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Abstract. The brain-derived neurotropic growth factor (BDNF) gene has been linked to dementia, inflammation, and
Apolipoprotein E (APOE) �4 status. We used cerebrospinal fluid (CSF) amyloid-� (A�)42 and phosphorylated tau (p-tau) to
investigate associations with BDNF polymorphisms and modifications by APOE �4 or inflammation in a memory clinic pop-
ulation (n = 114; subjective cognitive decline, mild cognitive impairment, Alzheimer’s disease). We found distinct pathways
to Alzheimer’s disease pathology: Val-Met displayed lower CSF-A�42 in APOE �4+ carriers, independent of p-tau, while
Val-Val displayed greater p-tau at higher IL-6 and sub-threshold A�42. This may contribute to resolving some inconsistencies
in the BDNF literature and provide possible inroads to specific A� and tau interventions depending on BDNF polymorphism.

Keywords: Alzheimer’s disease, amyloid-�, brain-derived neurotropic growth factor, inflammation, interleukin 6, phospho-
rylated tau

INTRODUCTION

Brain-derived neurotropic growth factor (BDNF),
a protein encoded by the BDNF gene, plays an impor-
tant role in neuronal maintenance, neuronal survival,
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neurotransmitter regulation, and in long term poten-
tiation and plasticity, especially in the hippocampus,
a structure that plays a critical role in memory for-
mation and Alzheimer’s disease (AD) [1–3]. The
single nucleotide polymorphisms (SNP) of BDNF
Val66Met may be a genetic risk factor for dementia.
Previous research has linked BDNF SNPs with AD
and observed worse cognitive performance in Met
allele carriers diagnosed with autosomal dominantly
inherited AD, caused by mutations in the amyloid
precursor protein, presenilin-1, and presenilin-2 [4].
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Likewise, in a large middle-aged cognitively healthy
cohort enriched for AD risk, carriage of the Met-
allele was associated with steeper decline in episodic
memory and executive function [5].

However, so far studies linking BDNF to AD
pathophysiology remain inconclusive. Previous stud-
ies have shown an association of lower serum BDNF
to widespread A�42 in PET studies [6] and faster
disease progression in Met carriers, and this effect
is magnified by the presence of an Apolipopro-
tein E (APOE) �4 allele [7, 8]. On the other hand,
clinically healthy Val-Val individuals showed lower
hippocampal volume compared to heterozygotes and
with a dose-response effect with the number of
APOE �4 alleles [9]. Older meta-analyses in both
healthy and neuropsychiatric populations found no
effects of Val66Met on brain volume. It should
be noted that the role of amyloid-� (A�) pos-
itivity was not considered in the meta-analyses,
and one recurring observation across several recent
studies is that A�42 interacts with Met carrier-
ship on cognitive decline and hippocampal volume
[10, 11].

We hypothesize that these inconsistencies may also
be partly due to variability in immune responses.
Higher immune response in Met carriers was asso-
ciated with higher depression symptoms within the
cognitive dimension [12]. Interleukin 6 (IL-6) is
a pleiotropic cytokine with both pro- and anti-
inflammatory actions [13] that in animal models
also plays a role in memory [14] and neuronal
differentiation and maintenance [15]. Plasma IL-6
has been associated with chronic neuroinflamma-
tion, is elevated in AD [16], plays a central role
in the activation of microglia, negatively affects the
clearance system of A�42 [17, 18], and modulates
the relationship between AD pathology and vascu-
lar/blood brain barrier damage [19]. IL-6 was shown
in vitro to have a reciprocal relation supporting
neuronal survival in combination with endogenous
BDNF [20]. Animal models showed that chronically
increasing IL-6 markedly decreases neurogenesis
[21].

Inflammation is associated with, and possibly
exacerbates, AD pathology, and based on the above
observations, we posit that BDNF Val66Met may
moderate this association [19, 22–24]. Thus, we
sought to examine the relationship of the BDNF
polymorphism with A�42 versus phosphorylated tau
(p-tau), and whether these associations were modi-
fied by APOE �4, or inflammation (specifically IL-6)
in a memory clinic population.

