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a b s t r a c t

Uncertainty is unavoidable in modeling dynamical systems and it may be represented
mathematically by differential inclusions. In the past, we proposed an algorithm to
compute validated solutions of differential inclusions; here we provide several theo-
retical improvements to the algorithm, including its extension to piecewise constant
and sinusoidal approximations of uncertain inputs, updates on the affine approximation
bounds and a generalized formula for the analytical error. The approach proposed is
able to achieve higher order convergence with respect to the current state-of-the-art. We
implemented the methodology in Ariadne, a library for the verification of continuous and
hybrid systems. For evaluation purposes, we introduce ten systems from the literature,
with varying degrees of nonlinearity, number of variables and uncertain inputs. The
results are hereby compared with two state-of-the-art approaches to time-varying
uncertainties in nonlinear systems.

© 2022 Published by Elsevier Ltd.

1. Introduction

In this paper we present a method for computing rigorous solutions of uncertain nonlinear dynamical systems in
ontinuous-time, which is an important sub-problem in the verification of uncertain nonlinear hybrid systems. Uncertainty
n the system arises due to environmental disturbances and modeling discrepancies. The former include input and output
isturbances, and noise on sensors and actuators; the latter account for the unavoidable approximation of a model with
espect to the real system due to unmodeled phenomena, order reduction and parameter variations over changes of
he environment and variations over time of the modeled system. These forms of uncertainty and imprecision may be
ppropriately modeled by differential inclusions.
Differential inclusions are a generalization of differential equations having multivalued right-hand sides

ẋ(t) ∈ F (x(t)), x(0) = x0, (1)

ee [1–3]. As well as being an important class of uncertain system models, they can also be used to model differential
quations with discontinuities, by taking the closed convex hull of the right-hand side as proposed by Filippov [4],
ven more importantly, they arise from the analysis of complex or large-scale systems using model-order reduction or
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compositional analysis. When applying model-order reduction techniques to replace a high-order system of differential
equations ẋ = f (x) by a low-order system, the differential inclusion form ż ∈ h(z) + [−ϵ, ϵ] captures the unmodeled
influences in the reduced-order system. When components of a complex system depend on one another, we can decouple
them by replacing inputs from other components with noise that varies over the range of possible values, resulting
in smaller but uncertain subsystems (see [5]). Ability to identify these subsystems becomes essential in compositional
analysis of complex systems represented by hybrid automata (see [6]).

Another important application area for differential inclusions is control theory. Assume a control system

ẋ(t) = f (x(t), u(t)), x(0) = x0, (2)

where u(t) ∈ U is not exactly known. Then, one may need to compute reachable sets corresponding to all admissible
inputs which, under certain assumptions, is equivalent to computing the reachable set of a differential inclusion, see
Theorem 1. A recent book [7] gives more insight on the application of differential inclusions in control theory.

One of the first algorithms for obtaining solution sets of a differential inclusion was given in [8,9]. In [8] they used
viability kernels and in [9] they considered Lipschitz differential inclusions, giving a polyhedral method for obtaining an
approximation of the solution set to an arbitrary known accuracy. In the case where F is only upper-semicontinuous with
compact, convex values, it is possible to compute arbitrarily accurate over-approximations to the solution set, as shown
in [10].

In recent years, the focus of approximating reachable set shifted to providing rigorous solutions, i.e. over-
approximations of the solution set, and several algorithms have been proposed. Interval Taylor models were used
in [11,12]; exponential enclosure technique was used in [13]; an algorithm based on comparison theorems was given
in [14]; support vector machines were used in [15]; a Lohner-type algorithm was used in [16,17]; conservative
linearization was used in [18]; a set-oriented method in [19], and polynomialization was used in [20,21].

In [22] ellipsoidal enclosures were developed to provide inner and outer (thick) enclosures to the reachable sets of
uncertain systems. This technique involves temporal series expansion with assumption that uncertain input is piece-wise
constant. Nevertheless, for comparison purposes, more suitable are [20,21], and [12], since [20] provides convergence
analysis, [21] is higher-order method, and [12] uses the same function calculus as our method (Taylor models). However,
only [12,21] are implemented in state-of-the-art tools similar to the tool we use, Ariadne, i.e. CORA and Flow*,
respectively.

Finding correct balance between speed and accuracy is a challenging issue that depends on the application domain.
While for online applications speed is crucial, accuracy may be a matter of life and death in cases such as a robot
performing laser incision on a patient, see [23–25], or simply be critical for cost and effectiveness as in generic robotic
automation [26]. As noted in these papers, the model of the system takes the form of a hybrid system, consisting of a
discrete control part that operates in a continuous environment whose dynamics exhibits uncertainties.

Regarding the application to hybrid systems, there are three main components in the analysis of their dynamics:
applying the discrete transitions, computing the continuous behavior, and resolving the guard conditions governing the
interaction between the continuous and discrete dynamics. When extending the capabilities of a reachability analysis tool
from deterministic to nondeterministic systems, applying the discrete transitions is relatively straightforward: one simply
parametrizes the set of possible successor states, as one would parametrize a set of initial states. Similarly, resolving the
guard conditions involves the introduction of an additional parameter for the crossing time. In both cases, the resulting set
remains finite dimensional. However, when computing the continuous behavior, since the disturbance is time-dependent,
the set of disturbances is infinite-dimensional, so a direct parametrization is infeasible. For this reason, developing
methods computing the continuous behavior is the critical part of the extension, and requires additional theory. It is
this theory which we address in this paper.

Our objective in particular is to provide an over-approximation of the reachable set of an input-affine differential
inclusion of the form

ẋ(t) = f (x(t)) +

m∑
i=1

gi(x(t))vi(t); x(t0) = x0, (3)

where x : R → Rn, vi(·) ∈ [−Vi, Vi] is a bounded measurable function for i = 1, . . . ,m and Vi > 0 for all i. Our method
focuses on creating an auxiliary system

ẏ(t) = f (y(t)) +

m∑
i=1

gi(y(t))wi(t); y(t0) = y0, w(·) ∈ W , (4)

by finding appropriate functions w(t) and a set W , such that the difference between solutions ∥x(t)− y(t)∥ is as small as
desired.

Numerical results given in this paper were obtained using the function calculus implemented in Ariadne [27], a tool
for reachability analysis and verification of cyber physical systems. In particular, we use Taylor models for the rigorous
approximation of continuous functions. A Taylor model expresses approximations to a function in the form of a polynomial
(defined over a suitably small domain) plus an interval remainder, see [28]. While Taylor model calculus already provides

us with over-approximations when performing calculations such as antiderivation, direct application of it to the system
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(3) is not possible since v(·) belongs to an infinite dimensional space. Instead, we propose to define an auxiliary system,
hose time-varying inputs are finitely parameterized, and to which we can apply Taylor model calculus to obtain over-
pproximations, compute the difference between the two systems, and add this difference (analytical error) to achieve an
ver-approximation of the reachable set. Moreover, we desire to achieve third-order error in a single step approximation.
In our previous papers [29,30], the algorithm for obtaining an over-approximation in such a way was presented,

erivation in the one-dimensional additive case with its corresponding error formula was given, cases of affine, step
nd sinusoidal auxiliary functions were revealed and some computational results were showcased. Here, we provide full
erivation of the local error for a general input-affine system and extract formulas for the error in several cases. Namely,
e present errors of O(h), O(h2), and O(h3) explicitly with suitable w(t). Formulas for the local error are obtained based on

Lipschitz constants, logarithmic norm and bounds on higher-order derivatives. Computational results are more thorough
providing insights on dependency on the simplification and noise levels. In particular, we demonstrate efficiency and
accuracy of our algorithm by testing ten nonlinear systems of different sizes and inputs. Comparison of reachable sets is
made with the ones produced by Flow* and CORA.

The paper is organized as follows. In Section 2, we give key ingredients of the theory used. In Section 3, we give a
mathematical setting for obtaining over-approximations of the reachable sets of input-affine differential inclusions; we
derive the local error, and we give formulas for obtaining the error of second and third orders. Implementation aspects are
presented in Section 4 and numerical testing of the algorithm and its comparison to other tools is presented in Section 5.
Some proofs and numerical results were left out of this paper for space reasons: the interested reader can refer to the
arXiv document [31] for additional details.

2. Preliminaries

By a solution of (1), given F is a continuous set-valued map with compact and convex values, we mean an absolutely
continuous function x : [0, T ] → Rn such that, for almost all t ∈ [0, T ], x(·) is differentiable at t and ẋ(t) ∈ F (x(t)). The
solution set ST (x0) ⊂ C([0, T ],Rn) is defined as

ST (x0) = {x(·) ∈ C([0, T ],Rn) | x(·) is a solution of (1)}.

he reachable set at time t , R(x0, t) ⊂ Rn, is defined as

R(x0, t) = {x(t) ∈ Rn
|x(·) ∈ St (x0)}.

