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Trudy Caljé-van der Klei a,*, Qianhui Sun a,b, J. Geoffrey Chase a, Cong Zhou a, 
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A B S T R A C T   

Background and Objective: Recruitment maneuvers with subsequent positive-end-expiratory-pressure (PEEP) have 
proven effective in recruiting lung volume and preventing alveoli collapse. However, determining a safe, 
effective, and patient-specific PEEP is not standardized, and this more optimal PEEP level evolves with patient 
condition, requiring personalised monitoring and care approaches to maintain optimal ventilation settings. 
Methods: This research examines 3 physiologically relevant basis function sets (exponential, parabolic, cumu-
lative) to enable better prediction of elastance evolution for a virtual patient or digital twin model of MV lung 
mechanics, including novel elements to model and predict distension elastance. Prediction accuracy and 
robustness are validated against recruitment maneuver data from 18 volume-controlled ventilation (VCV) pa-
tients at 7 different baseline PEEP levels (0 to 12 cmH2O) and 14 pressure-controlled ventilation (PCV) patients 
at 4 different baseline PEEP levels (6 to 12 cmH2O), yielding 623 and 294 prediction cases, respectively. Pre-
dictions were made up to 12 cmH2O of added PEEP ahead, covering 6 × 2 cmH2O PEEP steps. 
Results: The 3 basis function sets yield median absolute peak inspiratory pressure (PIP) prediction error of 1.63 
cmH2O for VCV patients, and median peak inspiratory volume (PIV) prediction error of 0.028 L for PCV patients. 
The exponential basis function set yields a better trade-off of overall performance across VCV and PCV prediction 
than parabolic and cumulative basis function sets from other studies. Comparing predicted and clinically 
measured distension prediction in VCV demonstrated consistent, robust high accuracy with R2 = 0.90–0.95. 
Conclusions: The results demonstrate recruitment mechanics are best captured by an exponential basis function 
across different mechanical ventilation modes, matching physiological expectations, and accurately capture, for 
the first time, distension mechanics to within 5–10 % accuracy. Enabling the risk of lung injury to be predicted 
before changing ventilator settings. The overall outcomes significantly extend and more fully validate this digital 
twin or virtual mechanical ventilation patient model.   

1. Introduction 

Protective mechanical ventilation (MV) strategies have improved 
intensive care unit (ICU) care by limiting tidal volumes and driving 
pressures [1–7]. Staircase recruitment maneuvers (RMs) followed with 
positive-end-expiratory-pressure (PEEP) is one common protective MV 
approach for acute respiratory distress syndrome (ARDS) and 

respiratory failure patients to keep alveoli open and improve oxygena-
tion [2,8–12]. However, insufficient, or excessive airway pressure or 
tidal volume can lead to ventilator induced lung injury (VILI), increasing 
morbidity and mortality [10,13–25]. Accurate, predictive, and 
patient-specific MV strategies could significantly advance care and 
minimise VILI [26–28]. 

Utilising an accurate predictive model of lung mechanics with a 
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ventilated patient has significant potential in aiding clinical decisions. 
The predictive mechanics model would enable a safer setting of positive 
end expiratory pressure to minimise lung elastance and minimise the 
risk of over distention and ventilator induced lung injury [29]. More 
specifically, the elastance that is often referred to in lung mechanics is 
associated as that during inspiration. If the elastance is not at its optimal 
point, the alveolar are at risk of bursting or underinflating. In either 
case, oxygenation into the blood stream decreases. Optimal elastance 
correlates directly to the recruitable volume. If this value is set too low, 
the alveolar will not expand to their full potential, if set too high the 
alveolar are at risk of tissue damage due to overdistension. Another 
primary factor to be considered is selecting the optimal PEEP. This value 
changes the lung mechanics of a person under ventilation both by their 
value and shape of P-V loops. As this change is visibly different for each 
person, the use of prediction methods tailored to a person’s lung me-
chanics has significant potential in aiding clinical decisions and pre-
venting overdistension. 

Currently, no effective standardised clinical method exists to deter-
mine optimal patient-specific PEEP, leading to uncertainty, variability, 
and increased risk [13,28,30–33]. Model-based methods are one way of 
personalising care [28]. While many models successfully capture lung 
dynamics [34–39], very few can accurately predict the pulmonary 
response over PEEP [26,40–42]. An accurate, predictive lung mechanics 
model, or virtual MV patient, would let clinicians test new MV settings 
without risk, enabling safer, more optimal, personalised care. 

MV modes can be broadly classified as either volume-controlled 
ventilation (VCV) or pressure-controlled ventilation (PCV) [9,43,44]. 
VCV delivers a controlled flow to guarantee a targeted tidal volume but 
can lead to VILI if the resulting uncontrolled airway pressure is too high 
[45,46]. PCV sets a desired airway pressure profile and driving pressure, 
and the resulting tidal volume is an uncontrolled function of 
patient-specific lung mechanics [43,44,47]. To avoid overshoot in PCV 
an appropriate deceleration of input flow can be used [43,47,48]. Thus, 
the resulting tidal volume can be variable in PCV, increasing the risk of 
VILI [45,47–49]. 

Clinically, VCV sets peak inspiratory volume (PIV) to minimise risk 
of volutrauma. Similarly, PCV limits peak inspiratory pressure (PIP) to 
prevent barotrauma/overdistension [13,45,50]. However, no significant 
difference in clinical outcome between using a VCV approach or a PCV 
approach has been observed [43,47,49,51–53]. Hence, the choice of MV 
mode is primarily a function of patient synchrony and response to MV, 
and clinician preference [44,51]. 

