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A New Algorithm for Automatically Calculating Noise, Spatial
Resolution, and Contrast Image Quality Metrics

Proof-of-Concept and Agreement With Subjective Scores in Phantom
and Clinical Abdominal CT
Cécile R.L.P.N. Jeukens, PhD,* Maikel T.H. Brauer, MSc,*†‡ Casper Mihl, MD, PhD,*§
Emmeline Laupman, MD,|| Estelle C. Nijssen, PhD,* Joachim E. Wildberger, MD, PhD,*§

Bibi Martens, MD,*§ and Carola van Pul, PhD†‡
Objectives: The aims of this study were to develop a proof-of-concept computer
algorithm to automatically determine noise, spatial resolution, and contrast-related
image quality (IQ) metrics in abdominal portal venous phase computed tomogra-
phy (CT) imaging and to assess agreement between resulting objective IQ metrics
and subjective radiologist IQ ratings.
Materials andMethods: An algorithm was developed to calculate noise, spatial
resolution, and contrast IQ parameters. The algorithm was subsequently used on
2 datasets of anthropomorphic phantom CT scans, acquired on 2 different scan-
ners (n = 57 each), and on 1 dataset of patient abdominal CT scans (n = 510).
These datasets include a range of high to low IQ: in the phantom dataset, this
was achieved through varying scanner settings (tube voltage, tube current, recon-
struction algorithm); in the patient dataset, lower IQ images were obtained by
reconstructing 30 consecutive portal venous phase scans as if they had been ac-
quired at lower mAs. Five noise, 1 spatial, and 13 contrast parameters were com-
puted for the phantom datasets; for the patient dataset, 5 noise, 1 spatial, and 18
contrast parameters were computed. Subjective IQ rating was done using a
5-point Likert scale: 2 radiologists rated a single phantom dataset each, and an-
other 2 radiologists rated the patient dataset in consensus. General agreement be-
tween IQmetrics and subjective IQ scores was assessed using Pearson correlation
analysis. Likert scores were grouped into 2 categories, “insufficient” (scores 1–2)
and “sufficient” (scores 3–5), and differences in computed IQ metrics between
these categories were assessed using the Mann-Whitney U test.
Results: The algorithm was able to automatically calculate all IQ metrics for
100% of the included scans. Significant correlations with subjective radiologist
ratings were found for 4 of 5 noise (R2 range = 0.55–0.70), 1 of 1 spatial resolution
(R2 = 0.21 and 0.26), and 10 of 13 contrast (R2 range = 0.11–0.73) parameters in the
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phantom datasets and for 4 of 5 noise (R2 range = 0.019–0.096), 1 of 1 spatial res-
olution (R2 = 0.11), and 16 of 18 contrast (R2 range = 0.008–0.116) parameters in
the patient dataset. Computed metrics that significantly differed between “insuffi-
cient” and “sufficient” categories were 4 of 5 noise, 1 of 1 spatial resolution, 9
and 10 of 13 contrast parameters for phantom the datasets and 3 of 5 noise, 1 of
1 spatial resolution, and 10 of 18 contrast parameters for the patient dataset.
Conclusion: The developed algorithm was able to successfully calculate objec-
tive noise, spatial resolution, and contrast IQmetrics of both phantom and clinical
abdominal CT scans. Furthermore, multiple calculated IQmetrics of all 3 catego-
rieswere in agreement with subjective radiologist IQ ratings and significantly dif-
fered between “insufficient” and “sufficient” IQ scans. These results demonstrate
the feasibility and potential of algorithm-determined objective IQ. Such an algo-
rithm should be applicable to any scan and may help in optimization and quality
control through automatic IQ assessment in daily clinical practice.

Key Words: computed tomography, objective image quality, noise, spatial
resolution, contrast, automatic quantification, abdominal CT

(Invest Radiol 2023;58: 649–655)

C omputed tomography (CT) has become an indispensable diagnos-
tic tool in daily clinical practice,1,2 and advances in the technology

are ongoing.3 A drawback of CT is the use of ionizing radiation, expo-
sure to which may become high, in particular when accumulating from
multiple scans.4–6 Radiation dose optimization is necessary and even
mandatory: radiation exposure per CT scan needs to be reduced while
maintaining sufficient diagnostic image quality (IQ).7,8 Finding the op-
timum balance between patient radiation exposure and IQ for each CT
procedure is time consuming and not straightforward, particularly as
there is no universal measure for clinical IQ.