The following theorem states conditions under which the solution sets of control system and differential inclusion
coincide.

Theorem 1. Let f : X × U → X be continuous where U is a compact separable metric space and assume that there exists an
interval I and an absolutely continuous x : I → Rn, such that for almost all t ∈ I ,

ẋ(t) ∈ f (x(t),U).

Then there exists a Lebesgue measurable u : I → U such that for almost all t ∈ I , x(·) satisfies

ẋ(t) = f (x(t), u(t)).

The theorem and the proof can be found in [1, Corollary 1.14.1]. For further work on the theory of differential inclusions
see [1–3].

Here, we use the supremum norm for the vector norm in Rn, i.e., for x ∈ Rn, ∥x∥∞ = max{|x1|, . . . , |xn|}. We often use
abbreviation conv{x(t), y(t)} to denote convex full between x(t) and y(t). Specifically, we mean a line between x(t) and
y(t) for each t ∈ [a, b], i.e. all z(t) = sx(t) + (1 − s)y(t), s ∈ [0, 1] and all t ∈ [a, b]. For a function f : D ⊂ Rn

→ R the
norm used is ∥f ∥∞ = supx∈D ∥f (x)∥∞.

The corresponding matrix norm instead is

∥Q∥∞ = max
k=1,...,n

{ n∑
i=1

|qki|
}
.

Given a square matrix Q and a matrix norm ∥ · ∥, the logarithmic norm is defined by

λ(Q ) = lim
h→0+

∥I + hQ∥ − 1
h

.

There are explicit formulas for the logarithmic norm for several matrix norms, see [32,33]. The formula for the logarithmic
norm corresponding to the matrix norm we use is

λ∞(Q ) = max
k

{qkk +

∑
i̸=k

|qki|}.

ogarithmic norm was introduced independently in [32], and [34] in order to derive error estimates to initial value
roblems, see also [35]. Using the logarithmic norm is advantageous over the use of the Lipschitz constant since it can
3
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have negative values, and thus, one can distinguish between forward and reverse time integration, and stable and unstable
systems. We, then, use the following theorem to give an estimate between a solution of a differential equation and an
almost solution.

Theorem 2. Let x(t) satisfy the differential equation ẋ(t) = f (t, x(t)) with x(t0) = x0, where f is Lipschitz continuous.
uppose that there exist functions l(t), δ(t) and ρ such that λ(Df (t, z(t))) ≤ l(t) (Df (·) denotes the Jacobian matrix) for all
(t) ∈ conv{x(t), y(t)} and ∥ẏ(t) − f (t, y(t))∥ ≤ δ(t), ∥x(t0) − y(t0)∥ ≤ ρ. Then for t ≥ t0 we have

∥y(t) − x(t)∥ ≤ e
∫ t
t0

l(s)ds
(

ρ +

∫ t

t0

e−
∫ s
t0

l(r)dr
δ(s)ds

)
.

The theorem is presented in [33].
Numerical computations of reachable sets of time-varying systems require a rigorous way of computing with sets and

unctions in Euclidean space. A suitable calculus is given by the Taylor models defined in [28].

efinition 1. Let f : D ⊂ Rv
→ R be a function that is (n+ 1) times continuously partially differentiable on an open set

ontaining the domain D. Let x0 be a point in D and P the nth order Taylor polynomial of f around x0. Let I be an interval
uch that

f (x) − P(x − x0) ∈ I for all x ∈ D

hen the pair (P, I) is an nth order Taylor model of f around x0 on D.

A full description of Taylor models as used in Ariadne is given in [36].

. Analytical error

In this section, we present theoretical grounds for construction of the auxiliary system presented in Eq. (4) with
ormulas for the local error on the difference between the true system and its auxiliary counterpart.

Let [0, T ] be an interval of existence of (3). Let 0 = t0, t1, . . . , tn−1, tn = T be a partition of [0, T ], and let hk = tk+1−tk.
or x ∈ Rn and v(·) ∈ L∞([tk, tk+1];Rm), define φ(xk, v(·)) = x(tk+1) which is the solution of (3) at time tk+1 with x(tk) = xk.
t each time step we want to compute an over-approximation Rk+1 to the set

reach(Rk, tk, tk+1) = {φ(xk, v(·)) | xk ∈ Rk and v(·) ∈ L∞([tk, tk+1];Rm)},

here L∞([tk, tk+1];Rm) is the space of essentially bounded measurable functions from interval [tk, tk+1] into Rm, i.e., the
unctions are bounded except on a set of measure zero. Since L∞ is infinite-dimensional, we aim to approximate the set
f all solutions by restricting the disturbances to a finite-dimensional space by creating an auxiliary system (Eq. (4)). Let
set of functions Wk ⊂ C([tk, tk+1];Rm) be parameterized as Wk = {w(ak, ·) | ak ∈ A ⊂ Rp

}. For example, Wk can be a set
of all linear functions of the form w(ak, t) = a0k + a1kt . We then need to find an error bound ϵk such that

∀ vk ∈ L∞([tk, tk+1]; V ), ∃ ak ∈ A s.t. ∥φ(xk, vk(·)) − φ(xk, w(ak, ·))∥ ≤ ϵk. (5)

Note that we do not need to find explicitly infinitely many ak’s. Instead we need to choose the correct dimension (Rp)
and provide bounds to get a desired error ϵk.

3.1. Error derivation

Let

• f : Rn
→ Rn is a Cp function,

• each gi : Rn
→ Rn is a Cp function,

• each vi(·) is a measurable function such that vi(t) ∈ [−Vi, +Vi] for some Vi > 0.

Here, p ≥ 1 depends on the desired order and will be precisely defined later. We write for simplicity wi(t) = wi(ak, t)
i = 1, . . . ,m and assume that they are continuously differentiable real-valued functions. The error representing the
difference between the exact solution and the auxiliary system is derived mostly using integration by parts until a desired
order (e.g., O(h3)) is achieved. In what follows, Df denotes the Jacobian matrix, D2f denotes the Hessian matrix, and λ(·)
denotes the logarithmic norm of a matrix defined in Section 2. For convenience of notation, we write hk = tk+1 − tk,
tk+1/2 = tk + hk/2 = (tk + tk+1)/2, and q̂(t) =

∫ t
tk
q(s) ds.

The one-step error in the difference between xk+1 and yk+1 is derived as follows. Writing (3) and (4) as integral
equations, we obtain:
4
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x(tk+1) = x(tk) +

∫ tk+1

tk

f (x(t)) +

m∑
i=1

gi(x(t))vi(t) dt; (6a)

y(tk+1) = y(tk) +

∫ tk+1

tk

f (y(t)) +

m∑
i=1

gi(y(t))wi(t) dt. (6b)

Without loss of generality, we assume that x(tk) = y(tk) for all k ≥ 0. To be precise, initially, we assume x(t0) = y(t0).
After obtaining an over-approximation R1 to the solution set at time t1, we use R1 as the set of initial points of both the
riginal system (3) and the auxiliary one (4) for the next time step. Thus we have x(t1) = y(t1) ∈ R1. We compute R2, and
onsider it to be the set of initial points for both equations at time t2. Proceeding like this, we have x(tk) = y(tk), for all
≥ 0. Therefore, the difference between the two systems in (6) becomes

x(tk+1) − y(tk+1) =

∫ tk+1

tk

f (x(t)) − f (y(t)) dt (7a)

+

m∑
i=1

∫ tk+1

tk

gi(x(t))vi(t) − gi(y(t))wi(t) dt. (7b)

Integrating by parts the term (7a), we obtain

(7a) =

[
(t − tk+1/2)

(
f (x(t)) − f (y(t))

)]tk+1

tk

−

∫ tk+1

tk

(t − tk+1/2)
d
dt

(
f (x(t)) − f (y(t))

)
dt

= (hk/2)
(
f (x(tk+1)) − f (y(tk+1))

)
−

∫ tk+1

tk

(t − tk+1/2)
(
Df (x(t))ẋ(t) − Df (y(t))ẏ(t)

)
dt.