Basis functions have been proposed as a method for targeted 
biomedical information simulation and prediction [26,41,42,54–64]. 
Well-defined, they offer additional, model-based insight into physio-
logical mechanics and responses [26,41,59,65–69]. The ability of basis 
functions to model and predict lung elastance and resistance evolution 
was demonstrated using a linear single compartment lung model, but 
lacked accuracy in capturing some nonlinear lung mechanics, in both 
inspiration and expiration [26,55,56,66,70,71]. 

A nonlinear, physiologically-relevant hysteresis loop model (HLM) 
using basis functions accurately captured and predicted the evolution of 
lung mechanics as MV settings change for both VCV and PCV patients 
[42]. However, it did not assess if these basis functions were optimal 
compared to other choices. None of these approaches captured disten-
sion and its risk, which is critical to directly managing the risk of VILI. 

This research extends this virtual MV patient model framework to 
include clinically critical, nonlinear lung distension mechanics, and as-
sesses it across 3 basis function sets to compare performance in pre-
dicting lung mechanics in response to changes in PEEP. Performance 
trade-offs show which elements of these basis functions are necessary 
to guarantee accuracy and clinical relevance, and the inclusion of 
distension adds significant new clinical utility. 

2. Methods 

2.1. HLM lung mechanics model 

The dynamic equation of motion for the HLM lung mechanics model 
is defined [42]: 

MV̇(t) + RV̇(t) + KeV(t) + Kh1Vh1 + Kh2Vh2 = fV(t) + PEEP (1)  

Where M is the normalised mass, V is the volume of air delivered to the 
lungs, Vh1 and Vh2 are hysteretic volume response during inspiration and 
expiration, respectively, Ke represents the alveolar recruitment elastance 
(defined further in Section, Appendix A), named k2 in this approach to 
be predicted in the proposed basis functions, Kh1 and Kh2, are deter-
mined by two nonlinear hysteretic springs for alveolar hysteresis ela-
stance during inspiration and expiration, respectively. These are defined 
as: 

Kh1 = k1 − k2 (2)  

Kh2 = k3 − k4 (3)  

where k1-k4 can be identified from the constructed P-V loop using the 
HLA approach, as shown in the example of Fig. 1. For other parameters 
in Eq. (1), R is the airway resistance, PEEP is the positive end-expiratory 
pressure, and fV(t) is the steady-state input force. The detailed formu-
lations for calculating each parameter can be found in Online Appendix 
A and Zhou et al. [42]. 

2.2. P-V loop identification 

At any initial, baseline PEEPi (i = 1) level, the hysteresis loop analysis 
method (HLA) is applied to identify elastance values for the whole 
breath. HLA separates the P-V loop for a breath into 5 segments, as 
shown in Fig. 1. For expiration, 2 segments are identified with two 
elastances, k3 and k4, respectively. For inspiration, the half cycle is first 
divided into 2 segments, with k1 and k2. Subsequently, the k2 segment is 
assessed using a statistical test to find any potentially, increased stiffness 
(reduced compliance) third segment, denoted k2end, arising from any 
distension. This last term, k2end, uses a separate basis function predic-
tion procedure to capture possible over-distension as PEEP rises. 

The lower inflection point is a critical piece defining where the 
analysis for k2begins. It is also the point that is currently used to 
determine the minimal level of PEEP where alveolar recruitment begins. 
Examples are shown in Fig. 1 for VCV and PCV clinical PV loops con-
structed from McREM and Maastricht trial data, respectively. 

2.3. Basis function sets for elastance prediction 

Using the same HLA identification procedure, three (3) physiologi-
cally relevant sets of basis function for predicting the evolution of 
recruitment elastance at higher PEEP levels (k2i,i > 1) are examined as a 
function of the k1, k21, k2end1, k3, k4 values identified using HLA from 
measured PV loop clinical data at a baseline PEEP (i = 1). Exponential 
(EXP) basis functions have been used in prior studies to estimate pul-
monary elastance evolution [42,55,57], while basis parabolic (PARA) 
functions have also shown promise [26,41,63]. The third cumulative 
(CUMU) basis function set was developed and validated in prior work 
[64] and are also examined here with minor modification to suit the 
HLM model. The evolution and prediction of distension at higher PEEP 
levels (k2endi,i > 1) is developed in prior work [72] and kept the same 
for all three basis function sets. 

These three basis functions have been chosen as they include 
nonlinear recruitable response and linear distension response which are 
all physiologically relevant to the analysis of lung mechanics, specif-
ically volume changes. There are a variety of other basis functions that 
are applicable for this analysis, however, these three represent some 
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clearly distinct and previously proven properties within this model 
framework. 

2.3.1. Exponential basis function set – EXP 
The exponential basis function set assumes elastance has a bowl 

shape across PEEP levels, and is the same as previously presented [42]: 

k2i =

(
PEEPi

k1
+

k21

k1
∗ eb∗PEEPi

k1

)

∗ k1 (4)  

b =
k1

PEEP1
∗ log

k21 − PEEP1

k21
(5)  

Where b is the exponential rate of recruitment, all other terms are as 

previously defined, and PEEPi is the predicted PEEP level. 

