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Summary
Background Patients with COVID-19-related acute respiratory distress syndrome (ARDS) have been postulated to 
present with distinct respiratory subphenotypes. However, most phenotyping schema have been limited by sample 
size, disregard for temporal dynamics, and insufficient validation. We aimed to identify respiratory subphenotypes of 
COVID-19-related ARDS using unbiased data-driven approaches.

Methods PRoVENT–COVID was an investigator-initiated, national, multicentre, prospective, observational cohort 
study at 22 intensive care units (ICUs) in the Netherlands. Consecutive patients who had received invasive mechanical 
ventilation for COVID-19 (aged 18 years or older) served as the derivation cohort, and similar patients from two ICUs 
in the USA served as the replication cohorts. COVID-19 was confirmed by positive RT-PCR. We used latent class 
analysis to identify subphenotypes using clinically available respiratory data cross-sectionally at baseline, and 
longitudinally using 8-hourly data from the first 4 days of invasive ventilation. We used group-based trajectory 
modelling to evaluate trajectories of individual variables and to facilitate potential clinical translation. The PRoVENT-
COVID study is registered with ClinicalTrials.gov, NCT04346342.

Findings Between March 1, 2020, and May 15, 2020, 1007 patients were admitted to participating ICUs in the Netherlands, 
and included in the derivation cohort. Data for 288 patients were included in replication cohort 1 and 326 in replication 
cohort 2. Cross-sectional latent class analysis did not identify any underlying subphenotypes. Longitudinal latent class 
analysis identified two distinct subphenotypes. Subphenotype 2 was characterised by higher mechanical power, minute 
ventilation, and ventilatory ratio over the first 4 days of invasive mechanical ventilation than subphenotype 1, but 
PaO2/FiO2, pH, and compliance of the respiratory system did not differ between the two subphenotypes. 185 (28%) of 
671 patients with subphenotype 1 and 109 (32%) of 336 patients with subphenotype 2 had died at day 28 (p=0·10). 
However, patients with subphenotype 2 had fewer ventilator-free days at day 28 (median 0, IQR 0–15 vs 5, 0–17; p=0·016) 
and more frequent venous thrombotic events (109 [32%] of 336 patients vs 176 [26%] of 671 patients; p=0·048) compared 
with subphenotype 1. Group-based trajectory modelling revealed trajectories of ventilatory ratio and mechanical power 
with similar dynamics to those observed in latent class analysis-derived trajectory subphenotypes. The two trajectories 
were: a stable value for ventilatory ratio or mechanical power over the first 4 days of invasive mechanical ventilation 
(trajectory A) or an upward trajectory (trajectory B). However, upward trajectories were better independent prognosticators 
for 28-day mortality (OR 1·64, 95% CI 1·17–2·29 for ventilatory ratio; 1·82, 1·24–2·66 for mechanical power). The 
association between upward ventilatory ratio trajectories (trajectory B) and 28-day mortality was confirmed in the 
replication cohorts (OR 4·65, 95% CI 1·87–11·6 for ventilatory ratio in replication cohort 1; 1·89, 1·05–3·37 for ventilatory 
ratio in replication cohort 2).

Interpretation At baseline, COVID-19-related ARDS has no consistent respiratory subphenotype. Patients diverged 
from a fairly homogenous to a more heterogeneous population, with trajectories of ventilatory ratio and mechanical 
power being the most discriminatory. Modelling these parameters alone provided prognostic value for duration of 
mechanical ventilation and mortality.

Funding Amsterdam UMC.

Copyright © 2021 Published by Elsevier Ltd. All rights reserved.

Introduction 
SARS-CoV-2 has infected 229 million individuals 
worldwide and caused more than 4·7 million deaths as of 
the end of September, 2021.1 Infection with SARS-CoV-2, 
referred to as COVID-19, frequently results in acute 
respiratory failure that might require intensive care unit 

(ICU) admission for respiratory support, including 
invasive ventilation, with high mortality.2–4

Since acute respiratory failure in COVID-19 is caused 
by a single pathogen, it can be postulated that critically ill 
patients with COVID-19 form a homogenous group with 
a single phenotype. However, multiple studies have 
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identified various clinical subphenotypes of COVID-19.5–12 
Most studies have focused on variation in biochemical 
information, such as plasma creatinine, D-dimer, and 
IL-6.12 These studies typically used data obtained at a 
single timepoint and, to date, external validation has 
been rare.

A classification of critically ill patients with COVID-19 
based on respiratory system compliance was postulated to 
present a treatable trait and to be dynamic in nature, with 
patients progressing from normal compliance to 
decreased compliance,13,14 although this trend was not 
observed in a meta-analysis.15 These classifications 
received criticism because they were based on retrospective 
inspection of small patient cohorts, mostly obtained in a 
single centre, without the use of statistical methods that 
are typically used to identify subclasses.16 Unbiased 
identification of respiratory subphenotypes of critically ill 
patients with COVID-19 infection requires analysis of 
large, multicentre cohorts with longitudinal data using 
appropriate methodological approaches.17

In this study, using a derivation and two replication 
cohorts, we aimed to assess the existence of respiratory 
subphenotypes in critically ill patients with COVID-19. 
We hypothesised that using cross-sectional data, based 
on respiratory variables, no distinct subphenotypes 
of COVID-19 would be observed. Furthermore, we 
hypothesised that the richness of using longitudinal data 

for partitioning variables would be more informative 
in identifying respiratory phenotypes with distinct 
characteristics. Finally, we aimed to determine the extent 
to which trajectories of single variables can be used as 
prognostic indicators, because single variable trajectories 
are more clinically implementable than longitudinal 
multivariate subphenotyping approaches.

