
 

 

 

Cabbage and fermented vegetables

Citation for published version (APA):

Bousquet, J., Anto, J. M., Czarlewski, W., Haahtela, T., Fonseca, S. C., Iaccarino, G., Blain, H., Vidal, A.,
Sheikh, A., Akdis, C. A., Zuberbier, T., Abdul Latiff, A. H., Abdullah, B., Aberer, W., Abusada, N., Adcock,
I., Afani, A., Agache, I., Aggelidis, X., ... ARIA group (2021). Cabbage and fermented vegetables: From
death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy,
76(3), 735-750. https://doi.org/10.1111/all.14549

Document status and date:
Published: 01/03/2021

DOI:
10.1111/all.14549

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 19 Apr. 2024

https://doi.org/10.1111/all.14549
https://doi.org/10.1111/all.14549
https://cris.maastrichtuniversity.nl/en/publications/fb2c6a75-493b-4c09-bc21-4b4da21cd601


Allergy. 2021;76:735–750.     |  735wileyonlinelibrary.com/journal/all

 

Received: 29 July 2020  |  Revised: 31 July 2020  |  Accepted: 4 August 2020

DOI: 10.1111/all.14549  

R E V I E W  A R T I C L E

Cabbage and fermented vegetables: From death rate 
heterogeneity in countries to candidates for mitigation 
strategies of severe COVID-19

Jean Bousquet1,2,3 |   Josep M. Anto4,5,6,7 |   Wienczyslawa Czarlewski8,9 |   Tari Haahtela10  |    
Susana C. Fonseca11 |   Guido Iaccarino12 |   Hubert Blain13 |   Alain Vidal14,15 |   
Aziz Sheikh16 |   Cezmi A. Akdis17  |   Torsten Zuberbier1,2  |   ARIA group
1Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
2Department of Dermatology and Allergy, Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany
3MACVIA-France and CHU, Montpellier, France
4Centre for Research in Environmental Epidemiology (CREAL), ISGlobAL, Barcelona, Spain
5IMIM (Hospital del Mar Research Institute), Barcelona, Spain
6Universitat Pompeu Fabra (UPF), Barcelona, Spain
7CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
8MASK-Air, Montpellier, France
9Medical Consulting Czarlewski, Levallois, France
10Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Finland
11Faculty of Sciences, GreenUPorto - Sustainable Agrifood Production Research Centre, DGAOT, University of Porto, Porto, Portugal
12Department of Advanced Biomedical Sciences, Federico II University, Napoli, Italy
13Department of Geriatrics, Montpellier University hospital and MUSE, Montpellier, France
14World Business Council for Sustainable Development (WBCSD), Geneva, Switzerland
15AgroParisTech - Paris Institute of Technology for Life, Food and Environmental Sciences, Paris, France
16Usher Institute, University of Edinburgh, Scotland, UK
17Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland

© 2020 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

See the ARIA group in Appendix 1.  

Abbreviations: ACE, angiotensin-converting enzyme; Ang II, angiotensin II; AT1R, angiotensin II receptor type 1; COVID-19, coronavirus disease 19; GI, gastrointestinal; LAB, lactic acid 
bacilli; NF-κB, nuclear factor kappa B; Nrf2, nuclear factor (erythroid-derived 2)-like 2; PEDV, porcine epidemic diarrhea virus; ROS, reactive oxygen species; SARS, severe acute 
respiratory syndrome; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TGEV, transmissible gastroenteritis coronavirus infection.

Correspondence
Jean Bousquet, MACVIA-France and CHU, 
273 avenue d’Occitanie, 34090 Montpellier, 
France.
Email: jean.bousquet@orange.fr

Abstract
Large differences in COVID-19 death rates exist between countries and between 
regions of the same country. Some very low death rate countries such as Eastern 
Asia, Central Europe, or the Balkans have a common feature of eating large quantities 
of fermented foods. Although biases exist when examining ecological studies, fer-
mented vegetables or cabbage have been associated with low death rates in European 
countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 
(ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the an-
giotensin II receptor type 1 (AT1R) axis associated with oxidative stress. This leads to 
insulin resistance as well as lung and endothelial damage, two severe outcomes of 

www.wileyonlinelibrary.com/journal/all
mailto:
https://orcid.org/0000-0003-3673-8333
https://orcid.org/0000-0001-8020-019X
https://orcid.org/0000-0002-1466-8875
mailto:jean.bousquet@orange.fr
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fall.14549&domain=pdf&date_stamp=2020-09-15


736  |     BOUSQUET ET al.

