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Abstract

Introduction: A “Think Tank” at the International Consultation on

Incontinence‐Research Society meeting held in Bristol, United Kingdom in June

2023 considered the progress and promise of machine learning (ML) applied to

urodynamic data.

Methods: Examples of the use of ML applied to data from uroflowmetry,

pressure flow studies and imaging were presented. The advantages and

limitations of ML were considered. Recommendations made during the

subsequent debate for research studies were recorded.

Results: ML analysis holds great promise for the kind of data generated

in urodynamic studies. To date, ML techniques have not yet achieved

sufficient accuracy for routine diagnostic application. Potential approaches

that can improve the use of ML were agreed and research questions were

proposed.

Conclusions: ML is well suited to the analysis of urodynamic data, but

results to date have not achieved clinical utility. It is considered likely

that further research can improve the analysis of the large, multifactorial

data sets generated by urodynamic clinics, and improve to some extent

data pattern recognition that is currently subject to observer error and

artefactual noise.
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1 | INTRODUCTION

There is no doubt that machine learning (ML, programs that
can improve their performance automatically), and more
popularly the wider but poorly defined “artificial intelli-
gence”, is a mainstream topic in the media and medical field
at present. The significant increase in published scientific

articles on this topic in different medical fields shows the
interest and need for innovation. Articles and features
abound that paint doomsday scenarios of machine takeover
or predict labor crises due to job losses. The World Ethical
Data Foundation has released an “Open Suggestion” forum,1

to encourage contributions to the training, building, and
testing of artificial intelligence models in an ethical manner.
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Issues of regulation, transparency, and responsible use are
high on the public agenda.

One Think Tank at the International Consultation on
Incontinence‐Research Society meeting held in Bristol,
United Kingdom, in June 2023 focused on the application
of ML specifically to urodynamic data, rather than attempt-
ing to respond to the wider issues listed above. The aim was
to concentrate on topics that impact urodynamics patients in
their diagnostic pathway, and to identify the research
questions that might be answered by using ML.

Urodynamic studies (UDS) have been performed and
interpreted in a similar manner for several years.
However, their value can be controversial due to the
lack of standardization on the quality of the UDS tracing,
interpretation of specific UDS parameters, and reporting
of findings.2–4 Recently, there has been an increased
interest in the utilization of different levels of artificial
intelligence, including ML algorithms, to standardize the
interpretation of specific UDS parameters to raise the
value of UDS as a clinical decision‐making tool.

It is important to understand that neural networks, on
which ML is based, require like any other tool appropriate
and targeted applications. As Professor Lionel Tarassenko of
Oxford wrote back in 1998, “Neural networks are not, nor
will they ever be, a ‘black‐box’ solution into which data can
be poured in the expectation that an answer will emerge.”5

Specifically in urology, consideration of the use of ML has led
to recent guidelines from the editors of one journal6 and
guidance for reporting new applications under the STREAM‐
URO Framework.7 The need for such guidance emphasizes
that good practice and specialist guidance are needed to
ensure the appropriate use of this clearly powerful tool. A
good understanding of the limitations of the ML approach is
required.

There are, though, good reasons to expect ML to have a
range of useful applications in urodynamics. Here, there are
large historical test databases, diagnostics, and assessments
made to some extent on pattern recognition, and noisy data
signals are a feature of the discipline. ML is very relevant and
is particularly useful in all of these situations. Also,
urodynamics is known to have some variation according to
the skill of the operator and interpreter.8 Thus, any data
processing that can be more objective and consistent than a
human operator may result in more accurate diagnoses. ML
thus is likely to be able to result in patient benefit.