Methods 
Derivation cohort 
PRoVENT–COVID was an investigator-initiated, national, 
multicentre, prospective, observational cohort study at 
22 ICUs in the Netherlands.4,18 Consecutive patients aged 
18 years or older were eligible for participation 
in the PRoVENT–COVID study if they were admitted 
to a participating ICU between March 1, 2020, and 
May 15, 2020, and had received invasive ventilation for 
respiratory failure related to COVID-19. COVID-19 was 
confirmed by positive RT-PCR. Patients who received 
non-invasive ventilation only, and patients who were 
transferred to a non-participating ICU within 1 h after 
intubation and start of invasive ventilation, were excluded 
from the current analysis.

A detailed description of study procedures in the 
derivation cohort has been reported elsewhere.4 Day 0 
was defined as the first calendar day that a patient 
received invasive ventilation in a participating ICU, 

Research in context

Evidence before this study
We searched MEDLINE, Embase, CINAHL, and Web of Science 
on June 21, 2021, with the terms “phenotypes” AND 
(”coronavirus” OR ”COVID-19”), with no date or language 
restrictions. Studies including patients who were not receiving 
ventilation were excluded, as were those that reported on 
paediatric and single-centre populations. No studies identified 
by our search described subphenotypes of COVID-19-related 
acute respiratory distress syndrome (ARDS) in a multicentre 
setting. Several studies described subphenotypes of COVID-19 
with varying severities, and most concluded that there are 
large differences between patients requiring different levels of 
respiratory support. One study reported on clinical 
subphenotypes in the specific population of critically ill 
patients with COVID-19 but was done in a single centre. In that 
study, a cross-sectional analysis was done at baseline using 
both laboratory data and respiratory variables. Two 
subphenotypes were identified: one with high D-dimer, IL-6, 
and creatinine and a second without apparent biochemical 
alterations. There are numerous letters and short reports 
speculating on time-related subphenotypes of COVID-19-
related ARDS that did not use statistical methods to evaluate 
the existence of these subphenotypes and were limited to a 
sample size below 100 patients from a single centre. Most of 
these studies speculated that compliance of the respiratory 
system is an important time-varying variable.

Added value of this study
To our knowledge, this is the first study to systematically 
evaluate the existence of respiratory subphenotypes in 
patients with COVID-19-related ARDS. We found no statistical 
evidence for respiratory subphenotypes using static data at any 
time during the first 4 days of mechanical ventilation. 
Time-dependent analysis showed that two subphenotypes 
developed during the first days of mechanical ventilation. 
Patients with an upward trajectory of ventilatory ratio, a 
marker of dead space ventilation, had a higher risk of venous 
thrombotic events, more frequently developed acute kidney 
injury, required longer invasive mechanical ventilation, and 
had higher mortality. These findings were validated in two 
replication cohorts.

Implications of all the available evidence
We should reject the hypothesis that there are multiple static 
subphenotypes of COVID-19-related ARDS. Respiratory system 
compliance does not seem to be the primary driver of time-
dependent heterogeneity. Rather, a subphenotype with 
increasing dead space ventilation is associated with important 
patient-related outcomes and might be targetable with 
therapeutic anticoagulation. The increasing mechanical power 
subphenotype might be indicative of inappropriate use of high 
positive end-expiratory pressure. Therefore, both 
subphenotypes could be studied as treatable traits in the future.
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irrespective of hospital or ICU admission date. In the 
first hour of invasive ventilation and thereafter every 8 h 
at fixed timepoints up to day 3, ventilator settings and 
parameters and vital signs were entered into the database. 
ARDS was defined by the Berlin definition.19 Outcomes 
were duration of invasive mechanical ventilation, ICU 
mortality, hospital mortality, overall 28-day mortality, 
overall 90-day mortality, development of venous 
thrombotic events during ICU stay, acute kidney injury, 
need for renal replacement therapy during ICU stay, and 
length of ICU stay. All data were entered into a password-
secured, internet-based, electronic case report form 
(Castor EDC; Amsterdam, Netherlands). Before analysis, 
the study coordinators screened all data for potentially 
erroneous or incomplete recordings and verified and 
corrected information as appropriate with the help of 
local doctors and data collectors. After cleaning, the 
database was closed for analysis.

The study protocol has been previously published.18 
The institutional review boards of the participating 
centres approved the study protocol and the need for 
individual informed consent was waived. The ethics 
boards of the participating hospitals approved the 
collection of data for the study purposes. The study 
coordinators and trained data collectors assisted local 
doctors and monitored the study according to the 
International Conference on Harmonization Good 
Clinical Practice guidelines. Study coordinators ensured 
integrity and timely completion of data collection.

