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Abstract. The three-dimensional information in CT scans reveals noto-
rious findings in the medical context, also for detecting symptoms of
COVID-19 in chest CT scans. However, due to the lack of availability
of large-scale datasets in 3D, the use of attention-based models in this
field is proven to be difficult. With transfer learning, this work tack-
les this problem, investigating the performance of a pre-trained TimeS-
former model, which was originally developed for video classification,
on COVID-19 classification of three-dimensional chest CT scans. The
attention-based model outperforms a DenseNet baseline. Furthermore,
we propose three new attention schemes for TimeSformer improving the
accuracy of the model by 1.5% and reducing runtime by almost 25%
compared to the original attention scheme.

Keywords: Vision Transformer · Medical imaging · Attention
Schemes · COVID-19 · 3D CT scan

1 Introduction

One recent research field that has rapidly evolved due to the pandemic is the
identification of COVID-19 symptoms in lung images. Previous work includes
approaches for the classification, detection and segmentation of COVID-19
images among others [14]. COVID-19 classification with deep learning models
leads to especially good results when the models are trained on three-dimensional
CT scans which are likely to reveal most information about the disease as the
symptoms of COVID-19 might be present at different depth levels in the lung
[14]. This leads us to hypothesize that, incorporating depth dependencies can
help with the task at hand.

At the same time, Vision transformers [3], which are an adaption of the clas-
sical transformer architecture for images, are gaining popularity in computer
vision. Similarly, the use of attention-based models in the medical context has
grown significantly in the last couple of years [14]. With enough data available,
these models have been able to outperform classical Convolutional Neural Net-
works in several tasks in the medical field [14]. However, due to the lack of
availability of large-scale datasets, especially three-dimensional ones, research in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. M. Juarez et al. (Eds.): AIME 2023, LNAI 13897, pp. 229–238, 2023.
https://doi.org/10.1007/978-3-031-34344-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34344-5_27&domain=pdf
http://orcid.org/0000-0003-2119-4169
https://doi.org/10.1007/978-3-031-34344-5_27


230 K. Hartmann and E. Hortal

COVID-19 classification has mostly been focusing on 2D CT scans using CNN-
based models, as attention-based models need a large amount of data to be
trained on [3].

To investigate this research gap of attention-based model classification on
3D images in the medical field, we aim to apply attention-based models on 3D
chest CT images to identify lungs affected by COVID-19. With transfer learning
(using models pre-trained on images from a different domain), we want to over-
come the challenges posed when using attention-based models on small datasets.
We aim to achieve more accurate results compared to traditional Convolutional
Neural Network approaches by embedding information globally across the over-
all image using attention schemes. Apart from that, we want to investigate how
our different, newly developed attention schemes perform compared to previously
developed attention schemes both performance and time-wise (reducing the com-
putational power required). To the best of our knowledge, 3D attention-based
models have not been applied to the proposed task. The only 3D approaches in
the literature are using CNN or U-Net approaches such as [6] and those using a
3D attention-based model are not intended for medical image classification but
3D segmentation such as [15].

2 Related Works

2.1 COVID-19 Datasets

A few datasets containing 3D chest CT scan images like the ones presented
in [10] and [11], MIA-COV19 [9], COV19 CT DB [13] and CC-CCII [17] have
been collected. However, most of them are not publicly available. On its part,
COV19 CT DB contains 3D CT scans of lungs infected with COVID-19 from
around 1000 patients but no other healthy or scans from lugs with other medical
conditions are considered. Finally, the CC-CCII dataset contains three classes,
namely Common Pneumonia, COVID-19 and Normal lung scans. This database
is open access and was pre-processed and restructured in [5]. In this work, we are
using and adjusting this pre-processed CC-CCII dataset to conduct our research.

2.2 Convolutional Neural Networks for COVID-19 Detection

Convolutional Neural Networks (CNNs) are very popular for image classification
and are essential for computer vision in medical imaging. Naturally, CNNs have
been widely used for COVID-19 classification over the last three years, also
using chest CT scans. Several works state that ResNet [4] is the best-performing
network when comparing performance to other nets [1,10,12]. Other research [5],
however, shows that DenseNets are able to outperform ResNets when using 3D
convolutions. In this respect, a DenseNet121 achieves the highest scores on the
dataset CC-CCII [17]. In view of the above, the DenseNet121 model is utilized
as the baseline model in this work.
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2.3 Attention-Based Models for COVID-19 Detection