2 | THE ADVANTAGES,
LIMITATIONS, AND RISKS OF ML
APPLIED TO CLINICAL DATA

ML algorithms might potentially enhance diagnostic
accuracy, generate more accurate differential diag-
noses, and improve patient outcomes when applied to

diagnostic tools like urodynamics. The effect of noisy
signals and interoperator variation can likely be
minimized. As noted above, ML is well suited to an
environment where such noisy data, variation in
interpretation, and large volumes of data coexist. The
need for better objectivity in the use of UDS and for a
better quality of measurement has been highlighted in
the literature, for example (references). In the past, the
application of ML has been somewhat limited by its
need for substantial processing power, but now that
required power is commonly feasible and affordable.
However, it is also essential to be aware of its
limitations and risks. Ongoing research, validation
processes, and robust regulatory frameworks are crucial
to overcoming these challenges and maximizing the
benefits of ML.

A central challenge in building ML models is that
algorithms are highly “data‐hungry” to reach acceptable
performance levels.9 Algorithms should be trained using
data that closely resemble the format and quality of the
expected data during usage.10 Even if the available data is
known to be unreliable or subject to variability,
reconciling the use of noisy data sets with the maxim
“garbage in, garbage out” poses a dilemma. While large
and noisy data sets are generally better for learning
complex patterns, for fine‐tuning or evaluating a model, a
smaller set of examples with curated labels becomes
necessary to develop meaningful systems.7

Another critical issue is that biases in data collection
significantly affect performance and generalizability.
Nonmedical algorithms have shown how they can mirror
human biases in decision‐making.11 Racial biases could
inadvertently be in algorithms due to existing disparities
in healthcare delivery and pre‐existing data. For instance,
limited studies in specific populations can bias algo-
rithms predicting outcomes from findings, such as the
Framingham Heart Study, to predict the risk of
cardiovascular events in non‐White populations, leading
to both overestimations and underestimations of risk.12 If
only one or a few centers' data are used for training in
ML, the results will be biased towards the practices in
those centers. The application of ML in UDS raises the
question of what defines the norm and reveals a
weakness in its current use. Unlike binary judgments,
urodynamics involves learning complex rules from data,
making algorithm training challenging. Additionally,
high‐value data often exist in unstructured formats,
requiring preprocessing for algorithm access. Further-
more, individual models need to be built and validated
for each diagnosis. Independent validation data sets from
different populations or periods that played no role in
model development are crucial as they will identify any
performance issues especially significant in complex
healthcare practices, such as urodynamics.10 With such
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precautions, ML techniques can possibly overcome some
current deficiencies in interpretation.

Ethical issues are another essential point to consider.
Confidentiality must be reimagined as ML makes
withholding information increasingly difficult, since the
incorporation of personal data is done by the software
automatically and possibly not traceably, thus compro-
mising patient privacy.8,11 Moreover, any software
algorithms have the potential to be designed and used
unethically. In the clinical context, ML designers may
face similar temptations, and the results more difficult to
detect. Clinical decision‐support systems could now more
easily be programmed to prioritize financial gains
without healthcare providers' awareness, creating ethical
tension between the intentions behind system design and
the goals of care teams and patients.

The healthcare education system requires transforma-
tion accordingly.13 Clinicians using machine‐learning
systems should familiarize themselves with the system's
construction, underlying data sets, and limitations. Over-
reliance on machine‐learning models can lead to automa-
tion bias and reduced vigilance for errors, making it
challenging to identify incorrect advice.10 It remains to be
seen whether clinicians will be held responsible for
judgments made by ML software. Prospective clinical
evaluations of the models in real‐world settings are
essential to assess their performance beyond retrospective
analysis based on historical data sets. In the process, it will
be necessary to reduce, using evidence from such evalua-
tions, any resistance from practitioners or patients (or their
lawyers) to the automation of diagnostic machines.

Other limitations arise from the architecture of ML
systems. Even though computing power is sufficiently
advanced to bring ML techniques within the reach of
everyday hardware, the processing power required is still
vastly greater than that needed to carry out classical data
processing. It may in many instances, therefore, be more
economical in terms of time and energy to pursue those
historic methods, rather than substitute all of them with ML.

An example of this is the feature incorporated in some
urodynamic machines that prompts the operator for zeroing
or cough at appropriate points of the test. This can be
successfully achieved with simpler algorithms rather than by
ML. Another limitation of the method is that ML systems
provide the end user with a “black box,” delivering an output
with little or no detail on the factors that led to the output. If
the underlying features identified and used are unknown, it
will likely hinder the development of new therapies and
theories, since the result is presented without known causes.