Research in the field of IQ optimization commonly uses scoring
by radiologists to determine diagnostic IQ. However, perceived IQ is
subjective and depends on the clinical question at hand. Furthermore,
scoring scans is time consuming. What would be ideal is a set of objec-
tive, quantitative IQ parameters that can be automatically determined.
Obvious candidates are signal-to-noise ratio and contrast-to-noise ratio
(CNR) in particular regions of interest, but these are difficult to auto-
mate.9 More advanced metrics have been developed for quality control
testing on physical phantoms, typically used in scanner performance
quality checks.10,11 Such phantoms contain structures for quantitative
measurement of physical IQ aspects such as noise, spatial resolution,
and contrast in a reproducible way and for different scanner settings,
but they do not resemble human anatomy and are therefore not directly
comparable to clinical images. Consequently, the relationship between
phantom-based metrics and clinical IQ is not straightforward. Further-
more, iterative reconstruction measurements may be non-linearly influ-
enced, hampering validation efforts.10,12

A promising approach to objectively quantify clinical IQ is the
use of model observers. These are mathematical models developed
for digital detection tasks such as a low-contrast object in phantom im-
ages that contain a certain background structure.11 Detection by such a
www.investigativeradiology.com 649
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FIGURE 1. Pipeline of the algorithm for automatic image quality assessment: noise, spatial resolution, and contrast metrics (see text for more details). Phantom
and patient-based image datasets were used. A slice in the liver region was manually selected. Five noise metrics (a) and 1 spatial resolution metric (b) were
based on known values from literature; multiple contrast metrics (c) were newly developed for this study. The bottom 3 images in (c) illustrate the soft tissues
building up the 3 peaks. The gray voxels are within the peak; the black and white voxels are outside the peak.
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computer model is objective and will more closely mimic clinical
tasks than measuring scanner performance with quality control
phantoms. The technique allows for varying scanner settings, but
existing models have been developed for simple tasks, and more
studies are necessary to determine their accuracy in emulating
radiological diagnosis.11,13–16

A method enabling direct, automatic, and objective IQ analysis
of clinical images would overcome the above limitations and would
constitute a major step forward in the field of IQ optimization. Such a
method would provide opportunities for larger-scale automatic IQ as-
sessment in daily clinical routine, enabling direct detection of decreas-
ing IQ. Furthermore, artificial intelligence software for diagnostic sup-
port is becoming more prominent in clinical practice and requires suffi-
cient IQ to function optimally; therefore, hospitals are required to
monitor IQ. Finally, any protocol optimization would benefit from such
an objective and time-efficient IQ assessment. Several studies have in-
vestigated automatically calculated IQ metrics for noise17–20 or spatial
resolution21,22 of clinical images. These studies show a relationship
650 www.investigativeradiology.com

Copyright © 2023 Wolters Kluwer H
between such automatically determined metrics and radiologist IQ as-
sessment; however, most studies included only 1 aspect of IQ, whereas
it is generally accepted that subjective IQ depends on a combination of
the 3 aspects: noise, spatial resolution, and contrast.23

The aims of this study were to develop a proof-of-concept com-
puter algorithm able to automatically calculate objective IQmetrics cov-
ering all 3 IQ aspects (noise, spatial resolution, and contrast) of clinical
portal venous abdominal CT scans and to assess agreement between
resulting objective IQ metrics and subjective radiologist IQ ratings.
MATERIALS AND METHODS

Developing an Algorithm for Automatic IQ Assessment
A proof-of-concept computer algorithm was developed using

MATLAB (version R2019a, copyright The MathWorks, Inc, New
York, NY) to automatically calculate a set of IQ metrics. Multiple met-
rics were implemented to measure IQ aspects related to noise, spatial
© 2023 Wolters Kluwer Health, Inc. All rights reserved.

ealth, Inc. All rights reserved.

www.investigativeradiology.com


Investigative Radiology • Volume 58, Number 9, September 2023 Automatically Calculated CT Image Quality

D
ow

nloaded from
 http://journals.lw

w
.com

/investigativeradiology by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gb

sIH
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
1y0abggQ

Z
X

dtw
nfK

Z
B

Y
tw

s=
 on 03/05/2024
resolution, and contrast (Fig. 1). For both phantom and patient CT
scans, a single liver slice was analyzed to calculate these IQ metrics;
to this end, the slice containing the largest area of liver tissue was man-
ually selected by visual scrutiny. The noise and spatial resolution met-
rics used were based on metrics reported in literature; all contrast met-
rics, except for CNR, were newly developed for this study.