Replication cohorts 
The two replication cohorts included patients 18 years or 
older who required invasive mechanical ventilation for 
COVID-19 pneumonia between March 1, 2020, and 
Dec 31, 2020, at Michigan Medicine (Ann Arbor, MI, USA) 
or at one of ten BJC HealthCare Hospitals (St Louis, MO, 
USA) in or around the St Louis metropolitan area. For both 
cohorts, patients transferred from outside hospitals were 
excluded if they were initiated on invasive ventilation 
before the date of transfer, or if they received less than 48 h 
of mechanical ventilation. COVID-19 was confirmed by 
positive RT-PCR. All data used in the replication cohorts 
were collected retrospectively and extracted from 
electronic health records. Analyses in the replication 
cohorts were done locally, such that no protected health 
information was exchanged between study sites.

Statistical analysis 
Subphenotypes were studied cross-sectionally at the start 
of invasive ventilation in the intensive care unit and every 
24 h after, and longitudinally using time-dependent 
analysis with 8-hourly data from the first 4 days of 
invasive ventilation. Subphenotypes were identified 
using latent class analysis and using group-based 
trajectory modelling.20 Figure 1A shows a visual 
representation of the differences in the data used in each 
model. We used group-based trajectory modelling to 

allow for external validation of our results as no other 
dataset with granular multivariate data could be 
identified, which is indicative for the fact that group-
based trajectory modelling is more clinically 
implementable than longitudinal latent class analysis. A 
stepwise approach was used that included: data setup, 
model estimation, model evaluation, and interpretation 
of the optimal model.21

The following readily available clinical variables were 
used as input for the identification of latent classes: 
driving pressure, compliance of the respiratory system 
(tidal volume over driving pressure), minute 
volume ventilation, pH, ventilatory ratio 
(VEmeasured × PaCO2measured ÷ VEpredicted × PaCO2predicted)—where VE 
is the expired minute ventilation and PaCO2 is the arterial 
carbon dioxide tension—difference between arterial and 
end-tidal CO2, and mechanical power of ventilation 
(0·098 × VT [in L] × RR × [Pmax – Pdriving ÷ 2])22— where VT

 is the 
tidal volume, RR is the respiratory rate, Pmax

  is the 
maximum airway pressure on pressure-controlled 
ventilation, and Pdriving is the driving pressure. Variables 
with mathematical coupling were not considered (eg, not 
including respiratory rate, tidal volume, and minute 
volume ventilation).

Latent class analysis was done using data obtained 
directly after the start of mechanical ventilation to 
identify cross-sectional subphenotypes. This analysis was 
repeated for data collected every 24 h. Latent class 
analysis was repeated using 8-hourly data from the first 
4 days of invasive ventilation to identify time-dependent 
subphenotypes that emerged during the first 96 h of ICU 
admission. The specific model parameters are given in 
the appendix (p 2).

Figure 1: Study statistical methods to identify subphenotypes
Summary of statistical analysis methods to model heterogeneity in respiratory variables. (A) The x-axis shows 
different timepoints. The y-axis shows different patients. The z-axis shows different variables. (B) Cross-sectional 
latent class analysis was done on each timepoint using multiple variables and did not yield any subphenotypes. 
(C) Longitudinal LCA was done on all timepoints combined using multiple variables and yielded two subphenotypes 
with differences in dynamics of mechanical power and ventilatory ratio. Subphenotype 2 had less ventilator-free 
days and more venous thrombotic events, but no difference in mortality. (D) GBTM was used to evaluate individual 
trajectories over all timepoints of a single variable. An upward trajectory of ventilatory ratio matched with the 
longitudinal LCA dynamics and was also associated with more venous thrombotic events, higher mortality, and 
fewer ventilator-free days. GBTM=group-based trajectory modelling. LCA=latent class analysis. MP=mechanical 
power. VR=ventilatory ratio. VTE=venous thrombotic events.
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The optimal number of latent classes was selected 
using the lowest Bayesian information criterion, 
integrated complete likelihood, and Akaike information 
criterion values. Entropy and probability of group 
membership were used to evaluate class separation and 
robustness of class membership. Entropy is a standardised 
index of model-based classification accuracy, with higher 
values indicating more precise assignment of individuals 
to latent profiles. Five models, comprising 1 to 5 classes, 
were fitted and if one or more models had similar 

goodness of fit, the model with the lowest number of 
classes was selected.

The prognostic value of the subphenotypes was 
evaluated by comparing differences in ventilator-free 
days, 28-day mortality, occurrence of venous thrombotic 
events, and use of renal replacement therapy for acute 
kidney injury. Venous thrombotic event diagnosis was 
based on venous Doppler ultrasound or CT angiography.

We used group-based trajectory monitoring to assess if 
the trajectory of a single variable could be used to identify 
trajectory subphenotypes with similar dynamics to those 
identified by time-dependent latent class analysis, since 
this method was straightforward enough to allow ease of 
analysis in the replication datasets. We applied group-
based trajectory measurement on 8-hourly data from the 
first 4 days to identify the trajectory subphenotypes for 
PaO2/FiO2, ventilatory ratio, mechanical power, and 
respiratory system compliance. Group-based trajectory 
monitoring is a finite mixture model used to identify 
clusters of patients following similar trajectories of a 
variable of interest and is easier to apply to a smaller 
dataset than longitudinal latent class analysis. The group-
based trajectory monitoring algorithm computes a 
unique equation of the variable of interest as a function 
of time for each of the subphenotypes. Patients are 
classified into the trajectory subphenotype whose 
function most closely matches their measurements. This 
approach has previously successfully been applied to 
temperature trajectories.23

The fit of the group-based trajectory model from the 
derivation cohort was applied to the replication cohorts 
and the association with outcomes was evaluated.

