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Widespread risk factors such as hypertension can lead to functional and structural changes of the 
cerebral small blood vessels, ultimately leading to development of cerebral small vessel disease 
(cSVD) [1]. It is difficult to estimate the exact prevalence of cSVD, as the disease is often 
asymptomatic, underdiagnosed, and heterogeneous, and often presents with several comorbidities. 
The disease contributes to approximately 25% of strokes and 45% of dementia cases, causing a 
substantial global social and economic burden [2]. After ageing, hypertension as well as most of 
the other risk factors associated with cSVD are modifiable (e.g. smoking, diabetes, physical 
inactivity), which gives rise to a window of opportunity for potential prevention and treatment [3, 
4]. However, primary prevention therapies are lacking as cSVD progression is usually 
asymptomatic and diagnosis relies on MRI markers, while primary treatment is based on late-stage 
symptom relief [3]. Thus, the aim of this thesis was the identification of cellular and molecular 
mechanisms that may ultimately be used for the prevention and treatment of cSVD. This thesis 
particularly focuses on the interplay between oligodendrocytes precursor cells (OPCs) and 
vascular endothelial cells (ECs). Unravelling mechanisms involved in this interplay not only 
clarifies current knowledge gaps, but also paves the way for new diagnostic strategies, including 
fluid biomarkers, and treatment options to tackle the growing global cSVD burden. 
 
 

Scientific impact 
 
In Chapter 2, our systematic review revealed Wnt7a as a potential mediator of OPC-EC crosstalk 
in cSVD pathology. Studies demonstrated that hypoxia increases the expression and secretion of 
Wnt7a by hypoxic OPCs and thereby mediates EC proliferation and angiogenesis [5–9]. 
Furthermore, Wnt7a is also known to promote the migration of OPCs by utilising the vasculature 
through inducing CXCL12-CXCR4 signalling pathway [5, 10, 11]. However, our findings in 
Chapter 3 and 4 are partly contradicting these previous findings. In Chapter 3, Wnt7a decreased 
the expression of TJ proteins and increased blood-brain barrier (BBB) permeability through 
activation of β-catenin, which contradicts studies showing the Wnt/β-catenin mediated increase in 
these TJ proteins and the decrease in BBB permeability [12, 13]. It is thus important that future 
studies investigate these findings and unravel its involvement in pathological mechanisms leading 
to BBB impairments and white matter lesions (WMLs) seen in cSVD patients [14]. 
 
In vitro studies utilising human pluripotent stem cells (hPSCs) hold the potential to elucidate these 
discrepancies, as they provide a valuable tool for disease modelling. Additionally, OPC migration 
via the vasculature has previously been shown to be mediated by increased CXCL12-CXCR4 
interaction as a consequence of Wnt7a stimulation [10], which also contradict our findings in 
Chapter 4 where we found decreased Cxcl12 expression. Genetic mouse models for Wnt7a 
knockdown can elucidate these findings in vivo. A previous study generated a Wnt7a/b-deficient 
mutant mouse by intercrossing Olig2-Cre to conventional Wnt7a null and conditional Wnt7b (fl/fl) 
alleles to study the role of OPC-derived Wnt7a/b in development and hypoxic injury [8]. Inducing 
hypoperfusion with BCAS in similar models could lead to better understanding the role of OPC-
derived Wnt7a in BBB permeability and OPC migration, and its implication in hypoxic brain 
injury.  
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Lastly, our in vitro findings in Chapter 5 indicate that hypoperfusion mediated hypoxia in OPCs 
leads to increased VEGFA rather than Wnt7a expression, supporting other studies that did not find 
Wnt7a regulation in OPCs under hypoxic conditions [15, 16]. 
 
Although these findings may identify novel molecular pathways relevant to cSVD development, 
addressing knowledge gaps regarding the underlying dysfunctional mechanisms contributes to the 
complexity of cSVD pathology. 
 
 

Clinical implications 
 
Highlighting the clinical implications of research on cSVD is crucial given that treatment strategies 
primarily focus on symptom relief rather than addressing the underlying cause. Efficacy of current 
treatments may be compromised due to the presence of multiple risk factors and the various 
conditions contributing to disease development. Understanding molecular mechanisms in cSVD 
can advance diagnosis with biomarkers, improve cognitive outcomes through novel prevention 
and treatment strategies, and enable personalised therapies targeting high-risk individuals. Current 
approaches for the prevention and treatment of cSVD encompass a combination of 
pharmacotherapy and lifestyle modifications. Pharmacotherapy involves the use of various 
medications, blood pressure-, cholesterol-, and glucose-lowering drugs, aimed at limiting the 
impact of cardiovascular risk factors. Additionally, anti-dementia drugs, like the NMDA-receptor 
partial antagonist memantine and cholinesterase inhibitors, as well as drugs such as cytidine-
diphosphocholine and dl-3-n-butylphthalidle may be utilised [17]. Memantine can improve 
cognitive function by antagonising glutamate-induced neurotoxicity [18, 19], while cholinesterase 
inhibitors increase the availability of acetylcholine, an important neurotransmitter associated with 
memory, in neuromuscular junctions by inhibiting its enzymatic breakdown [20, 21]. Cytidine-
diphosphocholine show neuroprotective effects by increasing noradrenaline and dopamine levels 
in the central nervous system (CNS) [22]. Dl-3-n-butylphthalidle can improve outcome after stroke 
due to its vasodilative effects by promoting NO production of ECs, its anti-thrombotic effects, or 
most importantly, by upregulating VEGFA and HIF1α expression [23].  
 