2.3.2. Parabolic basis function set – PARA 
The parabolic basis function set is derived from the proven functions 

in [26] with similar, but different overall shape as the EXP set, and 
re-derived in terms of PEEPi and the other baseline PEEP identified in-
puts for use in this analysis [63]: 

k2i =

(
PEEPi

k1 ∗ β1
+ β2 ∗

(

β1 −
PEEPi

k1

)2
)

∗ k1 (6)  

β1 = 2 −
k̂1
k1

(7) 

Fig. 1. Examples of HLA identification for measured clinical P-V loops, showing both typical distension and extreme distension cases. (a) the McREM VCV trial 
(typical distension), Patient 9 at PEEP = 12 cmH2O and showing the lower inflection point (LIP); (b) the Maastricht PCV trial (typical distension), Patient 5 at PEEP 
= 8 cmH2O, where k2end is negative sloped due to the adaptive tube compensation used in this PCV trial; (c) the MCREM VCV trial (extreme distension), Patient 5 at 
PEEP = 14 cmH2O and showing LIP; and (d) the Maastricht PCV trial (extreme distension), Patient 13 at PEEP = 10 cmH2O. 
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β2 =

k21
k1 − PEEP1

k1∗β1
(

β1 − PEEP1
k1

)2 (8)  

Where all terms are previously defined or given here, and PEEPi is the 
prediction PEEP level. k̂1 is the average value of alveolar elastance for 
first inspiration segment, estimated with value 130 over both VCV and 
PCV datasets [42]. 

2.3.3. Cumulative basis function set – CUMU [64] 
The cumulative basis function set models the evolution of elastance 

as continuously increasing at a combination of all the predicted PEEP 
levels, and is defined [63]: 

k2i =

(
δ1
k1

∗
∑j=i

j=2
Φj + δ2 ∗PEEP1 ∗

∑j=2

j=2
Φj ∗

∑j=3

j=2
Φj ∗… ∗

∑j=i

j=2
Φj

)

∗ k1 (9)  

δ1 =

(
k21

k1
−

PEEP1

k1 − k21

)

∗ k1 (10)  

δ2 =
1

k1 − k21
(11)  

Φi =

{ (
1 + PIPfiterror

)− 1
, i = 2

ϑ1 ∗ (PEEPi − PEEPi− 1) , i > 2
(12)  

Where ϑ1 = 0.0087 and PIPfiterror =
fitted PIP− clinical PIP

clinical PIP at baseline PEEP1. 
The value assigned to ϑ1 is derived using an optimization method by 
determining the local minima/maxima [73]. Since the highest PEEP 
level studied is lower than or equal to PEEPmax=24 cmH2O, basing on 
prior work [64], the value of Φi when PEEPi > PEEPmax is not presented. 

2.3.4. Basis function sets summary 
Fig. 2 shows an example of the basis function terms changing over 

PEEP for all 3 basis function sets, where k21 = 30 cmH2O/L, k1 = 80c 
mH2O/L, PEEP1 = 2 cmH2O and PIPfiterror = − 1/35. The goal is to 
delineate how each term in Eqs. (4), (6), and (9) for each basis function 
set, models elastance evolution. The EXP set captures exponentially 
falling elastance with increased recruitment combined with rising ela-
stance due to possible distension or increasing lung filling as pressures 
rise. It is thus physiologically relevant and readily explicable. The PARA 
set is similar to EXP set in shape and assumptions, but showed 

improvements in limited prior studies with a simpler single compart-
ment lung mechanics model [26]. Finally, the CUMU set views net, 
overall, all-cause lung elastance as always rising as a function of PEEP, 
while the patient-specific rate of increase is related to patient-specific 
identified k1 and k2 values identified at baseline PEEP using HLA. 

2.4. Distension prediction (k2end) 

In addition, for all three basis function sets, k2end captures the po-
tential over-distention at the end of inspiration, which is clinically 
relevant as it indicates potential overdistension due to excessive pres-
sure and VILI [13] and is proved to be effective in improving PIP pre-
dictions [72]. Then, in this approach, k2end prediction function remains 
the same as prior approach and for all 3 basis function sets: 

k2endi =

(
PEEPi

k2i
+

k2end1

k21
∗
(
θ1+(ΔPEEP ∗ θ2)2)

)

∗ k2i (13)  

θ1 =
k2end1 − PEEP1

k2end1
(14)  

θ2 =
EELV1

PIV1 − EELV1
(15)  

Where EELV1 is end expiratory volume and PIV1 is peak inspiratory 
volume identified at baseline PEEP. 

2.5. Overall identification and prediction procedure 

The overall identification and prediction procedure flowchart is 
shown in Fig. 3. This method is outlined further in [42], including the 
extension of the original HLA method for both the LIP predictions in PCV 
and VCV modes. The method used for determining the value of disten-
sion, k2end, differs depending on the mode of ventilation. For the PCV 
mode, k2end is held constant for the given breath under evaluation as 
determined from the identification stage. Contrarily, k2end is predicted 
at each evaluated breath for the VCV mode. This method is outlined 
further in [74]. 

Therefore, the ability to accurately predict any distension and the 
PIV or PIP is critical to avoiding unintended injury. The ability to also 
predict, with these values, the elastance level at each PEEP (k2) means 
we can minimise work of breathing and set PEEP to minimum elastance, 
while, as above, avoiding lung injury and over distension. These 
methods have been researched in prior work [7,75]. 

Fig. 2. Illustration of the contribution of each term and how they change over PEEP for all 3 basis function sets in Eqs. (4)–(12).  
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In this research we are predicting the most likely value for each 
parameter. We use R-squared (R2) as a metric to define these predictions 
in quantitative way for comparison. the most value R2 are those for 
predictions 2 and 4 cmH2O ahead. These are the clinically relevant 
scenarios and where this modelling could assist clinicians. 

2.6. Patient data 

Pressure and flow data from 32 ventilated patients in the ICU (18 
from the McREM trial [76] and 14 from Maastricht trial) were used to 
validate the three (3) proposed basis function sets in this study. 