Automatic IQ Metrics
Five noise metrics were implemented (Fig. 1a): the Kortesniemi

IQ score17 and 4 global noise level (GNL) values.19,20 The Kortesniemi
IQ score is calculated by shifting a 3� 3mask around 1 pixel to create 9
masks. For each mask, the standard deviation (noise) is calculated and
the lowest value is retained. This is repeated for all pixels excluding
areas of air and sharp transitions, that is, excluding pixels in the top
5% standard deviation and pixels below −500 Hounsfield units (HU).
The Kortesniemi IQ score is inversely proportional to the sum of the
square root of the calculated standard deviations. A lower Kortesniemi
IQ score translates to increased noise in the image. Global noise level
values are determined by calculating the standard deviation (noise) for
a 7� 7 mask around pixels in predefined HU ranges: soft tissue range,
defined as 0–100HU, and air range, defined as <−500HU. A histogram
of the standard deviations is plotted and GNL is derived from the me-
dian and mode of the histogram, resulting in 4 GNL values. Higher
GNL values translate to increased image noise in the image.

One spatial resolution metric was implemented (Fig. 1b), calcu-
lated by combining 2 methods described in the literature,21,22 to which
normalization and averaging steps were added to generate a single IQ
metric. First, the outline of the phantom or patient was automatically
segmented. An edge spread function (ESF) was calculated along the
body-air interface in the direction perpendicular to the interface, accord-
ing to the method proposed in Sanders et al.21 Small HU gradients, such
as those caused by clothes, were excluded. Each ESF was normalized
from 0 to 1 and shifted such that the ESF value was 0.5 in the middle
of the transition. The ESFs were then stored into 12 equally spaced bins
based on the radial distance between the body-air interface and the
isocenter of the image. In each bin, the ESFs were stacked to obtain
an oversampled ESF and resampled to 10% of the pixel width. For each
bin, a function

ESF rð Þ ¼ 1

1þ exp − r
m

� �

was fitted, where r is the radial distance and m is a fitting parameter.22

Following the method of Ott et al,22 all ESFs were analytically differen-
tiated and Fourier transformed, from which the full width at half maxi-
mum (FWHM) of the task transfer function (TTF) was calculated as a
function of the fitting parameter m:

FWHM ¼ 2:17732

π2m

The spatial resolution metric was defined as the average FWHM of all
bins. Higher values translate to better spatial resolution in the image.

A set of contrast metrics was developed based on HU histogram
analyses (Fig. 1c). After removal of background air pixels, histograms
of pixel values were generated using bin width of 2 HU and a
Savitzky-Golay smoothing filter.24 The histogram of the anthropomor-
phic phantom liver slice shows 2 peaks, whereas those of patient-based
liver slices show 3 peaks (Fig. 1c).

These peaks encompass the soft tissues present, such as liver tis-
sue, spleen, muscle, and subcutaneous fat. The range of the soft tissue
peaks was empirically determined to be −224 to 376 HU by visual his-
togram analysis. Because contrast metrics are based on generated histo-
grams, this means fewer contrast metrics can be developed for phantom
than patient images. For each peak in the soft tissue region, the follow-
© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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ing metrics were calculated using the MATLAB function findpeaks25:
location, prominence, pixel count, and full width measured at half
prominence (FWHP). The same metrics were calculated for the mini-
mum between the 2 right-most histogram peaks by inverting and repeat-
ing the analysis using the findpeaks function. In addition, CNRwas cal-
culated based on the following26:

CNR ¼ Contrast

Noise
¼ μ1− μ2j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
1 þ σ2

2

p ,

with μ1 and μ2 representing the location of the last 2 peaks respectively
and σ1 and σ2 representing the measured FWHP values of these peaks.
In patient scans, the number of pixels with gray values between 200
and 300 HU was determined as this can be related to the amount of
visible contrast resulting from the intravenously administered con-
trast agent. In total, this resulted in 13 and 18 contrast metrics per
phantom and patient scan, respectively. The meaning of high or
low values of the above contrast metrics for contrast in the image de-
pends on peak characteristics.