More recently, clinical trials assessing efficacy of drugs in restoring cerebral blood flow (CBF) 
and limiting blood flow pulsatility, with the use of e.g. cilostazol, isosorbide mononitrate, tadalafil, 
and pentoxifylline, are currently ongoing. In conjunction with pharmacotherapy, lifestyle 
modifications play a significant role in cSVD management. Quitting smoking, maintaining a 
healthy diet, and engaging in aerobic exercise are crucial for reducing risk factors and promoting 
cardiovascular well-being [24]. Taken together, this emphasising the importance of fundamental 
research in elucidating the link between vascular pathology and cognitive impairment in cSVD. 
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Wnt7a signalling modulation 
 
Modulating the Wnt7a signalling pathway might be a potential therapeutic strategy, as our results 
show that Wnt7a stimulation could lead to EC permeability and suggest a role in OPC migration. 
Modulating these processes post-stroke might be beneficial for patients to reduce ischaemic injury 
and facilitate remyelination in damaged regions. Recently, clinical trials have explored novel 
approaches to modulate Wnt signalling pathways by combining technologies to cope with the 
pleiotropic nature of Wnt, which plays diverse roles in various biological processes [25]. 
Moreover, pre-clinical advancements demonstrate promising outcomes by utilising Wnt7a 
derivatives as a potential approach to mitigate CNS disorders by repairing the BBB. These 
derivatives specifically target Gpr124/Reck signalling and show neurovascular protective 
properties in stroke and glioblastoma models in mice without Wnt activation in other tissue [26]. 
However, Wnt signalling-targeting drugs are not clinically available yet because of associated side 
effects, and thus other therapeutic strategies must be considered. 
 
VEGFA signalling modulation 
 
As previously mentioned, the mechanism of action of dl-3-n-butylphthalidle includes modulation 
of ECs and VEGFA and HIF1α expression [23]. Thus, offering a potential target to promote 
vascular repair, inhibit brain inflammation, and prevent white matter (WM) damage by exploring 
the role of VEGFA in the interaction between ECs and OPCs. Following up on our retrospective 
findings in Chapter 5 with large cohort prospective studies that measure BBB permeability in 
different WM regions and VEGFA blood plasma concentration overtime could reveal an 
association between WML development and VEGFA blood plasma concentration. Blood plasma 
levels of VEGFA might then potentially be used as a biomarker for the early diagnosis for risk of 
WML development. It would also present a potential target for modulating VEGFA to decrease 
the risk of WML development. However, it is essential to acknowledge the potential dual nature 
of modulating VEGFA signalling. While beneficial angiogenic properties may facilitate 
compensatory vascular network growth in the brain, reducing hypoxia and CBF deficits, there is a 
risk of increased BBB permeability due to VEGFA ability to loosen tight junctions, which might 
ultimately contribute to inflammation, and WM damage [27, 28]. Another potentially adverse 
aspect of stimulating angiogenesis by systemic interventions is the risk of promoting the 
vascularisation of any malignancies that may be present in the patient. A solution would be the 
local delivery to the brain or specific modulation of VEGF receptors in the brain. The use of 
VEGFA isoforms, which elicit different biological effects, has been suggested as a potential 
solution for these unwanted side effects [28]. Thus, the therapeutic potential of VEGFA must be 
considered carefully. 
 
Timing of VEGFA administration is also critical. Angiogenesis induction in the early silent stages 
of cSVD may help prevent ischaemic injury, while post-stroke stimulation of new vessel formation 
and increased BBB permeability could enhance the inflammatory response and contribute to WML 
progression and cognitive decline, with previous studies indicating an association between 
VEGFA levels and stroke severity [29, 30]. Preclinical studies involving VEGFA administration 
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have shown promising effects on stroke recovery, such as reducing lesion size, decreasing infarct 
size, promoting angiogenesis, and improving cognitive function. However, the effectiveness of 
VEGFA modulation in humans is yet to be proven [28, 31, 32].  
 
 

Future directions 
 
Future studies should prioritise the validation of the hypothesis regarding OPC-derived VEGFA 
in the interaction between OPCs and ECs in cSVD. By investigating the specific intracellular 
signalling pathways associated with VEGFA, such as HIF1α/VEGFA and Wnt/VEGFA, we can 
gain insight into the underlying mechanisms driving VEGFA-related changes in the brain 
vasculature and WM, which contribute to the development of cSVD. Manipulating these pathways 
using more accurate and sophisticated preclinical in vivo and in vitro models will allow the 
identification of novel biomarkers and the development of targeted therapeutic strategies. To 
facilitate the translation of preclinical findings into clinical applications, further research should 
focus on conducting well-designed clinical trials to test the safety and efficacy of VEGFA 
signalling modulation-based therapies. Ultimately, these efforts have the potential to improve 
patients' quality of life.  
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