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REVIEW ARTICLE

Implementing Computational Modeling in Tissue Engineering:
Where Disciplines Meet

Janine N. Post, PhD,1 Sandra Loerakker, PhD,2 Roeland M.H. Merks, PhD,3 and Aurélie Carlier, PhD4

In recent years, the mathematical and computational sciences have developed novel methodologies and insights
that can aid in designing advanced bioreactors, microfluidic setups or organ-on-chip devices, in optimizing cul-
ture conditions, or predicting long-term behavior of engineered tissues in vivo. In this review, we introduce the
concept of computational models and how they can be integrated in an interdisciplinary workflow for Tissue
Engineering and Regenerative Medicine (TERM). We specifically aim this review of general concepts and
examples at experimental scientists with little or no computational modeling experience. We also describe the
contribution of computational models in understanding TERM processes and in advancing the TERM field by
providing novel insights.

Keywords: mathematical modeling, model calibration, model validation, experimental integration, signal
transduction

Impact Statement

Although in recent years the use of mathematical and computational sciences has increased in the Tissue Engineering and
Regenerative Medicine (TERM) field, we believe that a further integration of experimental and computational approaches
has a huge potential for advancing the field due to the ability of models to explain and predict experimental results and
efficiently optimize TERM product and process designs. By providing an overview of existing computational models, how
they have contributed to the field, as well as a future perspective, this review represents an important step to help realize
TERM’s ultimate goal: a cure instead of care.

Introduction

In recent years, the mathematical and computational
sciences have developed novel methodologies and insights

that can, or at least so they sometimes claim, revolutionize the
field of tissue engineering. These approaches potentially help
streamline culture conditions, can give useful insight into the

collective behavior of cells or how to efficiently control gene
expression using growth factors, and they help to predict long-
term behavior of engineered tissues in vivo. However, to tissue
engineers themselves the use of these approaches may not
always be clear. In this article, we give our answers to ques-
tions on the role of mathematical and computational model-
ing that you may have as a tissue engineer. In doing so, we
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keep in mind the specific modeling challenges we face
when modeling biological cells and tissues: living tissues
continuously adapt through mechanisms and actions that
have not yet been elucidated in quantitative detail, in
contrast to simulation techniques in the physical or the
chemical sciences.

Despite this lack of quantitative precision in models of
biological tissues, starting early with a simple model and
adding more details as the computational analysis pro-
ceeds and new experimental knowledge becomes avail-
able, often proves very fruitful. In the following sections
we do not aim to provide an exhaustive literature over-
view. Instead, we put forward some illustrative examples
to provide an easy-to-grasp overview for noncomputational
experts. Where applicable, we highlight excellent reviews
that can aid in further reading. In this way, we aim to give an
overview of the steps to be taken when integrating compu-
tational modeling in the workflow for Tissue Engineering
and Regenerative Medicine (TERM). We cover the general
concepts, available modeling techniques, and discuss the
decisions that need to be taken when designing a compu-
tational model, ideally in discussion with a computational
collaborator.

What Are the Current Challenges in TERM That
Computational Approaches May Help Solve?

There is a great clinical need for tissue and organs for
transplantation and research purposes. TERM aim to target

this organ and tissue shortage by engineering different com-
ponents that can be combined to generate much-desired
organs or neotissues (Fig. 1). In the past decades, advance-
ments have been made in many aspects of tissue engineer-
ing, including in material sciences, cell and developmental
biology, nanotechnology, culturing of the necessary cell
types from induced pluripotent stem cells, and systems
biology.1–5 However, challenges in the field of TERM remain
and include, among others, the recreation of organs with
complex higher order structures and correct physiological
function, recreating adequate vascularization (in particular
for large tissues and organs), understanding and control-
ling the immune response after neotissue transplantation
or during neotissue development in case of in situ tissue
engineering, the reproducibility of neotissues, and so
forth.2,6,7

Another important challenge in TERM is the huge
amount of data available from literature. Systems biology
aims to integrate these data into knowledge of the com-
plexities of tissue and organ response.8 To do so, systems
biology makes use of omics approaches to collect data at
the molecular and cellular levels. These approaches connect
the individual components that make up the whole system.
Modeling approaches attempt to put together the individual
components back into functioning mechanisms, to obtain
knowledge of cells and tissues as a whole. Thus, rather than
focusing on single components, systems biology focuses on
the integration of the components into a functioning whole.
In particular, mathematical models can aid in understanding