There are two ways that we deal with term (7b). First we rewrite the term inside the integral as

gi(x(t))vi(t) − gi(y(t))wi(t) = (gi(x(t)) − gi(y(t)))wi(t) + gi(x(t)) (vi(t) − wi(t)),

and then integrate by parts the second term to obtain

(7b) =

m∑
i=1

∫ tk+1

tk

(gi(x(t)) − gi(y(t)))wi(t) dt

+

m∑
i=1

[
gi(x(t))(v̂i(t) − ŵi(t))

]tk+1

tk
−

m∑
i=1

∫ tk+1

tk

d
dt

(
gi(x(t))

)
(v̂i(t) − ŵi(t)) dt

=

m∑
i=1

∫ tk+1

tk

(gi(x(t)) − gi(y(t)))wi(t) dt (8a)

+

m∑
i=1

gi(x(tk+1))(v̂i(tk+1) − ŵi(tk+1)) (8b)

−

m∑
i=1

∫ tk+1

tk

Dgi(x(t)) ẋ(t) (v̂i(t) − ŵi(t)) dt (8c)

The second derivation is obtained just by integrating by parts,

(7b) =

m∑
i=1

[
gi(x(t))v̂i(t) − gi(y(t))ŵi(t)

]tk+1

tk

−

m∑
i=1

∫ tk+1

tk

d
dt

(
gi(x(t))

)
v̂i(t) −

d
dt

(
gi(y(t))

)
ŵi(t) dt

=

m∑
i=1

gi(x(tk+1))v̂i(tk+1) − gi(y(tk+1))ŵi(tk+1) (9a)

−

m∑∫ tk+1

Dgi(x(t))v̂i(t)ẋ(t) − Dgi(y(t))ŵi(t)ẏ(t) dt (9b)

i=1 tk

5
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Eqs. (8) and (7a) can be used to derive second-order local error estimates. By applying the mean value theorem we obtain

f (x(tk+1)) − f (y(tk+1)) =

∫ 1

0
Df (z(s))ds

(
x(tk+1) − y(tk+1)

)
.

ere, z(s) = x + sh is a line between x and x + h (for x, x + h ∈ V , L(x; x + h) ⊆ V ), Df denotes Jacobian matrix of f , and
ntegration is understood component-wise. Hence,

(7a) = (hk/2)
∫ 1

0
Df (z(s))ds

(
x(tk+1) − y(tk+1)

)
(10a)

−

∫ tk+1

tk

(t − tk+1/2)
(
Df (x(t))ẋ(t) − Df (y(t))ẏ(t)

)
dt. (10b)

Separate the second part of the integrand in (10b) as

Df (x(t)) ẋ(t) − Df (y(t)) ẏ(t) = Df (x(t))
(
ẋ(t) − ẏ(t)

)
(11a)

+
(
Df (x(t)) − Df (y(t))

)
ẏ(t). (11b)

The first term of the right-hand-side can be expanded using

ẋ(t) − ẏ(t) = f (x(t)) − f (y(t)) +

m∑
i=1

(
gi(x(t)) − gi(y(t))

)
wi(t)

+

m∑
i=1

gi(x(t))
(
vi(t) − wi(t)

)
.

Hence, we obtain

(7a) = (hk/2)
∫ 1

0
Df (z(s))ds (x(tk+1) − y(tk+1)) (12a)

−

∫ tk+1

tk

(t − tk+1/2) Df (x(t)) (f (x(t)) − f (y(t))) dt (12b)

−

m∑
i=1

∫ tk+1

tk

(t − tk+1/2) Df (x(t)) (gi(x(t)) − gi(y(t)))wi(t) dt (12c)

−

m∑
i=1

∫ tk+1

tk

(t − tk+1/2) Df (x(t)) gi(x(t)) (vi(t) − wi(t)) dt, (12d)

−

∫ tk+1

tk

(t − tk+1/2) (Df (x(t)) − Df (y(t))) ẏ(t)dt (12e)

where (12a) is (10a), (12b)–(12d) comes from (11a), and (12e) comes from (11b). Note that for any C1-function h(x) we
can write

|h(x(t)) − h(y(t))| ≤ ∥Dh(z(t))∥ · |x(t) − y(t)|

where z(t) ∈ conv{x(t), y(t)}, i.e. closure of the convex hull of {x(t), y(t)}. This will allow us to obtain third-order bounds
for terms ((12b), (12c), (12e)). In order to obtain a third-order estimate for the term (12d), a further integration by parts
is needed. We obtain:

(12d) = −

m∑
i=1

[
Df (x(t)) gi(x(t))

∫ t

tk

(s − tk+1/2)(vi(s) − wi(s))ds
]tk+1

tk

+

∫ tk+1

tk

(
D2f (x(t)) gi(x(t)) + Df (x(t))Dgi(x(t))

)
ẋ(t)∫ t

tk

(s − tk+1/2)(vi(s) − wi(s))ds dt.
(13d)

sing a derivation similar to the one used for (12), again using the mean value theorem and integration by parts, we
btain

(9a) + (9b) =

m∑∫ 1

Dgi(z(s))ds
(
x(tk+1) − y(tk+1)

)
ŵi(tk+1) (14a)
i=1 0

6
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+

m∑
i=1

gi(x(tk+1))
(
v̂i(tk+1) − ŵi(tk+1)

)
(14b)

−

m∑
i=1

∫ tk+1

tk

(
Dgi(x(t)) − Dgi(y(t))

)
ẏ(t) ŵi(t)dt (14c)

−

m∑
i=1

∫ tk+1

tk

Dgi(x(t))
(
f (x(t)) − f (y(t))

)
ŵi(t) dt (14d)

−

m∑
i=1

∫ tk+1

tk

Dgi(x(t)) f (x(t))
(
v̂i(t) − ŵi(t)

)
(14e)

−

m∑
i=1

m∑
j=1

∫ tk+1

tk

Dgi(x(t))
(
gj(x(t)) − gj(y(t))

)
wj(t) ŵi(t) dt (14f)

−

m∑
i=1

m∑
j=1

∫ tk+1

tk

Dgi(x(t)) gj(x(t))
(
vj(t)v̂i(t) − wj(t)ŵi(t)

)
dt. (14g)

The term (14e) can be further integrated by parts to obtain

(14e) = −

m∑
i=1

[
Dgi(x(t)) f (x(t))

∫ t

tk

(v̂(s) − ŵ(s))ds
]tk+1

tk

+

m∑
i=1

∫ tk+1

tk

(
D2gi(x(t)) f (x(t)) + Dgi(x(t))Df (x(t))

)
ẋ(t) ( ˆ̂vi(t) − ˆ̂wi(t)) dt (15e)

and the term (14g) to obtain

(14g) = −

m∑
i=1

m∑
j=1

[
Dgi(x(t)) gj(x(t))

∫ t

tk

(
vj(s)v̂i(s) − wj(s)ŵi(s)

)
ds

]
+

m∑
i=1

m∑
j=1

∫ tk+1

tk

(
D2gi(x(t)) gj(x(t)) + Dgi(x(t))Dgj(x(t))

)
ẋ(t)∫ t

tk

(
vj(s)v̂i(s) − wj(s)ŵi(s)

)
ds dt.

(15g)

Eqs. (12)–(15) can be used to derive third-order local error estimates.

3.2. Error formulas

We proceed to give formulas for the local error having different assumptions on functions f (·), gi(·) and wi(·). We
present necessary and sufficient conditions for obtaining local errors of O(h), O(h2), O(h3), and give a methodology for
obtaining even higher-order errors. Moreover, we give formulas for the error calculation in several cases.

Assume that we have a bounding box B on the solutions of (3) and (4) for all t ∈ [0, T ]. This is easily achievable using
the Euler method on the initial set subject to the system dynamics. Then, we can obtain constants r , Vi, K , Ki, L, Li, H , Λ
such that

|vi(t)| ≤ Vi, |wi(t)| ≤ rVi ∥f (z(t))∥ ≤ K , ∥gi(z(t))∥ ≤ Ki λ(Df (z(t))) ≤ Λ,

∥Df (z(t))∥ ≤ L, ∥Dgi(z(t))∥ ≤ Li, ∥D2f (z(t))∥ ≤ H, ∥D2gi(z(t))∥ ≤ Hi,
(16)

for each i = 1, . . . ,m, and for all t ∈ [0, T ], and z(·) ∈ B. We also set

K ′
=

m∑
i=1

Vi Ki, L′
=

m∑
i=1

Vi Li H ′
=

m∑
i=1

Vi Hi.

When possible we estimate the difference of the solutions using the logarithmic norm rather than the Lipschitz constant.
To obtain the actual error value, we replace variables and functions by their bounds from Eq. (16). In each of the cases,
wi(a, ·) is a real valued finitely-parameterized function with a ∈ A ⊂ RN . In general, the number of parameters N depends

x
on the number of inputs and the order of error desired. In what follows, we denote ϕ(x) = (e − 1)/x.