To study the influence of treatment strategies on the 
prevalence of the identified subphenotype, we compared 
the following interventions before or at the day of initiation 
of invasive mechanical ventilation between the groups: 
high or low positive end-expiratory pressure strategy 
based on the selected positive end-expiratory pressure/FiO2 
table as extensively described,24 prone positioning, and use 
of remdesivir, corticosteroids, and tociluzimab.

Patient data are presented as mean and SD for 
normally distributed continuous variables, median and 
IQR for variables that are not normally distributed, and 
numbers with percentages for categorical data. 
Differences between identified subphenotypes were 
tested using t-test, Mann-Whitney U test, and Fisher’s 
exact test. The dynamics of each variable per 
subphenotype were fitted using a second-degree 
polynomial to show the trajectory over time between the 
groups. Differences between subphenotypes at baseline 
and differences in dynamic change over time were 
assessed by linear mixed effect model analysis using 
hours since intubation, sub phenotype, and an 
interaction term between the two as fixed effects and a 
random intercept per patient. We used logistic and 
linear regression to assess the association between 
subphenotype classification and binary or con tinuous 

All (n=1007) Time-dependent subphenotypes* p value

1 (n=671) 2 (n=336)

Age, years 63·7 (10·8) 63·9 (11·0) 63·2 (10·2) 0·35

Sex <0·001

Female 279 (28%) 226 (34%) 53 (16%)

Male 728 (73%) 445 (66%) 283 (84%)

BMI, kg/m² 28·6 (5·6) 28·3 (4·5) 29·1 (7·4) 0·054

Comorbidities

Arterial hypertension 342 (34%) 229 (34%) 113 (34%) 0·930

Heart failure 42 (4%) 28 (4%) 14 (4%) 1·000

Diabetes 225 (22%) 163 (24%) 62 (18%) 0·044

Chronic kidney disease 45 (4%) 163 (24%) 62 (18%) 0·015

Chronic obstructive pulmonary 
disease

83 (8%) 59 (9%) 23 (7%) 0·350

Immunosuppression 24 (2%) 15 (2%) 9 (3%) 0·830

Day of admission†

Tidal volume per kg predicted 
bodyweight, mL/kg

6·46 (1·55) 6·42 (1·28) 6·54 (2·00) 0·24

Respiratory rate, breaths/min 21·00 (4·60) 20·95 (4·54) 21·96 (4·84) 0·001

Minute ventilation, L/min 9·40 (2·70) 8·97 (2·40) 10·25 (3·12) <0·001

Positive end-expiratory pressure, 
cmH2O

12·6 (2·9) 12·4 (2·8) 13·2 (2·9) <0·001

High positive end-expiratory 
pressure strategy

269 (27%) 167 (25%) 102 (30%) 0·130

Plateau pressure, cmH2O 27·3 (5·2) 26·9 (5·1) 28·0 (5·3) 0·003

Driving pressure, cmH2O 14·9 (4·4) 14·8 (4·3) 15·2 (4·5) 0·200

Compliance respiratory system, 
mL/cmH2O

32·3 (12·0) 31·8 (11·5) 33·3 (13·0) 0·082

PaO2, mm Hg 93 (43) 91 (43) 98 (43) 0·026

PaO2/FiO2, mm Hg 148 (75) 143 (77) 153 (71) 0·182

Mild 262 (26%) 162 (24%) 100 (30%) 0·110

Moderate 520 (52%) 350 (52%) 170 (51%) ··

Severe 225 (22%) 159 (24%) 66 (20%) ··

Mechanical power, J/min 18·4 (6·7) 17·3 (6·1) 20·6 (7·3) <0·001

PaCO2, mm Hg 45·2 (11·8) 43·5 (10·7) 48·8 (13·1) <0·001

Ventilatory ratio 1·64 (0·68) 1·52 (0·49) 1·89 (0·91) <0·001

Difference between arterial and 
end-tidal CO2

7·72 (11·14) 6·71 (10·40) 9·79 (12·31) <0·001

pH‡ 7·36 (0·10) 7·36 (0·09) 7·34 (0·10) <0·001

Creatinine, μmol/L‡ 74 (61–96) 73 (58–93) 77 (65–97) 0·015

Urine output, mL/day 705 (370–1148) 670 (350–1125) 725 (415–1202) 0·071

Fluid balance, mL/day 608 (29–1418) 539 (13–1268) 712 (71–1587) 0·048

Prone position during first ICU day 300 (30%) 199 (30%) 101 (30%) 0·520

Vasopressor in first ICU day 792 (79%) 520 (77%) 271 (81%) 0·340

(Table 1 continues on next page)
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outcomes, respectively. Odds ratios (ORs) with 95% CIs 
for the assocation between subphenotype and 28-day 
mortality, adjusted for age, gender, and BMI were 
calculated. A sensitivity analysis was done on data 
collected from patients who remained on invasive 
mechanical ventilation for more than 96 h. Missing data 
were imputed for the latent class analysis using 
multivariate imputation by chained equations; the 
results from the first dataset are presented and the 
additonal datasets were evaluated for consistency.

