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Chapter 1

Introduction to gravitational
waves

1.1 Gravitational waves - A new window on the uni-
verse

In 1915, the discovery of the gravitational field equations of general
relativity by Albert Einstein marked the beginning of a new theory of
gravity [73, 164]. According to Newton’s law of gravity, the gravitational
force between objects is proportional to the mass of the two bodies and
becomes smaller as the distance between two objects increases. The law
does not discuss the speed at which information travels in the gravita-
tional field. In 1905, Einstein prescribed no interaction and information
can travel faster than the speed of light, and Newton’s law of Gravity
violated this principle. Based on this controversy, Einstein developed
the theory of gravity, in which gravity is not a force like Newton’s law,
but rather the manifestation of the curvature of space-time. According
to Einstein’s theory of general relativity [97], one can find the wave-
like solution to Einstein’s equation for the curvature of space-time, and
the waves are the ripples in the fabric of space-time. The space gets de-
formed by the mass, and the space’s deformation manifests how the mass
moves. Einstein pointed out that there could be gravitational waves just
like electromagnetic waves. Electromagnetic waves are produced by di-
polar radiation from an oscillating dipole (positive and negative charges
separated by some distance). However, a similar analogy was not pos-
sible for gravitational waves, because there is no charge concept for mass
[58]. Gravitational waves transport energy as gravitational radiation, a
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form of radiative energy [133]. Heavy and compact objects, such as a
binary neutron star and binary black holes moving in orbit, lose energy
in the form of gravitational waves. This energy is significant when the
objects come close together and merge. During the merger, a significant
amount of mass is converted into gravitational energy, so the amplitude
of the gravitational waves is at its maximum. In 1974, Russell Hulse
and Joseph Taylor first detected indirect evidence for gravitational wave
emission from the orbital motion of two neutron stars in the system
PSR 1913416 [139, 138, 137]. They observed the electromagnetic radi-
ation emitted by the pulsar, which showed a decrease in the frequency
of the pulses over time. The stars were gradually inspiraling towards
each other, and the decay in their energy was roughly consistent with
the predicted energy carried by the gravitational waves.

Gravitational wave detectors are specifically designed instruments
used to detect and measure the extremely tiny disturbances in space-
time caused by passing gravitational waves. These detectors, such as
the Laser Interferometer Gravitational-Wave Observatory (LIGO) and
the Virgo detector, employ advanced techniques to measure minuscule
changes in the distances between mirrors caused by passing gravita-
tional waves. In September 2015, the first direct detection of gravit-
ational waves came from the coalescence of binary black holes [4] 1.3
billion light-years away. This was detected by both LIGO at Hanford
and Livingstone. To date, the Advanced LIGO and Virgo observator-
ies have made nearly ninety confident detections, from which we have
measured the intrinsic and extrinsic parameters of the GW source, as
well as the astronomical parameters of the universe [17, 22, 21]. The
discovery of gravitational waves has provided a new and unique tool to
peer into the Universe, allowing us to do multi-messenger astronomy.
Another breakthrough discovery made by GW detectors is the detection
of the GW signal emitted by the binary neutron star system (BNS),
GW170817 [212]. This type of system is of paramount importance for
multi-messenger astronomy. Multi-messenger astronomy is astronomy
that uses multiple messengers such as the electromagnetic spectrum,
gravitational waves, neutrinos, cosmic rays, etc., from violent astronom-
ical events. Binary neutron star systems are particularly interesting
because they are accompanied by strong and continuous gravitational
wave emission, and emit electromagnetic radiation over a wide range of
wavelengths during the late inspiral [177, 201]. The merger of BNS sys-
tems may lead to a short gamma-ray burst or even a kilonova transient
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due to r-process nucleosynthesis of heavy elements [206]. In addition
to information about the abundance of heavy elements in the Universe,
observations of BNS systems can reveal the state of ultrahigh-density
matter, the formation mechanism of magnetars, etc. We can also indir-
ectly observe the early universe by looking at how gravitational waves
from that time have affected the matter and radiation we observe today.

To make the breakthrough discovery, we need to improve the sens-
itivity of the detectors and increase their duty cycle to maximize the
coincidence time of multiple detectors. More separate detectors will
help to detect the gravitational wave signal with more confidence (less
chance of coincidence with an instrumental glitch), precise sky localiza-
tion, and accurate source parameter estimation due to improved signal-
to-noise ratio (SNR)[44, 215]. Currently, operational detectors such
as Advanced LIGO and Advanced Virgo are upgraded before each sci-
ence run to increase sensitivity, allowing us to detect more events with
higher precision. In addition to LIGO and Virgo, there is the Kamioka
Gravitational Wave Detector (KAGRA), a large underground interfer-
ometer with 3km arm length and the first detector to use cryogenic
mirrors[2, 39]. GEO600 [223, 108], another ground-based interferomet-
ric gravitational wave detector near Hannover in Germany, with an arm
length of 600m. KAGRA joined LIGO, Virgo, and GEOG600 in the search
for gravitational waves towards the end of the third observing run O3 (in
February 2021). LIGO, Virgo, KAGRA, and GEOG600 are currently be-
ing upgraded for their fourth joint observing run, O4 (late 2022). There
is also a planned advanced detector, LIGO-India [209, 191], which is ex-
pected to join the global network by 2030. Although second-generation
detectors have achieved significant milestones in gravitational wave as-
tronomy, their sensitivity is limited by various sources of noise. To fur-
ther reduce the noise and improve sensitivity by at least a factor of 10,
new technologies will have to be chosen that are difficult to implement
in current detectors. Scientists have therefore proposed plans for next-
generation gravitational wave detectors, such as the Einstein telescope
and the Cosmic Explorer, which will have ten times the sensitivity of the
advanced LIGO and will also observe at a much lower frequency, about
3 Hz, and in the range up to several kilohertz. The plan for the Einstein
telescope is to be built underground to reduce seismic noise at low fre-
quencies, as discussed in 1.4.1. The Einstein telescope (possibly also the
Cosmic Explorer [113]) is planned to operate at a cryogenic temperature,
which will help reduce the thermal noise, discussed in 1.4.3.
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1.2 Sources of gravitational waves

Any non-spherical or non-cylindrical symmetric accelerating object can
produce gravitational waves. Unlike an electromagnetic wave, the second-
order time derivatives of the dipole moment cannot contribute to gravit-
ational waves due to the conservation of energy and momentum. There-
fore, the leading order of GWs comes from the variation of the quadruple
moment. The brightest source of gravitational waves must be compact
and massive. Neutron stars and black holes are the most compact ob-
jects in the Universe and therefore the brightest sources of gravitational
waves. We can classify gravitational wave sources into four categories,
which are discussed below.

1.2.1 Compact binaries coalescence

Compact binaries, consisting of a pair of neutron stars, a pair of black
holes, or a neutron star and a black hole, are powerful sources of grav-
itational radiation [157]. Like the Hulse-Taylor binary [138], these sys-
tems spend millions of years at very low luminosity. But as the two
compact objects come closer together, they brighten to the point where
they can be detected at cosmological distances, just seconds to minutes
before they merge. They are thought to be pristine systems, with no
accretion disks or other contaminants, so their dynamics are governed
entirely by the back-reaction of gravitational radiation [103, 84]. Us-
ing the post-Newtonian approximation to general relativity [57, 85], we
can find the orbital period and thus the frequency of the emitted grav-
itational waves. We observe that the amplitude and frequency of the
signal increase monotonically as a function of time, producing a charac-
teristic chirp. A circular binary will merge by radiation reaction from
gravitational wave emission on a timescale of Tierge [157, 171]

M3 a 4
Tnerge ~ 6 % 108 v (m? ) (1011 Cm) years , (1.1)
where my and my are the component masses and a is the orbital radius.
The radius of the Sun is approximately 10'! cm, which means that two
Suns revolving around each other and separated by a distance of 10 solar
radii will take around 3 x 10'? years to merge. Stellar masses BBH and
BNS, with total masses ranging from one to a few hundred solar masses,

are the main GW sources for the currently operating ground-based inter-
ferometric GW detectors Advanced LIGO and Advanced Virgo. These
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detectors are sensitive to GWs at frequencies between about 20 Hz and
a few kHz and over ranges of up to few hundred megaparsecs for binary
neutron star mergers and a few thousand megaparsecs for binary black
hole mergers [92]. To detect GWs from the collisions of supermassive
black holes [94, 111], the frequency band needs to be pushed down a
few Hz to mHz. The third generation of detectors, such as the Einstein
telescope, is proposed to reach down to 1 Hz, rather than the 10-20 Hz
limit of advanced detectors. There is also proposed space-based gravit-
ational wave detector, the Laser Interferometer Space Antenna (LISA),
which will have a strain sensitivity of better than 1 part in 10?° in the
low-frequency band around 0.1 mHz and 1Hz [35, 70, 217]. LISA will
consist of three spacecraft separated by 2.5 million km in a triangular
formation following the Earth in its orbit around the Sun. Observing
the GWs from the BBH inspirals can provide us with an important tool
to test the general theory of relativity in the strong gravity [227, 55|,
the astrophysical origin of the population of black holes [161, 142, 112],
information on their possible formation history, and constraints on the
rate of such mergers in the Universe [52]. The LIGO/Virgo network
has detected nearly ninety compact binary sources such as binary black
holes, binary neutron stars, and even a high mass ratio event from which
we found evidence for higher order modes [160, 67]. The masses of the
detected events during three observing runs, O1, O2, and both O3a and
03b, are shown in figure 1.1.

1.2.2 Continuous gravitational waves

Neutron stars with a time-varying quadrupole, generated by non-

axisymmetric rotation, accretion of matter, or energy transfer from a
differentially rotating core to the crust, can serve as a continuous source
of gravitational waves [185, 173]. Any bumps or imperfections in the
spherical shape of the neutron star will generate gravitational waves as
it spins. If the spin rates remain constant over time, the frequency and
amplitude of the emitted gravitational waves remain constant, which
is why they are known as continuous gravitational waves [11, 6, 185].
Over time, the frequency of these signals changes slowly as the neutron
star emits energy in the form of electromagnetic and gravitational waves
during its orbital motion. Due to the limited sensitivity of the current
detector, we couldn’t detect the signal from continuous gravitational
wave sources. The detection of continuous GWs from spinning neutron
stars will shed light on the true nature of GWs. If we can detect just one
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Masses in the Stellar Graveyard

Figure 1.1: List of compact binary sources detected by LIGO and Virgo
and KAGRA during the O1, 02, O3a, and O3b science runs (figure
taken from [100]). The compact objects are ordered by date of discov-
ery along the x-axis. Solid blue circles indicate the black holes, and
orange represents neutron stars. There are three masses in each system,
the bottom two being the source masses and the third being the final
mass of the system after the merger. Credits: LIGO-Virgo-KAGRA
Collaborations/Frank Elavsky, Aaron Geller/Northwestern.

such continuous wave source with moderately stable timing, we can place
very strong constraints (due to the large effect of Doppler corrections
from detector motion) on the speed of GWs. Therefore, the detection of
continuous GWs is the goal for the advanced GW detectors and the third
generation of gravitational wave detectors. Detecting continuous GWs
would also make it possible to reveal stars that would otherwise remain
invisible to us, and to probe them with a messenger that would carry
important information about their internal structure and composition

[109).

1.2.3 Core collapse supernovae

Core-collapse supernovae and related phenomena are cosmic laboratories
for high energy density gravitational, plasma, nuclear, and particle phys-
ics. In particular, it may be possible to extract information about the
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nuclear EOS directly from GW observations. By detecting the gravita-
tional waves emitted during a core-collapse supernova [167, 148], scient-
ists can learn more about the structure and dynamics of the collapsing
star, the formation of neutron stars and black holes, and the nature of
the particles and forces involved in the explosion [205]. This informa-
tion can help us better understand the evolution of stars, the origin of
heavy elements in the Universe, and the fundamental laws of physics
that govern the cosmos.

All stars similarly go through their first stage, converting hydrogen
into helium. As the hydrogen is used up, the fusion reaction slows down
and less energy is released. Gravity, therefore, causes the core to con-
tract, depending on the internal structure of the star [141, 65]. When a
star runs out of fuel and there is no force to support it against gravity,
the star begins to collapse in on itself, causing the core temperature
to become extremely high and releasing high-energy gamma-ray bursts
[61, 163].

In scenarios where the theoretical gravitational wave signal is well es-
tablished, such as binary coalescences, the detection process involves the
generation of triggers using a matched filtering technique. In a multi-
detector array, such as the current Advanced LIGO and Advanced Virgo
networks, a transient GW signal is expected to produce nearly simultan-
eous triggers in all three detectors. The time delay is determined by the
direction of the gravitational wave and the associated light travel time.
However, when dealing with unmodelled signals, such as those emitted
by core-collapse supernovae, the matched-filter technique becomes im-
practical because modeling such systems involves extremely complicated
physics of mass-energy conversion fractions, asymmetry due to convect-
ive radiation, and so on [168]. Although there have been advances in
numerical simulations, our understanding of the dynamics of supernova
explosions remains incomplete. The intricacies of stellar collapse involve
extremely complex physics, and the computational resources required
for accurate simulations pose a significant challenge in the treatment of
core-collapse supernovae. GW signals from core-collapse supernovae are
typically much fainter than those from binary mergers. Due to this lower
signal strength and the stochastic nature of the signal, the background of
GW searches for core-collapse supernovae is expected to be significantly
contaminated by short-lived noise transients that may mimic true sig-
nals. The challenge is compounded when data from multiple detectors
are not available simultaneously. Even with improvements in detector
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reliability and a 70% duty cycle, it is expected that about one-fifth of
the data in upcoming observing periods for the LIGO-Virgo network will
consist of single-interferometer data. Given the rarity of such events,
it is important to extend the detector coverage and refine the search
background to increase the probability of detecting gravitational wave
signals.

The analysis of unmodeled gravitational wave signals requires al-
ternative methods. Time-frequency transformations, such as the Con-
tinuous Wavelet Transform or the Short-Time Fourier Transform with
time-frequency excess power statistics, can be used to identify significant
features or events [75, 154]. The coherent WaveBurst (cWB) algorithm
specializes in short-duration transient signals and uses a time-frequency
representation to identify and characterize GW bursts. Bayesian meth-
ods, exemplified by the BayesWave algorithm, provide a template-free
approach that reconstructs GW signals without assuming a specific
waveform morphology [143, 205]. Machine learning approaches, in-
cluding deep learning, explore data-driven pattern recognition for hard-
to-characterize signals. Advanced techniques are constantly being de-
veloped to reduce noise, but this remains a challenge. Despite the cur-
rent lack of detection of such signals, continued advances in detector
technology, data analysis techniques, and theoretical models will im-
prove the chances of detecting gravitational waves from core-collapse
supernovae in the future. The next generation of detectors with im-
proved sensitivity would expand the observable volume of the Universe,
increasing the chances of detecting supernova events.

1.2.4 Stochastic gravitational-wave background

The stochastic gravitational wave background refers to a diffuse and ran-
dom gravitational wave signal that arises from the collective contribution
of many unresolved and independent sources distributed throughout the
universe [78, 1]. Unlike discrete and individually detectable gravitational
wave events, such as those produced by binary mergers or supernovae,
the stochastic background represents a statistical ensemble of gravita-
tional waves from a large number of sources. The signals from these
sources combine to form a continuous and isotropic background that is
present at all frequencies.

The stochastic background can arise from a variety of cosmological
and astrophysical processes [180, 93], including:

Inflationary cosmology: The rapid expansion of the universe during
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the inflationary epoch in the early universe is thought to have generated
gravitational waves [38, 31]. These primordial gravitational waves would
have imprinted their signatures on the fabric of spacetime, resulting in
a stochastic background that persists to this day.

Cosmic phase transitions: Phase transitions [150, 187] that occurred
in the early universe, such as the transition between different states of
matter, could have produced gravitational waves. These phase trans-
itions can generate a stochastic background that carries information
about the fundamental physics of the early universe.

Compact binary mergers: Although individual binary mergers can
be detected as separate gravitational wave events, the collective con-
tribution of many unresolved binaries, such as merging black holes or
neutron stars throughout the Universe, can contribute to the stochastic
background [181, 10, 189].

Primordial black hole collisions: If primordial black holes exist, their
collisions could generate gravitational waves that contribute to the stochas
-tic background [47].

Moreover, various astrophysical phenomena, such as rotating neut-
ron stars, supernovae, or cosmic strings, can also contribute to the
stochastic background.

The detection and characterization of the stochastic gravitational
wave background pose unique challenges compared to the identification
of individual gravitational wave sources. It requires statistical analysis
techniques to distinguish the faint background signal from instrumental
noise and astrophysical foregrounds. Correlations between multiple de-
tectors are used to extract the background signal, as it appears as a
random pattern in the detectors’ output.

Current and future gravitational wave observatories, including LIGO,
Virgo, and future missions such as the space-based Laser Interferometer
Space Antenna (LISA), aim to detect and study the stochastic gravit-
ational wave background. Detecting this background provides valuable
insights into the early universe, cosmological processes, and the popula-
tion properties of unresolved gravitational wave sources.

1.3 Observation of gravitational waves

In figure 1.1, we have seen a list of compact binary sources, detected by
two LIGO and Virgo detectors during three observing runs. During the
first observing run, O1, from 12 September 2015 to 19 January 2016, a
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total of 51 days of data were collected by two LIGO detectors. In the
second observing run, O2, from 30 November 2016 to 25 August 2017,
a total of 118 days of data were collected. In the third run, the two
LIGO instruments, the Virgo detector, and the GEOG600 began their
third observing run, O3, which lasted one year, from 4 April 2019 to 27
March 2020.

During O1, we made our first gravitational wave detection of
CW150914 [4], from colliding black holes with initial masses of 3617
Mg and 29ij‘l Mg at a luminosity distance of 410ﬂ281\/{pc. The final
black hole mass was 623l M and 3.01“8:? M, c? energy was emitted as
gravitational waves. The GW150914 event was observed with a matched
filter SNR of 24 and a false alarm rate of 1 event per 203000 years. Three
binary black holes were detected in the first run.

In O2 we have detected seven binary black hole mergers and one
binary neutron star (GW170817). On 14 August 2017, Virgo joined
the network, and the first triple detection of a binary black hole merger
was named GW170814 [7]. This event has a false alarm rate of less
than 1 in 27000 years and a matched filter signal-to-noise ratio of 18
for the three-detector network. The initial masses were two black holes
with masses 30.5:“2:8 Mg and 25.3:21:% Mg, which then merged into one
black hole with a remnant mass of 53.23:? Mg. The signal was first
observed by the LIGO Livingston detector and then by the LIGO Han-
ford and Virgo detectors with a delay of 8 ms and 14 ms respectively.
Three days later, on 17 August 2017, LIGO and Virgo made a remark-
able discovery by observing the first binary neutron star merger. What
made GW170817 particularly remarkable was the simultaneous detec-
tion of electromagnetic radiation at multiple wavelengths, from gamma
rays to radio waves. Shortly after the gravitational wave detection, an
intense burst of gamma rays, known as a short gamma-ray burst (GRB
170817A), was observed by the Fermi and INTEGRAL satellites [5].
Follow-up observations by various ground- and space-based telescopes
detected the event in optical, infrared, and radio wavelengths. These
observations revealed the presence of a kilonova, an explosion resulting
from the merger of neutron stars [36, 210, 208]. The GW170817 event
had a combined network signal-to-noise ratio of 32.4 and a false alarm
rate of less than one per 80000 years. The source was localized with 90%
probability within a sky region of 28 deg? and had a luminosity distance
of 4()J_r§’4 Mpc, the closest and most precisely localized gravitational wave
signal to date [91]. The event GW170814 was the second best-localized

10



1.8. Observation of gravitational waves

source (39 deg?) after the binary neutron star merger GW170817.

In the third observing run, O3, 76 compact binary mergers were
detected with a false alarm rate of less than 1 per year. Among these,
two events, GW200105 and GW200115, detected on 5 and 15 January
2020 respectively, were produced by the merger of a binary black hole
and a neutron star [20]. The coincident detection of GW200115 by both
LIGO and Virgo makes it a strong signal with a false alarm rate of 1 in

100 years. The initial objects were a 5.73% Mg, black hole and a 1.51)-%

M neutron star at a luminosity distance of 300'_%88 Mpc. They evolved

into a remnant black hole. During the other event, GW200105, the LIGO
Hanford director was not operational and due to the lower signal-to-noise
ratio of Virgo, this event was effectively detected by LIGO Livingston.
The false alarm rate for this event was 1 in 2.8 years. The initial compact
binary object of this system was an 8.9ﬂ:§ Mg back hole and 1.9f8:§’
Mg . The primary masses of both GW200105 and GW200115 are well
above the maximum mass of a neutron star [184, 10, 77]. The probability
that the mass of the second compact object is within the mass range of
known neutron stars [37, 13, 18], is 89%-96% and 87%-98% [20], for
GW200105 and GW200115 respectively. Another very interesting event
is GW190814, which is the most asymmetric binary system ever detected
by the LIGO and Virgo detectors, with a signal-to-noise ratio of 25 and
a false alarm rate of 1 in 1000 years. The primary components of this
event were a black hole in the mass range 22.2-24 Mg and an extremely
heavy neutron star (which theoretically does not exist) or a light black
hole with a mass of 2.50-2.67 M. The mass of the lighter component
places this object in the mass gap between a neutron star and a black
hole. This inferred secondary mass exceeds the most massive known
pulsar in the Galaxy [14], which is 2.147530 Mg with a 68.3% credible
interval and comparable to the BH remnant mass of GW170817 [16].
The most massive system observed so far is GW190521, a GW signal
consistent with a binary BH merger with a total mass of about 150
M, (component masses 8577; Mg and 66ﬂg Mgp), leaving a remnant
of about 140 Mg, [24, 190]. GW190521 is a significant discovery because
the primary black hole mass falls in the black hole mass gap, where no
astrophysical black hole can be formed by the pair-instability supernova.
The star cannot collapse in on itself and form a black hole with mass
greater than 65 solar masses [45, 129, 226], and thus a remnant with
mass 142 Mg, providing the first clear evidence for the existence of an
intermediate-mass black hole [202, 51|. The confidence level for this
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event was also very high, with an SNR of 14.5 and a false alarm rate of
less than 1 in 5000 years.

1.4 Ground-based gravitational wave detectors

Detections of gravitational waves by ground-based gravitational wave de-
tectors, such as the advanced LIGO, Virgo and KAGRA, have opened
up a new perspective on the universe and turned them into powerful
telescopes. These unprecedented achievements have paved the way for
further advances and exciting discoveries in the near future. By continu-
ously improving the sensitivity of gravitational wave detectors, we can
expect more frequent detections and improved precision in source para-
meter estimation. A series of upgrades have already extended the reach
of these detectors, with LIGO now able to reach up to 140 Mpc, Virgo
up to 60 Mpc, and KAGRA up to 0.7Mpc [176]. These advances in
sensitivity promise to unlock the secrets of the cosmos and shed light on
previously unexplored phenomena. For the O4 and O5 runs, the target
reach of LIGO, Virgo and KAGRA is shown in figure 1.2. In addition,
future second-generation detectors, such as LIGO-India, are expected to
join the global network by 2030, bringing a tremendous improvement in
parameter estimation from gravitational wave signals [209].

Updated mm Ol mm 02 =mO3 mm O4 mm O5
16 June 2022
80 100 100-140 160-180 240-325
Mpec  Mpc Mpc Mpc Mpc
LIGO | T =
30 40-50 80-115 150-260
: Mpc Mpe Mpc Mpc
Virgo L] 1 I
0.7 (1-3)~ 10 25-128
Mpe Mpc Mpc

KAGRA | |1 i
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Figure 1.2: Reach of the detectors during three science runs and the
target for future runs. Figure taken from [87].

The amplitude of gravitational waves is inversely proportional to

the luminosity distance of the source [53, 159], causing stretching and
squeezing as the wave passes through space. For the Fabry-Perot-
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Michelson interferometer with 4 km arm lengths, as in the case of LIGO,
the effective change in the differential length of the two arms is incred-
ibly small, on the order of 4 x 107'® m. This value is twelve orders of
magnitude smaller than the wavelength of the light used for the meas-
urement, which is about 1 micron. As a result, measuring such minute
variations with the relatively coarse ruler of light wavelength proves to
be an arduous task. The main challenge stems from the fact that grav-
itational wave signals are incredibly weak and can easily be masked by
environmental disturbances from sources on Earth. The effective isola-
tion of the detector’s test masses from these environmental disturbances
is therefore an extremely complex experimental endeavour. As a res-
ult, the development of the experimental techniques needed to detect
gravitational waves has taken nearly half a century. Identifying and
minimising sources of noise has played a crucial role in the successful
detection of gravitational wave signals. In addition to environmental
noise, there is coating Brownian thermal noise, which can be reduced by
using low-loss materials such as silicon and lowering the temperature.
Quantum radiation pressure noise arises from uncertainty in the position
of the suspended mirror due to fluctuations in the recoil force of reflec-
ted photons. Quantum shot noise arises from statistical fluctuations in
the number of photons detected by the photodiode. Other fundamental
noise sources such as Newtonian noise (discussed in section 1.4.5) and
excess gas noise (section 1.4.4) also contribute to the overall noise pro-
file. Figure 1.3 shows the different limiting noise curves for Advanced
LIGO. In this section, we will mainly discuss the different noise sources
and the techniques used in the interferometer to suppress the effect of
noise.

1.4.1 Seismic Noise

Seismic noise results from ground vibrations caused by various factors
such as earthquakes, wind, microcosmic sources (e.g. ocean waves), and
anthropogenic activities. The presence of seismic noise limits the sensit-
ivity of the detector, typically below 50 Hz. The amplitude spectrum of
seismic waves also exhibits characteristics above the 10 Hz scale, which
can be described by the equation [74]:

m

z(f) = 107% (10Hz/ f)* : (1.2)

g
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aLIGO new design curve: NSNS (1.4/1.4 M) 173 Mpc and BHBH (30/30 M) 1606 Mpc
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Figure 1.3: Advanced LIGO sensitivity curve, plotted using the square
root of the power spectral density of the noise[105] Different colored
curves indicate different noise budgets due to a particular type of noise.
The black curve indicates the total noise (amplitude spectral density) of
the detector. Figure taken from [46].

For example, assuming a reference frequency of 100 Hz, the value of z( f)
is 1071 m/v/Hz, which is about 9 orders of magnitude higher than the
required sensitivity level of 10720 m/ VHz. To mitigate this problem,
mechanical oscillators can be used as filters, providing passive isolation
against seismic noise above the resonance frequency. By combining mul-
tiple mechanical isolators into a multi-stage system, seismic noise can
be effectively suppressed to achieve the desired sensitivity level. A not-
able example is the use of cascaded pendulums in the suspension of
the Virgo test masses, comprising seven stages that attenuate seismic
noise by approximately 15 orders of magnitude [26]. However, passive
isolation systems face challenges related to thermal stability. Changes
in temperature lead to changes in the length of the pendulum, making
precise alignment a difficult task [134, 214]. One challenge with low
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frequency passive isolation systems is the stiffness of the springs, which
is proportional to w?. As a result, these systems tend to be very soft
at low frequencies. Supporting the isolated payload, which can weigh
several hundred kilograms, places significant stress on the springs. This
high stress level makes alignment between different systems difficult. To
improve isolation, a combination of active noise cancellation and passive
isolation can be used [88, 19]. Active isolation systems consist of inertial
sensors, actuators and a controller. The inertial sensors measure the
position of the isolated test mass, while the actuators, under the control
of the controller, apply an equal and opposite force to compensate for
ground vibration and maintain the mirror in the desired position [155].
However, a disadvantage of the active isolation system is its dependence
on the performance of the inertial sensors. The sensors must be more
sensitive than the motion of the passively isolated mass to effectively
reduce its motion further.

1.4.2 Quantum Noise

In advanced gravitational wave (GW) detectors, sensitivity across the
detection band is expected to be limited by quantum noise [86], which
arises from the quantum fluctuations of the electromagnetic vacuum.

Quantum noise in GW detectors consists of shot noise, which domin-
ates at high frequencies, and radiation pressure noise, which dominates
at low frequencies. Shot noise is caused by the dual quantum nature of
light, which has both wave-like and particle-like properties. The num-
ber of photons arriving at the detector follows a statistical distribution
known as the Poisson distribution. This distribution arises from the
probabilistic nature of quantum mechanics, where the detection of each
individual photon is random and uncertain, with a standard deviation
equal to

AN, =/N,. (1.3)
The shot noise is defined by the variation of the phase A¢, which is
inversely proportional to the square root of the number of photons:
1 1
x .
AN, v Ny
The fluctuation in the number of photons leads to a fluctuation in the
power, given by:

1
AP = o/ Nyhwy VP, (1.5)

Ag x (1.4)
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where wy is the laser frequency and P is the power. The strain sensitivity
due to shot noise can be expressed as:

1 /1

/ 2.2
S;Q(f)yshotocL 5 (1.6)

To reduce the shot noise, it is necessary to increase the power at the
beam splitter, which can be achieved by increasing the laser power or
improving the recycling factor of the power recycling cavity.

On the other hand, the photon flux exerts a pressure when it in-
teracts with the mirror surface. This radiation pressure varies with the
variation in the number of photons, resulting in a stochastic force on the
mirror. The spectral density of the displacement of the mirror due to
the radiation pressure is given by:

1 P
1/2 - L
Sn (f)’radpresoc Lf2 \/;7 (1.7)

where m is the mass of the mirror and f is the frequency. The shot noise
is proportional to P~1/2, while the radiation pressure noise varies as
P2 This is a direct consequence of Heisenberg’s Uncertainty Principle,
where the photons exert an impulsive force on the mirror in the form of
radiation pressure, disturbing the measurement of the mirror’s position
and creating a quantum back-action.

The combined effect of shot noise and radiation pressure noise can
be written as:

S%/Q(f)’wt: \/Sn(f)|shot+Sn(f)|radpres (1-8)

which yields:

4h 1 1
GL/2( fy|tot — \/ K 1.9
where, K = Cﬁl; 0y and w = 27 f. The optimum value of parameter

K is the one at which the contributions from shot noise and radiation
pressure noise are equal. This balance between the two noise sources
gives rise to the standard quantum limit (SQL) in gravitational wave
detectors. The SQL imposes a fundamental limit on the precision with
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which certain conjugate variables, such as position and momentum, can
be simultaneously measured. The SQL (S;/Q2 1 (f)) can be expressed as:

Seon(f) = A (1.10)

mw? L2

The existence of SQL is a consequence of the Heisenberg uncertainty
principle, which states that there is an inherent limit to the precision
with which certain pairs of physical quantities can be known simultan-
eously. However, it’s important to note that the uncertainty principle
does not impose a limit on how well one can measure the position of an
object.

To overcome the SQL and improve the sensitivity of gravitational
wave detectors, researchers have explored the use of non-classical states
of light. One such state is a squeezed state, which exhibits correlations
between radiation pressure noise and shot noise. By creating these cor-
relations, the measurement and back-action can partially cancel each
other, resulting in an effective reduction of the combined noise below
the SQL. In order to achieve this cancellation over a broad range of
frequencies, a frequency-dependent correlation is necessary. This can
be achieved by injecting squeezed light with a squeezing angle that is
continuously adjusted as a function of the observation frequency. In ad-
dition to utilizing squeezed states, another approach to surpassing the
SQL is through the use of quantum non-demolition (QND) devices, such
as speed meters.

1.4.3 Thermal Noise

Thermal noise arises from thermodynamic temperature fluctuations in
the test mass and introduces vibrations in both the mirrors and the
suspensions [153]. Suspension thermal noise is caused by thermal fluc-
tuations in the suspension fibres, which induce oscillations in the test
mirror suspension and result in horizontal displacement of the mirrors.
The displacement power spectral density due to thermal noise can be
derived from the fluctuation-dissipation theorem, which is inversely pro-
portional to the real part of the mechanical impedance of the system.
This implies the presence of internal damping or internal friction caused
by the inelasticity of the system. The mechanical loss angle (¢) repres-
ents the phase lag between stress and strain in the system when stress
is applied. To minimize the thermal noise of the suspension, mirrors are
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suspended using monolithic fused silica fibre suspensions, which have a
lower loss angle.

Thermal fluctuation of the test masses occurs due to the Brownian
motion of the atoms within the mirror at temperature T. The mech-
anical thermal noise of the test mass and coatings [132] arises from the
mechanical loss caused by internal friction in multi-layer coatings, fol-
lowing the fluctuation-dissipation theorem [28]. This type of noise is a
significant limitation to the detector sensitivity over a wide frequency
range, typically from 50 to 250 Hz. The general expression for the power
spectral density of the displacement from the thermal noise of the mir-
rors and coating for the GW detector, can be written as:

2kpT 1 — o2 2 1-20d
STN () — cubs T eoat), 1.11
/) \/gfwysubs(gb bt T w et (L11)

where kp is the Boltzmann constant, 7" is the absolute temperature, w
is the radius of the laser beam at the mirror surface, Yy,s and o are
the material Young’s modulus and Poisson’s ratio, respectively. d is the
thickness of the coating, and ¢¢oat and ¢guns are the mechanical loss
angles associated with the coating and mirror substrate, respectively.
The dominant contribution to thermal noise comes from the highly re-
flective coating, which can be reduced by using thinner coatings and
selecting materials with lower mechanical loss for the coating.

Temperature variations can cause displacement noise due to the ex-
pansion of materials, known as thermo-elastic noise, which occur in both
the bulk of the mirror and its coatings. In addition, changes in the re-
fractive index of coatings with temperature can cause thermo-refractive
fluctuations. Thermo-elastic noise can also cause fluctuations in the
refractive index of the mirrors themselves. An effective approach to
reducing thermal noise is to lower the temperature, which reduces the
thermal energy responsible for Brownian motion [99] and helps to min-
imize dissipation losses. In the KAGRA gravitational wave detector, for
example, the mirrors are cooled to 23 K, creating a cryogenic environ-
ment that reduces thermal noise. In addition, the use of materials such
as sapphire for the mirrors can provide excellent properties at low tem-
peratures. In future third-generation gravitational wave detectors, such
as the Einstein telescope, there are plans to operate at cryogenic tem-
peratures (23 K) using silicon as the mirror substrate. This choice aims
to minimize expansion due to small temperature changes and further
reduce thermal noise.
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1.4.4 Residual Gas Noise

Residual gas noise is a form of noise caused by statistical fluctuations
in the residual gas present in the vacuum tubes of a gravitational wave
interferometer. As gas molecules pass through the beam, they can im-
part phase perturbations in the laser field. This impulsive disturbance
from the gas molecules can contribute to the residual gas noise in the
interferometer.