A few approaches have been developed using 3D CT scans. Two of them are the
works presented in [7] and [18] which use the Swin transformer in their network
to distinguish 3D CT scans based on the classes “COVID-19” and “healthy”.
Both models are trained on the MIA-COV19D dataset. The work in [18] uses a
U-Net for lung segmentation and then classifies the segmented lung scans with
a Swin transformer network. Authors in [7] propose two networks: The first
one determines the importance of single slices in a scan based on symptoms
shown in it via the Wilcoxon signed-rank test [16] on features extracted with
a Swin transformer block. The second network is hybrid, consisting of a CNN
that extracts features of each CT scan slice and two different Swin transformers:
one captures within slice dependencies and the other is used to identify between
slice dependencies. In this way, the full context of the 3D scan is captured.
Both of the proposed models outperform a DenseNet201 that was trained for
comparison. In our work, on the contrary, we are not using a Swin transformer
but an original vision transformer model that was adjusted for three-dimensional,
originally video, input. We are leveraging the 3D information in the CT scans by
applying several attention schemes that process the CT scans in different ways
to explore both spatial and temporal dependencies.

3 Methodology

We propose the first application of a pure vision transformer-based model for
COVID-19 CT scan classification that is using the 3D information in the CT
scans. This is done by applying a pre-trained TimeSformer model [2] on a pre-
processed dataset.

3.1 Dataset

The CC-CCII dataset [5,17] is a publicly available 3D chest CT scan dataset that
we modify for our research purpose with appropriate corrections. The dataset
contains three different classes: lungs diagnosed with Common Pneumonia (CP),
lungs diagnosed with Novel Corona Virus (NCP), and lungs without any con-
dition (Normal). In this study, only the first two classes, namely CP and NCP,
are considered. Slices containing mistakes in the order of the lung slices were
discarded. Apart from that, for consistency and to reduce the required computa-
tional power, we sample the number of slices in a scan to 32 (scans with less than
32 slices are also discarded), crop, and resize the lung slices. Our final dataset
contains a total of 1874 scans of width ×height ×number slices = 160 × 128× 32,
824 of them in class CP and 1047 in class NCP. A part of a randomly selected
sample of a lung scan from the final dataset can be seen in Fig. 1.

3.2 TimeSformer

To be able to efficiently train a model that can distinguish between diseases of 3D
lung scans, we examine a domain outside of 3D medical imaging that also requires
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Fig. 1. The extract of a random lung scan from the utilized dataset. The scans, from
left to right, correspond with lung slices from top to bottom.

3D inputs: video classification. One video can be seen as 2D images (frames)
stacked together, which also corresponds to our application of 3D CT scans. To
build efficient vision transformer models for video classification, authors in [2]
have developed TimeSformer, a model that takes 3D inputs (videos), divides the
video frames into patches and feeds these patches to a transformer network that
consists of n attention blocks. Within these blocks, embeddings and attention
schemes are applied to efficiently classify the videos. Our modified version of
their architecture can be seen in Fig. 2.

Fig. 2. Our TimeSformer setup. 3D grey-scale input images are embedded into patches
and fed into a Transformer encoder. The encoder first applies spacial and time embed-
dings and then inputs these embeddings into n attention blocks. The architecture of
the attention block depends on the attention scheme. Eventually, the outcome of the
encoder is classified by a linear layer.

3.3 Original Attention Schemes

Authors in [2] compare the implementation of three different attention schemes,
namely joint-space-time attention, space-only attention and divided-space-time
attention. Joint-space-time-attention calculates the attention between all patches
of all layers (see Fig. 3 (b)). This approach is, however, computationally inten-
sive, as the attention between all existing patches is calculated. For this reason,
other attention schemes were proposed. Space-only attention, on the contrary,
calculates attention only between patches on the same layer (Fig. 3 (a)). This way
of calculating attention is less computationally intensive than joint-space-time
attention but does not consider dependencies across layers and therefore, ignores
the “depth” information. The third attention scheme, divided-space time atten-
tion is developed to focus on both spacial and time information in the video. It
calculates the attention within all patches at the same temporal position (across
frames) and the attention with all patches in the current layer (spatial attention
within the frame) (Fig. 3 (c)). Both of these attentions are calculated separately
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and then combined and fed into a multilayer perceptron. The paper also pro-
poses temporal embedding in addition to spatial embedding to give the model
more depth information.