Data analysis was done in R version 4.0.3 through the 
R studio interface, with the exception of group-based 
trajectory monitoring, which applied using the traj 
package command in Stata MP16.

The PRoVENT-COVID study is registered with is 
registered with ClinicalTrials.gov, NCT04346342.

Role of the funding source 
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results 
Between March 1, 2020, and May 15, 2020, 1122 patients 
were screened for study entry, of whom 115 were excluded 
because they previously received invasive ventilation, 
leaving 1007 patients included in the derivation cohort 
(appendix p 4). We recorded patient characteristics 
(table 1). Included patients were mostly men (814 [73%] 
of 1007 patients), with a mean age of 63·7 years (SD 10·8) 
and a mean BMI of 28·6 kg/m² (SD 5·6). 294 (29%) of 
1007 (29%) patients died by day 28 after ICU admission. 
288 patients were included for analysis from replication 
cohort 1 and 326 from replication cohort 2 (appendix p 4). 
Patients in the replication cohorts had a higher mean 
BMI of 34·0 kg/m² (SD 18·6) in replication cohort 1 and 
32·6 kg/m² (10·0) in replication cohort 2. At day 28, 
78 (27%) patients in replication cohort 1 and 138 (42%) in 
replication cohort 2 had died.

Latent class analysis using cross-sectional data at 
initiation of invasive mechanical ventilation did not yield 
any latent classes in the derivation cohort at baseline 
(figure 1B). A one-class model had the lowest Akaike 
information criterion, Bayesian information criterion, 
integrated complete likelihood, and entropy values 
(appendix p 5). These analyses were repeated for data 
obtained 24 h, 48 h, 72 h, and 96 h after intubation and 
yielded similar results (appendix p 5). Therefore, this 
analysis did not yield any evidence for respiratory 
subphenotypes using cross-sectional data.

Using the longitudinal data from the first 4 days of 
invasive ventilation (figure 1C), a two-class model best fit 
the derivation cohort (appendix p 6). Entropy was 82% and 
the probability of class membership was good 
(appendix p 7). Sensitivity analysis including only the 
826 (82%) patients who remained on invasive mechanical 
ventilation for more than 96 h showed similar results 

(appendix p 8), with only 22 (3%) patients changing class 
membership. We recorded standardised mean differences 
between classes over time (figure 2). Subphenotype 2 
(336 [33%] of 1007 patients) was characterised by increasing 
minute ventilation, mechanical power, and ventilatory 
ratio over the first 4 days of invasive mechanical ventilation 
(appendix p 9).

Venous thromboembolism was more common in 
subphenotype 2 (109 [32%] of 336 patients) than in 
subphenotype 1 (176 [26%] of 671 patients; p=0·048). The 
median numbers of ventilator-free days and patients 
alive at day 28 were lower in subphenotype 2 than in 

All (n=1007) Time-dependent subphenotypes* p value

1 (n=671) 2 (n=336)

(Continued from previus page)

Outcomes

Acute kidney injury§ 447 (44%) 270 (40%) 177 (53%) 0·001

Renal replacement§ 180 (18%) 109 (16%) 70 (21%) 0·088

Venous thrombotic event§ 285 (28%) 176 (26%) 109 (32%) 0·048

ICU length of stay, days 15 (9–27) 15 (9–25) 16 (9–30) 0·36

Duration of invasive mechanical 
ventilation, days

13 (8–23) 13 (8–23) 14 (8–24) 0·41

Ventilator-free days and alive at 
day 28, days

2 (0–16) 5 (0–17] 0 (0–15) 0·016

Day 7 mortality 112 (11%) 72 (11%) 40 (12%) 0·83

Day 28 mortality 294 (29%) 185 (28%) 109 (32%) 0·10

Day 90 mortality 349 (35%) 223 (33%) 123 (37%) 0·24

Data are mean (SD), n (%), or median (IQR). Mild, moderate, and severe PaO2/FiO2 were graded according to Berlin 
definition. ICU=intensive care unit. *Latent class analysis using 8-hourly data from the first 4 days of invasive 
ventilation was used to identify time-dependent subphenotypes that emerged during the first 96 h of ICU admission. 
†Date of ICU admission was the same as the day of start of mechanical ventilation in this cohort. ‡In blood samples. 
§During ICU stay.

Table 1: Patient characteristics at the start of mechanical ventilation (ie, day 0) and outcomes in the 
derivation cohort

Figure 2: Standardised mean differences between the two longitudinal 
respiratory subphenotypes
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subphenotype 1 (5, IQR 0–17 for subphenotype 1 and 0, 
0–15 for subphenotype 2; p=0·016; table 1; appendix p 10). 
Day 7, day 28, and day 90 mortality individually were not 
significantly different in subphenotype 2 compared with 
subphenotype 1 (table 1).