To model the residual gas noise, the effect of these impulsive disturb-
ances is integrated over all possible velocity ranges of the gas molecules,
resulting in the statistical fluctuations of the gas molecules and their
overall effect on the phase of the laser field. The power spectral density
of the residual gas noise can be expressed as:

)2 [T exp[—27 fw(z)/v

where Lj is the beam path length, w(z) is the Gaussian radius of the
beam profile, vy is the most likely velocity given by (2rkgT/m)*/?, where
m is the mass of the gas molecules and kp is the Boltzmann constant.
T is the absolute temperature and « is the molecular polarisability. The
presence of residual gas noise is an important consideration in gravita-
tional wave interferometers, as it can affect the overall sensitivity and
performance of the detector.

In addition, interactions between the gas molecules and the test mir-
ror at the end of the arm can lead to small changes in momentum. These
interactions contribute to the overall residual gas noise in the gravita-
tional wave detector. The 1996 study by Zucker et al. [231] investig-
ates the measurement and characterisation of these momentum changes
caused by gas molecules. Understanding and mitigating the effects of
these interactions is crucial for accurately assessing and reducing the
effects of residual gas noise in gravitational wave detectors.

1.4.5 Gravity Gradient Noise

Gravity gradient noise, also known as Newtonian noise, is caused by
perturbations in gravity acting on the test mirror. As seismic waves
propagate through the surrounding medium, they induce variations in its
density, resulting in fluctuating gravitational forces acting on the mirror.
A more detailed analysis of this noise will be discussed in chapter 2 of
this dissertation.
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1.4.6 Other noise

In addition to the sources of noise discussed above, there are other
sources of noise that can affect the performance of a gravitational wave
detector. These include:

1. The technical noise associated with the feedback system or servo-
loop used to control the interferometer’s degrees of freedom. Fluctu-
ations in laser power can introduce displacement noise. This affects the
accuracy of the measurements. 2. Seismic noise or movement in the
walls of the detector housing. This motion can couple to the mirror
magnets through phenomena such as diamagnetism and eddy currents,
leading to noise. 3. The presence of scattered light in the detector can
lead to noise. As this light interacts with the walls of the detector tube,
it can couple with seismic noise before potentially reflecting back into
the beam. Special measures are taken to mitigate this, such as the use
of circular rings mounted in the arms of the detector to capture and
absorb unwanted scattered light.

These various sources of noise highlight the challenges of designing
and operating gravitational wave detectors, and efforts are being made
to minimise their impact on the sensitivity of the detector.

1.5 Michelson interferometer as a gravitational wave
detector

The simplest Michelson interferometer consists of a light source, a 50-50
beam splitter, and two mirrors, as shown in figure 1.4. Let’s consider
the spatial component of the incident electric field:

E = Ey exp(i(—wrt + kpz)), (1.13)

where wy, is the frequency of the laser, k = “% is the wavevector of the
laser light and c is the speed of light. The incident beam is split into
two parts at the beam splitter: one is transmitted along the X axis and
the other along the Y axis. Let Lx and Ly be the lengths of the two
perpendicular arms of the interferometer.

The part of the incident electric field transmitted through the beam
splitter travels along the X axis and returns to the beam splitter at time
to + % The beam reflected from the beam splitter travels along the
Y axis and returns to the beam splitter at time tg + % Finally, the
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Laser

L]

Figure 1.4: A basic Michelson interferometer consists of a beam splitter
and two end mirrors. Laser light hits the beam splitter, which splits the
beam into transmitted and reflected beams, and both beams are reflected
by the end mirrors and return to the beam splitters, interfering. The
interference pattern depends on the phase shift due to the change in

the differential arm length of the two perpendicular arms. Figure taken
from [56] (figure 2 in [56]).

two beams recombine at the beam splitter. The two electric fields at the
beam splitter can be expressed as:

E] — _%EO ei(_th+2kLLX), (114)
B, — % Fy el-wit+2hiLy). (1.15)

Therefore, the total electric field at the output can be expressed as:
Eout = E1 + E2 = —iEoe_itheikL(LX+LY) Sin[kL(Ly — LX)] (1.16)
The output power measured by the photodetector can be given as:

Pout = | Eout|*oc E2 sin®[kr(Ly — Lx))|. (1.17)
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The output power at the photodetector is therefore proportional to the
sine squared (sin?) of the change in the length of the arms of the in-
terferometer. However, the differential change in arm length due to
gravitational waves is extremely small, because gravitational waves only
stretch space by a tiny amount. To measure these tiny fluctuations
in space-time, additional optical and mechanical components must be
added, as discussed below.

1.6 Optical layout of the gravitational wave interfer-
ometer

The measurable length change induced by a gravitational wave depends
on the total length of each arm of the interferometer. If the wavelength
of the gravitational wave is much larger than the size of the detector,
then the strain induced by gravitational waves can be expressed as:

_AL
L

The change in length due to gravitational waves is challenging to meas-
ure because of the extremely small amplitude of the strain. For example,
the first detected gravitational wave from GW150914 by the LIGO de-
tectors was a strong event that had reached a strain amplitude of 102!,
We could not measure this signal with a simple Michelson interferometer
because its performance is limited by various internal and external noise
sources discussed in section 1.4. The optimal arm length of the interfer-
ometer is given by:

L= 29 _ 750k 10007, (1.19)

4 gw

h (1.18)

For L = >\gTW, the time shift of the photon entering into the arm is
properly synchronized with the phase of the gravitational wave. For
longer arm lengths, there can be partial cancellation of the phase shift.
Hence, the optimal arm length of the interferometer is several hundred
kilometers in order to detect a gravitational wave. However, building
a interferometer with such a large arm length on Earth is practically
impossible due to technological and financial limitations. Therefore,
the idea is to effectively increase the arm length by several hundred
kilometers using Fabry-Perot cavities (discussed in section 1.6.1) which

is effectively folding the optical path of the light.
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To decrease shot noise, the power of the laser needs to be increased.
Although the maximum power of currently available lasers typically falls
within the range of several hundred watts. To achieve this, the light
that is coming back to the laser is recycled by placing a mirror called
the power recycling mirror. To reduce external noise, the interferometer
is enclosed in a vacuum and mounted on a seismic isolation system.

The basic optical layout of the gravitational wave interferometer is
shown in figure 1.5.

e
Cavity mirrors :2;
Power Beam-
recycling splitter 4km

“,

| ]|

source . Cavity mirrors
Signal

recycling 1

W Photodetector

Figure 1.5: Optical layout of gravitational wave interferometer. Figure
taken from [147].

1.6.1 Fabry-Perot cavities

A Fabry-Perot cavity consists of two mirrors, where most of the incid-
ent light is reflected off the mirrors, but a small portion of the light is
transmitted and circulates between the mirrors [224, 158]. The phase of
the leakage beam is highly sensitive to the distance between the mirrors
when the cavity is near resonance. Therefore, a Fabry-Perot cavity can
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1.6. Optical layout of the gravitational wave interferometer

be used as a high-precision measuring device [178].

The resonance condition of the cavity occurs when 2L = n\, where
L is the distance between the mirrors, n is an integer, and A is the
wavelength of the light. At resonance, the constructive interference of
the reflected waves enhances the transmitted intensity, resulting in a
sharp peak in the transmission spectrum. The distance between two
adjacent maxima in the transmission spectrum is called the free spectral
range of the cavity, denoted by Awr, which can be calculated as:

Awp, = —. 1.20
L= (1.20)

The finesse of the Fabry-Perot cavity characterizes the spectral se-
lectivity and quality factor of the resonator. It is defined as the ratio of
the free spectral range (the distance between successive resonances) to
the full width at half maximum of a resonance peak and can be expressed
as:

F= Wil (1.21)

1—riry

where r; and r, are the amplitude reflectivities of the two mirrors. Higher
finesse corresponds to a narrower resonance peak and a more selective
cavity. Higher finesse is desirable in applications as it indicates the
ability of the cavity to store and amplify light at specific wavelengths.

The storage time of a Fabry-Perot cavity is the average time that
photons spend in the cavity before being lost. The storage time 7, of
photons inside the Fabry-Perot cavity is fine-tuned and can be approx-
imated as:

Ts R (1.22)
When the finesse is high, the storage time becomes comparable to the
period of a gravitational wave. In this case, the sensitivity of the de-
tector decreases because the positive and negative sides of the grav-
itational wave signal are summed, leading to a reduced signal-to-noise
ratio. Therefore, in gravitational wave interferometers, it is important to
carefully design the cavity fineness and storage time to optimize the de-
tection sensitivity for gravitational waves while minimising any adverse
effects.
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1.6.2 Signal and Power Recycling Mirrors

As mentioned earlier, the quantum shot noise is reduced as the laser
power increases. To meet this challenge, scientists have ingeniously in-
troduced the power recycling mirror (PRM). In the absence of a GW
signal, no light comes out at the photodetector and the light circulating
in the arms goes back to the laser and is therefore wasted. The ad-
dition of a PRM captures the returning light that has passed through
the interferometer arms and redirects it back to the beam splitter. The
PRM is placed between the laser and the beam splitter, creating another
Fabry-Perot cavity. By resonating the cavity for the input laser light,
the Power Recycling Mirror (PRM) enables the power incident on the
beam-splitter to be about a few kilowatts.

For a similar reason, signal recycling has been added to the interfero-
meter by a signal recycling mirror (SRM)[122]. The SRM is placed at the
anti-symmetric port of the Michelson interferometer. It helps in decreas-
ing the fineness of the signal sidebands, although it does not affect the
carrier light. In doing so, it effectively widens the frequency bandwidth
of the detector’s operation. This broadening of the bandwidth allows
the detector to capture a wider range of gravitational wave frequencies,
increasing its ability to detect and analyze different signals. However,
this broadening of the frequency bandwidth comes at the cost of reduced
sensitivity. The integration of the signal recycling mirror with power re-
cycling and Fabry-Perot arm cavities forms a dual-recycled Fabry-Perot
Michelson interferometer, further enhancing the capabilities of gravita-
tional wave detectors [211, 107].

1.7 Future gravitational wave detectors

To continuously enhance the sensitivity of gravitational wave detectors,
commissioning is performed before each science run. Looking ahead to
future gravitational wave detectors, the goal is to achieve a minimum
factor of 10 improvements in sensitivity compared to the best currently
operating detector, along with an expansion of the frequency bandwidth
for detection.

The low-frequency band is particularly interesting because of its po-
tential for observing various astrophysical phenomena, including white
dwarf stars (in the millihertz frequency range), supermassive black holes,
and continuous sources such as pulsars. Therefore, it is essential that
future generations of detectors incorporate new technologies that effect-
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ively reduce the noise level to enable the detection of these low-frequency
signals.

Several proposed future gravitational wave detectors include the Ein-
stein Telescope (ET) [174], the Cosmic Explorer [183], the space-based
detector LISA (Laser Interferometer Space Antenna) [196, 40], and the
Lunar Gravitational Wave Detector (LWGA) [126, 140]. These detect-
ors are expected to be operational within the next few decades and have
different characteristics and objectives.

Laser Interferometer Space Antenna is designed to operate in the
frequency range from 0.1 mHz to 1 Hz. With its unique frequency range,
LISA will complement ground-based detectors such as the Einstein Tele-
scope by observing gravitational wave signals that cannot be detected
from Earth. Another exciting project, the Lunar Gravitational Wave
Antenna, aims to place a gravitational wave detector on the surface
of the Moon. This project fills the frequency gap between LISA and
the Einstein telescope, providing complementary capabilities for grav-
itational wave observations. The LWGA concept involves deploying a
network of inertial sensors on the Moon that would act as gravitational
wave detectors. The stable, low-noise lunar environment provides isola-
tion from terrestrial disturbances such as seismic and atmospheric noise.
The development and operation of these future gravitational wave de-
tectors hold great promise for advancing our understanding of the Uni-
verse and will enable the detection of gravitational wave signals over a
wider frequency range, making a significant contribution to the field of
gravitational wave astronomy.

1.8 Overview of the dissertation chapters

This dissertation is structured into several chapters, each addressing
specific aspects of the research on gravitational wave detectors and their
noise sources.

Chapter 2 provides a comprehensive overview of Newtonian and
gravitational gradient noise and their impact on the sensitivity of current
and future gravitational wave detectors at low frequencies. The chapter
discusses the different types of seismic waves and their specific impact on
Newtonian noise. By exploring the intricate relationship between seismic
waves and Newtonian noise, the chapter sheds light on the underlying
mechanisms and provides a comprehensive understanding of Newtonian
noise and its implications for current and future detectors, offering valu-
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Figure 1.6: Sensitivities of current and future generation ground and
space-based GW detectors. Figure produced with http://gwplotter.com.

able insights into noise mitigation and optimization strategies. It also
presents key findings from previously published research, focusing in par-
ticular on the Newtonian noise budget for the underground gravitational
wave detector known as the Einstein Telescope.

In chapter 3, a comprehensive and detailed numerical evaluation is
performed to analyze the Newtonian noise curve specifically for Virgo.
The study takes into account the unique features of Virgo’s building in-
frastructure, such as the presence of clean rooms or recess-like structures
positioned under each test mirror (input and end test mirrors forming
the two main Fabry-Perot arm cavities of the detector). By considering
the displacements generated by an isotropic Rayleigh field, the chapter
demonstrates a significant reduction in strain noise. In particular, an
overall reduction factor of 2 is observed in the frequency range from 12
to about 15 Hz, which is not included in previous models. The reduc-
tion factor is frequency-dependent and also varies between individual
test masses. This in-depth analysis provides valuable insights into the
characterization of Newtonian noise within the Virgo detector setup,
providing crucial information for optimizing noise reduction strategies
and improving overall detector performance.
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Seismic Newtonian Noise (NN) occurs when seismic waves pass in
close proximity to the suspended test masses of a gravitational wave de-
tector. This type of noise is predicted to be the largest contributor to the
total Newtonian noise for ground-based detectors. Accurately modelling
this contribution is a significant challenge. To gain a better understand-
ing of the seismic field around the four test masses at the Virgo site,
arrays of seismometers have been deployed. In chapter 4, I present the
results of a spectral analysis performed on the array data collected from
one of the buildings at the north end of Virgo to identify the dominant
modes of the seismic field. Several modes can be associated with known
seismic sources. By analysing these modes over a range of frequencies,
I construct a dispersion curve specifically for Rayleigh waves. In par-
ticular, we found that the Rayleigh speed within the frequency range
relevant to Newtonian noise (10-20 Hz) is remarkably low (less than or
equal to 100m/s), which has significant implications for Virgo’s seismic
Newtonian noise. Using the new velocity estimates, I found that the re-
cess formed under the suspended test masses, facilitated by a basement
in the end buildings, results in a tenfold reduction in Newtonian seismic
noise.

In the following three chapters, I focus on exploring different sci-
entific cases in the field of gravitational wave astronomy, taking advant-
age of the capabilities of future gravitational wave detectors. The third
generation of detectors, such as the Einstein Telescope and the Cosmic
Explorer, will have significantly improved sensitivity compared to the
current generation of detectors. The network of these advanced detect-
ors will have at least a tenfold increase in detection range and improved
accuracy in estimating the parameters of gravitational wave sources.

Chapter 5 discusses the basic configuration of the Einstein telescope.
This configuration consists of two different instruments optimized for dif-
ferent frequency ranges: one for low frequencies (LF) and the other for
high frequencies (HF). I have developed an optimal filter to effectively
combine data from both instruments within the xylophone structure of
the Einstein telescope. 1 have performed a comprehensive evaluation
of the figures of merit for both the Einstein telescope and the Cosmic
Explorer. These figures of merit include crucial aspects such as signal-
to-noise ratio, antenna patterns, horizon redshift, etc. By investigating
these scientific cases and assessing the potential of advanced detectors,
we contribute to the broader understanding of gravitational wave astro-
nomy.
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Accurate determination of the source position of a gravitational wave
source is a crucial goal for studying the potential of the network of gravit-
ational wave detectors. Chapter 6 of this dissertation addresses this goal
by using the Fisher information matrix approximation to compute the
angular resolutions of two advanced detectors: the Einstein Telescope
and the Cosmic Explorer (CE). In our analysis, we consider the possibil-
ity of configuring the Einstein Telescope as a triangular detector with an
arm length of 10km, as well as an L-shaped detector with arm lengths
of 10km, 15km, and 20 km, respectively. Using the Fisher information
matrix approach, we are able to estimate the sky localization uncertainty
for both modelled and unmodelled gravitational wave sources within the
detector array. Based on our assessment of sky localization accuracy, we
have observed improved network efficiency for the Einstein Telescope
when employing the proposed triangular configuration.

Chapter 7 represents our research focusing on the potential of the
intrinsic null stream of the Einstein Telescope. We have shown ET’s null
stream can be used to optimize the operator for estimating sky localiz-
ation, in the network comprising third-generation detectors such as the
Cosmic Explorer and the Einstein Telescope. However, it’s important
to note that this optimization doesn’t lead to an improvement in sky
localization accuracy. Instead, its primary advantage lies in reducing
an additional null stream associated with the ET. This reduction can
offer computational advantages because we have one less null stream
to analyze in our residual data. Subsequently, I have utilized this null
stream to improve the calibration model of the ET through a method
known as self-calibration. The self-calibration method relies on detected
gravitational wave events and the residual signals left in the null stream
due to the calibration error. I've applied this method to assess how one
can enhance the calibration model of the ET based on the number of
events detected by the detector.
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Chapter 2

Introduction to Newtonian
noise

2.1 Introduction

Newtonian noise (NN), also known as gravity gradient noise, emerges
from the fluctuations in local gravitational fields. It poses a challenge
to interferometric gravitational wave detectors because the test mirrors
within the interferometer are subject to perturbations caused by gravity
variations due to seismic waves, atmospheric changes, and other factors.
This non-stationary noise source is particularly dependent on seismic
ground vibrations, and is therefore highly variable over time. Historic-
ally, the observation of Newtonian noise has been limited by the sens-
itivity of detectors, which is insufficient below 20 Hz, where Newtonian
noise becomes one of the dominant noise sources. However, future runs
of advanced detectors have the potential to observe and study Newto-
nian noise, providing an opportunity to validate theoretical models and
predictions [125].

Atmospheric Newtonian noise, caused by fluctuations in local grav-
itational fields, has only been observed by gravimeters at millihertz fre-
quencies. However, in the context of current advanced detectors such as
LIGO or Virgo, atmospheric Newtonian noise is not a major problem.
This is because advanced detectors like LIGO and Virgo face several
other dominant noise sources, such as seismic noise, thermal noise and
radiation pressure noise, which limit their sensitivity below 20 Hz. To
mitigate the effects of Newtonian noise, future detectors, such as the Ein-
stein Telescope, which will improve low-frequency sensitivity by a factor
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of almost 10000, are planned to go underground, taking advantage of
the reduced seismic noise levels found in such environments [162, 175].
Hence, it may be important to carefully consider atmospheric Newtonian
noise for third generation detectors [64].

To model the influence of NN on the sensitivity of a GW detector, we
first need to monitor the local seismic field nearby the input and output
test mirrors [170]. This can be accomplished by deploying seismometers
and tiltmeters in proximity to the test masses to measure relevant ground
displacements. Seismic Newtonian noise is a primary source of gravity
fluctuation, arising from density changes caused by ground vibrations
near the test masses. These density changes are a consequence of com-
pressional seismic waves or surface/interface displacements within the
surrounding medium. As a result, surface displacements near the test
masses occur, leading to associated gravity fluctuations that constitute
the dominant component of Newtonian noise.

Seismic waves can be broadly classified into two main categories: sur-
face waves and body waves [30, 54]. It is important to understand the
characteristics of these waves in the context of Newtonian noise, have
been discussed in section 2.2. Surface waves, such as Rayleigh waves
and Love waves, propagate along the surface of the medium. Rayleigh
waves are primarily associated with vertical motion, causing the ground
to move in an elliptical or rolling motion. Love waves, on the other hand,
are characterized by horizontal motion and shear deformation in near-
surface layered media. While both Rayleigh waves and Love waves can
induce surface displacements, it is important to note that Love waves
do not contribute to Newtonian noise as they do not result in density
changes within the medium [118]. The magnitude of Rayleigh waves
decays exponentially with depth, making their impact more pronounced
near the surface. Body waves, including compressional (P) waves and
shear (S) waves, can propagate through media in all directions. Rayleigh
waves are often more dominant compared to body waves when it comes
to surface detectors. For underground detectors like the proposed Ein-
stein Telescope, the main contribution to Newtonian noise comes from
body waves rather than Rayleigh waves. Since underground detectors
are shielded from surface disturbances, the seismic sources that affect
them are primarily associated with body waves that propagate through
the Earth’s interior. For the LIGO and Virgo detectors, the dominant
seismic sources are part of the detector infrastructure (pumps, vent-
ilation,...) and produce predominantly surface seismic waves, which
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means that our subsequent analysis can focus on NN from Rayleigh
waves [135, 81, 83].

Seismic NN is estimated to be the main contribution to the over-
all NN compared to other contributions like acoustic NN or NN from
infrastructure [90]. Although the effect of NN cannot be screened out
directly from the detector, there are still some conventional ways to re-
duce this noise. Firstly, one can select a seismically quiet region to build
up the detector [115, 50, 80, 82]. By choosing a location with low levels
of natural and anthropogenic seismic activity, the detector can achieve
higher sensitivity to gravitational waves. In this context, one can con-
sider going underground like Einstein Telescope due to reduced seismic
noise. Studies have shown that at depths of about 1 km, underground
seismic noise can be approximately an order of magnitude weaker than
surface noise above 1Hz [95, 41, 60, 72].

Another method to reduce NN that is relevant for the current de-
tectors is known as Newtonian noise subtraction [120]. This technique
involves deploying seismic sensors around the test mass to measure the
environmental vibrations and obtain information about the density per-
turbation of the ground. By analyzing the data from these sensors, it is
possible to estimate the associated gravity perturbation on the test mass
and the resulting Newtonian noise. The estimation of Newtonian noise
and its subsequent subtraction from the gravitational wave (GW) chan-
nel data is typically done using Wiener filters since they are designed to
minimize the influence of Newtonian noise on the GW measurements.
To optimize the effectiveness of Newtonian noise cancellation, it is ad-
vantageous to deploy the seismometers on the surface near the test mass.
This is because the surface seismic field generally contributes the most
significant portion of Newtonian noise, as observed by detectors like
LIGO and Virgo. However, the cancellation of Newtonian noise is a
challenging task. The real seismic field observed at detectors like Virgo
is complex due to the presence of infrastructure, which can interact with
the seismic waves from local dominant seismic sources. This interaction
may not align well with the analytical models used to characterize the
seismic field and can introduce additional complexities. Furthermore,
the cancellation process is affected by the surface conditions. A flat
surface is preferred over a rough one, since rough surfaces can cause
seismic scattering, making the cancellation problem more complicated.
Additionally, the limited number of sensors can lead to incomplete in-
formation about the seismic field. Optimal placement of seismometers
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becomes crucial to capture the relevant characteristics of the field and
improve the accuracy of Newtonian noise cancellation.

Another exotic way to reduce the NN is by modifying the infrastruc-
ture, e.g., by building the recess or moats surrounding the test mass,
which can act as a shield against Newtonian noise. Hughes and Throne
proposed the idea of digging moats deep enough so that surface waves
would be reflected from them, leading to a significant reduction in seis-
mic NN, provided that the moat depth exceeds the wavelength of the
Rayleigh wave [136]. However, this approach is more effective when the
seismic noise sources are located at a considerable distance from the
test masses. In the case of currently operating detectors like Advanced
LIGO and Virgo, the seismic sources are more local, i.e., closer to the
test masses. Harms and Hild demonstrated that modifying the local
topography, such as creating a recess around the test mass, can also
contribute to NN reduction in surface detectors [119].

The linear (root power) NN spectral density of each test-mass dis-
placement, assuming a flat surface, can be expressed as:

§(/)
(27 f)

where £(f) is the linear spectral density of vertical ground vibration,
primarily dominated by an isotropic Rayleigh-wave field. G represents
the gravitational constant, pg is the density of the ground, h is the
height of the test mass above the ground, and A denotes the Rayleigh
wavelength at frequency f. A recess structure can effectively lower the
density close to the test mass, or in other words, increase the effective
height h of the center of test mass above the ground. The existence of a
recess, in turn, reduces the NN spectra in a specific frequency band. The
extent of this reduction depends on the size of the recess structure and, to
some degree, its precise shape. Harms and Hild conducted calculations
to determine how the NN reduction factor varies with different recess
parameters, finding that feasible constructions could achieve significant
NN reduction factors ranging from 2 to 4. However, modifying the
experimental setup of currently operating detectors to remove ground
beneath the mirrors and establish supporting pillars for the vacuum
chambers is not a practical solution. Nonetheless, the Virgo detector
was constructed with recess structures and cleanrooms beneath the test
masses, which were used during the test-mass installation process from
below the vacuum chambers. This raises the question of the extent to
which NN is reduced in Virgo due to these recess structures. In the

5 exp(—2mh/\), (2.1)
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subsequent chapters, an evaluation of Virgo’s expected NN reduction
resulting from these recess structures is carried out numerically.

2.2 Seismic waves

Seismic waves can be categorized into four main types: P-wave, S-wave,
Rayleigh wave, and Love wave. Figure 2.1 illustrates these different
types of seismic waves propagating through a medium.

The P-wave and S-wave are collectively referred to as body waves
because they can propagate through the volume of the medium. The P-
wave, also known as the primary wave or compressional wave, causes the
medium to move back and forth in the same direction as the wave travels.
It results in the compression and expansion of the rock or material it
passes through. P-waves are the fastest seismic waves and typically
travel through solid rocky mediums at speeds ranging from 6 to 8 km/s.
On the other hand, S-waves, also known as secondary waves, shear and
twist the material, causing it to move perpendicular to the direction
of propagation. S-waves propagate slower than P-waves, with speeds
around 3.5km/s in hard materials.

Rayleigh waves and Love waves are classified as surface waves, which
means they propagate primarily along the Earth’s surface. Surface waves
have larger amplitudes compared to body waves. Rayleigh waves, often
called "ground rolls”, are a combination of longitudinal waves (P-waves)
and vertically polarized transverse waves (SV-waves or S-waves with
vertical displacement). They result in particle motion in an elliptical
path, causing both vertical and horizontal ground movement.

The Love wave, named after A.E.H. Love, is formed by the interfer-
ence of horizontally oscillating transverse waves. The particles in Love
waves move in a transverse shear motion along the direction of propaga-
tion. Love waves propagate within a specific layer of the Earth, which
is separated by another layer with a higher propagation velocity. Unlike
Rayleigh waves, Love waves do not change the density of the medium and
do not contribute to Newtonian noise since they do not induce gravity
gradients. However, Love waves can cause surface displacements.

Both Rayleigh waves and Love waves exhibit a decrease in amplitude
with depth.

35




2.3.  Analytical expression of seismic fields

S waves: ground motion is perpendicular to wave direction
S waves

Direction of wave propagation Onset of waves
P waves

Pwaves: ground motion is parallel to wave direction

Figure 2.1: Different types of Seismic waves propagating horizontally
and the corresponding ground displacements. Figure taken from [66].

2.3 Analytical expression of seismic fields

In this section, we discuss the properties of seismic waves and derive
the expression for the seismic field relevant to the calculation of grav-
ity perturbation (which will be discussed in section 2.4). We adopt the
mathematical approach and formulas presented in [117] and [30] as the
basis for our analysis. The particle displacement field arising from com-
pressional P-waves can be written as:

EP(F, 1) = &8 (B p,w) el KpT=wt) oP (2.2)

where w is the frequency, Kp is the wave vector given by Kp = 2, E(I)D
is the amplitude of the P-wave, and ékP represents the direction of wave
propagation through the media. The speed of P-wave, «, depends on the
material’s properties and can be expressed in terms of Lamé’s constants,
A and shear modulus, p. Specifically,

o /“;2“, (2.3)

where p is the density of the material.
The particle displacement field arising from shear S-waves can be
written as:

E5(7,t) = €5 (K g,w) e KsT—wt) g5 (2.4)
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where K. s is the wave vector given by Kg = %, and fg is the amplitude

of the S-wave. The S-wave speed, 3, depends on the shear modulus (p)
and the density of the material, and can be calculated as:

B = \/g (2.5)

Lamé’s constants can be derived from the P-wave and S-wave velo-
cities and can be expressed as:

A= pla® - §7). (2.6)
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Figure 2.2: Dependence of Rayleigh wave speed (Cr) and P-wave speed

(o) w.r.t. Poisson’s ratio. Blue and red curves show Rayleigh wave

speed and P-wave speed, respectively, in the unit of S-wave speed (f3).

This relationship leads to another useful expression relating the two
seismic speeds as a function of the Poisson ratio o:

=
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Now, let’s turn our attention to Rayleigh waves. Rayleigh waves
can propagate through the surface layer of a material and can also be
reflected and scattered at the interface between two media. However,
for simplicity, we will ignore these effects in the numerical simulation of
the Rayleigh wave field. The Rayleigh wave speed, denoted as Cg, is
related to the S-wave speed, [3, by the Poisson’s ratio of the material. In
most materials with a Poisson ratio of 0.25, the Rayleigh wave speed is
typically 0.9 times the S-wave speed (). Due to their slower spread and
confinement to the Earth’s surface, surface waves carry more energy in
a smaller volume and therefore have larger wave amplitudes compared
to body waves.

Let’s consider a Rayleigh wave propagating along the surface of an
isotropic elastic half-space, with a wave vector (E) aligned with the dir-
ection of é;. Here, Z denotes the vertical direction. The wavevector k
can be decomposed into horizontal and vertical components as K, and
K. The vertical wavenumbers can be expressed as:

(2.8)

In general, body waves propagate through the medium and reflect
from the surface, which can result in K, being larger than Kp and
Kg. Hence, it is more convenient to use the g-parameter, which can be
written as:

P _ 2 2
q, = K; - KP

! (2.9)
¢ =\/K2 - K2

One standard way to express a particle displacement field is in terms of
its scalar and vector potential, given by:

ER(F 1) = V(7 t) + V x 4(F, t). (2.10)

In the case of an infinite half-space, the scalar and vector potentials allow
the wave equations to be separated into uncoupled ones, although they
are coupled by the stress-free boundary condition at the free surface.
Hence, we can write:

¢ = Ae~0 ZeilEpiuwt) (2.11)
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and
u=—i¢ Ae % Z iKpp—wt), (2.12)
where ( = 4/ ‘;i};, representing the ratio of the scalar and vector potential

amplitudes, and Z is the z-coordinate of the half-space, with the surface
at Z = 0. The solid half space occupies the region Z > 0. The horizontal
and vertical components of the Rayleigh wave field can be expressed as:

R 0 ou _ s S
Ehop () = % + 9 = A(kpe w7z CqS e 7Y sin(K, - p— wt)
€L(rit) = 50 = 57 = ~Alal 7 = Gy ) cos(, - 7 wt)

(2.13)

The detailed mathematical calculations can be found in [128]. The ve-
locity of the Rayleigh wave (|Cg|) is related to the speed of the S-wave
(8) through the equation:

(%)) o 15

where R(z) = 2% — 822 + 8z g:g — %, and o represents the Poisson’s

ratio. The Rayleigh wave speed can be determined by solving the above
equation for different Poisson ratios (o). The dependence of the Rayleigh
wave speed and P-wave speed on the Poisson’s ratio is shown in figure
2.2. Hence, we can write the total displacement field due to the Rayleigh
wave as:

€87 t) = &l (Fot) e + R (7 ) e (2.15)

2.4 Gravity perturbation from seismic waves

So far, we have discussed different types of seismic waves and formulated
the seismic field for Rayleigh waves, as they are the main contributors
to Newtonian noise in current surface detectors. In the absence of seis-
mic waves, the gravitational field on the test mass remains constant.
However, when a seismic wave arrives, the particles become displaced
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from their equilibrium position, inducing density perturbations that res-
ult in fluctuations in the gravitational field near the test mass. These
fluctuations in the gravity field affect the motion of the test mass itself.
Gravity fluctuations can also arise from density perturbations in the at-
mosphere or from any moving object near the test mass [64]. While we
typically focus on seismically driven Newtonian noise due to its least un-
derstood nature, accurately modeling the gravity perturbations arising
from complex seismic fields remains a challenge. The optimal approach
is to understand the seismic sources and then design the seismometer
array to provide the necessary information for modeling gravity per-
turbations. Factors to consider include whether the seismic sources are
transient or stationary, distant or local, and whether they are located
on the surface or underground.

In this section, we will derive the expression for the gravity perturb-
ation on a test mass in terms of the seismic fields. We can start with
the equation of continuity, which formulates the density perturbation in
the medium caused by the seismic field as:

—

op =V - (p(r) £(7, 1)) (2.16)

Here, £(7,t) denotes the seismic or particle displacement field. p(7,¢)
is the density of the surrounding medium. Therefore, the fluctuation of
the gravity potential at the location of the test mass can be written as:

st ) = — [ 2D ay

|7 — ro\
V- (p(7) §(7.1)
= -G dVv
/ 7= o . (2.17)
=G [ () - Vv
=G [ (1) - F—raV

Hence, the acceleration onto the test mass due to the fluctuation of
potential can be expressed as:

o N 7 — 7
5a(r 1) = G/p(r)( (70)- Vo) e dV
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where é,,, is the unit vector pointing from r to rg, and V represents the
gradient with respect to the position of the test mass (7). Therefore,
it is possible to compute the integral numerically by assuming a grid
configuration that represents the surrounding medium around the test
mass. We can express a discrete version of the integral in Equation 2.18
for particle displacement that gives rise to gravity perturbations at the
position of the test mirror (rg) as follows:

1 -
di(ro,t) = Gpo 3 Vire— s (€073,1) = 3 €78, 0)e), (2.19)

7

where, 7; denotes the position of the i-th grid point, 5 (75, t) is the corres-
ponding Raylelgh displacement, and ¢; is the unit vector pointing from
7o to 7 (& = ﬁ) By summing over the grid points, assuming a
finite-element model, one can estimate the gravity perturbations result-
ing from vertical surface displacement and the (de)compression of rock
beneath the surface.

2.5 Analytical model of Newtonian noise for surface
detectors

In 1984, Saulson presented an analytical model for Newtonian noise and
estimated the magnitude of the forces caused by density fluctuations.
His model assumed a detector located on the surface with a half-space
geology characterized by a density p [193]. The ground’s density fluc-
tuation was assumed to be coherent over a characteristic scale of \/2
meters, where \ represents the wavelength of the seismic wave. These
fluctuations were considered uncorrelated in different regions. By as-
suming that random forces from different regions add in quadrature,
Saulson derived an expression for the X-component of Newtonian accel-
eration (parallel to the detector arm):

a(f)P= Y| 45 1=G Z'é”“’ cos b, (2.20)

‘Tz‘z

Here, F; represents the force acting on mass M. Saulson introduced a
lower cutoff value of A\/4 for the integration to avoid singularities as |r;]
approaches zero. It was also assumed that the change in mass density
dmy; is proportional to the displacement dz; of the coherent region, which
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Test mass

a(rO’ f)= static (ro )+ a(ro 1)

Soil p(r, t)

Figure 2.3: Schematic diagram of the effect of Newtonian noise on a test
mass suspended at 7 in the reference coordinate system XYZ. Due to
the local seismic field 5 (7,t), the volume element dV undergoes displace-
ment, which results in a change in density p(7,t) = po(7) +0p(7, t). This
causes the change in test mass acceleration a@(7p,t), which is the sum
of the static contribution @saic(7) and contribution due to Newtonian

noise dann (70, t) arising from the density fluctuation.

can be estimated using a seismometer. Saulson’s results for horizontal
displacement Newtonian noise for four test masses can be expressed as:

~dar(f)] 16m2 G2%p?

a1 (NP= e = 5 ey DR B (221)

The factor 1672/3 arises due to the lower cutoff A\/4. It is important
to note that this model was derived for a surface detector where the
test mass is surrounded by a half-spherical cavern with a frequency-
dependent radius of A\/4. Therefore, this result is not applicable to
underground detectors. To make the analytical model more realistic,
one needs to consider a plane Rayleigh wave-field, contributions from
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the bulk and surface of the half-space, dispersive properties of the soil,
and other factors [48, 136].

