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Chapter 1. General introduction

The current thesis revolves around determinants and biological mechanisms underlying differential susceptibility

to the impact of stress on mental health.

The first question addressed in this thesis is “what is stress”? Based on the critical findings from Walter B. Cannon

and Hans Selye, the modern concept of stress came into being as a consciously or unconsciously sensed threat to

homeostasis. Homeostasis, coined by Cannon, refers to the organism’s steady internal environment. Threats to

homeostasis evoke a “fight” or “flight” reaction, which is the initial stage of “alarm reaction” for the stress process

proposed by Selye, followed by a stage of “adaptation,” and eventually (in some cases) by a stage of “exhaustion”

(reviewed in [1]).

The type of stress people may experience after exposure to a traumatic event, which imposes actual or threatens

death, serious physical injury, or threat to physical well-being, is termed ‘traumatic stress.’ Exposure to several

forms of stress, including traumatic stress, may be followed by failure to adapt and eventual exhaustion, resulting

in physical or mental illness (reviewed in [2]).

Although many individuals experience stressful and potentially traumatizing events during life, only a (relatively)

small part of the exposed population develops stress-related pathologies, including mental disorders such as post-

traumatic stress disorder (PTSD), depression, and anxiety disorders. Thus, there are striking inter-individual

differences in susceptibility to the effects of stress, including traumatic stress. However, the biological mechanisms

of this differential susceptibility are mainly unknown. This knowledge would provide a basis for understanding

stress mechanisms and facilitate therapeutic or preventive strategies for mental health-related disorders.

This thesis aimed to elucidate (some of) the biological mechanisms underlying susceptibility to traumatic stress.

This chapter will:

• Introduce the concepts of differential susceptibility and resilience.

• Provide a summary of the current knowledge on the relevant physiological and biological processes involved

in susceptibility to traumatic stress.

• Provide background information on the animal models used in this thesis to study traumatic stress and

• Introduce the main research questions and specific aims of the different chapters.

1.1 Concept of differential susceptibility and resilience to the effects of

traumatic stress

Susceptibility refers to individuals displaying dysfunctional behavioural and physiological characteristics in re-

sponse to traumatic event exposure or a specific process [3, 4]. Susceptibility could also be factors that could be

detectable and manipulated before trauma, and manipulation of these factors alters the likelihood of developing

PTSD [5]. This thesis mainly focuses on the first definition.

12



Chapter 1. General introduction

While resilience refers to avoiding negative social, psychological, and biological consequences of extreme stress

that would otherwise compromise their psychological or physical well-being [6]. Resilience could also be an adaptive

response or swift recovery from those effects, and psychological growth after experiencing trauma [7, 8, 9]. This

thesis conceptualizes “resilience” as an active and dynamic process through which a person adaptively overcomes a

stressful event [10].

1.2 Biological processes are involved in the stress response and suscep-

tibility to traumatic stress

The response to traumatic stress involves the “fight-flight or freeze” reactions [11], which refer to the behav-

ioral responses of animals exposed to a nearby threat. Exposure activates the autonomic nervous system and the

hypothalamic-pituitary-adrenal (HPA) axis. The autonomic nervous system and the sympathetic and parasympa-

thetic nervous systems have been linked with other biological components such as hormones, cytokines, neuropep-

tides, and neurotransmitters [12, 13].

1.2.1 HPA axis

Activation of the HPA axis and its hormones are the most studied subjects of the stress response mechanism.

The hormone corticotropin-releasing hormones (CRH) and arginine vasopressin (AVP) are released from the par-

aventricular nucleus (PVN) of the hypothalamus upon stress. The hormones stimulate the anterior pituitary gland

to release adrenocorticotropic hormone (ACTH) into the blood circulation. In the adrenal glands, ACTH induces

the synthesis of glucocorticoids, such as cortisol, in humans and corticosterone in rodents (Figure 1).

Glucocorticoids are essential hormones that impact protein, fat, and sugar metabolism, which support the

nutrient requirements of the central nervous system during stress. Glucocorticoids can enhance muscle protein

breakdown, adipose tissue lipolysis, and hepatic gluconeogenesis, and they can reduce glucose utilization to elevate

circulating glucose concentrations. Excessive glucocorticoids have been linked with insulin resistance, obesity, and

cardiovascular diseases [14].

Circulating glucocorticoids can bind to two types of receptors: glucocorticoid receptors (GRs) and mineralocor-

ticoid receptors (MRs). They are ligand-gated transcription factors mediating the expression of a group of genes.

The MR has a higher glucocorticoid binding affinity than GR. Thus, MRs are nearly saturated with low basal

glucocorticoid concentrations, while high glucocorticoid concentrations during stress occupy MRs and GRs (Figure

1) [15].

During a high-stress level, the binding of a glucocorticoid to GR terminates the stress response and maintains

predetermined hormone levels, including cortisol in humans or corticosterone in rodents, and homeostasis via a

negative feedback loop [16].
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Stress

Hypothalamus

Pituitary gland

Adrenal glands
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Hypothalamus
CRH

PVN

AVP

ACTH

ACTH
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Figure 1: Schematic representation of the HPA axis. Stress induces AVP release from PVN, stimulating CRH
release from the hypothalamus and activating ACTH release in the pituitary gland. ACTH binds to receptors
in adrenal glands to induce glucocorticoid release in the circulation to modulate physiological response to stress
through binding to both MR and GR receptors, which may provide negative feedback to the HPA axis.