2.6.1. VCV trial 
In the McREM trial, all 18 patients were fully sedated and intubated 

under invasive volume-controlled ventilation, with tidal volume set to 8 
± 2 ml/kg based on ideal body weight [76]. The McREM trial was 
conducted across eight German university ICUs from September 2000 to 
February 2002. All 18 patients were ventilated with a Draeger Evita 4 
ventilator. During ventilation, an end-inspiratory hold of 0.2 s is applied 
for each breath and data were sampled at 125 Hz. Patient demographics 
are in Table 1 

One increasing staircase RM with 2 cmH2O step was performed for 
each patient starting at 0 cmH2O. The prediction procedure is applied 

for further higher PEEP levels (i = 2, …, 7) after identification at base-
line PEEP (i = 1). To test the robustness and generality of HLM model 
and basis function sets, prediction tests are applied across a range of 
baseline PEEP = 0, 2, 4, 6, 8, 10, and 12 cmH2O with a further 6 pre-
diction steps (2 cmH2O interval) from each baseline level, yielding a 
maximum value for ΔPEEP = 2 × 6 steps = 12 cmH2O. There are thus a 
total of 623 predictions across the 7 baseline PEEP test groups. The test 
group setting is shown schematically in Fig. 4. 

2.6.2. PCV trial 
The Maastricht trial comprised 14 patients recruited in Maastricht, 

Netherlands from November 2017 to February 2018 (METC 17–4–053). 
All patients were treated with Bi-level Positive Airway Pressure 
pressure-controlled ventilation with automatic tube compensation 
(ATC). Patient demographics are in Table 2. 

One full staircase RM with increments and decrements of PEEP in 2 
cmH2O intervals was performed for each patient, where only the 
increasing RM arm is studied. Different from the McREM trial, RM 
baseline PEEP varies for all 14 patients (10 patients at 6 cmH2O, 3 pa-
tients at 8 cmH2O, and 1 patient at 10 cmH2O). Thus, ???tests are 
applied at baseline PEEP = 6, 8, 10, and 12 cmH2O, while prediction 
steps are also 6 further steps with 2 cmH2O intervals, yielding maximum 
ΔPEEP = 2 × 6 steps = 12 cmH2O. Thus, there are 294 predictions in 

Fig. 3. Flowchart of the overall identification (i = 1) and prediction (i > 1) procedure.  
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total across 4 baseline PEEP level test groups. The 4 test groups are 
analysed using the same procedure as for the McREM trial, where the 
first PEEP level is 6 cmH2O in this case. 

2.7. Validation and error analysis 

In VCV, PIP is the critical indicator for VILI due to overdistension due 
to excessive pressure [13,45,50]. Similarly, in PCV, PIV reflects volu-
trauma risk [51,77]. Boxplots provide the PIP or PIV error distribution 
over all baseline PEEP levels with absolute median error noted. Corre-
lations between clinical and model predicted PIP or PIV are plotted with 
R2 values calculated for the 1:1 perfect match line to further show spread 
and error. In VCV patients, the value of k2end for PIP prediction is 
assessed by comparing PIP predictions with and without this term to 
show the error reduction achieved by accounting for distension. 

2.8. Comparative variables 

Elastance segment k2 is used to determine k2end, where there is 
increased stiffness (reduced compliance) at the end of inspiration, 
associated with overdistension. Poor ventilator settings can lead to 

overdistention, in turn leading to increased potential for barotrauma or 
volutrauma causing VILI. Thus, predicting k2end accurately is also 
critical to safely personalising MV care. Predicted and identified 
k2values were compared using absolute error. From this error, median 
errors were calculated to determine the relative performance of the basis 
functions. 

For VCV patients, model predicted PIP values are compared to values 
from the McREM study. Equivalently, for PCV patients, PIV is compared 
to clinical values from the Maastricht study data. In both instances, 
signed and absolute errors were determined for each case, giving a 
median error at each respective baseline PEEP for the three basis func-
tion sets. These errors in combination with plotted trends assist in 
determining the most accurate and/or optimal basis functions for 
different MV modes. 

3. Results 

3.1. VCV patients and trial 

3.1.1. Comparison of identified elastance and predicted elastance (k2) for 
VCV 

The elastance prediction comparison for VCV was conducted across 
the same 7 different PEEP levels for each of the three basis functions 
(EXP, PARA and CUMU). As depicted in Fig. 5, the scatter plots observe a 
trend in which the identified elastance obtained from the measured data 
is typically higher than the predicted value. This is the case for all three 
basis functions. With the boxplots on the right-hand side, the PARA basis 
function shows the lowest errors and least bias (overall) of the three 
basis function sets, whereas the errors for the CUMU set are more than 
double that of the PARA set (median error comparison). 

Table 1 
VCV patients and clinical trial demographics in the McREM pilot trial [76]. TBI 
= Traumatic Brain Injury, SDH = Subarachnoid Hemorrhage, SAH = Sub-
arachnoid and Subdural Hemorrhage.  

Patient 
No 

Gender Age 
(years) 

Length of 
MV 
(days) 

PaO2/ 
FiO2 

(mmHg) 

Clinical Diagnostic 

1 m 74 10 298 SAH, SDH 
2 f 50 8 202 Pancreatitis, 

pneumonia 
3 f 30 8 162 Peritonitis, sepsis 
4 f 49 3 289 Pneumonia 
5 m 34 10 192 open TBI 
6 m 67 4 234 Post reanimation 
7 m 39 10 188 Sigma perf., 

peritonitis 
8 m 42 9 235 Pneumonia, 

pancreatitis 
9 m 51 5 230 TBI, pneumonia 
10 m 77 6 225 Pneumonia 
11 m 37 10 163 Pneumonia 
12 m 41 16 178 Peritonitis 
13 m 62 2 288 SDH 
14 m 39 7 143 TBI, pneumonia 
15 m 74 9 271 S/P coronary artery 

bypass grafting, 
pneumonia 

16 m 59 19 75 ARDS 
17 m 45 8 173 Blunt abdominal 

trauma, pneumonia 
18 m 42 11 260 Alcoholism, GI 

bleeding, sepsis  

Fig. 4. Schematic test group setting for the McREM trial. Orange coloured levels present the identification baseline PEEP level, while blue coloured levels present the 
further 6 prediction levels used to test prediction. Intervals in 2 cmH2O are set between each PEEP level, while first PEEP level is 0 cmH2O by protocol. PEEP levels 
are numbered in these 2 cmH2O steps [72]. 