The expression for Newtonian noise by Saulson [193] can be modified
for a surface detector as follows [119]:

G2 ,02
(27 f)*
Here, h is the height of the test mass with respect to the ground, and

B < 1 is associated with the dispersive properties of the site’s geology
[136].

—27h

6z(f)[Pe > (m?Hz™!). (2.22)

0x1(f)[= 47

2.6 Newtonian noise cancellation

Seismic noise sources, both local (such as vibrational modes of buildings,
machine vibrations, traffic noise) and distant, contribute to the overall
seismic level at any detector site. Since it is not possible to directly
reduce the gravitational coupling between the test mass and the seismic
field, it becomes important to perform ambient Newtonian noise (NN)
subtraction in order to reduce its overall impact. The process of New-
tonian noise cancellation involves monitoring the seismic field with high
accuracy and resolution, based on which the displacement of the test
mass due to gravity fluctuations can be predicted and subtracted then
from the output signal of the interferometer.

To achieve this, a network of seismic sensors is deployed to accurately
monitor the ground’s seismic motion. The data from these sensors are
used to estimate the expected displacement of the test mass due to
gravity fluctuations. This estimation is done using techniques such as
the Wiener filter, which minimizes the variance of the error function
between the measured signal and the predicted signal. Let us consider
a given time series x(t) = h(t) +n(t), where h represents the underlying
gravitational wave signal and n is the noise. Using the Wiener filter, we
can construct the expected signal Z(t) using data from the sensors to
minimize the variance of the error function. The mathematical approach
is adopted from [49].

In the frequency domain, the error function can be expressed as:

B(f) = (f) - &(f)
=a(f) = Y alPhal). (22
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where «; represents the coefficients for the Wiener filter and x;(f) is
the Fourier series of the signal from the i-th sensor. We assume a non-
stationary case for simplicity. Therefore, the variance of E becomes:

(E"(HES) = @ (Hz(f) - Z aifz™(f)xi(f)) — Z a; (G (f)z(f))

+Za§ai(x;'f(f)xi(f))-
’ (2.24)

The coefficients can be chosen in a way that minimizes the variance:

aj = OGN THG (D () (2.25)

In our case, for the network of seismometers, we can express,

() 2(1) =5, ()
(@ (D) =5 Cxn(f) + Carn(1) (2.26)
(D) =5 (Css(f) + Ceel))

Here, (x;(f)x(f)) represents the cross-spectral covariance between the
’th seismometer response y;(f) and the observed data from the inter-
ferometer, denoted as x(f). Cgn;,(f) is the spectral covariance vector,
which characterizes the correlation between the i’th seismometer and
the Newtonian noise. (x*(f)z(f)) represents the power spectrum of
the observed data x(t). Cnyn(f) is the power spectrum of the Newto-
nian noise in the output of the interferometer. Crp(f) represents the
power spectral density due to the gravitational wave background. It as-
sumes that all other noise sources, apart from the gravitational waves,
are uncorrelated and contribute to the power spectrum in a separate
term. (x7(f)x;(f)) is the cross-correlation matrix between the seismo-
meters. It characterizes the correlations between different seismometer
responses and provides information about the spatial coherence of the
seismic field. Cgg(f) represents the cross-spectral density between the
seismometers and it describes the correlation between the measurements
of different seismometers at different positions in the network. Ce.(f)
is the cross-spectral density between the sensor noise, which is assumed
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to be uncorrelated with other noise sources. In this analysis, we assume
Cnn > Chpg and ignore Ceo(f).

The Newtonian noise subtraction can be characterized by the rel-
ative residual or the fractional error function, which is defined as the
ratio of the suppressed amplitude to the unsuppressed amplitude of the
interferometer signal:

(E(NE(f) _ | Csn (Css)™! Csn
Y*(HY(f) Cnn

where Y*(f)Y(f) is the power spectrum of the detector output Y'(f)
without noise subtraction. The value of R ranges between 0 and 1,
where R = 1 indicates that the sensor array is ineffective in performing
Newtonian noise cancellation, while R = 0 represents 100% subtraction
of Newtonian noise.

Badaracco et al. [42], have presented results for optimal sensor place-
ment by modeling the complex seismic field using Gaussian process re-
gression (GPR). They applied their method to the Virgo west end build-
ing using 37 seismometers and utilized the Wiener filter for optimization,
as discussed earlier. To determine Csg, GPR was employed to increase
the sample density since only 372 data points cover the 4D hypervolume.
The 4D nature arises because Cgg is a function of the x and y positions of
an arbitrary pair of seismometers. The optimal placement of the seismic
array was determined, and a relative residual of R = 0.1 (corresponding
to more than a factor of 3 in Newtonian noise cancellation) was achieved
with at least 20 seismometers. The results are depicted in figure 2.4.

Although this analysis did not consider the contribution of body
waves, the technique is valuable for designing a seismic array network
that can effectively cancel Newtonian noise in current and future surface
detectors, even in complex geological conditions.

R= , (2.27)

2.7 Newtonian noise for underground detector

The Einstein Telescope is planned to be an underground gravitational
wave detector with 10 km long arms, aiming for a sensitivity improve-
ment of approximately 10,000 times in the frequency range of 5 to 15 Hz,
compared to currently operating detectors. The underground location
offers quieter seismic noise compared to surface measurements due to
the exponential decay of seismic Rayleigh waves with depth. However,
underground anthropogenic noise, such as Newtonian noise (NN), can
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Figure 2.4: The residual R versus the number of optimally placed seismo-
meters. The diamond dots represent the results obtained via broadband
optimization for frequencies 10, 15, and 20 Hz, while the circular dots
represent the same for single-frequency optimization. Figure taken from
[42].

still be a concern, making it important to understand and model the
local seismic field and geology.

Two candidate sites have been considered for the possible location
of the Einstein Telescope: the EMR site (located at the border region
between the Netherlands, Belgium, and Germany) and the Sardinia site.
Underground displacement measurements have been performed at both
sites. Figure 2.5 and 2.6 show the spectral histograms of horizontal and
vertical ground displacements obtained from Terziet (EMR site) and P2
borehole (Sardinia site), respectively.

Harms et al. in [127] derived a lower limit on the seismic NN spec-
tra and estimated NN for the Sardinia and EMR sites, as shown in
figure 2.7. They used a simple analytical approach, assuming a ho-
mogeneous medium and negligible size of the cavern compared to the
seismic wavelength (\/27). The gravitational acceleration produced by
compressional and shear waves can be expressed as:

gi(ro,1) = L (27 (o 1) — (70, 1)), (2.28)
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Figure 2.5: Spectral histogram of horizontal(left) and vertical(right)
ground displacements obtained from Terziet, EMR at a depth of 250
m. Data have been collected from September 30, 2019, to September
14, 2020. The white curves represent the distribution’s 10th, 50th, and
90th percentile. The black dashed lines represent Peterson’s high and
low noise model. Plot taken from [127]
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Figure 2.6: Spectral histogram of horizontal(left) and vertical(right)
ground displacements obtained from P2 borehole, Sardinia site at a
depth of 264 m. Data have been collected from October 1, 2021, to April
30, 2022. The white curves represent the distribution’s 10th, 50th, and
90th percentile. The black dashed lines represent Peterson’s high and
low noise model. Plot taken from [127]

where p is the density of the homogeneous medium, 5P and 55 are the
compressional and shear wave contents, respectively. It should be noted
that the negative sign in equation 2.28 does not imply a reduction in NN.
Both components of shear waves contribute uncorrelated noise. This
equation, derived for the gravity perturbation of a test mass within a
small spherical cavity (r; — 0, or kr; < 1, where k is the P-wave wave
number and r; is the radius of the cavity), can be obtained straightfor-
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Figure 2.7: Lower bound on seismic Newtonian noise for the candidate
sites of ET, assuming a rock density of p = 2800, kg/m®. Taken from
[127]. The blue and red markers represent NN estimates at Terziet and
Sardinia, respectively, as published in [43] and [32]. The black curve
represents the modeled sensitivity curve of the ET.

wardly as shown in [124]. The model includes a bulk contribution and
a contribution from the cavern wall. To estimate the lower limit of NN,
Harms et al. ignored the bulk contribution as it is dependent on the
specific geology. They focused solely on the cavern wall displacement to
provide a conservative estimate of the lower limit of NN, which can be
expressed as:

sitro,t) = Gp [ ds(itr) €7 0) 0 = = Ew. ). (2:29)

|r — 703 3

M. Bader et al. [43] provided an estimation of the Newtonian noise
at the Terziet site in Limburg by solving elastodynamic wave equations
with site-specific parameters, as shown in figure 2.8. They considered
five layered geologies based on passive and active array analyses. For
layered geology, NN acceleration can be expressed as the sum of a volume

48



2.7. Newtonian noise for underground detector

1071° —
NN in Limburg
Surface waves NN, ET-DRU, 2020
——ET-D
1020+ - = =NNin ET-D
10721
N
L
Ju s
I= 10
©
= 1023
104+
10725
1" 10"
Frequency (Hz)

Figure 2.8: Estimation of Newtonian noise at the EMR site from surface
sources for a test mass located at a depth of 250 m and enclosed inside a
cavern with a radius of 10 m. The red band denotes NN at the surface,
and the green band shows NN at an underground location compatible
with the design sensitivity curve of ET-D and its NN contribution (black
trace). The grey band indicates the region of significant uncertainty in
geological modeling due to the underestimation of underground displace-
ment seismic field. Taken from [43].

integral and a surface integral:

N — —
3 =32 G [ (- DR Vit (1= ) [ (i) K S, (230)
m=1 v

S

where n,,, is the vector normal to the horizontal layer, k= %, Pm is the
density of the m’th layer, and the 3D displacement seismic wave field is
given by (%, f) = (u1(Z, f), ua(Z, f), us(Z, f)). Figure 2.8 represents the
NN in Limburg due to seismic displacement of the entire subsurface and
the free surface arising from surface excitation. The dip below 3 Hz is an
artifact resulting from the underestimation of horizontal displacement in
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Figure 2.9: Estimation of NN for random body wave background at the
EMR site of the Einstein Telescope, considering an underground test
mass at a depth of 250 m enclosed by a cavern with a radius of 10 m.
The black curve denotes the ET-D sensitivity, and the blue curve rep-
resents the total NN contribution from p-waves (left), s-waves (middle),
and the total body wave NN (right) obtained by summing up the con-
tributions of p-waves and s-waves. The red and green bands represent
the individual contributions from mass movements across the boundary
and displacements of the volume up to a radius of 150 m around the
test mass, respectively. The width of the shaded region indicates the
distribution between the 10th and 90th percentiles. The orange band
(right) represents the body wave background from the Einstein Tele-
scope design report 2020. Figure taken from [43].

the model seismic field. It is important to consider not only the seismic
displacements of different sites but also their underground geology and
seismic characteristics. Figure 2.9 shows the estimation of NN due to
body waves for the EMR site of the Einstein Telescope. The body wave
field can be modeled as:

(@) = (A-§ &GN L (A= (- H e F0, (231

where A is the amplitude in the direction of the displacement, f is the
direction of wave propagation, Z represents the coordinates, and V), V
are the p-wave and s-wave speeds. For numerical calculations, constant
P and S-wave velocities are assumed at all frequencies, and the fields are
generated from the superposition of plane waves with random phases.
Finally, the figure 2.10 shows the overall prediction of NN, which includes
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contributions from body wave backgrounds and surface excitations. The
estimated NN is approximately a factor of 2 higher than the model
sensitivity of ET-D due to the more significant contribution of the body
wave background. However, the soft soil surface profile in the Limburg
region acts as a shield against surface excitation. An NN cancellation
scheme is required to reduce NN from body waves.
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Figure 2.10: Prediction of Newtonian noise for the EMR site. The blue
band denotes the total NN, which closely matches the body wave NN.
The black dotted curve represents the ET-D sensitivity. The width of
the color band indicates the distribution between the 10th and 90th
percentiles. Figure taken from [43].

These studies provide estimates and predictions of Newtonian noise
for the Sardinia and EMR sites, taking into account various geological
factors and seismic characteristics. They highlight the importance of
considering underground geology and seismic wave properties in the
evaluation of NN for future gravitational wave detectors like the Ein-
stein Telescope.
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Chapter 3

Newtonian-noise reassessment
for the Virgo gravitational
wave observatory including
local recess structures

3.1 Introduction

Newtonian noise (NN) limits the low-frequency sensitivity of gravit-
ational wave detectors and cannot be reduced directly. In previous
chapters we have discussed indirect methods of reducing NN, such as
coherent Newtonian noise cancellation, selecting seismically quiet sites,
going underground, or constructing recess-like structures under the test
mirrors to suppress density fluctuations in the surroundings. In this
chapter we focus on NN reduction by recesses. The Virgo gravita-
tional wave observatory already has open spaces or recesses (part of
clean rooms) beneath the test masses. However, previous calculations
of Virgo’s NN spectra have relied on analytical equations that assume a
flat surface, leaving room for improvement in accurately modelling the
effects of recesses. Therefore, the primary objective of this chapter is to
perform a comprehensive numerical evaluation of the NN spectra, tak-
ing into account the intricate dimensions of the clean rooms located in
Virgo’s central, northern and western buildings. My aim is to quant-
itatively assess the reduction factor in the overall NN strain spectra,
paying particular attention to the influence of isotropic Rayleigh wave
fields and analysing how this reduction factor varies with the direction
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of wave propagation.

Section 3.2 discusses the numerical modeling approach for simulating
the Rayleigh-wave field, which is crucial for evaluating NN reduction.
Section 3.3 outlines the proper dimensions of recesses under the input
and end test mirrors in Virgo’s central and end buildings. Section 3.4
describes simulation of the isotropic Rayleigh-wave field near the test
mirrors and estimates the resulting gravity perturbation using a finite-
element model. I demonstrate the reduction in gravity perturbation
achieved by the recesses. In section 3.5, I discuss the choice of the
grid size and density required for finite element analysis. Section 3.6
represents the computation of the NN decrease for each main test mass
in Virgo and combines the results to obtain the overall NN reduction
factors. In addition, section 3.6 considers directional seismic fields and
analyses how the NN reduction factors for the Virgo end test masses
vary with the direction of wave propagation. This chapter relies on the
work presented in [199].

3.2 Numerical models of seismic fields

I focus here on the kinematic simulation of the seismic field because it
can be done with less computational effort than a fully dynamic solu-
tion. Many other aspects, such as the reflection of seismic waves from
infrastructure [156, 102] and mode conversions [228], can be taken into
account to build more realistic seismic fields, which I haven’t considered
in this model. The complexity of the seismic field can vary depending
on various factors such as geographical location, local geological condi-
tions and the presence of infrastructure. It is difficult to incorporate all
these complexities into a single model that covers all possible scenarios.
Therefore, a simplified model provides a reasonable approximation that
helps us to capture the essential behaviour of the seismic field and serves
as a basis for further analysis. This model assumes an isotropic seismic
field where the 2D direction is randomly chosen from a uniform distri-
bution. I consider the propagation of a plane wave field from a random
direction, repeating this process 20 times to account for variability. The
particle displacement contributions from each plane wave are then com-
bined to generate an isotropic seismic field. In the figure 3.1 I show
the isotropic seismic field illustrating the displacements caused by the
Rayleigh wave field for several surface layers. The amplitude of the
Rayleigh wave decreases exponentially with depth. The colour bar in
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Figure 3.1: Displacements due to the Rayleigh wave field for some sur-
face layers. The amplitude of the field decreases with depth.
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the figure 3.1, indicates the magnitude of the Rayleigh field at each grid
point, providing insight into the distribution of seismic activity. The
recess shape, represented by the white rectangle in the figure 3.1, is sig-
nificantly smaller than the Rayleigh wavelength. This indicates that the
influence of seismic scattering due to the recess can be neglected since
the recess does not introduce significant irregularities or heterogeneities
that would cause substantial scattering of the seismic waves.

3.3 Recess parameters around Virgo test mirrors
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Figure 3.2: Overview of the Virgo configuration (with recess parameters
below test mirrors). The sky-blue shaded areas in this figure represent
the positions of the recesses under the test mirrors. Part (B): TOP
VIEW with red dots representing the test mirrors. Part (A): SIDE
VIEW, where we can see the locations of the recesses. The depth of the
recesses in the end buildings is 3.5 m, and for the central building, it is
about 3.6 m. For each case, the mirror is hanging 1.5 m above surface
level.
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In this section, we provide details about the recess parameters around
the test mirrors in the Virgo Observatory buildings. The purpose of
this study is to adjust the Newtonian noise spectrum by considering
the presence of cleanrooms beneath the test mirrors, which can act as
recesses. It’s important to note that these modifications are specific to
Virgo, as they take into account the unique dimensions of the space
surrounding the test mirrors.

Figure 3.2 presents schematic geometries of the recesses in the Cent-
ral Building (CEB), North End Building (NEB), and West End Building
(WEB) of the Virgo observatory. The recesses are represented by the
sky-blue shaded areas in the figure. Part (B) of the figure shows a top
view of the recesses, with the red dots indicating the positions of the
test mirrors. Part (A) provides a side view, illustrating the location of
the recess in the ground label. The depth of the recesses is 3.5m for
the end buildings and approximately 3.6 m for the central building. The
test mirrors are positioned 1.5 m above the surface level.

For the end test mirrors (ETMs), the recess shape is a simple rect-
angle, although it is not symmetric along each arm. On the other hand,
for the input test mirrors (ITMs), the entire cleanroom space in the
central building is considered, which is larger, more extensive, and less
symmetrical compared to the recesses in the end buildings. By incorpor-
ating these specific recess dimensions into the modelling and analysis,
a more accurate assessment of the reduction of Newtonian noise in the
Virgo detector can be made, showing the effectiveness of the recesses in
mitigating unwanted noise sources.

3.4 Suppression factors of gravity perturbation on
test mirrors due to presence of recesses

In this section, I focus on evaluating the suppression factors of gravity
perturbation on the test mirrors in the Virgo observatory due to the pres-
ence of recesses. The goal is to refine the Newtonian noise (NN) curve
for Virgo by incorporating a more accurate geometric structure of the
cleanrooms beneath each test mass. In order to avoid complexity in the
model, I consider the isotropic Rayleigh-wave field for various frequen-
cies from 5 to 25 Hz. The isotropic field is generated in this simulation
by summing the contributions of plane Rayleigh waves propagating in
random directions. The mathematical formulation and intrinsic para-
meters of the Rayleigh waves can be obtained from the reference [123]. 1
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Figure 3.3: Contribution to the Rayleigh gravity perturbation from dif-
ferent parts of the surface displacement field. The layers have been
shown including the recess.

estimate the gravity perturbation caused by density fluctuations result-
ing from the propagation of seismic waves. The discrete version of the
integral over particle displacement, which gives rise to gravity perturba-
tions at the position of the test mirror (), can be expressed as follows:

si(ro ) = G Y vﬁ (Em,t) 36, (1)) - ) (3.1)

In this equation, 7; represents the position of the i-th grid point, E (75, 1)
is the corresponding Rayleigh displacement, and é; is the unit vector
pointing to 7; from 7 (é; = %). By summing over the finite-element
model, one can account for gravity perturbations from vertical surface
displacement as well as the (de)compression of the rock beneath the sur-

face. This equation allows us to evaluate the gravity perturbation based
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Figure 3.4: Gravity perturbation due to the propagation of Rayleigh
waves on input and end test mirrors (ITM and ETM) of the west (W)
and north (N) arm.

on a finite-element model of the ground. The displacement of points from
their equilibrium position generates a fluctuating gravitational field on
the test mirror, resulting in Newtonian noise. Figure 3.3 illustrates the
component of the gravity perturbation (along the direction of the arm)
on the test mirror due to an isotropic Rayleigh field.

I generate the Rayleigh field with uniform random propagation direc-
tions for each reference frequency between 5 and 25 Hz and then compute
the gravity perturbation on the test mirror. I perform this calculation
for two cases. In the first case, I consider a symmetric grid structure
surrounding the test mirror without any recess. Therefore, the gravity
perturbation without a recess should be the same for each individual test
mirror. In the second case, I evaluate the gravity perturbation by incor-
porating the recess dimensions into the finite-element model. I repeat
this calculation for each test mirror, considering their different recess
dimensions (length and width).

Figure 3.4 displays the gravity perturbation on the test masses due
to the isotropic seismic field, with and without a recess. As expected,
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Figure 3.5: Reduction ratio with recess vs without a recess for both
input and end mass.

the magnitude of the gravity perturbation is reduced when the recess
structure is taken into account, and this effect is more pronounced for
the end test mirrors compared to the input test mirrors. Figure 3.5
shows the reduction ratio of the gravity perturbation, which is simply
the ratio of the perturbation with a recess to the perturbation without
a recess. For the ETMs, a significant reduction (by a factor of 2) is
observed in the frequency range between 10 and 15 Hz.

The observed increase in the significance of Newtonian noise reduc-
tion at higher frequencies can be attributed to the comparison between
the dimensions of the recess and the length of Rayleigh waves. At fre-
quencies where Rayleigh waves have much larger wavelengths compared
to the recess dimensions, the recess only excludes a minor part of all the
relevant density fluctuations in the ground produced by these waves.
The situation improves with shorter wavelength with the caveat that
when Rayleigh waves become very short (in Virgo, at frequencies >15Hz
[207]), scattering from the recess becomes important, possibly leading to
modifications of the NN reduction not described by our model. There-
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fore, while the model provides valuable insights into the reduction of
Newtonian noise with a recess, it should be noted that its predictions
may deviate from reality at higher frequencies where scattering effects
become significant.

3.5 Reduction factor dependence on finite element
model (FEM)

In the previous section, I have shown the suppression factors of the
gravity perturbation on the test mirrors, which were obtained using a
finite element simulation model. In this model, the grid points represent
the discretized representation of the surrounding medium around the
test mass. By summing the contributions of the grid points to the test
mass acceleration using equation 3.1, I calculated the gravity reduction
factors.
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Figure 3.6: Reduction factors of NN for WETM assuming different grid
densities of finite element simulation model.

To validate the accuracy and reliability of the results with respect
to the finite element model used in this analysis, I have conducted ad-
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ditional investigations. Specifically, I examined the dependence of the
gravity reduction factor on the grid density and grid boundaries of the
surrounding medium.

By assuming different grid densities in the finite element model, 1
estimated the gravity reduction factor due to the recess at various fre-
quencies. Figure 3.6 illustrates the results (for WETM), showing that
a grid density of at least 8 points per cubic meter is required to ob-
tain accurate values. If the grid density is lower than this threshold,
the estimated reduction factors may not reflect the true behavior accur-
ately. At frequencies above 20 Hz, there is a slight discrepancy between
the blue and red curves, suggesting that increasing the grid density at
higher frequencies can improve the accuracy of the results. This ad-
justment ensures that the discrete grid points adequately capture the
fine details of the displacement field caused by the Rayleigh waves. Al-
ternatively, rather than increasing the grid density, one could opt for
a different approach by maintaining the same number of grid points
and reducing the boundary of the finite element model. This strategy
takes advantage of the fact that at lower wavelengths, the contribution
from regions further away from the test mass becomes negligible in com-
parison to the immediate vicinity of the test mass. By restricting the
model to a smaller boundary, computational resources can be optimized
without significantly compromising the accuracy of the reduction factor
estimation.

Furthermore, I have investigated the influence of the grid boundaries
on the gravity reduction factors by considering different integration re-
gions in the finite element model. Figure 3.7 shows the gravity reduction
factors for various choices of the boundary volume. While maintaining
a grid density of 8 points per cubic meter, I varied the volume of the
boundary region. The results highlight that the model yields reliable
outcomes when the X, Y, and Z coordinates of the surrounding medium
span from -25 to 25, -25 to 25, and -25 to 0, respectively, with the surface
situated at Z = 0. By selecting this appropriate integration region, one
can ensure that it captures the essential density fluctuations and their
effects on the test mass accurately. Restricting the integration region to
this volume allows us to neglect contributions from more distant regions
that have a negligible impact on the local effects near the test mass.

In the estimation of the Newtonian noise reduction factors, I em-
ployed a consistent grid density of 8 points per cubic meter throughout
the finite element model. The overall volume of the finite element model
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Figure 3.7: Reduction factors of NN for WETM assuming for different
boundary of the surrounding medium of finite element simulation model.

was set to be 50 x 50 x 25m3. These choices allowed us to accurately
assess the gravity reduction factors and their dependence on the recess
structure, ensuring reliable results for this analysis.
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3.6 Results of Newtonian Noise Suppression in Virgo
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Figure 3.8: (upper left) Newtonian noise spectra for North end test
mirror (horizontal displacement along north). (upper right) Newtonian
noise spectra for West end test mirror(horizontal displacement along
west). (lower left) Newtonian noise spectra for North input test mass
(horizontal displacement of NITM along north). (lower right) Newto-
nian noise spectra for West input test mass (horizontal displacement of
WITM along west). For each sub-plots, the blue trace curve is being
used to specify the spectra without recess and the other spectra are as-
sociated with the corresponding mirror for the particular shape of the
recess.

In this section, I present the results of my estimation of the reduc-
tion in the absolute level of Newtonian noise due to the presence of
the recess underneath the test mirrors in the Virgo gravitational wave
detector. Figure 3.8 illustrates the NN spectra for the different test
mirrors in Virgo. I consider the seismic spectra recorded from seismo-
meters deployed at various locations within the Virgo site, including
the central building, north-end building, and west-end building. I have
used the 90th percentiles of vertical seismic spectra to normalize the
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Figure 3.9: (top) Total NN spectrum and its reduction when considering
the recesses under test masses. For reference, we have also included the
sensitivity of Virgo O4 and O5 for their lower limit. (bottom) Newto-
nian noise reduction ratio. Newtonian noise suppression at frequencies
above 15 Hz (shaded region) in these plots may be significantly affected
by seismic scattering (as one can estimate from analytical expressions,
which are consistent with observations at the Virgo site [207]), which is
not considered in the numerical simulation used for this analysis.
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vertical surface displacement in the finite-element model. The model
itself then produces vertical and horizontal displacements at the sur-
face and underground consistently according to an analytical equation
of the Rayleigh-wave field. We have already found the reduction factors
numerically for each test mirror. Just by multiplying those reduction
factors for each test mirror with a no-recess NN estimate, I obtain the
NN spectra with recess of figure 3.8. The NN spectra without a recess
(blue curves) are added for comparison.

Finally, I estimate the overall NN curve shown in figure 3.9 (top).
Assuming that NN is uncorrelated between test masses (certainly valid
for correlations involving ETMs due to their large distance to other test
masses, but also valid for the I'TM pair when assuming an isotropic
seismic field), NN power spectral densities from individual mirrors can
simply be added, and I then plot the square root of the total power
spectral density. In figure 3.9 (bottom), I show the reduction ratio for
the overall NN spectra. We find the reduction in NN nearly a factor of
2 within 12 to 15Hz. It is not a smooth curve anymore (compare with
figure 3.4) since reduction factors for each test mass are different, which
means that the ratio of total NN with and without a recess now depends
on the shape of the individual spectra.
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3.7 Newtonian-noise reduction due to recess in a dir-
ectional seismic field

Our analysis of NN suppression was based on the assumption of an iso-
tropic seismic field, where Rayleigh waves were considered to be incident
from all directions with equal probability. In reality, seismic sources of-
ten exhibit significant anisotropy, leading to variations in wave propaga-
tion characteristics based on the direction of propagation. Consequently,
it is crucial to comprehensively understand the impact of recesses in re-
lation to the direction of wave propagation, in order to accurately estim-
ate corrections to the results obtained under isotropic assumptions. By
considering the presence of recesses, our previous research demonstrated
promising results in mitigating NN. However, to translate these findings
into practical applications, it is imperative to account for the directional
nature of the seismic field. Anisotropic seismic sources, such as local geo-
logical features or anthropogenic activities, can introduce spatial vari-
ations in wave propagation, influencing the effectiveness of recesses in
NN reduction. Understanding these effects is vital for accurately predict-
ing the performance of recess-based NN mitigation strategies. To achieve
this objectives, I have conducted an in-depth investigation of the impact
of recesses in a directional seismic field. By systematically varying the
direction of wave propagation and analyzing the corresponding changes
in NN reduction, I have developed a comprehensive understanding of
how recesses interact with directional seismic forces. This analysis will
enable us to quantify the corrections required to adapt the isotropic res-
ults obtained in the previous section to the directional seismic scenario.

The shape of the recess beneath the end test mirrors (ETMs) is not
spherically symmetric; rather, it resembles a rectangle. This implies that
the reduction factor for Newtonian noise should exhibit a dependence on
the propagation angle, denoted as 6, of the seismic wave. To investigate
this, I computed the NN reduction factor for individual Rayleigh waves
as a function of propagation direction. In figure 3.10 (top), I present
the variation of the reduction factor for the West ETM’s NN as the
seismic field approaches from different angles (0° < 6 < 360°) relative
to the arm direction. To illustrate this variation, I have selected three
reference frequencies: 5 Hz, 10 Hz, and 15 Hz. By examining the plot, we
observe how the reduction factor varies with the angle of propagation 6.
The findings demonstrate the importance of considering the directional
characteristics of the seismic waves when evaluating the efficacy of the
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recess-based approach.

Figure 3.10 (bottom) presents the absolute gravity perturbation,
measured in arbitrary units, both with and without a recess, specifically
for the reference frequency of 15 Hz. Notably, when the seismic wave
arrives from directions perpendicular to the arm (# = 90°,270°), the
density fluctuation along the arm direction is null without any recess.
As the recess surrounding the mirrors is not symmetric, we see some
unbalanced gravity field when considering recess, which means that NN
never fully vanishes. Hence, when we are taking the ratio of the gravity
perturbation with and without a recess, we are finding diverging factors
for 0 = 90°,270°. This should not be the case if the recess would be
symmetric about the test mirror. The results in figure 3.10 can provide
a more accurate estimate of the NN reduction when information about
the observed anisotropies of the seismic field is included. While it is de-
sirable to account for anisotropy to achieve a more accurate estimation
of Newtonian noise reduction, it is essential to acknowledge and address
the complexities and limitations associated with capturing and incorpor-
ating anisotropic effects in the analysis. Firstly, anisotropic structures,
arising from various factors, such as subsurface geological structures,
heterogeneity in the Earth’s layers, and localized sources of seismic activ-
ity, can be highly complex and challenging to model. Secondly, the an-
isotropy of the seismic field can exhibit temporal and spatial variations,
with seismic sources and subsurface properties changing over time and
space. If there are multiple seismic sources present, it introduces ad-
ditional complexities related to the spatial and temporal distribution
of seismic activity. Despite the challenges associated with considering
anisotropy, the conclusion holds true. The recesses, even with their non-
spherical symmetry, contribute to a substantial reduction in VIRGO NN
and provides evidence of the effectiveness of the recess-based approach
in mitigating NN. Assuming isotropy simplifies the analysis by consid-
ering an average seismic field without detailed knowledge of directional
dependencies. This simplification allows for a more straightforward eval-
uation of NN reduction and facilitates initial assessments of mitigation
strategies.

3.8 Summary and outlook

I have re-estimated the Newtonian noise considering the existence of
clean rooms or recess-like structures underneath the test mirrors of the
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Virgo detector. Accountability of these recesses in numerical simulation
leads to suppression of Newtonian noise relative to expectations, mostly
due to the fact that a recess increases the distance between test mass
and ground. I have obtained a significant suppression factor (by 2 at
15Hz) in the overall Newtonian-noise spectrum, which is important to
include in future Newtonian-noise models for Virgo.

I also investigated the impact of field anisotropy on the reduction
factor. Especially at the Virgo end buildings, knowledge of source loc-
ations (ventilation, pumps, ...) and seismic-array analyses already in-
dicate an anisotropy of the field [207]. We found that the direction of
propagation of the seismic field is important, but the reduction of New-
tonian noise is achieved for almost all propagation directions except for
those where Newtonian noise without a recess would vanish, i.e., the
practically irrelevant case where all Rayleigh waves propagate perpen-
dicular to the detector arm.

The presence of recesses is effective, especially for surface GW de-
tectors where the dominant seismic Newtonian noise comes from com-
paratively slow Rayleigh waves (<300m/s). In this case, the required
horizontal extent of the recess below test masses is of order 10 m, which
is a feasible modification of a detector infrastructure (as demonstrated
at the Virgo site). Reduction of Rayleigh-wave Newtonian noise by a
factor of 2 and more is not minor given that a similar reduction by
Newtonian-noise cancellation requires large arrays. Better suppression
can be achieved by choosing optimized recess geometries as shown in
past work [119]. However, given the high seismic speeds in underground
environments, it seems unlikely that a similar mechanism can be ex-
ploited in the Einstein Telescope [95], which would essentially ask for
cavern sizes of around 100 m to be effective.
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Figure 3.10: (top) Reduction factor vs the direction of propagation of
Rayleigh waves for reference frequencies 5, 10, and 15 Hz. (bottom)
Gravity perturbation with respect to the angle of propagation for refer-
ence frequency 15 Hz.
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Chapter 4

Characterization of the seismic
field at Virgo and improved
estimates of Newtonian-noise
suppression by recesses

4.1 Introduction

In this chapter, my focus is on conducting a spectral analysis, both
spatially and temporally, of the seismic field at the North End Building
(NEB) of the Virgo detector. I utilize data obtained from an array
consisting of 38 indoor and 11 outdoor sensors, as depicted in figure
4.1. These sensors are 5 Hz geophones oriented in the vertical direction
and are coupled with Innoseis Tremornet readout nodes. My analysis
specifically focuses on the data collected from the indoor sensors over a
two-week period starting from December 1st, 2019. This chapter relies
on the work presented in [200].

The spectral analysis allows us to examine the frequency content of
the seismic waves and their propagation characteristics. Specifically, 1
aimed to determine the direction and speed of seismic wave propagation
across different frequencies. This information is crucial for identifying
the dominant sources contributing to the seismic field and understanding
the behavior of seismic waves in the vicinity of the NEB. We obtain
evidence for the scattering of seismic waves and measure the dispersion
curve of Rayleigh waves. The latter can be compared with previous
results of array measurements carried out outside the buildings between
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the two interferometer arms [145].

