carotid YEM, all consistent with worse arterial stiffness. 
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Table 1: General characteristics of the study population based on quartiles of factor D and C3 concentration 

 

Quartiles of plasma factor D concentration   Quartiles of plasma factor C3 concentration  

1st quartile 
N=755 

0.33-0.78 
mg/l 

2rd quartile 
N=755 

0.78-0.90 mg/l 

3rd quartile 
N=755 

0.90-1.04 mg/l 

4th quartile 
N=754 

1.04-2.32 mg/l 
P-value a 

 
1st quartile 

N=757 
0.45- 0.99 g/l 

2rd quartile 
N=767 

0.99-1.13 g/l 

3rd quartile 
N=751 

1.13-1.28 g/l 

4th quartile 
N=744 

1.29- 2.50 g/l 

P-
value a 

Demographics            

Age (years) 56.8±7.9 58.9±8.1 60.8±8.0 63.8±7.1 <0.001  58.7±8.3 60.5±8.0 60.7±7.9 60.4±8.5 <0.001 

Sex (%men) 40.5 50.2 56.3 60.7 <0.001  46.8 54.0 55.8 51.2 0.003 

Medium/high Education status (%) 31.4/39.5 28.2/41.9 27.8/38.4 25.3/35.1 <0.001  25.0/52.0 30.9/39.4 27.6/33.8 29.3/29.4 <0.001 

lifestyle            

BMI (kg/m2) b 25.4±3.8 26.5±4.1 27.2±4.1 28.7±4.8 <0.001  24.6±3.2 26.2±3.7 27.5±3.9 29.7±4.8 <0.001 

Waist circumference (cm) 90.3±12.5 94.0±12.7 96.7±12.6 101.5±13.1 <0.001  88.2±11.1 93.5±11.9 97.7±12.0 103.3±13.6 <0.001 

Physical activity (Hours/Week) b 15.4±8.3 14.6±8.0 13.8±8.0 12.9±7.8 <0.001  15.2±7.9 14.7±8.0 13.9±8.4 12.7±7.8 <0.001 

Former smokers/current smokers (%) 49.9/14.2 51.9/13.2 49.9/13.8 59.3/12.2 0.005  52.6/12.4 49.4/15.6 53.8/13.4 55.4/11.8 0.195 

Energy (kcal) b 2181±611 2137±601 2212±602 2160±602 0.113  2185±591 2199±591 2179±607 2126±628 0.118 

Low/high alcohol consumption (%) 53.4/29.1 54.7/28.2 55.9/27.3 58.9/20.1 0.001  53.6/34.4 56.8/30.2 60.1/20.9 52.4/19.0 <0.001 

DHD15-sum b 83.7±15.4 84.2±14.4 82.9±14.6 83.0±14.3 0.266  85.4±14.5 84.0±14.5 83.0±14.8 81.3±14.7 <0.001 

Biological/clinical            

Fasting plasma glucose (mmol/l) b 5.8±1.6 5.9±1.6 6.1±1.7 6.3±1.6 <0.001  5.5±1.2 5.8±1.2 6.2±1.5 6.7±2.1 <0.001 

HbA1c (mmol/mol) 39.5±9.3 39.9±9.2 41.2±10 42.5±9.8 <0.001  37.7±7.1 39.0±7.7 41.7±9.2 44.8±12.4 <0.001 

Systolic blood pressure (mmHg) b 131.9±17.3 133.9±17.8 136.6±18.0 137.2±18.3 <0.001  129.9±17.7 133.9±17.4 137.3±17.6 138.2±17.8 <0.001 

Diastolic blood pressure (mmHg) b 74.9±10.0 75.8±9.5 77.2±10.0 76.2±9.9 <0.001  73.8±9.8 75.6±9.8 77.0±9.6 77.7±9.9 <0.001 

Mean of MAP (mmHg) 95.8±10.6 95.9±9.6 97.7±10.3 97.5±10.5 <0.001  95.3±10.6 96.3±10.2 97.6±10.4 97.8±9.8 <0.001 

Heart rate-mean (bpm) 63.0±9.5 62.4±9.2 62.8±9.4 62.9±9.6 0.676  60.6±8.5 61.6±8.9 63.1±9.1 65.7±10.3 <0.001 

Total/HDL cholesterol 3.5±1.1 3.6±1.2 3.7±1.1 3.9±1.2 <0.001  3.4±1.1 3.7±1.1 3.7±1.1 3.9±1.3 <0.001 
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Triglycerides (mmol/l) 1.3±0.9 1.3±0.8 1.4±0.8 1.6±0.9 <0.001  1.1±0.6 1.3±0.7 1.5±0.9 1.8±1.0 <0.001 

eGFR(ml/min/1.73m2) b 99.0±10.8 92.5±10.1 86.6±11.0 74.8±14.2 <0.001  90.3±13.6 87.8±14.2 88.2±14.5 85.9±16.1 <0.001 

Cardiovascular disease (%) 11.6 15.1 18.8 23.0 <0.001  13.1 13.0 19.3 23.2 <0.001 

prediabetes/T2D (%) 12.8/22.3 13.2/23.6 15.5/27.9 17.4/36.9 <0.001  10.8/11.1 15.9/19.8 14.8/32.8 17.5/47.4 <0.001 

Medication use            

Use of glucose-lowering medication (%) 16.7 18.1 21.3 29.7 <0.001  8.9 15.5 24.6 37.2 <0.001 

Ues of antihypertensive medication (%) 27.2 30.9 40.0 58.4 <0.001  24.4 35.3 42.2 54.7 <0.001 

Use of lipid-modifying medication (%) 29.7 30.5 38.1 47.5 <0.001  19.4 30.9 44.5 51.3 <0.001 

Outcome variables            

cfPWV (m/s) 8.6±1.9 8.9±2.1 9.2±2.1 9.6±2.4 <0.001  8.5±1.9 9.0±2.2 9.2±2.2 9.5±2.4 <0.001 

Carotid DC (10-3KPa) b 15.4±5.4 14.7±5.3 14.0±4.9 13.1±4.6 <0.001  15.2±5.3 14.3±5.0 13.7±4.9 13.9±5.1 <0.001 

Carotid YEM (103KPa) b 0.69±0.41 0.72±0.32 0.76±0.35 0.83±0.40 <0.001  0.70±0.36 0.74±0.33 0.79±0.39 0.78±0.41 <0.001 

 

Legend to Table 1: Data are presented as mean ± SD (continuous variables) or proportion (%, categorical variables). a P-values were obtained by ANOVA or Pearson Chi-square. 
b BMI, n=3018; Physical activity, n= 2669; energy intake, n=2850; DHD15-sum, n= 2850; fasting plasma glucose, n= 3017; diastolic blood pressure, n=3017; systolic blood 

pressure, n=3017, eGFR, n=2701; Carotid DC, n = 2659; Carotid YEM, n = 2657.  Abbreviations: BMI, body mass index; DHD-15, Dutch health diet index; HbA1c, hemoglobin 

A1c (glycated hemoglobin); MAP, mean artery pressure; HDL, high-density lipoprotein; eGFR, estimated glomerular filtration rate; cfPWV, carotid-femoral pulse wave velocity; 

DC, distensibility coefficient; YEM, Young’s elastic modulus. 
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Associations of factor D and C3 with carotid-femoral Pulse Wave 

Velocity  

The associations of factor D and C3 with cfPWV are presented in Table 2. Factor D was 

positively associated with cfPWV (per SD higher factor D, cfPWV was 0.413 m/s greater, 

95% confidence interval (CI) [0.337; 0.490], model 1). After adjustment for age, sex, 

education status, MAP and HR, the association was attenuated to 0.083 m/s ([0.017; 

0.150], model 3) and after additional adjustment for T2D it was no longer significant 

(0.062 m/s, [-0.003; 0.127], model 4). C3 was also positively associated with cfPWV 

(0.331 m/s, [0.254; 0.407], model 1). After adjustment for age, sex, education status, 

MAP and HR, the association was attenuated to 0.113 [0.048; 0.177] (model 3). After 

additional adjustment for T2D, the association was no longer significant (0.028 m/s, [-

0.037; 0.094], model 4). Note that the associations in model 4 may to some extent be 

overadjusted because of reasons indicated in the methods. 

 

Table 2: associations of factor D and factor C3 with aortic stiffness measurements 

 cfPWV (m/s) a 

 factor D b  C3 b 

 β [95%CI] P-value  β [95%CI] P-value 

Model 1 0.413 [0.337; 0.490] <0.001  0.331 [0.254; 0.407] <0.001 

Model 2 0.074 [0.000; 0.147] 0.051  0.247 [0.177; 0.317] <0.001 

Model 3 0.083 [0.017; 0.150] 0.014  0.113 [0.048; 0.177] 0.001 

Model 4 0.062 [-0.003; 0.127] 0.062  0.028 [-0.037; 0.094] 0.395 

Model 5 0.064 [-0.003; 0.132] 0.062  0.029 [-0.041; 0.099] 0.419 

Model 6 0.058 [-0.010; 0.126] 0.097  0.014 [-0.058; 0.085] 0.707 

 

Legend to table 2: a n=3019, b factor D and C3 are standardized. Bold typefont represents statistically significant 

data. 

Model 1: Crude association 

Model 2: adjusted for age, sex, education status 

Model 3: additionally adjusted for mean arterial pressure, mean heart rate 

Model 4: additionally adjusted for yes/no T2D  

Model 5: additionally adjusted for waist circumference  

Model 6: additionally adjusted for smoking habits, lipid-modifying and/or anti-hypertensive medication, 

Total/high-density lipoprotein cholesterol ratio, triglycerides and HbA1c 

Abbreviation: cfPWV, carotid-femoral pulse wave velocity 
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 Next, we tested whether the associations of factor D and C3 with cfPWV differed 

between participants with or without T2D or between men and women. T2D, but not 

sex, modified the association of factor D, but not C3, with cfPWV. In the fully adjusted 

models, Pinteraction with T2D was 0.04 and 0.83 and Pinteraction with sex was 0.22 and 0.87, 

respectively, for factor D and C3. Subsequent stratified analyses on T2D (Table 3) 

showed that the crude associations between factor D and cfPWV did not differ 

between participants with (0.310 m/s [0.168; 0.452]) and without T2D (0.322 m/s 

[0.263; 0.408]). This association was fully attenuated in the non-diabetic participants 

(-0.004 m/s [-0.083; 0.075]), but remained positive and significant in those with T2D 

(0.139 m/s [0.008; 0.271]).  