7
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3.2.1. Local error of O(h)

Theorem 3. For any k ≥ 0, and all i = 1, . . . ,m, if

• f (·) is a Lipschitz continuous vector function,
• gi(·) are continuous vector functions, and
• wi(t) = 0 on [tk, tk+1],

hen the local error is of O(h). Moreover, a formula for the error is:⏐⏐x(tk+1) − y(tk+1)
⏐⏐ ≤ hk K ′ ϕ(Λhk). (17)

lternatively, we can use⏐⏐x(tk+1) − y(tk+1)
⏐⏐ ≤ hk

(
2K + K ′

)
. (18)

roof. Since wi(t) = 0, we have ẏ(t) = f (y(t)). Using the bounds given in (16), we can take l(t) = Λ in Theorem 2 and
ince ẏ(t) −

(
f (y(t)) +

m∑
i=1

gi(y(t))vi(t)
) =

 m∑
i=1

gi(y(t))vi(t)
 ≤

m∑
i=1

Ki Vi = K ′,

we can take δ(t) = K ′. Hence the formula (17) is obtained directly from Theorem 2. Note that ϕ(Λhk) = 1+ Λhk/2+ · · ·

s O(1), so the local error is of O(h). Eq. (18) can be obtained by noting that supt∈[tk,tk+1] ∥f (x(t)) − f (y(t))∥ ≤ 2K . □

.2.2. Local error of O(h2)
In order to obtain O(h2) error, we need wi(·) functions to satisfy∫ tk+1

tk

vi(t) − wi(t) dt = 0 (19)

n [tk, tk+1]. Simplest way is to set wi to be a constant wi =
1
hk

∫ tk+1
tk

vi(t)dt .

heorem 4. For any k ≥ 0, and all i = 1, . . . ,m, if

• f (·), gi(·) are C1 vector functions, and
• wi(t) are real valued, constant functions defined on [tk, tk+1] by wi =

1
hk

∫ tk+1
tk

vi(t)dt,

hen a formula for calculation of the local error is given by

∥x(tk+1) − y(tk+1)∥ ≤ h2
k

((
K + K ′

)
L′/3 + 2 K ′

(
L + L′

)
ϕ(Λhk)

)
. (20)

roof. To derive (20), we obtain ∥x(tk+1)−y(tk+1)∥ from Eqs. (7a) and (8). Using the bounds given in (16), it is immediate
hat ∥ẋ∥ ≤ K +K ′, and straightforward to show that |wi(t)| ≤ Vi and |v̂i(t) − ŵi(t)| ≤ 2Vi hk for t ∈ [tk, tk+1]. However, we
an get a slightly better bound |v̂i(t) − ŵi(t)| ≤ Vi hk/2 by considering the following: Without loss of generality, assume
∈ [0, h], and let

ai(t) =
1
t

∫ t

0
vi(s) ds, bi(t) =

1
h − t

∫ h−t

t
vi(s) ds

and define

wi(t) = (t ai(t) + (h − t) bi(t))/h.

Then, wi = wi(t) is constant for all t ∈ [0, h]. Notice that v̂i(t) = ta(t) and ŵi(t) = (t/h)(ta(t) + (h − t)b(t)). Hence, we
ave

v̂i(t) − ŵi(t) = t(h − t)(a(t) − b(t))/h,
|v̂i(t) − ŵi(t)| = t(h − t)|a(t) − b(t)|/h ≤ Vi h/2.

dditionally, we can prove that
∫ tk+1
tk

|v̂i(t) − ŵi(t)| dt ≤ Vi h2
k/3. Take z(t) to satisfy the differential equation ż(t) = f (z(t)).

rom Theorem 2, we have
′

∥x(t) − z(t)∥, ∥y(t) − z(t)∥ ≤ hk K ϕ(Λhk)
8
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f

and hence

∥x(t) − y(t)∥ ≤ 2 hk K ′ ϕ(Λhk)

for t ∈ [tk, tk+1]. Taking the norm of the Eqs. (7a), (8a), (8c) we obtain the desired formula (20). □

Remark 1. Note that as Λ → 0, then eΛ h
−1

Λ h → 1. This is also consistent with Theorem 2. In fact, if Λ = 0, we get

∥x(t) − y(t)∥ ≤ 2 hk

( m∑
i=1

Ki Vi

)
and therefore,

∥x(tk+1) − y(tk+1)∥ ≤ h2
k

((
K + K ′

)
L′/3 + 2 K ′

(
L + L′

))
, (21)

which is still of O(h2). Further, we will not give explicit formulas for the error when Λ = 0.

Remark 2. Computation of the local error is complicated by the fact that |vi(t) − wi(t)| is not uniformly small. This
means that the terms g(x)(vi − wi) must be integrated over a complete time step in order to be able to use the fact that∫ tk+1
tk

vi(t) dt =
∫ tk+1
tk

wi(t) dt , and this must be done without first taking norms inside the integral. As a result, we cannot
apply results on the logarithmic norm directly. Instead, we ‘‘bootstrap’’ the procedure by applying a first-order estimate
for ∥x(t) − y(t)∥ valid for any t ∈ [tk, tk+1].

3.2.3. Local error O(h2) + O(h3)
We can attempt to improve the error bounds by allowing wi(t) to have two independent parameters. In the general

case, we shall see that this gives rise to a local error estimate containing terms of O(h2) and O(h3), rather than the
anticipated pure O(h3) error.

We seek two-parameter wi(t) functions which satisfy the following pair of equations∫ tk+1

tk

vi(t) − wi(t) dt = 0; (22a)∫ tk+1

tk

(t − tk+1/2) (vi(t) − wi(t)) dt = 0. (22b)

Among the various possibilities, we found that the following three representations for wi(t) have good theoretical
properties:

(a) Step-function representation in the form:

wi(t) =

{
ai,0 if tk ≤ t < tk+1/2
ai,1 if tk+1/2 ≤ t ≤ tk+1,

where tk+1/2 = tk + h/2.
(b) Affine function given as:

wi(t) = ai,0 + ai,1(t − tk+1/2)/hk

(c) Sinusoidal function in the form of:

wi(t) = ai,0 + ai,1 sin
(
γ (t − tk+1/2)/hk

)
for γ = 4.1632.

To obtain appropriate sets of input functions wi(t), we aim to match the moments of vi(t):

µi,0 =
1
h

∫ tk+1
tk

vi(t) dt;

µi,1 =
4
h2

∫ tk+1
tk

(t − tk+1/2)vi(t) dt.

These satisfy |µi,0| ≤ Vi and |µi,1| ≤ (1 − µ2
i,0/V

2
i )Vi, hence they can be parameterized as

µi,0 = ci,0,

µi,1 = (1 − c2i,0/V
2
i )ci,1

or |ci,0|, |ci,1| ≤ Vi. If wi(·) are step-functions in the form presented in (a), then ai,0 = µi,0 − µi,1 and ai,1 = µi,0 + µi,1.
To obtain the exact set for parameters ai,0, ai,1 take

vi(t) =

{
−Vi for t ∈ [tk, tk + τ )

+Vi for t ∈ [tk + τ , tk+1].

9
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Then we get

µi,0 = (1 − 2τ/h)Vi

µi,1 = (4τ/h − 4τ 2/h2)Vi

and hence

ai,0 = (1 − 6τ/h + 4τ 2/h2)Vi

ai,1 = (1 + 2τ/h − 4τ 2/h2)Vi,

or which we find the bounds

|ai,0|, |ai,1| ≤ 5Vi/4 and |wi(t)| ≤ 5Vi/4.

e can further re-parameterize ai,0 and ai,1 by taking

ai,0 = Vi
(
ci,0 − (1 − c2i,0)ci,1

)
ai,1 = Vi

(
ci,0 + (1 − c2i,0)ci,1

)
,

here ci,0, ci,1 ∈ [−Vi, +Vi]. This yields precisely the parameter values corresponding to an actual input vi(t).
If wi(·) are affine functions, then solving (22) yields ai,0 = µi,0 and ai,1 = 3µi,1. To provide exact bounds for wi(t), for

given ai,0, we can maximize ai,1 which gives us ai,1 = 3(1 − a2i,0/V
2
i ) yielding the constraint

a2i,0 + |ai,1|/3 ≤ 1.