As we have seen in the previous chapter the presence of the recess in
the Virgo detector should result in a significant reduction of Newtonian
noise by a factor of at least 2 within the frequency range of 10Hz to
20 Hz. However, these findings were based on certain assumptions and
parameters, including the seismic speed. The seismic speed is a critical
parameter for the effect of a recess, which was assumed to be 250 m/s
adopting the speed observed at the LIGO sites. In my new analysis
presented in this chapter, I revisit the estimation of NN reduction due
to the recesses in Virgo. I take into account the observed Rayleigh-wave
dispersion, which provides more accurate information about the seismic
speed in the specific location of the detector. By incorporating this
refined seismic speed value, I have recalculated the recess NN reduction
with improved accuracy.
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Figure 4.1: Positions of seismometers at the North End building. Left:
indoor array. Right: outdoor array.

This chapter is structured as follows. In Section 4.2, I focus on the
characterization of the seismic field through spatial spectra, also known
as kf-maps. These kf-maps are generated by performing spectral cor-
relations of the data obtained from the seismometer array in the NEB
building. I specifically examine kf-maps for three distinct frequencies:
10Hz, 15Hz, and 20 Hz. By analyzing these kf-maps, we gain insights
into the spatial distribution and characteristics of the seismic field at
different frequencies. In Section 4.3, I focus into the reassessment of the

72



4.2. Characterisation of the seismic field

Newtonian noise estimate for the Virgo detector. Firstly, I present the
velocity dispersion curve, which is derived from the dominant noise com-
ponents observed in the kf-maps obtained at various frequencies. This
dispersion curve provides valuable information about the propagation
characteristics of seismic waves in the vicinity of the NEB. By incor-
porating the refined seismic speed information, I aim to obtain a more
accurate assessment of the NN reduction achieved by the recesses in
Virgo. Finally, in section 4.4, I summarize and discuss our findings.

4.2 Characterisation of the seismic field

In this section, I focus on the characterization of the seismic field at the
Virgo NEB (North End Building) through an array analysis in wave-
vector space (k = (kz, ky)) at different temporal frequencies. The ana-
lysis allows us to examine the spatial distribution of seismic signals and
identify potential local seismic sources. We consider the data from the
Virgo NEB seismometers.

To begin, we estimate the cross-spectral density C(7, 7}, w) between
pairs of seismometers. Here, 7; represents the position of seismometer
1. This estimation results in an N x N matrix, where N is the number
of seismometers, containing cross-correlations between the seismometer
pairs at a specific frequency w. Based on the cross-spectral density mat-
rix, we calculate a spatial spectrum, denoted as p(w, E), can be written
as [149, 116]:

N
plw, k) = > Clw; i, i) e H ) (4.1)

1,j=1

The matrix C is Hermitian, and hence p is real-valued. A Hermitian
matrix is equal to its conjugate transpose, indicating that all the ele-
ments of the matrix have real values. For our analysis, we calculate
such a spectrum for each hour. By performing the analysis on an hourly
basis, we can capture the temporal variations and dynamics of the seis-
mic field. The spatial spectrum p is the result of an average over many
short-term cross-spectral densities C'. By averaging over multiple in-
stances of C';, we can obtain a more robust and reliable representation
of the seismic field’s spatial characteristics. The spatial spectrum p(g)
can be calculated for any frequency, but there is a useful range of spatial
frequencies connected to the density of the array and its diameter. The
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density of the array refers to the spacing between individual seismomet-
ers. With seismometers placed as close as 1 meter to each other and
an array diameter of approximately 20 meters along the X direction,
our analysis enables the examination of wavenumbers up to 3 rad/m
with a resolution of about 0.15 rad/m. This range of spatial frequencies
provides valuable information regarding the dominant modes and their
directional characteristics within the spectra.
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Figure 4.2: Spatial spectrum at 20 Hz obtained from mock data, which
contains a sinusoidal wave with the direction and velocity coinciding
with the red blob in the plot.

To illustrate the analysis process, we can create mock data consisting
of a sinusoidal wavefield with a known velocity and direction. By com-
puting the spectral map, denoted as p(w, E), we can distinguish the injec-
ted mode and analyze its properties. Figure 4.2 presents a spectral map
generated from mock data, where the sinusoidal wavefield propagates
from the direction indicated by the prominent red blob. The velocity of
the injected signal is 100 m/s. This example serves as a demonstration of
the methodology and its application in distinguishing and characterizing
specific modes within the seismic field.

In the first example of a spatial spectrum obtained from NEB seismic
arrays, as depicted in figure 4.3 for a frequency of 10 Hz, we observe mul-
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tiple modes simultaneously present within the spectrum. These modes
are visualized as red blobs, each representing a distinct pattern or be-
havior in the seismic field. The range of the spectrum is normalized
by its maximum value. Normalization allows us to identify the relat-
ive strengths or amplitudes of each mode in relation to the maximum
amplitude within the spectrum. In addition to the red blobs represent-
ing the modes, the plot also includes circles that correspond to a set
of phase speeds associated with these modes. The circles serve as a
tool for estimating the speeds of the modes through visual inspection.
The spatial spectrum depicted in figure 4.3 exhibits significant features
at a frequency of 10 Hz. Notably, we observe the presence of two dis-
tinct modes, highlighted by the boxed regions, propagating in the same
direction. The first mode, characterized by a phase speed of approx-
imately 100m/s, corresponds to a Rayleigh wave. Rayleigh waves are
surface waves that propagate along the boundary between the Earth’s
crust and the atmosphere. The identification of a mode with a speed of
around 100m/s allows us to classify it as a Rayleigh wave. The second
mode in the spectrum displays a phase speed on the order of a few km/s.
Body waves are known to exhibit higher velocities compared to surface
waves such as Rayleigh waves. Hence, the mode with a phase speed in
the km/s range is indicative of a body wave. However, it is important
to note that the body wave mode falls near the centre of the spectrum,
indicating a range of possible propagation directions. Therefore, based
solely on its position of the blobs, we cannot conclude that the body wave
mode originates from the same direction as the Rayleigh wave mode.

To determine if the body wave and Rayleigh wave modes origin-
ate from the same seismic source, further investigations and analyses
are required. These may involve examining their temporal coherence,
waveform characteristics, considering geological structures, and study-
ing source mechanisms. To gain a deeper understanding of the temporal
behavior and characteristics of the Rayleigh and body wave modes, I
have conducted a study on their amplitude variation over time. To ac-
complish this, I performed calculations of the spatial spectrum p(E) at a
frequency of 10 Hz by averaging data over one-hour intervals, and repeat
this for a total of 15 days. I found that the two waves are present continu-
ously, and thus collected the maximum amplitude of the Rayleigh and
body waves (associated with the specific direction in the map) for each
hour. I show the amplitude variation of the Rayleigh and body waves
in figure 4.4. We can observe a similarity in the amplitude variation
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Figure 4.3: Spatial spectrum at 10 Hz obtained from cross-correlations
between the seismometers and normalized by the maximum value. The
spatial spectrum at 10 Hz captures the presence of multiple modes, with
the boxed regions highlighting distinct Rayleigh and body wave modes
based on their phase velocity.

patterns of the Rayleigh and body waves. However, it is important to
note that a perfect correlation between the amplitudes of Rayleigh and
body waves should not be expected, even if they originate from the same
source. This is due to the different propagation characteristics of these
waves. Furthermore, it is important to consider that other sources in
the vicinity may occasionally generate stronger Rayleigh and body waves
at 10 Hz, contributing to some differences in their amplitude variation.
The magnitude of the body wave is always lower than the Rayleigh
wave, which is expected for surface sources. In figure 4.4, the dotted
lines represent midnight in local time, providing a reference for the time
variations. It is evident that strong disturbances primarily occur during
the day, while quieter periods are observed during the night. The loca-
tion of a highway bridge with respect to the Virgo NEB matches with
the direction of observed Rayleigh and body waves. Previous studies
investigating the bridge noise have focused on lower frequencies (below
5Hz) and have identified these waves as frequent transients in spectro-
grams [98, 146]. Considering the potential origin of these waves from
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Figure 4.4: Amplitude variation of dominant 10 Hz Rayleigh-wave and
body-wave modes w.r.t. time (in hours). Black dotted lines represent
midnight in local time. The amplitude of the Rayleigh waves (maroon
curve) and the body waves (green curve) are correlated and follow a
day-night cycle. The waves tend to arrive with lower amplitude on
weekends, here around hours 50 and 200 (grey shaded patch), leading
to lower amplitudes in the 10 Hz spectra.

the highway bridge, it is reasonable to expect higher noise levels during
the day, coinciding with heavier traffic on the highway.

The positioning of the indoor and outdoor arrays is depicted in fig-
ure 4.1. Additionally, figure 4.5 showcases the 3 Hz spatial spectrum of
the outdoor array. In this spectrum, we can observe a Rayleigh wave
originating from the same direction as the highway bridge. The noise
source associated with the bridge is considered local, meaning it ori-
ginates from or is closely related to the bridge itself. The bridge noise
appear as transient signals that are captured in the spectrogram as brief
bursts of energy at specific frequencies or frequency ranges. To further
analyze the transient trends, we can examine the spectrogram at two
distinct time periods: busy time and quiet time. "Busy time” typically
refers to a period when there is a high level of activity or noise in the
environment which can be associated with peak traffic hours. On the
other hand, "quiet time” refers to a period when there is relatively less
activity or noise in the environment. This could be during late at night,
early morning, or any time when the ambient noise levels are generally
lower and there are fewer sources of disturbance. Figure 4.6 displays the
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Figure 4.5: Spatial spectrum at 3Hz drawn from cross-correlations
between the 11 outdoor seismometers normalized by the maximum value.
The boxed region represents the Rayleigh-wave mode which we have ob-
served already at 10 Hz using the indoor sensors. The white dot in the
spectrum corresponds to the maximum amplitude and may arise from
aliasing.

spectrogram captured at two distinct time periods: busy time and quiet
time. The purpose of this representation is to observe and analyze the
transient trends that emerge in the spectrogram during these specific
time intervals.

In figure 4.7, the spectral map at 3Hz is presented for both busy
and quiet times. The highlighted box represents a strong Rayleigh wave
mode which is absent during the quiet time. The absence of the Rayleigh
wave mode during the quiet time suggests that it is likely associated with
the source of the noise transients. This observation provides a valuable
clue in identifying the source of the noise transients. Consequently,
it strengthens the previous findings of past studies that highlight the
highway bridge as a significant noise source in the Virgo environment.

In figure 4.8, 1 present similar plots for frequencies of 15Hz and
20Hz. At these frequencies, the spectra become more complex due to
the occurrence of aliasing of modes. Aliasing is a phenomenon that arises
when fake modes appear in the spectrum as a result of the finite spatial
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Figure 4.6: Comparison of spectrograms, derived from data collected
by a single seismometer, during busy time (left) and quiet time (right).
The spectrogram denotes the distribution of energy across frequencies
over time. During the night, the presence of transient noise is noticeably
diminished or almost absent.
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Figure 4.7: Spectral map at 3Hz obtained from cross-correlations
between the 11 outdoor seismometers, normalized by the maximum
value. (Left) Busy time or daytime spectral map. (Right) Quiet time
or midnight spectral map. The highlighted box indicates the presence
of a strong Rayleigh wave mode, observed during the busy time and
absent during the quiet time, providing valuable insights into the source
of these noise transients shown in figure 4.6.

resolution and bandwidth limitations of the array. The limited spatial
resolution of the array and its restricted ability to capture a wide range
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of frequencies result in overlapping or distorted modes being erroneously
incorporated into the spectrum.

y
y

o

°
w
Spatial Spectrum at 20Hz

Wavenumber k_ [rad/m]
Wavenumber k_ [rad/m]

-

1.5

-1.5 -1 -0.5 0 0.5 1
Wavenumber k_ [rad/m] Wavenumber k, [rad/m]

Figure 4.8: Spatial spectra at 15Hz (left) and 20 Hz (right) normalized
by their maximum values. The boxes mark counter-propagating twins,
where one is an artifact produced by aliasing.

At 15Hz, a pair of counter-propagating waves, commonly referred
to as a twin, is observed (boxed modes in the left plot). Initially, one
might assume that these waves indicate a reflection or the simultaneous
presence of seismic sources in opposite directions. However, the proper-
ties of the twin are actually consistent with an aliasing effect. As pre-
viously mentioned, the largest analyzable wavenumber, limited by the
array’s spatial resolution, is approximately 3rad/m. Interestingly, this
value aligns closely with the distance between the twin modes observed
at 15 Hz. The proximity between the twin modes and the analyzable
wavenumber further supports the notion that their appearance is a con-
sequence of the aliasing effect caused by the array’s limitations. At 20 Hz
shown in the right plot, the aliasing pattern is clearly visible, i.e., iden-
tifiable as an artificial pattern in the spatial spectrum. Two twin modes
are marked in boxes, and again, the distance between them corresponds
roughly to the spectral bandwidth of the array analysis (given by the
sensor density).

So, it turns out that Rayleigh waves are so slow at the Virgo site
that it is not possible to carry out a good spatial-spectral analysis well
above 10 Hz with the NEB array. In order to improve the analysis, one
potential solution would be to relocate the sensors closer together. But
if sensors would have to be moved closer together, then it would be more
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Figure 4.9: Amplitudes of primary and secondary modes shown in fig-
ure 4.8. Maroon dotted points represent the amplitude of counter-
propagating twins observed at 15 Hz and green dotted points represent
the amplitudes of the counter-propagating twins boxed in figure 4.8 at
20 Hz. The solid black line is the straight line of equality (y = x).

difficult to analyze the fast body waves. The larger sensor spacing al-
lows for capturing the broader wavelength range of body waves, ensuring
that the signals are not spatially undersampled. The best option would
be to add more sensors to increase the sensor density while maintaining
the array diameter (and therefore the spatial resolution). For some ana-
lyses, though, e.g., to measure the phase speed of a mode, it is possible
to simply select one of the two modes of a twin for the analyses since
the real wave and its twin alias in the Virgo spatial spectra have the
same speeds. However, since the array configuration is irregular, the
amplitudes of the aliases are only similar but not the same as of the real
waves. Since the dominant modes at 15Hz and 20 Hz are persistent,
one can analyze them over a longer period of time. This longer analysis
duration helps compensate for any irregularities in the array configur-
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ation and provides more reliable results. Figure 4.9, which shows the
comparison of amplitudes for the twin modes, provides valuable insights.
The plot demonstrates that the amplitudes of these twin modes are of
the same order and exhibit a strong correlation, as indicated by their
distribution around the line of equality. It is important to note that the
relative amplitudes of the twin modes can be smaller than 1 if the modes
selected for analysis do not represent the dominant contribution to the
respective spatial spectra. The strong correlation and similarity in amp-
litudes observed between the twin modes in the plot can be attributed
to the phenomenon of aliasing.

A tiltmeter, along with the seismometer array, was deployed at the
NEB, providing an additional analysis capability crucial to Newtonian
Noise Cancellation (NNC) [69]. The tiltmeter holds a special signific-
ance in mitigating NN originating from Rayleigh waves [121]. Rayleigh
waves induce tilting of the ground surface as they propagate, leading
to variations in the gravitational field that result in NN. By monitoring
the ground tilt using a tiltmeter, it becomes possible to quantify and
characterize the tilting caused by Rayleigh waves. If a field is composed
entirely of plane Rayleigh waves, then the associated NN can be can-
celed by a single tiltmeter instead of using an array of seismometers. An
initial assessment to determine if a field can be roughly characterized as
composed of plane Rayleigh waves involves comparing the array-inferred
ground tilt with the ground tilt directly measured by a tiltmeter. Lim-
itations of array analyses (aliasing and resolution limits) make the com-
parison difficult, but a good match between the two was observed at the
LIGO Hanford site [116], which is a strong indication that a tiltmeter
would be very effective for NNC at Hanford.

To estimate the ground tilt from array data, different approaches
and levels of approximation can be employed. I perform this analysis
by considering the dominant modes in the spatial spectrum, estimating
their wavenumber &k and propagation direction ¢, and then averaging
over many estimates. By examining the spatial spectrum of the seismo-
meter array data, I identify the modes that contribute significantly to
the overall signal. These dominant modes provide valuable information
about the characteristics of the seismic field, including the wavenumber
and propagation direction associated with the ground tilt. The power
spectral density of the array-inferred ground tilt, denoted as S., (w), can
be expressed using the wavenumber k and propagation direction ¢ es-
timations. It is related to the power spectral density of the seismic field,
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denoted as S¢(w), through the following equation:

S, (w) = (k? cos?(9)) Se(w), (4.2)

where S¢(w) is the spectral density of vertical ground displacement &(¢).
The averaging of k? cos?(¢) over multiple estimations plays a crucial role
in capturing the average behavior of the ground tilt and establishing its
relationship with the spectral characteristics of the seismic field.

To determine the value of k for each frequency, I have observed the
spectra generated at different frequencies and identified the dominant
mode present in each spectral map. Once we have determined the dom-
inant mode in the spectral map for a specific frequency, we can obtain
the corresponding coordinates (k,, ky) associated with that mode. These
coordinates represent the spatial components of the wave vector and
provide information about the direction of propagation. As mentioned
previously, this analysis involved using a dataset spanning a duration of
two weeks. I performed a spectral analysis on each hour of data to gener-
ate averaged spectra. I then identified the dominant mode present in the
spectra which represent the most significant and prominent feature of the
seismic field during that particular one-hour period. Therefore, at the
end of the two-week observing time, I compiled a sample of points that
corresponds to the dominant modes observed in the spectra. Thereby, 1
calculate the most probable value of the velocity corresponding to each
frequency in the spectra by analyzing the collected data points and de-
termine the velocity value that occurs with the highest frequency or
likelihood. The velocity dispersion plot, shown in figure 4.10, serves as
a visual representation of the relationship between frequency and ve-
locity. The plot includes blue dots, which represent the data points
obtained from the analysis, and a black curve, which represents a fitted
curve that captures the overall trend of the data. The red-shaded region
on the plot indicates frequencies that lie outside the array bandwidth.
These frequencies correspond to seismic waves with wavelengths that are
too long to be effectively analyzed by the array. The array’s spatial res-
olution and limitations in capturing long-wavelength waves may restrict
accurate estimation of Rayleigh wave properties at such frequencies.

To estimate the propagation direction of Rayleigh waves from the
wavenumbers k;, and k,, we can use the following relationship:

¢ = arctan <Zy> (4.3)

€T
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Figure 4.10: Rayleigh dispersion plot showing an average speed versus
frequency. Blue dots represent the data points; the black curve is a fit
to the data. The red-shaded region marks frequencies outside the array
bandwidth (seismic waves are too long to be analyzed).

By analyzing the dominant mode in the spectra obtained from each hour
of data, I was able to estimate the corresponding propagation direction.
The results of these estimations have been presented in figure 4.11. The
figure shows a propagation azimuth histogram, representing the distri-
bution of propagation azimuths for the dominant modes. The radial axis
in the histogram represents the range of frequencies or spectral compon-
ents of the seismic waves. By observing this histogram, we can identify
directional characteristics of the seismic wave propagation for each fre-
quency component. The reddish color in the histogram indicates the
directions with a high probability of occurrence. The observed scatter-
ing of the dominant mode’s propagation direction at Virgo indicates a
high level of variability in the seismic field, highlighting the complexity
of the site compared to LIGO Hanford [125].

By utilizing the estimated values of k and ¢, I performed calculations
to obtain the tilt spectra, as depicted in figure 4.12. The plot shows
the spectrum of estimated ground tilt (represented by the blue dotted
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Figure 4.11: The direction of sources, estimated from the k-map special
analysis assuming dominating mode (having maximum amplitude) for
each frequencies (radial axis) between 5 to 25 Hz).

trace) and the spectrum obtained directly from the ground tiltmeter
data (depicted by the orange solid trace). The blue-shaded region in
the plot represents the uncertainty or error range associated with the
velocity estimation.

The overall level is similar, and one might conclude the match around
15 Hz is good, indicating the presence of plane Rayleigh waves in this
frequency band. However, at frequencies of 20 Hz and higher, there is
a noticeable mismatch between the array-inferred ground tilt and the
measured ground tilt from the tiltmeter. There could be several explan-
ations for the discrepancy observed at higher frequencies. One possibility
is that the reflection of waves from the recesses in the surrounding envir-
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Figure 4.12: The plot shows the estimated ground tilt spectra (blue
dotted trace) and the spectra directly estimated from ground tiltmeter
data (orange solid trace). The blue-shaded region occurs due to an error
limit in the estimation of velocity.

onment could introduce biases in the array analysis. When seismic waves
encounter irregularities or features such as recesses, reflections can occur,
leading to complicated wave behavior and potential inaccuracies in the
analysis. Another possible reason could be the presence of excess seis-
mic noise from nearby sources that may not be captured by the tiltmeter
but affect some of the seismometers contributing to the array analysis.
Indeed, there could be various other explanations. Furthermore, at low
frequencies, it is expected to have a mismatch because the accurate es-
timation of ground tilt using the array method relies on an estimation of
seismic speeds, which, as indicated by the dispersion results, are already
known to be inaccurate. The inaccuracies in estimating seismic speeds
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can be attributed to various factors, including the complex nature of
the seismic field, limitations in the array configuration (such as irregular
sensor spacing), the presence of aliasing effects, the internal noise of the
sensor, etc. Additionally, it should be noted that our analysis focused
solely on the dominant mode in the spectra, neglecting the contribution
of sub-dominant modes that may also be present. This might lead to
underestimation or overestimation of the true velocities, affecting the
overall accuracy of the dispersion result. However, the inclusion of sub-
dominant modes in the analysis introduces additional complexities and
uncertainties, such as mode coupling or interference, which can make
the estimation more challenging.

4.3 Virgo Newtonian noise reassessment

In the context of Virgo Newtonian noise reassessment, the array analysis
I have discussed so far provides valuable insights into the seismic field,
including its sources, anisotropy, types of waves, and their velocities.
Typically, these properties lead to mild corrections (by factors < 2) of
NN estimates, but at Virgo, the situation is different. At Virgo, the
presence of clean rooms under the test masses introduces a significant
dependence of NN on the propagation directions of seismic waves, as
seen in the previous chapter. Additionally, the seismic wave speed plays
a crucial role in determining the level of NN suppression, as it affects
the ratio of recess dimensions to seismic wavelengths. For this reason,
recesses are ineffective in environments where seismic waves are fast
(e.g., underground), and generally, they are more effective at higher
frequencies. With clean rooms under test masses at the Virgo site, we
should expect the gravitational coupling between seismic fields and test
masses to be lower than, for example, at the LIGO sites. I previously
estimated the suppression of Newtonian noise at Virgo by assuming a
frequency-independent speed of Rayleigh waves at 250 m/s, which was
a reasonable choice based on observations at the LIGO sites. However,
the array analysis presented in this chapter, provides new insights into
the actual speed of Rayleigh waves at the Virgo site. We have found
that the speed of Rayleigh waves at Virgo is significantly lower than our
previous assumption of 250 m/s. By incorporating the updated seismic
speed information into our assessment of NN suppression, we can refine
our calculations and improve the accuracy of our predictions. The lower
speed of Rayleigh waves at Virgo, as revealed by the array analysis,
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Figure 4.13: Comparison of NN predictions. The solid blue and green
spectra are based on the finite-element simulation without and with
recess, respectively, and using the observed Rayleigh-wave dispersion.
The dashed spectrum is the result of a finite-element simulation without
recess and constant speed. Finally, the red spectrum is an analytical
estimate without recess for comparison.

suggests that the NN suppression may be more pronounced than initially
estimated. This is due to the fact that the ratio of recess dimensions to
seismic wavelengths determines the effectiveness of NN suppression, and
with lower seismic speeds, the wavelengths become shorter, increasing
the potential for suppression. In this section, I focus on the analysis of
the Newtonian noise reduction achieved through the recess structure at
the Virgo site, taking into account the estimated seismic speed obtained
previously. The seismic speed information is depicted in figure 4.10,
which presents the dispersion curve indicating the variation of seismic
speed with frequency.

For the first set of results, the assumption is that the seismic field is
isotropic. Simulations are carried out with and without recess, and either
using the observed wave dispersion or assuming a frequency-independent
speed of 125m/s. The finite-element simulation is done by propagating
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plane Rayleigh waves through the model, which means, as explained
in detail in our previous chapter that a possible effect of waves being
reflected from the clean room is neglected. This might lead to significant
errors in our NN estimates close to and above 20 Hz. The results of the
simulations are summarized in figure 4.13. We see that the green curve,
which is the more realistic prediction using the finite-element simulation
with recess and the observed wave dispersion, lies up to a factor 10
below the blue curve, which is the result of an analogous simulation
without recess. I also point out that the analytical estimate for a flat
surface deviates significantly from the dashed curve at lower frequencies,
which is explained by the finite size of the model. This effect is worse
when waves are longer. The NN estimate based on the slow observed
Rayleigh-wave speed is accurate down to 10 Hz.

The analysis of different test masses’ Newtonian noise levels is presen-
ted in figure 4.14. The blue color indicates the strain noise for each test
mass under the assumption of a flat surface. The colored spectra rep-
resent the NN estimates considering the dimensions of the cleanrooms
and incorporating the estimated velocity dispersion curve.

To assess the noise reduction achieved, figure 4.15 displays the reduc-
tion factors for both the input and end test masses. The measurement
of seismic speed was performed only at the NEB (North End Building)
of the Virgo site. This means that we have direct information about the
seismic speed in that specific location. However, in order to estimate
the noise reduction at the other two buildings (West End Building and
Central Building), where the seismic speed was not directly measured,
we make the assumption that the dispersion curve, which describes how
the seismic speed varies with frequency, is the same across the entire
Virgo site. A comparison is made with the previous chapter 3, where
a frequency-independent speed of 250 m/s was chosen (represented by
the olive green curve). The results highlight the significant changes ob-
served between the two studies. It makes it clear how much results have
changed between the two studies. Reduction factors are different for
input test masses, and end test masses since the recess has a different
geometry at Virgo’s central building. A larger reduction is observed in
the end buildings.

The incorporation of seismic dispersion in the estimation of Newto-
nian noise reduction has indeed led to a greater reduction compared to
the previous estimation. The NN spectra, shown in figure 4.16, provide
a comprehensive view of the predicted noise levels. The blue spectrum,
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Figure 4.14: (upper left) NN spectra for North end test mirror (Vertical
displacement along North). (upper right) NN spectra for West end test
mirror (Vertical displacement along West). (lower left) NN spectra for
North input test mass (Vertical displacement of NITM along north).
(lower right) NN spectra for West input test mass (Vertical displacement
of WITM along West). For each sub-plots, the blue trace represents the
spectra without recess and other traces represents the spectra for the
existence of recess under the corresponding test mirror. Here we have
considered the velocity of Rayleigh waves from the estimated dispersion.

computed for a flat surface, serves as a reference to highlight the impact
of the recesses inside Virgo buildings. Based on the spectra, it is pre-
dicted that the seismic NN will generally lie below the sensitivity targets
of the next two observation runs, O4 and O5, with the exception of a
few peaks in the spectrum. However, during Ob, the predicted reduc-
tion factor may be modest, indicating that further optimization may be
required to achieve the desired noise reduction levels. These results have
important consequences for the Newtonian Noise Cancellation system.
According to the findings, the NNC system might only need to provide a
minor additional noise reduction, as the seismic NN is already expected
to be below the sensitivity targets for most frequencies. To validate and
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Figure 4.15: Newtonian-noise reduction from a previous study with a
seismic speed of 250 m/s (olive green) compared to the new results using
the measured dispersion curve (red). Reduction factors for each test

mass are shown as dashed curves. Here, I'TM, ETM mean input and
end test mass. The letters W, N stand for West and North arm.

verify these findings, it will be necessary to conduct speed measurements
at Virgo’s West End Building and Central Building. These measure-
ments will provide important information to corroborate the estimated
seismic dispersion and further refine the predictions of NN reduction.
The verification of these findings will contribute to the optimization and
fine-tuning of the Virgo detector’s performance in preparation for the
upcoming observation runs.

4.4 Summary and outlook

In summary, my analysis of seismic array data at Virgo’s North End
Building has provided valuable insights into the Newtonian noise charac-
teristics and the effectiveness of recess structures in reducing NN. Based
on spatial spectra of the field, I measured the dispersion of Rayleigh
waves, which I used to update previous Newtonian-noise predictions
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Figure 4.16: Comparing of Virgo NN estimates summing contributions
from all four test masses. For reference, we have also included the Virgo
sensitivity models for the two upcoming observation runs, O4 and O5
[12]. The blue curve represents the NN for a flat surface. Estimates
including the recess are shown for a constant velocity of 250m/s (green)
and including the estimated Rayleigh-wave dispersion (red).

for Virgo. The updated NN predictions incorporating the observed
Rayleigh-wave dispersion suggest that the seismic NN will generally lie
below the sensitivity targets of the next two observation runs (O4 and
05) at Virgo. However, there may be a few peaks in the NN spectra
that exceed the target levels, indicating the need for further optimization
and mitigation strategies. This suggests that the clean rooms located
beneath the Virgo test masses play a crucial role in reducing NN, of-
fering a significant advantage in terms of overall detector performance.
Specifically, I observed a reduction in NN by a factor of up to 10, high-
lighting the effectiveness of the Virgo architecture in suppressing this
noise source.

In addition to my analysis of seismic array data and NN predictions,
I also conducted an estimation of ground tilt using the array data. To
validate my estimates, I compared them with the measurements ob-
tained from a tiltmeter positioned at the NEB. We observed a notable
mismatch between the estimated ground tilt from the array data and the
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measurements recorded by the tiltmeter. This mismatch suggests that
the seismic field at the Virgo site is not well characterized by a simple
plane Rayleigh-wave model, which is a crucial assumption for tiltmeters
to effectively cancel out NN. The presence of clean rooms beneath the
Virgo test masses may play a significant role in this mismatch. Roughly
above 15 Hz, we speculate that the clean rooms could induce substantial
scattering of seismic waves, which would further complicate the repres-
entation of the seismic field. Consequently, the scattering effect poten-
tially reduces the effectiveness of tiltmeters in canceling out NN. These
findings highlight the importance of considering the complex behavior
of the seismic field and its interactions with the detector infrastructure
when evaluating the effectiveness of NN cancellation techniques. Further
investigations are necessary to better understand the scattering phenom-
ena induced by the clean rooms and to develop appropriate strategies for
mitigating their impact on tilt measurements and NN reduction efforts.

This study suggests that the construction of recesses beneath and
around the test masses can be an effective method for reducing NN. How-
ever, implementing recesses as an upgrade to existing detectors poses
significant challenges due to the invasive nature of the operation and
the need to modify the mounting of vacuum chambers and pipes to the
ground. On the other hand, recesses can be a promising technique to
consider at new detector sites. However, it is crucial to evaluate the seis-
mic speeds in advance to accurately predict the effectiveness of recesses
for NN suppression. The efficiency of recesses decreases at lower frequen-
cies and higher seismic speeds, which limits their effectiveness in certain
scenarios. In particular, for the proposed underground infrastructure of
the Einstein Telescope, recesses will not be as effective in mitigating NN
due to the combination of lower frequencies and potentially higher seis-
mic speeds at that site. Therefore, alternative approaches and strategies
would need to be explored to achieve the desired level of NN reduction
at such locations. Overall, the construction of recesses as a means of
NN suppression requires careful consideration of the specific site char-
acteristics, seismic speeds, and frequency ranges involved to determine
its feasibility and effectiveness.
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Chapter 5

Scientific significance and
figures of merit for
third-generation gravitational
wave detectors

The currently operational advanced detectors, Advanced LIGO and Ad-
vanced Virgo, have successfully detected a large number of compact
binaries, including their mergers with black holes and neutron stars
[17, 22, 21], in three observing runs [23, 172]. The landmark first detec-
tion of gravitational waves by both LIGO detectors (LIGO Hanford and
Livingston) in 2015, together with the groundbreaking multi-messenger
detection of electromagnetic and gravitational waves from colliding neut-
ron stars in the GW170817 event, have led to discoveries in astrophys-
ics and cosmology [79, 201, 212]. However, despite these remarkable
achievements, the signal strengths of most detections are not sufficient
to compensate for various limiting noises to extract more information
from the data. As aresult, only a few events with sufficiently high signal-
to-noise ratios contribute to the precise evaluation of gravitational wave
parameters. These parameters include the masses of the binary com-
ponents (e.g. black holes or neutron stars), their spins, the distance to
the source, the sky localisation, the orbital parameters (e.g. eccentricity
and inclination), the redshift of the sources, and so on.

Indeed, the current generation of gravitational wave detectors has
demonstrated the ability to reach distances of up to about 150 megapar-
secs (Mpc) for a standard binary neutron star system with component
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masses of 1.4 solar masses (Mg) in the frequency range from 10 Hz to
several kilohertz. Third-generation gravitational wave detectors such as
the Einstein Telescope and the Cosmic Explorer aim to achieve sens-
itivities at least ten times better than the current generation of de-
tectors [8, 114, 49]. In addition, the Einstein telescope is designed to
observe sources down to frequencies of 3 Hz. The increased sensitivity
and broader frequency range of the third-generation detectors will have
a profound impact on several scientific observations, including:

1. The detection of intermediate-mass binary black hole systems:
These systems, with masses between stellar-mass black holes and super-
massive black holes, are of great importance for our understanding of
black hole formation, galaxy evolution, gravitational wave astronomy,
cosmology and fundamental physics [33, 15].

2. Determining the equation of state (EOS) of dense matter, partic-
ularly in neutron stars, is a complex and important area of research in
astrophysics [71, 89]. The EOS describes the relationship between the
pressure, density and composition of matter under extreme conditions,
such as those found in the core of neutron stars.

3. Continuous sources of gravitational waves, such as radio pulsars,
provide an excellent opportunity to probe the EOS. The study of the
early universe and its evolution involves investigating the conditions and
processes that occurred shortly after the Big Bang, and tracing the sub-
sequent evolution of the universe over billions of years [152].

4. Tt will allow us to measure two independent polarisation states
of gravitational waves and test Einstein’s theory of general relativity
[197, 213, 151].

With the anticipated high detection rate of binary systems by the
Einstein Telescope and Cosmic Explorer, we will have a great opportun-
ity to accurately measure the absolute and apparent luminosity distance
of these systems. This will provide valuable information about the ob-
ject’s distance and the rate of cosmic expansion at the time the light was
emitted. The higher range of the detectors will allow us to investigate
the equation of state of dark matter at different redshifts.