Evaluation of the Algorithm in Phantom and
Patient CT Scans

To evaluate the developed algorithm, the above IQ metrics were
determined for CT scans of an anthropomorphic phantom (5 noise, 1
spatial resolution, and 13 contrast metrics) and for clinical CT scans
of patients (5 noise, 1 spatial resolution, and 18 contrast metrics). Two
phantom datasets (1 phantom, 2 different CT scanners) and 1 patient
dataset (multiple patients, 1 scanner) were collected, where each dataset
containedmultiple CT scans. The phantom datasets were used to evaluate
algorithm performance on CT scans acquired using awide range of mAs
and kV values, which result in a wide range of IQs on the same phantom
without introducing anatomical and pathological variation. The patient
dataset enabled the testing of algorithm performance in a clinical setting.
For thorough testing of the algorithm, broad IQ ranges were incorporated
in the datasets, ranging from high to low.

Anthropomorphic Phantom Datasets
An anthropomorphic phantom (PBU-60 phantom, Kyoto Kagaku

Co, Ltd, Kyoto, Japan) was used for the acquisition of 2 datasets: 57 scans
performed on a 256-slice CT scanner (Ingenuity, Philips Healthcare,
Best, the Netherlands [CT1]) and 57 scans performed on a third-generation
dual-source CT (DSCT) scanner (Somatom Force, Siemens Healthineers,
Forchheim, Germany [CT2]). Varying scanner settings (tube voltage, tube
current, reconstruction algorithm) ensured that the datasets included a range
of high to low IQ scans. Scanner settings were identical on both scan-
ners as much as possible: scan range pulmonary diaphragm to pelvis;
helical scanning, tube voltage varied in 3 steps (80, 100, and 120 kVp);
mAs values varied in 7 steps (200, 180, 160, 140, 100, 60, and only at
120 kV, 40); no automated tube current modulation; slice collimation
128 � 0.625 mm (CT1) and 192 � 0.6 mm (CT2); and pitch 1.4 for
mAs ≤160, 1.3 for 180 mAs, 1.2 for 200 mAs (CT1) and 0.9 (CT2).
Scans were reconstructed using filtered back projection and different it-
erative reconstruction strengths (iDose 3 and 6 [CT1] and Advanced
Modeled Iterative Reconstruction [ADMIRE] 3 and 5 [CT2]) using
a kernel B (CT1) and Br40d (CT2), and a slice thickness of 3 mm,
with a reconstruction increment of 3 mm (CT1) and 2 mm
(CT2), respectively.

Patient Dataset
The clinical patient dataset was based on 30 consecutive CT liver

scans of 30 unique patients in the portal venous phase. The dataset was
collected for a previous study by our team.27 Patients were scanned be-
tween September 2019 and February 2020 on a third-generation DSCT
scanner (Somatom Force, Siemens Healthineers [CT2]). The contrast
www.investigativeradiology.com 651
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medium protocol was determined using injection software (P3T; Bayer
Healthcare, Berlin, Germany; dosing factor 0.4 g I/kg, injection dura-
tion 30 seconds). Inclusion criteria were as follows: helical scanning,
use of automated tube current modulation (150 mAsref) and automated
tube voltage selection (120 kVref), 192 � 0.6 mm slice collimation,
pitch = 0.9, kernel Br40d, 3 mm slice thickness with a reconstruction
increment of 2 mm, and performed at 90 kV.