Re-parameterizing, we can set ai,0 = ci,0 and ai,1 = 3(1 − c2i,0/V
2
i )ci,1 with ci,0, ci,1 ∈ [−Vi, +Vi], which then gives

wi(t) = ci,0 + 3(1 − c2i,0/V
2
i )ci,1 (t − tk+1/2)/hk. (23)

Hence,

|ai,0| ≤ Vi, |ai,1| ≤ 3Vi(1 − (ai,0/Vi)2) and |wi(t)| ≤ 5Vi/3. (24)

Alternatively, if wi(t) are sinusoidal functions in the form given in (c), then ai,0 = µi,0 and ai,1 = p(γ )µi,1 where

p(2γ ) =
1
2γ /

(
sin(γ )/γ − cos(γ )

)
,

and the maximum value of |wi| is (p(γ ) + 1/4p(γ )) Vi. To obtain the smallest possible maximum value we minimize
p(γ ) + 1/4p(γ ) which yields γ ≈ 4.163152 with p(γ ) ≈ 1.146311, p(γ ) + 1/4p(γ ) ≈ 1.364402. Hence

wi(t) = ci,0 + (1 − c2i,0/V
2
i ) ci,1 sin(4.1632(t − tk+1/2));

|ci,0|, |ci,1| ≤ Vi; |wi| ≤ 1.3645 Vi.

In all cases (a–c) we see that |wi| ≤ r Vi, where r is a constant obtained depending on the choice of the wi(·) functions.
The bound for the local error is then given by the following theorem:

Theorem 5. For any k ≥ 0, and all i = 1, . . . ,m, if

• f (·) is a C2 vector function,
• gi(·) are non-constant C2 functions, and
• wi(t) are real-valued functions defined on [tk, tk+1] which satisfy Eqs. (22) with |wi(t)| ≤ r Vi for some constant r ∈ R,

then an error of O(h2) is obtained. The formula for the error is given by(
1 − L(hk/2) − hk r L′

)
∥x(tk+1) − y(tk+1)∥ ≤ (h2

k/4)(1 + r2) L′ K ′

+ (h3
k/4) (1 + r) K ′

(
(2rH ′

+ H) (K + rK ′) + L2 +
(
3rL + 2r2L′

)
L′
)
ϕ(Λhk)

+ (h3
k/24)(1 + r)

(
K + K ′

) (
3(H K ′

+ L L′) + 4(H ′K + LL′)
)
.

roof. To get the desired formula we have to provide bounds to equations in (13d) and (15e). With the assumptions
f the theorem, we can improve terms (12d) and (14e) such that they become (13d) and (15e), which are of O(h3). In
ddition, we use

∥ẋ(t)∥ ≤ K + K ′, ∥ẏ(t)∥ ≤ K + rK ′

∥x(t) − y(t)∥ ≤ hk (1 + r) K ′ ϕ(Λhk),

nd bound the rest of the terms in Eqs. (12) and (14). Formula for the error ∥x(tk+1)− y(tk+1)∥ is then easily obtained. □

We now show that with the assumptions of theorem we cannot in general obtain an error of O(h3). Specifically, if wi(t)
re two-parameter functions satisfying Eqs. (22), the following counterexample gives a system for which only O(h2) local
rror is possible.
10
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Example 1. Consider the following input-affine system which satisfies assumptions in Theorem 5:

ẋ1 = x2 + v1 + x1v2; ẋ2 = x1 + v2; x(tk) = xk.

Take inputs

v1(t) = sin
(
2π
hk

(t − tk)
)

, v2(t) = cos
(
2π
hk

(t − tk)
)

.

Using (22), we get w2(t) = 0, and w1(t) is nonzero (w1(t) can be explicitly calculated for all three functions but we do
not need it), hence the auxiliary systems looks like

ẏ1 = y2 + w1; ẏ2 = y1.

As shown in the previous section, the only term which might not have order h3
k is the term in (14g) which is reduced to

2∑
i=1

∫ tk+1

tk

Dg2(x(t))gi(x(t)) vi(t)v̂2(t)dt,

since Dg1 = 0. When i = 2, the term above is of O(h3) since 1
2

d
dt (v̂

2
i (t)) = vi(t)v̂i(t) and we can integrate by parts once

more. Therefore, we are left with∫ tk+1

tk

Dg2(x(t))g1(x(t)) v1(t)v̂2(t)dt = −
h2
k

4π
[1 0]T ,

a term of O(h2).

3.2.4. Local error of O(h3)
We showed that for a general input-affine system, a local error of order O(h3) cannot be obtained using two-parameter

approximate inputs wi(a0,i, a1,i, t). However if, in addition, we assume that gi(·) are constant functions or if we have a
ingle input then we can obtain a local error of O(h3). If gi(·) are constant functions, then the error calculation is equivalent
to the error calculation of an even simpler case, the so called additive noise case. The equation is then given by

ẋ(t) = f (x(t)) + v(t). (25)

ere, v(t) = (v1(t), . . . , vn(t)) is vector-valued.

orollary 1. For any k ≥ 0,

• if the system has additive noise,
• f (·) is a C2 function, and
• wi(t) are real-valued functions defined on [tk, tk+1] which satisfy Eqs. (22) with |wi(t)| ≤ r Vi, for all i = 1, . . . , n and

some constant r ∈ R

then an error of O(h3) is obtained:(
1 − (hk/2)L

)
∥x(tk+1) − y(tk+1)∥ ≤

h3
k

8
(1 + r) K ′ H (K + K ′)

+
h3
k

4
(1 + r) K ′

(
L2 + H (K + rK ′)

)
ϕ(Λhk).

(26)

The formula for the error in the additive noise case is simplified because L′
= H ′

= 0. If we write ∥v(t)∥ = K ′, then
he result follows directly from Theorem 5.

orollary 2. For any k ≥ 0, if

• the input-affine system has a single input, i.e., m = 1 in (3)
• f (·) and g(·) are C2 functions, and
• wi(t) are real-valued functions defined on [tk, tk+1] which satisfy Eqs. (22) with |wi(t)| ≤ r Vi, for all i = 1, . . . , n and

some constant r ∈ R

hen an error of O(h3) is obtained. The formula for the local error is given by(
1 − L(hk/2) − hk r L′

)
∥x(tk+1) − y(tk+1)∥ ≤

(h3
k/4) (1 + r) K ′

(
(2rH ′

+ H) (K + rK ′) + L2 +
(
3rL + 2r2L′

)
L′
)
ϕ(Λhk)

+ (h3
k/24)

(
K + K ′

) (
(1 + r)(3(H K ′

+ L L′) + 4(H ′K + LL′))

+8(1 + r2) (H ′ K ′
+ (L′)2)

)
.

11
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t

Table 1
Total number of parameters needed depending on the number of inputs m in the system. If wi(·) are polynomials, the highest
degree needed for at least one wi(·) is given.
# of inputs = m # of equations = total # of parameters = m(m + 3)/2 Highest degree d of a wi = ⌈(m + 1)/2⌉

1 2 1
2 5 2
3 9 2
4 14 3
5 20 3
6 27 4

10 65 5

Observing the error given by Eqs. (12) and (14), we see that if in addition to satisfying equations given in (22), the
functions wi(·) also satisfy∫ tk+1

tk

vi(t)v̂j(t) − wi(t)ŵj(t) dt = 0, (27)

hen we can get an error of O(h3). Since, functions wi(·) cannot be computed independently any more, the number of
parameters of each wi(·) will depend on the number of inputs. In Table 1, we present the total number of parameters
needed depending on the number of inputs in the system. In addition, if wi(·) are polynomials, we disclose the highest
degree required for at least one wi(·) so that a local error of O(h3) is obtained. However, further investigation in obtaining
suitable functions wi(t) is not desirable as it does not seem to be computationally feasible.

4. Implementation

The algorithm used for computing the reachable set of (3) is:

Algorithm 1. Let Rk = {hk(s) + [−εk, εk]
n

| s ∈ [−1, +1]pk} be an over-approximation of the set R(X0, tk). To compute an
over-approximation Rk+1 of R(X0, tk+1):

1. Create the auxiliary system

ẏ(t) = f (y(t), w(ak, t)), x(tk) = xk = yk, t ∈ [tk, tk+1], yk ∈ Rk, ak ∈ A.

2. Compute the necessary bounds as presented at the beginning of Section 3.1
3. Compute the uniform error bound ϵk which represents the distance between the two solutions, i.e., ∥φ(xk, vk(·)) −

φ(xk, w(ak, ·))∥ ≤ ϵk
4. Compute the flow of the auxiliary system via Taylor model integration, i.e., obtain (h(sk) + [−εk, εk]

n, ak) that
represents an over-approximation of the solution set (see Section 2 on computation in Ariadne).

5. Compute the set Rk+1 which over-approximates R(x0, tk+1) as Rk+1 = {(h(sk) + [−εk, εk]
n, ak) + [−ϵk, ϵk]

n
}, i.e., the

Taylor model obtained in step 5 ± the analytical error obtained in step 3.
6. Simplify parameters (if necessary).

Step 4 of the algorithm produces an approximated flow φ(xk, w(ak, ·)) which is guaranteed to be valid for all xk ∈ Rk.
In practice, we cannot represent φ exactly, and instead use Taylor model approximation with guaranteed error bound.
In Step 3, we compute the uniform error bound ϵk and in Step 5 we add it to the computed flow to obtain an
over-approximation, Rk+1. Step 6 is crucial for the efficiency and accuracy of the algorithm, as explained below.