Additionally, ET and CE may be able to probe the stochastic back-
ground of cosmological origin, including phenomena such as inflation,
phase transitions, and cosmic strings. In their work [188], Sachdev et al.
conducted a study on the capabilities of the network of third-generation
detectors in resolving primordial gravitational wave backgrounds ori-
ginating from binary neutron star or binary black hole systems. Their

96



5.1. FEinstein Telescope

findings indicate that the population of binary black holes can be fully
resolved by these detectors. However, the residual background from this
population has a negligible effect on the raw sensitivity to stochastic
backgrounds. On the other hand, the residual background from BNS
sources can dominate over the BBH background and impose limitations
on the sensitivity in the search for primordial backgrounds. The Ein-
stein Telescope and the Cosmic Explorer has the potential to unveil the
characteristics of compact binary systems and assess their properties
by observing a vast number of coalescing binaries and accurately es-
timating their parameters. By studying millions of coalescing binaries,
ET and CE can gather statistical information about their properties,
such as their masses, spins, and orbital characteristics. This extensive
dataset allows for a comprehensive understanding of the population’s
distribution and behavior. By comparing the observed population with
theoretical models, ET and CE can further refine our understanding of
the processes involved in the formation and evolution of compact binary
Systems.

5.1 Einstein Telescope

The FEinstein Telescope is planned to be constructed at a significant
depth of approximately 200 to 300 meters underground. This under-
ground location offers isolation from surface seismic activity, ensuring
a stable environment for precise gravitational wave measurements. The
ET design incorporates three nested detectors, with their arms aligned
in the shape of an equilateral triangle. Figure 5.1 provides a visual
representation of this configuration. Each side of the triangle will be
shared by two detectors, and the length of each arm will span 10 kilo-
meters. Each detector within the Einstein Telescope will adopt a dual
recycled Fabry-Perot Xylophone Michelson configuration. This config-
uration consists of two types of interferometers: low-frequency interfer-
ometers and high-frequency interferometers. The Xylophone structure
refers to the combination of these two types of interferometers within
each detector [131].

The low-frequency interferometer of the Einstein Telescope is de-
signed to operate at a cryogenic temperature of approximately 10 K.
This cryogenic temperature helps minimize thermal noise and improve
the sensitivity of the detector. The target frequency range for the
low-frequency interferometer starts from 3 Hz and extends up to ap-
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proximately 30 Hz. To reduce quantum radiation pressure noise, the
low-frequency interferometer will utilize a low power of approximately
18 kW in its arms, which is lower than the initial LIGO setup. The
low-frequency interferometer of the Einstein Telescope will incorporate
a range of advanced features to enhance its performance and sensitivity.
These include 10 dB frequency-dependent squeezing, four 211 kg mir-
rors, advanced seismic isolation systems, gravity gradient noise subtrac-
tion techniques, and cryogenically cooled silicon test masses to reduce
thermal noise [25, 34].

On the other hand, the high-frequency interferometer of the Einstein
Telescope will be specifically designed to operate within the frequency
range of 30 Hz to 10 kHz. It will operate at room temperature and utilize
similar technology as the Advanced LIGO and Advanced Virgo detect-
ors. It will have fused silica mirrors of 60 ¢cm in diameter, weighing
200kg. It will employ the standard dual-recycled Fabry-Perot Michel-
son configuration. The system will incorporate tuned signal recycling,
featuring 3 MW of arm circulating power and 10 dB frequency-dependent
squeezing injection to mitigate quantum shot noise. The combination of
high power and wide beam size effectively reduces both photon counting
(shot) noise and mirror thermal noise, thereby enhancing the interfero-
meter’s overall sensitivity to gravitational wave signals. The Xylophone
design of each detector in the Einstein Telescope offers an elegant solu-
tion for effectively reducing both radiation pressure noise and shot noise.
This is achieved by utilizing two separate interferometers operating at
distinct arm circulating power settings, which would not be feasible in a
single interferometer configuration. Figure 5.2 illustrates the sensitivity
of the low-frequency and high-frequency interferometers of the Einstein
Telescope, as well as the overall combined sensitivity achieved by the
Xylophone design. Furthermore, the triangular arrangement of the Ein-
stein Telescope provides the added advantage of equal sensitivity to both
polarizations of the gravitational wave signal. This is in contrast to the
currently operating L-shaped detectors, which are more sensitive to one
polarization than the other.
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Figure 5.1: Simplified schematic of the ET design [130]

5.2 On combining the data-streams of the low-
frequency and high-frequency interferometers in
the ET xylophone configuration

Building upon the previous discussion, let’s explore the combination of
data from the low-frequency and high-frequency interferometers of the
Finstein Telescope in order to optimize the overall sensitivity across all
frequencies. Let’s assume that the data from the low-frequency inter-
ferometer is denoted as d"*'(t), which consists of the gravitational wave
signal h(t) and the corresponding noise n“¥'(t). Similarly, the data from
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Figure 5.2: The modeled sensitivity of the low-frequency (ET-LF) and
the high-frequency (ET-HF) interferometers as well as the combined
sensitivity of the xylophone detector, obtained by the optimal combina-
tion of the ET-LF and ET-HF sensitivities. Further information about
the ET-D sensitivity curve can be found in [130].

the high-frequency interferometer is represented as d'(t). Hence,

d"F(t) = h(t) +nl (1)

dE(t) = n(t) + (1), (5-1)

In the Fourier domain, we have the expressions for the low-frequency
(LF) and high-frequency (HF) data as:

d"F(f) = h(f) +n"F(f)

AE(F) = h(f) +nlTF(f). 52

To combine the data from the LF and HF interferometers, we intro-
duce a filter function «(f), which determines the weighting of the LF

100



5.2. Data Combination in Xylophone Configuration

and HF data in the combined data. The combined data d°°™(f) can be
expressed as:

d"(f) = a(f)d"" (f) + (1 — a(f)d" " (f)
= h(f)+ a(f)n" " (f) + (1 = a(H)n"F (1),

where a( f) represents the coefficient that determines the contribution of
the LF and HF data at each frequency. The goal is to find the optimal
value of a(f) that minimizes the variance of the combined data. By
minimizing the variance, we can determine the optimal coefficient «(f)
that minimizes the noise in the combined data. The specific value of
a(f) depends on the power spectral densities of the LF and HF noise.
The optimal «(f) is chosen to balance the contributions from the LF
and HF data in a way that minimizes the overall noise.

(5.3)

Var[d®™"] = ((d = (d))[(d = (d)))
= a({(aln"") + (n"]h) + (1 = a)((h|n"") + (n"|R))
+ a(l = a)(WEFnHFY 4 (nHF|pLEY) 4 o2 (nF |nlFy 4
(1= )2 (nHF | HFy,

(5.4)

Here we define the inner product as (A|B) = [df A*(f)B(f). We as-
sume that the noise from the high-frequency and low-frequency interfer-
ometers is uncorrelated and follows a zero-mean Gaussian distribution.
Consequently, we can ignore all the cross terms in the equation 5.4,
leading to the simplified expression:

Var[dcom] _ a2<nLF|nLF> + (1 —a)2<nHF|nHF>

= [P SE W) + (- a8 (e )
In the context of the expression, SL¥(f) and SF ( f) represent the power
spectral densities of the low and high-frequency interferometer noise,
respectively. By Fourier transforming the autocorrelation function, we
obtain the power spectral density, which provides information about the
power distribution of the noise in the frequency domain. In the frequency
domain, we have the relationship:

+00 )
%Sn(f) - / (n(t + 1) (b)) €7 dr, (5.6)

—0o0

101




5.2. Data Combination in Xylophone Configuration

where %Sn( f) represents the one-sided power spectral density of the

noise. This equation relates the power spectral density to the autocor-
relation of the noise signal. Here angle brackets (...) denote an ensemble
average over many noise realisations

Additionally, in the frequency domain, we can express the relation-
ship between the power spectral density and the inner product of the
noise signals as:

200 = £ 8ulf) = () (1), (57)

where 0(f — f’) represents the Dirac delta function. This equation shows
that the inner product of the complex conjugate of the noise signal at
frequency f with the noise signal at frequency f’ is proportional to the
one-sided power spectral density.

To determine the optimal coefficient o and minimize the variance of
the noise time series, we can set the derivative of the variance Var[d®™|
with respect to « to zero:

d Var[d®™|

=0 (5.8)

Using the equations for a(f) and the power spectral densities, we can
substitute them into the derivative expression and solve for a(f). The
equation for a(f) is:

a(f)SE(f) — (L—a(f) ST (f)=0 (5.9)

Sa T (f)

o) = GEF(p) T SHE(R) (5.10)

Hence, we can write the combined data from the low and high-frequency
interferometers as:

o SHR(p) SEF ()
0 = g+ sirp D g s V)
(5.11)

And the noise power spectral density of the combined data can be ex-
pressed as (traced by the green curve in figure 5.2):

SEP(f) SHF(f)
Snlf) = STr(p) + SEF()

(5.12)
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Figure 5.3: Variation of coefficients with frequency for optimal combin-
ation of data from the low and high-frequency arm.

In figure 5.3, I present the optimal coefficients for combining data
from the low and high-frequency arms considering the sensitivity of the
ET detector. To combine the data, each coefficient is multiplied by the
Fourier transform of the detector strain corresponding to a specific fre-
quency. The combined data is then obtained by summing these weighted
contributions from the low and high-frequency arms. The choice of coef-
ficients is crucial because it determines the overall noise power spectral
density of the combined data. It is worth noting that the sum of the
coefficients is constrained to be equal to unity. This constraint ensures
that the combined gravitational wave signal, which is present in both
the low and high-frequency arms, remains constant throughout the data
combination process. This helps to maintain the integrity of the gravit-
ational wave signal while effectively suppressing the noise.
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5.3 Exploring the limits: Sensitivity analysis of third
generation gravitational wave detectors

The detection sensitivity of gravitational wave detector networks relies
on a multitude of factors, including the precise placements, orientations,
and geometries of individual detectors within the network. These char-
acteristics play a crucial role in determining the network’s ability to
detect and accurately measure gravitational wave signals. By carefully
optimizing these parameters, we can enhance the overall sensitivity and
performance of the detector network. One important aspect of detector
performance is the antenna response function, which represents the dir-
ectional sensitivity of a detector with respect to the incoming gravit-
ational wave signals. It describes how the detector’s orientation and
geometry affect its ability to detect waves from different directions with
different polarizations. By analyzing the antenna response function, we
can assess the detector’s sensitivity to gravitational waves arriving from
specific angles and optimize its orientation for maximum sensitivity. In
addition to the antenna response function, another crucial metric for
evaluating the performance of gravitational wave detectors is the signal-
to-noise ratio. The SNR quantifies the strength of the detected signal
compared to the background noise. A higher SNR indicates a more
confident detection and improves the accuracy of parameter estimation
for the gravitational wave source. Maximizing the SNR is of utmost
importance as it enables scientists to extract valuable scientific inform-
ation and insights from gravitational wave events. Furthermore, the
horizon distance or range of a detector is an important figure of merit
that indicates the maximum distance at which the detector can detect a
gravitational wave signal with a specific SNR threshold. A larger hori-
zon distance implies a broader reach for the detector network, enabling
the detection of more distant and potentially more significant gravit-
ational wave events. Alternatively, we can characterize the maximum
redshift (equivalent to the horizon distance) achievable by a detector
network. The redshift, arising from the expansion of the universe, leads
to a stretching of the observed wavelength of light or gravitational waves.
Evaluating the maximum redshift capability of a network of detectors
can also enable us to determine its potential for detecting gravitational
waves originating from extremely distant cosmic sources. By expand-
ing our ability to detect redshifted sources, we have the opportunity to
make groundbreaking discoveries about how the universe has evolved
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over time. In this section, we will explore the key factors that determine
the overall performance of a detector or network of detectors in gravita-
tional wave studies. These factors include the antenna response function,
signal-to-noise ratio (SNR), horizon distance or range, and maximum
redshifted sources.

5.3.1 Antenna response function

The antenna response function determines the response of the GW de-
tector to a signal. For far-away sources, it is convenient to express the
GW signal in a specific coordinate system where the tensor h% exhibits
certain properties. In this coordinate system, the GW signal is trans-
verse and trace-free. The transverse property means that the GW signal
oscillates perpendicular to the direction of propagation. The trace-free
property indicates that the sum of the diagonal elements of the tensor
h% is zero. This means that the GW does not cause any net expansion
or contraction of space in the transverse direction. The tensor repres-
entation of the GW, denoted as h¥/, exhibits two distinct components:
hy and hy. The tensor h* takes the following form:

hll — _h22 — h+

B2 = p2l — gy (5.13)
We can define basis polarization tensors e, and ey that correspond to
the two polarizations of the GW, can be written as:

(5.14)

Here, éff and éff are the radiation basis vectors. éZ lies in the plane

formed by the wave direction (N) and the detector axis (é,), as shown in
figure 5.4. Also more general scenario is depicted in figure 5.4, where the
radiation basis vectors & and B are rotated by an angle ¢ with respect
to the éf and éff directions. Figure 5.4 and the following mathematical
expressions are adapted from [192]. In this configuration, the new basis
polarization tensors can be expressed as follows:

®5 (5.15)
®

Q.
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Detector plane

Figure 5.4: Schematic representation of the detector frame and the
GW signal polarizations (hy and hy) coming from a direction specified
by spherical coordinates (6, ¢) relative to the detector axis. The basis
vectors of the source frame, & and 3 are rotated by an angle ¢ with
respect to the reference basis ¢ and éff. This rotation is introduced to
accommodate a broader range of source orientations. Figure taken from

[192].

The relationship between the new polarization basis tensors and the old
basis can be expressed as follows:

€1\ [ cos2Yp sin2y) (e
<e><> N <—Sin2¢ cos2¢> (eJXr) (5.16)

The metric perturbation A% can be expressed as a linear combination
of the basis polarizations:

Wt = dih'T = Fehy + FLhy, (5.17)
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where A stands for the index of the detector. Here, £ and FZ are
coefficients that depend on the detector response and the basis polariz-
ations. They can be expressed as inner products between the detector
tensor d and the basis tensors e} and ey:

F’f:cﬁ;efﬂ:d:eJr

g 5.18
Ff:df}e”x:d:eX (5.18)

The notation ™’ represents the Euclidean scalar product (also known as

the inner product or dot product) between the tensors. The detector
tensor d represents the orientation and geometry of the detector in a
coordinate system fixed to its frame. For example, in the case of an
L-shaped detector with arms along the coordinate axes, the detector
tensor can be expressed as:

Er ®Ey— @8y
2

d= (5.19)

The antenna pattern factors F; and Fx describe the sensitivity of
the interferometer to different polarizations of the gravitational wave
signal, as a function of the source location (0, ¢). Using the geometry,
we can evaluate these factors as follows:

1
F, = 5(1 + c0s%6) cos2¢ cos21p — cosh sin2¢ sin2q)
- (5.20)
Fy = 5(1 + c0s%0) cos2¢ sin2¢ + cosh sin2¢ cos2y)

In these expressions, 0 represents the inclination angle of the source
relative to the detector’s normal vector, ¢ represents the azimuthal angle
of the source, and 1) represents the polarization angle of the gravitational
wave.

In the case of the Einstein Telescope with three nested detectors, the
detector tensors di, do, and d3 can be expressed as follows:

1

d, = 5(61 ®eé1 —éx ® é)
.. . . .
dy = 5(62 X eg —e3 R 63) (5.21)

1
d; = 5(@3 ® ez — €1 ®éq).

Here, é1, é, and é3 are the unit vectors along the arms of the ET
interferometers with 60° opening angle. Assuming the detector is in the
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XY-plane and one of the vertices lying on the Y-axis, we can express
these unit vectors as:

é1 - 5(\/§7 _17 0)
1
e = 5(V3.1,0) (5.22)
és = (0,1,0)
The unit vectors of the source frame can be written as:
—sin ¢ sin 4 cos 6 cos ¢ sin
€y = | cos¢ cosp + cos 0 sin¢ cosy |,
—sinf cosy
—sin ¢ cos Y — cosf cos ¢ siny
éy = | cos¢ cosyp —cos 0 sing sinyy | and (5.23)
—sin @ sin
sin @ cos ¢
é, = | sinf sin¢
cos

For the detector within the triangular ET observatory, featuring arms
aligned along €1 and é; with a 60°0pening angle, the corresponding
antenna response functions can be expressed as follows:
V3 2 0 :
F, = I [(1 + cos® 0) sin 2¢ cos 21 + 2 cos 0 cos 2¢ sin 2¢]
(5.24)

V3 [(1 + cos? ) sin 2¢) sin 21 — 2 cos 6 cos 2¢ cos 21/1]

Fe=+7

To obtain the antenna response functions F_th and F jix for the other

two detectors in the Einstein Telescope interferometer, we can take a

rotation of the angle ¢ by %” from the antenna response function F}HX:
9 1 2T

F+,><(97¢7w) = F+7><<97¢+ ?7¢)

o (5.25)

F—?—,x(e) dMﬁ) = F—sl—,x(97¢ - ?7¢)

For an L-shaped detector, the maximum values of the antenna pat-
tern factor F; and Fy are both 1. However, for an interferometer with a
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60° opening angle, such as the Einstein Telescope, the maximum values
of Fly and Fx are @ The factor of v/3/2 indicates that ET’s response is
reduced by approximately 30% compared to an L-shaped interferometer
due to its triangular geometry. However, E'T has three detectors, which
enhance its response by a factor of /3. This means that the presence
of multiple detectors in ET compensates for its reduced response due
to the triangular shape. The overall enhancement factor becomes 3/2,
indicating that ET’s response is 50% higher compared to what it would
be with a single detector.

In the case of an L-shaped detector, when the gravitational wave
source is in an overhead position (6,¢) = (0,0) with respect to the
detector, the coefficients F'; and Fy take specific values depending on
the angle ). When ¢ = 0: Fy =1 and Fix =0. When ¢ = 7: Fy =0
and Fx = 1. For an L-shaped detector, these coefficients indicate the
sensitivity of the detector to the two polarizations of the gravitational
wave. When the source is directly overhead, the detector is maximally
sensitive to one polarization and completely insensitive to the other.
When ¢ = 0, the detector is only sensitive to the "+” polarization, and
when ¢ = 7, it is only sensitive to the ”x” polarization. On the other
hand, for a triangular detector configuration, with its 60° opening angle
and three detectors, it can probe both polarizations of gravitational
waves effectively. The arrangement of three detectors with different
orientations allows for the simultaneous detection and characterization
of both the "+ polarization and the ”x” polarization of the gravitational
wave signals.

Thus antenna pattern factors provide information about how the
sensitivity of the interferometer varies with different source directions
and polarizations. The antenna power pattern provides information
about the shape of the detection volume or the maximum reach of the
detector in different directions. By evaluating F; and Fy for various
(0, ¢) values, we can determine the preferred and null directions of the
detector’s response, as well as its sensitivity to different polarization
states of the gravitational wave signal. The antenna power pattern, de-
noted as P(6, ¢), is a measure of the response of a GW detector to dif-
ferent polarization states and wave propagation angles. For a L-shaped
detector, the antenna power pattern can be written as [194]:
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P(8,9) = [F}(0,,%) + F2(0,¢,9)] (5.26)
= %(1 + cos? 0)% cos? 2¢) + cos? 0 sin® 26 (5.27)

The joint response of all three detectors in the ET network can be
obtained by considering the sum of the antenna power pattern of each
individual detector. The antenna power pattern for ET triangle can be
expressed as:

3

9

PET(0,¢) =Y (F{)? + (F)? = 31+ 6 cos? 6 + cos* ) (5.28)
A=1

The joint antenna power pattern, depending only on the colatitude 6
of the source, implies that the sensitivity of the ET network to gravit-
ational waves is isotropic in azimuthal directions, i.e., it is independent
of the angle ¢. Specifically, the maximum response occurs when 6 = 0,
indicating that the source is positioned perpendicular to the plane of
the detector. In this configuration, the antenna pattern reaches its max-
imum value, denoted as PZT(§ = 0), which is equal to % Conversely,
the response function of the detector becomes minimum when the source
is located at § = 7, corresponding to a source direction that is parallel
to the plane of the detector. In this orientation, the response function,
denoted as PET(Z), is equal to £ PET (6 = 0). This characteristic of the
triangular topology of the detector allows for virtually all-sky coverage
with no null direction. The detector’s antenna pattern provides sensitiv-
ity to gravitational waves arriving from various directions, ensuring that
there are no specific directions in the sky where the response function
becomes zero.

Figure 5.5 depicts the square root of antenna power pattern of the
incoming GW signals from the direction(6, ¢), for a gravitational wave
detector, oriented with their axes in the x-y plane. This shows the
quadruple nature of an L-shape and the triangular configuration of the
detector. The left panel shows the antenna pattern for a detector with a
triangular topology, while the right panel displays the antenna pattern
factor for an L-shaped detector. The color map represents the amplitude
of the antenna response function, which indicates the sensitivity of the
detector and its maximum reach in different directions. For an L-shaped
detector, the antenna pattern of the detector reveals that the maximum
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Figure 5.5: Antenna pattern for the gravitational wave detector. Left:
Antenna pattern for triangular topology. Right: Antenna pattern factor
for L-shaped detector. The interferometer is oriented with axes in the x-
y plane, averaged over the polarization angle of the incoming GW signal.
The amplitude pattern represents the shape of the detection volume or
its maximum reach in different directions.

response of the interferometer occurs when the gravitational wave sig-
nal propagates from a direction orthogonal to the plane containing the
detector. This alignment allows for the optimal detection of the gravit-
ational wave signal. Conversely, the response of the L-shaped detector
becomes zero when the gravitational wave signal arrives from a direc-
tion coinciding with the bisector of the two arms of the detector. In this
particular orientation, the detector is not sensitive to the gravitational
wave signal, resulting in a null response. The absence of null directions
for the ET triangle is a result of its specific triangular topology and the
configuration of the three detectors. Figure 5.6 is the 2D representation
of figure 5.5.

The polarization amplitudes of a gravitational wave signal can be ex-
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‘Antenna response function

Figure 5.6: Antenna pattern for the gravitational wave detector: 2D
projection of figure 5.5. The color bar represents the amplitude of the
antenna pattern, which becomes zero for the L-shaped detector. The
triangular topology of the detector ensures that there are no null direc-
tions, as it consists of three interferometers.

pressed in terms of the inclination angle (i), characteristic strain amp-
litude (hg), and the instantaneous phase (®(¢)). The amplitudes are
given by the equations:
B, — hO 2 .
+ = 5(1 + cos® i) cos(P(t))
hyx = hg cos(i) sin(®(t)).

(5.29)

These equations describe how the gravitational wave signal is polarized
along different directions.

The detector’s response to the gravitational wave can be represented
by the equation

where Fly and Fy are the response coefficients. By combining the po-
larization amplitudes with the response coefficients, we obtain an ex-
pression that describes the overall response of the detector to the grav-
itational wave signal. The response function A, which represents the

average response over all possible polarization and inclination angles, is
defined as

A= /A% + A2, (5.31)

where A} = F (3) (14 cos?6) and Ay = Fy cos(i).
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Figure 5.7: The fractional area in the sky over which the response of
the detector or the antenna pattern exceeds a fraction of its maximum
value. The red and blue curve is for L’shaped and triangular geometry,
respectively.

In figure 5.7, the sky coverage of the detector’s antenna pattern is
illustrated. The fractional area of the sky shown in the plot indicates
the portion of the celestial sphere for which the detector’s response ex-
ceeds a specific threshold (values along x-axis), given as a fraction of its
maximum value. The red and blue curves correspond to L-shaped and
triangular detector geometries, respectively. For the triangular-shaped
detector, the antenna response function has been normalized after di-
viding by % (maximum value). Notably, the blue curve exhibits a flat re-
gion, indicating the absence of a null direction for the triangular-shaped
detector.

Together, these equations and figures provide insights into the polar-
ization amplitudes of gravitational wave signals, the detector’s response,
and the sky coverage of different detector geometries.

5.3.2 Signal-to-noise ratio

The Signal-to-noise ratio can be calculated using the matched filtering
technique. Matched filtering involves correlating the detector’s output
with a theoretical waveform template that represents the expected GW
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signal. The SNR is then obtained by integrating the correlation output
over a suitable frequency range. The optimal signal-to-noise ratio of a
detector, obtained through matched filtering with a template waveform,
can be expressed as:

2, [ IOLH)/LP
p —4/0 S () df (5.32)

Sy (f) represents the one-sided noise power spectral density, L is the
characteristic length of the arms of the gravitational wave detector, and
dL(f) corresponds to the differential arm length of the detector. In the
case of short-duration gravitational waves, when the effect of Earth’s ro-
tation is insignificant over the observation time of the signal, it is reason-
able to assume that the antenna pattern of the detector remains constant
and does not vary with time. This simplifying assumption allows for a
time-independent characterization of the detector’s antenna pattern dur-
ing the detection of such GWs. Additionally, GW sources can have ran-
dom polarization, allowing for an ensemble of GW sources with various
polarization angles (¢) at any specific direction (6, ¢). When calculat-
ing the average power signal-to-noise ratio, it is necessary to consider an
ensemble average over all possible source polarizations. Consequently,
the power SNR can be expressed as:

00 2

<@ == 2r 00+ Eoow) [ By ey
where |H(f)|?= |hs(f)|>+|hx(f)|>. By evaluating this equation, we
obtain the average power SNR, which quantifies the strength of the
gravitational wave signal relative to the noise in the detector, taking
into account the antenna pattern, polarization, and noise characteristics
of the detector. We have expressed the antenna pattern power pattern
as:

P(0,¢) = Fi.(0,0,9)* + Fx (0,6, 9)? (5.34)
This implies that:
00 2
< p?>=2P(b, ¢)/0 ’I;((f})‘df (5.35)

By considering the detector’s antenna pattern (P(6,¢)) and the noise
power spectral density (S, (f)), the equation provides insights into how
the detector responds to gravitational wave signals with different direc-
tions and polarizations.
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5.4 Horizon distance

We have seen the antenna response function for the network of detectors,
which manifests the ability to detect signals from an arbitrary direction.
The horizon distance refers to the maximum distance from which a grav-
itational wave source can be detected by a detector. It represents the
extent to which the detector can probe the universe for gravitational
wave signals. To determine whether a GW source is detectable, we con-
sider the signal-to-noise ratio, which compares the strength of the signal
to the level of background noise. The SNR must be higher than a certain
threshold value (py,) for the detection to be successful. Mathematically,
we express this as:

p° > i (5.36)

where p is the SNR. The SNR can be computed using the antenna power
pattern P (6, ¢), which describes the directional sensitivity of the de-
tector, and the integral of the signal power spectrum |H (f)|? divided by
the noise power spectrum S, (f) over all frequencies:

2P(0,9¢) /00| (/ )|2df (5.37)
7 0 Sn(f ) N '

The antenna power pattern, denoted by P(6, ), describes the dir-
ectional sensitivity of the detector. In this context, we consider the
amplitude of the gravitational wave signal, denoted as H(f), which is
inversely proportional to the distance of the source, d. To establish a
reference point, let’s assume the magnitude of the signal at a distance
d = r is denoted as H,(f).

Given this assumption, we can express H(f) as H(f) = . With
this relation, we can derive the expression for the signal-to- n01se ratio,
denoted as p, which plays a crucial role in determining the detectability
of a gravitational wave signal. The expression for p? is given by:

') r 2
P = 2 P(0,0) /0 | P (( f))‘ df. (5.38)

The expression inside the integral in the previous equation is independ-
ent of the direction of the gravitational wave source, and the product
|rH,(f)|? remains constant. Consequently, the signal-to-noise ratio primar-
ily relies on two factors: the luminosity distance, denoted as d, and the
antenna power pattern P(6, ¢).

THr( )
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5.4. Horizon distance

The horizon distance of a gravitational wave detector refers to the
maximum distance at which a gravitational wave source, observed from
an overhead position with optimal polarization, can be detected at the
detection threshold. When a source is observed from an overhead po-
sition with optimal polarization, it means that the gravitational wave
signals align in the most favorable way with the detector’s sensitivity
pattern, maximizing the chances of detection. The horizon redshift can
be considered as the critical redshift value beyond which the observed
or detected objects are effectively beyond our observational capabilities.
As the universe expands, the light from objects located beyond the ho-
rizon distance becomes increasingly redshifted and eventually redshifted
to a point where it is undetectable or beyond the reach of the detector.
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Figure 5.8: The sensitivity of the proposed Einstein Telescope (blue
curve) and compared to the target sensitivity of Cosmic Explorer 1 (or-
ange curve). The sensitivity curve of Cosmic Explorer has been gener-
ated using gwinc (Updated numbers March 2018). The data file for the
sensitivity curves has been uploaded in 1*

In the figure 5.8, the sensitivity curves of the Einstein Telescope and
the Cosmic Explorer are displayed (data files in ). In this case, the

"https://surfdrive.surf.nl/files/index.php/s/Td1HcK8CGrpF5QX
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Figure 5.9: The maximum redshift for the ET and CE, assuming equal-
mass, non-spinning binaries systems, is shown as a function of total
source-frame mass. The binaries are distributed isotropically in sky loc-
ation and inclination angle. The solid lines denote the horizon-redshift,
i.e., none of the sources can be detected further. The dashed and dot-
ted curves denote the redshift (lower limit) for 50% and 90% sources,
respectively.

term 7sensitivity” refers to /S, (f), which represents the square root of
the amplitude spectral density of noise. The sensitivity curves provide
information about the detector’s noise characteristics as a function of
frequency, taking into account the overall noise budget of the detector.
In the figure 5.9, the horizon redshifts for the Einstein Telescope and the
Cosmic Explorer are shown. The horizon redshift represents the redshift
value beyond which none of the sources placed overhead can be detected
by the respective detectors (as indicated by the solid curves).

As we have seen before, the performance of the detector depends on
the direction of the source. To account for this, the sources are assumed
to be uniformly distributed over all sky locations, with random polariz-
ation and inclination angles. The dashed curve in the figure represents
the lower limit of the redshift for the 50% best sources from all over
the sky. This means that the redshift of each of the 50% best sources
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5.4. Horizon distance

falls between the solid and dotted curves. Similarly, the dotted curve
represents the lower limit of the redshift for the 90% best sources. The
comparison between the Einstein Telescope and the Cosmic Explorer re-
veals some differences in their horizon redshifts and sensitivity. For lower
source masses, CE shows a slightly higher horizon redshift compared to
ET. This is due to CE’s lower limiting noise in the frequency range of 10
to several kHz, which improves its sensitivity for such masses. On the
other hand, for higher source masses, the horizon redshift is higher for
ET. This is because ET has better sensitivity below 10 Hz compared to
CE, which allows it to detect higher-mass sources at greater distances.
It is worth noting that ET’s triangular shape provides it with a better
detector response in general, leading to higher redshifts for the 90% best
sources. This is an expected outcome, as the enhanced sensitivity and
design of ET enable it to detect a broader range of sources.

From the figure 5.8, it is evident that there are significant differences
in the sensitivity curves of ET and CE. The noise amplitude is lower
for CE in the frequency range of 10 Hz to several kilo-Hz, which can be
attributed to its longer arm length of 40 km compared to the 10 km arm
length of ET. This lower noise amplitude indicates that CE should be
more sensitive and capable of detecting weaker signals in this frequency
range. However, for a more realistic evaluation of the detector per-
formance, we should consider the plot in figure 5.9, which describes the
maximum redshift attainable by each detector. This provides a clearer
picture of their capabilities. There is a range of source masses for which
ET outperforms CE in terms of reach. Gravitational waves can originate
from a wide variety of astrophysical events and sources distributed in all
directions in the sky. Therefore, it is essential to consider the full-sky
coverage of detectors when assessing their capabilities and performance.
By accounting for the isotropic nature of gravitational wave sources and
considering their random arrival directions, we have obtained a more
comprehensive and unbiased evaluation of the detectors’ figure of merit.
This analysis helps us understand how well the detectors can assist us in
detecting and studying gravitational wave events from various sources
across the entire celestial sphere.
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Chapter 6

Sky resolution of the network
of 3G GW detectors for
different topologies of the
Einstein Telescope observatory.

6.1 Introduction

The reconstruction of the sky position for compact binary coalescence
sources emitting gravitational waves, as detected by current detectors,
has been a central challenge in the field [198, 144]. When a poten-
tial event is identified by the search pipeline [3, 96, 27], which involves
sophisticated algorithms and data analysis techniques, further analysis
is conducted to determine the precise location of the source in the sky.
To reconstruct the sky position, several factors are taken into account.
First, the time of arrival of the gravitational wave signal in different
detectors plays a key role. By comparing the arrival times at differ-
ent detector locations, scientists can triangulate the source position in
the sky. Moreover, the distinctive strength of the gravitational wave
signal perceived by each detector contributes valuable insights to the
reconstruction process. This sensitivity variation across the sky can be
described by the antenna pattern factor (discussed in previous chapter),
related to the geometric arrangement of the detectors.

The unique advantage of gravitational wave detectors, in comparison
to electromagnetic telescopes, is their ability to detect GW signals from
all directions in the sky. Unlike electromagnetic radiation, which can be
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0.1. Introduction

obstructed by various astrophysical objects such as dust, gas, or other
barriers, gravitational waves can freely travel through these obstacles.
By analyzing the relative amplitudes observed by different detectors,
one can generate a posterior probability distribution that captures the
likelihood of the GW source being located in various regions of the sky.
The precise sky position of the GW source is of utmost importance
for conducting electromagnetic follow-up observations. When a GW
event is detected, astronomers aim to identify potential electromagnetic
counterparts associated with the event. However, since the electromag-
netic signatures of compact binary coalescence events are expected to
be transient, it is crucial to have rapid access to accurate sky position
information from the network of GW detectors. Successful electromag-
netic follow-up can aid in identifying the host galaxy, investigating the
local environment of the progenitor, and estimating the Hubble constant
through measurements of luminosity distance [9, 62, 165]. Therefore the
reconstruction of the sky position using the global network of GW de-
tectors is an active area of research, with a focus on achieving rapid and
highly accurate localization by improving the likelihood function [101].

The upcoming fourth observing run of LIGO, VIRGO, and KAGRA,
set to begin in mid-2023, is expected to bring significant advancements
in sensitivity. LIGO aims to achieve a sensitivity of 160-190 Mpc for de-
tecting binary neutron stars, while Virgo is targeting a sensitivity of 80-
115 Mpc. These sensitivities represent improvements of a factor of two
for Virgo compared to the previous observation cycle (03). KAGRA,
on the other hand, plans to start with a sensitivity greater than 1 Mpc
during the fourth run, gradually improving to reach its target sensit-
ivity of 10 Mpc. The enhancement in the sensitivity of LIGO involves
the injection of frequency-dependent squeezed vacuum states will play
a role in reducing the impact of broadband quantum noise [166]. Doub-
ling the sensitivity of the detectors can lead to an eight-fold increase in
the detection rate. It will greatly enhance parameter estimation accur-
acy, as improved sensitivity empowers detectors to capture gravitational
wave signals with stronger SNR due to reduced background noise. This
increased sensitivity enables improved fitting of observed waveforms to
theoretical templates, leading to enhanced accuracy in parameter estim-
ation. In [229], Zhang et al. have shown the potential of gravitational-
wave detections from binary compact object mergers, combined with
electromagnetic observations, to serve as "standard sirens” for study-
ing the universe’s expansion history. Through simulations based on
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0.1. Introduction

the Einstein Telescope’s observations, the study illustrates how these
gravitational-wave data can break parameter degeneracies and signific-
antly strengthen cosmological constraints, including those pertaining to
matter density, the Hubble constant, and the equation-of-state para-
meter of dark energy.