The potential advantages of ML when applied to
urodynamics are listed in Table 1, and the possible
disadvantages, with potential mitigations, are listed in
Table 2.

3 | APPLYING ML TO
UROFLOWMETRY AND
CYSTOMETRY DATA

Two areas are used as examples of the promise, as well as
the limitations, of ML in urodynamic pressure and flow
data. One is where ML has been applied to uroflowmetry,
trying to answer two research questions: “can we use
sonoflowmetry to substitute for conventional uroflow-
metry?” and, “can we reduce the need for pressure‐flow
studies in male lower urinary tract symptoms (LUTS)?”.

A sound‐based deep learning algorithm (Audioflow®)
was developed to estimate uroflowmetry parameters and
identify abnormal urinary flow patterns,15 showing an
agreement with conventional uroflowmetry for maxi-
mum flow, average flow, and voided volume of 77%, 85%,
and 84%, respectively. For detection of abnormal uroflow
(according to experts' criteria) the area under the curve
(AUC) was 0.89.

A convolutional neural network (VGG16 model) was
applied to conventional uroflowmetries of a cohort of
male patients with LUTS to predict bladder outlet
obstruction (BOO) and detrusor underactivity (DU),

TABLE 1 Summary of advantages to the use of ML in urodynamics.

Advantages of ML when applied to urodynamics

Perform well in noisy environments Real‐time test guidance that responds to user
practice and experience

Designed for pattern recognition in unstructured environments Operates objectively in contrast to human
interpretation

Extract the influence of multiple variables from large data sets Cost savings may be gained by automation and
time saving14

May promote standardization in reporting, event and artifact labeling, and
maintenance of quality at all levels of expertise

Potential for reduction of variability in diagnosis
between clinicians

Abbreviation: ML, machine learning.
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showing an AUC of 0.73 and 0.72, respectively.16 A
different approach used raw data from male LUTS
patients' uroflowmetries to predict DU, applying the
partial least squares regression algorithm, with an AUC
of 0.80 and an optimum sensitivity of 73% and specificity
of 85%.17 Such studies have used both flow curve shape
and standard uroflowmetry parameters, but these algo-
rithms still have not reached adequate robustness and
reliability to substitute for conventional uroflowmetry
and pressure‐flow studies.

Another example with similar results is the use of ML
in filling cystometry, which has been explored to detect
artifacts, detrusor overactivity (DO), and assessing
average detrusor pressure garnered from the area under
the urodynamic curve. Manifold learning and dynamic
time‐warping algorithms were used in a study that
included 799 UDS traces.18 The AUC of the training sets
was 0.84, leading to an overall accuracy of 81%, and the
optimum sensitivity and specificity of detecting DO
events were 77% and 81%, respectively, in the testing
set. A single center study2 analyzed 805 urodynamic
traces of patients with spina bifida, identifying and
clustering DO waves; models were designed to detect
clinician‐identified DO. The time‐based model with all 3

pressure channels had the highest AUC of 0.92, with 84%
sensitivity and 86% specificity. In another study, ML
algorithms were applied to data in an attempt to predict
response to overactive bladder (OAB) treatments.19 The
algorithms were found to be accurate and even superior
to expert urologists in some areas, though the study
noted that ML may complement but not supplant a
physician's judgment, especially in the subtleties of
physician–patient interaction.

Another interesting application of ML in cystometry
is to identify the AUC detrusor pressure to predict upper
urinary tract deterioration risk in neurogenic patients.20

Using the Trapezium and Simpson index and neural
network Multilayer Perceptron analysis better results
were found in the AUC to predict urinary complications
in pediatric patients, compared to conventional predic-
tive factors (detrusor leak point pressure >40 cmH2O,
maximum detrusor pressure ≥40 cmH2O).