 

Table 3: Associations of factor D with aortic stiffness measurements stratified on T2D 

  cfPWV (m/s) 

 Participants with T2D a  Participants without T2D a 

 β factor D b [95%CI] P-value  β factor D b [95%CI] P-value 

Model 1 0.310 [0.168; 0.452] <0.001  0.322 [0.236; 0.408] <0.001 

Model 2 0.058 [-0.081; 0.196] 0.414  0.027 [-0.058; 0.111] 0.536 

Model 3 0.120 [-0.007; 0.246] 0.064  0.019 [-0.056; 0.095] 0.615 

Model 4 0.136 [0.006; 0.267] 0.041  0.007 [-0.072; 0.085] 0.869 

Model 5 0.139 [0.008; 0.271] 0.038  -0.004 [-0.083; 0.075] 0.916 

 

Legend to table 3: a Persons with T2D; n=835, persons without T2D; n=2184, b factor D is standardized. Bold 

typefont represents statistically significant data. 

Model 1: Crude association 

Model 2: adjusted for age, sex, education status 

Model 3: additionally adjusted for mean arterial pressure, mean heart rate 

Model 4: additionally adjusted for waist circumference  

Model 5: additionally adjusted for smoking habits, lipid-modifying and/or anti-hypertensive medication, 

Total/high-density lipoprotein cholesterol ratio, triglycerides and HbA1c 

Abbreviation: cfPWV, carotid-femoral pulse wave velocity 

 

 In subsequent sensitivity analyses, exchanging income level and occupation 

status for education status, 24-hour MAP for MAP at the time of ultrasound 

measurement, BMI for waist circumference, or additionally adjusting for physical 
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activity and DHD15, with subsequently substituting energy intake and alcohol 

consumption for DHD15 did not materially alter the results (data not shown).  

 

Associations of factor D and C3 with Carotid DC and carotid YEM 

Factor D was inversely associated with carotid DC (per SD higher factor D, the β for 

carotid DC was -0.832∙10-3/kPa [-1.027; -0.638], Table 4, model 1), indicating that a 

higher concentration of factor D was associated with stiffer arteries. After adjustment 

for age, sex and education status, this association was no longer significant -0.090∙10-

3/kPa, [-0.277; 0.096], model 2). C3 was also inversely associated with carotid DC (-

0.547∙10-3/kPa [-0.742; -0.353], Table 4, model 1). After adjustment for age, sex, 

education status, MAP, HR, and T2D, the association attenuated to -0.176 ∙10-3/kPa [-

0.344; -0.008], model 4) and in the fully adjusted model it was no longer significant (-

0.023 ∙10-3/kPa [-0.207; 0.161], model 6).  

 Factor D was positively associated with carotid YEM (per SD higher factor D, 

carotid YEM was higher 0.049∙103 kPa [0.035 0.063], Table 4, model 1), but after 

adjustment for age this association was not significant (0.011∙103 kPa [-0.003 0.026], 

model 2). C3 was positively associated with carotid YEM (per SD higher C3, carotid YEM 

was higher 0.034∙103 kPa [0.020; 0.049], model 1), which was attenuated after 

adjustment for age, sex, education status, MAP (0.017∙103 kPa, 95%CI [0.004; 0.030], 

model 3) and no longer significant after additional adjustment for T2D (0.007∙103 kPa 

[-0.006; 0.021], model 4). Neither T2D nor sex modified the association of factor D or 

C3 with carotid DC or carotid YEM (Pinteraction ranging from 0.29 to 1.0).  

 In subsequent sensitivity analyses, exchanging income level and occupation 

status for education status respectively, 24-hour MAP for MAP at the time of 

ultrasound measurement, BMI for waist circumference, or additionally adjusting for 

physical activity and DHD15, with subsequently substituting energy intake and alcohol 

consumption for DHD15 did not materially alter the results (data not shown).  
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Table 4: associations of factor D and factor C3 with carotid stiffness measurements  

 Carotid DC (10-3/kPa) a  Carotid YEM (10^3 kPa) a 

 factor D b  C3 b  factor D b  C3 b 

 β [95%CI] P-value  β [95%CI] P-value  β [95%CI] P-value  β [95%CI] P-value 

Model 1 -0.832 -1.027; -0.638 <0.001  -0.547 [-0.742; -0.353] <0.001  0.049 0.035; 0.063 <0.001  0.034 [0.020; 0.049] <0.001 

Model 2 -0.090 -0.277; 0.096 0.342  -0.432 [-0.607; -0.256] <0.001  0.011 -0.003;0.026 0.123  0.028 [0.014; 0.041] <0.001 

Model 3 -0.118 -0.288; 0.052 0.173  -0.268 [-0.429; -0.107] 0.001  0.013 0.000;0.027 0.058  0.017 [0.004; 0.030] 0.010 

Model 4 -0.093 -0.263; 0.076 0.281  -0.176 [-0.344; -0.008] 0.040  0.011 -0.003;0.025 0.120  0.007 [-0.006; 0.021] 0.279 

Model 5 -0.030 -0.206; 0.145 0.736  -0.097 [-0.278; 0.084] 0.293  0.005 -0.009;0.020 0.452  -0.001 [-0.015; 0.014] 0.909 

Model 6 -0.004 -0.180; 0.173 0.968  -0.023 [-0.207; 0.161] 0.804  0.003 -0.011;0.018 0.657  -0.002 [-0.017; 0.013] 0.776 

 

Legend to table 4: a Carotid DC, n=2659, Carotid YEM, n=2657; b Factor D and C3 are standardized. Bold typefont represents statistically significant data. 

Model 1: Crude association 

Model 2: adjusted for age, sex, education status 

Model 3: additionally adjusted for mean arterial pressure 

Model 4: additionally adjusted for yes/no T2D  

Model 5: additionally adjusted for waist circumference  

Model 6: additionally adjusted for smoking habits, lipid-modifying and/or anti-hypertensive medication, Total/high-density lipoprotein cholesterol ratio, triglycerides and 

HbA1c 

Abbreviations: carotid DC, distensibility coefficient; carotid YEM, Young’s elastic modulus  
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Discussion  

In a large population-based cohort, we examined cross-sectional associations of the 

alternative complement factors D and C3 with arterial stiffness. The main finding of 

this study was that higher concentrations of factor D and C3 were associated with 

greater aortic and carotid stiffness, as represented by cfPWV, carotid DC and carotid 

YEM, but not independently of age, sex, education status, HR, MAP, and presence of 

T2D. 

 The positive associations of factor D and C3 with adiposity were as expected, 

given their strong expression in adipose tissue, and consistent with previous reports [6, 

17]. The higher concentration of factor D in older individuals was shown before [9], 

although in a small group of healthy Caucasians an inverse association was reported 

[35]. Notably, when we restricted our analysis to individuals without T2D and CVD, the 

associations remained positive and significant (data not shown). The slightly higher 

concentration of C3 with increasing age is not consistently confirmed by existing 

literature [36] and may be related to higher prevalence of T2D in the older individuals. 

The higher concentration of factor D in men is consistent with our previous observation 

in an independent cohort [9] but not always confirmed [35]. Again, when we restricted 

our analyses to the participants without T2D and CVD, this sex-difference remained 

(data not shown). Factor D and C3 were both associated with higher MAP. This is 

corroborated by our own observations on systolic and diastolic blood pressure in an 

independent cohort [9, 37], as well as by reports that C3 is associated with 

development of hypertension [20] and that a polymorphism in CFD is associated with 

pulmonary hypertension in patients with systemic sclerosis [38].The association of C3, 

but not factor D, with HR has, to the best of our knowledge, not been reported before.   

 Arterial stiffness is, among others, determined by properties of the extracellular 

matrix such as collagen and elastin, and by vascular endothelial and smooth muscle 

cell function [3, 4, 39]. Factor D may contribute to arterial stiffness via cleavage of 

elastin fibers [8], while C3 may bind to collagen and elastin fibers within adventitia [22]. 
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Factor D and C3 are implicated in worse endothelial dysfunction and low-grade 

inflammation via alternative pathway activation [9]. Complement activation results in 

generation of anaphylatoxins which are potent soluble mediators of inflammation [40], 

and induces membrane disruption in target cells [41], hence activating endothelial and 

smooth muscle cells [40, 41]. Low-grade inflammation results in functional stiffening 

of large arteries through impairment of endothelial function [42, 43], proliferation of 

smooth muscle cells [3], and increased synthesis of extracellular matrix proteins [3].  

 Approximately 80% of the crude association between factor D and cfPWV was 

explained by age, sex and education status and this was largely attributable to age. 

Little to no additional effect of MAP and HR was observed. Age-induced arterial wall 

remodeling contributes to arterial stiffness [44]. This is generally attributed to ‘wear 

and tear’ but the proposed function of factor D as a locally produced elastase [18] 

combined with strong relationship between age and factor D (Pearson’s correlation 

0.328, P<0.001) is striking. In contrast, age, sex and education status explained only 25% 

of the association between C3 and cfPWV, while strong additional attenuation was 

attributable to MAP and HR. A role for complement activation in hypertension-related 

vascular dysfunction has been proposed [45], and complement C3 has been implicated 

in development of hypertension [20]. Our current observation corroborates a potential 

contribution of C3 to cfPWV via the induction of hypertension.  

 Upon adjustment for T2D, the associations of factor D and C3 with cfPWV were 

further attenuated and non-significant. A previous study reported a positive 

association between C3 and cfPWV [21], but did not adjust for presence of diabetes at 

the time of cfPWW measurements, and the findings reported are hence in line with 

our current results. Factor D [30, 31] and C3 [46] have both been implicated in β-cell 

preservation. At the same time, C3 has been implicated in obesity-associated insulin 

resistance, and we [47] and others [33] identified C3 as an independent risk factor for 

T2D. As such, adjustment for T2D may to some extent represent overadjustment, as 
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the relationships between these complement factors and arterial stiffness may partly 

result from their effects on glucose metabolism and insulin resistance. 

  Upon full adjustment neither factor D nor C3 remained statistically significantly 

associated with greater carotid stiffness, as represented by carotid DC and carotid YEM. 

This does not corroborate the idea that carotid stiffness may act as mediator of the 

previously-reported association between factor D and stroke [12]. The association of 

factor D with cfPWV differed somewhat according to T2D status, as indicated by a 

significant interaction term, and in the fully adjusted models in stratified analyses the 

association was only significant in those with T2D, not in those without T2D. Interaction 

with T2D was only observed for aortic (cfPWV), not for carotid (YEM or DC) stiffness, 

and only for factor D, not for C3. This result should therefore be interpreted with 

caution, as it may represent a chance finding.  

 Strengths of our study include the large population-based cohort and the 

extensive phenotyping, which allowed thorough adjustment for potential confounders. 

Moreover, this is, for as far as we are aware, the first large human study in which both 

factor D and arterial stiffness are available. This study also has limitations. First, factor 

D and C3 have various sites of production including adipose tissue, perivascular fat, 

immune cells, β-cells, and for C3 also liver. Plasma measurements represent the 

integral of different cellular sources. Moreover, factor D and C3 exert multiple 

biological functions. Some of their effects place some of the potential confounders we 

included in our analyses, at least partly, in the causal path towards arterial stiffness. 