The advancements in gravitational wave detector technology con-
tinue with the development of third-generation detectors such as the
FEinstein Telescope and Cosmic Explorer. These future detectors are
expected to achieve a remarkable ten-fold improvement in sensitivity
compared to current detectors in the frequency range of 20 to 10 kHz.
This substantial enhancement in sensitivity allows for the detection of
weaker gravitational wave signals and the exploration of a broader range
of astrophysical phenomena. Moreover, one notable advantage of future
detectors is their increased detection bandwidth. Unlike the current
generation of detectors that primarily focus on the late inspiral and
merger stages of the gravitational wave signal, future detectors will have
the capability to observe the entire gravitational wave signal from the
early inspiral stage to the final ringdown phase. This expanded detec-
tion range provides valuable information about the complete evolution
of the merging systems, enabling more detailed studies of the astrophys-
ical processes involved. The improved sensitivity, particularly at lower
frequencies, offers significant benefits for early warning systems in grav-
itational wave astronomy. Early warning systems rely on detecting the
early inspiral phase of compact binary systems, which can provide cru-
cial information about the upcoming merger event. The field of multi-
messenger astronomy will greatly benefit from the improved sensitivity
and early warning capabilities of future detectors [59]. By precisely de-
termining the sky position of a gravitational wave source, astronomers
can promptly direct their instruments towards the same location and
search for electromagnetic counterparts associated with the gravitational
wave event [169)].

The accuracy of determining the sky position for gravitational wave
sources in a network of detectors is influenced by various factors. These
factors include the number of detectors in the network, their sensitiv-
ity, the geometry of the detectors, and their relative positions on Earth.
The directional sensitivity of the detectors depends on antenna pat-
tern factors, which are influenced by the interferometers’ geometry and
the orientation of their arms. As a result, the detectors do not have
equal sensitivity to all directions in the sky or to both polarizations
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0.1. Introduction

of gravitational waves. Due to the variations in sensitivity and direc-
tional response, the accuracy of sky localization can be affected. The
uncertainty in determining the source’s sky position is influenced by the
specific plane of detectors in the network. If the direction of propagation
of emitted gravitational waves coincides with the plane of the detectors,
the angular resolution of source localization may be poor. Therefore,
for future generations of gravitational wave detectors, it is important to
investigate the optimal geometry and orientation of the detectors in the
network.

Currently, the operational gravitational wave detectors, including
LIGO, VIRGO, and KAGRA, adopt an 'L’-shaped topology where the
interferometer arms are perpendicular to each other. The ’L’ topology
has proven to be successful in the detection of gravitational waves and
has contributed significantly to the field of gravitational wave astronomy.
For the third-generation instruments, the question of optimal topology
is yet to be decided. Although the Cosmic Explorer almost certainly
will follow the ’L’-topology, the conceptual design study of the Einstein
Telescope assumes the shape of an equilateral triangle for the network
of its three xylophone detectors, comprising two interferometers each.
Although the question of whether the Einstein Telescope should follow
the triangular or L-shaped topology arises from time to time [63].

In this chapter, I will investigate which of the following combina-
tions will work best based on sky localization accuracy. First, I consider
the CE 4+ ET network with a triangular topology for ET, and second,
I consider the same network with ET as a single 'L’ shaped detector.
To assess the performance of these configurations, I calculate the signal-
to-noise ratio and reach for a wide range of source masses in the 3G
network. To evaluate the angular resolution, I have used the Fisher
information matrix approach, which provides an estimation of the un-
certainty in the source’s sky position. Wen et al. [221] have derived ex-
plicit analytical expressions for the angular resolution in networks with
arbitrary numbers of detectors, and I utilize these expressions in this
analysis. By considering both the triangular and ’L’ shaped configur-
ations of the Einstein Telescope and incorporating Cosmic Explorer in
each case, I calculate the angular resolution for each configuration and
make a comparative analysis. This analysis allows us to assess the bene-
fits and drawbacks of the two configurations and gain insights into their
respective capabilities in accurately localizing gravitational wave sources
in the sky. The estimation of the angular resolution is part of a broader
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6.2. Signal to noise ratio

series of analyses aimed at comprehensively evaluating the performance
and characteristics of the Einstein Telescope’s triangular and 'L’ shaped
configurations.

This chapter is organized as follows. In section 6.2, I initiate by cal-
culating the signal-to-noise ratio for the detection of gravitational wave
events by the GW detectors, while considering the potential source loc-
ations across the entire sky. This SNR computation offers insight into
the detectability and magnitude of the GW signals, as captured by a
specific detector or a network of detectors. Next, in section 6.3, I com-
pute the redshift distribution of astronomical sources observed by the
3G detectors. In section 6.4, I show the network of detectors that I have
considered for the study on sky localization capabilities. This includes
the selection of specific detectors, their characteristics, and their geo-
graphical distribution. To establish the mathematical foundation for my
analysis, I discuss some mathematical expressions in section 6.5. This
section covers essential concepts and tools necessary for understanding
the subsequent calculations and estimations. In section 6.6, I discuss the
Fisher matrix approach, a powerful tool for estimating the lower error
bound of an estimator in a method-independent manner. Moving on to
the results, in section 6.8, I present and discuss the outcomes of the ana-
lysis regarding the directional precision of sky localization. These results
shed light on the achievable accuracy in determining the sky positions
of GW sources based on the network of detectors under investigation.
Finally, I summarise the results and discuss them in section 6.9.

6.2 Signal to noise ratio

The signal-to-noise ratio (p) is a measure of the strength of a signal relat-
ive to the background noise. It is calculated by comparing the amplitude
of the signal to the standard deviation of the noise. In this section, we
show the signal-to-noise ratio results for the Cosmic Explorer and the
Einstein Telescope taking as a source the equal mass compact binaries
(10 Mg) that are uniformly seeded on the sky at a fixed luminosity dis-
tance, with both polarisation angle and inclination angle of the source
set to zero with respect to the detectors. Figure 6.2 illustrates the dis-
tribution of signal-to-noise ratios for different configurations. The top
plot compares the SNR for the Einstein Telescope with a triangular con-
figuration to an 'L’ shape with equal arm lengths (10km). The bottom
plot shows the SNR for the Einstein Telescope with an 'L’ shape and
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Figure 6.1: Sensitivity curves of Einstein Telescope (ET-D) and Cos-
mic Explorer (CE1). The sensitivity curves of the Einstein Telescope
utilized in this analysis, corresponding to detector arm lengths of 10,
15, and 20 km, were generated using the pyGwinc software [186]. PyG-
Winc (Python Gravitational-Wave Interferometer Noise Calculator) is
an open-source software tool employed for modeling the amplitude spec-
tral curve of noise in gravitational wave interferometers.

different arm lengths (15km and 20km). As expected, increasing the
arm length of the Einstein Telescope enhances the SNR. However, the
'L’ shaped configuration exhibits some blind spots, resulting in null SNR,
values when the signal lies in the plane formed by the detector and the
source location. In contrast, the triangular configuration of the Ein-
stein Telescope, which consists of three detectors, does not have these
blind spots. To quantitatively compare the configurations, we plot the
cumulative distribution of sources based on their SNR in figure 6.3.
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Figure 6.2: Signal-to-noise ratio (SNR) for sources distributed uniformly
over the sky. Top left: ET-triangle with a 10 km arm length. Top right:
ET-"L’ shaped with a 10km arm length. Bottom left and right: ET-"L’
shape with 15km and 20km arm lengths, respectively. The color bar
illustrates the magnitude of optimal signal-to-noise ratio for a compact
binary source situated at the same luminosity distance and positioned
at the corresponding point.

The x-axis represents the magnitude of the SNR, while the y-axis dis-
plays the fraction of uniformly distributed sources across the sky with
an SNR greater than or equal to the corresponding value on the x-axis.
It’s important to note that the chosen luminosity distance of the source
influences the SNR values. In the case of an 'L’ shaped Einstein Tele-
scope with a 10 km arm length, the SNR starts from zero and gradually
rises to a maximum value of approximately 32, depending on the lu-
minosity distance of the source. A higher maximum SNR indicates a
greater sensitivity of the detector. This is reflected in the curve shifting
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Figure 6.3: Cumulative distribution plot illustrating the distribution
of sources based on their signal-to-noise ratio (SNR), derived from the
SNR distribution shown in figure 6.2. The plot represents the cumu-
lative fraction of sources distributed uniformly across the sky, with the
x-axis indicating the magnitude of the SNR and the y-axis representing
the fraction of sources with an SNR greater than or equal to the corres-
ponding value on the x-axis.

towards the right, indicating a higher SNR can be achieved. For the 'L’
shaped Einstein Telescope with arm lengths of 10 km, 15 km, and 20 km,
the maximum signal-to-noise ratio values are approximately 35, 45, and
55 respectively. This indicates an improvement in sensitivity and the
ability to detect weaker signals with higher precision as the arm length
increases. Comparatively, the triangular configuration of the Einstein
Telescope with a 10 km arm length yields a maximum SNR close to 50.
Notably, there are no sources with a zero SNR for the triangular config-
uration, as the minimum SNR starts above 15 for this particular source,
indicating a favorable baseline sensitivity. The reference line at an SNR
value of 30 provides valuable information about the detectability of grav-
itational wave sources. In the case of ET-L shaped with a 10km arm
length, it indicates that 95% of sources distributed uniformly across the
sky will have an SNR less than 30. This implies that only 5% of the sky
area will allow for the detection of sources with an SNR greater than 30.
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6.3. Detectable redshift for compact binaries

When considering ET-’L” with 15km and 20km arm lengths, we find
that approximately 40% and 60% of the uniformly distributed sources,
respectively, will be detectable with an optimal SNR greater than 30.
In other words, for ET-'L’ with a 15km arm length, 40% of the sky
area will contain sources that can be detected with an SNR above 30.
Similarly, for ET-'L’ with a 20km arm length, the coverage increases
to 60% of the sky area. Comparatively, the ET triangle configuration
performs slightly better than ET-’L’ with a 15km arm length in terms
of the percentage of sources detectable with an SNR above 30. However,
it is not as effective as ET-’L’ with a 20 km arm length, which provides
a higher percentage of detectable sources.

6.3 Maximum detectable redshift for compact binary
sources

In this section, we explore the the maximum attainable redshift by the
3G detectors for compact binary sources, versus the total mass for vari-
ous detectors [114]. The horizon distance of a detector is defined as the
distance at which a source is just at the detection threshold, represented
by a signal-to-noise ratio (ps,) of 8 when optimally overhead. In this
analysis, we consider binary systems with equal masses and assume that
they are non-spinning. The mass range of the binary systems spans from
1 solar mass (Mg) to 1000 M.

Figure 6.4 showcases the maximum redshift achievable by various
detectors. The yellow curve represents the Cosmic Explorer, while the
solid blue curve corresponds to the Einstein Telescope with a triangular
topology. Additionally, the blue dashed curve represents the Einstein
Telescope with an 'L’ shape, assuming a fixed arm length of 10 km. Fur-
thermore, we depict the horizon redshift for the 'L’-shaped Einstein Tele-
scope with arm lengths of 15km (black curve) and 20km (red curve).
Analyzing the plot, we observe interesting trends. The horizon dis-
tance of the Cosmic Explorer is generally lower than that of the Einstein
Telescope for higher mass binaries, primarily due to the superior low-
frequency sensitivity of the latter. Additionally, the Einstein Telescope
with a triangular topology exhibits a greater reach than its 'L’-shaped
counterpart with 10 km or 15 km arm lengths. However, the 'L’-shaped
configuration with a 20km arm length demonstrates a slightly better
reach compared to the triangular configuration.
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Figure 6.4: Maximum attainable redshift for the compact binary sources
versus it’s total mass (in the source frame) with the third-generation
gravitational wave detectors: the Einstein Telescope and the Cosmic
Explorer. The binary systems considered here are of equal mass and
non-spinning. The sensitivity curves for the Cosmic Explorer and the
Einstein Telescope with different arm lengths are shown in figure 6.1.
The blue solid and dashed curves represent the maximum redshift at-
tainable by the ET with triangular and 'L’ configurations, respectively.
The orange curve corresponds to the Cosmic Explorer. The black and
red curves indicate the ET with an L’ configuration and arm lengths
of 15km and 20 km, respectively. Higher reach values indicate greater
sensitivity of the detectors.

6.4 Network of detectors

In this section, we focus on the network of detectors used in our analysis,
specifically the third-generation gravitational wave ground-based detect-
ors, namely the Einstein Telescope and Cosmic Explorer. The Einstein
Telescope employs a xylophone configuration, which consists of two in-
terferometers per detector optimized for different frequency ranges: low
frequencies (LF) and high frequencies (HF). For our analysis, we utilize
the design sensitivity curve (ET-D) specifically optimized for both high
and low frequencies. We aim to compare two different topologies of the
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6.4. Network of detectors

Einstein Telescope: the 'Triangular’ configuration and the 'L’ shaped
configuration. In the "Triangular’ configuration, we assume an interfero-
meter arm length of 10 km. For the I’ configuration, we consider various
arm lengths, including 10km, 15km, and even 20km. Based on these
configurations, we examine two distinct types of networks, as illustrated
in figure 6.5. For each network, we have evaluated the performance us-
ing two types of sources. The first type is modeled sources, where we
can accurately model the waveform based on the known source para-
meters. The second type is unmodeled sources, where we lack detailed
knowledge of the waveform.

Network -1: ET - triangle + CE + CE Network -2: ET-L(15km)+ CE + CE

AE | 15 km | ‘
R
-
40 km 40 km

~— —

10 km

——
—_—
40 km 40 km

Figure 6.5: Different network configurations considered in our analysis.
(a) Network 1: Einstein Telescope in a 'Triangular’ configuration with
two Cosmic Explorers. (b) Network 2: Einstein Telescope in an 'L’
shaped configuration with a 15km arm length, accompanied by two
Cosmic Explorers. (c¢) Network 3: Einstein Telescope in an 'L’ shaped
configuration with a 20 km arm length, along with two Cosmic Explorers.

6.4.1 Network-1

Our network configuration for Network-1 includes the Einstein Telescope
in a triangular configuration and two Cosmic Explorers. The Einstein
Telescope is assumed to be located at the same position as Virgo, while
the Cosmic Explorers are positioned at LIGO Hanford and LIGO Liv-
ingston. The design sensitivity curves for the Einstein Telescope and
Cosmic Explorer can be seen in figure 6.1.

129




6.5. Mathematical formulation

6.4.2 Network-2

In Network-2, we assume the network with the Einstein Telescope as a
single 'L’ shaped detector and two Cosmic Explorers. The arm lengths of
the Einstein Telescope are considered to be 10 km, 15 km, and 20 km, re-
spectively. The location of the detectors remains the same as mentioned
earlier.

As mentioned earlier, we calculate the sky localization accuracy for
both modeled and unmodeled sources in these configurations. Addition-
ally, we have also computed the sky localisation accuracy results for the
network consisting of one Einstein Telescope (triangle) and one Cosmic
Explorer. However, we have not considered the network configuration
with one Einstein Telescope (L-shaped) and one Cosmic Explorer, as
the sky localization for GW sources using only two detectors is limited.
With only two detectors, the sky localization of a gravitational wave
source is constrained to a ring on the sky, based on the time difference
in arrival of the GW signal at the detector sites. Adding a third de-
tector introduces another time delay information, which narrows down
the possible sky locations to a smaller region. However, it is important
to note that the amplitude of the signal also depends on the directional
sensitivity of the detectors, which can provide additional information
about the source location. Despite these constraints and partial inform-
ation, the sky localization achieved using two detectors is not sufficient
for conducting multi-messenger astronomy, which requires more precise
and accurate localization of the GW source. For comprehensive multi-
messenger studies, a network of detectors with improved sensitivity and
more detectors in different locations is necessary to achieve better sky
localization and enable coordinated observations with other astronom-
ical instruments.

6.5 Mathematical formulation
Let’s consider the data from a gravitational wave detector, denoted as
d(t), which consists of both the gravitational wave signal h(t) and the

noise n(t). Assuming that the gravitational wave signal is a linear com-
bination of the plus and cross polarizations, we can express it as:

d(t) = Fihy(t) + Fxhy () + n(t), (6.1)
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where F; and F are the antenna pattern factors of the detector for the
plus and cross polarizations, respectively. For a network of N; detectors,
the data received by the I-th detector, denoted as dj(t + 74), is given
by:

di(t +74) = FLhy(t) + FLhy (t) +ny(t +74), (6.2)

where 74 is the time delay between the signal arrival times on the de-
tectors, which depends on the separation between them. The antenna
pattern factors for the I-th detector are denoted as F and F.

The time delay 74 is determined by the direction to the gravitational
wave source (1) and the separation between the detectors (7), given by

ﬁj, where c is the speed of light. Here, e; and ey represent the po-

larization basis vectors, which describe the two orthogonal polarizations
of the gravitational wave. The detector tensor D is defined as:
where ¢ and ¥ are unit vectors along the arms of the interferometer.
The detector tensor captures the directional sensitivity of the detector
to the two polarizations of the gravitational wave.

In the frequency domain, the detector data can be expressed as:

T
dr(w) = /O dr(t)e™tdt, (6.4)

where dj(t) is the detector data in the time domain and w is the angular
frequency. T represents the total time duration over which the detector
data d;(t) is being observed. The whitened data set, denoted as dr(w),
is obtained by dividing the detector data by the square root of the one-
sided noise power spectral density S7(w) of the I-th detector:

drw) = 4@ (6.5)
Sr(w)

If we assume that the signal duration is short compared to the circular

motion of the detector due to the Earth’s rotation, then the antenna

pattern does not change significantly. Now, for Ny number of detectors,

we can express the network of detector data as:
di(w)
da(w) | _ Ah(w)eiltotTa), (6.6)

Csz (U.))

T4 =
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where A is an Ny x 2 matrix that represents the antenna pattern factors
weighted by the noise spectral density of the detectors, h(w) is the grav-
itational wave signal in the frequency domain and t is a reference time.
dy (W), da(w), -'-,Csz (w) denote the detector data in the frequency do-
main for each of the Ny detectors. The matrix A can be expressed as:

FL//Si(w)  Fi/y/51(w)
Ao | FVS:w)  F2//Sa(w) (6.7)

FY)/Sng@) Y/ \/Sn, )

where F{/./SI(w) and FL/\/Si(w) are the antenna pattern factors
divided by the square root of the noise power spectral density for the

I-th detector.
The gravitational wave signal vector, denoted as h, is given by:

h= <Z:> . (6.8)

The matrix A depends on the source position and its polarization angle,
and since we divide the antenna pattern factor by the detector noise
spectral density, A is also a function of w, the angular frequency.

6.6 Fisher Information Matrix

The Fisher information matrix provides a method-independent lower
bound for the uncertainty of estimated parameters and quantifies the
performance of an estimator. It establishes a relationship between this
lower bound and the variance of the estimator. Essentially, the Fisher
information matrix serves as a measure of how well our estimator can
capture the underlying parameters of interest.

The Cramer Rao bound is a fundamental result in statistical estim-
ation theory. It states that for an unbiased estimator, the covariance
matrix denoted as C(6) must satisfy the inequality C(#) < I'(#). Here,
© represents the set of parameters to be estimated, such as 61, 02, and
so on. I'(#) represents the Fisher information matrix which quantifies
the amount of information available in the data for estimating the para-
meters. Let’s consider a scenario where we are estimating multiple para-
meters 0 = 61,60s,...,0, from a given dataset. The covariance matrix
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C(0) is an n x n symmetric matrix that characterizes the variances and
covariances between these estimated parameters. The element in the ¢th
row and jth column of the covariance matrix represents the covariance
between the estimated values of 6; and 6;. The diagonal elements of
the covariance matrix, i.e., Cy;, represent the variances of the estimated
parameters. They provide information about the spread or dispersion of
each individual parameter estimate. A larger variance indicates higher
uncertainty or greater variability in the estimated value of the parameter.
The off-diagonal elements of the covariance matrix, i.e., Cj; where i # j,
represent the covariances between pairs of parameters. These elements
indicate the extent to which the estimated values of two parameters
vary together. A positive covariance suggests that the parameters tend
to increase or decrease together, while a negative covariance indicates an
inverse relationship between the parameters. For every pair of corres-
ponding elements in the covariance matrix and the Fisher information
matrix, the element in the covariance matrix is either smaller or equal
to the element in the Fisher information matrix. More specifically, if
we consider the element in the ith row and jth column of the covari-
ance matrix C(f), denoted as Cj;, and the corresponding element of the
Fisher information matrix I'(f), denoted as I';;, the inequality states
that Cj; < I';;. It implies that the covariance matrix, representing the
uncertainty and variability of parameter estimates, cannot exceed the
information content provided by the Fisher information matrix.

In scenarios with high signal-to-noise ratio (SNR) and under the
assumption of Gaussian noise, an interesting relationship emerges. The
covariance matrix that characterizes the statistical error of the estimated
parameters can be approximated as the inverse of the Fisher informa-
tion matrix, (I'"!);;. This approximation suggests that in high SNR
conditions with Gaussian noise, the precision of parameter estimation is
inversely related to the Fisher information matrix.

For Gaussian noise, the optimal signal-to-noise ratio (SNR) can be
defined as the inner product between the whitened data. Mathematic-
ally, this can be expressed as:

pi = (drldr) (6.9)
Here, d; represents the whitened data, which is the observed data

after being preprocessed to remove the frequency-dependent noise prop-
erties.
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The Fisher information matrix for a parameter 6 can be defined as:

ad  od

= <879i 8799 (6.10)

This matrix quantifies the information content of the observed data re-
garding the parameter of interest. It involves taking the inner product
between the partial derivatives of the observed data with respect to the
parameters 0; and 6;.

To calculate the angular resolution for a network of detectors, we
can estimate the Fisher information matrix for the corresponding para-
meters. If (0, ¢) represents the actual source direction, we can calculate
the error solid angle which gives us the range within which the estim-
ated source direction could deviate from the true direction helps us to
understand how good we are at pointing to the direction of the source.
The error solid angle (measured in steradian) can be expressed as:

AQ = 21/ A2 Ap? — (AOAP)? = 27/ det (T 1) (6.11)

Here, A and A¢ represent the errors in estimating the angular compon-
ents of the source direction. The term (A#A¢p) denotes the covariance
between these errors. The error solid angle, A}, provides a measure
of the uncertainty in determining the source direction. It is related to
the inverse of the covariance matrix, which is equivalent to the Fisher
information matrix I'. In summary, the error solid angle, determined by
the Fisher information matrix and covariance between angular errors,
provides valuable information about the angular resolution of a network
of detectors in estimating the source direction. It quantifies the uncer-
tainty in determining the source direction and serves as an indicator of
the precision of the estimation procedure.

6.7 Sky localisation accuracy

6.7.1 Unmodelled Sources

When a gravitational wave is detected, each detector receives a slightly
different version of the signal due to its location and orientation. By
combining the data from multiple detectors, it is possible to extract
information about the source direction of the gravitational wave. To
achieve sky localization, the idea is to construct a null stream that cap-
tures the common features shared by the detectors’ data but eliminates
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any contribution from the gravitational wave signal itself. This null
stream is designed in such a way that it becomes truly null when the
source direction is correctly determined. The null space projection tech-
nique is particularly useful for short-duration signals, as it does not
depend on Earth’s rotation during the time span of the signal. It al-
lows us to extract the directional information of the gravitational wave
source from the network of detectors, even when the exact waveform of
the signal is unknown. The work by Giirsel and Tinto (1989) [110] has
demonstrated the sky localization technique using the null stream ap-
proach, which we discussed earlier. This technique is further discussed
in the next chapter.

In this context, the Fisher matrix for the sky localization problem
can be expressed as:

L = ((On,;0)d|(I = P) (On, $)d) (6.12)

Detailed derivation can be found in [221]. Here, I is the identity matrix
and P is a Ny X Ny matrix, functioning as the projection operator into
the whitened signal space. It can be expressed as:

P =A(ATA)71AT (6.13)

In this equation, A represents a matrix related to the detector net-
work configuration. The matrix (I — P) projects the data into the null
space. The projected data contains only noise when projected along the
actual position of the source and the signal will cancel out. This is be-
cause the null stream construction ensures that the signal component is
eliminated, leaving only the noise contribution.

The sky localization error, denoted as A2, can be computed using
the following equation:

AQ = 27 (detT) "2 (6.14)

In this equation, det I' represents the determinant of the Fisher matrix
I', which provides the precision of the sky localization. The expression
for det(T") is given by:

1 — — ~
det(l') = 31 E Ajx Apm|(Frre X Parr) - 7o) (6.15)
JK.L,M

Here, the indices J, K, L, and M range from 1 to Ny, representing the
detectors in the network. The term Ajx can be interpreted as the
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projection of the whitened data correlation between the J-th and K-th
detectors while being projected into null space. Mathematically, it can
be expressed as:

RPN dw
Ajk = 05k — Prk) (2/ ddg wz—) (6.16)

o 2w

The term (77 X ¥arr) - 7o represents the area resulting from the projec-
tions of detectors J, K, L, and M onto the plane that is perpendicular to
the direction of gravitational wave propagation(n). This indicates that
if the direction of propagation of the gravitational wave signal lies in
the plane of the detector, the resulting localization accuracy achieved
by the network will be lowered. By evaluating det I" using the given ex-
pression and plugging it into the equation for A2, we can calculate the
sky localization error. This error represents the uncertainty in determ-
ining the source location in terms of solid angle, providing insights into
the precision of the sky localization method based on the null stream
approach.

6.7.2 Modelled Sources

Now let us explore the best-case scenario where we have a known wave-
form for the gravitational wave signal, but the arrival time of the signal
remains unknown. In this scenario, we can make use of the known
waveform to optimize the sky localization process and achieve higher
precision.

By having access to the waveform, we can analytically calculate the
determinant of the Fisher information matrix, denoted as detI', which
can be expresssed as:

dotT — % Z §18x &L M |](V77JK X Frar).nf? (6.17)
8 ( 1:d1 51)2

&1 represents the noise-weighted energy flux received by the detector 1.
The term &7 can be calculated as:

1 N
gfzz/ 2 0% |dy)? (6.18)

oo 2m

This formulation allows us to compute the angular resolution of mod-
elled sources for a network of detectors. In the case of a network with
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two detectors, only one-dimensional angular resolution is possible. The
uncertainty in 1D angular resolution can be determined from the trace
of the Fisher information matrix:

2c 1
80 = V& +&D) \/51 &/(&1+ &) (6.19)

Here, D, represents the projection of the distance between the two
detectors onto the plane perpendicular to the direction of propagation.

By employing the equations mentioned above, we can evaluate the
angular resolution of modelled sources within a network of detectors.
The angular resolution provides information about the uncertainty in
determining the source direction and contributes to the understanding
of the performance and capabilities of the detector network.

6.8 Results

In this section, we present the computed sky localization accuracy for
both modeled and unmodeled gravitational wave sources for the network
discussed in 6.4. We assess the angular resolution for all possible sky
locations, considering the same gravitational wave source.

Figure 6.6 illustrates the sky localization accuracy for the detector
network consisting of the Einstein Telescope with a triangular configur-
ation and the Cosmic Explorer. This analysis explores scenarios where
the gravitational wave source can either be modeled or unmodeled. On
the left side, we have the modeled case, where the waveform of the grav-
itational wave source is known. The color bar represents the sky localiz-
ation accuracy, labeled as A). Each point on the graph corresponds to a
specific direction in the sky. The value associated with each point indic-
ates the error in estimating the source’s location when it originates from
that particular direction. The differences between the modeled and un-
modeled scenarios highlight the importance of waveform knowledge in
achieving higher directional precision. In the modeled case, when we
know the exact waveform of the gravitational wave signal, we can make
more precise predictions about its behavior and, consequently, its source
location in the sky. In contrast, without a waveform model, our abil-
ity to accurately determine the source direction becomes less certain,
resulting in a potentially larger localization error.
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Figure 6.6: Directional precision for modeled and unmodeled gravita-
tional wave signals in the detector network consisting of the Einstein
Telescope with a proposed triangular configuration and the Cosmic Ex-
plorer. The plot shows the sky localization error for the modeled case
(left) and the unmodeled case (right), indicating the accuracy of determ-
ining the source direction. The color bar represents the sky localization
accuracy (AQ), with lower values indicating higher precision. We have
considered that the locations of the ET and CE correspond to the posi-
tions of Virgo and LIGO Hanford, respectively.

We have computed the sky localization accuracy for various networks
comprising different configurations of the Einstein Telescope and two
Cosmic Explorers, as discussed in Section 6.4. In figure 6.7, we present
the results for the sky localization accuracy specifically considering an
unmodeled gravitational wave source. The figure shows graphical rep-
resentations of the directions from which the gravitational wave signal
can propagate, with a color bar indicating the level of error in estimat-
ing the position of the gravitational wave source. Upon analyzing the
results, it is evident that the overall angular resolution of the ET with a
triangular configuration outperforms the ET with an 'L’-shaped detector
configuration of varying arm lengths.

To provide a quantitative demonstration, we present the cumulative
fraction of sources in figure 6.8. The X-axis represents the uncertainty
in sky localization (A€), while the Y-axis represents the fraction of the
sky area with an error in localization less than or equal to Af).

For reference, let’s consider the value of 20 deg? along the X-axis.
For the ET with a triangular configuration, approximately 70% of the
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Figure 6.7: This plot depicts the directional precision of the detector
network for unmodeled gravitational wave signals. On the left side, the
plot illustrates the sky localization error for the ET with a triangular
configuration (arm’s length 10km) and two Cosmic Explorers (40km
each) located at the Hanford and Livingston sites. On the right side,
the plot displays the localization accuracy for an unmodeled source us-
ing the same network but with an ET configured as an ’L’ shape and
an arm length of 15km. The color bar represents the sky localization
accuracy (AS), where each point in the plot indicates the error in the
sky localization of the gravitational wave source arriving from the cor-
responding direction.
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Figure 6.8: This plot illustrates the fraction of the sky area that ex-
hibits specific sky localization errors along the x-axis. The black and
pink trace lines represent the cumulative distribution of sky localiza-
tion errors for the network consisting of the Einstein Telescope with an
'L’-shaped configuration, with arm lengths of 15km and 20 km respect-
ively, along with two Cosmic Explorer-like detectors. Additionally, the
blue solid and dashed lines depict the cumulative distribution for the
ET with a triangular configuration (10 km arm length) and the ET with
an 'L’-shaped configuration (10km arm length), both in combination
with two Cosmic Explorer-like detectors. The black dashed line serves

as a reference, representing the sky localization accuracy associated with
GW170817 [16].
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sky area exhibits a better accuracy in directional uncertainty, with er-
rors below 20 deg?. On the other hand, for the ET with an 'L’-shaped
configuration (20 km arm length), this percentage decreases to 60%. It’s
worth noting that the directional precision of the ET with an "L’-shaped
configuration improves with longer arm lengths due to the increased
sensitivity. However, the improvement is not as significant because we
have considered the ET in the network alongside two CE-like detect-
ors. These findings highlight the advantages of the ET with a triangular
configuration in achieving better angular resolution compared to the ET
with an 'L’-shaped configuration. The presence of additional detectors in
the network, similar to the CE, contributes to the improved localization
performance.

The directional precision results for modeled sources are depicted
in figure 6.9. The sky localization error, as represented by the color
bar in the plot, provides a quantitative measure of the uncertainty in
determining the source direction. Lower values on the color bar indicate
higher precision in localizing the source. It is evident from the plot
that the network with the ET triangular configuration achieves higher
accuracy compared to the ET-’L’ configuration with 15 km arm lengths.

To provide a quantitative analysis, we present the cumulative distri-
bution plot in figure 6.10, which is similar in format to figure 6.8. The
X-axis in this plot represents the uncertainty in sky localization for the
modeled source. Once again, we observe that the accuracy is better for
the network with the ET triangular configuration when compared to the
'L’ configuration.
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Figure 6.9: This plot illustrates the directional precision of the network
of detectors for modeled gravitational wave signal. The left panel shows
the sky localization error for the Einstein Telescope with a triangular
configuration (10 km arm length) and two Cosmic Explorers (40 km arm
length) positioned at the Hanford and Livingstone sites. The right panel
displays the sky localization error for the ET-'L’ configuration with a
15km arm length. The color bar represents the value of sky localization
accuracy (A€Q), where lower values indicate higher precision in localizing
the gravitational wave source. Each point in the plot corresponds to the
error in the sky localization when the gravitational wave signal arrives
from a specific direction. Overall, the plot demonstrates that the tri-
angular configuration of the ET yields better sky localization accuracy
within the considered network.

6.9 Discussion

In this chapter, I have shown the angular resolution for both modeled
and unmodeled gravitational wave sources, considering different config-
urations of the Einstein Telescope along with two Cosmic Explorer de-
tectors. My findings demonstrate that, within the network involving two
CE detectors, the ET-triangular configuration offers superior angular
resolution compared to ET-"L’ shaped detector with a 15 km arm length.
This trend is consistent for both modeled and unmodeled sources.

One advantage of the ET-triangular configuration is its intrinsic null
stream, which carries information about the detector noise. This enables
the estimation of the noise power spectral density and facilitates the
distinction between genuine gravitational wave signals and glitches. The
null stream contains no signal, making it a valuable tool in the analysis.
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Figure 6.10: This plot displays the cumulative distribution of sky local-
ization errors for different configurations of the Einstein Telescope when
localizing modeled gravitational wave signals. The X-axis represents
the uncertainty in sky localization, similar to figure 6.8. The black and
pink trace lines depict a network configuration featuring the ET-"L’ with
arm lengths of 15 km and 20 km respectively, along with two Cosmic
Explorer-like detectors. The blue solid and dashed lines illustrate cumu-
lative distributions for the ET triangular configuration and the ET-’L’
configuration (both with a 10 km arm length) within the network of
two CE detectors. The plot demonstrates that, in the case of modeled
sources, the ET-triangle exhibits slightly superior sky coverage compared
to the 'L’ shape within the network comprising two CE detectors.

This calculations focused on short-duration signals and I did not
account for the effect of Earth’s rotation. However, for longer duration
gravitational wave waveforms originating from low-mass binary systems,
it is important to numerically compute the Fisher information matrix,
incorporating the variations in antenna patterns due to Earth’s rotation.

Several studies have contributed to the understanding of parameter
estimation and performance evaluation for future detector networks. In
[106], Grimm et al. investigated parameter estimation combining cur-
rent (LIGO/Virgo) and future detectors using the Fisher matrix ap-
proach, incorporating information from present and future detectors
such as ET and LISA. In another study [114], Hall et al. considered
numerous possible third-generation detector networks, including Voy-
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ager, Einstein Telescope, and Cosmic Explorer detectors, and evaluated
their performance based on metrics such as sky localization area, signal-
to-noise ratio, and uncertainty in distance and inclination angle. These
analyses aid in decision-making for future detector designs, aligning with
scientific goals, and expanding our ability to explore the mysteries of the
universe.