To obtain images with a lower IQ and ensure that the dataset
contained a range of low to high IQ, raw data of the 30 CT scans were
transferred to ReconCT software (version 13.0.0.1, prototype software,
Siemens Healthineers) and reconstructed as if acquired at a lower mAs,
simulating CT scans containing more noise. This software was vali-
dated in a phantom study by Ellmann et al28 and by our team.27 Tube
current (mAs) values were varied in 4 steps (60%, 70%, 80%, and
90% of the original mAs value), and at each mAs level, filtered back
projection and iterative level 2, 3, and 4 reconstructions were made
(ADMIRE, Siemens Healthineers). Thus, 16 simulated scans were re-
constructed per patient, complemented by the original scans, yielding
a total of 510 scans.
TABLE 1. Agreement Between Automatically CalculatedMetrics and Sub
Scans

Anthropomorphic Phantom Ima

Correlation With
Subjective IQ Scores

Su
Insu

Adjusted R2 (CT1/CT2) P (

Noise metrics
Kortesniemi IQ score 0.70/0.55 <0.
GNL mode 0.66/0.65 <0.
GNL median 0.67/0.66 <0.
GNL air mode NS/NS
GNL air median 0.70/0.65 <0.

Resolution metric
FWHM TTF 0.21/0.26 0.

Contrast metrics
Count peak 1 NS/0.61 N
Count peak 2 0.70/0.30 <0.
Count peak 3 –
Peak 1 location 0.24/0.14 <0.
Peak 2 location 0.14/NS 0.
Peak 3 location –
Peak 1 FWHP 0.11/0.64 N
Peak 2 FWHP 0.40/0.66 <0.
Peak 3 FWHP –
Peak 1 prominence NS/0.58 NS/
Peak 2 prominence 0.73/0.37 <0.
Peak 3 prominence
Count minimum 0.47/0.26 <0.
Minimum location NS/NS
Minimum FWHP 0.22/NS 0.
Minimum prominence 0.38/0.11 0.
N pixels 200–300 HU –
CNR 0.61/0.43 <0.

*Two phantom datasets were acquired: the first using a 256-slice CT scanner (CT1
†The patient dataset was acquired using a third-generation dual-source CT scanner

CT indicates computed tomography; IQ, image quality; NS, not significant. IQ indic
FWHP, full width at half prominence; TTF, task transfer function; HU, Hounsfield un

652 www.investigativeradiology.com
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Ethical Considerations
For the retrospective evaluation of anonymized patient CT scans,

awaiver of consent was obtained from the local research ethics commit-
tee and the institutional review board (ref METC 2017-0250).

Agreement With Subjective Radiologist IQ Assessment
Subjective IQ was scored for the diagnostic task malignancy de-

tection (primary or follow-up) in an outpatient population using visual
grading on a 5-point Likert scale (1 = very poor, 2 = poor, 3 =moderate,
4 = good, 5 = excellent). The datasets of anthropomorphic phantom
scans were scored by abdominal radiologist (E.L.) with 8 years' clinical
experience (CT1) and an abdominal radiologist (C.M.) with 9 years'
experience (CT2). The patient dataset was scored in consensus by
2 abdominal radiologists (B.M. and C.M.) with 4 and 9 years' experi-
ence, respectively. Four anthropomorphic phantom and 20 patient test
images were used to familiarize radiologists with the range of IQs pres-
ent in the datasets. In the final scoring test, 57 phantom and 510 patient
images were presented in random order (including the test images).
jectively Scored Image Quality in Phantom and Patient Abdominal CT

ges* Patient Images†

fficient vs
fficient IQ

Correlation With
Subjective IQ Scores

Sufficient vs
Insufficient IQ

CT1/CT2) Adjusted R2 P

001/<0.001 0.019 NS
001/<0.001 0.062 <0.001
001/<0.001 0.020 NS
NS/NS NS 0.031
001/<0.001 0.096 0.003

023/0.006 0.110 <0.001

S/<0.001 0.053 0.013
001/<0.001 NS NS

0.015 0.004
001/0.008 0.071 0.002
012/NS 0.018 NS

0.055 NS
S/< 0.001 0.029 0.007
001/<0.001 0.008 NS

– 0.116 0.011
<0.001 0.066 <0.001
001/<0.001 0.017 0.035

– 0.014 0.003
001/0.009 0.020 NS
NS/NS 0.041 NS
010/NS 0.012 NS
010/0.003 0.030 NS

NS <0.001
001/<0.001 0.115 <0.001

) and the second using a third-generation dual-source CT scanner (CT2).