Table 2 
PCV patients and clinical trial demographics in the Maastricht pilot trial. CABG 
= Coronary Artery Bypass Grafting, AVR = Aortic Valve Replacement.  

Patient 
No 

Gender Age 
(years) 

PaO2/ 
FiO2 

(mmHg) 

Clinical Diagnostic 

1 Male 77 255 CABG 
2 Female 85 308 CABG 
3 Male 57 323 CABG 
4 Male 47 233 CABG 
5 Male 73 150 AVR 
6 Male 75 383 CABG 
7 Female 71 443 AVR 
8 Male 76 398 CABG 
9 Female 64 255 Subarachnoid Haemorrhage 
10 Female 68 428 Pneumonia 
11 Female 78 143 Pneumonia 
12 Female 18 83 Mitral and Tricuspid Valve 

Replacement 
13 Female 71 443 Pneumonia 
14 Male 36 158 CABG  
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3.1.2. Peak inspiratory pressure (PIP) prediction for VCV 
Boxplots of absolute PIP prediction errors across all 7 test groups 

(baseline PEEP = 0, 2, 4, 6, 8, 10, and 12 cmH2O) with 6 prediction steps 
are shown in the right-hand side of Fig. 6, while the relationships 

between clinical PIP and predicted PIP are presented separately in the 
left-hand side of Fig. 6 for all 3 sets (623 predictions) with overall R2 

values of 0.90, 0.85, and 0.88 for the EXP, PARA, and CUMU basis 
function sets, respectively. Table 3 shows the R2 values over shorter 

Fig. 5. Correlation plots of Predicted k2 vs Clinical k2 (left) and boxplots for absolute k2prediction errors with noted median errors (cmH2O/L) over 7 baseline PEEPs 
(right) for (a) EXP, (b) PARA, and (c) CUMU basis function sets with VCV data. 
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Fig. 6. Correlation plots of Predicted PIP vs Clinical PIP (left) and boxplots for PIP prediction errors with noted median errors (cmH2O) over 7 baseline PEEPs (right) 
for (a) EXP, (b) PARA, and (c) CUMU basis function sets, yielding overall R2 = 0.90 in EXP, R2 = 0.85 in PARA, and R2 = 0.88 in CUMU among 623 prediction cases 
in VCV. 
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prediction intervals are higher, ranging from R2 = 0.91–0.96 in the first 
three rows of the table. 

Comparing basis functions, the PARA set in VCV prediction yields the 
‘worst’ performance with higher median errors and an overall lowest R2 

value = 0.85. However, the higher median error is partly a result of bias, 
with 70.6 % predictions of overshooting the clinical value, which has 
potential clinical utility in guiding MV as it can lead to more conser-
vative clinical decisions. Bias for the other sets are 60.8 % for EXP and 
53.0 % for CUMU. EXP and CUMU yield similar overall performance in 
all 7 predictions, while overall 90 % of PIP prediction errors are within 
3.95 cmH2O. However, EXP tends to have a better performance than 
CUMU at baseline PEEP ≥ 6 cmH2O, and thus is better at clinically 
relevant PEEP levels. 

3.2. PCV patients and trial 

3.2.1. Comparison of identified elastance and predicted elastance (k2) for 
PCV 

Fig. 7 depicts the comparison of identified elastance and predicted 
elastance for PCV alongside their respective error boxplots. Comparisons 
were conducted for each of the three basis functions across four different 
baseline PEEP levels (PEEP = 6, 8, 10, 12 cmH2O). The elastance values 
are all negative, due to the specific geometric shape of the P-V loops for 
PCV, as shown in Fig. 1(b). PCV typically shows a less accurate corre-
lation between predicted and identified elastance than the VCV trial. 
When comparing basis functions, the CUMU basis function set provided 
the smallest errors overall (median error comparison). 

For further comparison, Fig. 7 also shows the 10 % of outliers that 
were removed displayed in grey. Removal of these points has increased 
the accuracy of this prediction. In addition, the removal points coincide 
as 7 %, 20 %, 33 %, and 40 % of outlier points for baseline PEEP = 6, 8, 
10 and 12, respectively. This result indicates the outliners leading to less 
accurate correlation in Fig. 7 are likely due to data quality rather than 
prediction efficacy of any of the three basis functions. 

3.2.2. Peak inspiratory volume (PIV) prediction for PCV 
Boxplots of PIV prediction errors (L) across all 4 baseline PEEP 

prediction groups (baseline PEEP from 6 to 12 cmH2O) are shown in 
Fig. 8, while correlations between model predicted PIV and clinical PIV 
(294 predictions total) are also provided with R2 values of 0.85, 0.81, 
and 0.80 for EXP, PARA, and CUMU, respectively. Finally, assessing only 
clinically relevant ΔPEEP = 2–6 cmH2O prediction ranges (1 - 3 pre-
diction steps further), Table 4 shows the R2 values over shorter predic-
tion intervals is higher than the overall values considering all ΔPEEP 
levels, ranging from R2 = 0.87–0.96 in the first three rows of the table. 