FIG. 1. Tissue engineering
is a multidisciplinary
research field that aims to
make complex tissues from a
variety of cell sources to find
personalized treatments. The
increase in omics and high-
throughput measurements
has led to a steep increase in
data that can be analyzed by
systems biology. In addition,
these data can be integrated
and understood by the
generation of executable
computational models, which
in turn help to prioritize
data and predict novel
mechanisms, thereby aiding
the tissue engineer. Please
note that the sizes of the pie
do not reflect the contribution
of the discipline to the field.
Since this article aims to
discuss computational
biology, there is more detail
about that in the figure.

IMPLEMENTING COMPUTATIONAL MODELING IN TISSUE ENGINEERING 543

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
aa

st
ri

ch
t f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

2/
22

/2
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



these systems and their underlying mechanisms by in-
tegrating the data into dynamic models that describe the
processes.

In this review, we describe the contribution of mathemati-
cal models in understanding TERM processes and in advanc-
ing the TERM field by providing novel insights. We omit
discussion of statistical models as used in bioinformatics-
based systems biology, which are extensively discussed
in Waters et al.5 In the remainder of this article, we will
use the term ‘‘mathematical model’’ to underline the math-
ematical aspect, but we acknowledge that very often these
models are solved and simulated using computational tools.

What Is a Mathematical Model?

In general, models are simplified representations of com-
plex processes or structures to help representing, analyzing,
and understanding them. For example, signaling pathways
are often represented as block-and-arrow diagrams: a con-
ceptual visualization of a mechanism, where blocks indicate
the proteins of interest, and arrows indicate the known or
putative interactions. Blueprints are another example of mod-
els that aid in describing the design of a device (e.g., a

bioreactor) in terms of dimensions and 3D relation of its
components. In vitro and in vivo systems are also models.
They have been designed to represent, simplify, and (parti-
ally) control the biology of the patient. Similarly, mathe-
matical models represent a complex biological process in
terms of equations or rules and a description of the domain
(e.g., time and/or space) on which they are valid.9

Conceptual versus mathematical models

To illustrate the use of mathematical models, imagine a
cell proliferation experiment in which cells are seeded with
an initial seeding density and grow until a particular end
time (Fig. 2). As a research question, we aim to analyze the
controlling factors of the proliferation rate, perhaps with the
eventual aim of optimizing culture conditions. Without any
direct observation of the process (Fig. 2a), except at the start
and end time, only a very simple model can be defined, that
is, a description in words: ‘‘the cell density increases due
to cell proliferation.’’ However, when observing the system
(Fig. 2b) or taking measurements at a sufficient temporal
resolution (Fig. 2c), a more accurate model can be devel-
oped, that is, a verbally described hypothesis on the

FIG. 2. Schematic overview of the relation between experiments, data, interpretation, and models. (A) Conceptual model
based on start and end points; (B) descriptive model based on time-resolved observation; (C) population-based model
explaining population size over time; (D) spatially resolved model explaining the growth of cells at each position in time
and space.
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mechanisms underlying the observation. For example, we
could state that ‘‘the cells proliferate until they have ex-
hausted the growth medium.’’ Such a conceptual model can
be rephrased in terms of a testable mathematical model,
which predicts the dynamics of the system over time.

More specifically, in this example the mathematical for-
mulation becomes an ordinary differential equation describ-
ing how the variable (the quantity of interest of the model,
here, the cell density P) changes as a function of time has
two contributions: (1) the cell density increases with a
growth rate r proportional to the current cell density P, and
(2) the growth rate decreases when the cell density reaches
the maximal cell density K (1-P/K). This mathematical
formulation is also known as the logistic growth model and
defines how the cell density variable evolves over time; r,
the growth rate, and K, the maximal cell density are the so-
called parameters of the logistic model. Parameters are
those quantities in the model that we assume do not change
during an individual experiment. The (fixed) numerical val-
ues of the parameters can be measured in the experiment,
and in this way, they connect the model to reality. Parameter
values may differ between experiments due to different
culture conditions or the use of a different cell type. Finally,
we can refine the model, for example, based on discrep-
ancies between the model predictions and the experimental
observations.