1  | INTRODUC TION

A COVID-19 epidemic started in China and then disseminated to 
other Asian countries before becoming a pandemic. There is a 
large variability across countries in both incidence and mortal-
ity, and most of the current debates on COVID-19 focus on the 
differences between countries. Several intertwined factors can 
be proposed: social distancing, health system capacity, age of 
the population, social lifestyle (gathering of family/friends, so-
cial behavior), testing capacity, and/or timing and intensity of the 
first outbreak. German fatalities are strikingly low as compared 
to many European countries. Among the several explanations 
proposed, an early and large testing of the population was put 
forward1 as well as social distancing. However, little attention 
has been given to regional within-country differences that may 
propose new hypotheses.

It would appear that the pandemic has so far resulted in pro-
portionately fewer deaths in some central European countries, the 
Balkans, China, in most Eastern Asian countries, as well as in many 
sub-Saharan African countries. Several reasons can explain this pic-
ture. One of them may be the type of diet in these low mortality 
countries.2,3

Diet has been proposed to mitigate COVID-19.4,5 Some foods 
or supplements may have a benefit on the immune response to 
respiratory viruses. However, to date, there are no specific data 
available to confirm the putative benefits of diet supplementation, 
probiotics, and nutraceuticals in the current COVID-19 pandemic.6 
News and social media platforms have implicated dietary supple-
ments in the treatment and prevention of COVID-19, but without 
evidence.7

In this paper, we discuss country and regional differences in 
COVID-19 deaths. We attempt to find potential links between foods 
and differences at the national or regional levels. The aim is to pro-
pose a common mechanism focussing on oxidative stress that may 
be relevant in COVID-19 mitigation strategies. We used cabbage and 
fermented vegetable as a proof-of-concept.

2  | BIA SES TO BE CONSIDERED

According to the Johns Hopkins Coronavirus Resource Center 
(https://coron avirus.jhu.edu), one of the most important ways of 
measuring the burden of COVID-19 is mortality. However, death 
rates are assessed differently between countries and there are 
many biases that are almost impossible to assess. Using the rates of 
COVID-19 confirmed cases is subject to limitations that are similar to 
or even worse than the differences in the use of COVID-19 testing.

Differences in the mortality rates depend on healthcare sys-
tems, the reporting method, and many unknown factors. Countries 
throughout the world have reported very different case fatality 
ratios—the number of deaths divided by the number of confirmed 
cases—but these numbers cannot be compared easily due to biases. 
On the other hand, for many countries, the methodology used to 
report death rates in the different regions is standardized across the 
country.

We used mortality per number of inhabitants to assess death 
rates, as proposed by the European Center for Disease Prevention 
and Control (ecdc, https://www.ecdc.europa.eu/en), and to report 
trends with cutoffs at 25, 50, 100, and 250 per million.

Our hypothesis is mostly based on ecological data that are hy-
pothesis-generating and that require confirmation by proper studies.

3  | MULTIFAC TORIAL ORIGIN OF THE 
COVID -19 EPIDEMIC

Like most diseases, COVID-19 exhibits large geographical variations 
which frequently remain unexplained.8 The COVID-19 epidemic is 
multifactorial, and factors like climate, population density, age, phe-
notype, and prevalence of noncommunicable diseases are also associ-
ated with increased incidence and mortality.9 Diet represents only one 
of the possible causes of the COVID-19 epidemic, and its importance 
needs to be better assessed. Some risk factors for the COVID-19 epi-
demics are proposed at the individual and country levels in Table 1.

COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent 
antioxidant in humans and can block in particular the AT1R axis. Cabbage contains 
precursors of sulforaphane, the most active natural activator of Nrf2. Fermented veg-
etables contain many lactobacilli, which are also potent Nrf2 activators. Three exam-
ples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that 
fermented cabbage is a proof-of-concept of dietary manipulations that may enhance 
Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.

K E Y W O R D S

angiotensin-converting enzyme 2, cabbage, COVID-19, diet, fermented vegetable, kimchi, 
Lactobacillus, sulforaphane
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4  | ECOLOGIC AL DATA ON COVID -19 
DE ATH R ATES

When comparing death rates, large differences exist between and 
within countries, and the evolution of the pandemic differs largely 
between countries (Figure 1). Although there are many pitfalls in 
analyzing death rates for COVID-19,3 the evolution of death rates 
between May 20 and July 18 shows a dramatic increase in Latin 
America and only some increase in European countries, certain 
African countries, the Middle East, India, Pakistan, and some of 
the South-East Asian countries. However, there is no change in 
the very low death rates of Cambodia, China, Japan, Korea, Lao, 
Malaysia, Taiwan, and Vietnam and of many sub-Saharan African 
countries, Australia, and New Zealand. This geographical pattern 

is very unlikely to be totally due to reporting differences between 
countries.