Disruption of the HPA axis has been linked with many psychiatric disorders, such as PTSD, depression, bipolar

disorder, and schizophrenia [17, 18, 19, 20, 21].

It has been observed that PTSD patients displayed a less robust ACTH response compared to controls in

response to the cold pressor task [22] and exhibited lower basal cortisol levels compared to healthy controls [23] or

trauma-exposed healthy controls [24]. In addition, PTSD veterans who were Met allele carriers of BDNF Val66Met

polymorphism exhibited significantly stronger cortisol suppression and higher skin conductance response magnitudes

in the startling sounds condition and an annoying (but not painful) 2.5 mA shock conditions than controls with no

threat conditions in the sample [25]. Furthermore, PTSD veterans who carry T alleles of the fk506-binding protein

51 (fkbp51 ) gene displayed significantly lower cortisol levels at baseline. FKBP5 protein is involved in the regulation

of GR sensitivity and the translocation of glucocorticoids [26].

Studies on HPA-axis reactivity have identified candidate endophenotypes with two clinically and biologically

distinct HPA-axis reactivity. One subgroup, “non-responders,” showed a blunted HPA-axis response, distinct clinical

and biological characteristics, and abnormal expression kinetics of the genes encoding the MRs and FKBP5 [27].

14



Chapter 1. General introduction

1.2.2 Olfactory system and stress

The olfactory and emotional systems are highly intervened, and stress can impact the olfactory systems. One

study on healthy humans showed that cortisol is associated with better odor identification performance [28]. On

the other hand, the stimulation of the olfactory system can influence stress levels. Numerous studies demonstrated

aroma’s stress-suppressing effects, while predator odor’s effects induce stress in experimental animals [29].

1.2.3 Neurotransmitter

Neurotransmitters interacted with the HPA axis in stress-related brain regions, including limbic brain areas

like the prefrontal cortex (PFC), amygdala, hippocampus, and nucleus accumben [30]. Besides, the HPA axis

heavily interacts with the neurotransmitter system, including serotonin [31], dopamine [32], glutamate, GABA,

and norepinephrine [33]. The primary HPA axis hormone, corticosterone, is essential in modulating the release of

different neurotransmitters in limbic areas to mediate coping behavior [30].

For example, one study on urines indicated that trauma-exposed mothers with PTSD symptoms had higher

urinary dopamine levels than trauma-exposed mothers without PTSD symptoms or controls [34]. Besides dopamine

disturbance, dopamine receptors are correlated with PTSD symptoms. Another study added evidence for the

involvement of the dopaminergic system in PTSD, as the study reported that PTSD patients with at least one

copy of the dopamine receptor type 4 long allele had more intense PTSD symptoms than patients who did not

have these alleles in genotype [35]. Besides dopamine, other studies have indicated the involvement of epinephrine,

norepinephrine, and serotonin in PTSD-related symptoms, including hypervigilance, exaggerated startle, irritability,

impulsivity, aggression, intrusive memories, depressed mood, and suicidality [36].

1.2.4 Epigenetic mechanisms

Epigenetics mechanisms are reversible chemical modifications to the chromatin structure that alter gene tran-

scription without altering the DNA sequence, including DNA methylation, DNA hydroxymethylation, histone modi-

fications (i.e., methylation, acetylation, and phosphorylation), and microRNAs which act as translational repressors

[37]. This thesis focuses on the DNA methylation of epigenetic mechanisms in stress response.

DNA methylation is an epigenetic process in which a methyl group is added to nucleotides of DNA without any

alterations to the DNA sequence, which modulates gene expression by regulating the accessibility of transcription

factors to their binding sites and influencing chromatin structure. DNA methylation has been implicated in many

psychiatric disorders, including depression, bipolar disorder, schizophrenia [38], and PTSD [39].

Accumulating evidence suggests that epigenetic processes play an essential role in the onset of PTSD [39]. One

recent study found that military personnel with elevated PTSD symptoms showed that 119 genes exhibited reduced

DNA methylation levels in peripheral blood, and 8 genes exhibited increased DNA methylation [40]. A recent study
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coordinated by our group showed that increased PTSD symptom scores in combat-trauma-exposed military soldiers

deployed to Afghanistan were associated with hypomethylation of loci in the dual specific phosphatase 22 (dusp22 ),

myelin basic protein (mbp), and myelin transcription factor 1 like (myt1l) genes measured in whole blood samples

[41]. These three genes formed a basis for this thesis.

The dusp 22 gene-encoded enzyme DUSP22 belongs to a family of atypical small molecular mass dual-specificity

phosphatases (DSPs) that dephosphorylate both tyrosine and serine/threonine residues. Few studies show the

association between DUSP22 and mental health; little is known about these associations. Therefore, this thesis

provides an overview of DUSP22 and its DUSP family members concerning mental health and diseases.

MBP is an oligodendrocyte-specific protein essential for oligodendrocyte morphogenesis [42], contributing to

the balanced production of myelin proteins and lipids [43]. Evidence from human brain imaging studies and large-

scale mRNA profiling analyses indicate that defects in myelin and abnormal expression of myelin genes, like mbp

and their regulators, are common in many psychiatric disorders [44]. Among schizophrenia patients, the mbp

mRNA in the primary visual cortex was reduced compared to healthy controls in the post-mortem brain tissue [45].