Indeed, as noted above, factor D and C3 have implicated in in β-cell preservation, while 

C3 has been particularly implicated in the development of hypertension, and 

development of insulin resistance and T2D. This may have introduced overadjustment. 

Also, factor D and C3 were measured systemically, while their production and effects 

in the vessel wall may be partly local. Moreover, our cross-sectional design hampers 

causal inference. Lastly, our study only focused on Caucasian individuals aged 40-75 

years, which prohibits extension of the findings to other ethnicities and ages.  
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Conclusions 

In this population-based study the association of factor D with arterial stiffness 

is for a large part explained by age, while the association of C3 with arterial stiffness is 

primarily explained by HR and MAP. A small part of the observed associations might be 

attributed to a causal path leading from alternative complement activation via 

hypertension and T2D to arterial stiffness. 
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Abstract 

 

Objective. Complement C3 and other components of the alternative pathway are 

higher in individuals with obesity. Moreover, C3 has been identified as a risk factor for 

cardiovascular disease (CVD). We investigated whether, and how, a weight loss 

intervention reduced plasma C3, activated C3 (C3a) and factor D and explored potential 

biological effects of such a reduction.  

 

Methods. We measured plasma C3, C3a and factor D by ELISA, and visceral (VAT), 

subcutaneous adipose tissue (SAT) and intrahepatic lipid (IHL) by MRI in lean men 

(n=25) and men with abdominal obesity (n=52). The men with obesity were 

randomized to habitual diet or an 8-wk dietary weight loss intervention.  

 

Results. The intervention significantly reduced C3 (-0.15 g/L [95%CI -0.23; -0.07]), but 

not C3a or factor D. The C3 reduction was mainly explained by reduction in VAT but 

not SAT or IHL. This reduction in C3 explained a part of the weight loss-induced 

improvement of markers of endothelial dysfunction, particularly the reduction in sE-

selectin and sICAM. 

 

Conclusions. Diet-induced weight loss in men with abdominal obesity could be a way 

to the lower plasma C3 and thereby improve endothelial dysfunction. C3 reduction 

may be part of the mechanism via which diet-induced weight loss could ameliorate the 

risk of CVD in men with abdominal obesity. 
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Introduction  

Obesity is a global epidemic and the number of persons with excess body weight 

approaches 2 billion, worldwide, with one third being people with obesity [1, 2]. 

Particularly excess visceral adipose tissue (VAT) is associated with low-grade 

inflammation and may contribute to development of cardiovascular disease (CVD) [3, 

4] and type 2 diabetes (T2D) [5, 6]. 

Obesity-induced endothelial dysfunction is one of the mechanisms via which 

obesity contributes to cardiometabolic diseases [7, 8]. Vascular endothelial cells are a 

major target of inflammatory damage [9]. Vascular endothelial dysfunction is a 

hallmark of the early stages of most CVD and is, among others, characterized by a 

higher expression of biomarkers such as soluble vascular cell adhesion molecule-1 

(sVCAM-1), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble 

endothelial selectin (sE-selectin) [10]. 

The complement system is an intricate protein network that is part of the innate 

immune system. The endothelial lining of all blood vessels is, by virtue of its location, 

in close contact with circulating complement components. Several complement factors 

can directly or indirectly target the endothelium [9, 11]. Endothelial cells express 

anaphylatoxin receptors and complement regulators on their surface and are a direct 

target of complement [12, 13].  

A substantial number of complement factors are produced in adipose tissue [14], 

and this production may be higher in individuals with obesity. In humans, plasma 

concentrations of factor D and complement C3, two main circulating components of 

the alternative complement pathway, are strongly associated with adiposity [15], and 

both are produced in adipose tissue [16, 17]. The anaphylatoxin C3a was also reported 

to be positively associated with body mass index (BMI) [18]. C3a is released by C3 upon 

complement activation [19] and may directly activate endothelial cells via the C3a 

receptor [20]. There are indications that the plasma concentrations of some of these 

complement components may change upon changes in body weight. Circulating 
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complement C3 was higher in obesity and decreased after non-randomized weight loss 

in patients with obesity [21, 22] while this was not the case for factor D [22]. In addition, 

the concentrations of C3, C3a and factor D, as well as other components of the 

alternative complement pathway, were lower in persons with anorexia [22]. While C3 

and factor D increased upon weight gain in anorexia, the C3a level remained 

comparable to that at low weight [22]. Moreover, C3 was identified as key marker for 

change of body fat as found in a human proteomics study [23]. In addition, in an 

observational human cohort, we have shown that factor D, C3 as well as C3a were 

strongly associated with adiposity, but only changes in C3 were associated with 

changes in BMI over time [15]. 

The aim of our study was to evaluate whether diet-induced weight loss 

intervention reduced circulating concentrations of complement C3, factor D and/or 

C3a in a post-hoc evaluation of a previously-published weight loss intervention trial in 

apparently healthy, men with abdominal obesity [24, 25]. We also evaluated whether 

weight loss-induced changes in complement, if observed, were explained by a 

reduction of specific fat depots i.e. subcutaneous, visceral adipose tissue and/or 

intrahepatic lipid (VAT, SAT, IHL, respectively). We additionally explored whether 

changes in circulating complement components, if any, could explain the previously 

published observation that diet-induced weight loss improved markers of endothelial 

dysfunction [25, 26].  

 

 

Methods  

 

Study cohort 

As described before [24, 25], Caucasian men were recruited via advertisements in local 

newspapers or among participants involved in earlier studies. They were included if 

they met the following inclusion criteria: age between 18 and 65 years, weight change 
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<3 kg within the previous 3 months, non-smokers, without diabetes, without 

cardiovascular disease, no drug or alcohol abuse, no use of medication known to affect 

lipid or glucose metabolism or hypertension, and no participation in another 

biomedical trial during the past 30 days. Twenty-five normal-weight (waist 

circumference: <94 cm) and 53 men with abdominal obesity (waist circumference: 102-

110 cm) completed the baseline measurements. The men with obesity were allocated 

into 2 age groups (18-49 years or 50-65 years). Men in the same age group were 

randomly divided into the weight stable control group or to the weight loss group. 

Three men did not complete the weight loss study and one violated the protocol (see 

flow chart in supplemental figure S1). All participants gave written informed consent 

before entering the study. The study was approved by the Medical Ethics Committee 

of the Maastricht University Medical Center, performed in accordance with the 

Declaration of Helsinki, and registered at clinicaltrials.gov as NCT01675401. 

 

Study design 

At the start of the study, all men with normal weight and with abdominally obesity 

underwent baseline measurements at the research facilities. Details of the 

intervention have been published before [25]. Briefly, participants in the weight loss 

group visited our research dietitian every week and had a very-low-calorie diet (VLCD, 

Modifast; Nutrition et Sante Benelux) for at least 4 weeks, under strict guidance. After 

the VLCD period, a period of 1-2 weeks followed in which they were provided a calorie-

restricted diet in line with the Dutch dietary guideline. In week 7 and week 8 the 

participants were kept in energy balance (weight-maintenance period). Participants in 

the weight stable control group maintained their normal diet, physical activities, and 

alcohol consumption, and were also monitored by the dietician through whole period. 

 

Clinical measurements 
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As published previously [24], a 3.0T Philips Achieva MRI scanner with a dedicated 16-

element torso coil (XLTorso coil; Philips Healthcare) was used to assess subcutaneous 

and visceral adipose tissue volumes. Two-dimensional T1-weighted turbo spin-echo 

images were acquired centered at the top of the L4 vertebral body. Images were 

analyzed offline with dedicated software (Hippo Fat; IFC CNR). 

The same MRI scanner and coil were used to assess IHL content through mDixon 

imaging. Two 6-mm-thick transverse slices through the liver were acquired using a 2D 

three-point T1-fast field echo (T1-FFE) mDixon pulse sequence, to correct for T2* 

relaxation. The intrahepatic fat percentage was calculated in three regions of interest 

within the liver parenchyma, carefully avoiding blood vessels. The fat content was 

expressed as the weighted mean fat signal, divided by the sum of the weighted mean 

water and fat signal, as described before [24]. 

 

Blood analyses 

After an overnight fast, blood was drawn through an intravenous catheter into NaF–

containing vacutainer tubes (Becton, Dickinson and Company) and EDTA-coated 

vacutainer tubes (Becton, Dickinson and Company) on ice. Within 30 min after blood 

sampling, the tubes were centrifuged at 1300 x g for 15 min at 4°C to obtain plasma. 

Blood drawn in vacutainer serum tubes (Becton, Dickinson and Company) was allowed 

to clot for 30 min at 21°C and centrifuged at 1300 x g for 15 min at 21°C. Plasma and 

serum aliquots were stored at -80°C until use.  

Endothelial function markers [soluble vascular cell adhesion molecule-1 

(sVCAM-1), soluble intercellular adhesion molecule-1 (sICAM-1), soluble endothelial 

selectin (sE-selectin)] were measured in EDTA plasma on a multiarray detection system 

based on electrochemiluminescence technology (SECTOR Imager 2400; Meso Scale 

Discovery), while Von Willebrand factor (vWf) was assessed by ELISA in citrate plasma, 

all as previously described [25]. The inter-assay coefficients of variation were 3.1%, 

4.2%, 5.7% and 7.2% for sICAM-1, vWf, sE-selectin and sVCAM-1, respectively. 
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To reduce the influence of the biological variability of each marker and achieve 

statistical efficiency, we standardized sum score for endothelial dysfunction. To obtain 

standardized sum scores we first standardized each individual biomarker, then z-scores 

were averaged into overall standardized endothelial dysfunction score. 

Complement factor D was measured in EDTA plasma using an R&D duoset kit 

assay, as described before [27]. Complement C3 was measured in EDTA plasma using 

an MSD R-plex Human Complement C3 Antibody Set (Mesoscale Discoveries). The 

assay was performed according to the manufacturer's instruction except for the use of 

a 1:20.000 instead of 1:300.000 dilution, which resulted in better stability of the 

measurements. Complement C3a was measured in EDTA plasma by ELISA (MicroVue 

C3a plus EIA kit, Quidel, San Diego, USA) [19]. The inter-assay coefficients of variation 

were 4.0%, 8.9%, and 4.2% for factor D, C3 and C3a, respectively. 

Glucose concentrations were measured in NaF–plasma (Horiba ABX). Serum 

samples were analyzed for total cholesterol (CHOD-PAP method; Roche Diagnostics), 

HDL-cholesterol (precipitation method; Roche Diagnostics), triacylglycerol (GPO 

Trinder; Sigma-Aldrich Corp.), HbA1c (Bio-Rad). LDL cholesterol was calculated by using 

the Friedewald formula and triacylglycerol was corrected for free glycerol [25].  