The trajectories of PaO2/FiO2 and respiratory 
compliance were distinct from those observed in the 
time-dependent latent class analysis-derived sub-
phenotypes and were not considered further. The group-
based trajectory model of ventilatory ratio and mechanical 
power showed over lapping trajectories with the time-
dependent latent class analysis-derived subphenotypes 
(figures 1D, 3). Two trajectories were observed, as follows: 
a stable value for ventilatory ratio or mechanical power 
over the first 4 days of invasive mechanical ventilation 
(trajectory A overlapping with subphenotype 1) or 
an upward trajectory (trajectory B overlapping with 
subphenotype 2). 28-day mortality and the rate of venous 
thrombotic events were higher in patients categorised to 
ventilatory ratio and mechanical power trajectory B than 
in their trajectory A counterparts (table 2). Trajectory B 
was independently associated with 28-day mortality for 
ventilatory ratio (OR 1·64, 95% CI 1·17–2·29) and 
mechanical power (1·82, 1·24–2·66) after adjusting for 
sex, age, and BMI. Thus, group-based trajectory model-
derived trajectories for ventilatory ratio and mechanical 
power had prognostic potential in the derivation cohort 
and were evaluated in the replication cohorts.

After adjusting for sex, age, and BMI, ventilatory ratio 
trajectory B was independently associated with 28-day 
mortality in replication cohort 1 (OR 4·65, 95% CI 
1·87–11·6) and replication cohort 2 (1·89, 1·05–3·37). 
Mechanical power trajectory B was independently 
associated with mortality in replication cohort 1 
(OR 2·98, 95% CI 1·51–5·87), but not in replication 
cohort 2 (0·96, 0·54–1·72). Patients with mechanical 
power trajectory B had a longer duration of mechanical 

Figure 3: Comparison of dynamic changes of time dependent latent class analysis subphenotypes and 
trajectory analysis
At each 8-hourly timepoint the median and IQR is plotted. The line shows second-degree polynomial regression.
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Trajectory B
2 Trajectory A

All (n=1007) Ventilatory ratio trajectories p value Mechanical power trajectories p value

A (n=777) B (n=230) A (n=695) B (n=312)

Subphenotype 2 (%) 336 (33%) 190 (24%) 146 (63%) <0·001 118 (17%) 218 (70%) <0·001

Age, years 63·7 (10·8) 63·63 (10·94) 63·89 (10·10) 0·750 64·12 (10·53) 62·72 (11·18) 0·057

Male sex 728 (72%) 573 (74%) 155 (67%) 0·071 464 (66·8) 264 (84·6) <0·001

Body-mass index, kg/m² 28·6 (5·6) 28·2 (4·3) 29·9 (8·7) <0·001 28·0 (4·3) 29·9 (7·6) <0·001

High positive end-expiratory pressure 
strategy

269 (27%) 211 (27%) 58 (25%) 0·510 158 (23%) 111 (36%) <0·001

Outcomes

Acute kidney injury 447 (44%) 316 (41%) 131 (57%) <0·001 262 (38%) 185 (59%) <0·001

Renal replacement 180 (18%) 120 (15%) 59 (26%) 0·001 92 (13%) 87 (28%) <0·001

Venous thrombotic event 285 (28%) 195 (25%) 90 (39%) <0·001 180 (26%) 105 (34%) 0·014

ICU length of stay, days 15 (9–27) 15 (9–25) 19 (10–32) 0·007 15 (9–24) 17 (9–31) 0·063

Duration of invasive mechanical 
ventilation, days

13 (8–23) 13 (8–22) 16 (8–26) 0·008 13 (8–22) 15 (8–25) 0·039

Ventilator-free days and alive at 
day 28, days

2 (0–16) 6 (0–18) 0 (0–9) <0·001 7 (0–18) 0 (0–9) <0·001

Day 7 mortality 112 (11%) 74 (10%) 38 (17%) 0·011 60 (9%) 52 (17%) 0·001

Day 28 mortality 294 (29%) 210 (27%) 84 (37%) 0·018 173 (25%) 121 (39%) <0·001

Day 90 mortality 349 (35%) 242 (31%) 104 (45%) <0·001 212 (31%) 134 (43%) <0·001

Data are n (%) or mean (SD). Trajectory A is a stable trajectory and trajectory B is an increasing trajectory.

Table 2: Outcomes for trajectories of ventilatory ratio and mechanical power in derivation cohort
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ventilation than patients in mechanical power 
trajectory A in the derivation and replication cohorts 
(tables 2, 3).

We found no difference in the use of a high positive end-
expiratory pressure strategy between the time-dependent 
latent class analysis derived subphenotypes 1 and 2 
(table 1), nor for the ventilatory ratio trajectories A and B 
(table 3). Patients with the upward trajectory (ie trajectory B) 
of mechanical power were more frequently exposed to a 
high positive end-expiratory pressure strategy (table 3). 
We found no difference in the use of remdesivir, 
corticosteroids, or tociluzimab between the A and B 
trajectories of mechanical power and ventilatory ratio in 
replication cohort 1, but there were differences in 
replication cohort 2 (table 3). However, use of these drugs 
did not explain the differences in prevalence of the 
trajectory subphenotypes between the cohorts.