MATERIALS AND METHODS

A convenience sample of 114) subjects was
recruited from the memory clinic of the Maas-
tricht University Medical Center (MUMC) for this
cross-sectional study. This group includes individ-
uals diagnosed with subjective cognitive decline
(SCD), mild cognitive impairment (MCI), and AD
dementia. Diagnoses were made by experienced
physicians based on the Petersen core clinical cri-
teria for MCI [25] and AD dementia. Criteria for
SCD included self-reported presence of subjective
cognitive complaints and endorsing the question “Do
you think your memory is becoming worse” and
absence of impairments on cognitive tests (defined
as a score below –1.5 SD of the age-, sex-, and
education-adjusted mean) [26]. Exclusion criteria
were major neurological disease, clinical diagnosis
of other neurodegenerative disorders (e.g., frontotem-
poral dementia), recent transient ischemic attack or
cerebrovascular accident (< 2 years), history of psy-
chiatric disorders, and alcohol or drug abuse. All
patients provided informed written consent and the
study protocols were approved by the Medical Ethics
Committee of the MUMC in confirmation with the
declaration of Helsinki.

CSF and blood analyses

CSF was collected via a lumbar puncture in the L3
to L5 vertebral interspaces, centrifuged, aliquoted,
and stored at –80◦C in polypropylene tubes. Bio-
chemical analysis of CSF A�42, total tau, and
p-tau181p (Innotest ELISA, Innogenetics, Ghent, Bel-
gium) was done following standardized protocol and
blinded to diagnostic information. APOE �4 and
BDNF SNP genotyping was determined on genomic
DNA using polymerase chain reaction and restric-
tion fragment length polymorphism at the MUMC.
BDNF allele distribution did not deviate from the
Hardy-Weinberg equilibrium [27]. Met-Met homozy-
gotes (n = 3) in this sample were pooled with the
Val-Met. Cytokine interleukin IL-6 was analyzed
from serum using multiplex BD cytometric bead
array (BD-biosciences, Franklin Lakes, NJ, USA).
Samples were collected between 2011 and 2017
and stored at –80◦C in a biobank during this time
(aliquoted to avoid freeze thaw cycles). Prolonged
storage, even at –80◦C, can differentially affect the
level of cytokines [28] and therefore we linearly
adjusted for storage times calculated from the day
of entry in the biobank to the date of analysis [19].
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Table 1
Demographics stratified by BDNF genotype

BDNF Val66met polymorphism p

Val-Met Val-Val

N = 114 45 69
Sex = Female N (%) 13 (28.9) 20 (29.0) 1.000†
Age (Mean (SD)) 63.49 (8.47) 62.64 (9.44) 0.625
range 47–78 38–89
APOE �4+ N (%) 21(46.6) 34(49.2) 0.935†
IL-6 (Mean (SD)) 1.43 (0.85) 1.35 (0.92) 0.645
CSF A�1-42 (Mean (SD)) 911.07 (356.73) 930.91 (365.80) 0.775
CSF p-tau 181 (Mean (SD)) 56.73 (27.79) 65.83 (36.71) 0.136
Education 3.91 (1.93) 3.88 (1.95) 0.934
CDR total 0.317‡

0 1 7
0.5 41 55
1 3 7

Diagnosis (% of total) 0.866‡
AD 7 (6.1) 12 (10.5)
MCI 16 (14.0) 22 (19.3)
SCD 22 (19.2) 35 (30.7)

Amyloid status## (%) CSF A�1-42 Positive CSF A�1-42 Negative

Polymorphism
Met-Met 0 2.63
Val-Mat 5.26 31.57
Val-Val 5.26 55.26

Education is measured using an evaluation system based on Verhage (1964) and the Standard Classification of
Education of the Dutch Central Bureau of Statistics (CBS, 2014). It is equivalent to the International Standard
Classification of Education (UNESCO, 1997). †χ2−test for dichotomous variables, t-test for continuous variables,
‡Fisher Exact Test for count data; ##A�42 CSF positive clinical cutoff at < 500.