These examples show that while there is potential for
innovative ML analysis of urodynamic data, there is still
some way to go before it can be sufficiently accurate for
clinical use. The present levels of performance may
however be a useful guide and adjunct for human
operators, while research using larger, labeled data sets

TABLE 2 Summary of limitations and risk mitigations of the use of ML in urodynamics.

Limitations/risks11 of ML in urodynamics Mitigations

Unknowingly magnify bias Use carefully selected data and consider potential biases:
Gender/age division, the minimum number of studies for each diagnosis,

a minimum of races and minorities inclusion to reduce bias
Utilize extensive even if noisy data for initial ML training, mindful of

“garbage in, garbage out” principle. Later, refine with more accurate
data for optimization

Privacy, security, and confidentiality Observe regulations regarding data privacy and security, particularly if
constructing a centralized database

Ethical principles of data use Address ethical considerations and ensure transparency of training sets
and methods

Algorithms could be designed to mislead Independent validation studies on diverse and representative data sets

Influence on insurance companies, reimbursements,
recommending drugs, tests to increase profit

Ensure clinicians' education about the construction, data sets, and
limitations

Include likelihood and confidence intervals in all results

Overreliance, automation bias Ascertain if validation is needed for each UDS diagnosis
Develop an equally robust protocol for the validation of uncommon

diagnoses
Educate users regarding automation bias and the need for vigilance for

errors
Consider periodic revalidation
Establish clinician training in ML advantages and limitations to ensure

safe implementation

Inappropriate or incomplete application of technique Include ML specialist in the project team

Note: The think tank noted that many recommended points are common to every type of diagnostic technology.

Abbreviations: ML, machine learning; UDS, urodynamic studies.
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may yet prove acceptable stand‐alone efficacy for specific
diagnostic questions. Benchmarks for such acceptability
could be >95% accuracy for BOO diagnosis from
uroflowmetry alone compared to UDS and for the
diagnosis of DO, DU, or BOO from UDS. As for current
urodynamic methodologies, likelihood scores and confi-
dence intervals will be necessary so that diagnoses can be
properly assessed in clinical practice.

4 | APPLYING ML TO
URODYNAMIC IMAGING DATA

Further examples of the use of ML in urodynamic data
are found when imaging is considered. X‐ray fluoro-
scopic video urodynamic data and ultrasound bladder
scans are common diagnostic tools to assess lower
urinary tract (LUT) function during storage and voiding
of urine and offer detailed assessment methods to
investigate alterations in LUT behavior in various patient
groups. The interpretation of urodynamic imaging data
requires adequate training and expertise, and research
indicates that interobserver agreement levels of urody-
namic and video urodynamic data vary.8,21 The quantity
of potentially useful information available in these
diagnostic data is enormous and methods to extract
relevant parameters that may be of clinical importance
from these large data sets are essential to improve the
diagnostic value of urodynamic imaging data.

In contrast to conventional pressure‐based urody-
namics, the use of ultrasound to detect bladder shape
and behavior during storage and voiding is noninvasive
and may omit some of the sensory artifacts associated
with catheter insertions and the use of nonphysiological
filling rates. A recent study utilized novel data analytical
methods to assess the shape of the bladder in the
transversal plane during water loading‐induced natural
bladder filling in healthy women and women diagnosed
with OAB who had undergone previous urodynamics.22

It was shown that the sphericity index of the bladder in
transverse view significantly increases during involun-
tary bladder contractions (DO) in OAB patients, and as
such this development may serve as a noninvasive
diagnostic tool to assess bladder shape and behavior.
The identification of parameters associated with non-
voiding involuntary contractions that can be investi-
gated using ultrasound imaging of the LUT indicates
that this noninvasive tool gives us access to measure-
ments of LUT behavior that can be analyzed in a data‐
driven approach. Another recent study presents meth-
ods that may enable semiautomated detection of
bladder neck funnelling and the measurement of

posterior urethra‐vesical angles in women on ultra-
sound imaging.23 It was shown that the semiautomated
approaches developed in this study have high repeat-
ability and agreement with manual raters. The further
refinement of these methods using ML may improve the
diagnostic value of ultrasound imaging of the LUT and
may help to identify novel parameters associated with
LUT dysfunction for clinical interpreters to focus on.
ML may also help in this modality also to reduce
interobserver variability and variability in diagnostic
interpretation between different clinicians.21