Comparing basis function performance for PCV prediction, the EXP 
set still yields the overall best performance. Even though EXP and PARA 
have a similar median error across all 4 prediction groups, CUMU tends 
to have more outliers and larger IQR, which explains the lower R2 value. 

3.3. k2end prediction bias: overshoot and undershoot errors 

Predictions of PIP and PIV (VCV and PCV respectively) are depen-
dent on the prediction of k2end. Prediction of k2end is done using the 
same basis function as applied to the prediction of PIP or PIV. The 
distension prediction of k2end is incorporated to capture any over- 
distension occurring at the end of inspiration. Thus, this term is 
directly related to either PIP or PIV, depending on ventilation mode. 
With overshoot errors, k2end was overpredicted, whereas undershoot 
errors are a result of underpredicted k2end. It is important k2end is 
correctly predicted as overdistension results in the over inflation of 
alveoli and tissue damage, whereas under distension results in lower 
oxygenation rates and repeated opening and closing of alveoli, or 
atelectasis. 

3.3.1. VCV patients and trial 
The boxplots in Fig. 9, show the errors across each of the basis 

function sets for VCV collated to represent an overall spread and the 
respective median errors. Fig. 9 shows the boxplots for absolute errors 
and the signed errors. Overall, the PARA function sets observed the 
highest absolute median error with a median error of 2.455 cmH2O, 
while EXP yields the lowest value of 1.399 cmH2O. However, as shown 
in Fig. 9(b), EXP and PARA tend to underestimate and overestimate the 
PIP predictions, respectively, while the tendency of predictions in 
CUMU is not obvious. 

3.3.2. PCV patients and trial 
Boxplots in Fig. 10 depict the signed and absolute errors across each 

of the basis function sets for PCV, all collated to depict the overall spread 
and resultant median errors. Unlike the prediction error results for VCV, 
as shown in Fig. 9, there is no function set that significantly outweighs 
the performance of the other function sets in PCV. However, the absolute 
and signed boxplot errors for PIV prediction both agree that the CUMU 
set observes the highest median prediction error with 0.03 L (absolute) 
and − 0.013 L (signed). Though the signed error is primarily used to 
show whether a basis function set is overshooting or undershooting, it 
also shows the true error range where the absolute error range is less 
functional. The median absolute errors for EXP and PARA are similar, 
with the PARA set having slightly larger outliers. However, the signed 
errors show that the PARA set has a larger error range than that of the 
EXP set. A more obvious representation of this analysis is in Section VCV 
patients and trial. 

4. Discussion 

Basis functions have long been proposed to simulate lung mechanics, 
among other physiological [59–62] and non-physiological system 
models, as well as in simple to complex lung mechanics models [40,55, 
56,58,78]. In this approach, three (3) physiologically relevant basis 
function sets [42,57,63,64] are studied for elastance evolution predic-
tion within the HLM lung mechanics model [42,63] with a goal of 
assessing overall best performance relative to potential clinical utility. 
With information identified only from one baseline PEEP level, further 
prediction of patient-specific lung mechanics response to help optimise 
MV settings can be accomplished for a targeted higher PEEP level (up to 
6 further steps yielding maximum ΔPEEP = 12 cmH2O assessed here), 
without requiring further information. 

For PCV, the coupling of tidal volume and flow is the vital problem to 
conquer for mathematical approaches, where convergence needs to 
ensure a good balance between model complexity and prediction ac-
curacy. In this approach, the mechanics simulation model is based on 
[42]. With 3 basis function sets tested, the stability of this nonlinear 
hysteresis model is further demonstrated in the results presented for 
both VCV and PCV trials. Further, the ability to accurately predict PIV 
and PIP provides the ability to safely minimise risk and optimise MV as 
patient condition evolves. 

Table 3 
Decreasing R2 value across different cumulative collections of prediction steps 
and intervals for all three basis functions for PIP prediction from any baseline 
PEEP1 level for VCV in the MCREM cohort. The statistics by row are cumulative 
for 1 step forward, 1 step and 2 steps forward together, up to all 6 steps.  

The McREM trial R2 value of PIP prediction Prediction cases 

EXP PARA CUMU 

1 step ahead 0.95 0.94 0.96 122 
1 and 2 steps ahead 0.95 0.93 0.95 241 
1–3 steps ahead 0.93 0.91 0.94 356 
1–4 steps ahead 0.92 0.89 0.92 460 
1–5 steps ahead 0.91 0.87 0.90 550 
1–6 steps ahead 0.90 0.85 0.88 623  
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Correct identification of k2 provides a solid base for accurate pre-
dictions for PIP/PIV. For the VCV trial, as shown in Fig. 5, there is a clear 
trend across all three basis functions where the identified k2 value is 
typically higher than predicted. This bias result matches Fig. 9(b) where 

overshoots are observed across all three basis functions for VCV. 
Amongst these three basis functions, the CUMU set observed the highest 
average median error of 5.622 cmH2O. These averages are derived from 
the seven median absolute errors at each baseline PEEP level. In 

Fig. 7. Correlation plots of Predicted k2 vs Clinical k2 (left) and boxplots for k2 prediction errors with noted median errors (L) over 4 baseline PEEPs (right) for (a) 
EXP, (b) PARA, and (c) CUMU basis function sets using the PCV MV method. 
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predicted PIP, which is 50.2 % greater than the lowest average median 
error of 2.798 cmH2O associated with the PARA set. The EXP set yielded 
an average median error of 3.744 cmH2O. For the PCV trial, as shown in 