Statistical analyses

Statistical analyses were conducted in R version
3.6.2 (http://www.Rproject.org). Demographics are
provided in Table 1. For each biomarker (A�42, Tau,
p-tau) we set up the following hierarchical multi-
variable regression models: 1) differences between
BDNF Val-Val and Val-Met for each biomarker;
2) interaction between the BDNF and APOE �4
genotype; 3) interaction between the BDNF geno-
type and IL-6 levels (as continuous variable). Each
model was adjusted for age, sex, APOE �4 and stor-
age time (and diagnosis in a separate step); and 4)
interaction models additionally adjusted for either
A�42 or p-tau to determine whether the effect was
independent of the other pathology. Post hoc, we
also interacted BDNF genotype by IL-6 by A�42
on p-tau and performed Johnson-Neyman analyses
[29, 30] using simple slopes to determine at which
range of pathology the association was significant.
To ensure effects where robust, linear models were
bootstrapped (30,000 replications) and p-values were
derived from the resulting distribution. In addition,
FDR correction at alpha < 0.05 was implemented to
adjust for multiple comparisons.

RESULTS

Demographics stratified by BDNF allele are listed
in Table 1. Our sample had a mean age of 62.97
(SD = 9.04) years, 71% of the participants were male,
46.6% of Val-Met, and 49.2% Val-Val carried at least
one APOE �4 allele (no difference p = 0.935) There
was no difference in demographics between BDNF
Val-Val and Val-Met carriers (Table 1).

BNDF-Val66Met effects (covaried for APOE �4,
age, and sex)

There is no direct association between BDNF
and A�42 (t109 = 0.22, pFDR = 0.822) or total tau
(t109 = 1.12, pFDR0.265). However, BDNF Val-Val
carriers exhibited higher p-tau values (t109 = 2.04,
pFDR = 0.043). There is a trend level association
between BNDF and p-tau (t109 = 1.87, pFDR = 0.08)
when A�42 is added as a covariate (t109 = 2.04,
p = 0.04 pFDR = 0.08), suggesting shared variance in
the relation of p-tau and A�42. There are no differ-
ences in mean IL-6 level in the Val-Met group (1.430)
and in the Val-Val group (1.352) (t99 = 0.46211,
p = 0.645). There are no differences in IL-6 levels

http://www.Rproject.org
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Fig. 1. A) BDNF polymorphism SNP show different associations between IL-6 and CSF p-tau, dependent on A�42 (continuous variable,
plotted marginal effects at mean ± 1SD). B) Johnson-Neyman plot showing the level of CSF A�42 (< 963 pg/ml) where the interaction
BDNF∗IL6∗A�42 becomes significant. Clinical threshold for A�42 is 500 pg/ml and p-tau (85 pg/ml). C) CSF A�42 levels differ among
BDNF by APOE �4 SNPs.

for APOE �4 groups (APOE �4– 1.50/APOE �4+
1.25), (t112 = 1.47, p = 0.14). The differences of CSF
A�42 in APOE �4 groups were significant (APOE
�4– 1049/APOE �4+ 787), (t112 = 4.15, p ≤ 0.0001).

BDNF by APOE �4 interaction (covaried for age
and sex)

When looking at the interaction of BDNF and
APOE �4, we found lower CSF A�42 in Val-Met car-
riers who also carried the APOE �4 allele (t108 = 2.19,
p = 0.03 (pFDR = 0.03), Fig. 1C), compared to Val-
Val carriers with or without APOE �4 carriage.
When adding p-tau as covariate, the interaction be-
tween BDNF and APOE �4 remained significant
(t107 = 2.62, p = 0.009 (pFDR = 0.018)), indicating that

this effect was independent of p-tau. If the sam-
ple was post hoc restricted to MCI and SCD, the
interaction between BDNF and APOE �4 was not
significant (t85 = 1.83, pFDR = 0.11). The interaction
between BDNF and APOE �4 was not significant
for t-tau (t108 = 1.09, p = 0.275) or p-tau (t108 = 0.648
pFDR = 0.56).

BNDF by Il-6 interaction (covaried for APOE
�4, time in storage, age, and sex)

The interaction between BDNF and IL-6 showed
no significant associations with A�42 (t106 = 0.74,
pFDR = 0.45) and t-tau (t106 = 1.78, pFDR = 0.07).
Higher p-tau was associated with BDNF Val-Val
and higher IL-6 (t106 = 2.957, pFDR = 0.01). When
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A�42 was added as a covariate, this association
did not change (t106 = 2.79, pFDR = 0.02); likewise
adding diagnosis as a covariate did not change results
(t96 = –3.037 pFDR = 0.02).