.

ates image quality; GNL, global noise level; FWHM, full width at half maximum;
its; CNR, contrast-to-noise ratio.

© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 2. Correlations and significant linear regressions between automatically calculated parameters and subjective scores of image quality in 2
phantom datasets (n = 57 each). The best correlating parameter was selected for all 3 categories (see Supplemental Digital Content Figure 1, http://
links.lww.com/RLI/A792, for all parameters). The 2 datasets were scanned on 2 different CT scanners: a 256-slice CT scanner (CT1, red) and a
third-generation DSCT scanner (CT2, blue). A linear regression is shown for significant correlations only (adjusted R2 values are given in Table 1). For
visualization purposes, the red data points have been shifted up by 0.1 on the x-axis.
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Radiologists were blinded to patient, scan, and reconstruction informa-
tion. Scoring was conducted on a diagnostic workstation, with freedom
provided to scroll through the scan volumes, zoom in or out, and change
window settings.

Scans were later grouped into 2 categories based on resulting IQ
scores: “insufficient” (Likert scores 1 and 2) and “sufficient” (Likert
scores 3 to 5).

Outcomes
Primary outcome for the proof of concept is the percentage of CT

scans for which the algorithm can successfully calculate all IQ metrics.
The primary outcome for agreement with subjective radiologist

ratings is the number of significant correlations between IQ metrics
and subjective scores within eachmetric group (noise, spatial resolution
and contrast). Secondary outcome on agreement is the number of IQ
metrics within each metric group that differ between scans of “insuffi-
cient” and “sufficient” subjective IQ.

Statistical Analysis
The correlation between each calculated IQ metric and subjective

radiologist IQ score was determined using the Pearson correlation coeffi-
cient with a corresponding P value. With α ≤0.05 and β ≤ 0.20, the
FIGURE 3. Correlations and significant linear regressions between automatical
dataset of CT liver scans in the portal venous phase (n = 510). The best correlat
Content Figure 2, http://links.lww.com/RLI/A793, for all parameters). All scans
shown for significant correlations only (adjusted R2 values are given in Table 1

© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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correlation was determined to be significant for the 57 phantom scans if
the adjusted R2≥ 0.14 and for 510 patient scans if the adjusted R2≥ 0.015.

Significant correlations were inserted into figures as regression
lines. Image quality metric differences between “insufficient” and
“sufficient” categories were evaluated for each dataset using the
Mann-Whitney U test. Analyses were performed using MATLAB
(MATLABversion R2019a, copyright TheMathWorks, Inc). A P value
below 0.05 was considered to indicate statistical significance.
RESULTS

Proof of Concept
The developed algorithm was able to successfully calculate all

noise, spatial resolution, and contrast IQ metrics in 100% of the CT
scans of both phantom and patient datasets.

Agreement: Correlations
The results of the correlation analyses between each IQ metric

and subjective IQ scores are presented in Table 1. Figures 2 and 3 pres-
ent the correlations and significant linear regression lines for a selected
parameter in all 3 categories (see Supplemental Digital Content Figures 1
ly calculated parameters and subjective scores of image quality in a patient
ing parameter was selected for all 3 categories (see Supplemental Digital
were performed on a third-generation DSCT scanner. A linear regression is
).
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and 2, http://links.lww.com/RLI/A792 and http://links.lww.com/RLI/
A793, for all parameters).

Significant correlations were found for 15 of 19 IQ metrics in
both phantom datasets (4/5 noise with R2 range = 0.55–0.70, 1/1 spatial
resolution with R2 = 0.21 and 0.26, and 10/13 contrast with R2

range = 0.11–0.73) and for 21 of 24 IQ metrics in the patient dataset
(4/5 noisewithR2 range = 0.019–0.096, 1/1 spatial resolutionwithR2 = 0.11,
and 16/18 contrast with R2 range = 0.008–0.116).