Typical refinements include the inclusion of local dif-
ferences in the growth rate in the cell culture, for example
due to contact inhibition, or the effects of cell motility. A
mathematical model describing such effects could take the
form of a partial differential equation (Fig. 2d), which can
describe the dynamics of system in time and in space, that
is, over different locations in the culture dish. In this exam-
ple, the mathematical model described how the variable
(i.e., the cell density) changes in time at different locations
of the culture dish. In addition to the contributions of cell
growth and growth limitation, the model has a third contri-
bution due to cell motility, in this study, described as dif-
fusion. Other techniques to model a cell culture spatially
include agent-based or cell-based models, in which cells are

described individually, allowing for further contributions of
cell shape and cell heterogeneity.10–13

An extensive description of how computational models
can be constructed and which model types are available is
beyond the scope of this article. For more details, we refer
the reader to these excellent introductory articles14–16 and
tutorials.17 In this study, we would like to focus on the inte-
gration of computational modeling with (wet lab) experi-
ments, an essential aspect to bring forward TERM research.

As mentioned above, computational models are simpli-
fied representations of complex processes and thus only
imperfect approximations of reality. To quote George Box:
‘‘Essentially, all models are wrong, but some are useful.’’18

As such, the aim of computational modeling is not to build
the most detailed model, but to learn about the biological
system at hand through different cycles of model construc-
tion, calibration/fitting, prediction, and refinement alterna-
ted in an empirical cycle with (wet lab) experiments and
data analysis5,19,20 (Fig. 3). First, if the model structure (e.g.,
the form of the equations such as the logistic growth func-
tion above) is already known, one may need to determine
the parameter values (e.g., the growth rate, maximal den-
sity) to tune the model to the concrete (wet lab) conditions
(model calibration). This can be done by setting the model
parameters to experimental measurements and by estimating
any remaining parameters of unknown value by fitting the
model outputs to a set of experimental data (e.g., Scholma
et al.19).

The type of experimental data depends on the model and
research question. If the aim is to predict protein concen-
trations as a function of time, then time series data are
necessary to determine the rate values. If the aim is to
understand heterogeneous growth in a bioreactor, then
spatial data alongside molecular data will be important.
Often, not enough data are available or of insufficient qual-
ity to determine the parameter set. Hereto various parameter
estimation and optimization algorithms exist, see Refs. 21
and 22 for more details.

Second, the calibrated mathematical model and its anal-
ysis will lead to testable predictions that can be explored

FIG. 3. Workflow describing the integration of computational models in TERM. Starting from a research question,
dedicated experiments and data provide input for a computational model. In an integrated, but partially separate empirical
cycle, the model is optimized and validated, after which it can be used to interpret the data, do dynamical simulations, and
generate new hypotheses that lead to new in vitro or in vivo experiments, and as such close the integrated feedback
loop. Adapted from King et al.17 TERM, Tissue Engineering and Regenerative Medicine.
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experimentally. From the example in Figure 2, we can con-
clude that ‘‘the time to reach the maximal density increases
with the maximal density and the size of the culture dish,
and decreases with the growth rate,’’ which could be exper-
imentally explored by using cell lines with different growth
rates and maximal densities. This process where the model
outputs are systematically compared with independent wet
lab observations to evaluate their quantitative and qualita-
tive agreement with reality is called model validation.
Model validation may be a huge challenge if the model out-
puts are not directly measurable through in vitro, in vivo, or
ex vivo testing. For example, primary cells taken from car-
tilage quickly dedifferentiate when in culture23,24 and cells
cannot be harvested at any time during development, espe-
cially in the case of research in human cells and tissues.

In addition, donor variability may greatly influence the
outcome of the experiment.25,26 Researchers tackle these
issues by using well-defined cell lines or primary cells used
at an as-low-as-possible passage number.27–31 More often,
researchers make use of literature data not used to generate
the model.20,32–34 Novel data generation and literature resour-
ces are both appropriate for model validation, which is a
crucial step to either determine the validity of the compu-
tational model or to identify missing mechanisms that need
to be included before novel model predictions can be gen-
erated.35 These novel model predictions can then be used to
generate new testable hypotheses that can be prioritized
before being tested in wet lab experiments (Fig. 3).