Fig. 3. The attention schemes presented in [2]: space-only attention (a), joint-space-
time attention (b), divided-space-time attention (c); and the three newly proposed
schemes: space-limited attention (d), time-limited attention (e) and space-and-time-
limited attention (f). The patch under analysis is highlighted in orange while the
patches considered in each attention scheme are represented in grey. (Color figure
online)

3.4 New Attention Schemes

The attention schemes described above were developed for video classification. In
our use case, we hypothesize that the parts affected by COVID-19 or Common
Pneumonia may be spread in depth over a bigger area than a single patch.
From the proposed schemes, divided-space-time attention only considers one
patch in the time dimension while space-only attention does not consider depth
information. As joint-space-time attention is highly computationally intensive,
we want to evaluate other attention schemes able to 1) capture both spatial and
time dependencies and 2) reduce the time computational power required. We
propose three new attention calculation schemes for our use case: space-limited
attention, time-limited attention and space-and-time-limited attention. Per each
patch, the space-limited attention considers the total time dimension but only
focuses on a subarea around the patch under analysis (see Fig. 3 (d)). To that
end, non-overlapping squares of adjacent patches, for example, 4 × 4 patches or
2×2 patches, are utilized on each slice. Time-limited attention does the opposite:
while considering the total space dimension, a limited number of adjacent slices
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in the time (depth in our case) direction are considered (Fig. 3 (e)). Finally, a
combination of both attention schemes is proposed as space-and-time-limited
attention. This attention scheme uses non-overlapping cubes of patches, smaller
than the original width and height (Fig. 3 (f)).

3.5 Experimental Setup

As the baseline, a DenseNet121 [8] is trained from scratch on our dataset. This
model is selected as it utilizes 3D convolutions to capture depth information and
therefore, can be considered a fairer comparison to our attention-based models
than 2D approaches. The DenseNet is trained with a batch size of 16 for a
maximum of 50 epochs with a patience factor of 15 for early stopping and a
learning rate decay factor of 0.1

epoch
20 , starting off from a learning rate of 0.1.

Due to the large amount of data necessary to train attention-based models,
we utilize a pre-trained TimeSformer model made available by [2] that we fine-
tune on our dataset. Pre-trained weights from training on the video dataset
Kinetics-600 are used. It is worth mentioning that we modified the architecture
to fit our dataset input. Thus, the CNN input layer from TimeSformer, with
3 (RGB) channels, is replaced by a 1-channel (grey-scale) input. Similarly, the
output layer is modified to accommodate two classes, instead of the 600 classes
on the Kinetics-600 dataset. Figure 4 shows our modified TimeSformer model.
As an initial evaluation, this modified divided-space-time attention (dst) model
is compared with the DenseNet model explained in Sect. 2.2.

Consecutively, the proposed space-limited (sl), time-limited (tl) and space-
and-time-limited (stl) attention schemes are evaluated. For consistency, the
implementation of these models is as similar as possible to the initial divided-
space-time attention approach. The modified input and output layers of TimeS-
former and the number of attention blocks are consistent across the three models.
The sole implementation difference across the proposed models is the attention
blocks. Depending on the attention scheme applied, the original dst attention
blocks are replaced by the proposed ones. The same pre-trained weights from
training on the video Kinetics-600 dataset, as in the previous experiment, are
used. This means that the model was pre-trained with a different attention
scheme (divided-space-time attention) and is now fine-tuned on one of the newly
proposed ones. In total, 12 attention blocks are used for all experiments.

All the above-mentioned experiments are conducted using the dataset
described in Sect. 3.1. The train-validation-test split is set fixed during pre-
processing to avoid having scans of the same patient in different sets. We ran-
domly split the patients in the dataset into training, validation and test data
such that the ratio of scans in each set is 60-20-20. After pre-processing, we have
a final input dataset with 1181 scans in the training dataset, 361 scans in the val-
idation dataset and 332 scans in the test dataset. The classes are also balanced
as much as possible, with 827 and 1047 CP and NCP instances respectively. All
the experiments have been conducted in the same machine, using an NVIDIAR©

Tesla V100 32GB GPU.
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Fig. 4. Modification of TimeSformer model to make it suitable for our dataset. The
3-channel CNN input layer that divides the input images into patches is replaced by a 1-
channel grey-scale input layer. The attention blocks remain unchanged, containing the
calculation of time attention, space attention and a multilayer perceptron, connected
with skip connections. The output layer is modified to classify two classes instead of
the original 600.