Video UDS using fluoroscopic imaging of the bladder
and surrounding structures, offers another accessible
diagnostic tool that provides a detailed data set with
information regarding LUT behavior. The information
contained in these data sets is difficult to extract for
trained clinicians, and automated approaches may help
to analyze video urodynamic data in an efficient and
objective manner. A recent study designed ML tools that
analyzed video urodynamic data obtained from spina
bifida patients to classify the severity of bladder
dysfunction in this patient group.24 It was shown that
models built from urodynamic pressure recordings and
fluoroscopic video urodynamic data were able to classify
LUT dysfunction in an automated approach with a
moderately high accuracy (70%). Another study used
fluoroscopic imaging to identify parameters associated
with changes in bladder shape and bladder neck
movement before and after therapeutic interventions
for stress urinary incontinence.25 It was suggested,
however, that parameters regarding bladder shape and
bladder neck movement were altered by the intervention
and may be related to the observed clinical effect.

By enabling more detailed investigation of the
LUT using ultrasound and fluoroscopic urodynamic
imaging data combined with data‐driven pattern
recognition approaches of LUT behavior in different
patient groups, the development of ML tools to analyze
and interpret urodynamic imaging data may enable the
identification of novel diagnostic parameters regarding
LUT behavior and assess the relationship between
these parameters and LUT dysfunction. These ad-
vances have great potential to improve our under-
standing of the different aetiologies associated with
LUT dysfunction and enable a more accurate, efficient,
and objective diagnosis of different pathologies. Fur-
thermore, these developments, if properly validated,
may help to improve our understanding of the exact
working mechanisms of currently used therapeutic
approaches and potentially lead to the identification of
pathophysiological mechanisms that can be targeted in
novel therapeutic developments.
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5 | PROPOSALS AND
GUIDELINES FOR FUTURE WORK
WITH ML IN URODYNAMICS

Given, then, that applications are possible but have not
yet reached full potential for clinical use, the Think Tank
developed the following suggestions for the use of ML in
urodynamics:

• Continue using classical processing methods where
sufficiently useful, for instance, filtering noise from
pressure data, or existing software aids for good
urodynamic practice.

• Ensure training methods and data sets are described
transparently.

• Continue current user training initiatives, treating ML
as a tool but not a substitute for operators.

• Involve ML specialists in study design and practice.
• Maintain principles of good clinical practice, as for all
research.

• Focus on areas that have well‐defined endpoints/
outputs, to enable labeling for training and testing to
be carried out with sufficient clarity, for example, BOO
is well‐defined, intrinsic sphincter deficiency is not.

• For those endpoints defined in accord with the
suggestion above, giving a likelihood of the result,
rather than a binary yes/no result, is likely to be more
realistic and useful clinically.

• Consider clinical areas that focus on patient benefit,
rather than, for example, methods of measurement.

The following areas are proposed as useful directions
for research studies. In each case, it is suggested that the
requisite large volume of clinical data is assembled,
labeled where necessary for the ML technique employed,
and the outcomes independently validated using diverse,
supervised data sets.

• Can areas of diagnostics or classification be identified
where practitioners consider patterns to exist, but
which cannot be defined reliably, for example, flow
curve shape, or artifact recognition?

• Can we assemble large, labeled data sets that include
both good and variable (“noisy”) quality data for
training and testing for real‐world clinical application?

• Can analysis of symptom measures, bladder diaries
and patient phraseology give more diagnostic accuracy
in tandem with current methods?

• Can automatic prompts be developed to guide patients
when completing bladder diaries and symptom scores?

• Can we improve the use of multifactorial inputs,
combining lifestyle, behaviors, symptoms and signs, to
better inform clinical diagnosis and management?

• Can we identify any barriers that exist for user and
patient acceptance of automated diagnostics?
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