Scale of interest

A further consideration to make is the level of required
detail. If we are interested, for example, in how culture
media may help optimize the proliferation rate of cells, r, or
how better design of the culture system can lead to higher
cell densities, K, characterizing the proliferation of cells
using the logistic equation may be just what we need. How-
ever, at some point we may find that culture medium A leads
to a higher growth rate than culture medium B, and we may
be interested in the mechanism underlying this difference.
We may hypothesize that differences in growth factors or
metabolite concentrations between the two culture media are
responsible for this. A mathematical modeler could then
construct a detailed model of the intracellular regulation
networks or the metabolic networks,36–38 and attempt to sys-
tematically interfere with the nodes of the network to see
which ones, if any, have an effect on the growth rate.

Once one of the nodes turns out to be a promising target,
the modeler might choose to investigate it in more detail to
identify potential ways to interfere with the effect pharma-
cologically, for example, by constructing a detailed model
of a signal transduction network or by constructing receptor–
ligand binding models at chemical detail level. Thus, the level
of detail required for a suitable model is given by the question
at hand. Typically, a researcher starts with a simple model
and adds more detail as the analysis proceeds and more de-
tailed questions need to be answered.

Multiscale modeling

In many cases, often the most interesting ones, after
having considered the population level, the single cell level,
and the molecular level of the system in isolation from one

another, we may come to realize that the levels affect one
another. In the hypothetical cell culturing system, a simple
example would be contact inhibition. As the cells fill up the
available space in the culture dish, they will touch one
another and activate pathways such as the Hippo signaling
pathway, mediated by E-cadherin39 to reduce the prolifer-
ation rate. In a simple population-level model, it may suffice
to capture the resulting local reduction in growth rate through
the logistic growth term (Fig. 2d). A more detailed approach
would model individual cells and introduce a simple model
of the underlying signaling network inside each individual
cell. Such approaches can give particularly useful insights
into morphogenesis at different time scales.40–42

Bridging the gap between disciplines

For model construction, calibration, and validation, it is
essential that both the experimentalist and modeler under-
stand the biological question being asked and agree on the
type of output needed to answer the question at hand and
allow wet lab validation. When starting to model, the best
way is to discuss with a computational modeling scientist
to decide on the best modeling tool for your research ques-
tion. This contact is preferably made before starting the
experiments that will give you the first data to model, as the
computational model may need alternate conditions, for
example, time points, positive and negative controls, differ-
ent concentrations of inputs, design variations, and so forth.

What Have Computational Models Contributed
to TERM?

To date, computational models have been generated for
addressing many (remaining) challenges in tissue engineer-
ing, including how cell fate choices are made,28,43–45 how
cells interact to form a tissue,46–48 how the shape of the
tissue dictates tissue function,49,50 how nutrients are sup-
plied and waste products removed.32,51 In this section we
will give an overview of how computational models have
contributed to TERM. Since it is impossible to give an
exhaustive review, we will focus on some notable exam-
ples from different tissues and at different scales, structured
according to what the computational model has contributed
to advancing the TERM field.

Computational models have increased
our fundamental understanding of tissue development
and remodeling

Dynamic models of signal transduction in which one can
simulate processes as well as predict novel mechanisms play
an important role in systems biology and in TERM. Signal
transduction pathways allow cells to sense changes in their
environment to which they can respond by changing gene
transcription, metabolism, cell migration, proliferation, etc.,
ultimately changing cell function and/or cell fate. Therefore,
the proper functioning of these signaling networks is crucial
for adaptation and survival under a variety of conditions.
The network regulating these processes is called a gene reg-
ulatory network and this can be captured in a dynamic com-
putational model.

Traditionally, signal transduction was viewed as a
linear process in which an input (growth factor,
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cytokine) was recognized by specific receptors on the
cell surface that transduce the signal through an intra-
cellular cascade (kinases, small molecular messengers)
to an output element (transcription factor, cytoskeletal
proteins, etc. 21,52). However, gene regulatory networks
are characterized by cooperation between multiple
pathways that integrate to regulate the many cell func-
tions. To understand the influence of these complex and
often nonlinear interactions, and simulate them together,
computational models are very helpful tools.