Discussion 
In these large observational cohort studies with granular 
clinical data of critically ill patients with acute respiratory 
failure due to severe COVID-19, we found no empirical 
evidence for the existence of respiratory subphenotypes at 
the start of invasive ventilation, nor at cross-sectional 
analysis in the succeeding 4 days. However, using time-
dependent analysis, we identified two sub phenotypes that 
developed during the first 4 days of invasive mechanical 
ventilation. Trajectories of ventilatory ratio and mechanical 
power were most discriminatory and modelling these 
parameters alone provided prognostic value for duration 
of mechanical ventilation and mortality.

Using respiratory and ventilatory data available directly 
after the start of invasive mechanical ventilation in 
patients with COVID-19-related ARDS, we found no 
suggestion for the existence of latent classes. In other 

All VR trajectories p value 
between VR 
trajectories

MP trajectories p value 
between MP 
trajectories

A B A B

Replication cohort 1

Total 288 246 29 ·· 214 72 ··

Age, years 60·2 (14·5) 60·6 (14·6) 56·2 (13·5) 0·13 61·5 (14·2) 56·2 (14·7) 0·007

Male sex 186 (65%) 161 (65%) 16 (55%) 0·38 126 (59%) 59 (82%) 0·001

BMI, kg/m² 34·0 (18·6) 33·6 (19·5) 39·8 (11·3) 0·097 32·7 (18·1) 35·9 (9·6) 0·158

Pharmacological treatments

Remdesivir 94 (33%) 87 (35%) 7 (24%) 0·22 78 (36%) 18 (25%) 0·075

Corticosteroids 163 (57%) 143 (58%) 20 (69%) 0·26 119 (56%) 49 (68%) 0·063

Tociluzimab 83 (29%) 70 (28%) 13 (45%) 0·069 62 (29%) 25 (35%) 0·360

Outcomes

ICU length of stay, days 15 (9–27) 15 (9–26) 18 (8–45) 0·41 14 (8·5–25) 18 (11–31·5) 0·015

Duration of invasive mechanical 
ventilation, days

10·5 (6–21) 10 (6–20) 14 (7–39) 0·070 9 (6–20) 14 (7–27) 0·014

Ventilator-free days and alive at day 28, days 7 (0–20) 10 (0–21) 0 (0–0) <0·001 11 (0–21) 0 (0–15) 0·002

Day 28 mortality 78 (27%) 63 (26%) 13 (45%) 0·049 53 (25%) 25 (35%) 0·137

Replication cohort 2

Total 326 255 71 ·· 86 186 ··

Age, years 64·2 (14·4) 64·8 (14·7) 62·0 (12·9) 0·15 67·1 (14·9) 64·6 (13·3) 0·160

Male sex 192 (59%) 161 (63%) 31 (44%) 0·005 43 (50%) 116 (62%) 0·073

BMI, kg/m² 32·6 (10·0) 31·4 (9·2) 36·7 (11·7) <0·001 28·4 (6·5) 32·4 (9·2) <0·001

Pharmacological treatments

Remdesivir 51 (16%) 33 (13%) 18 (25%) 0·011 6 (7%) 33 (18%) 0·018

Corticosteroids 111 (34%) 77 (30%) 34 (48%) 0·005 20 (23%) 69 (37%) 0·023

Tociluzimab 13 (4%) 7 (3%) 6 (8%) 0·002 1 (1%) 8 (4%) 0·180

Outcomes

ICU length of stay, days 12 (6–22) 13 (6–24) 12 (7–20) 0·43 8 (3–17) 14 (7–24) <0·001

Duration of invasive mechanical 
ventilation, days

10 (5–16) 10 (5–16) 10 (7–15) 0·68 6·21 (3–11) 11 (7–17) <0·001

Ventilator-free days and alive at day 28, days 0 (0–16) 0 (0–16) 0 (0–11) 0·35 0 (0–20) 0 (0–14) 0·017

Day 28 mortality 138 (42%) 102 (40%) 36 (51%) 0·134 37 (43%) 77 (41%) 0·900

Data are n, mean (SD), n (%), or median (IQR), unless otherwise indicated. Trajectory A was a stable trajectory and trajectory B was an increasing trajectory. BMI=body-mass 
index. ICU=intensive care unit. MP=mechanical power. VR=ventilatory ratio.

Table 3: Characteristics and outcomes in the replication cohorts
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words, the data were best explained by the presence 
of a single phenotype. This finding emphasises the 
importance of a data-driven approach to subphenotyping16 
and contradicts earlier efforts that attempted to identify 
respiratory subphenotypes based on physiological 
reasoning and clinical observations.5–9 This conclusion 
does not necessarily mean that the physiological 
description of the cases that were reported were false, 
but rather that these fall at the extremes of a normal 
distribution and do not represent distinct subclasses. 
Insufficient evidence for latent classes based on 
respiratory and gas exchange variables alone is in line 
with a study in which classification of subphenotypes 
of COVID-19-related ARDS was driven by plasma 
biomarkers of organ failure, inflammation, and 
coagulation, whereas respiratory and gas exchange 
variables did not provide any discrimination.12