 

Statistical analyses 

Normally distributed variables are presented as mean ± SD. Skewed variables are 

presented as median with interquartile range (IQR). Differences at baseline between 

men with normal weight and with abdominal obesity were examined by an 

independent Student's t test in case of normally distributed data or Mann-Whitney U 

test in case of a skewed distribution. One-factor analysis of covariance (ANCOVA), using 

baseline measurements as covariates, was performed to evaluate the effect of weight 

loss intervention. To take into account the age-stratification in the randomization 

process, adjustment for age was performed an additional analysis Linear regression 

was performed to investigate the association of changes in fat measures, with changes 
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in complement concentration. Linear regression with adjustment for age was used to 

investigate the association of (i) the cross-sectional association of BMI and measures 

of body composition, with complement concentration, and (ii) the assocations of the 

intervention and changes in measures of body components with changes in 

complement concentrations. Multiple mediator analysis was used to study whether (i) 

a specific fat depot (i.e. SAT, VAT and/or IHL) independently mediated the cross-

sectional association of BMI with plasma complement concentrations or (ii) whether 

changes in a specific fat depot (i.e. SAT, VAT and/or IHL) independently mediated the 

effect the weight loss intervention on changes in complement concentrations. To 

further explore possible effects of weight loss-induced changes in circulating 

complement on biomarkers of endothelial dysfunction, their associations were 

evaluated using linear regression. and single mediator analyses were done to 

investigate whether (change in) complement concentration significantly mediated the 

association of BMI or intervention with (changes in) markers for endothelial 

dysfunction. Statistical analyses were performed using SPSS 25.0 (SPSS Inc, Chicago, IL, 

USA). A two-sided p-value of < 0.05 was considered statistically significant. Mediation 

analyses were conducted with the PROGRESS plug-in for SPSS version 3.5.2 (Andrew F. 

Hayes, The Ohio State University, Columbus, Ohio, USA). Bootstrapped confidence 

intervals (5000 samplings) were generated and effects were deemed significant when 

the confidence interval did not include zero. 

 

 

Results  

 

Study participants: Comparison of participants with normal weight 

and with abdominal obesity  

Men with normal weight (n=25) and with abdominal obesity (n=52) that completed the 

baseline measurements were analyzed, as reported before [24]. Baseline 
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characteristics of the participants are shown in Table 1. The median age was similar for 

the men with normal weight and with abdominal obesity. Anthropometric measures, 

which include weight, waist circumference, and BMI, were higher in the participants 

with abdominal obesity, as were VAT, SAT, and IHL (P<0.001). The metabolic profile, 

i.e. blood pressure, lipid metabolism (total cholesterol, HDL-cholesterol, LDL-

cholesterol and triglycerides) and glucose metabolism (fasting plasma glucose and 

HbA1c), was generally worse in men with abdominal obesity. Plasma sE-selectin was 

significantly higher in men with abdominal obesity (P<0.001), sICAM-1 also tended to 

be higher, albeit not statistically significantly (p=0.086), whereas sVCAM and vWf were 

comparable between the two groups. Factor D (13%) and C3 (22%) were higher in men 

with abdominal obesity, compared to lean men (P=0.027 and P<0.001, respectively). 

While plasma C3a levels did not statistically differ between lean men and men with 

abdominal obesity (p=0.194).  

 

Effect of weight loss intervention on plasma concentrations of factor 

D, C3 and C3a 

Table 2 and supplemental figure S2 show the effect of the weight loss intervention on 

the complement components. The intervention significantly reduced plasma C3 (-0.15 

g/L; [95% confidence interval -0.23; -0.07 g/l], p<0.001), which is approximately 10% of 

the baseline concentration. No significant changes were observed in plasma factor D (-

0.03 mg/L [-0.09; 0.02]) or C3a levels (3.74 µg/L [-2.50; 9.98]). Additional adjustment 

for age did not affect these results.  

Supplemental table S1 shows that, in the men with abdominal obesity, the 

changes in BMI, SAT and VAT that were observed over the 8 weeks follow-up period 

associated with the change in C3 (β=0.042 to 0.156 g/l, P=0.030 to P<0.001). No 

significant associations were observed between changes in adiposity and changes in 

factor D or C3a.  
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Table 1: Baseline characteristics of the study population  

 Lean (n=25) Obese (52) P value 

 Baseline Baseline  

Age (yrs) 53.7 [25.0-61.6] 51.8 [45.7-60.7] 0.965 

Body weight measures 

Weight (kg) 74.9±8.3 96.9±8.4 <0.001 

Waist circumference (cm) 84.9±6.3 106.5±3.6 <0.001 

BMI (kg/m2) 23.3±1.8 30.1±2.1 <0.001 

Subcutaneous fat volume (l) 1 1.45±0.51 3.09±0.78 <0.001 

Visceral fat volume (l) 1 0.89±0.42 2.34±0.72 <0.001 

Intrahepatic lipid content (%) 1 3.43 [3.13-3.78] 4.96 [3.90-7.86] <0.001 

Blood pressure   

24-hour systolic blood pressure (mmHg) 117.5±8.8 123.4±8.7 0.007 

24-hour diastolic blood pressure (mmHg) 72.5±9.4 80.4±7.3 <0.001 

Lipid metabolism status 

Total cholesterol (mmol/l) 4.55±0.78 5.56±0.97 <0.001 

HDL cholesterol (mmol/l) 1.26±0.26 1.11±0.21 0.008 

LDL- cholesterol (mmol/l) 2 2.82±0.70 3.68±0.89 <0.001 

Triglycerides (mmol/l) 0.95 [0.67-1.11] 1.66 [1.17-2.19] <0.001 

Glucose metabolism status 

HbA1c (%) 5.18±0.37 5.30±0.37 0.193 

Fasting plasma glucose (mmol/l) 5.35±0.29 5.64±0.48 0.006 

Markers of Endothelial dysfunction 

sE-selectin (ng/mL) 70.4±28.6 108.0±44.6 <0.001 

sICAM-1(ng/mL) 234.7±37.7 255.0±51.9 0.086 

vWf (%) 125.9±38.2 125.1±44.2 0.937 

sVCAM-1 (ng/mL) 398.3±82.8 413.5±79.1 0.439 

Components of the alternative complement pathway 

Factor D (mg/l) 0.86±0.17 0.97±0.21 0.027 

C3 (g/l) 1.29±0.26 1.57±0.24 <0.001 

C3a (µg/l) 32.5 [27.5-38.5] 35.4 [30.3-47.7] 0.194 

 

Legend to table 5-1: 1 analyzed in 24 lean and 52 obese men; 2 in 25 lean and 50 obese men. Data presented as 

mean ± SD (normal distribution) or median [IQR] (skewed distribution), as partially published before [24]. P values 

were obtained by independent Student’s t test or Mann-Whitney U test, where appropriate. Abbreviations: BMI: 

body mass index; MAP:  mean arterial pressure; HR: heart rate; HbA1c, glycated hemoglobin; sICAM-1, soluble 

intercellular adhesion molecule 1; sVCAM-1, soluble vascular cell adhesion molecule 1; sE-selectin, soluble 

endothelial selectin; vWf: von Willebrand factor 
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Table 2: Plasma complement concentration before and after the 8-wk dietary 

intervention. 

 Weight stable control group 1 Weight loss group 2 Treatment effect 

 Baseline Follow-up  Baseline Follow-up  
Mean change 

(95% CI) 
P value 

Factor D (mg/l) 0.96±0.20 0.97±0.19  0.99±0.22 0.96±0.20  -0.03 [-0.09; 0.02] 0.237 

C3 (g/l) 1.62±0.22 1.58±0.22  1.53±0.25 1.37±0.18  -0.15 [-0.23; -0.07] <0.001 

C3a (ug/l) 35.3 [32.3-46.7] 35.0 [29.5-42.3]  35.5 [26.9-49.4] 40.0 [26.4-60.7]  3.74 [-2.50; 9.98] 0.234 

 

Legend table 2: 1 n=26; 2 n=23. P value of treatment effect was obtained by 1-factor ANCOVA with baseline value 

as covariate. C3a concentrations at baseline and follow-up were skewed distributed, while the change of C3a 

concentration showed a normally distribution. When C3a was ln-transformed in a sensitivity analysis, the effect 

weight loss intervention was comparable. 

 

 

Table 3. Multivariate linear associations of the (changes in) different fat depots 

(independent variables) with (changes in) C3 (g/L, dependent variable). 

 Intervention study 1 Cross-sectional study 2 

  Δ C3 (95% CI) P value  C3 (95% CI) P value 

Model 1 
Δ SC fat (L) 

0.103 [0.005; 0.200] 0.040 SC fat (L) 0.121 [0.068; 0.174] <0.001 

Model 2 -0.034 [-0.163; 0.095] 0.600  0.055 [0.003; 0.108] 0.040 

Model 1 Δ V fat (L) 0.157 [0.075; 0.239] <0.001 Vl fat (L) 0.199 [0.141; 0.256] <0.001 

Model 2  0.173 [0.054; 0.292] 0.005  0.112 [0.036; 0.189] 0.005 

Model 1 Δ IHL (%) 0.019 [-0.003; 0.042] 0.093 Ln IHL lipid (%) 0.308 [0.193; 0.422] <0.001 

Model 2  0.003 [-0.021; 0.026] 0.827  0.161 [0.039; 0.282] 0.011 

 

Legend to table 3: 1 N=49; 2 N=78. Model 1: Adjusted for age, Model 2: Additionally adjusted for the other 2 fat 

depots. Abbreviations: SC fat; Subcutaneous fat, V fat; Visceral fat; IHL, intrahepatic lipid 

 

Next, we evaluated whether the significant effects of weight loss intervention 

on plasma complement C3 were attributable to changes in one of more of the 

individual fat depots. In the intervention study, only the change in VAT was associated 

with the change in C3, independent of age and independent of the other fat depots 

(Table 3). In multiple mediator models, we subsequently observed that the association 

between the weight loss intervention and changes in C3 was substantially and 
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independently mediated by changes in VAT (C3: -0.147 g/L, [-0.285; -0.001]) but not by 

changes in SAT or IHL (Figure 5-1A).  

In the cross-sectional linear regression analyses, SAT, VAT and IHL were each 

associated with C3 concentration (Table 3). In multiple mediator models, the 

association between BMI, as a measure of generalized adiposity, and plasma C3 was 

independently mediated by VAT (0.020 g/L, [0.005; 0.040]) and by IHL (0.011g/L, [0.003; 

0.021]), but not by SAT (Figure 5-1B). 

 

Figure 5-1: Multiple mediator models to determine the contribution of the different fat depots (subcutaneous 

adipose tissue [SAT], visceral adipose tissue [VAT] and intrahepatic lipid [IHL]) on the difference (or change) in 

C3. (A) Multiple mediator model where Δ VAT, but not ΔSAT or Δ IHL, was an independent mediator of the 

association between the weight loss intervention and Δ C3 (n=49). (B) Multiple mediator model adjusted for age 



Chapter 5: Weight loss intervention reduces complement C3 
 

 

143 

where VAT and ln-transformed IHL, but not SAT, were significant mediators of the cross-sectional association 

between BMI and plasma C3 (n=76). 