Many small network models exist that describe one
or two specific pathways in specific organisms,20,31,53 and
others, as reviewed by Klipp and Liebermeister.54 Recently,
different models describing the gene regulatory network
regulating cell fate decision making have been developed
(e.g., Refs. 44,45). These mathematical models have contrib-
uted to a better understanding of cellular fate decisions and
can be used to develop more effective in vitro stem cell dif-
ferentiation protocols (reviewed in Spector and Grayson55).

Besides unraveling signal transduction, computational
models have also improved our understanding of, for example,
cardiovascular tissues and their remodeling. Collagen fibers
are the main load-bearing components of cardiovascular tis-
sues. Establishing a functional collagen network is therefore
of utmost importance for successfully tissue engineering car-
diovascular tissues, such as blood vessels and heart valves.
Computational models have substantially contributed to un-
derstanding the mechanisms of collagen remodeling in en-
gineered cardiovascular tissues, because they allow for
investigating different hypotheses and predicting their out-
comes for complete tissues such as blood vessels and heart
valves. Traditionally, there has been much focus on under-
standing and predicting how mechanical factors may drive
collagen remodeling from a phenomenological point of view.

Specifically, by hypothesizing that collagen fibers align
with or in between principal stress or strain directions, com-
putational models have been able to predict the establish-
ment of a native-like collagen architecture in blood vessels
and heart valves.56–60 These results from computational mod-
els have nicely illustrated the importance of mechanical
factors in regulating cardiovascular remodeling and provi-
ded some first tools to analyze how collagen remodeling can
be steered in engineered cardiovascular tissues. Over the
years, more biological phenomena have been added to com-
putational models to further improve our understanding of
cardiovascular development and adaptation.

One of the important phenomena that was recently added
to computational models of mechanomediated vascular
regeneration is the response of the immune system to syn-
thetic scaffolds.61,62 In a recent study, Drews et al. dem-
onstrated that a computational model incorporating both
immuno-driven and mechano-mediated tissue formation
was first of all able to predict early stenosis development in
tissue-engineered vascular grafts as seen in a clinical trial,
and, second, also able to predict the spontaneous reversal
of stenosis over time.63 This unexpected model-generated
prediction was successfully verified in a preclinical study,63

showing how computational models can contribute to the
generation of new hypotheses and design of future experi-
ments in the field of cardiovascular tissue engineering.

Another relevant aspect that is increasingly added to com-
putational models is the impact of the cell behavior on tissue

development and remodeling.64 Cytoskeletal remodeling
and contractility have been modeled in the context of TERM
to understand cell (re)alignment, tissue compaction, and col-
lagen remodeling due to cellular forces in engineered tissues
as a function of the mechanical environment that the tissues
are subjected to. For example, based on the known remod-
eling of the actin cytoskeleton in response to mechanical
stimuli, and the impact thereof on collagen remodeling and
contraction, computational models were able to capture the
resulting cell and tissue organization in in vitro environ-
ments.65–69 Loerakker et al. subsequently applied these
models to predict potential differences in the remodeling of
tissue-engineered heart valves in the pulmonary and aortic
position.70

In the area of bone tissue engineering, computational
models have focused on capturing the impact of the cell
behavior on bone development,71,72 fracture healing,73–78

and the adaptive bone remodeling response.79–82 Recent
developments focus on including the inflammatory phase of
fracture healing or the immune response after tissue con-
struct implantation.83

Cells can sense and modify the extracellular matrix while
being simultaneously in contact with other cells. This mech-
anobiological interplay between cell–cell and cell–matrix
interactions is complex and has an essential role in the for-
mation and maintenance of healthy functioning tissues.
Several computational models have focused on capturing
parts of this process, including cell–matrix adhesion,84,85

cell–cell adhesion,86–88 single-cell migration,89–93 collective-
cell migration,94–96 and vascular pattern formation due to
mechanical cell–cell communication.97 These mathematical
models can also be used to understand and predict the (het-
erogeneity of) cellular infiltration of scaffolds used for tis-
sue engineering. Zahedmanesh and Lally, for example,
developed a multiscale computational model to understand
the influence of scaffold compliance and loading regime
on the growth of vascular smooth muscle cells.98 By includ-
ing the transport and consumption of oxygen and nutrients
in their model, Soares and Sacks were able to reproduce and
understand the influence of static and dynamic mechanical
conditioning protocols on in vitro tissue formation.99