Subphenotypes emerged in the derivation cohort using 
longitudinal data from the first 4 days of invasive 
ventilation. The importance of dynamic changes over 
time has been exemplified by the identification of 
temperature trajectory subphenotypes in patients with 
sepsis and COVID-19.23,25 Patterns in temperature 
trajectories showed prognostic enrichment for mortality 
and were associated with differences in inflammatory 
markers in plasma.25 We used group-based trajectory 
modelling to identify subphenotypes based on the 
dynamic changes in PaO2/FiO2, compliance of the 
respiratory system, ventilatory ratio, and mechanical 
power. The major advantage of modelling one variable 
with group-based trajectory modelling compared with 
time-dependent latent class analysis is that the former is 
more suitable for application in a clinical setting and 
across multiple cohorts. Indeed, we were unable to 
identify any database with sufficiently granular data of all 
eight variables to externally validate the time-dependent 
latent class analysis approach. Furthermore, in our 
analyses, we found that both ventilatory ratio and 
mechanical power trajectories were predictive of duration 
of mechanical ventilation in two datasets, while only 
ventilatory ratio trajectories were indicative of an 
increased likelihood of 28-day mortality.

Trajectory analysis of the ventilatory ratio seems to a 
promising method for prognostication. The two trajectories 
had similar rates of baseline organ dysfunction but 
differentially developed complications such as venous 
thrombotic events and acute kidney injury requiring renal 
replacement therapy. Ventilatory ratio is easily calculated at 
the bedside when arterial blood gas analysis is available 
and is a good surrogate marker for dead space ventilation,26 
although it can be influenced by other factors. The 
subphenotype with an upward ventilatory ratio trajectory 
showed a higher mortality independent of baseline risk 
factors. Patients with an upward ventilatory ratio trajectory 
also more frequently had venous thrombotic events, and 
pulmonary embolism is a likely contributor to ventilation-
perfusion mismatch in this patient group, although we did 

not study this relationship directly in this study.27,28 We 
speculate that patients with an upward ventilatory ratio 
trajectory show more pulmonary perfusion defects and 
might benefit from more intensive anticoagulatory 
treatment, even in the absence of pulmonary embolism.29 
Perfusion defects in patients with COVID-19 can also be 
driven by immune-response related in-situ thrombosis, for 
which anticoagulation therapy might be less effective.29–31 
However, immuno modulatory therapies such as 
dexamethasone and tociluzimab were not associated with 
a decreased prevalence of the upward trajectory 
subphenotype in this study, suggesting that these therapies 
do not eliminate the increase in ventilatory ratio over time.

Ventilatory ratio and mechanical power might be 
influenced by treatment strategies; therefore, we studied 
if variation in clinical practice could explain the existence 
of the identified subphenotypes. A difference in positive 
end-expiratory pressure strategy was observed between 
the mechanical power trajectory subphenotypes, with a 
higher positive end-expiratory pressure strategy more 
common in patients with an upward trajectory. Given 
that an increase in positive end-expiratory pressure 
without a decrease in driving pressure can result in an 
increase in mechanical power, this could be suggestive 
for inappropriate use of high levels of positive end-
expiratory pressure in this subset of patients. This 
finding requires further evaluation in larger cohorts of 
critically ill patients with COVID-19-related ARDS. 
However, pharmacological treatment with remdesivir, 
corticosteroids, and tociluzimab did not consistently 
explain differences in the prevalence of the trajectory 
subphenotypes.

This study has several important strengths. Other 
studies have reassessed the prognostic accuracy of 
mechanical power, ventilatory ratio, and PaO2/FiO2 after 
24–48 h26,32,33 but, to our knowledge, this study is the first 
to identify subphenotypes based on respiratory and gas 
exchange variables in a large cohort of patients, with 
external validation of the findings. We combined cross-
sectional latent class analysis, time-dependent latent 
class analysis, and group-based trajectory modelling to 
move from a simplistic model of two cross-sectional 
subphenotypes to a classification based on the individual 
trajectories of ventilatory ratio and mechanical power 
during the first 96 h of mechanical ventilation. Use of a 
single variable is important for clinical applicability, 
which is shown by the fact that we were unable to 
identify a replication cohort with 8-hourly data for all 
variables using time-dependent latent class analysis. A 
major limitation of this study is the observational nature 
of the data, which prevented us from studying the 
potential for predictive enrichment. Furthermore, data 
were carefully curated in the derivation cohort, whereas 
there was an automated system to extract data from 
electronic health records in replication cohorts. Despite 
this difference in data curation, the relationship between 
trajectories and outcomes persisted. Further more, even 
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though consecutive patients were included in all cohorts, 
the variation in mortality rates suggest that case mix 
varied. Both factors could explain the different incidence 
of the trajectory B of ventilatory ratio and mechanical 
power between cohorts.

In conclusion, patients with COVID-19-related ARDS 
consistently show a single respiratory phenotype at the 
start of invasive mechanical ventilation. The data suggest 
that there are at least two distinct trajectories during the 
first days of invasive mechanical ventilation, with 
one subphenotype showing increasing minute ventilation, 
mechanical power, and ventilatory ratio. Trajectories of 
mechanical power and ventilatory ratio were independently 
associated with outcome. COVID-19-related ARDS seems 
to diverge from a fairly homogenous respiratory 
physiology to a more heterogeneous population during 
the first 4 days of invasive mechanical ventilation. This 
finding reveals the importance of including time as a 
key variable in future efforts towards subphenotyping 
COVID-19. Anticoagulation and positive end-expiratory 
pressure selection should be considered as treatable traits 
in the identified subphenotypes.
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