According to the theoretical framework, the approximation error is reduced by decreasing the step size h. However,
when an actual implementation is concerned, other numerical aspects contribute to the quality of representation of the
sets and the resulting over-approximations. In particular, the computational error, i.e., the error due to implementation
of the algorithm in Ariadne, contributes towards over-approximation of the solution set in two ways. One is due to the
Taylor model calculus used and the other due to simplification of the parameters.

In order to prevent the eventual blow-up of the number of polynomial terms used in the Taylor model, small and/or
high-order terms must be ‘‘swept’’ into the uniform error bound e. For this purpose, Ariadne introduces a sweep threshold
σthr constant that represents the minimum coefficient that a term needs in order to avoid being swept into e. As already
discussed, an additional contribution to e is the error originating from the inputs approximation, which is added to the
model for each variable. Therefore, over time, e becomes relatively large, ultimately causing the bounds of the represented
set to diverge; to address this issue, we need to extract periodically a new parameter for each variable, thus originating
n new independent parameters (‘‘uniform error reconditioning’’). In particular, our experience with the implementation
showed that significantly more accurate results are obtained by parameter extraction at each evolution step, introducing n

new parameters at each step. At the same time, each step of the proposed algorithm introduces ℓm additional parameters

12
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into the description of the flow, where ℓ is the number of parameters required for each wi,k: ℓ = 0 for the zero case,
ℓ = 1 for the constant case, and ℓ = 2 for the affine, sinusoidal and piecewise constant cases. Summarizing, after k steps
we end up introducing k(n + ℓm) new parameters.

Therefore it is apparent that a critical requirement for the feasibility of the algorithm is to simplify periodically
the representation of the reached sets. For the purposes of this paper, we rely on the following basic simplification
policy: after a number of steps Ns we keep a number of parameters equal to a multiple βs of the parameters introduced
between two simplifications. To decide which parameters to keep after the simplification, we sum the coefficients of
the terms where a parameter is present: the parameters with the lowest sum are considered to have the least impact
on the set representation and their terms are simplified into e (‘‘Kuhn reconditioning" [37]). Increasing βs increases the
average number of parameters during evolution, while increasing Ns increases the variance of such number. Consequently,
techniques that reduce the number of parameters are essential for scalability purposes.

Note that our method only guarantees a local error of high order at the sequence of rational points {tk} which is a
priori chosen. If one is trying to estimate the error at times tk < t < tk+1 for any k along a particular solution, an O(h)
formula should be used as given in Theorem 3.

5. Numerical results

In this Section we present the results of the implementation of our approach within Ariadne, followed by a comparison
with Flow* and CORA 2018. Before that, the first Subsection explains the evaluation criteria, followed by the values chosen
for the numerical parameters of the three tools and by the description of the systems to be used for evaluation.

5.1. Evaluation setup

In order to evaluate the quality of the reachable set of a system, we introduce the volume score (from here on simply
score) ΣV as

ΣV =
1

n
√

Πn
i=1 |Bi|

(28)

here B is the bounding box of a set. Given a set, the formula over-approximates it into a box for simplicity, evaluates
ts volume and normalizes on the number of variables. In particular, halving the set on each dimension yields twice the
core. Without extra notation, we evaluate ΣV on the final set of evolution to measure the quality of the whole trace.
t must be noted that since a bounding box returns an over-approximation, this measure is not entirely reliable when
sed for comparisons: given two different sets with equal exact bounds, a slightly larger box may be obtained for the set
aving the more complex representation. Still, it is an intuitive and affordable measure that can be used across tools with
ifferent internal representations.
In addition to the volume score, we evaluate the performance in terms of execution time tx in seconds. In particular,

he execution times are obtained using a macOS 10.14.6 laptop with an Intel Core i7-6920HQ processor, using AppleClang
0.0.1 as a compiler in the case of Ariadne and Flow* executables, or running on MATLAB 2018b in the case of CORA.
inally, all the score and execution time values in the following are rounded to the nearest least significant digit.
In Table 2 we provide numerical parameters used for evaluation in the benchmark. For simplicity we used fixed

easonable values for Ariadne. For Flow* and CORA we asked the respective developers to collaborate in order to identify
ood values. In the case of Flow*, the values identified were actually kept fixed for all systems (since small variations did
ot show any significant difference in behavior), while for CORA those have been specified tailored to the system.
We evaluate ten different systems taken from the literature, with varying nonlinearity, whose summary is provided

n Table 3. In addition to synthetic information such as the number of variables, number of inputs, average order Ō of
ynamics and additivity of inputs, the step size h and the evolution time Te are presented for each system. For quick
eference we also show the number of steps involved in the evolution h × Te.

Details on systems dynamics, input ranges, and overridden tool parameters used by CORA instead are presented in
able 4. With respect to [14], input range widths for the CR system have been divided by 100 since none of the three
ools were able to analyze the system otherwise. With respect to [20], the DC system has been rewritten in its equivalent
nput-affine form in order to be analyzed using Ariadne.

5.2. Results

This subsection on results starts by evaluating the quality of approximation with and without simplification of the
parameters that represent a set. After assessing the quality at the default noise levels, we analyze the effect of varying
the noise levels. The next subsection will compare these results with those obtained using CORA and Flow*.

Given the large size of the benchmark suite and lack of space, figures are omitted. Instead we will rely on quantitative
tabular data based on the metrics that were previously introduced.

In Table 5 we show results in terms of score ΣV and execution time tx for distinct setups while using the following
pproximations: Z for zero, C for constant, A for affine, S for sinusoidal and P for piecewise-constant. In order to evaluate
13
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Table 2
Numerical parameters used for evaluation in the benchmark.
Ariadne Flow* CORA

• Sweep threshold σthr : 10−8
• Mantissa precision: 53 bits • zonotopeOrder: 100

• Number of steps between • Taylor model fixed order: 6 • tensorOrder: 3
simplifications Ns: 12 • Cutoff threshold: 10−10

• errorOrder: 25
• Number of parameters • Remainder estimation: 0.1 • intermediateOrder: 100

to be kept after a • taylorTerms: 5
simplification βs: 6 • advancedLinErrorComp: 0

• reductionInterval: inf
• reductionTechnique: ‘girard’
• maxError: as large as possible

to avoid splitting

Table 3
Summary information on systems tested.
Name Alias Ref n m Ō + h Te Steps

Higgins-Sel’kov HS [5] 2 3 3 N 1/50 10 500
Chemical Reactor CR [14] 4 3 2 N 1/16 10 160
Lotka–Volterra LV [14] 2 2 2 N 1/50 10 500
Jet Engine JE [12] 2 2 2 Y 1/50 5 250
PI Controller PI [12] 2 1 2 Y 1/32 5 160
Jerk Eq. 21 J21 [38] 3 1 5/3 N 1/16 10 160
Lorenz Attractor LA [39] 3 1 5/3 N 1/256 1 256
Rössler Attractor RA [39] 3 1 5/3 Y 1/128 12 1536
Jerk Eq. 16 J16 [38] 3 1 4/3 Y 1/16 10 160
DC-DC Converter DC [20] 2 2 1 N 1/10 5 50

the complete benchmark suite we compare best static approximation obtained with two different dynamic evaluations.
Best static displays best results from the five approximations, each one being used 100% of the time. Since this approach
shows that even if we focus on approximations using two parameters, the best result may largely depend on the system
under analysis, we should check all available approximations and choose the best one. Our framework allows for this
choice to be performed at each integration step. However, this tight approach incurs in a significant cost in terms of
execution time, slightly lower than the sum of the costs in static evaluation. Consequently we defined a loose approach
for choosing the best approximation: a counter ka is associated with a given approximation a, with ka = 1∀a at the
beginning of evolution; if an approximation is not the best one, the value of ka is doubled and a will be checked again after
ka steps; each time a it is the best one, instead we reset ka = 1. Such exponential delay in checking a less-than-optimal
approximation allows to focus on the best approximation(s).

Since dynamic choice will, in general, yield a mix of approximations, we show a ‘‘a%’’ column that summarizes the
frequency of choosing a given approximation, i.e., A93P7 means that the affine approximation was the best one on 93% of
the steps while the piecewise-affine approximation was chosen on the remaining 7%. We see that a tight dynamic choice
yields better results than the best static choice; our evaluation showed that the best approximation changes infrequently
and we can identify sections of the evolution where a given approximation is always chosen. Therefore such behavior is
compatible with a loose dynamic choice of the best approximation: as shown in the third column of Table 5, the score
ΣV is very close to the one coming from a tight approximation, while the execution time tx is not particularly higher
than the one coming from the best static approximation. Still, the execution time remains significantly high, preventing
completion for some of the systems.