 

 

Effect of abdominal obesity and the weight loss intervention on 

markers of endothelial dysfunction via change in plasma C3 

To explore the potential biological consequences of the effects of weight loss 

intervention on alternative complement pathway components, we also investigated 

whether changes in complement associated with changes in circulating markers of 

endothelial dysfunction. Table 4 shows that the association of the change in C3 

associated with the change in the overall endothelial dysfunction score (β=2.500 SD 

[0.866; 4.125]). In line with this, the change in C3 also significantly associated with 

changes in sICAM (78 ng/mL [37; 119]) and sE-selectin (83 ng/mL [39; 127]), but not 

vWF or sVCAM.  

 

Table 4: Linear association between change in plasma C3 concentrations and changes 

in plasma concentrations of biomarkers for endothelial dysfunction 

 Δ C3 (g/l) 

95% CI P value 

Δ endothelial dysfunction score 2.500 [0.866; 4.125] 0.003 

      Δ sE-selectin (ng/mL) 83.00 [39.17; 126.83] <0.001 

      Δ sICAM-1 (ng/mL) 78.12 [36.94; 119.29] <0.001 

      Δ vWF (%) 17.21 [-30.77; 65.18] 0.474 

      Δ sVCAM-1 (ng/mL) 29.00 [-67.11; 125.11] 0.547 

 

Legend to table 4: Crude unstandardized associations between changes in plasma C3 and changes in plasma 

endothelial biomarkers. Results are shown for all obese men who participated in the intervention study (n=49). 

sE-selectin, soluble endothelial selectin; sICAM-1, soluble intercellular adhesion molecule 1; vWf: von Willebrand 

factor; sVCAM-1, soluble vascular cell adhesion molecule 1 
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We subsequently explored whether C3 could be a mediating variable in the 

associations of adiposity (BMI, cross-sectional analyses) or the weight loss intervention, 

with endothelial dysfunction. In Table 5, the results are shown of single mediation 

analyses in which we explored the mediating effect of C3 on the associations of either 

BMI or the weight loss intervention with the combined endothelial dysfunction score 

or the individual endothelial markers. The intervention-induced change in C3 partially 

mediated the effect of the intervention on the overall score for endothelial dysfunction 

(-0.22 SD [-0.66; 0.01]), on sE-selectin (-6.10 ng/ml, [-14.2; -0.92]), and on sICAM (-6.65 

ng/ml, [-17.2; -0.54]). In subsequent sensitivity analyses, we evaluated the mediating 

effects of C3 on the associations of waist circumference and VAT with the endothelial 

dysfunction markers (data shown in Supplemental Table S2). Additional adjustment 

for age did not affect any of the associations observed in the weight loss intervention. 
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Table 5: The mediating effect of (changes in) C3 on the association of weight loss intervention or BMI (kg/m2) with (changes in) markers 

of endothelial dysfunction (dependent variables) in simple mediator models.  

Dependent Independent: Intervention (Y/N) 1  Dependent Independent: BMI (kg/m2) 2  

 path 3 β 95% CI % 4  path 3 β 95% CI % 4 

Δ EndDys score (SD) c -0.86 [-1.39; -0.33]  EndDys score (SD) c 0.06 [0.00; 0.12]  

 c' -0.64 [-1.18; -0.10]   c' 0.02 [-0.05; 0.08]  

 a*b Δ C3 -0.22 [-0.66; 0.01] 26%  a*b C3 0.05 [0.01; 0.10] 83% 

     Δ sE-selectin (ng/ml) c -36.5 [-48.9; -24.1]       sE-selectin (ng/ml) c 4.81 [2.38; 7.23]  

 c' -30.4 [-42.8; -17.9]   c' 3.88 [1.14; 6.63]  

 a*b Δ C3 -6.10 [-14.2; -0.92] 17%  a*b C3 0.92 [-0.60; 2.60] 19% 

     Δ sICAM (ng/ml) c -26.5 [-39.9; -13.2]       sICAM (ng/ml) c 3.13 [0.27; 5.98]  

 c' -19.9 [-33.3; -6.47]   c' 1.24 [-1.91; 4.39]  

 a*b Δ C3 -6.65 [-17.2; -0.54] 25%  a*b C3 1.88 [0.11; 4.78] 60% 

     Δ vWF (ng/ml) c -5.47 [-20.5; 9.60]       vWF (ng/ml) c -0.69 [-3.08; 1.71]  

 c' -3.02 [-19.2; 13.2]   c' -1.96 [-4.64; 0.72]  

 a*b Δ C3 -2.44 [-16.6; 5.61]   a*b C3 1.27 [-0.44; 3.19]  

     Δ sVCAM (ng/ml) c 3.47 [-28.3; 35.2]       sVCAM (ng/ml) Cc 1.25 [-3.64; 6.14]  

 c' 7.64 [-26.6; 41.9]   c' -1.99 [-7.38; 3.41]  

 a*b Δ C3 -4.17 [-15.2; 7.63]   a*b C3 3.24 [-0.89; 6.29]  

 

Legend to table 5: 1 N=49; 2 N=77; 3 c is the total effect i.e. the regression coefficient of the association of BMI or the intervention as independent and the respective marker 

of endothelial dysfunction as outcome, c’ is the direct effect, a*b is the indirect affect via (change in) plasma C3.4 The proportion mediated effect [a*b/c] was only calculated 
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when the total effect (c path) was significant. EndDys score, endothelial dysfunction score; sE-selectin, soluble endothelial selectin; sICAM-1, soluble intercellular adhesion 

molecule 1; vWf: von Willebrand factor; sVCAM-1, soluble vascular cell adhesion molecule 1 
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Discussion  

This randomized controlled dietary weight loss intervention study in men with 

abdominal obesity has several main observations. First, the weight loss intervention 

reduced C3, but not factor D or C3a. Second, the effect of intervention on plasma C3 is 

partially explained by changes in VAT. Third, the effect of weight loss intervention on 

plasma markers of endothelial dysfunction was partly mediated by changes in C3. 

The weight loss intervention reduced the plasma concentration of complement 

C3. Also in the cross-sectional comparison, the C3 concentration was significantly 

higher in men with obesity than in the normal weight group, as was reported previously 

[15, 22]. The observed reduction in C3 after weight loss intervention agrees with 

reports from non-randomized, non-controlled weight loss trials in men and women of 

various degrees of obesity, yet all with a BMI above 40 kg/m2 [21, 22, 26]. A reduction 

in C3 generally results from either hypoproduction, i.e. less production of C3 in tissue, 

including adipose tissue, or hyperconsumption, i.e. reduction of C3 upon of activation 

of the C3 cascade, when C3 is converted into C3a and C3b. Since plasma C3a in our 

study did not change with weight loss intervention, we consider it most likely that the 

decrease in C3 with weight loss intervention resulted from decreased C3 production, 

rather than increased consumption. As the reduction in C3 with weight loss 

intervention was mainly explained by VAT, we speculate that the weight loss 

intervention reduced the production of C3 in this adipose tissue depot. It could be 

argued that there may be an indirect effect as well, e.g. via reduction of C3 production 

in the liver, which is the main source of plasma C3 [17]. However, the most likely 

mechanism via which a reduction in VAT would lead to a lower hepatic C3 production 

would be via a decrease in circulating inflammatory factors [26], which were 

unaffected in our study [27]. Also, the change in IHL did not contribute to the 

association between weight loss intervention and changes in plasma C3, independent 

of changes in VAT. A reduction in plasma C3 could result in a reduced potential for 

activation of the alternative complement pathway and of the common amplification 



Chapter 5: Weight loss intervention reduces complement C3 
 

148 

loop. There may, however, also be effects that are independent of canonical 

complement activation. As an example, C3 can directly interact with fibrinogen [28]. 

Incorporation of C3 into fibrin clots can contribute to hypofibrinolysis and hence to 

enhanced thrombosis risk [28]. 

In our study, the diet-induced change in C3 partly explained the beneficial effect 

of weight loss intervention on the endothelial markers sE-selectin and sICAM. A cross-

sectional association of C3 with these markers was reported before [26]. Our results 

suggest that a weight loss-induced reduction in C3 reduces endothelial dysfunction in 

apparently healthy, men with abdominal obesity. These results may have potential 

relevance in light of the worldwide SARS-CoV-2 epidemic. Severe COVID-19 disease is 

characterized by, among others, inflammation, endothelial dysfunction, and 

thrombotic microangiopathy [29, 30], and men with obesity have a high risk to develop 

severe coronavirus disease-2019 (COVID-19) upon infection [31]. Inhibition of C3 

activation improved outcomes in severe COVID-19 [32] and we speculate that 

reduction in plasma C3 via diet-induced weight loss might be beneficial in the 

prevention of severe COVID-19 disease in men with obesity.  

In contrast to plasma C3, the concentration of the other complement factor that 

were studies, factor D and C3a, did not change with weight loss intervention. At 

baseline, factor D was slightly higher in participants with obesity than in one with 

normal weight, which is in line with previous publications [15, 33] although not always 

significant[22]. Given its profound expression in adipose tissue, one might intuitively 

expect the plasma concentration of factor D to be responsive to weight loss, but our 

current data do not support that premise. In fact, , the change in factor D concentration 

with weight loss intervention was small and not significant, which is agreement with 

what was found before [22].  

It was previously reported that the expression of factor D in adipose tissue may 

differ between men and women. In women, factor D was inversely correlated with BMI 

in SAT but not in VAT, while in men, a similar inverse correlation with SAT was present 
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but a positive correlation was observed in VAT [34]. Based on these cross-sectional 

observations, we speculate that in men with obesity, weight loss intervention would 

decrease the expression (and production) of factor D by adipocytes in VAT, but this 

may be counteracted by a concomitant increase in factor D expression (and production) 

by SAT, the total result of which would be the observed, non-significant effect of weight 

loss intervention on circulating factor D in men with obesity. Also, in vitro studies 

showed that factor D, as well as C3a, may be active contributors to lipid accumulation 

in adipocytes, rather than merely products of adipose tissue, which would provide an 

additional explanation for the fact that they are not, or less, responsive to diet-induced 

weight loss [35]. 

Although baseline C3a was approximately 9% higher in men with abdominal 

obesity compared to lean men, this difference was not statistically significant. Previous 

publications did report higher C3a in people with obesity than in lean individuals, but 

these reports often concerned studies in persons with extreme levels of obesity, with 

obesity-related comorbidities such as metabolic syndrome, and/or with larger 

numbers of participants [15, 36-38]. This may explain why our current findings that C3a 

did not change upon weight loss intervention in men with abdominal obesity contrasts 

with a previous report that in women plasma C3a was reduced upon extreme weight 

loss resulting from bariatric surgery [38]. Our current observations are, however, in 

agreement with the observation that C3a was neither reduced in women with anorexia, 

nor increased upon weight gain [22]. In addition, we previously reported that in our 

current weight loss intervention study the concentration of several plasma biomarkers 

of systemic inflammation were not altered by the weight loss intervention [25]. C3a is 

an inflammatory factor [39] and our observation that C3a was not changed is therefore 

in line with these previous findings.   