Computational models have identified key regulatory
proteins, cytokines, and mechanical stimuli

To enable efficient use of TERM strategies for cartilage
and bone, for example, it is important to define factors
regulating tissue development and maintenance, as well as
factors associated with disease progression and tissue heal-
ing. Recently, network models have been used to describe
both cartilage formation of the growth plate28,43,100 and the
articular cartilage.44,45 Specifically, these models aimed to
describe and predict the molecular mechanisms regulating
cartilage hypertrophy. Cartilage hypertrophy is a prerequi-
site for bone length growth.101 In cartilage tissue engineer-
ing, however, hypertrophy during in vitro chondrogenesis
of mesenchymal stem cells is followed by formation of
transient calcifying cartilage,102 with lesser mechanical and
articular cartilage-specific properties.103 Schivo et al. used a
combination of literature, conventional molecular biology
(quantitative polymerase chain reaction), and biophys-
ical methods (fluorescence recovery after photobleaching
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[FRAP]) to validate new model predictions. This has led to
the development of a model describing the development of
osteoarthritis and identification of the wingless-related in-
tegration site (WNT) antagonists DKK1 and FRZB in the
prevention of IL1b-induced cartilage degeneration by
modulating the effect of Il1b in human primary chon-
drocytes.45

In addition to soluble factors, such as growth factors and
cytokines, mechanical factors play an important role in tis-
sue development and maintenance. The effect of mechanical
changes, such as matrix composition, viscoelastic colla-
gen stress, matrix stiffness, and excessive strains in cartilage
have been investigated by computational (numerical) models
and provide insight in the factors regulating tissue stiffness
and loading in healthy and osteoarthritic joints.104,105

Computational models have estimated protein
concentrations and mechanical parameters that
are experimentally inaccessible

It is well known that mechanical stimulation can regulate
cellular behavior, for example, differentiation, proliferation,
matrix production, and mineralization and as such mechan-
ical stimuli are often applied in tissue engineering experi-
ments. For example, perfusion bioreactors are used to apply
fluid-induced wall shear stress on cells, but it is difficult to
measure the actual mechanical stimulation cells are expo-
sed to during an experiment. Zhao et al. used multiscale
computational dynamics to quantify the microfluidic envi-
ronment within scaffolds with highly irregular pore geom-
etries.106 Similarly, Ellis et al. have used a continuum
mathematical model to calculate the spatiotemporal glucose
and lactate concentrations within a bioreactor for culturing
organoids, information which is challenging to obtain exper-
imentally.107 Their analysis showed that the bioreactor can
be divided in two regions, depending on whether the effect
of nutrient replenishment from the inlet has been experi-
enced, which can be used to inform bioreactor operating
conditions, ultimately improving the quality, reproducibil-
ity, and number of bioreactor-expanded organoids.

Computational models have informed and optimized
experimental designs (3Rs)

Computational models have been extensively used for the
optimization of scaffold topology and architecture108–111 as
well as bioreactor-based processes,106,107 reviewed exten-
sively in Refs. 112–116 as these have been proposed to
be key components for the engineering of clinically rele-
vant tissue-engineered implants. Similarly, computational
models are often used to optimize the design of TERM
components and processes such as biomaterials117–119 and
microfluidic devices.120,121 For example, to improve cell
viability after implantation of tissue engineering constructs,
Pedraza et al. developed and optimized hydrolytically acti-
vated oxygen-generating biomaterials.122 More specifically,
the oxygen gradients within cell-loaded agarose constructs
with varying total cell loads, external oxygen tension, and
the presence or absence of the oxygen-generating biomate-
rial (modeled with first-order reaction rate kinetics) were
predicted with COMSOL Multiphysics. From these calcu-
lations, they could optimize the dose, geometry, and surface/
volume ratio of the oxygen-generating biomaterial.