Among women with PTSD, the mbp mRNA was downregulated with several oligodendrocyte-related genes in the

ventromedial PFC compared to healthy controls [46]. In animal stress models, mbp mRNA was reduced in medial

prefrontal cortex (mPFC) and hippocampus of mice one month after exposure to 24-hour restraint stress compared

to controls [47]. MBP protein expression was reduced in the mPFC of mice exposed to social defeat [48]. The MBP

immunoreactivity was low in the pre-limbic and orbitofrontal cortex of rats exposed to chronic, unpredictable stress

[49]. However, the MBP protein and mRNA were markedly increased in the cerebrospinal fluid, the hypothalamus,

and the hippocampus of trauma-exposed dogs [50].

Variations in myt1l, a gene encoding a transcription factor expressed in the brain, have been associated with

autism, intellectual disability, and schizophrenia [51]. These neurodevelopmental disorders show loss of function

mutations in myt1l, including deletions, frameshift, and single nucleotide variations. These mutations are predicted

to cause decreases in mRNA production or aberrant protein functions [52].

1.3 Research methodology for studying differential susceptibility to trau-

matic stress in rodent models

Rodent models can be instrumental in identifying molecular and cellular factors and mechanisms involved in

differential behavioral responses to the effects of traumatic stress. Research on the effects of severe stress in animal

models has a long history which has been reviewed elsewhere [53, 54, 55]. The following paragraphs introduce a

few relevant aspects that form a basis for these studies.

16



Chapter 1. General introduction

1.3.1 Levels of analysis

The level of the analysis includes behavior, (electro) physiology, morphology and structure, and gene expression.

Behavior tests can give direct behavior outcomes of the stress event. These behavior tests include anhedonia

tests like the sucrose preference test [56], anxiety tests like the elevated zero maze test [57], social behavior tests

like the social interaction test [58], and depressive behavior tests like the forced swim test [59]. Electrophysiology

can record local field potentials from populations of neurons and action potentials from single neurons in acute

brain slices [60], the brain of anesthetized rodents [61], and even in awake-behaving rodents [62]. The following

paragraphs overview the current research methodologies in susceptibility and resiliency.

1.3.2 Experimental stress paradigm used in this thesis

Stress paradigms are commonly and widely used in laboratory animal studies. For example, stress induced by

electric foot shock, stress induced by restrainment (restraint stress; RS), stress induced by social defeat (SD), early

life stress, e.g., via a range of stressors, or predator-based stress, may induce both acute and chronic responses and

impact. These stress paradigms and their advantages and disadvantages have been reviewed elsewhere [63]. In this

thesis, we employed the SD and predator-based stress paradigm.

Social defeat (SD)

SD has been widely used to examine the impact of chronic and severe social stress on physical and behavioral

conditions. Moreover, SD models show symptoms similar to psychiatric disorders in humans, including depression-

and anxiety-like behavior [64]. The current paradigm of SD is developed using CD-1 mice as the resident and

C57BL/6J mice as the intruder [65].

Researchers modified the SD paradigm due to severe injuries during physical attacks. Some studies have reduced

the duration of physical contact from 5 min to 30 s each day [63]. A later developed SD paradigm created a set-up

in which the C57BL/6J mice witnessed (rather than experienced) the social defeat of another C57BL/6J mouse

without physical contact, and this paradigm successfully induced a stress phenotype by isolating physical stress

and psychological stress in mice [64, 66]. However, this paradigm induced a more modest phenotype [67]. Besides,

housing conditions (single versus group housing) could also moderate the behavioral response of individual mice

exposed to social defeat stress [68].

Repeated social defeat stress results in a spectrum of behavioral alterations. Based on the social interaction

ratio score, the animals’ responses have been categorized into either ‘susceptible’ or ‘resilient’ groups [65]. The

‘susceptible’ mice spend significantly more time in the corner than in the interaction zone. In contrast, resilient

mice spend more time in the interaction zone than control mice that have never undergone a defeat procedure [65].

Numerous scholars have used this experimental paradigm and discovered substantial evidence on different levels of

analysis [53].
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Predator-based stress

Rats show many ultrasonic cries and modified eating patterns in the presence of a predator cat [69]. Predator

odor alone can induce fear [70]. The unconditioned fear of a predator odor paradigm employs four steps. First,

researchers acclimated the mice to the testing chamber for 3 min and then presented predator odor to the mice.

Lastly, researchers measure freezing behavior immediately after predator odor presentation and 24 hours later in

a retention test [71]. Exposure to soiled cat litter induces PTSD-like behavior in rats [72]. Maternal exposure to

predator odor induces increased anti-predator behavior and a predator-odor-induced decrease in activity in mice

[73].

As evidence has accumulated that animals (also non-humans) show differential responses to stress stimuli, it

may be attractive (for scientific purposes) to take this differential response into account, for example, by splitting

the clearly “maladapted” and clearly “well-adapted” animals. Such cutoff behavioral criteria, similar to the splitting

in social defeat [65], have provided a basis for identifying biomarkers of differential susceptibility in response to

stress [74].

1.4 Overview of the thesis

Susceptibility is a dynamic and complex phenomenon that depends not only on a person’s personality, genotype,

or brain architecture, but also on the nature of the stressor(s), the complex and time-varying constellations of intra-,

inter-, and extra-individual circumstances present during and after stressor exposure.