Fig. 7, the data is spread more evenly around the ‘perfect match’ 1:1 line 
indicating that both overshoot and undershoot are observed more 
evenly compared to the VCV trial. However, identified k2 is still 

Fig. 8. Correlation plots of Predicted PIV vs Clinical PIV (left) and boxplots for PIV prediction errors with noted median errors (L) over 4 baseline PEEPs (right) for 
(a) EXP, (b) PARA, and (c) CUMU basis function sets, yielding overall R2 = 0.85 in EXP, R2 = 0.81 in PARA, and R2 = 0.80 in CUMU among 294 prediction cases 
in PCV. 
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typically higher than the predicted. Across the three basis functions, the 
PARA set had the highest average median error across all baseline PEEP 
levels of 4.328 cmH2O (derived from each median absolute error indi-
vidually) which was 24.4 % higher than the lowest average median error 
of 3.272 cmH2O associated with the CUMU set. The EXP set yielded an 

average median k2 prediction error in PCV of 3.463 cmH2O. 
For the VCV trial, as shown in Table 3 the PARA set yields the lowest 

overall R2 value, R2 = 0.85, among 623 prediction cases totally. This 
result occurs due to 70.6 % of predictions overshooting the data for 440 
out of 623 cases, compared with 60.8 % and 50.3 % for EXP and CUMU, 
while some positive bias can lead to a more conservative clinical deci-
sion. As shown in Figure 6EXP has a more robust and accurate prediction 
than CUMU, with lower IQR upper limit PIP prediction error and fewer 
outliers. Note at lower baseline PEEP values (0 - 4 cmH2O), although 
CUMU has a relatively lower median error, it has more outliers and 
larger IQR compared with the EXP results. 

The overall absolute median error for PIP prediction in Fig. 6 tends to 
decrease as baseline PEEP increases. This outcome is possibly a result of 
slightly fewer prediction cases as baseline PEEP increases. However, 
given the relatively large number of predictions, the lower error at 
clinically relevant PEEP levels and clinically relevant smaller changes in 
PEEP is important. Equally, the higher prediction errors at lower base-
line PEEP, from 0 to 4 cmH2O, are relatively less critical and harmful for 
patients compared with higher baseline PEEP, where higher PIP and 
higher PIP prediction errors increases risk of VILI [13,79]. Similarly, 

Table 4 
Decreasing R2 value across different cumulative collections of prediction steps 
intervals for all three basis function shapes for PIV prediction from any baseline 
PEEP1 level for PCV in the Maastricht cohort. The statistics by row are cumu-
lative for 1 step forward, 1 step and 2 steps forward together, up to all 4 steps 
forward for the whole cohort. Thus, the last row presents the total cohort values.  

Maastricht R2 value of PIV prediction Prediction cases 

EXP PARA CUMU 

1 step further 0.96 0.95 0.96 51 
2 step further 0.94 0.90 0.92 102 
3 step further 0.91 0.87 0.88 153 
4 step further 0.88 0.84 0.84 204 
5 step further 0.87 0.82 0.82 253 
6 step further 0.85 0.81 0.80 294  

Fig. 9. Comparison of absolute PIP prediction errors across 3 basis function sets (a) and (b) with signed prediction errors for the VCV data set (McREM).  

Fig. 10. Comparison of absolute PIV prediction errors across 3 basis function sets (a) and (b) with signed prediction errors for the PCV data set (Maastricht).  
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such low baseline PEEP levels are rarely encountered in adult ICU pa-
tients, as such low levels of MV support are supplied by less invasive or 
controlled ventilation modes [13,80], for which similar virtual patients 
are being derived [81,82]. 

For the VCV trial, the overall absolute and signed errors were ana-
lysed for PIP in Fig. 9. The signed median errors show that all three 
function sets observe an overall overshoot in the predicted PIP, the 
maximum signed median error being the PARA set at 2.304 cmH2O and 
lowest signed median error being the CUMU set at 0.172 cmH2O. The 
CUMU set also has the largest error spread with outliers at both over-
shoot and undershoot ends. The outliers for the PARA set are primarily 
within the overshoot region, whereas EXP set errors are primarily within 
the undershoot region. Considering the boxplots in Fig. 10 and the dis-
parities between each function set, signed and absolute, the EXP func-
tion set yields the most consistent and accurate data for the predictions 
of PIP. Though it didn’t yield the lowest signed median PIP error, the 
spread of this data and median results from the other analyses all 
coincide to agree with the verdict that EXP is best function set for these 
predictions. 

Prediction of PIP is also largely based off elastance predictions. 
Section 3.1.1 highlights an overall undershoot in the prediction of ela-
stance across all three basis functions. However, an overall overshoot 
was observed in the prediction of PIP. Conversely, Section 3.2.1 shows 
an overall overshoot in the elastance prediction in PCV where the PIV 
prediction undershoots oppositely. The way the models have adjusted to 
overshoot or undershoot correspondingly hints at the possibility of 
model compensation, such that where the elastance undershoots, the PIP 
will overshoot to provide a more balanced overall model. 

The overall absolute and signed errors were also analysed for the 
PCV trial in Fig. 10. Signed errors for PIV analysis across the three basis 
function sets all show an undershoot in their predictions. The maximum 
signed median PIV error being − 0.013 L from both the CUMU and PARA 
function sets. This is consistent with the two higher absolute median PIV 
errors corresponding to the CUMU and PARA sets. The highest absolute 
median PIV error being 0.03 L from the CUMU function set. The lowest 
signed median PIV error being 0.04 L and the lowest absolute median 
PIV error being 0.027 L, both from the EXP function set. In both sets, the 
PARA set observed the largest spread, highlighting a larger inconsis-
tency in the results in comparison to the other two function sets. From 
looking at both the signed and absolute error boxplots in Fig. 10, and 
considering the differentials between these errors, the EXP set yields the 
most accurate and stable prediction data for both the PIV predicted data 
overall. 