In some high death rate countries such as Italy (Figure 2), varia-
tions are extremely large from 50 per million in Calabria to over 1600 
in Lombardia. In Switzerland, the French- and Italian-speaking cantons 
have a far higher death rate than the German-speaking ones (Office 
fédéral de la santé publique, Switzerland) (Figure 3). It may be proposed 
that the high death rate cantons were contaminated by French and 
Italian people. However, the Mulhouse airport serves the region of 
Basel (Switzerland), the Haut-Rhin department (France), and the region 
of Freiburg (Germany). There was a COVID-19 outbreak in the Haut-
Rhin department, in particular in Mulhouse and Colmar. The death rate 
for COVID-19 (May 20, 2020) was 935 per million inhabitants in France 
but only 10 to 25 in Switzerland and 7 in Germany. It is important to 

TA B L E  1   Possible risk factors for COVID-19 infection explaining geographical differences

Measure Individual level Country/region level

A Contact with a SARS-CoV-2 infected 
individual

++++ Case zero identified
++++
For example, Lombardy

A Intensity of social contacts ++ +++

A Intensity of occupational contacts +++ ++

A Confinement (level) +++ +++
For example, the United States versus EU
Sweden vs Nordic countries

A Confinement (early measures) +++ +++
For example, the UK versus EU

A Climatic conditions (temperature, 
humidity)

? ++
Hot and humid temperature may reduce infection but epidemic bursts in 

Brazil, Peru, and Ecuador

A GDP of a country/region ? +

A Vitamin D ? +

B Diet ? +
The map of COVID-19 deaths in Europe and the low prevalence in Asia 

and Africa suggest a role for diet

B Food ++? +
Bibliographic analysis suggests a role for some fermented foods.
Raw cabbage can be fermented in the intestine.
Kefir is largely used in many low-prevalence countries.

B Long food chain supply ++? +
In Italy and Spain, there may be an association with long-chain supply. 

This may be relevant since food quality differs.

B Traditional fermented food (example of 
food)

++? ++
This may be a relevant issue. In former Eastern European countries, in 

the Balkans, in Africa, and in many Asian countries with low COVID-19 
prevalence, traditional fermented foods are common (in line with short 
food chain supply)

B Air pollution +? +?

B Underserved area ++ ++

A 
and 
C

Age +++ + to ++++
In countries where population is young, fewer people have a severe 

disease (e.g., Africa)

C Comorbidities (severity of COVID-19) +++ ++

C Sex ++

C Institutionalized person ++

Note: A: risk factors at a country level, B: environment, nutrition, C: individual level; + to ++++: Proposed relative importance.
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consider these regional differences since reporting of deaths is similar 
within the country and many factors may be considered.

In many Western countries, large cities (eg, London, Madrid, Milan, 
New York, Paris) have been the most affected. This seems to be true 
also for many countries in which the rural areas have much fewer cases.

The number of deaths is relatively low in sub-Saharan Africa 
compared to other regions, and the low population density (which 
applies in rural areas but not in megacities such as Cairo or Lagos) 
or the differences in health infrastructure are unlikely to be the 
only explanation.10 It has been proposed that hot temperature may 

reduce COVID-19, but, in Latin American countries, death rates are 
high (eg, Brazil, Ecuador, Peru, and Mexico).

5  | IS DIET PARTLY RESPONSIBLE FOR 
DIFFERENCES BET WEEN AND WITHIN 
COUNTRIES?

Nutrition may play a role in the immune defense against COVID-19 
and may explain some of the differences seen in COVID-19 between 

F I G U R E  1   COVID-19 deaths per million inhabitants (from Johns Hopkins Coronavirus Center) 

 13989995, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/all.14549 by U

niversity O
f M

aastricht, W
iley O

nline L
ibrary on [05/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



     |  739BOUSQUET ET al.

and within countries.3 In this concept paper, raw and fermented cab-
bage was proposed as a candidate.

To test the potential role of fermented foods in the COVID-19 
mortality in Europe, an ecological study, the European Food Safety 
Authority (EFSA) Comprehensive European Food Consumption 
Database, was used to study the country consumption of fermented 
vegetables, pickled/marinated vegetables, fermented milk, yoghurt, 
and fermented sour milk.11 Of all the variables considered, including 
confounders, only fermented vegetables reached statistical signifi-
cance with the COVID-19 death rate per country. For each g/day in-
crease in consumption of fermented vegetables of the country, the 
mortality risk for COVID-19 was found to decrease by 35.4% (Figure 4).

A second ecological study has analyzed cruciferous vegetables 
(broccoli, cauliflower, head cabbage (white, red, and savoy cabbage), 

leafy brassica) and compared them with spinach, cucumber, cour-
gette, lettuce, and tomato.12 Only head cabbage and cucumber 
reached statistical significance with the COVID-19 death rate per 
country. For each g/day increase in the average national consump-
tion of some of the vegetables (head cabbage and cucumber), the 
mortality risk for COVID-19 decreased by a factor of 11, to 13.6%. 
The negative ecological association between COVID-19 mortality 
and consumption of cabbage and cucumber supports the a priori hy-
pothesis previously reported. However, these are ecological studies 
that need to be further tested.