This study has several strengths. Firstly, it is a randomized and controlled weight 

loss intervention. Second, the intervention is combined with a cross-sectional 

comparison of lean participants and participants with abdominal obesity, allowing for 
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a comprehensive evaluation. Third, participants were apparently healthy and 

moderately obese, thus representing a large group of persons in our society. Fourth, 

the MRI data allowed us to look beyond abdominal obesity per se, and to evaluate the 

independent effects of distinct fat depots. Our study also has limitations. First, no 

measurements were available between baseline and follow up, therefore we cannot 

determine the order of events that result from the weight loss intervention. Also, our 

observation that the concentration of C3a was not altered in plasma does not 

necessarily exclude the possibility that the weight loss intervention did, to some extent, 

affect local generation of C3a. (Local) C3 activation can induce endothelial dysfunction 

[12, 40] but C3 may also be produced by endothelial cells, at least in vitro [41, 42]. 

Hence, reverse causation cannot be fully excluded. Lastly, our study involved Caucasian 

men, which prohibits extension of the findings to women and to other ethnicities.  

 

Conclusions 

In conclusion, we showed that diet-induced weight loss intervention reduced 

the plasma concentrations of complement C3 in men with abdominal obesity. This 

reduction in C3 was mainly explained by the reduction in VAT. In turn, the reduction in 

C3 partly explained the weight loss-associated improvement of plasma biomarkers of 

endothelial dysfunction, in particular sE-selectin and sICAM. Reduction in C3 can be 

one of the mechanisms via which diet-induced weight loss intervention could reduce 

the risk of obesity-associated diseases such as cardiovascular disease and type 2 

diabetes. 
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Supplemental material  

 

 

Figure S5-1. Derivation of final study population [24] 
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Legend to figure S5-2: Characteristics of the study population and effects of weight loss intervention on plasma 

concentration of complement components. (A) Factor D, (B) Complement C3, (C) Complement C3a. Box plots are 

as follows: black line, median; box edges, 1st and 3rd quartiles; whiskers, minimum and maximum of all data. 

Cross-sectional differences were obtained by independent Student’s t tests (lean vs. obese; * P<0.05, 

***P<0.001), differences over time by paired t test (baseline vs. follow-up; ### P<0.001), and differences 

between groups over time by means of 1-factor ANCOVA with baseline value as covariate (control group vs. 

intervention group; $$$ P<0.001). C3a concentrations at baseline and follow-up were skewed distributed, while 

the change of C3a concentration showed a normal distribution. When C3a was ln-transformed C3 in a sensitivity 

analysis, the effect of weight loss intervention was comparable. 
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Supplemental table S1: Linear association between change in fat measures and change 

in plasma C3 concentration in intervention study 

 β [95% CI] P value 

 Δ factor D (mg/L) 

Δ BMI (kg/m2) 0.010 [-0.008; 0.027] 0.287 

Δ Subcutaneous fat (L) 0.028 [-0.035; 0.091] 0.376 

Δ Visceral fat volume (L) 0.055 [-0.002; 0.111] 0.058 

Δ intrahepatic lipid (%) 0.002 [-0.013; 0.016] 0.789 

 Δ complement C3 (g/L) 

Δ BMI (kg/m2) 0.042 [0.016; 0.069] 0.002 

Δ Subcutaneous fat (L) 0.107 [0.011; 0.203] 0.030 

Δ Visceral fat volume (L) 0.156 [0.075; 0.238] <0.001 

Δ intrahepatic lipid (%) 0.020 [-0.003; 0.042] 0.085 

 Δ complement C3a (µg/L) 

Δ BMI (kg/m2) -0.541 [-2.805; 1.723] 0.633 

Δ Subcutaneous fat (L) -1.478 [-9.416; 6.461] 0.710 

Δ Visceral fat volume (L) -2.389 [-9.724; 4.946] 0.515 

Δ intrahepatic lipid (%) -1.498 [-3.256; 0.261] 0.093 

 
Legend to Table S1: Crude unstandardized associations between changes in BMI or fat depot and changes in 
plasma concentration of the complement factors. Results are shown for all obese men who participated in the 
intervention study (n=49).  
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Supplemental table S2: The mediating effect of C3 on the association of waist (cm) or VAT (L) with markers of endothelial dysfunction 

(dependent variables) in simple mediator models  

Dependent Independent: waist (cm) 1  Dependent Independent: VAT (L) 2  

 path c β 95% CI % b  path d β 95% CI % b 

EndDys score (SD) c 0.01 [0.00; 0.03]  EndDys score (SD) c 0.32 [0.06; 0.58]  

 c' 0.00 [-0.01; 0.02]   c' 0.10 [-0.23; 0.42]  

 a*b C3 0.01 [0.00; 0.02] 100%  a*b C3 0.22 [0.00; 0.51] 69% 

     sE-selectin (ng/ml) c 1.45 [0.61; 2.28]  sE-selectin (ng/ml) c 22.83 [11.93; 33.74]  

 c' 1.06 [0.13; 1.99]   c' 19.57 [5.54; 33.61]  

 a*b C3 0.39 [-0.05; 1.01] 27%  a*b C3 3.26 [-6.95; 13.21] 14% 

     sICAM (ng/ml) c 0.82 [-0.15; 1.80]  sICAM (ng/ml) c 15.14 [2.25; 28.03]  

 c' 0.11 [-0.95; 1.16]   c' 4.44 [-11.72; 20.61]  

 a*b C3 0.72 [0.16; 1.68]   a*b C3 10.69 [-1.67; 25.60] 71% 

     vWF (ng/ml) c -0.027 [-0.89; 0.84]  vWF (ng/ml) c -1.90 [-12.56; 8.76]  

 c' -0.28 [-1.26; 0.70]   c' -8.76 [-22.3; 4.76]  

 a*b C3 0.25 [-0.44; 0.82]   a*b C3 6.86 [-1.27; 16.45]  

     sVCAM (ng/ml) c 0.18 [-1.47; 1.83]  sVCAM (ng/ml) c 7.68 [-12.55; 27.91]  

 c' -0.98 [-2.77; 0.81]   c' -4.90 [-30.60; 20.80]  

 a*b C3 1.16 [0.027; 2.17]   a*b C3 12.57 [-2.65; 30.58]  

 

Legend to table S2: 1 N=77; 2 N=76, c is total effect i.e. the regression coefficient of the association of waist or VAT as independent and the respective marker of endothelial 

dysfunction as outcome, c’ is the direct effect, a*b is the indirect affect via plasma C3. d The proportion mediated effect [a*b/c] was only calculated when the total effect (c 

path) was significant
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Obesity affects not only adults, but also children as well as adolescents all over the 

world. The number of persons with overweight approaches approximately 2 billion 

worldwide, and persons with obesity are around 700 million [1, 2].  Persons with 

obesity are more easily affected by life-threatening medical complications, such as 

dyslipidemia, type 2 diabetes (T2D), cardiovascular disease (CVD), and metabolic 

syndrome [3, 4]. Obesity-associated medical complications, especially CVD, are the 

leading cause of the morbidity and mortality globally [5]. The higher presence of 

obesity, overweight and associated medical complications worsen medical and 

economic burdens [5, 6]. Therefore, more insight in the aetiology of obesity and its 

related complications is needed. 

The pathways that underlie the link between obesity and cardiometabolic 

diseases are not yet fully elucidated. The complement system may be involved because 

complement is produced in adipose tissue, is higher in obesity and has been implicated 

in cardiometabolic disease. The studies in this thesis focus on components of the 

alternative pathway because this pathway has been most consistently implicated in 

cardiometabolic diseases. For these studies we have measured C3, which is the central 

component of the alternative complement pathway; C3a, which is the cleaved product 

of C3; and factor D, the rate-limiting protease in the activation of the alternative 

complement pathway, in ~3700 participants of the Maastricht Study and in 75 

participants who participated in a weight loss intervention. 

 

1. Main findings 

In chapter 2, we investigated the association of factor D with vascular dysfunction and 

CVD in The Maastricht Study. We found that a greater plasma concentration of factor 

D significantly associated with multiple markers of low-grade inflammation and 

endothelial dysfunction, as well as with more CVD, and particularly with more cerebral 

CVD in men. In contrast, factor D was associated with neither ankle-brachial index (ABI), 

a marker of subclinical peripheral atherosclerosis, nor carotid intima-media thickness 
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(carotid IMT), a marker of arterial injury. Overall, these findings imply that factor D is 

involved in CVD which may manifest via low-grade-inflammation and endothelial 

dysfunction, possibly accompanied by a higher tendency to develop atherothrombosis, 

rather than via enhanced atherosclerosis. 

In chapter 3, we investigated the association of factor D and C3 with arterial 

stiffness, as represented by carotid-femoral pulse wave velocity (PWV), carotid 

distensibility coefficient (DC) and carotid Young’s elastic modulus (YEM), in The 

Maastricht Study. We found that concentrations of factor D and C3 were positively 

associated with greater arterial stiffness, but not independently of age, sex, education 

status, heart rate (HR), mean arterial pressure (MAP), and presence of T2D. The 

association of factor D with arterial stiffness was for a large part explained by age, while 

the association of C3 with arterial stiffness was primarily explained by HR and MAP. 

Overall, these findings imply that a small part of the observed associations of factor D 

and C3 with arterial stiffness might be attributed to a causal path leading from 

alternative complement activation, via hypertension and T2D, to arterial stiffness. 

In chapter 4, we investigated whether complement factors (complement C3, 

factor D and C3a) explained (parts of) the association of measures of obesity [BMI 

(body mass index), waist, visceral adipose tissue (VAT), subcutaneous adipose tissue 

(SAT) with disturbed metabolism homeostasis (fasting glucose, insulin resistance, 

prevalence of T2D) in The Maastricht Study. We found that the measures of obesity 

were significantly and positively associated with a disturbed metabolism homeostasis: 

fasting glucose, insulin resistance, and prevalence of T2D. We also found that C3 

explained a substantial part of the relationship of obesity with those measures of 

disturbed metabolism homeostasis. Consistent with these observations for C3, C3a 

also explained significant, albeit very small, parts of the association of adiposity with 

disturbed glucose homeostasis. We also found that factor D was a minor mediator in 

the association of VAT and SAT with insulin resistance while, in contrast, factor D was 

a significant suppressor in the associations of obesity with fasting glucose and T2D. The 
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mediating effects of C3 and C3a in the associations between adiposity and T2D were 

more pronounced in women, and the suppressor effect of factor D was more 

pronounced in men. Overall, these findings imply that direct or indirect effects of C3 

and C3a on insulin resistance and glucose metabolism, both contributing to T2D, can 

start from expanded and dysfunctional fat depots. They also concur with accumulating 

evidence that factor D and C3 may play different roles in the association of adiposity 

with T2D.  