Overall, this study highlights the importance of network configura-
tion in achieving optimal angular resolution for gravitational wave source
localization. By refining our understanding of parameter estimation
and performance metrics, we can make informed decisions regarding the
design and implementation of future-generation detectors, maximizing
their scientific potential and unraveling the secrets of the universe.
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Chapter 7

Optimizing gravitational wave
source sky localization and
calibration error using the null
stream of the Einstein
Telescope

7.1 Introduction

In contrast to the currently operating detectors that use L-shaped in-
terferometers with orthogonal arms, the Einstein Telescope is proposed
as a a triangular geometry consisting of six colocated interferometers
forming three xylophone detectors, with the arms forming a 60-degree
angle [176]. This unique triangular configuration of ET offers several
advantages. One notable advantage is the construction of a sky location-
independent null stream for detecting gravitational waves.

According to the theory of general relativity, gravitational waves are
tensor waves comprising two independent polarisations known as "plus”
and “cross”. In the context of a network of gravitational wave detectors,
when there are more than two independent and non-aligned interfero-
meters, the network becomes over-defined. This means that the network
provides more data streams than the independent polarisations of grav-
itational waves. By combining the outputs of the interferometers in a
special way in such a network, it is possible to generate a composite res-
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ult that does not contain any gravitational wave signal. This composite
result is known as a "null stream”.

A significant contribution to the understanding and application of
null streams in gravitational wave detection was made by Giirsel and
Tinto in 1989 [110]. Their work demonstrated that in a general network
of gravitational wave detectors, the combination of network outputs that
forms the null stream yields a signal contribution of zero only for the
precise sky location of the gravitational wave source. This implies that
the null stream is location-dependent, and its characteristics can be used
to reconstruct both the direction of the source and the time series of
gravitational wave strain by minimizing the residual signal present in
the null stream.

Expanding on this concept, Wen and Schutz (2005) [222] further de-
veloped the utilization of null streams within a redundant network of
detectors. They refined the approach by using null streams to test the
consistency of a candidate gravitational wave signal and to determine
its origin, whether astrophysical or stemming from detector noise. Since
the null stream does not contain any gravitational wave signal, the ab-
sence of unusual excitation within the null stream serves as an indicator
that the event under consideration could indeed be a genuine gravita-
tional wave signal. By analyzing the null stream in a model-independent
manner, they established a framework to discriminate between genuine
gravitational wave signals and coincidental non-Gaussian noise. The
work by Zhu et al. (2015) further emphasized the significance of null
streams as a tool for discrimination [230].

The work of Ajith et al. (2006), as described in [29], introduced
a statistical approach known as the null stream veto to differentiate
genuine gravitational wave triggers from transient noise events. They
employed excess power statistics to analyze the null stream, allowing
for the identification of significant deviations caused by gravitational
waves. This technique provides a means to validate GW signals by ex-
amining the absence of excess power in the null stream. The authors
also addressed practical challenges associated with implementing the null
stream veto. Calibration uncertainties and correlated noise components
can introduce complications in the analysis. To overcome these issues,
Ajit et al. presented a new formalism that accounts for calibration un-
certainties and addresses the impact of correlated noise components.
This improved approach enhances the reliability and effectiveness of the
null stream veto in distinguishing true GW events from transient noise.
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Building upon this work, Chatterjee et al. (2006) further developed
the null stream veto technique in [76]. They conducted a more robust
analysis that incorporates the effects of calibration uncertainties and
transient noise glitches. By considering these factors, their approach
offers increased sensitivity and accuracy in identifying genuine GW sig-
nals. This advancement addresses practical concerns and improves the
applicability of the null stream veto method in real-world gravitational
wave detection scenarios.

In the context of the Einstein Telescope, Regimbau et al. [182]
demonstrated the application of ET’s intrinsic null stream in the first
ET mock data challenge analysis. They utilized the ET mock data chal-
lenge to simulate gravitational wave signals and corresponding noise in
order to assess the performance of ET’s null stream in estimating the
stochastic background of BBH and BNS. By analyzing the null stream
data and employing appropriate statistical techniques, they were able to
extract information about the populations of these compact binary sys-
tems. In [195], Schutz and Satyaprakash proposed a technique known
as self-calibration of the detectors, which utilizes the null stream for
modeling calibration errors using detected gravitational wave signals.

In their study discussed in [225], Wong et al. demonstrated a decom-
position of the observational space of the Einstein Telescope into two
subspaces: the null space and the signal space. The null space refers to
the span of the set of independent null streams, which is a combination
of detector outputs that cancel out any gravitational wave signal. The
signal space is the span of the two gravitational wave signal polarisa-
tions of interest. They discussed that the result of Bayesian parameter
estimation remains unaffected when considering only the signal space.
Analytically proving this result, they showed that discarding the null
space and focusing solely on the signal space does not introduce any
biases or alter the estimation process. By doing so, one can reduce the
memory cost and computational power required for the analysis, as the
data from the null stream, which does not contain gravitational wave
signals, can be omitted.

Goncharov and Harms, in [104], discuss various approaches developed
for utilizing the null stream of the Einstein Telescope. They highlight
the versatility of the null stream and its potential applications in grav-
itational wave analysis. One significant finding presented in their work
is that the null stream can be utilized to provide unbiased estimations
of the power spectral density (PSD) of each detector within ET. The
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power spectral density characterizes the distribution of signal power
across different frequencies. Accurate estimation of the PSD is crucial
for understanding the noise properties of the detectors and distinguish-
ing gravitational wave signals from instrumental artifacts.

In this chapter, I focus on the application of the null stream for
source localization of gravitational wave sources using the network of
third-generation detectors, specifically the Einstein Telescope and Cos-
mic Explorer. The proposed topology of the Einstein Telescope, which
consists of three xylophone detectors arranged in a unilateral triangle, of-
fers a unique advantage in terms of source localization. The null stream
in this configuration does not depend on the sky location of the GW
source or any other source parameters, resulting in reduced computa-
tional costs [182]. The null stream in this setup primarily contains pure
noise from the three interferometers, assuming calibration uncertainties
are ignored [195]. By optimally subtracting this pure noise from the data
stream output of the entire network, one can reduce one data stream to
estimate the sky localization parameters of the source. However, we
haven’t observed any change or improvement in the sky localisation ac-
curacy. This approach allows us to exploit the benefits of the unique
null stream characteristic of the Einstein Telescope configuration.

It is also important to consider potential calibration errors when
modeling the strain of the detectors. In such cases, the null stream
may contain residual signals due to imperfect cancellation of the grav-
itational wave signal. Therefore, the null stream can be a valuable tool
for probing and refining the calibration error modeling of the detectors.
In this context, I discuss the concept of self-calibration, which involves
improving the calibration of the detectors based on the detection of
astronomical signals. By utilizing the null stream and the detected sig-
nals, the self-calibration process enables a more accurate estimation of
calibration errors, leading to enhanced precision in gravitational wave
measurements.

This chapter is structured as follows. Section 7.2 provides a discus-
sion on the mathematical formulation of the inverse problem of recon-
structing GW signals from the data of the network of detectors, laying
the foundation for the subsequent analyses. Section 7.3 focuses on the
utilization of the Einstein Telescope’s intrinsic null stream for noise sub-
traction during an unmodeled search for the sky location of a gravit-
ational wave source. This involves minimizing the residual in the null
stream for the network consisting of ET and Cosmic Explorer (CE). Sec-
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tions 7.4 and 7.5 delve into the topic of calibration errors in modeling the
strain data obtained from the photodetector of the GW interferometer.
The effect of calibration errors on the null stream of ET is discussed.
In Section 7.6, the focus remains on the null stream of ET, specifically
addressing the impact of calibration errors on its characteristics. Sec-
tion 7.7 introduces the matched filtering technique as a means to probe
the residual signal present in the null stream. Section 7.9 presents the
results obtained from finding the optimal filter and discusses the implic-
ations and outcomes of the analyses conducted. Finally, in Section 7.10,
the chapter concludes with a summary of the key findings and their sig-
nificance in the context of source localization using the null stream, as
well as suggestions for future research directions.

7.2 Exploiting the null stream for sky localization in
GW signal reconstruction

In this section, the goal is to develop the mathematical formulation of
the sky location-dependent nullstream, incorporating the intrinsic null-
stream of the Einstein Telescope. Following up on section 6.5 of chapter
6, one can express equation (6.2) in matrix form as follows:

d(t +714,) = F - h(t) + At + 7q,) (7.1)

where F is a Ny x 2 matrix comprised of antenna pattern factors of the
individual detectors of the network.

Ft Pl
F2 F?
L + X (7.2)
N, N,
F’+ d F‘>< d

h= (ZJF) is the vector of GW polarisation components, and 7(t + 74, )

X
is the vector of pure noise contributions from each of the detectors of the
network. The inverse problem of reconstruction of GW signals from the
data d(t474, ) of the network of Ny GW detectors [179] can be formulated
as follows: one needs to find the gravitational-wave amplitudes h(t) =
hy(t), hx(t) and the source location in the sky i.e declination(fs) and
right ascension(¢s) by solving the following (overdetermined) system of

linear equations

—

F(0, ¢s) - h(t) = d(t + 74,) (7.3)
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-

where d(t+74,) is contaminated by the noise of the corresponding detect-
ors. In general, the problem is ill-posed since the matrix F' is not square
and thus not invertible. In order to solve for i_i(t) one could seek for the
functions f(t) that minimize the so-called residual function R(0, ¢) can
be expressed as

-

R(0.0) = | (dlt +7a) ~ F(0,0) - B0 (74)

This function is not only dependent on and minimal for a true GW signal
waveform h but also carries the dependence on the sky location of the
source through F(6, ¢) and thus can be used to find the true location
of the source, (¢s, 05). From the mathematics perspective, minimizing
the residual is equivalent to the projection of detectors’ data on the null
space of the GW signal in the Ny-dimensional space of the network data
outputs.

As shown by Sutton et al.[204] the above formulation of the inverse
problem for a gravitational wave signal is particularly useful for detect-
ing burst sources. Using the above formalism one can construct a source
location-dependent null stream from the combination of the detector
data, which turns to null (zero signal) once one gets the propagation
direction of the GW source right without even having to detect the GW
signal waveform. For N, detectors, there are, in general, (Vg —2) source
location-dependent null streams assuming the two independent polar-
isations of GW strain. E.g. in the case of three non-aligned detectors,
there should be one source location-dependent null stream, which can
be written as [220]

/\[(9, (ZS) = Az dl(t) + Asy dg(t + 7'12) + Aqo dg(t + 7'13). (7.5)

Here, 72 and 713 are the time delays between detectors 1 and 2 and
detector 1 and 3, respectively. The coefficients A;; are defined as:

Aijj = F F} — FF; . (7.6)

The coefficients A;; depend on the sky position i.e.(f, ¢). One can also
construct a null stream by performing the singular value decomposition
of F and recombine the detector data so that this becomes null for the
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actual source location [222]. Hence, F = USV™, where:

S1 0
0 59

S=|o0 o0 (7.7)
0 0

Here, s; and s9 are two singular values with s; > s9. Matrices U and V
are unitary with dimensions Ny x Ny and 2 x 2, respectively. The new
data streams can be written as

U” . d=sv’.d. (7.8)

Hence, we see that the first two rows of the UT - d simply project
the data into the signal space (corresponding to two non-zero singular
values), and the remaining rows represent the null space N(£2). Hence
we can write,

7.3 Optimisation of the 3G network null stream using
Einstein Telescope’s intrinsic null stream

The triangular geometrical configuration of the Einstein Telescope offers
a unique advantage in the form of a null stream, which contains combined
noise information from three detectors. This null stream is an inherent
property of the ET’s triangular shape and is independent of the source
location. Let’s consider the data stream from the output of the three
detectors in the ET network:

dfT = pFT 4 b7
dET = pPT 4 T (7.10)
d¥T = pET 4 nET

Here, h’IET represents the gravitational wave signals and n’IET repres-
ents the noise of each corresponding detector in the ET network. The
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triangular geometry of the ET implies that the sum of the gravitational
wave signals from the three detectors is zero:

RET 4 BT 4 RET =0 (7.11)

As a result, when we add up all the data streams from the ET network,
the signal content in the sum cancels out, leaving only the sum of the
three noise terms:

NEL = nfT 4 8T 4 nfT (7.12)

As NET doesn’t contain any signal, we can rewrite the source location
dependent null stream N, (0, ¢) from equation 7.9, after optimally sub-
tracting N'E7.

Nc,z(evgb) :Na(07¢) _CaNET (713)

To determine the coefficients Cy, we employ a strategy of minimizing
the variance of the noise for the estimator. Under the assumption of a
zero-mean noise with known variances af, we define the modified null
stream N/ (0, ¢) as the original null stream N, (6, ¢) minus the weighted
sum of the detector outputs i.e. d{;T, dfT, and déET, where the weights
are represented by the coefficients C,. This is expressed mathematically

as:
N(0,0) = Na(8,6) — Co (dFT + aFT 4 dFT) (7.14)

Here, o ranges from 3 to (Ng — 2), as « = 1 and a = 2 correspond to
the signal space. The variance of the data time series x(t) over a total
duration T is defined as 0% = L fOTx(t)2 dt.

For example, we consider a network consisting of one ET with a
triangular configuration (10 km arms) and one CE with 40 km arms. It’s
important to note that this configuration is presented as an illustrative
case, and the analysis can be generalized for a network comprising an
ET-triangle and any number of CE-like detectors. The expression for
N, (0, ¢) involves the linear combination of the detector outputs d¥'T,
dfT, dgET, and de, weighted by the coefficients UL, U2, U3, and U3,
respectively. It can be written as:

No(0,6) = ULaFT + U2dF" + U3dET + Ula$® (7.15)

The variance of the modified null stream N/, is determined by the sum
of squared differences between the weights U}, U2, U2, and C,, each

152



7.3. Optimisation of the 3G network

multiplied by the corresponding noise variances o7, o3, and a§ (where

o1, 09, and o3 represent the variances of the noise terms from the three

detectors of the Einstein Telescope, respectively), along with the noise
variance o7 itself.

o, = (Us = Ca)? o1 + (UZ = Ca)? 03 + (Ug — Ca)? 03 + 0 (7.16)

The coefficients C,, can be determined by minimizing 012\,, . Specific-

ally, Cy is computed as a weighted sum of the products between the

weights U,; and the corresponding noise variances 03, divided by the
sum of the noise variances O'Z-ZZ

B Uéa%—l—Uéa%—i—UgU%

Ca
o2+ 03+ 03

(7.17)

In our analysis, we have assumed no correlations between the noise of
the individual detectors. However, in practice, due to shared seismic en-
vironments, it is reasonable to expect some degree of correlation among
interferometers located in the same tunnels. To account for these cor-
relations, we introduce a covariance matrix ¥, = (n;|ng) [187].

The optimized null combination of the data in the general case can
be expressed as:

N' =Ty -d, (7.18)
where:
arT
dET
d=|d5T (7.19)
dy
and
Unutt = Unutt — Cq. (7.20)

Here, Uy € UT = (ul),i = 3,4...Ny and U can be found from the

singular value decomposition (SVD) of F i.e. F = USV*, where U and V
are unitary matrices, and S is a diagonal matrix containing the singular
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values [219, 218].
Optimized coefficient matrix C' can be expressed as:

CTz(C1 Co C5 Cy .. Cny— )1><(Nd—2)

and
g=(1 110 0)n,-
One can express the variance of N’ as:
(N')?) = (U)TS U = (U - Co)"S (U - C), (7.21)

where X is the covariance matrix which will be diagonal for the assump-
tion that there are no correlations between the noise of the three nested
ET detectors. In case of the presence of correlations the covariance
matrix will not be diagonal and it will have off-diagonal components
consisting of the cross-covariance of noise.

The values of the coefficients can be fixed from the optimization problem
of the noise covariance matrix. This results in:

g2 (U-Cq)=0 (7.22)
which leads to:

T

c=2=Y (7.23)

q Xq
Hence, after subtracting the intrinsic null stream of the ET, we ob-
serve the optimization of the null operator. In this specific example,
considering one ET and one CE-like detector, we have a total of four de-
tectors in the network. Therefore, we initially expect to have two signal-
dependent null streams that can be utilized for detecting sky localization.
However, this optimization does not alter the results, as demonstrated in
figure 7.1. Figure 7.1 depicts the results before and after the subtraction
of the null stream, showing no differences in the probability distribution.
This is because the subtraction of the intrinsic null stream does not alter
the signal-to-noise ratio. Due to the triangular configuration of the ET,
it possesses one signal-independent null stream as an inherent property.
Consequently, in principle, we should have one signal-dependent null
stream available for further analysis. To refine the null combination, we
performed optimization by removing the intrinsic null stream from the
operator U, resulting in a single null stream. Our findings are consistent
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with the paper by Wong et al. [225], which illustrates that the data
stream from the Einstein Telescope can be effectively decomposed into
signal and null spaces, resulting in two distinct data streams instead of
three, which are crucial for parameter estimation. This reduction of the
data stream from the ET may lead to computational advantages in the
context of parameter estimation.

Before optimization After optimisation

0.00025

0.00020

0.00015

0.00010

0.00005

Figure 7.1: Probability distribution for the sky localization of the gravit-
ational wave source. The source is injected from the direction indicated
by the '+’ sign. The color bar shows the most probable region indicating
the direction of the gravitational wave signal arrival. We observe that
the probability distribution remains unchanged even after subtracting
the intrinsic null stream of the Einstein Telescope. This lack of change
is expected since the subtraction does not alter the statistical properties
of the analysis.

7.4 Calibration of gravitational waves detectors

In the context of gravitational wave detectors, calibration is a crucial
process that comprises two steps. The initial step focuses on establishing
a relation between the quantity of interest, such as gravitational wave
strain, and a measurement standard. This is achieved by measuring
the differential arm length displacement (DARM) of the interferometer
when a gravitational wave passes through the detector. The DARM
displacement is proportional to the gravitational wave strain, and the
relation is given by:

AL=ALx — ALy =hL (7.24)

where AL is the difference in X-arm displacement (ALx) and Y-arm dis-
placement (ALy), and L is the average length of the arms. This length
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fluctuation within the gravitational wave detector is translated into a
corresponding light fluctuation at the output of the interferometer. At
the output port, a photo-detector records the photon fluctuation, which
is a representation of the differential arm length variation. The second
step of calibration involves converting the output signals from the pho-
todetector into units of meters of differential arm length variation. This
conversion allows for the analysis of the calibrated signals to detect grav-
itational waves and extract astrophysical information from the sources.
The calibration process is essential to accurately interpret the data ob-
tained from gravitational wave detectors.

The GW detector possesses a very high level of sensitivity to effect-
ively detect GW signals. This demands a greater level of precision in cal-
ibration, which in turn makes the calibration process exceptionally chal-
lenging and complex. However, the accurate calibration of the detector
response can be challenging due to the tiny changes in the arm length
caused by gravitational waves. Currently, gravitational wave detectors
use photon calibrators, which artificially move the mirrors with fiducial
displacements that are proportional to the power of the laser photons
incident on the mirrors. The mirror movements must be modeled with
high precision, considering the extremely small displacements involved.
Ongoing advancements in modeling techniques have resulted in photon
calibrators being capable of characterizing the detector’s response with
an accuracy of better than 0.5%.

The arm of the interferometric gravitational wave detector consists
of mirrors or test masses that are suspended from multi-stage vibration
isolation systems. The displacement of these mirrors due to gravita-
tional waves causes a phase shift in the laser light circulating within the
detector. This phase shift is then amplified by a series of optical reson-
ators. To ensure the resonance condition of the optical cavities in the
interferometric gravitational wave detector, the freedom of the differen-
tial arm length is controlled through a feedback system. The feedback
control system comprises of actuators that transform the digital con-
trol signals from the digital filters. These actuators work to dampen
the motion of the test masses by generating physical forces upon them.
This process contributes to stabilizing and controlling the movement of
the test masses within the system. Figure 7.2 provides a block diagram
representation of the interferometer and the differential arm (DARM)
feedback control system. The block diagram highlights the key compon-
ents and processes involved in the detector’s operation. The output of
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1)
v

D(f)

A(f)

dc(f)

Vv

Figure 7.2: A schematic representation of interferometric gravitational
wave detector and feedback control loop to suppress the displacements.
Figure taken from [216]

the detector is regulated by the feedback loop, which adjusts the control
signal to maintain the desired level of displacement and optimize the
detector’s performance.

To convert the error signal into meaningful strain data in a gravita-
tional wave detector, it is crucial to have a comprehensive understanding
of the transfer function of all components within the detector’s response
function. The strain of the detector, denoted as ALcy(f), is directly
related to the DARM (differential arm length) error signal de,.(f) and
can be expressed as:

ALewt(f) = R(fa t) derr(f)v (7'25)

where the response function R(f,t) represents the frequency-dependent
characteristic of the entire interferometer. It describes how the de-
tector responds to gravitational waves at different frequencies. The re-
sponse function incorporates both time-independent factors related to
the model parameters of the optical components, as well as potential
time-dependent variations in the behavior of the instrument itself.

The residual DARM displacement A L,.s(f), which represents the
remaining motion after considering the error signal, can be estimated
using the sensing function C(f). The sensing function relates the di-
gital error signal dey(f) to the residual displacement. In other words,
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it quantifies the sensitivity of the detector to changes in the DARM
displacement. The sensing function C(f) can be defined as:

_ derr(f)
A Lres(f) .

It is important to note that the sensing function is a complex-valued
function that depends on the frequency f and also has a time-dependent
component that accounts for any gradual drift or variation in the de-
tector’s behavior over time. In addition to the sensing function, the
actuation function and the digital filters are crucial components of the
calibration process in gravitational wave detectors. The actuation func-
tion, denoted as A(f), describes the relationship between the control
signal AL (f) and the resulting displacement d.(f). It can be writ-
ten as:

C(f) (7.26)

o ALctrl(f)
A(f> B dctrl(f) .

The control signal is generated by the digital filters D(f), which converts
the error signal de,.(f) into the control signal AL (f). The digital
filters play a critical role in shaping and modifying the error signal to
generate the appropriate control signal for the actuator. By combining
the error signal de,.(f), the control signal AL.,(f), and the residual
displacement AL,.s(f), we can express the relationship as:

(7.27)

ALres(f) = ALext(f) - ALctrl(f)’ (728)

which represents the residual displacement obtained by subtracting the
control displacement from the external displacement. Similarly, by re-
arranging the equation, we have:

ALewt(f) - ALres(f) + ALctrl(f)' (729)

The equations also highlight the role of the sensing function (C(f)), the
actuation function (A(f)), and the digital filters (D(f)) in the calibra-
tion process. By combining these terms, the equations can be further
simplified as:

ALea:t(f) = derr(f) + A(f) D(f) derr(f)- (7-30)

.
c(f)
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Hence, we can express the external displacement AL, (f) as the
product of the response function R(f) and the error signal de,,(f), where

R(f) = IZ%S)f ). The term G = CD A represents the DARM open
loop gain, which combines the contributions from the sensing function,
digital filters, and actuation function. Any errors in the modeling of the
response function can lead to inaccuracies in the reconstruction of strain
data [216]. Therefore, accurate modeling of the response function is
crucial and depends on the proper modeling of the sensing and actuation
functions [203, 68].

The sensing function, which represents the transfer function between
the DARM error signal and the residual motion, is a complex-valued
function of frequency that slowly varies with time. A commonly used
model to approximate the sensing function is the single pole approxim-
ation, as shown in [68]. This approximation can be expressed as:

model _ Ke(t) He —2mi f7e f2
cmei(f.) = LA o) e L )

where, K¢ (t) represents the time-dependent scale factor that accounts
for variations in the interferometer response over time. H¢g is the op-
tical gain, which scales the sensing function and converts the counts into
the error signal per unit DARM displacement. foe is the coupled cav-
ity pole frequency, which defines the interferometer’s bandwidth. 7. is
the sensing delay, representing the time it takes for the light to travel
between the arms of the interferometer. Cr(f) represents the response
of the digital acquisition system, which is considered to have negligible
inaccuracies. fs is the optical-spring pole frequency, which models the
detuning between the arm cavities and the signal recycling cavity and
Qs is the optical-spring quality factor, which characterizes the damping
in the system. By using this single pole approximation, we can obtain an
approximate model for the sensing function that captures the frequency-
dependent behavior of the interferometer’s response to the DARM error
signal.
The actuation function can be modeled as (taken from [68]):

AmEL(f t) =[kr () Pr(f)Hr Ar(f) + kpu () (Fp(f)HpAp(f)

+ Fy(f)Hu Ay (f)]e 2™/ (7.32)

Hence, the model considers different stages of the detector, namely
the upper-intermediate (U), penultimate (P), and test mass (T) stages.
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For each stage, the actuation function A;(f) is defined, representing
the response of the actuator at that stage to the control signal. Addi-
tionally, there are digital distribution filters D;(f) associated with each
stage, which govern the transformation of the control signal into the
appropriate form for actuation. The scale factors H; account for the
scaling of the actuation response. The actuation function for each stage
is combined in the overall actuation function A™°%!(f t), which takes
into account the contributions from each stage. The model also includes
time-dependent scale factors K;(t), which capture any variations in the
actuation response over time. The overall actuation function is further
modified by an overall digital delay 74. In practice, the actuation func-
tions for each stage are measured independently and incorporated into
the model. The modeling of the actuation function is considered to have
negligible inaccuracy due to the inclusion of the measured responses.
However, errors in the model can arise from inaccuracies in the scale
factors and computational time delays.

7.5 Calibration error

Calibration error in gravitational wave detectors is an important factor
that needs to be considered in order to accurately interpret the data and
extract astrophysical information. The calibration model, which relates
the detector output signals to physical quantities such as the gravit-
ational wave strain, is subject to systematic errors and uncertainties
[203].

To estimate the calibration error, a calibration error budget is typ-
ically constructed. This involves generating multiple realizations of the
overall response function by incorporating the distribution of estimated
differential arm length (DARM) parameters. The DARM parameters
characterize the behavior of the interferometer and its response to grav-
itational waves. In practice, the sensing and actuation functions are
measured using a photon calibrator. This involves applying swept sine
transfer functions in the DARM control loop, where the detector is
excited at different frequencies within its detection bandwidth. The
cross-correlation between the actuator excitation and the detector re-
sponse during the excitation provides the transfer function. The ac-
tuation strength [K;A;(f)] for the i-th suspension stage is determined
by comparing the interferometer’s response dey(f) to excitations from
both the suspension stage’s actuator (exci(f)) and the photon calibrator
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(xpc(f)). Mathematically, this relationship is expressed as:

2r(f) |, dene(f)
derr (f) exci(f)

The determination of the sensing function C™¢*(f) involves compens-
ating the interferometer response for the displacement caused by the
photon calibrator (dey(f)/zpc(f)) and taking into account the suppres-
sion effect attributed to the differential arm length control, denoted as
[1 4+ G(f)]. Mathematically, this relationship can be expressed as:

derr(f)
zpc(f)

By performing these measurements at multiple frequencies, a compre-
hensive characterization of the sensing and actuation functions can be
obtained. The calibration error budget is then determined by analyzing
the statistical properties of the measured transfer functions and compar-
ing them to the expected values from the calibration model. The discrep-
ancies between the measured and expected transfer functions provide
insights into the calibration error and its impact on the accuracy of the
calibration model.

To generate the distribution of the model parameters of sensing
function (A, = [He, foo, fs, Qs, ke(t)]) and actuation function (Ay =
[Hy, Hp, Hr, Ay,

Ap,Ar]), observed data are fitted with Markov Chain Monte Carlo
(MCMC) algorithms. The MCMC algorithm explores the parameter
space by generating a sequence of samples that approximate the pos-
terior distribution of the model parameters. The posterior distribution
is obtained by combining the likelihood function, which represents the
probability of the observed data given the model parameters, and the
prior distribution, which represents our prior knowledge or assumptions
about the model parameters. In the calibration process, the likelihood
function is formulated as the joint probability of the measured data given
the model parameters. The goal is to find the set of model parameters
that maximizes this likelihood, thereby providing the best fit to the
observed data. The prior distributions of the model parameters are as-
sumed to be flat, meaning that there are no specific biases or preferences
for certain values of the parameters. This assumption allows for a more
objective and unbiased estimation of the model parameters. By running
the MCMC algorithm, a large number of samples from the posterior dis-
tribution are obtained. These samples represent different combinations

[KiAi(f)]meas = (733)

CH(f) = (L+ G(f)) x (7.34)
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of the model parameters that are consistent with the observed data.
From this sample distribution, various statistical quantities and uncer-
tainties can be computed to characterize the calibration error and the
overall uncertainty of the calibration model. The model parameters that
correspond to the maximum value of the posterior distribution are con-
sidered as the best-fit model parameters for the observed data. These
parameters provide the most likely values that explain the observed data
within the framework of the calibration model.

To quantify the frequency-dependent error in the calibration uncer-
tainty, measurements taken during an observation period are divided
by the best-fit model function obtained from the MCMC analysis. The
resulting residuals represent the deviations from the model and contain
information about the systematic errors in the calibration. By analyz-
ing all the residuals obtained over a science run period, a distribution of
the systematic error function can be generated using Gaussian process
regression. This method allows for the estimation of the systematic er-
rors at arbitrary frequencies and provides an uncertainty budget for the
calibration.

The total calibration uncertainty is influenced by various components
of the response function. These components can be categorized into
three parts:

1. DARM Model Parameters: The model parameters for the sensing
and actuation functions are drawn from the sample points of the pos-
terior distribution obtained from the MCMC analysis. These parameters
capture the inherent uncertainties in the calibration model.

2. Unknown Systematic Errors: There may be unknown systematic
errors in constructing the functional forms of the sensing and actuation
functions using Gaussian process regression. These errors are represen-
ted by terms such as 6CYP(f), sAGY (f), sASE(f), and SAGP(f), where
GP stands for Gaussian process regression. These terms account for the
uncertainties in modeling the functional dependencies of the sensing and
actuation functions.

3. Time-dependent Parameter Errors: The calibration also depends
on time-dependent parameters such as kr(t), kpy(t), ke(t), and foo(t).
These parameters are monitored by injecting calibration lines with a high
signal-to-noise ratio. The statistical uncertainty of these time-dependent
parameters is determined by analyzing the coherence of the injected
calibration lines.

In the next section, we will explore the impact of the calibration error
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on the null stream. The null stream refers to the data stream where no
gravitational wave signals are expected. We will discuss strategies and
techniques employed to mitigate the effects of calibration errors in the
null stream and enhance the accuracy of gravitational wave detections.

7.6 Impact of calibration errors on the signal inde-
pendent null stream of the Einstein Telescope

In previous sections, I explored the significance of the null stream in loc-
alizing gravitational wave sources by utilizing the detector’s data projec-
ted into the null space of the detector network (as discussed in Section
7.3). I have also discussed the calibration process, which is crucial for
accurately converting the optomechanical response and controlling the
mirror position. Achieving precise calibration is essential for extracting
accurate information from gravitational wave signals.

Currently, LIGO estimates a frequency-dependent systematic error
of approximately 2 percent, which has proven adequate for the signal-
to-noise ratio of the detected signals thus far. However, with the advent
of third-generation detectors, which will exhibit sensitivities at least ten
times better than current detectors and detect events with significantly
higher SNR, there is a need for calibration accuracy at the sub-percent
level. In this section, we will explore the impact of calibration errors
on the signal-independent null stream of the Einstein Telescope. Under-
standing and mitigating calibration errors become even more critical as
the precision and sensitivity of gravitational wave detectors continue to
improve.

For the proposed design of the Einstein Telescope, the null stream
is a straightforward algebraic summation of the data output from the
interferometer, without any time delay due to the colocated nature of
ET’s detectors. Let’s denote the calibrated data stream of each detector
of ET as:

di(f) = Ri(f)dierr(f) (7.35)
Here, i = 1,2, 3 denotes the three nested detectors of the Einstein Tele-
scope. The calibration function, denoted as R(A¢, A4, f), combines the
model parameters of sensing and actuation. In this discussion, we will

consider the systematic error in the model parameters as the primary
source of calibration error. Future work will involve incorporating the
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unknown systematic errors in the calibration model from Gaussian pro-
cess regression. The error signal (d;err(f)) comprises both the gravita-
tional wave signal and noise. Consequently, the signal-independent null
stream of the Einstein Telescope, which is the numerical sum of the data
from the three detectors, can be expressed as:

SLadi(f) = S0 Ri(Hhi(f) + Zina(f) (7.36)

Here, 6R represents the fractional calibration error. Ideally, the first
term 0R;(f)hi(f) should be zero if our measurements are free from cal-
ibration errors. However, in reality, the impact of calibration errors per-
sists in the null stream as a residual signal. To extract this information,
one can perform matched filtering, which will yield the signal-to-noise
ratio, as discussed in Section 7.7. The presence of calibration errors
in the null stream highlights the importance of accurate calibration for
reliable gravitational wave analysis and localization.

7.7 Matched filtering: Estimating calibration error
and maximizing signal-to-noise ratios

Matched filtering is a powerful technique used to identify the presence
of an underlying signal in noisy data by comparing it to a known tem-
plate waveform. In the context of gravitational wave analysis, matched
filtering plays a crucial role in detecting and characterizing gravitational
wave signals. The basic idea behind matched filtering is to compute the
phase-coherent correlation between the output of the interferometer and
the template waveform, taking into account the expected power spectral
density of the data.

The output of the matched filtering process is the signal-to-noise ra-
tio, which quantifies the strength of the detected signal relative to the
background noise. Maximizing the SNR allows us to select the optimal
filter or template waveform that closely matches the expected gravita-
tional wave signal. The matched filtering search can be computationally
demanding, especially when covering a large parameter space and using
a large number of template waveforms. The design of a template bank,
which covers the parameter space with appropriate spacing, is essential
to ensure that the detectability of signals is not compromised by the
mismatch between the template waveform and the data.

As discussed in Section 7.6, our focus is on capturing residual signals
present in the null stream caused by calibration errors in the detector
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data. Therefore, referring to equation 7.36, we can express the null
stream of the triangular Einstein telescope as follows:

N(f) = N2 +(f) (7.37)

In this equation, £!23(f) represents the calibration error signal, given
by the summation over i = 1 to 3 of dR;(Xe, A, f)hi(f). The notation
and the basis of the mathematical formulation have been adapted from
[195].

To simplify our analysis, we assume the response function R(f) does
not vary with time. This means we ignore the time dependency of the
parameters and any unknown systemic errors that may be present. This
means we consider the calibration error to be dependent on model para-
meters F;, i.e.,

Pie (X, Xa) (7.38)

To perform matched filtering, we start by constructing a filter denoted
as E'?3(f). This filter ‘depends on the model parameters of the calibra-
tion function, namely )\m and )\ , as well as the gravitational waveform
template, represented as k.