Another diet component potentially relevant in COVID-19 mor-
tality may be the food supply chain and traditional groceries.13 The 
impact of the long supply chain of food on health is measurable by an 
increase in metabolic syndrome and insulin resistance.14 Therefore, 

F I G U R E  2   Regional differences of 
death rates in Italy (from Worldometer)

F I G U R E  3   Regional differences of death rates (May 20) (from Office fédéral de la santé publique, Switzerland, Gouvernement français, 
Lander Bade Wurtenberg) 
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740  |     BOUSQUET ET al.

areas that are more prone to short supply food and traditional gro-
ceries may have been able to better tolerate COVID-19 with a lower 
death toll. These considerations may be partly involved in the lower 
death rates of Southern Italy compared to the northern part (Figure 2).

6  | FERMENTED FOODS, MICROBIOME , 
AND L AC TOBACILLI

The fermentation process, born as a preservation method in the 
Neolithic age, enabled humans to eat not-so-fresh food and to sur-
vive.15 Indigenous fermented foods such as bread, cheese, vegeta-
bles, and alcoholic beverages have been prepared and consumed for 
thousands of years. They are strongly linked to culture and tradi-
tion, especially in rural households and village communities, and are 
consumed by hundreds of millions of people.16 Fermented foods are 
“foods or beverages made via controlled microbial growth (includ-
ing lactic acid bacteria (LAB)) and enzymatic conversions of food 
components.”17 Not all fermented foods contain live cultures, as 
some undergo further processing after fermentation: pasteurization, 
smoking, baking, or filtration. These processes kill or remove the live 
microorganisms in foods such as soy sauces, bread, most beers, and 
wines as well as chocolate. Live cultures can be found in fermented 
vegetables and fermented milk (fermented sour milk, yoghurt, pro-
biotics, etc.).

Most traditional foods with live bacteria in the low death rate 
countries are based on LAB fermentation.18 A number of bacteria 
are involved in the fermentation of kimchi and other Korean tradi-
tional fermented foods, but LAB—including Lactobacillus—are the 
dominant species in the fermentation process.19,20 Lactobacillus is 

also an essential species in the fermentation of sauerkraut, as well as 
in Taiwanese,21 Chinese,22 or other fermented foods.23 Lactobacilli 
are among the most common microorganisms found in kefir, a tra-
ditional fermented milk beverage,24 milk, and milk products.25,26 
During fermentation, LAB synthesize vitamins and minerals, and 
produce biologically active peptides with antioxidant activity.17,27–31

Humans possess two protective layers of biodiversity, and 
the microbiome has been proposed as an important actor of 
COVID-19.32 The environment (outer layer) affects our life-
style, shaping the microbiome (inner layer).33 Many fermented 
foods contain living microorganisms and modulate the intestinal 
microbiome.17,31,34–36

The composition of microbiomes varies in different regions of 
the world.37 Gut microbiota has an inter-individual variability due 
to genetic predisposition and diet.38 As part of the gut microbi-
ome, Lactobacillus spp. contributes to its diversity and modulates 
oxidative stress in the GI tract. Some foods like cabbage can be fer-
mented by the gut microbiota.39

Westernized foods usually lack fermented vegetables, and 
milk-derived products have less biodiversity than traditional ones. 
Urbanization in Western countries was associated with changes in 
the gut microbiome and with intestinal diversity reduction.38,40–43 
Westernized food in Japan led to changes in the microbiome and 
in insulin resistance.44 The gut microbiome of westernized urban 
Saudis had a lower biodiversity than that of the traditional Bedouin 
population.45 Fast food consumption was characterized by reduced 
Lactobacilli in the microbiome.46

The links between gut microbiome, inflammation, obesity, and 
insulin resistance are being observed, but further large studies are 
needed for a definite conclusion.47–49

F I G U R E  4   Consumption of head 
cabbage and COVID-19 death rate at a 
country level (from Fonseca et al12)
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     |  741BOUSQUET ET al.