Correlations observed in the phantom dataset were stronger than
those in the patient dataset by almost a magnitude of 10. Strong corre-
lations (R2≥ 0.65) in the phantom dataset are, in descending order, con-
trast metric peak 2 prominence (R2 = 0.73), noise metrics Kortesniemi
IQ score (R2 = 0.70) and GNL air median (R2 = 0.70), contrast metric
count peak 2 (R2 = 0.70), and noise metrics GNL median (R2 = 0.67)
and GNL mode (R2 = 0.66) for the CT1 subgroup and noise metric
GNL median (R2 = 0.66), contrast metric peak 2 FWHP (R2 = 0.66),
and noise metrics GNL mode (R2 = 0.65) and GNL air median
(R2 = 0.65) for the CT2 subgroup. The strongest correlations in the pa-
tient dataset are, in descending order, contrast metrics peak 3 FWHP
(R2 = 0.116) and CNR (R2 = 0.115), spatial resolution metric FWHM
TTF (R2 = 0.110), and noise metric GNL air median (R2 = 0.096).

The 2 phantom datasets showed some differences in strength and
significance of correlations, but overall, the slope of 14 of the 19 regres-
sion lines was similar (Supplemental Digital Content Figure 1, http://
links.lww.com/RLI/A792). For contrast metrics count peak 1, peak 2 lo-
cation, peak 1 prominence, and minimum FWHP, correlations were
found to be significant in only 1 of the phantom datasets, and for peak
location 1, regression lines showed opposite slopes (Supplemental Dig-
ital Content Figure 1, http://links.lww.com/RLI/A792).

Agreement: “Insufficient” Versus “Sufficient” IQ Scans
In the phantom dataset, 18 (CT1) and 10 (CT2) scans were

scored as “insufficient” and 39 (CT1) and 47 (CT2) scans were scored
as “sufficient.” In the patient dataset, 43 scans were scored as “insuf-
ficient” and 465 scans as “sufficient”. Of the 19 IQ metrics in the
phantom datasets, 14 (CT1) and 15 (CT2) significantly differed be-
tween “sufficient” and “insufficient” categories (4/5 noise, 1/1 spatial
resolution and 9 [CT1] and 10 [CT2]/13 contrast parameters), whereas
14 of the 24 IQ metrics in the patient dataset significantly differed be-
tween “sufficient” and “insufficient” categories (3/5 noise, 1/1 spatial
resolution and 10/18 contrast parameters). Fourteen (CT1) and 15 (CT2)
parameters in the phantom datasets, and 12 parameters in the patient
dataset, showed significant correlations with subjective IQ scores as
well as significant differences between “sufficient” and “insufficient”
categories (Table 1).
DISCUSSION
The developed computer algorithm was able to successfully cal-

culate all IQ metrics for noise, resolution, and contrast on both phantom
and clinical CT images, indicating the feasibility of IQ characterization
of all 3 metric groups (noise, resolution, and contrast). The IQ metrics
from each of these groups showed significant correlations with subjec-
tive radiologist IQ scores, demonstrating the potential for automatic IQ
monitoring. Of the new contrast metrics developed in this study, 10 of
13 (phantom datasets) and 16 of 18 (patient dataset) correlated signifi-
cantly with subjective radiologist IQ scores, indicating validity for con-
trast evaluation. The secondary analysis showed that in the phantom
datasets, 14 and 15 of the 19 IQ metrics significantly differed between
the 2 subjective “insufficient” and “sufficient” categories; in the patient
dataset, significant differences between “insufficient” and “sufficient”
categories were found for 14 of 24 IQ metrics. These metrics were dis-
tributed among all 3 aspects of IQ (noise, resolution, and contrast), in-
dicating the potential for automatically determining whether CT scan
IQ is diagnostically adequate.
654 www.investigativeradiology.com
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Two phantom datasets were included to enable the acquisition of
scans using a wide range of tube current and tube voltage values, to
yield awide range of IQs. The inclusion of a different scanner and a dif-
ferent radiologist demonstrates that the algorithm yields similar results
and is robust even in a completely independent setting. Furthermore,
the study design ensured that each radiologist evaluated images ac-
quired on the scanner to which he/she was accustomed, to avoid the
known bias in IQ assessment that is introduced when presenting images
of a different/new scanner. In both phantom datasets, largely similar
trends between automatic IQ metrics and subjective IQ were observed,
indicating robustness. Only 5 contrast metrics showed differing trends,
which may be due to differences in scanner performance, slight differ-
ences in protocols, and/or differences in reconstruction methods. Stron-
ger correlations were seen between automatic IQmetrics and subjective
scoring in phantom datasets as compared with the patient dataset, but
this is to be expected due to lack of anatomical variation in the former.
Although phantoms contain a reflection of the spectrum of human tis-
sues, phantom CT images are limited as representations of the human
anatomy, as complexity in the phantom ismuch reduced and anatomical
variations and pathologies are lacking. Despite the lower coefficients
seen in the patient dataset, correlations were significant, indicating the
potential of this automatic IQ metric calculating algorithm.