Li et al. identified optimal oxygen delivery condition for
matrix production by human chondrocytes in scaffold-free
pallet cultures.123 Similarly, others have focused on opti-
mizing the release of ions or growth factors from biode-
gradable scaffolds.124–126 For example, calcium phosphate
materials are widely used for dental and orthopedic appli-
cations and their degradation products, Ca2+ and Pi ions, are
believed to affect bone cell chemotaxis, proliferation, and
differentiation. However, the ion release rate from these scaf-
folds depends on dissolution and diffusion, which in turn
depend on the scaffold composition and geometry. Manhas
et al. have developed a finite element method to investi-
gate the local Ca2+ ion release from CaP-based scaffolds.127

Combining this work with a computational model of Ca2+

influence on osteogenic cell behavior and bone formation,128

allowed for CaP scaffold optimization.129

Besides optimizing tissue engineering constructs for oxy-
gen transport and release rate,130 others have optimized the
macroscopic pore shapes of scaffolds to control the kinet-
ics of tissue deposition, for example, bone formation. For
example, Bidan et al. developed a model to predict the
behavior of osteoblasts on curved surfaces.131 They show
that in cross-shaped pores the initial overall tissue deposi-
tion is twice as fast as in square-shaped pores, opening new
avenues to improve the speed of bone ingrowth into porous
scaffolds. The computational model of bone regeneration
developed by Carlier et al. has shown that particular cell
patterns in bone tissue engineering constructs are able to
enhance bone regeneration compared with uniform cell dis-
tributions.132 The model could be used to optimize cell gra-
dient patterns for bioprinting.

Next to optimizing the cell gradient pattern, others have
focused on understanding how mechanical loads are dis-
tributed throughout polymer fiber scaffolds. For example,
Chen et al. used a homogenization theory to derive the bulk
mechanical properties of a cylindrical construct of the fiber
composite material for a range of fiber spacings and deter-
mined the local mechanical environment experienced by the
embedded cells.133

Others have used computational models to determine the
optimal medium refreshment medium and initial growth fac-
tor concentration, where the goal is to maximize cell growth
while minimizing the total experimental cost.134 They show
that multiple optimal operating points exist, depending on the
desired cell number and costs. However, when calibrated for a
particular cell type of interest, this in silico framework can
calculate the optimal operating conditions, contributing to a
cost-efficient production of cell-based TE products.

In the context of tissue-engineered heart valves, compu-
tational analyses135 revealed that the geometrical design of
these valves may play an essential role in the progressive
development of valvular insufficiency due to cell traction-
mediated leaflet retraction, a phenomenon that has often
been observed in preclinical studies.136–138 The computa-
tional model demonstrated that the in vivo strains in tissue-
engineered heart valves with a commonly used geometry
are in fact facilitating leaflet retraction and predicted that
the use of a more curved geometry would allow for ob-
taining superior strain profiles with respect to preventing
leaflet retraction.135 The performance of tissue-engineered
heart valves with the superior geometry as predicted by
the computational model was subsequently tested in a
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preclinical study, and showed, for the first time, clinical-
grade performance of living, fully biological tissue-
engineered heart valves during a full year of implantation.49

What Can Models Contribute to the Future of TERM?

The examples mentioned above clearly illustrate how
computational modeling has contributed to advancing the
field of tissue engineering. Based on these encouraging
results, we believe that modeling should be increasingly
integrated with experimental research in the field, to improve
the understanding of the relevant (biological) phenomena
underlying tissue development and adaptation, predict exper-
imental outcomes, and design future experiments.

One of the most important challenges in tissue engineering
is to identify which combinations of scaffold parameters (and
culture conditions in case of in vitro tissue engineering) will
induce functional tissue development and subsequently long-
term functionality and adaptation in response to the individ-
ual’s needs. Given the countless scaffold parameters (e.g.,
geometry, stiffness, porosity, structure, material) that influence
this complex process in combination with the costs and time
associated with long-term in vitro and in vivo experiments, it
is practically impossible to identify such optimal designs using
an experimental approach alone. Computational models can
tremendously contribute to overcoming this challenge as, after
proper validation, they can predict experimental outcomes and
thereby provide an efficient means to identify promising
scaffold designs, particularly when integrated with formal
optimization methods.110