It has become clear that the study of susceptibility should evolve from a static to a dynamic and process-oriented

conceptualization, for instance, through a prospective longitudinal study on differential susceptibility and resilience

[10].

A recent study provided the first biological evidence of some genetic and epigenetic mechanisms underlying stress

and resilience. By conducting a longitudinal study using a differential susceptibility approach in its analysis, a recent

study involving Dutch soldiers deployed to the Afghanistan war has demonstrated that increases in PTSD symptom

scores were associated with hypomethylation of loci in the dusp22, mbp, and myt1l genes (as measured in whole

blood samples). These genes thereby pinpoint candidate molecules that may mediate differential susceptibility to

the effects of traumatic stress [41].

While these findings provide valuable novel insights, it is crucial to analyze the localization and function of the

genes concerning the stress response. This thesis first investigates the role of the dusp22 and the entire dusp family

of genes in mental and neurodegenerative disorders and reviews the available evidence in Chapter 2. Given the

limited knowledge of the localization and the function of DUSP22 in the brain, this thesis investigates in Chapter

3 the expression pattern of DUSP22 in mice brain, with a particular focus on the brain regions with an established

link to the stress response, i.e., PFC, hippocampus, and amygdala.
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The mbp gene also showed different methylation patterns in response to another stressor, i.e., prenatal restraint

stress [75], thereby underscoring the potential importance of differential susceptibility to severe stress. Therefore,

this thesis aimed to investigate MBP protein expression profiles in a prime brain region involved in the stress re-

sponse, i.e., the hippocampus. This thesis includes immunohistochemical analyses in mouse hippocampal subregions

and tests whether exposure to social defeat stress was associated with altered MBP protein expression patterns in

the mouse hippocampus. This study is in Chapter 4.

A third novel candidate gene from the human PTSD study was myt1l, a transcription factor involved in the

formation of myelin and the nervous system [76]. Findings from several groups have shown links between myt1l and

other stress-related mental disorders [77, 78], spurring us to explore links between myt1l, the impact of traumatic

stress, and differential susceptibility to traumatic stress. Chapter 5 describes a study aiming to understand

the localization of protein MYT1L in the brain (through immunohistochemical investigation of MYT1L protein

expression in the mouse brain) and investigate differences in expression profiles concerning SD exposure.

In order to increase the toolbox to perform experimental studies on the mechanisms mediating or moderating

the impact of stress, this thesis includes experiments done using a Microdrive array recording the activity of neural

circuitries in the presence of stressful odor presentation. The activity focuses on local field potentials and action

potentials in single neuron fire in response to stress in vivo. It employs the recently developed construction of

Microdrive arrays [62]. Chapter 6 illustrates the firing pattern in the olfactory neurons of mice in response to

predator odor-induced stress, which was recorded by the Microdrive array implanted in the olfaction brain regions

of the mice.

The thesis includes experiments using the social defeat stress model to understand the potential role of the iden-

tified genes in regulating the short-and long-term impact of exposure to severe stress on behavior, gene expression,

and morphology. While doing so, the experiments test the hypothesis that physical activity would be protective

(physical activity before stress would reduce the impact of the stress exposure) against the short- and long-term

impact of social defeat stress in rodents, which is described in Chapter 7.

Chapter 8 summarizes the main research findings and discusses them in light of broader scientific developments.

Chapter 9 provides an outlined summary and future perspectives in rodent models on stress susceptibility.
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Abstract

The dual-specificity phosphatase (DUSP) family includes a heterogeneous group of protein phosphatases that

dephosphorylate both phospho-tyrosine and phospho-serine/phospho-threonine residues within a single substrate.

These protein phosphatases have many substrates and modulate diverse neural functions, such as neurogenesis, dif-

ferentiation, and apoptosis. Dusp genes have furthermore been associated with mental disorders such as depression

and neurological disorders such as Alzheimer’s disease.

Herein, we review the current literature on the DUSP family of genes concerning mental and neurological

disorders. This review i) outlines the structure and general functions of dusp genes, and ii) overviews the literature

on dusp genes concerning mental and neurological disorders, including model systems, while furthermore providing

perspectives for future research.

Keywords: DUSP, Mental health, neurological diseases, phosphatase, psychiatric disorders.
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2.1 Introduction

Mental and neurological disorders are becoming highly prevalent and, in turn, exert significant socioeconomic

and personal burdens [79, 80]. For instance, mental disorders are often associated with a reduced quality of life

and also reduced maximal life expectancy [81], possibly due to the early onset of these disorders, the impact

on social interactions, and their frequent occurrence as a comorbidity with other physiological health issues, i.e.,

cardiovascular, metabolic and immune-related disorders [82].

Recent progress in the study of mental and neurological disorders has allowed for a better understanding of

critical underlying determinants, as well as associated molecular and cellular mechanisms. The etiology of mental

and neurological disorders is associated with an interplay between genetic predisposition and epigenetic mechanisms

that are influenced by environmental exposures throughout life [83, 38]. Developments in the fields of psychiatric

genetics and epigenetics have enabled the first wave of genome-wide analyses on groups of people diagnosed with

specific mental and neurological disorders compared to control populations. These analyses have provided critical

initial insights, suggesting the involvement of distinct genes and biological processes in the onset and course of

mental and neurological disorders. Increasing evidence from various genetic and epigenetic studies has identified

associations between several genes in the dual-specificity phosphatases (DUSP) family and various mental and

neurological disorders [84, 85].