Table 6 presents equivalent data to Table 5 while periodic simplification of parameters is applied. Simplification period
is Ns = 12, and βs = 6 times the number of parameters introduced between simplification events. On the first column we
also tabulate the best loose dynamic result from Table 5 for comparison purposes. Here, we notice that the volume score
metric, being inaccurate, can sometimes result in unexpected behaviors, such as for LV a loose dynamic score higher than
the tight dynamic score, or for JE a tight dynamic score worse than the best static score. Comparison with the first column
shows that in some cases (i.e., at least CR and J21, if we do not consider the improvement from timeout in the HS, LV and
RA cases) simplification yields a better score. This is especially true for a tight dynamic choice of the approximation, but
again a loose dynamic choice allows for significantly shorter execution times with very small losses of accuracy.

We must remark that while the C approximation is very infrequently chosen in these Tables, such frequencies are very
sensitive to numerical settings related to integration. In our analysis of the benchmark suite during development of the
Ariadne library, small variations yielded significant changes in the mix of approximations, which further motivated the
use of this dynamic approach.

In Table 7 we display some values for the uniform error ϵ and the volume V = Πn
i=1 |Bi| of the bounding box of

the set for the HS system, across its 500 integration steps. For each step, all approximations are computed while the
14
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Table 4
Detailed information on systems tested.
Alias System Inputs CORA parameters

overriding defaults

HS Ṡ = v0 − Sk1P2 v0 = 1 ± 0.0002 • zonotopeOrder: inf
Ṗ = Sk1P2

− k2P k1 = 1 ± 0.0002 • tensorOrder: 2
k2 = 1.00001 ± 0.0002

CR ẋA = −u3xAxB − 0.4xAxC + 0.05u1 u1 = 1 ± 0.001 • tensorOrder: 2
−0.1xA u2 = 0.9 ± 0.001
ẋB = −u3xAxB + 0.05u2 − 0.1xB u3 = 30 ± 0.2
ẋC = u3xAxB − 0.4xAxC − 0.1xC
ẋD = 0.4xAxC − 0.1xD

LV ẋ = u1 x(1 − y) u1 = 3 ± 0.01 • zonotopeOrder: 10
ẏ = u2 y(x − 1) u2 = 1 ± 0.01 • tensorOrder: 2

• reductionInterval: 50

JE ẋ = −y − 1.5x2 − 0.5x3 − 0.5 + u1 u1 = ±0.005 • zonotopeOrder: 200
ẏ = 3x − y + u2 u2 = ±0.005 • intermediateOrder: 200

• advancedLinErrorComp: 1

PI v̇ = −0.101(v − 20) u = ±0.1 • zonotopeOrder: 200
+1.3203(x − 0.1616) − 0.01v2

• advancedLinErrorComp: 1
ẋ = 0.101(v − 20) − 1.3203x
+0.2134 + 0.01v2

+ 3(20 − v) + u

J21 ẋ = y u = 0.25 ± 0.01 • zonotopeOrder: 300
ẏ = z • intermediateOrder: 200
ż = −z3 − yx2 − ux • errorOrder: 50

• advancedLinErrorComp: 1

LA ẋ = 10(y − x) u = 28 ± 0.01 • zonotopeOrder: 300
ẏ = x(u − z) − y
ż = xy − 8z/3

RA ẋ = −y − z u = 0.1 ± 0.001
ẏ = x + 0.1y
ż = z(x − 6) + u

J16 ẋ = y u = −0.03 ± 0.001
ẏ = z
ż = −y + x2 + u

DC ẋ = −0.018 x − 0.066 y u1 = ±0.002 • taylorTerms: 20
+u1( 1

600 x +
1
15 y) + u2 u2 =

1
3 ±

1
15 • tensorOrder: 2

ẏ = 0.071 x − 0.00853 y
+u1(− 1

14 x −
20
7 y)

Table 5
Volume score ΣV and execution times tx in seconds for each system and various setups, when not simplifying the number of parameters; the first
ne picks the best approximation statically; the second one comes from dynamically evaluating each approximation at each step and selecting the
est one; the third one comes from dynamically evaluating each approximation with a frequency proportional to its quality. The best ΣV for a given

system is emphasized in bold. A timeout (T.O.) is obtained if completion is not achieved within 8 h of execution.
Best static Tight dynamic Loose dynamic

ΣV tx a ΣV tx a% ΣV tx a%

HS 32.16 11 143 C T.O. T.O.
CR 323.3 640 A 324.0 3894 A93P7 323.6 683 A91P9
LV 12.08 7 674 C T.O. T.O.
JE 16.13 166 Z 16.16 1887 Z82P18 16.13 171 Z100
PI 5.959 105 S 5.962 580 S44P56 5.960 151 S24P76
J21 23.41 292 A 23.94 1433 C2A86S4P8 23.41 295 A100
LA 12.15 1 152 S 12.22 6398 A61S24P15 12.20 1429 A48S37P15
RA T.O. T.O. T.O.
J16 26.86 165 A 26.86 901 A96P4 26.86 176 A96P4
DC 1.920 1 130 A 1.920 6534 A97P3 1.920 1268 A96P4

one with the best volume is used (i.e., tight dynamic choice); simplification of the parameters is performed, purely for
efficiency reasons. The integration step k values are chosen specifically to identify some of the switches between the A
and P approximations. Despite the fact that ϵ is consistently better for the P approximation, we see that the best volume
sometimes changes to A. While the difference-per-step is usually low, in some cases smaller than the displayed precision,
we know from Table 6 that a dynamic choice of the parameter is better than the best static one.
15
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Table 6
Score ΣV and execution time tx in seconds for each system and various setups, when simplifying the parameters; the first one represents the loose
selection; the second one represents the best selection when simplification is performed; the third one comes from dynamically evaluating each
approximation at each step and selecting the best one; the fourth one comes from dynamically evaluating each approximation with a frequency
proportional to its quality. The best score for a given system is emphasized in bold, while the best score when simplifying the parameters is
emphasized through underlining, if not already the absolute best score.

Loose dynamic (no simpl.) Best static Tight dynamic Loose dynamic

ΣV tx a% ΣV tx a ΣV tx a% ΣV tx a%

HS T.O. 48.40 38 A 49.49 242 A88P12 48.91 39 A94P6
CR 323.6 683 A91P9 502.3 21 A 504.5 181 A91P9 502.4 26 A91P9
LV T.O. 14.53 60 A 14.53 366 A95P5 14.54 62 A94P6
JE 16.13 171 Z100 15.47 25 Z 14.39 155 Z78P21 15.47 28 Z100
PI 5.960 151 S24P76 5.492 7.8 P 5.493 30 S15P85 5.492 8.8 P100
J21 23.41 295 A100 23.23 15 P 23.77 63 C1A86P13 23.10 14 A100
LA 12.20 1429 A48S37P15 9.045 18 P 9.080 70 A58S6P36 9.070 18 A46S4P50
RA T.O. 120.0 36 P 117.7 143 A96P4 113.8 27 A100
J16 26.86 176 A96P4 23.78 6.2 S 23.77 29 A96P4 23.77 6.1 A96P4
DC 1.920 1268 A96P4 1.906 5.9 A 1.906 36 A71P29 1.906 7.7 A88P12

Table 7
Uniform error ϵ and volume of the bounding box of the set V for the HS system, starting from the initial set for each integration step and each
approximation. For each step, the minimum volume is underlined.
k Z C A S P

ϵ V ϵ V ϵ V ϵ V ϵ V

0 161e−3 1169e−4 123e−7 4576e−7 104e−8 4567e−7 914e−9 4568e−7 870e−9 4559e−7
1 160e−3 1160e−4 122e−7 5069e−7 102e−8 5060e−7 901e−9 5061e−7 857e−9 5052e−7
32 863e−4 3638e−5 361e−8 2554e−7 167e−9 2552e−7 148e−9 2552e−7 141e−9 2552e−7
33 853e−4 3551e−5 350e−8 2463e−7 160e−9 2460e−7 142e−9 2461e−7 135e−9 2461e−7
37 818e−4 3242e−5 312e−8 2139e−7 134e−9 2137e−7 119e−9 2138e−7 113e−9 2137e−7
210 457e−4 1000e−5 808e−9 6490e−8 168e−10 6489e−8 149e−10 6492e−8 142e−10 6488e−8
400 670e−4 2496e−4 147e−8 5414e−7 414e−10 5413e−7 367e−10 5416e−7 349e−10 5415e−7
487 496e−4 1363e−4 793e−9 2757e−7 162e−10 2757e−7 144e−10 2758e−7 137e−10 2756e−7
499 487e−4 1311e−4 798e−9 2508e−7 163e−10 2507e−7 145e−10 2508e−7 138e−10 2507e−7