The current study was unique in incorporating IQ metrics for
noise, resolution, and contrast in the algorithm and in comparing results
with subjective IQ scores of both phantom and clinical patient scans.
Most previous studies developing IQ metrics focus on 1 aspect of total
IQ.17,19–22 For example, correlation between the Kortesniemi IQ score
and visual grading was previously shown in thorax CT scans of ca-
davers.18 Only Cheng et al23 used 3 metrics: liver HU value, noise mag-
nitude, and clarity (which is a combination of spatial resolution, noise
texture and lesion contrast). The clinical images were subjectively evalu-
ated per IQ aspect, and strong rank-order agreements between algorithm
and subjective IQ assessment were found. The current study, however, re-
lates the automated IQ metrics to an overall subjective IQ score and in-
cludes scans that are simulated in such a way that they are of insufficient
IQ. We consider it more relevant to clinical practice to use a combination
of the 3 aspects of noise, spatial resolution, and contrast and to be able to
distinguish between scans of sufficient and insufficient IQ.

The current study was performed using transversal CT scans of
the abdomen, in a patient dataset specifically focusing on the portal ve-
nous phase, but results are generalizable to other scan areas or recon-
struction planes. Even though other anatomical areas have distinctly dif-
ferent appearances, the Kortesniemi IQ score, GNL, and FWHM of the
TTF are not anatomy dependent and can be calculated for other body
regions without adjustments. For the spatial resolution metric, however,
care must be taken to avoid measuring at the edges between different
body parts, such as the thorax-arm interface or the interface between
the legs, as this metric quantifies sharp changes in HU values from tis-
sue to air. The contrast metrics will also need some attention as they are
based on histogram analyses of HU values and both location and num-
ber of peaks are specific to anatomical area and contrast injection pro-
tocol. However, once the histogram is known, it is straightforward to
adapt contrast IQ metric calculations following the method presented
in this study.

The subjective IQ was quantified using a Likert scoring system
performed by a single radiologist per phantom dataset and by 2 radiol-
ogists in consensus for the patient dataset. This limited number of scor-
ing radiologists prohibits interrater characteristic evaluation. Further-
more, subjective IQ scoring is strongly related to the diagnostic ques-
tion at hand, which limits generalizability. Whether similar correlations
exist when looking at images of other anatomies must therefore be inves-
tigated. Limitations of a statistical nature include low prevalence of the
number of “insufficient IQ” scans in both datasets, which may have in-
duced bias. Furthermore, several of the metrics described in this work
are likely to be collinear. Nevertheless, these results are encouraging
© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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and future studies can be undertaken to implement the algorithm for dif-
ferent anatomies and slice reconstructions, as well as to evaluate IQ met-
ric performance when using CT scanner settings that might be expected
to interfere. The algorithm can be further developed into a continuous
IQ monitoring tool that may prove invaluable in radiation dose and con-
trast injection protocol optimization29,30 or in retake scan decision mak-
ing in daily clinical practice.31

CONCLUSION
A computer algorithm was developed that successfully calculated

IQmetrics quantifying noise, spatial resolution, and contrast from phantom
and clinical abdominal CT scans. Correlations between subjective IQ and
multiple IQ metrics of noise, spatial resolution, and contrast were signifi-
cant. Furthermore, many of these metrics appear to differentiate between
images that radiologists score as “sufficient” and “insufficient.” These re-
sults can be leveraged to develop an algorithm to automatically evaluate ob-
jective IQ of any scan, regardless of vendor, patient characteristics, radia-
tion, or contrast media dose. Such a tool could not only prove invaluable
in optimization and quality control in clinical practice, butmay also provide
much sought-after objective outcomes missing in IQ research to date.
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