These phosphatases are characterized by removing a phosphorus group from phospho-tyrosine and phospho-

serine/phospho-threonine residues within a single substrate, leading to conformational protein changes. This process

that can be reversed by kinase phosphorylation. Additionally, these protein phosphatases have a variety of substrates

and, as such, can modulate diverse cellular functions, such as neurogenesis, neuronal differentiation, and apoptosis

via three main signaling pathways, including MAP kinase pathways [86], Phosphatidylinositol 3-kinase (PI3K)/AKT

[87], and BDNF [88].

While a range of studies on dusp genes has linked these genes to cancer [89, 90, 91] and disorders of the immune

system [92], accumulating evidence for links between dusp genes and mental disorders, such as depression, as well

as neurological disorders such as Alzheimer’s disease, is increasingly documented [84].

Herein, we aim to summarize, converge, and critically review the current literature on the DUSP family of genes

implicated in mental and neurological disorders.

2.2 Structure, expression, and function of DUSP family members

DUSPs’ primary mode of action is the dephosphorylation of tyrosine and/or serine/threonine residues and the

resulting activity regulation of their substrates. The physiological outcomes of DUSPs’ functions thus hinge on

their substrate specificity and phosphatase activity. However, the substrates for DUSPs are not precisely defined.

The archetypical DUSP, DUSP1/MKP1, was initially discovered to regulate the activities of MAP kinases by
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dephosphorylating the TXY motif in the kinase domain. However, although DUSPs were discovered more than a

decade ago, only in the past few years have their various functions begun to be described. DUSPs can be categorized

into typical DUSPs and atypical DUSPs based on the presence or absence of a MAP kinase-interacting domain.

A subset of DUSPs contains an N-terminal region composed of two CDC25 homology 2 (CH2) domains and an

intervening cluster of basic amino acids known as the MAP kinase-binding (MKB) motif. All DUSP proteins contain

a common phosphatase domain consisting of conserved Asp, Cys, and Arg residues forming the catalytic site [93].

The subcategorization of DUSPs into subgroups is supported by the phylogenetic tree of DUSP sequences

similarities with consideration of substrate preferences [93]. Based on this, the DUSP family members can be

categorized into the following subgroups: 1) slingshot homolog (SSH) family of phosphatases, 2) phosphatases of

regenerating liver (PRL) family, 3) cell division cycle 14 (CDC14) phosphatases, 4) phosphatase and tensin homologs

deleted on chromosome 10 (PTEN), 5) myotubularins, 6) mitogen-activated protein kinase phosphatases (MKPs)

and 7) atypical DUSPs [86]. DUSP family members and synonyms can be found in Table A.1 of the Appendix,

while atypical DUSPs are presented in Table A.2 of the Appendix.

In the following paragraphs, we will review the current knowledge about the structure, tissue expression, and

function of the DUSP family members. A summary of DUSP Protein or RNA expression in animal and human

brains is presented in Table A.3 of the Appendix, while their expression in non-brain tissues is shown in Table A.5.

The function of DUSP proteins is summarized in Table A.4. The structure of the DUSP members are illustrated

in A.6 of the Appendix.

2.2.1 Slingshot homolog (SSH) family of phosphatases

- Structure and Homologues

Slingshot homolog (SSH), encoded by the ssh gene, was initially recognized as a cofilin phosphatase in genetic

studies performed in Drosophila [94]. Cofilin is an actin-depolymerizing factor (ADF) abundant in human and other

mammalian brains [95]. In mammals, three SSH homologs have been identified and denoted as SSH-1, SSH-2, and

SSH-3 [94].

The sequence alignment of the three SSH phosphatases shows more than 80% sequence similarity [94]. For

instance, SSH proteins from human, mouse, and Drosophila possess three highly conserved domains, A, B, and P

(a phosphatase domain) in the N-terminal region [96]. Amino acid sequences of the P domain of the SSH family are

distantly related to those of a family of MKPs and share a Dual Specific Phosphatase (DSP) active site (HCxxGxxR)

conserved within both DSP and protein tyrosine phosphatases (PTP) [97, 98]. The short serine-rich sequence motif

(S domain) is conserved only in SSH-1 and SSH-2 in mouse and human but not in SSH-3 of the mouse, human, or

Drosophila SSH protein (Figure Appendix) [96].

- Expression and Function

At the cellular level, human SSH (hSSH)-1 is primarily expressed in the plasma membrane, cytosol, and nucle-
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oplasm, while hSSH-2 and hSSH-3 reside in the cytoplasm [the Human Protein Atlas (www.proteinatlas.org)] [99].

At the tissue level, hSSH-1 proteins were expressed in the frontal cortex and cerebellum of human post-mortem

brain tissue of healthy elderly persons [100, 101] as well as in human keratinocytes [102].

SSH phosphatases modulate actin separation and reunion by regulating the ADF /cofilin complex in vivo [98].