Table 8
Volume score ΣV and execution times tx in seconds for each system, varying the noise level with respect to the nominal value.

x 1/4 x 1/2 Nominal x 2 x 4

ΣV tx ΣV tx ΣV tx ΣV tx ΣV tx
HS 109.1 22 76.77 27 48.91 39 23.36 107 11.49 296
CR 1573 13 943.3 19 502.4 26 217.6 53 60.87 223
LV 69.31 12 32.70 26 14.54 62 5.947 206 1.165 5032
JE 29.21 13 21.85 19 15.47 28 9.368 50 4.953 15
PI 12.82 7.1 8.849 7.5 5.492 8.8 3.085 10 1.664 15
J21 36.31 6.8 30.47 9.2 23.10 14 15.41 27 8.807 73
LA 33.48 9.5 17.64 11 9.070 18 4.574 35 2.255 71
RA 385.6 18 221.5 20 113.8 27 58.85 48 29.12 80
J16 58.56 3.6 39.67 4.3 23.77 6.1 13.11 10 6.570 22
DC 4.877 3.9 3.816 5.4 1.906 7.7 0.944 15 0.464 23

5.2.1. Dependency on the noise level
Since the auxiliary system and the local error depend on the range of the inputs, it is interesting to study the relation

etween executions time, quality of the results, and the range of inputs. If we interpret inputs as noise sources, this
orrespond to study how the noise level affects performance. Table 8 evaluates each system using a loose dynamic choice
f the best approximation while simplifying the parameters. The noise level ranges from 1/4 the nominal value to 4 times
he nominal value. Results show the expected decay in volume score when noise increases. Results also show that the
xecution time increases: this is due to the fact that the corresponding increase in volume of the evolved set implies a
ore complex polynomial representation of the set.

.3. Comparison with other tools

In this subsection we finally compare our results with those from CORA and Flow*. However, since CORA performs
pproximate rounding, its numerical results cannot be rigorous even when using interval arithmetics. For this reason, in
he following Table the actual comparison is between Ariadne and Flow*, while CORA is used as a reference.
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Table 9
Comparison with CORA and Flow* for different noise levels. For each approach and each system, the score ΣV is shown. Since the execution time
x is the same for Flow* regardless of the noise level, it is shown only for the nominal noise. The highest score between Ariadne and Flow* for
ach system and each noise level is emphasized in bold. Where CORA produces the best result, it is underlined for reference.
Setup System

Noise Tool HS CR LV JE PI J21 LA RA J16 DC

×
1
4

Ariadne ΣV 109.1 1573 69.31 29.21 12.82 36.31 33.48 385.6 58.56 4.877
tx 22 13 12 13 7.1 6.8 9.5 18 3.6 3.9

CORA ΣV 16.92 2539 14.39 18.40 11.53 7.459 11.08 264.0 51.47 7.605
tx 4.0 1.0 2.5 3.8 2.5 3.3 4.0 2.7 3.7 0.26

Flow* ΣV 71.78 762.1 2.242 23.18 11.10 15.75 17.14 263.5 52.96 7.559

×
1
2

Ariadne ΣV 76.77 943.3 32.70 21.85 8.849 30.47 17.64 221.5 39.67 3.816
tx 27 19 26 19 7.5 9.2 11 20 4.3 5.4

CORA ΣV 13.62 1632 5.970 15.55 8.420 6.803 8.983 177.3 38.30 3.827
tx 3.9 1.0 2.6 3.8 2.3 6.5 4.1 4.0 3.5 0.26

Flow* ΣV 56.97 384.5 N/A 19.01 7.994 14.28 12.33 174.6 39.11 3.804

×1

Ariadne ΣV 48.91 502.4 14.54 15.47 5.492 23.10 9.070 113.8 23.77 1.906
tx 39 26 62 28 8.8 14 18 27 6.1 7.7

CORA ΣV 8.162 930.2 1.680 11.81 5.472 5.710 6.543 110.4 25.20 1.915
tx 3.9 1.0 3.5 3.7 2.5 6.2 4.1 4.0 3.3 0.26

Flow* ΣV 37.78 169.9 N/A 13.87 5.107 11.99 8.113 107.5 25.49 1.902
tx 29 19 13 7.4 3.7 19 12 81 2.5 0.24

×2

Ariadne ΣV 23.36 217.6 5.947 9.368 3.085 15.41 4.574 58.85 13.11 0.944
tx 107 53 206 50 10 27 35 48 10 15

CORA ΣV 0.675 433.9 0.807 7.862 3.218 4.235 3.911 63.67 14.76 0.952
tx 4.0 1.0 127 3.6 2.3 6.2 4.1 4.0 3.3 0.26

Flow* ΣV 17.49 50.50 N/A 8.828 2.931 8.948 4.857 61.42 14.76 0.944

×4

Ariadne ΣV 11.49 60.87 1.165 4.953 1.664 8.807 2.255 29.12 6.570 0.464
tx 296 223 5032 185 15 73 71 80 22 23

CORA ΣV N/A 146.0 N/A 4.517 1.763 1.704 2.450 33.50 7.825 0.465
tx N/A 1.0 N/A 3.6 2.2 6.1 4.0 4.0 3.4 0.75

Flow* ΣV N/A N/A N/A 4.827 1.577 5.599 2.670 32.23 8.322 0.465

Table 9 evaluates the quality of our approach while varying the noise level and using a fixed step size. The rationale
here is that as the level increases, the impact of a more accurate input approximation increases. Systems are presented
in decreasing order of nonlinearity from left to right. For mostly-linear systems CORA has the best results due to its
ernel relying on linearization of the dynamics; Flow* has similar benefits due to specific optimizations on low-order
olynomial representations. On the other hand, it is apparent that Flow* and CORA suffer when the nonlinearity is high,

to the point of being unable to complete evolution. An N/A result in Flow* is due to failing convergence of the flow set
over-approximation, while for CORA this is specifically due to a diverging number of split sets required to bound the flow
set. Since Ariadne maintains a larger number of parameters when handling higher noise values, the computation time
increases with the noise, while the computation times of Flow* and CORA do not depend on the noise (Table 9 shows
execution times only for the nominal noise). Summarizing, in this setup Ariadne consistently gives better bounds for
systems with medium and high nonlinearity, with comparable computation times with respect to Flow* for low noise
levels, while also avoiding failure for high noise levels.

6. Conclusions

Here, we have given a numerical method for computing rigorous over-approximations of the reachable sets of
differential inclusions. The method introduces high-order error bounds for single-step approximations. By providing
improved control of local errors, the method allows for accurate computation of reachable sets over longer time intervals.

We have also presented theorems for obtaining local errors of different orders. It is easy to see that higher order errors
(improved accuracy) require approximations that have a larger number of parameters (reduced efficiency). The growth of
the number of parameters is an issue, in general. Sophisticated methods for handling these are at least as important as the
single-step method. Nonetheless, in our evaluation of the methodology, we found that Ariadne yields tighter set bounds,
as the nonlinearity increases, compared with the state-of-the-art tool Flow* and CORA. Although no analysis of the order
of the method is given in [12], we believe that Flow* has a local error O(h2), so the global error is intrinsically first-order.
Hence a higher quality is to be expected from Ariadne, since the proposed methodology is able to achieve third-order
local errors. On the other hand, our approach introduces extra parameters at each step in the representation of the evolved
set, causing a growth in complexity, whereas Flow* and CORA have a fixed complexity of the set representations. As a
result, the computational cost increases with the noise level. Still, the comparison with the state-of-the-art showed that
for high noise levels our approach is the only one capable of providing sufficient bounds for highly nonlinear systems.

Currently, we are working towards component-wise derivations of the local error, in order to better address systems
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whose variables have scaling of different orders of magnitude. Some of the other extensions on differential inclusions
that we plan to accomplish are outlined in our paper [40]. These include constraint set representation of uncertainties
including representation via affine and more general convex constraints. Further, an extension to nonlinearity in the inputs
will be obtained, in order to maximize the expressiveness in terms of system dynamics.

While in this work we address uncertainty for continuous dynamics, we understand it is equally important to embed it
ithin a hybrid systems framework, which we plan to address in our future work. Here, the main challenges are ensuring
hat invariants are never violated along a trajectory, even temporarily, and that urgent events occur as soon as possible.
ur approach of computing parametrized sets of solutions with small error bounds should be well-suited to addressing
hese issues by allowing accurate detection of crossings of guard and invariant boundaries.
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