As for the PARA and CUMU sets, the highest errors occur somewhat 
randomly. Thus, the EXP set yields the most stable and accurate pre-
diction across different baseline PEEP levels for VCV. All these results 
are consistent with reduced errors when considering only the first, 
clinically relevant 2–3 PEEP steps. This choice reflects balancing trade- 
offs between accuracy and robustness. 

Similarly, higher median PIV prediction errors in PCV patients occur 
where there are more baseline PEEP prediction cases. The EXP set still 
yields the best prediction performance across various baseline PEEP 
levels, while 90 % of PIV errors are within 0.068 L, compared with 
0.077 L and 0.078 L in PARA and CUMU sets respectively. Moreover, the 
median PIV error decreases to 0.019 L from 0.028 L while all errors are 
within 0.079 L for EXP if the maximum ΔPEEP for prediction narrows to 
6 cmH2O (3 prediction steps) from 12 cmH2O (6 prediction steps), which 
is a more clinically realistic setting. In these clinically realistic cases, the 
R2 values increase, with similar improvement in VCV predictions, as 
shown in Table 4. 

For PCV prediction, the CUMU set has the lowest R2 value, R2 = 0.80, 
with 90 % of PIV prediction errors within 0.078 L. In EXP and PARA, 90 
% of errors are lower than 0.068 L and 0.077 L, respectively. As shown in 
Fig. 8, comparing performance between EXP and CUMU sets, the latter 
has lower median PIV error, but more and larger outliers. Overall, the 
EXP set yields to the most robust prediction over all 3 basis function sets. 

Knowing a patients optimal elastance and recruitable volume allows 
clinicians to select an appropriate PEEP for optimal ventilation. Pre-
diction models and algorithms would enable these clinicians with an 
assistive tool to indicate what the optimal ventilation settings are for 
that patient specifically by using patient-specific prediction models. 
Having the correct ventilator settings will minimise the likelihood of 
overdistension occurring and in turn minimise the occurrence of VILI in 
patients post ventilator therapy. 

The efficacy of k2end is validated with prior work [72]. It is kept the 
same in this study across all three basis functions to predict the 
over-distension at higher PEEP levels. The PIP and PIV predictions bias 
and errors are possibly affected by both the applied basis function set 
and k2end function. However, the elastance predictions at lower base-
line PEEP levels shown in Figs. 5 and 7, where over-distension is rarely 
seen, present the difference across basis function sets. 

This model will be run through multiple different data sets before 
conclusively stating its complete ability. After using data sets McREM 
and Maastricht, the predictive model is showing large promise. Accu-
racy of the predictive software when looking at PIV (PCV), PIP (VCV) 
and k2 is high, particularly for VCV mode (approx. 96 %). However, 
alterations to improve the accuracy of predictions to the PCV mode 
model are required and underway. 

While predictive models have been increasingly developed and 
tested, integrating the proposed predictive model in the clinical control 
loop remains a challenge because the practical implementation of the 
proposed model in real patients would require rigorous clinical trials 
and assessment to ensure its robustness and safety [28,29,83,84]. In 
addition, engagement of clinical staff would still be required to ensure 
the oversight, planning and safety of the intervention. Therefore, 
beyond the technology factors, social factors should also be considered 
for appropriate change management processes in addition to workload 
management to enable appropriate levels of engagement with technol-
ogy and training prior to the model use in real world. 

In this work we have analysed three potential basis functions. These 
were chosen based off physiological compatibility and previous work 
within the same framework. However, this work does not preclude 
better basis functions or a different hysteretic model with different or 
similar basis functions from performing better. 

In summary, the EXP set yields the best performance across various 
baseline PEEP levels and MV modes, VCV and PCV. Although the PARA 
and CUMU sets are not as good as the EXP set overall, they do show very 
promising ability, and might be further optimised. Overall, the results 
show the potential power of personalised models to predict outcomes to 
changes in care using physiologically relevant basis function sets. 
Model-based approaches to personalising care require far less added 
hardware, added data, or/and personnel costs, and require only rela-
tively limited computation as found on bedside computers or cloud 
served computation. Moreover, the 3 basis function sets examined in this 
approach can still be improved with further tests and offer new insights 
for researchers to study and consider the inner correlation between 
elastance prediction and respiratory response prediction for model 
optimizing. 

5. Conclusion 

This study presents the prediction performance of 3 physiologically 
relevant basis function sets across 32 ventilated patients (18 VCV, 14 
PCV) at a wide range of different baseline PEEP levels with ΔPEEP 
prediction intervals up to 12 cmH2O. While all 3 sets yield very good 
predictions for both VCV and PCV, the exponential basis function set, 
EXP, has the best performance across both PCV and VCV modes, and the 
most robust prediction performance in both modes, thus providing a 
best balance of accuracy and robustness. The overall outcome shows all 
three physiologically relevant basis function sets offer the possibility for 
accurate and simpler lung mechanics prediction, and how otherwise 
similar basis function forms can lead to different prediction outcomes for 
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both elastance and pulmonary response. This latter outcome indicates 
the need to test robustness over basis function shapes when using this 
approach for any type of digital twin or virtual patient model, which has 
not been tested previously. Thus, the main results offer new insights into 
how to consider and optimize lung mechanics models with elastance 
evolution function forms for further studies, and the basis function 
shapes themselves create new potential hypotheses to better under-
standing the macro behaviour of lung tissue mechanics in mechanical 
ventilation. 
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