Obviously, such computationally identified designs should
still be tested experimentally to verify their performance.
Nevertheless, using computational models in the search for
optimal scaffold designs will help to reduce the number of
required experiments and avoid inefficient trial-and-error
approaches. Finally, within the context of clinical translation,
we expect that computational predictions of scaffold per-
formance and tissue development, adaptation, and function
will become highly relevant for obtaining regulatory appro-
val. Computational simulations can complement the data
from bench testing, animal studies, and clinical trials that are
used to approve medical devices,139 and offer the possibility
to efficiently perform ‘‘in silico’’ clinical trials on virtual
patients with diverse characteristics.140,141

New developments are required to enable broad imple-
mentation of integrated computational–experimental appro-
aches in the tissue engineering field. First, integrating
computational and experimental research requires multi-
disciplinary knowledge and/or collaboration of scientists
with different expertise. This will only be successful when
individual researchers are willing and able to cross the bor-
ders of their own discipline. In addition, when developing
computational models, researchers from the modeling com-
munity should be (more) aware of the opportunities, uncer-
tainties, and limitations of experimental approaches. This
will make sure that models are properly connected to the
(parts of) experiments they are supposed to cover and facil-
itate the adoption of computational models by researchers
originally doing only experimental research. The perfor-
mance of computational and experimental research within
single research groups would provide the most ideal envi-

ronment to foster integration of the two approaches. In addi-
tion, dedicated MSc or PhD programs, which train students
in both computational and experimental approaches would
foster such interdisciplinary integration.

In addition to computational advances, the TERM field has
developed and adopted novel experimental techniques and
technologies that can benefit the calibration and validation of
future mathematical models. In particular, quantitative (mi-
croscopy) techniques allow characterizing the spatiotemporal
dynamics of proteins, cells, and tissues, as well as the bio-
mechanical properties thereof in physiology and pathology.142

Initiatives are also being taken to achieve community con-
sensus regarding the testing protocols and standards for the
material characterization of biological tissues (e.g., https://
c4bio.eu/). Considering the advent of new (micro)fabrication
technologies and advanced (automated) analytic equipment,
high-throughput screening platforms also provide an ideal
strategy to analyze thousands of combinations of interactions
among biomaterials and cells.143

Similarly, various omics approaches are generating un-
precedented amounts of data that characterize the structure,
function, and dynamics of cells and tissues.142,144,145 Ini-
tially, a lot of omics data were generated without a clear
common protocol, making integration of different data sets
challenging. In recent years, standardization has been sug-
gested to allow better integration and reuse of data sets.146

In addition, these data sets have served the development
of mathematical methods to understand and integrate these
data. For example, tools such as DoRothEA and ANANSE
are used to combine various omics data sets, including
ChIP-seq, ATAC-seq, and RNA-seq analyses to predict key
transcription factors for cell fate determination.147–152

Using these transcription factor networks one could infer
the upstream signals (both chemical and mechanical) that
regulate the activity of the identified transcription factors,
which is important for controlling cell fate in TERM products.
As such, machine learning and other data science methodol-
ogies are continuously being improved to deal with the large,
incomplete data sets resulting from these high-throughput and
omics methodologies. Importantly, data science methodolo-
gies alone ignore the fundamental laws of physics and can
propose nonphysical solutions.153 Therefore, exciting efforts
are being undertaken to integrate data science methodologies
with mathematical modeling approaches to create robust
predictive models that integrate the underlying physical
principles while being able to explore the massive design
spaces that characterize the TERM field.153–156

As such, the development of high-throughput and more
quantitative techniques results in more data as well as com-
munity standards, which will not only enable improved
model calibration but also a more rigorous verification and
validation of the computational models, ultimately leading
to more model credibility.35

In summary, the field of tissue engineering is a fascinating
and complex multidisciplinary research field with many fac-
tors determining the ultimate performance of tissue-
engineered constructs. For this to be successful, we submit that
scientists from different disciplines should work together to
understand and eventually control tissue development thereby
ensuring long-term functionality. Within this scope, we
highlight that computational models have huge potential
for advancing the field, especially when integrated with
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experimental research, due to the ability of models to explain
and predict experimental results and efficiently optimize
scaffold designs. In this way, computational models may
help realize TERM’s ultimate goal: a cure instead of care.
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