Some COVID-19 patients have intestinal microbial dysbiosis50 
with decreased probiotics such as Lactobacillus and Bifidobacterium
.51 Many bacteria are involved in the fermentation of vegetables 
but most traditional foods with live bacteria in the low death rate 
countries are based on LAB fermentation.18–20,23,30 Lactobacilli are 
among the most common microorganisms found in milk and milk 
products.24–26

7  | ANGIOTENSIN- CONVERTING ENZ YME 
2 (ACE2) AND COVID -19

COVID-19 is more severe in older adults and/or patients with comorbidi-
ties such as diabetes, obesity, or hypertension, suggesting a role for insu-
lin resistance.52 Although differences exist between countries, the same 
risk factors for severity were found globally, suggesting common mecha-
nisms. A strong relationship between hyperglycemia, impaired insulin 
pathway, and cardiovascular disease in type-2 diabetes is linked to oxida-
tive stress and inflammation.53 Lipid metabolism has an important role 
to play in obesity, in diabetes and its multi-morbidities, and in aging.54 
The increased severity of COVID-19 in diabetic, hypertensive, obese, 
or elderly individuals may be related to insulin resistance, with oxida-
tive stress as a common pathway.55 Moreover, the severe outcomes of 
COVID-19—including lung damage, cytokine storm, or endothelial dam-
age—appear to exist globally, again suggesting common mechanisms.

The angiotensin-converting enzyme 2 (ACE2) receptor is part 
of a dual system—the renin-angiotensin-system (RAS)—consisting 
of an ACE-Angiotensin-II-AT1R axis and an ACE-2-Angiotensin-
(1-7)-Mas axis. AT1R is involved in most of the effects of Ang II, 
including oxidative stress generation,56 which in turn upregulates 
AT1R.57 In metabolic disorders and with older age, there is an up-
regulation of the AT1R axis leading to pro-inflammatory, pro-fi-
brotic effects in the respiratory system and to insulin resistance.58 
SARS-CoV-2 binds to its receptor ACE2 and exploits it for entry 
into the cell. The ACE2 downregulation, as a result of SARS-CoV-2 
binding, enhances the AT1R axis59, likely to be associated with 
insulin resistance60,61 but also to severe outcomes of COVID-19 
(Figure 5A).

8  | ANTIOXIDANT AC TIVITIES OF FOODS 
LINKED WITH COVID -19

Many foods have an antioxidant activity,62–64 and the role of nutri-
tion has been proposed to mitigate COVID-19.65 Many antioxidant 
mechanisms have been proposed, and several foods can interact 
with transcription factors related to antioxidant effects such as the 
nuclear factor (erythroid-derived 2)-like 2 (Nrf2).4 Some processes 
like fermentation increase the antioxidant activity of milk, cereals, 
fruit, vegetables, meat, and fish.29

F I G U R E  5   Putative mechanisms of fermented or Brassica vegetables against COVID-19. (A) Oxidative stress induced by SARS-CoV-2 
after its binding to ACE2. (B) Preventive effects of cabbage and fermented vegetables through Nrf2

(A) (B)
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8.1 | Nrf2, a central antioxidant system

Reactive oxygen species (ROS), such as hydrogen peroxide and su-
peroxide anion, exert beneficial and toxic effects on cellular func-
tions. Nrf2 is a pleiotropic transcription factor at the center of a 
complex regulatory network that protects against oxidative stress 
and the expression of a wide array of genes involved in immunity 
and inflammation, including antiviral actions.66 Nrf2 activity in 
response to chemical insults is regulated by a thiol-rich protein 
named KEAP1 (Kelch-like ECH-associated protein 1). The KEAP1-
Nrf2 system is the body's dominant defense mechanism against 
ROS.67 Induction of the antioxidant responsive element and the 
ROS-mediated pathway by Nrf2 reduces the activity of the nu-
clear factor kappa B (NF-κB),68 whereas NF-κB can modulate Nrf2 
transcription and activity, having both positive and negative ef-
fects on the target gene expression.69

Natural compounds derived from plants, vegetables, fungi, and 
micronutrients (eg, curcumin, sulforaphane, resveratrol, and vitamin 
D) or physical exercise can activate Nrf2.70,71 However, sulfora-
phane is the most potent activator of Nrf2.3,34 “Ancient foods,” and 
particularly those containing Lactobacillus, activate Nrf2.72

Nrf2 may be involved in diseases associated with insulin resis-
tance.60,73–75 Nrf2 activity declines with age, making the elderly 
more susceptible to oxidative stress-mediated diseases.76 Nrf2 is 
involved in the protection against lung77 or endothelial damage.78 
Nrf2-activating compounds downregulate ACE2 mRNA expression 
in human liver-derived HepG2 cells.79 Genes encoding cytokines, in-
cluding IL-6 and many others specifically identified in the "cytokine 
storm", have been observed in fatal cases of COVID-19. ACE2 can 
inhibit NF-κB and activate Nrf2.80

8.2 | Sulforaphane, the most potent Nrf2 
natural activator

Isothiocyanates are stress response chemicals formed from glucosi-
nolates in plants often belonging to the cruciferous family, and, more 
broadly, to the Brassica genus including broccoli, watercress, kale, 
cabbage, collard greens, Brussels sprouts, bok choy, mustard greens, 
and cauliflower.81 The formation of isothiocyanates from glucosi-
nolates depends on plant-intrinsic factors and -extrinsic postharvest 
factors such as industrial processing, domestic preparation, mastica-
tion, and digestion.82

Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)butane] is an 
isothiocyanate occurring in a stored form such as glucoraphanin 
in cruciferous vegetables.83,84 Sulforaphanes are also found in fer-
mented cabbage.31,85 Present in the plant as its precursor, glucora-
phanin, sulforaphane is formed through the actions of myrosinase, a 
β-thioglucosidase present in either the plant tissue or the mamma-
lian microbiome.86,87

Sulforaphane is a clinically relevant nutraceutical compound used 
for the prevention and treatment of chronic diseases and may be in-
volved in aging.88 Along with other natural nutrients, sulforaphane 

has been suggested to have a therapeutic value for the treatment of 
coronavirus disease 2019 (COVID-19).89

One of the key mechanisms of action of sulforaphane involves 
the activation of the Nrf2-Keap1 signaling pathway.90 Sulforaphane 
is the most effective natural activator of the Nrf2 pathway, and Nrf2 
expression and function are vital for sulforaphane-mediated ac-
tion.91,92 Sulforaphanes were suggested to be effective in diseases 
associated with insulin resistance.1,93–95 It has been proposed that 
SARS-CoV-2 downregulates ACE2 and that there is an increased in-
sulin resistance associated with oxidative stress through the AT1R 
pathway. Fermented vegetables and Brassica vegetables release 
glucoraphanin, converted by the plant or by the gut microbiome into 
sulforaphane, which activates Nrf2 and subsequently reduces insu-
lin intolerance (Figure 5B).

8.3 | Lactic acid bacteria

8.3.1 | Antioxidant activity of Lactobacillus

The gastrointestinal (GI) tract is challenged with oxidative stress 
induced by a wide array of factors, such as exogenous pathogenic 
microorganisms and dietary aspects. Redox signaling plays a critical 
role in the physiology and pathophysiology of the GI tract.96 The 
redox mechanisms of Lactobacillus spp. are involved in the down-
regulation of ROS-forming enzymes,97,98 and redox stress resistance 
proteins or genes differ largely between LAB species. In addition, 
Nrf-2 and NF-κB are two common transcription factors, through 
which Lactobacillus spp. also modulates oxidative stress.99

8.3.2 | Do lactobacilli prevent insulin resistance?

Hundreds of studies have attempted to find an efficacy of LAB on 
insulin resistance-associated diseases. However, most of them are 
underpowered or have some methodological flaw. Moreover, not all 
LAB strains have the same action on insulin resistance100 and new 
better designed studies with an appropriate LAB are required. A 
large meta-analysis found that the intake of probiotics resulted in 
minor but consistent improvements in several metabolic risk fac-
tors in subjects with metabolic diseases, and particularly in insulin 
resistance.101 Another recent meta-analysis found that an oral sup-
plementation with probiotics or synbiotics has a small effect in re-
ducing waist circumference but no effect on body weight or body 
mass index (BMI).102 Kefir, a fermented milk product, was not found 
to be more effective than yoghurt in the glycemic control of obesity, 
possibly because there are insufficient differences between both.103

8.3.3 | Lactobacillus and Nrf2

Nrf2 may be involved in diseases associated with insulin resist-
ance.73–75 “Ancient foods,” and particularly those containing 
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Lactobacillus, activate Nrf2.72 The microbiome is highly related to 
insulin resistance. In mice, several strains of Lactobacillus were found 
to regulate Nrf2 in models of aging,104 in cardioprotective effects,105 
and in nonalcoholic fatty acid liver disease.106 Lactobacillus plan-
tarum CQPC11—isolated from Sichuan pickled cabbages—antago-
nizes oxidation and aging in mice.107 Lactobacillus protects against 
ulcerative colitis by modulation of the gut microbiota and Nrf2/Ho-1 
pathway.108 The sugary kefir strain, Lactobacillus mali APS1, amelio-
rates hepatic steatosis by regulation of Nrf2 and the gut microbiota 
in rats.109 In vitro studies have also found an effect of Lactobacilli 
mediated by Nrf2.110–112 Interestingly, the symbiotic combination 
of prebiotic grape pomace extract and probiotic Lactobacillus sp re-
duces intestinal inflammatory markers.113

8.3.4 | Coronavirus disease in animals and lactic 
acid bacteria

The porcine epidemic diarrhea virus (PEDV) and the transmissible 
gastroenteritis coronavirus infection (TGEV) are worldwide-distrib-
uted coronaviruses. Low levels of Lactobacillus were found in the in-
testine of piglets infected by TGEV114 or PEDV. Lactobacillus inhibits 
PEDV or TGEV effects in vitro.115,116

8.4 | 7-4-Nrf2 and COVID-19

Nrf2 can act on the endoplasmic reticulum stress and the AT1R 
pathway. A putative mechanism may be proposed for the AT1R 
pathway (Figure 5). SARS-CoV-2 downregulates ACE2, inducing 
an increased insulin resistance associated with oxidative stress 
through the AT1R pathway. This may explain risk factors for severe 
COVID-19.