The 3-way interaction of BDNF, IL-6, and A�42
was significant (t102 = –3.00, p = 0.0033, pFDR = 0.01,
adjusted R-square: 0.4825): Val-Val carriers with
lower CSF A�42 and higher IL-6 levels (Fig. 1A)
exhibited higher p-tau levels. The Johnson-Neyman
interval revealed that this three-way interaction
became significant at A�42 < 962.96 pg/ml (pFDR
< 0.05, t = 2.30; Fig. 1B)

DISCUSSION

In this study we found distinct relationships of
BDNF polymorphism to either A�42 or p-tau. We
observed that individuals with Val-Met genotype
displayed lower CSF A�42 when also carrying at
least one APOE �4 allele, independent of p-tau.
However, Val-Val individuals exhibited higher p-
tau under higher levels of IL-6, and subthreshold
levels of A�42 (< 963 pg/ml; clinical threshold for
A�42 = 500). BDNF plays a crucial role in synaptic
plasticity and long-term potentiation in the hip-
pocampus and therefore SNPs of the BNDF gene
have been of interest for dementia research. These
findings could provide new inroads to specific inter-
ventions for A�42 and p-tau depending on BDNF
polymorphism and immune response.

While only few studies examined the effect of
BDNF on AD pathology, the literature is consis-
tent in that the relationship between BDNF and
memory is dependent on amyloid, but potential
effect-modification by APOE is less clear. In in A�-
SCD participants, no increased risk of dementia was
found, but combined A�+ and Val66Met+ did cogni-
tively worse than A�+ only [8], with similar findings
in unimpaired but increased AD risk [11] suggest-
ing a synergistic effect of Met+ and A�. However,
no moderating effect of APOE �4 was found on
cognition. In the AIBL study, A�+ APOE �4+ and
Val66Met+ had worse memory performance [7] but
interaction effects of APOE by BNDF on A� are not
described. Two studies took a similar approach as
ours and examined the relationship between BDNF
Val66Met on AD pathology in cognitively normal
older individuals [31, 32] and reported higher PET
A�42 in APOE �4+ in Val66Met+ [32]. In a com-
bined autosomal dominant AD group, lower CSF
A�42 in APOE �4+ participants but no interaction
with BDNF was found [2]; however, Val66Met+ was

associated with hippocampus-frontal connectivity in
autosomal dominant AD and AD and stronger associ-
ations with A� in sporadic AD but not in SCD [33].
Reasons underlying these differences between spo-
radic AD, preclinical autosomal dominant AD, and
SCD might be related to different ages of onset and
disease progression.

It is increasingly accepted that inflammation plays
an important role in linking concurrent pathologies
in AD dementia [19, 34, 35]. IL-6 is a pleiotropic
cytokine that has both pro- and anti-inflammatory
effects, plays an important part in the innate immune
system, can induce hyperphosphorylation of tau in
animal models [36], and can interfere with A�42
clearance [17, 18, 37]. Inflammation and microglial
activation lead to production of multiple neurotrophic
factors, including BDNF. Sustained immune acti-
vation, however, strongly reduces the generation of
these neurotropic factors possibly interfering with
neuroplasticity [38].

This study has some limitations. This is a me-
dium sized cross-sectional convenience sample from
a referral-only university hospital memory clinic
in northern Europe. The Val66Met prevalence is
extremely dependent (0 to > 70%) on genetic back-
ground [39] and the prevalence of the Val66Met
polymorphism is approximately 20% in Europe. The
locale should be considered when comparing these
results with studies conducted in a different genetic
background. Both IL-6 and BDNF are not specific
to any single disease complicating the interpretation
of associations in various populations. Larger stud-
ies are needed to better model interactions between
pathology, genetics, and the innate immune system.
We tentatively hypothesize based on this data that
trials targeting AD pathology (both A� and p-tau),
especially using monoclonal antibodies, may have to
consider APOE status, BDNF polymorphisms as well
as innate immune system activation. Substantially
larger cohorts are needed in other to be able to inves-
tigate the downstream effects of BDNF on cognition.

Conclusion

Both BDNF genotypes are associated with AD
pathology, depending on the interaction with either
APOE �4 or inflammation. Elevated p-tau was asso-
ciated with BDNF Val-Val carriers with elevated
IL-6, with a dose response to A�42 and starting
at subthreshold levels, while lower CSF-A�42 was
observed in BDNF Val-Met/APOE �4 carriers, inde-
pendent of p-tau.
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