The cross-correlation between the filter template and the residual
signal in the null stream can be written as:

Ldf.
(7.39)

123 )1 125 S GR(Nes Xa, f) SRy A F) ()T
e (IE / Snu(f)

In this equation, Syqy(f) represents the power spectral density of the
null stream. If we detect the event with a high signal-to-noise ratio, we
are able to accurately model the gravitational waveform. In that case,
the equation can be simplified as follows:

df.
(7.40)

123 123 _ WEE’:l&}éj(Xc,XA,f)&Ri(X? m )’h( )|
ERNE) = [ S

To quantitatively measure the strength of the calibration error signal
relative to the filter’s energy and overall noise level, we define the signal
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to noise ratio as follows:

. (e (NIE(S)) (7.41)

VEE(PIEE ()
To perform calibration error-matched filtering, we can construct a filter
template using the model parameters of the calibration function, assum-
ing we have knowledge of the gravitational wave waveforms and other
relevant geometric parameters. Additionally, the knowledge of gravit-
ational waveforms and geometric parameters allows us to account for
their influence in the filtering process.

In order to make sure that we consider all possible calibration errors,
it is necessary to cover the entire parameter space associated with the
calibration inaccuracy. To achieve this, we can generate a template bank
that consists of a collection of filters, each corresponding to a different
point in the parameter space. For each filter in the template bank,
we can compute the signal-to-noise ratio using matched filtering. The
SNR serves as a quantitative measure of how effectively the filter aligns
with the calibration error signal that exists within the null stream. By
evaluating the SNR for each filter, we can determine the maximum SNR
attained. The filter associated with this maximum SNR represents the
optimal choice for the filter template that aligns most effectively with
the specific calibration error present in the data.

The calibration error signal has a weak amplitude, typically at the
sub-percent level of inaccuracy. Let’s consider we have detected a gravit-
ational signal with an optimal SNR of 20. Now, let’s assume a calibration
error with a magnitude of 2%. This means that the calibration process
introduces an inaccuracy of 2% of the signal amplitude. If we apply this
calibration error to the detected gravitational signal, the signal to noise
strength in the null stream would be reduced to 0.4, which is 2% of the
original signal strength. As a result, the weak amplitude of the calibra-
tion error signal, in this case 0.4, can be easily masked by the noise in
the null stream. This makes it challenging to detect and accurately es-
timate the calibration error using a single event or measurement. Hence
to characterise the calibration error signal, we can combine the signal-
to-noise ratio from multiple events within the same observation period.
This is based on the expectation that systematic calibration errors tend
to remain relatively stable over weeks, months, or approximately dur-
ing one observation run. Systematic calibration errors arise from the
factors that affect the measurement process, such as instrumental char-
acteristics, environmental conditions, or calibration procedures. These
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errors are not random but rather exhibit a certain level of persistence
over time. In the next section, we will discuss how combining the SNRs
from multiple events enable us to estimate the calibrated error signal,
find the optimal filter by maximizing the SNR, and effectively model the
calibration error.

7.8 Cumulative SNR for null-stream residuals due to
calibration error in triangular Einstein Telescope

In the previous section, I have discussed the statistics of matched filter-
ing to determine the SNR for the calibration error signal in the intrinsic
null stream of the triangular configuration of Einstein Telescope. Since
the amplitude of the residual signal is much weaker compared to the
actual gravitational wave signal, which is expected given the calibration
errors are at a few percent level, detecting and distinguishing the calib-
ration error signal poses a significant challenge. To gather meaningful
information about the calibration error signal, one effective approach is
to accumulate the SNR from all the events detected during a observing
run. This can be done by considering a set of non-overlapping signals
obtained by collecting data from different time periods. The number of
events required to achieve a certain SNR for the calibration error sig-
nal depends on the SNR of the incident (p) and the sub-percent level
calibration error (9).

The SNR of the calibration error signal grows as the square root of
the number of events, represented by v/N. For each event, the matched
filtering SNR for the calibration error signal is pd. By accumulating the
SNR over N events, the cumulative SNR becomes VN pd. This cumu-
lative SNR reflects the accumulated statistical evidence and increased
sensitivity to the calibration error signal as more events are considered.
Consequently, the number of events needed to obtain a desired SNR
(denoted as S) for the calibration error signal can be estimated using

the formula (%)2.

7.9 Results

In this section, I will present the results of modeling of the calibration
error signal using the cumulative signal-to-noise ratio. In this analysis, I
only assume the modeling error associated with the calibration function
parameters. Also in this analysis, I do not make any assumptions about
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systematic errors in the calibration function, and do not consider errors
related to the time variation of these parameters. I consider the pres-
ence of an error in the calibration function, specifically associated with
certain parameters, such as for instance the cavity pole frequency (fcoc).
For simplicity and computational cost, I assume that all other paramet-
ers remain consistent with their true values. In the Einstein Telescope,
we have three interferometers, each of which exhibits an error in its cal-
ibration function related to the cavity pole frequency. My objective is to
minimize the error by utilizing the intrinsic null stream of the Einstein
Telescope. In Figure 7.3, I present the error in the response function of
one of the interferometers in the Einstein Telescope. This error arises
due to a mismatch in the cavity pole frequency compared to its true
value. The black curve in the plot represents the modeled value of the
cavity pole frequency, which slightly deviates from its actual true value.
My objective is to converge toward the true value of the cavity pole
frequency by estimating the signal-to-noise ratio of the residual present
in the null stream. This analysis will help us correct the mismatch and
bring the modeled cavity pole frequency in alignment with its actual,
accurate value. In this example, I have considered a true value of the
pole frequency set at 330 Hz, while the modelled pole frequency is at
352 Hz. The black trace illustrates the deviation in the response func-
tion resulting from this discrepancy in pole frequencies. To address this
difference and refine the calibration function, I have selected a range of
cavity pole frequency values close to the modeled 352 Hz. These selec-
ted values can be regarded as the parameters for the calibration function
template bank. By analyzing the response at these values of cavity pole
frequencies, 1 try to improve the accuracy of our calibration and align
it with the true pole frequency of 330 Hz. The gray-shaded curves in
figure 7.3 represent the relative calibration error for different values of
the pole frequency (fcc) within the range of 332 to 372. From the plot,
it is evident that for some of the gray curves, the error is reduced as we
approach the actual value of the parameter.

This process is repeated for three interferometers. In each interfer-
ometer, I have chosen ten different values for the cavity pole frequency,
slightly varying its modelled value. When one combines these paramet-
ers, one effectively constructs a three-dimensional grid of data points.
Fach point within this 3D grid represents a unique combination of cav-
ity pole frequencies for each of the three interferometers. Since I have
chosen ten different values for the cavity pole frequency for each in-
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Figure 7.3: Amplitude of the relative calibration error as a function of
frequency is illustrated. The black curve shows the error associated with
the modeled calibration parameter, assuming a cavity pole frequency
(foc) of 352 Hz, while the actual value is 330 Hz. To enhance calibration
accuracy, we vary the modeled parameter, considering a range of possible
foc values, such as 332, 336, 340, and up to 372 Hz as parameters for
the templates of calibration error. The grey curves represent the relative
calibration error for the selected templates. The grey curve with the
smallest relative calibration error corresponds to foo = 332 Hz, and the
highest one corresponds to foo = 372 Hz.

terferometer, this results in a total of 1000 different points within this
three-dimensional grid. Each point represents a specific configuration of
cavity pole frequencies across the three interferometers, allowing us to
thoroughly explore and analyse this parameter space. The next step is
to inject a signal into the noisy data recorded by each of the three inter-
ferometers. Ideally, when we combine or sum the data from these three
interferometers, the signal should cancel. As a result of the calibration
error, the signal within the zero stream will not be completely zero.
This calibration error introduces residual signals into the null stream.
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Figure 7.4: Cumulative signal-to-noise ratio of the calibration error sig-
nal within the null stream as a function of the number of events. In the
graph, you can see two curves: orange and blue. These curves represent
the accumulated SNR obtained from the null stream when the injected
signal in the detector data has two different SNRs—one with a lower
SNR of p = 100 and the other with a higher SNR of p = 200

The signal-to-noise ratio of the residual signal within the null stream is
significantly reduced due to a calibration error of a few percent. This
low signal-to-noise ratio makes it unreliable to detect the residual signal
using data from a single event. This is why we need to estimate the cu-
mulative signal-to-noise ratio by analyzing data from many events that
will be detected by the Einstein Telescope over a time span of several
weeks to months. By aggregating data from multiple events, we can im-
prove the signal-to-noise ratio and increase our chances of detecting the
residual signal. In figure 7.4, I illustrate the cumulative signal-to-noise
ratio as a function of the number of events. To simplify the demonstra-
tion, I have assumed the same event with different noise realizations and
plotted the accumulated SNR. For a more general scenario, this can be
extended to consider the distribution of sources that could be detected
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by the Einstein Telescope. The blue and orange curves in the plot rep-
resent the cumulative signal-to-noise ratio of the residual signal within
the null stream for injected sources with higher (2p) and lower SNRs
(p), respectively.

I previously introduced 1000 different templates, each representing
a specific set of cavity pole frequencies for the three interferometers
within ET. My goal is to identify the template that optimally enhances
the cumulative signal-to-noise ratio from this collection of templates.
This process helps us determine the most accurate calibration and cav-
ity pole frequency values for the interferometers. I have estimated foco
and depicted the error or deviation of the estimated foo concerning its
true value. Figure 7.5 shows histograms representing the distribution
of relative deviations in the cavity pole frequency obtained from the
template maximizing the cumulative signal-to-noise ratio after a certain
number of events. On the X-axis of these histograms, I plot the differ-
ences between the best-fit cavity pole frequency and its true value and
then divide this difference by the actual value to compute the percent-
age relative deviation. The Y-axis of these histograms represents the
number of occurrences or counts within specific deviation ranges in the
data. This figure shows how well the best-fit cavity pole frequencies de-
termined by the template, match with the true values. It offers a visual
representation of the deviations associated with a specific number of
events. In the top left, top right, and bottom left plots, we can observe
the distributions for the deviation of foe in the three xylophone inter-
ferometers of ET. The dotted reference line represents the initial error
in the calibration process, which I aim to refine based on the cumulative
signal-to-noise ratio. The concentration of counts around zero deviation
indicates that the best-fit templates and their corresponding values of
foco closely match the actual values. Furthermore, as the number of
events increases, the cumulative signal-to-noise ratio enhances, improv-
ing the accuracy of these estimations. In the bottom right plot, I display
a histogram that illustrates the distribution of A foe after 100 events,
with two different injected SNR, denoted as p and 2p, as shown in fig-
ure 7.4. As expected, when the SNR of the detected signal is high, the
histogram shows a higher count for zero deviation compared to a lower
SNR. This implies that a signal detected with a higher SNR provides a
more reliable and precise determination of the parameter.
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7.10 Summary and outlook

In this chapter, I have explored the advantages of utilizing the intrinsic
null stream of the Einstein Telescope for both sky localization and mod-
eling calibration errors. I have observed that subtracting the ET’s in-
trinsic null stream within the detector network containing ET employs
one less data stream to estimate the sky localization parameters. This
result is consistent with the findings of the paper by Wong et al. They
have projected the three data streams of the ET into signal space and
null space. They have shown that, for parameter estimation, we need to
analyze two data streams in the signal space instead of three from each
of the detectors of ET. Furthermore, I have discussed the concept of the
self-calibration method, inspired by Schutz et al.’s work [195], which uses
ET’s intrinsic null stream to address calibration uncertainties. I have
demonstrated using mock data how the calibration error parameter can
be effectively modeled based on the accumulated signal-to-noise ratio of
the residual signal found in the null stream. To manage computational
costs, I have specifically considered one of the parameters associated
with calibration error, assuming that the other parameters are accur-
ately modeled. It is worth noting that this estimation process can be
made more rigorous by including other parameters of the calibration
error modeling. This estimation can be further refined by considering a
population distribution of sources based on the sensitivity of the FKinstein
Telescope.
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Figure 7.5: The histogram shows the relative deviation between the es-
timated value of foc obtained from the best-fit template and its true
value. The Y-axis represents the frequency or count of occurrences where
the estimated value of foo matches the relative deviation indicated on
the X-axis. The best-fit template is determined by maximizing the ac-
cumulated signal-to-noise ratio of the calibration error signal, which is
present as a residual in the null stream. Different colors in the his-
togram correspond to distributions resulting from the accumulation of
SNR based on different numbers of events. The histograms for the three
interferometers of the ET detectors (ET1, ET2, ET3) show peaks around
zero deviation, indicating accurate parameter estimation with a signi-
ficantly high detection rate; furthermore, the lower right plot shows
that the probability of accurately measuring the calibration parameter
is higher when the signals are detected with higher SNR.
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Summary

Gravitational waves are extremely small ripples in the stationary curvature
of space-time in the Universe, produced by the motion and collisions of
astrophysical objects of extreme mass and density, such as neutron stars
and black holes. They were predicted by Albert Einstein in 1916 and
detected by LIGO 100 years later. Detecting gravitational waves is an
extremely challenging task because of their tiny amplitude, which re-
quires exceptional precision from the measuring instrument.

Laser interferometer gravitational wave detectors split a laser beam
into two arms with mirrors at the ends. When a gravitational wave
passes through, it changes the lengths of the arms, causing a phase dif-
ference in the recombined laser beams. Detection challenges arise from
various sources of noise, including seismic, thermal, quantum, Newto-
nian, detector noise and instrumental artifacts that can mimic a GW
signal.

In the first half of the dissertation, I discussed Newtonian noise mit-
igation techniques for gravitational wave detectors, focusing on a com-
prehensive analysis of Newtonian noise in the Virgo detector. Newto-
nian noise, also known as gravitational gradient noise, manifests as the
fluctuations of local gravitational fields, which originate from the dens-
ity variations in the surroundings of the test masses caused by seismic,
atmospheric, or anthropogenic factors. These density variations exert
excess gravity force on the test mass in the gravitational wave detector,
thereby mimicking GW signals at low frequencies.

While it is not possible to shield the detector directly from NN, there
are conventional strategies for noise reduction. One such approach is
to select for detector construction seismically quiet sites with minimal
natural and man-made seismic disturbances. Going underground, as
planned for the Einstein telescope, reduces seismic noise. Current de-
tectors use NN subtraction with seismic sensors close to the test masses
to estimate and cancel NN. This is challenging due to the complexity of
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real seismic fields. It is favorable to choose flat surfaces to avoid scatter-
ing. Proper seismometer placement is critical due to limited coverage.
Another possible method involves modifying the infrastructure, such as
creating depressions around test masses. These recessed structures raise
the test mass above the ground, reducing the NN. Virgo used such struc-
tures for operational reasons, raising questions about their effectiveness
in reducing NN. I detailed the dimensions of recesses under Virgo’s input
and end test mirrors in central and end buildings in chapter 3, section
3.3

Figure 3.9 (bottom) illustrates the reduction factors of NN attribut-
able to the VIRGO recess. I have calculated a nearly 2-fold reduction
in Newtonian noise (NN) within the 12 to 15 Hz range. Reduction of
Rayleigh-wave Newtonian noise by a factor of 2 or more is significant,
especially considering that achieving a similar reduction through New-
tonian noise cancellation typically requires the use of large arrays and
complex techniques.

In chapter 4, I conducted spectral analyses, both spatially and tem-
porally, and characterized the seismic field using data from the indoor
and outdoor seismic arrays in the North End Building of the Virgo de-
tector. Figure 4.3 provides an example of a spatial spectrum obtained
from seismic arrays at a frequency of 10 Hz, where we observe mul-
tiple modes simultaneously present within the spectrum. I have con-
sidered the dominant seismic sources for different frequencies and estim-
ated their corresponding velocities and propagation directions, as shown
in figure 4.10. Through the array analysis, It is observed a lower speed
of Rayleigh waves at Virgo, suggesting that NN suppression may be
more pronounced than previously estimated when assuming a constant
Rayleigh wave speed of 250 m/s.

Incorporating seismic dispersion into the estimation of Newtonian
noise reduction has resulted in a more substantial reduction compared
to previous estimates, as shown in figure 4.16. We observed a reduction
in Newtonian noise by a factor of up to 10, attributed to the lower seismic
velocity. According to these findings, the Newtonian noise cancellation
system may only require minor additional noise reduction efforts, as
seismic NN is already anticipated to be below the sensitivity targets for
most frequencies. The verification of these findings will contribute to
the optimization and fine-tuning of the Virgo detector’s performance in
preparation for the upcoming observation runs.

In chapters 5, 6, 7, I studied different topologies of Einstein Tele-
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scope within the networks of third-generation gravitational wave de-
tectors and their influences on the data analysis of gravitational wave
signals. The response of a gravitational wave detector network to a
GW signal depends on several critical factors, including the positions,
orientations, and geometrical topologies of individual detectors. The an-
tenna response function characterizes how a detector’s orientation and
geometry influence its ability to detect gravitational waves originating
from various directions and polarizations. In figure 5.5, as presented in
chapter 5, we observe that the antenna response function for a trian-
gular detector, like the proposed Einstein Telescope (ET), offers several
advantages. Specifically, ET’s response is 50% higher compared to a
single L-shaped detector, which lacks null directions.

Another important metric for evaluating detector performance is the
horizon distance, which is the maximum distance at which a gravita-
tional wave source directly above the detector can be detected, assuming
optimal polarisation. Figure 5.9 shows the detectable redshift range for
sources of different masses, illustrating the capabilities of both the Ein-
stein Telescope and the Cosmic Explorer. Gravitational wave sources
are diverse and distributed across the sky, so an evaluation of the de-
tectors’ capabilities requires consideration of their coverage of the entire
sky. I have assumed that the sources are uniformly distributed across all
sky locations, with random polarisations and tilt angles, and have shown
that the redshift achieved for 50%, 90% of the best sources provides a
realistic assessment of detector performance.

In chapter 6, I have examined the sky localization capabilities of
third-generation gravitational wave detector networks such as the Ein-
stein Telescope and Cosmic Explorer. This investigation includes a com-
parison between the ’L’ shape and the proposed triangular topology of
the Einstein Telescope.

I analyze two configurations: the 'Triangular’ setup with a 10 km
arm length and the 'L’ configuration with arm lengths of 10 km, 15 km,
and 20 km. I evaluate the performance of these networks using two types
of sources: modeled sources and unmodeled sources. Then I utilize the
Fisher information matrix to estimate the uncertainty associated with
the sky localization of gravitational wave sources.

In figures 6.7 and 6.9, I compare the directional precision for an
unmodeled gravitational wave source between the Einstein Telescope
with a proposed triangular configuration and a single 'L’ shaped detector
in the network with two Cosmic Explorers, which provides insights into
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the accuracy of sky localization. The findings consistently show that, for
both modeled and unmodeled gravitational wave sources in a network
with two Cosmic Explorer detectors, the Einstein Telescope configured
in a triangular shape outperforms the 'L’ shaped detector with a 15 km
or 10 km arm length in terms of angular resolution.

In chapter 7, I explored the application of the Einstein Telescope’s in-
trinsic null stream, focusing on its usefulness for the source localization.
This null stream combines signals from the telescope’s three xylophone
interferometers, and it is unaffected by the source’s location. My goal
was to subtract the null stream noise from the estimator to improve
the accuracy of the sky localization estimates. However, it is found
that there would be no improvement in the accuracy of sky localization,
and it would reduce a data stream from the estimator. This result is
consistent with the findings of Wong et al. [225]

I have utilized the E'T’s null stream to enhance the calibration of the
detector’s data, employing the self-calibration method as described by
Schutz et al [195]. This approach involves modeling the calibration error
by analyzing the residual signal found in the null stream. Given that the
calibration error in modeling the detector data is at a sub-percent level,
the residual signal strength within the null stream is exceedingly faint
and difficult to detect individually. Therefore, instead of focusing on a
single event, I analyzed a group of events and computed the cumulative
signal-to-noise ratio for the residual signal within the null stream. By
maximizing this accumulated SNR, I have demonstrated how one can
achieve calibration parameter estimates with an accuracy of less than
2% error after analyzing 100 events. While I have considered only one
parameter of the calibration function for each side of the E'T, in principle,
it can be generalized to include more calibration parameters.
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Samenvatting

Gravitatiegolven zijn extreem kleine rimpelingen in de stationaire krom-
ming van de ruimtetijd in het heelal, geproduceerd door de beweging en
botsingen van astrofysische objecten met extreme massa en dichtheid,
zoals neutronensterren en zwarte gaten. Ze werden in 1916 voorspeld
door Albert Einstein en 100 jaar later gedetecteerd door LIGO. Het de-
tecteren van zwaartekrachtgolven is een extreem uitdagende taak van-
wege hun kleine amplitude, die een uitzonderlijke precisie van het meet-
instrument vereist.

Laser-interferometer-detectoren voor gravitatiegolven splitsen een laser-
straal in twee armen met spiegels aan de uiteinden. Wanneer een grav-
itatiegolf passeert, verandert de lengte van de armen, wat een fasever-
schil veroorzaakt in de gerecombineerde laserstralen. Uitdagingen met
betrekking tot detectie komen voort uit verschillende bronnen van ruis,
waaronder seismische, thermische, kwantum-, Newtoniaans, detectorruis
en instrumentele artefacten die een GW-signaal kunnen nabootsen.

In de eerste helft van dit proefschrift heb ik technieken besproken
om Newtoniaans ruis voor gravitatiegolfdetectoren te beperken, waar-
bij ik me heb gericht op een uitgebreide analyse van Newtoniaans ruis
in de Virgo-detector. Newtoniaans ruis (NR), ook bekend als grav-
itationele gradiéntruis, manifesteert zich als de fluctuaties van lokale
zwaartekrachtvelden, die voortkomen uit de dichtheidsvariaties in de
omgeving van de testmassa’s veroorzaakt door seismische, atmosferische
of antropogene factoren. Deze dichtheidsvariaties oefenen een overmatige
zwaartekracht uit op de testmassa in de zwaartekrachtgolfdetector, waar-
door GW-signalen bij lage frequenties worden nagebootst.

Hoewel het niet mogelijk is om de detector direct af te schermen
van NR, zijn er conventionele strategieén voor ruisreductie. Eén zo’n
aanpak is om voor de bouw van de detector seismisch rustige locaties
te kiezen met minimale natuurlijke en door de mens veroorzaakte seis-
mische verstoringen. Ondergronds gaan, zoals gepland voor de Einstein-
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telescoop, vermindert seismische ruis. De huidige detectoren gebruiken
NR-subtractie met seismische sensoren dicht bij de testmassa’s om NR te
schatten en te annuleren. Dit is een uitdaging vanwege de complexiteit
van echte seismische velden. Het is gunstig om vlakke oppervlakken
te kiezen om verstrooiing te voorkomen. Een juiste plaatsing van de
seismometer is cruciaal vanwege de beperkte dekking. Een andere mo-
gelijke methode bestaat uit het aanpassen van de infrastructuur, zoals
het creéren van depressies rond testmassa’s. Deze verzonken structuren
tillen de testmassa boven de grond, waardoor het NR wordt verminderd.
Virgo gebruikte dergelijke structuren wegens operationele redenen, wat
vragen oproept over hun effectiviteit bij het verminderen van NR. Ik
heb de afmetingen van uithollingen onder Virgo’s ingangs- en eindtest-
spiegels in centrale en eindgebouwen gedetailleerd beschreven in hoofd-
stuk 3, sectie 3.3.

Figuur 3.9 (onder) illustreert de reductiefactoren van NR die kunnen
worden toegeschreven aan de VIRGO-uitsparing. Ik heb een bijna 2-
voudige reductie berekend van Newtoniaanse ruis binnen het bereik van
12 tot 15 Hz. Het verminderen van Newtoniaanse ruis veroorzaakt door
Rayleigh-golven met een factor 2 of meer is aanzienlijk, vooral gezien
het feit dat het bereiken van een vergelijkbare vermindering door New-
toniaanse ruisonderdrukking meestal het gebruik van grote arrays en
complexe technieken vereist.

In hoofdstuk 4 voerde ik spectrale analyses uit, zowel spatiaal als
temporaal, en karakteriseerde ik het seismische veld met behulp van
data van de seismische arrays binnen en buiten het noordelijke eindge-
bouw van de Virgo detector. Figuur 4.3 geeft een voorbeeld van een
spatiaal spectrum verkregen uit seismische arrays bij een frequentie van
10 Hz, waar we meerdere modi zien die tegelijkertijd aanwezig zijn in
het spectrum. Ik heb de dominante seismische bronnen voor verschil-
lende frequenties in rekening genomen en schatte hun overeenkomstige
snelheden en voortplantingsrichtingen, zoals weergegeven in figuur 4.10.
Door middel van de array-analyse is er een lagere snelheid van Rayleigh-
golven waargenomen bij Virgo, wat suggereert dat NR-onderdrukking
meer uitgesproken kan zijn dan eerder werd geschat bij de aanname van
een constante Rayleigh-golfsnelheid van 250 m/s.

Het opnemen van seismische dispersie in de schatting van de reductie
van Newtoniaans ruis heeft geresulteerd in een meer substantiéle reductie
vergeleken met eerdere schattingen, zoals te zien is in figuur 4.16. We
hebben tot een factor 10 aan reductie van Newtoniaans ruis waargen-
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omen, die wordt toegeschreven aan de lagere seismische snelheid. Vol-
gens deze bevindingen vereist het Newtoniaanse ruisonderdrukkingssys-
teem mogelijk slechts kleine extra inspanningen om het ruis te onder-
drukken, aangezien het seismische NR naar verwachting voor de meeste
frequenties al onder de gevoeligheidsdoelen ligt. De verificatie van deze
bevindingen zal bijdragen aan de optimalisatie en fijne afstemming van
de prestaties van de Virgo-detector ter voorbereiding op de komende
observatiereeks.

In de hoofdstukken 5, 6, 7, bestudeerde ik verschillende topologieén
van de KEinstein Telescoop binnen de netwerken van gravitatiegolfde-
tectoren van de derde generatie en hun invloeden op de data-analyse
van gravitatiegolfsignalen. De responsiviteit van een netwerk van grav-
itatiegolfdetectoren op een GW-signaal hangt af van verschillende krit-
ische factoren, waaronder de posities, oriéntaties en geometrische topo-
logieén van individuele detectoren. De antenna response function karak-
teriseert hoe de oriéntatie en geometrie van een detector zijn vermogen
beinvloedt om gravitatiegolven afkomstig uit verschillende richtingen en
polarisaties te detecteren. In figuur 5.5, zoals gepresenteerd in hoofd-
stuk 5, zien we dat de antenna response function voor een driehoekige
detector, zoals de voorgestelde Einstein Telescoop (ET), verschillende
voordelen biedt. In het bijzonder is de responsiviteit van ET 50% hoger
vergeleken met een enkele L-vormige detector, die geen nulrichtingen
heeft.

Een andere belangrijke metriek voor het evalueren van de prestaties
van de detector is de horizonafstand, de maximale afstand waarop een
gravitatiegolfbron direct boven de detector kan worden gedetecteerd,
uitgaande van optimale polarisatie. Figuur 5.9 toont het detecteerbare
roodverschuivingsbereik voor bronnen van verschillende massa’s, ter il-
lustratie van de mogelijkheden van zowel de Einstein Telescoop als de
Cosmic Explorer. Gravitatiegolfbronnen zijn divers en verspreid over de
hemel, dus een evaluatie van de capaciteiten van de detectoren vereist
een beschouwing van hun dekking van de volledige hemel. Ik heb aan-
genomen dat de bronnen uniform verdeeld zijn over alle hemellocaties,
met willekeurige polarisaties en kantelhoeken, en heb aangetoond dat de
roodverschuiving die bereikt is voor 50%, 90% van de beste bronnen een
realistische beoordeling van de detectorprestaties aangeeft.

In hoofdstuk 6 heb ik het lokalisatievermogen aan de hemel on-
derzocht voor netwerken voor gravitatiegolfdetectoren van de derde gen-
eratie, zoals de Einstein Telescoop en de Cosmic Explorer. Dit onderzoek
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omvat een vergelijking tussen de 'L’-vorm en de voorgestelde driehoekige
topologie van de Einstein Telescoop.

Ik analyseer twee configuraties: de 'drichoekige’ opstelling met een
armlengte van 10 km en de ’L’-configuratie met armlengtes van 10 km,
15 km en 20 km. Ik evalueer de prestaties van deze netwerken met behulp
van twee typen bronnen: gemodelleerde bronnen en niet-gemodelleerde
bronnen. Daarna gebruik ik de Fisher-informatiematrix om de onzeker-
heid te schatten die samenhangt met de lokalisatie van gravitatiegolf-
bronnen aan de hemel.

In figuren 6.7 en 6.9, vergelijk ik de directionele precisie voor een
niet-gemodelleerde gravitatiegolfbron tussen de Einstein Telescoop met
een voorgestelde driehoekige configuratie en een enkele 'L’ vormige de-
tector in het netwerk met twee Cosmic Explorers, wat inzicht geeft in
de nauwkeurigheid van het lokaliseren aan de hemel. De bevindingen
tonen consistent dat, voor zowel gemodelleerde als niet-gemodelleerde
gravitatiegolfbronnen in een netwerk met twee Cosmic Explorer de-
tectoren, de Einstein Telescoop geconfigureerd in een driehoekige vorm
beter presteert dan de ’L’ vormige detector met een armlengte van 15
km of 10 km in termen van hoekresolutie.

In hoofdstuk 7 onderzocht ik de toepassing van de intrinsieke nul-
stroom van de Einstein-telescoop, waarbij we ons concentreerden op het
nut ervan voor bronlokalisatie. Deze nulstroom combineert signalen van
de drie xylofooninterferometers van de telescoop en wordt niet beinvloed
door de locatie van de bron. Mijn doel was om de ruis van de nulstroom
van de schatter af te trekken om de nauwkeurigheid voor hemellokalisatie
te verbeteren. Het bleek echter dat de nauwkeurigheid van de hemel-
lokalisatie niet zou verbeteren en het zou een datastroom van de schatter
verminderen. Dit resultaat komt overeen met de bevindingen van Wong
et al. [225]

Ik heb de nulstroom van ET gebruikt om de kalibratie van de data
van de detector te verbeteren met behulp van de zelfkalibratiemeth-
ode zoals beschreven door Schutz et al [195]. Bij deze aanpak wordt
de kalibratiefout gemodelleerd door het restsignaal in de nulstroom te
analyseren. Aangezien de kalibratiefout bij het modelleren van de de-
tectorgegevens op een niveau van minder dan één procent ligt, is de ster-
kte van het restsignaal in de nulstroom buitengewoon zwak en moeilijk
afzonderlijk te detecteren. Daarom heb ik, in plaats van me op één enkel
event te richten, een groep events geanalyseerd en de cumulatieve signal-
to-noise ratio (SNR) voor het restsignaal in de nulstroom berekend.
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Door deze geaccumuleerde SNR te maximaliseren, heb ik aangetoond
dat schattingen van de kalibratieparameter met een nauwkeurigheid van
minder dan 2% bereikt kunnen worden na het analyseren van 100 events.
Hoewel we slechts één parameter van de kalibratiefunctie voor elke kant
van ET hebben overwogen, kan deze in principe worden veralgemeend
om meer kalibratieparameters op te nemen.
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Gravitational waves are produced by the accelerated motion of massive
objects, changing the curvature of space and time. In binary systems,
where neutron stars or black holes orbit each other, their interaction
modifies the curvature of space-time and emits energy in the form of
gravitational waves. Detecting gravitational waves is extremely chal-
lenging because of their weak interaction with matter. Measuring the
minuscule strain caused by gravitational waves using gravitational wave
detectors poses significant challenges, as various sources of noise mask
the signal, requiring advanced mitigation techniques for effective sup-
pression.

In the first part of the dissertation I look at a specific source of noise
known as seismic Newtonian noise. This type of noise arises from local
density variations due to seismic wave propagation and introduces ad-
ditional gravitational pull on the test masses, causing them to move.
Newtonian noise can potentially limit the sensitivity of advanced de-
tectors in the low frequency range up to 15Hz. In particular, it is a
significant source of noise for third-generation detectors, which aim to
achieve improved low-frequency sensitivity. Low-frequency sensitivity is
essential for better observations of our target astronomical sources, such
as pulsars and massive black hole mergers, etc. Therefore, it is imperat-
ive to explore methods to mitigate the Newtonian noise. I have shown
that this noise can be reduced for surface detectors by creating cavities
around the test masses. This technique has significant implications for
the design of future surface detectors so that Newtonian noise can be
minimized.

For site-specific noise mitigation, it is important to understand the
primary sources of seismic noise. I have therefore carried out detailed
seismic analyses to characterize the spatial and temporal characterist-
ics of the seismic field. This technique provides valuable insights into
seismology and geoscience. Understanding the sources, velocities and
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propagation directions of seismic waves has applications in earthquake
studies and environmental monitoring. The propagation of seismic waves
is influenced by the subsurface geology. By studying these waves, re-
searchers can obtain information about the composition and structure
of the Earth’s subsurface. I have used comprehensive seismic field in-
formation, including details of the subsurface structure, to calculate the
reduction in Newtonian noise for the Virgo gravitational wave detector.

As mentioned above, third generation detectors such as the Einstein
Telescope and Cosmic Explorer are expected to have improved sensitiv-
ity compared to detectors currently in operation. For the Einstein tele-
scope, two topology options are being considered by the collaboration:
the L-shape and the triangular topology. Understanding which topology
of the Einstein telescope will lead to better scientific results is crucial
for determining the final configuration. Therefore, the decision on the
topology has to be made soon. In the second part of my dissertation,
I analyze how the two different topologies of the Einstein telescope (L
versus triangle) affect the accuracy of sky localisation within networks of
third-generation gravitational wave detectors. The L-shaped topology of
the Einstein telescope considered here consists of two co-located detect-
ors with an aperture angle of 90°, one of which is oriented at an angle of
45°relative to the other. The proposed triangular setup consists of three
detectors arranged in an equilateral triangle with a 60°aperture angle.
In particular, improved gravitational wave detectors have the potential
to have a more significant scientific impact.

The triangular configuration has an additional advantage in that
it contains a redundant number of detectors that can produce a null
stream. In the general case, the null stream can be constructed by
combining data from the network of detectors while canceling out the
underlying gravitational wave signal. Canceling out the signal requires
prior knowledge of the source location. However, the null stream for the
Einstein telescope, with its triangularly arranged detectors, does not de-
pend on the source location. This feature distinguishes the triangular
configuration from others and makes it unique in its ability to generate
a source location independent null stream. In the dissertation, I have
demonstrated the usefulness of this null stream using rigorous analysis
and specialized techniques for source localisation and detector calibra-
tion. To measure the gravitational wave signal accurately, we need to
understand the response of the gravitational wave detector as precisely
as possible. This requires knowing the parameters of the gravitational
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wave detector with high precision. The process of determining these
parameters is known as calibration. The technique I have developed
using the null stream has the potential to have a significant impact on
improving the calibration of all three detectors of the Einstein telescope.
The null-stream methods can be applied to any instrument that has a
redundant number of outputs compared to the number of parameters
being evaluated.
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