Finally, in chapter 5, we investigated the effects of a weight loss intervention in 

abdominally obese men on the plasma concentration of complement C3, factor D and 

C3a. We found that the weight loss intervention reduced C3, but not factor D or C3a. 

We also observed that the effect of the intervention on plasma C3 was explained by 

the reduction in VAT. We additionally showed that the effect of the weight loss 

intervention on plasma markers of endothelial dysfunction was mediated by 

complement C3 since the reduction in C3 partly explained the weight loss-associated 

improvement of plasma biomarkers of endothelial dysfunction, in particular soluble 

endothelial selectin (sE-selectin) and soluble intercellular adhesion molecule-1 (sICAM-

1). Overall, these findings imply that one of possible mechanisms by which the diet-

induced weight loss intervention could improve obesity-associated diseases such as 

CVD and T2D, may be via reduction in circulating complement C3. 

 

 

2. Methodological considerations 

 

2.1 Internal validity  

The internal validity refers to how well the inference represents the studied population. 

The internal validity of a study could be affected by a systematic error, also called bias. 

Bias distorts the true association between the main independent variable(s) and 

dependent variable(s). In the coming paragraph I will discuss three forms of bias: 
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selection bias, information bias and confounding as well as how they may have 

influenced the main findings presented in this thesis. 

 

2.1.1 Selection bias  

In an observational cohort study, selection bias occurs when the selected population is 

not able to represent the source population. Two kinds of selection bias may have been 

introduced in the analyses in this thesis: sampling bias and attrition bias 

Sampling bias occurs when procedures performed for participant recruitment 

affect the inclusion of study participants. In The Maastricht Study, participants were 

recruited via self-selection, and then were given 3.5-day measurements. Therefore, 

this indicates that those who were interested in the study were more likely to 

participate, and may have higher education level, healthier condition, and a healthier 

lifestyle. Such a bias may underestimate the real associations.  

Complete-case analysis may introduce attrition bias due to non-random factors 

affecting the study participants. For instance some participants could not be included 

in the analysis because not all measurements were conducted. All main analyses in this 

thesis were conducted based on the complete-case analysis approach, in which 

participants were excluded from analysis if one or more than one variables are missing, 

no matter whether the missing variable is an exposure, outcome, or a confounder in 

cross-sectional analysis, or if the participants cannot be followed up in longitudinal 

study. If the exclusion of participants in a complete-case analysis is non-random, 

attrition bias occurs. We therefore compared the characteristics of included and 

excluded participants to estimate if missing data were random or not. In the cross-

sectional analyses done in The Maastricht Study, individuals with and without data on 

exposures (complement C3 and factor D) (n=136), outcomes (arterial stiffness) (n=84) 

and confounders (n=525) had a comparable cardiometabolic profile (chapter 3). In 

Chapter 4, excluded participants were less healthy, which means part of relatively 

larger data was missing. These missing data were expected to underestimate the 
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association between exposures and outcomes. In the longitudinal study (chapter 5), 

around 7.5% of the participants were excluded due to failure to follow-up and/or 

violating the protocol. Weight loss reduced complement C3, but this was not the case 

for factor D, which was corroborated by previous publications [7, 8]. We therefore 

thought it posed only a limited harm on our analysis. 

 

2.1.2 Information bias 

Information bias is caused by erroneous information on exposures (independent 

variables), outcomes (dependent variables), and/or both [9]. Erroneous information 

includes measurement error, when continuous data is not measured well, and/or 

misclassification error, when categorical data is not well classified [9]. Information bias 

is divided into random error, which mainly affects precision. It introduces variability 

among different measurements since some values are lower and others may be higher 

than true score. The effect of random error will become less as the sample size 

becomes larger [9]. And systematic error that, when it occurs in exposures and/or 

outcomes, may lead to overestimation and/or underestimation of the association [9].  

Random error may be introduced in measurements. In this thesis, the exposures 

and outcomes were obtained using several methods, such as plasma measurements 

(complement factor D, C3, C3a, markers of low-grade inflammation and endothelial 

dysfunction, fasting glucose, insulin resistance, diagnosis T2D) and physical 

measurements (BMI, waist, VAT, SAT, cfPWV, carotid YEM, carotid IMT, ABI). Well-

trained researchers conducted measurements. Part of the measurements (such as 

complement factors) in duplicate in order to reduce random error. Errors in the 

measurements are therefore likely to be randomly distributed across the study 

population. Random errors in exposures bias results may toward null as regression 

dilute bias, random errors in outcomes may widen the confidence intervals [10]. 

Systematic error occurs when consistent difference exists between observed value and 

true value of variables. Systematic error influences the accuracy of one measurement. 
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Systematic error would make the observed values larger or smaller than the true value 

in the specific direction. In this thesis, we used several ways to reduce systematic error: 

Firstly, we use multiple measures to record observations, for instance we use BMI, 

waist, VAT, SAT to represent obesity (chapter 4, 5), therefore we do not have to 

depend on only one method. Secondly, participants were randomly allocated in 

weight-stable group and weight-loss group (chapter 5). Thirdly, considering that 

participants’ behaviors and observed values could be affected by researcher’s 

expectancies, the researchers are blind for the conditions of participants before 

participants were allocated and/or measured (chapter 2-5) Taken together, The 

Maastricht Study (chapter 2-4) and the weight loss study (chapter 5) are well-designed, 

and the standardized protocols were conducted by well-trained researchers to 

minimize information error.  

 

2.1.3 Confounding and overadjustment 

A confounder is a factor that associates with the exposure and at the same time is a 

risk factor for outcomes, but it does not involve in causal path between the exposures 

and outcomes [9, 11] . The effect of confounders distorting the true association 

between exposures and outcomes is called confounding [9]. In this thesis, in case the 

true association between exposures and outcomes was distorted by confounders, we 

used certain statistical analysis to correct for confounding such as multiple linear 

regression and multiple logistic regression. Based on the extensive phenotypes of the 

Maastricht study [12], we were able to correct for a substantial number of potential 

confounders to reduce confounding bias, including demographics, lifestyle factors, 

CVD risk factors, etc. 

However, residual confounding, which may have been caused by imperfect 

measurement of a confounder or misclassification [13], may occur. In chapter 2-5, 

energy intake, alcohol consumption, smoking, and exercise were acquired by 
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participant’s self-reposted questionnaires. These kinds of information likely made 

recall bias.  

Overadjustment may exist in our fully adjusted models if the potential 

confounders lie in the causal path from exposures to outcomes. Given that the 

potential confounders, such as measures of obesity, blood pressure and T2D may 

mediate the association between complement factors and arterial stiffness, we 

thought overadjustment may have occurred in chapter 3. We conservatively 

interpreted the association of complement factors and arterial stiffness, which was 

non-significant. However, this conservative interpretation in chapter 3 may hide the 

real or significant association. Likewise, in chapter 2, we may have overadjusted for 

blood pressure, lipid profile, measures of glucose metabolism in the additional analysis, 

since blood pressure, lipid profile, and measures of glucose metabolism may lie in the 

causal pathway between complement factors and CVD. 

 

2.2 External validity 

External validity refers to the generalizability of our findings to other populations that 

were not included in the current studies [9]. Our findings from chapter 2-4 were based 

on The Maastricht Study [12], a large observational cohort study that consists of 

middle-aged to elderly Caucasian individuals and oversampled with T2D. The findings 

from chapter 5 were based on an intervention study [14] that consisted of 18 to 65-

year-old and abdominally obese Caucasian men, without T2D and CVD. The 

generalizability of our findings to other population groups with different ethnicities, 

gender, age, health status, would require further study. However, based on the 

aetiological role of complement in metabolic disorders, our findings of consequences 

of complement factors could be generalizable to other populations. Indeed, the 

association between complement factors and metabolic disorders have been found in 

non-whites as well [15].  
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2.3 Causality 

In longitudinal analyses the investigator can be sure about the order of exposures and 

outcomes and can build a relatively solid case for a causal link. This is for instance the 

case in chapter 5, in which we showed that weight loss reduced the plasma C3 

concentration. Chapter 5 also showed that C3 reduction partly explained the weight 

loss improved endothelial dysfunction. For that part of the data we have to take into 

consideration that C3 can also be produced by vascular endothelium [16], hence 

improved endothelial dysfunction may also affect C3 concentration, which might have 

introduced reverse causation. Cross-sectional analyses (chapter 2-4) cannot build a 

solid causal link between exposures and outcomes, because the exposures and 

outcomes were estimated at the same time. The causal inference of our observations 

is based on numerous experimental studies, such as mouse models and cell work. As 

an example, in mice on high fat diet, factor D deficiency lowered TNF-alpha and hepatic 

inflammation [17], which is in line with our observation (chapter 2) that factor D 

positively associated with LGI. In our analysis the observed associations were 

comprehensively adjusted for potential confounders, which strengthens the possibility 

that the relationships were causal. 

 

3. Implications and future perspectives 

 

Implications 

Obese people are vulnerable to various metabolic diseases, such as T2D and 

CVD [3, 4], and the current obesity epidemic and related diseases imposes a health and 

economic burden on society [5, 6]. In this thesis, we explored the potential aetiology 

of complement factors on these diseases. Cross-sectional studies in this thesis were 

conducted in The Maastricht Study, an observational study oversampled with T2D, 

while longitudinal studies were conducted in a weight loss intervention study. We 

showed that complement factors, in particular C3, factor D and C3a, were associated 
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with obesity and weight loss, as well as with T2D and CVD, and additionally showed 

that in particular complement C3, could explain a part of the association of obesity 

with CVD and T2D (Figure 6.1). The associations of obesity with complement factors 

[18-21] have been studied widely. However, the investigation for the effect of 

complement on metabolic disease are much less. Investigations on mediating effects 

of complement factors on the association between obesity and metabolic disease are 

limited. 

In this thesis we showed some unexpected observations. For example, based on 

positive association of factor D with endothelial dysfunction and low-grade 

inflammation [22], the involvement of complement activation in atherosclerotic 

plaques [23], as well as the implication of complement-mediated inflammation in CVD 

in humans [24, 25], we expected to find that factor D  have a positive strong association 

with carotid IMT. In chapter 2, however, we found that factor D inversely and 

significantly associated with carotid IMT in individuals without T2D, and non-

significantly in those with T2D. It did surprise us, but the result from one recent 

publication was in line with our observation, which showed factor D inversely 

associated with carotid IMT in a Chinese cohort of obese individuals [15]. Moreover, 

experimental data showed that factor D attenuated progression of atherosclerosis [26]. 