Fermented vegetables are often made from cruciferous 
(Brassica) vegetables that release glucoraphanin converted by the 
plant or by the gut microbiome into sulforaphane which activates 
Nrf2 and subsequently reduces insulin intolerance by its potent an-
tioxidant activities. Fermented vegetables contain a high content of 
Lactobacillus that can activate Nrf2 and impact on the microbiome. 
117 Sulforaphane and LAB both therefore have the ability to reduce 
insulin resistance.

Other putative actions on COVID-19 severity may be postu-
lated. The downregulation of ACE2 reduces the Ang-1,7 antioxi-
dant activity that was found to activate Nrf2.118,119 Nrf2 protects 
against hallmarks of severe COVID-19. It has anti-fibrotic effects 
on various organs including the lungs,120 and protects against 
lung injury, acute respiratory distress syndrome,121 and endothe-
lial damage.78 Finally, Nrf2 can block IL-6 in different models of 
inflammation122 and might play a role in the COVID-19 cytokine 
storm.

These different mechanisms may explain the importance of fer-
mented cabbage in preventing the severity of COVID-19. It is clear 

that other nutrients, vitamin D,123 and many different foods act on 
NRF2 and that mechanisms other than Nrf2 may be operative.

It is not yet known whether sulforaphane and/or LAB may act 
on the infectivity of SARS-CoV-2. Disulfide bonds can be formed 
under oxidizing conditions and play an important role in the fold-
ing and stability of some proteins. The receptor-binding domain of 
the viral spike proteins and ACE2 both have several cysteine res-
idues. Using molecular dynamics simulations, the binding affinity 
was significantly impaired when all of the disulfide bonds of both 
ACE2 and SARS-CoV/CoV-2 spike proteins were reduced to thiol 
groups. This computational finding possibly provides a molecular 
basis for the differential COVID-19 cellular recognition due to the 
oxidative stress.124

It is likely that foods with antioxidant activity can interact with 
COVID-19 and that fermented or cruciferous vegetables represent 
one of the possible foods involved. If some foods are found to be 
associated with a prevention of COVID-19 prevalence or severity, 
it may be of interest to study their LAB and/or sulforaphane com-
position in order to eventually find some common mechanisms and 
targets for therapy.

9  | MAY DIETARY MODIFIC ATIONS 
CHANGE THE COURSE OF COVID -19?

9.1 | Fermented vegetables and Kimchi

It is tempting to propose that countries where traditional LAB-
fermented vegetables are largely consumed are those showing 
lower COVID-19 death rates and that fermented vegetables repre-
sent one possible preventive approach. Other nutrients are found 
in these products that may enhance their effect (eg, vitamin K125). 
Kimchi fermented from many vegetables including cabbage has 
several effects on insulin resistance-associated diseases: anti-dia-
betic properties,126,127 cardiovascular diseases,28 dyslipidemia,128 
or aging.129 Kimchi, when fermented for a long time, reduces insu-
lin intolerance to a greater extent than fresh kimchi,126 indicating 
that newly formed products during fermentation are important. 
In particular, Kimchi from cabbage and Chinese cabbage con-
tains several glucosinolates60,130,131 that can be transformed into 
sulforaphanes either in the plant itself or by the human microbi-
ome.60 In central European countries, raw and fermented cabbage 
is commonly consumed.

In sub-Saharan Africa, although young age is an import-
ant factor, people commonly eat fermented foods, mainly ce-
real-based foods like sorghum, millet and maize, and roots such 
as cassava, fruits, and vegetables. Fermented cassava products 
(like gari and fufu) are a major component of the diet of over 800 
million people and, in some areas, these products constitute over 
50% of the diet.16

It is clear that sauerkraut is consumed in Alsace (France) where a 
COVID-19 outbreak has been identified, but it is not a regular meal.
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9.2 | Westernized diet

Westernized diets contain reduced amounts of fermented vegeta-
bles43,132 and the population may be prone to increasing insulin re-
sistance44,133, to diseases associated with it,134 and thereby to severe 
COVID-19.

In the Mediterranean diet, well known for reducing insulin resis-
tance,135 Nrf2 appears to play an important role.71,136 The COVID-
19 death rate differences in Italian (Figure 2) and Spanish3 regions 
suggest a role for Mediterranean diet and short-chain food supply. 
This also indicates that many foods can have an effect and that cab-
bage and fermented foods represent a proof-of-concept. Nrf2 is 
also involved in the Okinawan-based diet,71 active on insulin intol-
erance.137 Taken altogether, it is possible that diet is partly involved 
in the COVID-19 death clusters found in large Western cities where 
traditional diet is often replaced by long-chain food supply.