SSH phosphatases remove a phosphorus group from ADF/cofilin to activate this complex [103, 104, 105, 106]. The

activated ADF/cofilin complex depolymerizes and dismantles actin filaments to drive the protraction of growth

cones and neurite extensions, as observed in rat hippocampal neurons. In contrast, activated LIM domain kinase

1, a negative regulator of actin-polymerization dynamics, adds a phosphorus group to ADF/cofilin, inhibiting the

formation of this complex. This inhibition then drives actin polymerization, which reduces the protraction of growth

cones and neurite extensions [107]. The balance between SSH and LIM domain kinase 1 is responsible for modulating

actin filament assembly at the tip of the growth cone and is essential for driving the repulsive or attractive responses

of growth cones and neurite extensions, which in turn leads to modifications in neuronal morphology and sprouting

[103, 108, 109, 110]. Specifically, SSH1, along with Cofilin1 modulated growth cone extension in rodents [111, 112]

and chick [104]. SSH2 reverse actin-severing defects and improves actomyosin parameters in interneurons of mice

[113]. Furthermore, SSH phosphatases play a pivotal role in controlling AMPA receptor trafficking and the number,

size, and morphology of dendritic spines in cortical neurons by controlling the actin cytoskeleton via ADF/cofilin

activation. Interestingly, AMPA receptor trafficking and the morphology of dendritic spines in cortical neurons

are strongly associated with synaptic plasticity, which underlies cognitive functions such as learning and memory

processes [114].

2.2.2 Phosphatases of regenerating liver (PRLs) family

- Structure and Homologues

While the cellular functions of this family remain yet to be uncovered, we currently know that PRLs are

oncogenes [115]. Within this subgroup, three protein subtypes, PRL-1, PRL-2, and PRL-3, have been identified

based on their amino acid sequences [116], which share greater than 50% homology in humans [117].

PRLs carry the CAAX motif and are the only CAAX proteins in the DUSP family [117]. CAAX proteins involve

global cellular functions, such as proliferation and differentiation. A polybasic region localizes next to the CAAX

box and mediates membrane or nuclear localization of PRLs. The catalytic or protein phosphatase (PTP) domain is

responsible for enzymatic activity, requiring the P-loop residues and the WPD loop (conserved in the PTP family)

residues for the transfer of a phosphate group (Figure Appendix) [117].

- Expression and Function

At the cellular level, PRLs localize in the plasma membrane and nucleus, whereas at the tissue level, human

PRLs (hPRLs) subtypes differ depending on the type and severity of the tumor in question. hprl-1 and hprl-2

mRNA expression patterns are widespread in healthy adult human tissues. hPRL-2 is expressed at higher levels in
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the brain than hPRL-1, especially in the granular layer of the cerebellum [118]. hprl-3 mRNA is expressed in both

skeletal muscle and the heart during development [119]. Similarities exist compared to other mammalian tissue,

such as mouse tissue. For instance, mouse PRL (mPRL)-1 is 100% identical to hPRL-1 in the number of amino

acid subunits [120]. mprl-2 mRNA is expressed in skeletal muscle, and mprl-3 is expressed in skeletal muscle and

heart tissue [120].

PRLs promote cell proliferation, migration, invasion, tumor growth, and metastasis via multiple signaling path-

ways, including extracellular signal-regulated kinase (ERK) 1/2 pathways [121, 122], the mechanistic target of the

rapamycin [123], and the phosphatidylinositol 3-kinase (PI3K)/AKT pathways [124]. It has been observed that

PRL-1 and PRL-2 induce cell invasion and motility through the activation of ERK 1/2. Moreover, PRL-3 stimu-

lates cell proliferation and epithelial-mesenchymal transition, a crucial developmental process, by acting upstream

of PI3K. Interestingly, ERK1/2 and PI3K are common signaling pathways in cell proliferation, migration, invasion,

tumor growth, and metastasis [117].

2.2.3 Cell division cycle 14 (CDC14) phosphatases

- Structure and Homologues.

CDC14 phosphatases, encoded by the cdc14 gene, are the subgroup mainly involved in cell cycle regulation

[125, 126]. CDC14 comprises three isoforms, CDC14A, CDC14B, and CDC14C [127]. The isoform CDC14B

encodes four splice variants, including CDC14Bpar, CDC14B1, CDC14B2, and CDC14B3 [128]. Interestingly, the

isoform CDC14C (also known as CDC14Bretro) is produced by the CDC14B splice variant CDC14Bpar by gene

retroduplication, a process that occurs in hominoids [128, 129].

CDC14A contains a core domain and a nuclear export signal responsible for the translocation of CDC14A from

the nucleus to the cytoplasm. The core domain contains two structurally similar domains, A and B [130]. The protein

structure of human hCDC14A shares 65% compatibility with hCDC14B except for the nucleolar targeting sequence

(N-terminal 44 amino acids) that is responsible for localizing CDC14B to the nucleolus throughout interphase during

cell division [130]. CDC14C structure is similar to hCDC14B except for the C-terminus (Figure Appendix) [128].

- Expression and Function

At the cellular level, CDC14A localizes on the centrosomes of cells during interphase [131]. CDC14B1 is expressed

in the nucleoli, and CDC14B2 in nuclear speckles localized within the nucleus, as demonstrated in COS7-cells.

Moreover, CDC14B3 and CDC14Bpar exhibit co-localization with microtubules in COS7-cells [128]. It has also

been demonstrated that CDC14C co-localizes with an endoplasmic reticulum marker in COS7 cells, human HeLa,

or LN229 cell lines [128].

At the tissue level, hCDC14A and hCDC14B are found in the cerebral cortex, lymph nodes, liver, colon, kidneys,

and testis (www.proteinatlas.org) [99]. While hcdc14bpar mRNA is predominantly expressed in the adult and fetal

brain, hcdc14b1, hcdc14b2, and hcdc14b3 mRNAs are expressed in the adult brain, including the hippocampus,
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prefrontal cortex, amygdala, and hypothalamus [128]. hcdc14c mRNA is found in the adult brain and embryonic

forebrain, including the dorsal telencephalon [128].