In chapter 4 we showed that factor D suppressed association between obesity 

measures and disturbed glucose metabolism. This was to some extent an unexpected 

finding, given that factor D is the rate limiting serine-protease of alternative pathway 

activation and its positive role in inflammation [20, 22]. Some existing publications may 

explain our findings. Factor D positively affects beta cell function and survival [27, 28], 

stimulation of insulin secretion by fat-derived factor D may lead to better control of 

the blood glucose level and thereby reduce the risk of T2D. Factor D was also confirmed 

to be lower in newly diagnosed diabetes than in those without T2D [29]. Hence, more 

production of factor D in obesity may be a way to downregulate the glucose level 

resulted from obesity-related insulin resistance.  
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In Chapter 5, we found that weight loss reduced plasma C3 concentration but, 

unexpectedly, not factor D. A possible explanation for this may be that factor D was 

shown to correlate inversely with SAT but positively with VAT [30]. We speculated that 

the weight loss intervention decreased the obesity, which then decreased the 

expression and production of factor D by in the VAT depot, while at the same time 

increasing the expression and production of factor D by the SAT depot. When both of 

these effects counteract each other, then the total result observed is non-significant, 

or even non-existing. In chapter 5, we also observed that VAT, but not liver fat, 

explained the reduction of weight loss on C3, even though the liver is main source of 

plasma C3 [31, 32]. Circulating inflammatory factors are the most likely mechanism via 

which a reduction VAT would reduce hepatic C3 production [33]. However, there was 

no improvement in low-grade inflammation in our study [27], as also reflected by our 

observation that C3a was not decreased, and even non-significantly increased, after 

weight loss. We therefore speculated that the weight loss intervention reduced the 

production of C3 in the VAT depot instead of reducing the production of C3 in the liver. 

In all analyses included in this thesis interactions with sex and with diabetes 

status were evaluated, if appropriate. This was possible because The Maastricht Study 

has sufficient power for such interaction analyses. Some of the associations of 

complement factors with metabolic disease indeed differed according to either sex or 

T2D.  

Interaction with diabetes: In chapter 2, factor D was more strongly associated with 

endothelial dysfunction in individuals without T2D than in those with T2D. In this 

chapter, the inverse association of factor D with carotid IMT was also stronger in 

participants without T2D, whereas no significant association was seen in those with 

T2D. In contrast, in chapter 3 factor D was positively associated with cfPWV in 

individuals with T2D, but not in non-diabetic individuals. While in chapter 4, factor D 

was a stronger suppressor in individuals with T2D than those without T2D. This 
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indicated the biological role of factor D in CVD is very complex and factor D may play 

different roles in participants with and without T2D. 

Interactions with sex: in chapter 4 we observed that C3 and C3a explained a larger part 

of the association of obesity measures with T2D in women than men. This may be 

explained by the fact that more C3a were observed in women in our study, which 

suggested women had higher activity of alternative pathway. 

These are interesting observations that imply that in future (intervention) studies 

designed to evaluate the role of complement factors in metabolic diseases, sex and 

presence of T2D should be taken into consideration.  

 

Future perspectives 

Further evaluations are still required.  The findings from cross-sectional 

analysis need longitudinal studies to validate the causality. For instance, the 

association of complement factor with vascular damage and adverse CVD (chapter 2) 

need to be validated.  All the findings in these analyses (chapter 2-5) need to be 

replicated in studies with non-Caucasian ethnicities and need to be expanded to all age 

groups.  Findings in chapter 5 also need to be replicated in women.  

  



Chapter 6: Summary and general discussion 

 

171 

 

 
Legend to fig 6.1: associations of complement components with cardiometabolic disease The long solid arrows 

show the association found in this thesis, short solid arrows show the complement factors involved in specific 

chapter. 
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Social and economic relevance 

Obesity, a global epidemic, nowadays affects over 650 million adults, and over 1.9 

billion adults at the previous stage, overweight, tend to be affected all over the world 

[1, 2]. Obese persons are at higher risk to suffer from obesity-related diseases such as 

cardiovascular disease (CVD) and type 2 diabetes (T2D). [3, 4]. People with obesity, 

CVD and/or T2D suffer from more physical issues and have a shorter life-span. CVD is 

the major challenge for global health, and the leading cause of death worldwide [5]. 

According to the World Health Organization, CVD took an estimated number of 18 

million lives in 2019, an estimated 32% of deaths, globally. T2D, a chronic metabolic 

disease, is another one of the top four major causes of mortality all over the world. 

According to World Health Organization, over 400 million adults aged 18 years and 

older have T2D, and an estimated 2 million deaths were caused by diabetes in 2019. 

These metabolic diseases also increase economic burden for individuals and society as 

a result of higher medical expenses and productivity losses. 

In this thesis, we add more knowledge to the academic research field. We 

obtained a clearer understanding of the aetiological role of complement factors in 

cardiometabolic disease and its explaining role on how obesity contributes to 

cardiometabolic disease. In addition, one of our studies also showed that weight loss- 

induced changes in complement components may contribute to better vascular 

function. Based on our findings, further longitudinal studies, experimental studies in 

animals and/or intervention studies may be designed. These further studies may 

concentrate on the value of individual complement components as markers to predict 

these metabolic diseases. In order to study their value in prediction, the associations 

of (the change in) concentration of complement factors with incident cardiometabolic 

disease should be evaluated. Alternatively, these studies may focus on the value of 

individual complement factors as a target to treat these related metabolic diseases. If 

further evaluations show that these complement factors have added values in 

prediction and/or treatment of these metabolic disease, the use of complement 
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factors as risk predictor or target may reduce mortality and the medical burden that 

results from these metabolic diseases. 

 

Target group 

Participants in The Maastricht Study are Caucasian and aged between 40 and 75 years 

old, and those in weight loss study are abdominally obese male Caucasian aged 18-65 

years old. In general, our findings show the possible aetiological role of complement 

factors in cardiovascular disease, how much of the association between obesity and 

type 2 diabetes could be explained by complement factors, as well as the reduction 

effect of weight loss on complement factor, which improve endothelial dysfunction 

marker. Our results hence support the concept that complement may be the part of 

the path via which obesity contributes to cardiometabolic disease.  

The potential of C3, C3a and factor D in risk-prediction for risk obesity-associated 

cardiometabolic diseases: In the future, the use of complement factors in risk-

prediction for risk obesity-associated cardiometabolic diseases is likely. Complement 

factors are associated with metabolic disease, and these associations were confirmed 

in longitudinal study. Although longitudinal analyses make the case for a role of 

complement stronger, these analyses still cannot prove causality. Nevertheless, 

complement factors could be regarded as a predictor. 

C3, C3a and factor D as potential targets in treatment of obesity-associated 

cardiometabolic diseases: In the future, intervention trials aiming to reduce 

complement factors, e.g. by changes in lifestyle, may improve cardiometabolic disease. 

In addition, novel therapeutic drugs may be developed promisingly to improve 

cardiovascular disease by targeting complement. However, because, complement is 

part of immune system, inhibiting complement factors and/or its activation may lower 

the ability of the immune system to defense against pathogen infection. Therefore, a 

potential intervention with therapeutic drugs that affect complement activation may 

make patients more vulnerable to infectious disease. One possibility to prevent this is 
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combination of such a potential intervention with therapeutic drug boosting the 

immune system to compensate the loss of protection from immune system that is 

weakened by the complement inhibitor. Moreover, an intervention that inhibits factor 

D may also worsen fasting glucose levels and T2D status, since factor D suppressed the 

association between obesity and disturbed glucose metabolism. Therefore, the 

interventions are supposed to be applied cautiously, and attention should be paid how 

to compensate for the loss of the ability of complement factors to defense against 

pathogen. 

 

Summary of the main findings reported in this thesis and concluding 

remarks  

Our current findings confirmed and expanded results reported in previous publications 

and fill part of the knowledge gap in this field. Many previous studies on the role of 

complement in CVD focused on clinically diagnosed disease. The deep-phenotyping 

information of The Maastricht Study [6] allowed evaluation of several aspects of the 

underlying (subclinical) processes that may lead to CVD (chapter 2). In the large 

observational population-based cohort, we showed factor D was associated with low-

grade inflammation, endothelial dysfunction which is in line with previous publication 

conducted in a middle-sized cohort [7]. We also showed factor D has a positive 

association with CVD, which has a comparable odds ratio with the results from the 

middle-sized cohort [7] that had a non-significant P-value. We showed a non-significant 

association between factor D and carotid IMT, which was in line with previous 

publication. The observed association with ABI added new knowledge to this field. The 

large number of participants and enrichment for T2D in this cohort allowed us to 

investigate whether T2D status influenced the associations of factor D with adverse 

vascular disease. We found in people without T2D has a stronger positive association 

of factor D with ED, and a stronger reverse association with carotid IMT, which adds 

relevant knowledge to the field.  
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In chapter 3, we improved the study design compared to previous studies by 

analyzing the associations of C3 and factor D with arterial stiffness within the same 

study: The Maastricht Study. Previous studies about complement factors were 

relatively small. The Maastricht Study is a large population-based cohort study, which 

give our analysis more power. We were able to study whether T2D status influenced 

the associations of complement factors with arterial stiffness, based on the large 

number of participants and enrichment for T2D in this cohort. We found that factor D 

was positively associated with cf-PWV in individuals with T2D instead of C3 or non-

diabetic individuals. These findings show us relative comprehensive knowledge of 

associations of C3 and factor D with arterial stiffness. 

In Chapter 4, This study consisted of various phenotyping, for instance, main 

exposures (BMI, waist, VAT, SAT), outcome (T2D, fasting glucose level, insulin 

resistance), and plasma concentration of complement factors, and this allowed us to 

investigate the explaining effect of complement C3, C3a and factor D on the association 

of various obesity measures with disturbed glucose metabolism in the same one study. 

Novel findings in this chapter were that C3 explained 12.7%-41.4% of the association 

between obesity measures and fasting glucose, C3a explained 0.31%-1.92% of the 

association of obesity measures with fasting glucose and T2D, however factor D 

suppressed the association of obesity with fasting glucose and T2D. These findings 

suggest that complement C3 and factor D may work on these metabolic diseases via 

different mechanisms.  

In chapter 5, we are the first to show, in abdominally obese men, that weight-

loss induced a decrease in plasma C3 concentration which was explained by reduction 

of VAT. This intervention also improved endothelial function, which was partly 

explained by the achieved reduction in C3. Our results suggest that a reduction in 

complement C3 with subsequent improvement in endothelial dysfunction may be part 

of the mechanism by which diet-induced weight loss improve cardiovascular disease 

risk. These findings show us the potential of reduction of C3 on improving vascular 
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disease, which may provide a new target for further study focusing on predicting 

and/or improving cardiometabolic diseases. 

In summary, the investigations that are presented in this thesis show a potential 

effect of key components of the alternative complement pathway in cardiovascular 

disease and how much of the association between obesity and these cardiometabolic 

disease could be explained by these complement factors. This thesis may provide a 

clue for prediction, prevention, perhaps even treatment of cardiometabolic disease. 

However, rationale and validation of further investigation in potential clinical practice 

must be critically evaluated.   
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