It is clear that diet is not the only risk factor and should be con-
sidered in the context of COVID-19 in a given setting. For example, 
Nordic/central European people socialize less than the Mediterraneans 
and simultaneously may consume more fermented vegetables.

9.3 | The COVID-19 slum paradox

It was expected that the COVID-19 pandemic would be catastrophic 
if it reached deprived areas of low- and middle-income countries, in 

particular informal settlements (slum areas) where social distancing 
and lockdown are almost impossible to set up.138

In the United States, highly populated, regional air hub areas, 
minorities, and poverty had an increased risk of COVID-19-related 
mortality.139 It was proposed that the inequality might be due to 
the workforce of essential services, poverty, access to care, or air 
pollution.140 These are common risk factors in mortality observed 
in deprived areas of the United States.141 Moreover, in the United 
States and the UK, there are unique health issues facing black, Asian, 
and minority ethnic communities.142,143 This greater risk of hospital-
ization in these populations was not explained by socioeconomic or 
behavioral factors.144 Social distancing is an important factor to be 
considered145 but diet may also be involved.

On the other hand, a recent report of the Municipal Corporation 
of Greater Mumbai (Public Relation Department, 28-07-2020) 
found that 57% of subjects tested in the slum area had antibodies 
against SARS-CoV-2 but only 16% in the nonslum areas. The fatal-
ity rate in slum areas was very low (0.05%-0.1%).146 Although pre-
cise data are lacking, in Brazilian favelas, the spread of COVID-19 
is not noticed.147 Temperature does not seem to be an important 
factor for containing the pandemic. Young age of the population 
may be important. Fermented foods are popular throughout the 
world, and, in many regions, they represent a widespread tradi-
tion. They also contribute significantly to the diet of millions of 
individuals.16 This is the case in slum areas, and it is possible that 
fermented foods may explain, at least partly, the paradox.

F I G U R E  6   Putative role of diet in COVID-19
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10  | CONCLUSION

Cabbage contains precursors of sulforaphane, the most active natu-
ral activator of Nrf2. Fermented vegetables contain many lactobacilli, 
also potent Nrf2 activators. It is proposed that fermented cabbage is 
a proof-of-concept of dietary manipulations that may enhance Nrf2-
associated antioxidant effects helpful in mitigating COVID-19 severity.

Mainstream COVID-19 control strategies including social dis-
tancing, confinement, intensive case finding, testing, tracing, and 
isolating are so far not enough to provide a SARS-CoV-2-free 
environment and restore a safe social life. There are hopes for a 
safe and effective vaccine, but this is unlikely to become rapidly 
available. So, there is a need to explore other potentially useful 
strategies. An area that has not been sufficiently considered is 
diet, both as a preventive and therapeutically useful intervention, 
encouraging people to eat more traditional foods containing fer-
mented vegetables (Figure 6). We have suggested that fermented 
vegetables could be associated with a lower COVID-19 mortality 
due to their potent antioxidant effect among which sulforaphane 
and LAB are important. However, many other foods may have a 
similar activity. It should be noted that dietary supplements that 
overactivate Nrf2 may have side effects.148

Robust evidence from observational studies would be helpful to 
formally investigate associations between fermented foods and clin-
ical outcomes in COVID-19. State-of-the-art methods, including the 
use of DAGs (directed acyclic graphs), may be needed to help assess 
whether the associations seen are likely to represent causal relation-
ship.149 A faster approach would be to develop large clinical trials 
in the appropriate populations. Interventions based on diets with a 
high intake of fermented foods like Kimchi or other fermented foods 
are unlikely to present ethical difficulties. Furthermore, the fact that 
a precise mechanism has been proposed would facilitate adding re-
liable biomarkers to the relevant clinical outcomes. Moreover, new 
drugs based on the components of these fermented foods may be 
of interest.

If the hypothesis is proved, COVID-19 will be the first infec-
tious disease outbreak associated with a loss of “nature”150 and to 
be ascribed as a disease of the Anthropocene.151 Imbalance in the 
gut microbiota is responsible for the pathogenesis of various disease 
types including allergy, asthma, rheumatoid arthritis, different types 
of cancer, diabetes mellitus, obesity, and cardiovascular disease.152 
Fermentation was introduced during the Neolithic age and was es-
sential for the survival of humankind. When modern life led to eat-
ing reduced amounts of fermented foods, the microbiome drastically 
changed,153 allowing SARS-CoV-2 to spread or to be more severe.154 
It is time for mitigation.155
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