The CDC14 family is conserved within eukaryotes and plays a role in inactivating mitotic cyclin-dependent

kinase via dephosphorylation. While activation of cyclin-dependent kinase drives cells into mitosis, their inactivation

promotes mitotic exit and cytokinesis. Furthermore, CDC14 regulates various other cellular events, such as DNA

recombination, telomere segregation, mitotic spindle dynamics, and cytokinesis [127, 132].

2.2.4 Phosphatase and tensin homologs deleted on chromosome 10 (PTENs) family

- Structure and Homologues

The pten gene codes for the PTEN protein, a protein in which tumor suppression functions due to its phosphatase

activity [133, 134]. PTEN carries two isoforms: a CUG-initiated isoform designated PTENα and an AUG-initiated

isoform referred to as PTENβ with a smaller molecular weight than PTENα [135]. The N-terminal domain of

PTEN contains the catalytic N-terminal PIP2-binding domain and PTP domain. The C-terminal domain consists

of the following subdomains: C2, C-tail, and the PDZ, with the active catalytic site being HCxxGxxR (Figure

Appendix) [136, 137]. PTEN’s phosphatase domain carries a similar structure to protein phosphatases but with a

more significant active site, allowing it to bind other substrates such as phosphoinositide (PI). Additionally, PTEN’s

C2 domain has been shown to bind phospholipid membranes in vitro and thus aid in the steering and anchoring

of PTEN to the cellular membrane [138]. Together, this interplay between both domains carries implications for

suppressing and stimulating tumor cell growth.

- Expression and Function

At the cellular level, PTENα is expressed in the cytoplasm and the mitochondrial inner membrane, while PTENβ

is in the nucleolus [135, 139]. In neurons, PTEN is dynamically localized to specialized subcellular compartments,

such as the neuronal growth cone, dendritic spines, and the nucleus [140, 141].

At the tissue level, PTEN protein and mRNA expression have been observed in the human pancreas [142] and in

the human brain, including the cerebral cortex, cerebellum, and hippocampus (www.proteinatlas.org) [99]. PTEN

exhibits differential distribution in the rat brain, with the highest levels found in the anterior olfactory nucleus,

cerebral cortex, amygdaloid nucleus, hippocampus, purkinje cells, and several nuclei in the basal ganglia, thalamus,

midbrain, and pons [143].

PTEN regulates cellular proliferation, survival, energy metabolism, cell architecture, and motility [137]. PTEN

modulates cell proliferation and neuronal growth during development by dephosphorylating PIP3 and antagonizing

PI3K signaling. PI3K signaling mediates responses to cellular stimuli, including hormones and growth factors

[144, 145, 146]. On the other hand, the inhibition of PTEN causes axonal regeneration and neural repair [147].

PTEN is fundamental in maintaining chromosomal stability through physical interactions with centromeres and

controls DNA repair [148].
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2.2.5 Myotubularins

- Structure and Homologues

Myotubularins can be found in almost all eukaryotes, from yeast to mammals. In humans, 14 clearly defined

myotubularin paralogs have been described, with MTM1 being the first recognized myotubularin. Subsequently, 13

myotubularin-related proteins were identified, labeled MTMR1 to MTMR13 [149].

All myotubularins share the PH-GRAM (Pleckstrin Homology - Glucosyltransferase, Rab-like GTPase Activator,

and Myotubularins) domain and catalytically active or inactive phosphatase domains. Additionally, myotubular-

ins can also carry other functional domains, including the PDZ binding site, the PH (Pleckstrin homology) and

FYVE (Fab1-YOTB-Vac1-EEA1) domains, and the DENN (Differentially Expressed in Normal and Neoplastic

cells) domain. Except for MTMR10, all myotubularins comprise a coiled-coil domain (Figure Appendix) [149, 150].

- Expression and Function

Myotubularins do not show any nuclear expression at the cellular level but are primarily localized in the cy-

toplasm as a richly-formed network. Myotubularins have also been shown to localize to Rac1-inducible plasma

membrane ruffles. This localization to Rac1-induced ruffles seems to be associated with a highly conserved my-

otubularin domain referred to as RID [151].

At the tissue level, myotubularin mRNA expression has been documented for various human organs, including

the spinal cord and substantia nigra (SN) of the central nervous system, skin, lungs, and vagina [149]. At the protein

level, myotubularins are expressed in the brain, including the cerebral cortex, hippocampus, and cerebellum, as well

as non-brain tissues like lungs, muscles, endocrine tissue, bone marrow, immune system, liver, gallbladder, and

pancreas (www.proteinatlas.org) [99].

Myotubularins are involved in several cellular processes, including autophagy, apoptosis, the actin cytoskeleton,

and intermediate filaments dynamic and PI metabolism. Active myotubularin can remove phosphate on carbon

number 3 of PtdIns3P or PtdIns(3,5)P2 and turn it into PtdIns or PtdIns5P, respectively [152]. Additionally, they

are also involved in myelin formation in neurons. For instance, MTMR2 is present in the nucleus and cytoplasmic

compartments of Schwann cells and motor neurons but not in the nucleus of sensory neurons. Moreover, MTMR2

interacts with the neurofilament light chain protein NF-L in Schwann cells and neurons [153]. Schwann cell/dorsal

root ganglion neuron co-cultures from mtmr2 knock-out mice exhibit excessive redundant myelin, also known as

myelin outfolding, and MTMR2 replacement was shown to rescue this myelin outfolding phenotype [154]. Interest-

ingly, the deletion of MTMR2 phospholipid phosphatase in humans causes childhood onset of an autosomal recessive

demyelinating neuropathy, also known as Charcot–Marie–Tooth type 4B1 [155].