3.6 Evaluation Metrics

The performance of the models is statistically analyzed by using the following
evaluation metrics:

Accuracy (acc), calculated as the number of correctly classified instances
divided by the total number of them:

acc = (# instances correctly classified)/(# total instances) (1)

Precision (prec), calculated by dividing the number of true positive (TP)
samples by the number of true positive and false positive (FP) samples:

prec = (TP )/(TP + FP ) (2)

Recall (rec), calculated by dividing the number of true positive instances by
the number of true positive and false negative (FN) ones:

rec = (TP )/(TP + FN) (3)

Additionally, we also calculate specificity. This metric assesses how the neg-
ative class performs and it is calculated as the number of true negatives (TN)
instances divided by the number of TN and FP:

spec = (TN)/(TN + FP ) (4)



236 K. Hartmann and E. Hortal

Finally, the weighted average F1 score is calculated. This metric measures a
combination of precision and recall for each class and weights it by the number
of instances in the class as:

weighted_avg_f1 =
C∑

n=1

f1Cn
∗ Wci (5)

where
Wci = (# instances in class ci)/(# total instances) (6)

f1 = 2 ∗ (prec ∗ rec)/(prec+ rec) (7)

Apart from these statistical metrics, the training runtime was also measured.
This information is a good indicator of the computational power required to
train each of the models proposed.

4 Results and Discussion

Table 1 shows the resulting metrics after running the proposed baseline, the
3D DenseNet121 (3D DN ) and five different attention schemes on the dataset
described in Sect. 3.1. We successfully fine-tuned the customized divided-space-
time attention (dst) and space-only attention (so) models presented in [2] and
the three newly proposed schemes, namely space-limited (sl), time-limited (tl)
and space-and-time-limited attention (stl). The joint-space-time attention scheme
from [2] could not be evaluated on this dataset due to computational power limita-
tions. Additionally, it is worth mentioning that, also due to computational power
restrictions, the attention schemes evaluated could only be run with a batch size
of 16. The best results for all models were achieved when fine-tuning for 20 epochs.
After exhaustive experimentation, the best-performing window size for space-
limited attention was a window of 2 × 2 and the depth with the highest accuracy
for time-limited attention was 8. Thus, these results are combined and a cube size
of 2× 2× 8 is used for training the model with space-and-time-limited attention.

Table 1. The results for the 3D DenseNet121 baseline and the fine-tuning TimeSformer
models with five different attention schemes.

Attention type acc prec recall specificity weighted avg f1 runtime (mins)

3D DN 0.777 0.818 0.818 0.713 0.777 32
TSf dst 0.798 0.818 0.862 0.698 0.796 75
TSf so 0.798 0.812 0.872 0.682 0.796 54
TSf sl 0.813 0.844 0.852 0.752 0.813 57
TSf tl 0.633 0.758 0.586 0.705 0.637 68
TSf stl 0.783 0.839 0.798 0.760 0.784 55
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Among all the attention-based models evaluated, the proposed TSf sl
(TimeSformer with space-limit attention) scheme outperforms the rest, achieving
around 4% improvement in accuracy over the 3D DenseNet121 [8] baseline model
(from 0.777 to 0.813) and a 1.5% improvement over the original schemes, namely
dst and so. This model also surpasses the original models in precision (higher
than 3% improvement), specificity (between 5.4 and 7%) and the weighted aver-
age F1 (1.7%). Additionally, this model is able to reduce the training runtime
by almost 25% compared to the original attention scheme divided-space-time
attention (from 75 to 57min in our setup).

5 Conclusion

In this work, we proposed three newly developed attention schemes in addition
to the attention schemes developed for TimeSformer [2]. These schemes are pro-
posed with the aim of reducing the computationally intensive training process
while maintaining or even improving the performance of our classification mod-
els. Our results indicate that our space-limited attention scheme yields better
results compared to all other schemes and baseline for distinguishing between
scans from lugs affected by COVID-19 and Common Pneumonia. This finding
corroborates our hypothesis that capturing the time (depth in our case) depen-
dencies play an important role in the detection of lung diseases.

However, as future work, it would be advisable for a more in-depth evaluation
of the proposed attention schemes. These newly proposed attention schemes
should be further investigated by validating more combinations of patch shapes,
both in the spatial and temporal dimensions. Nevertheless, it is worth stressing
that, even though the use of bigger patches could help identify the time and
space dependencies more accurately, it will come at the expense of a higher
computational power. Furthermore, with more computational power, it would
be also possible to design more comparable experiments and train DenseNets
and TimeSformer on the same batch size as the original works. Moreover, more
fine-tuning of the models could be done to boost their performance. With more
resources, it would also be possible to evaluate how the joint-space-time attention
scheme performs compared to the proposed attention approaches. To conclude,
another very interesting experiment we are planning to conduct is the evaluation
of the proposed models on different 3D lung CT scan datasets and more classes
to get further insights into how generally valid the results achieved in this work
are. Finally, for the medical field, more research in the visualization of attention
and the explanation of models for this application is of interest.
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