2.2.6 Mitogen-activated protein kinase phosphatases (MKPs)

- Structure and Homologues

The mkp genes encode phosphatases that dephosphorylate MAP kinase (MAPK) signaling elements in vivo
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deactivating them [156]. In turn, this leads to the modulation of several physiological processes via a conformational

change of their substrates.

MKPs comprise the MAPK-binding (MKB) domain in the N-terminal end and the DSP domain in the C-

terminal end. The N-terminal MAPK-binding domain regulates enzymatic specificity through docking interaction

with MAPK. The binding of phosphorylated MAPK to the MAPK-binding domain alters the structure of the DUSP

domain. This alteration in the conformation of the protein, in addition to the interaction of the catalytic domain

with MAPK, increases MKPs’ catalytic activity (Figure Appendix).

- Expression and Function

MKPs seem highly expressed in various tissue types, including the brain, endocrine tissues, lung, digestive tract,

liver, gallbladder, kidneys, male and female reproductive tissues, and adipose tissue (www.proteinatlas.org)[99].

The MKP family can bind to substrates from MAPK signaling pathways, including ERK, JNK, and p38 [156,

157]. The DSP domain of MKPs inactivates MAPK by docking into phospho-MAPK [156]. MAPK signaling

converts extracellular stimuli into various intracellular responses, such as proliferation, differentiation, survival,

apoptosis, and migration [158, 159, 160]. MAPK signaling pathways have many predominant kinases, including

JNK, ERK, and p38, which can be inactivated by different MKPs [161].

2.2.7 Atypical DUSPs

- Structure and Homologues

Atypical DUSP genes have multiple nomenclatures and remain poorly characterized [91, 93]. The HUGO

(Human Genome Organization) Gene Nomenclature Committee includes 16 atypical DUSPs genes [162]. Patterson

et al. identify 20 members of atypical DUSPs [86], and Huang and Tan 15 atypical DUSP members [93]. Moreover,

phylogeny analysis has shown that atypical DUSPs are not derived from a common proximal ancestor [86, 93].

Atypical DUSPs encode proteins with a molecular weight of less than 27 kDa [86, 91]. All the members of atypical

DUSPs are listed in the Appendix. Atypical DUSPs predominantly contain the consensus DSP catalytic domain.

Some atypical DUSPs contain a CH2 domain, a carbohydrate-binding domain, and an Arginine-rich or Proline-rich

region (Figure Appendix) [86].

- Expression and Function

Most atypical DUSPs are localized in the cytoplasm at the cellular level, with some in the nucleus, another

subset in the mitochondria, and Golgi in various cell types [86]. At the tissue level, the brain expression of atypical

DUSPs is presented in the Appendix, while their localization in other tissues is described in the Appendix.

Some atypical DUSPs regulate MAPK, playing a role in cell proliferation and apoptosis. In addition to MAPK

protein substrates, several substrates of atypical DUSPs include nucleic acids (such as RNA) and phosphorylated

carbohydrates (such as amylopectin and glycogen). Nonetheless, the physiological substrates of many atypical

DUSPs remain unknown [86, 163].
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2.3 DUSP genes and mental disorders

Accumulating evidence from the current literature on the link between DUSP genes and mental disorders such

as depression, bipolar disorder, autism spectrum disorder (ASDs), schizophrenia, post-traumatic stress disorder

(PTSD), and substance abuse disorders are described in the following section. The summary of the pathological

implication of DUSP family members in mental disorders is presented in Table A.4 of the Appendix.

2.3.1 Depression

Depression is characterized by psychological and physiological symptoms, including negative thinking, anhedonia,

fatigue, memory impairment, insomnia, extreme weight loss, or weight gain. The World Health Organization (WHO)

reported that depression is a leading cause of disability worldwide. The neurobiological mechanisms underlying

depression are complex, however, first-line antidepressants are effective in a subset of patients by reversing some of

the symptoms of depression [164]. However, not all individuals benefit from current antidepressants, and genetic

factors have been shown to contribute to the risk of treatment-resistant depression [165].

PTEN and Depression

Genetic studies have demonstrated an association between three distinct pten single nucleotide polymorphisms,

rs701848, rs2735343, and rs112025902, and increased risk of depression in a Chinese cohort [166]. Other studies

have provided evidence that PTEN protein levels are higher in postmortem lysates of the ventral prefrontal cortex

(Brodmann’s area 11) from suicide victims diagnosed with depression when compared to non-depressed healthy

controls [167]. Besides, the enzymatic activity of the kinases PI3K and AKT1 were found to be decreased in the

ventral prefrontal cortex (Brodmann’s area 11) of suicide victims diagnosed with depression, while their protein

levels did not differ. Conversely, PTEN protein levels in the ventral prefrontal cortex were observed to be increased in

patients with a depressive disorder. This attenuation of PI3K and AKT1 activity in suicide victims with a depressive

disorder may be related to elevated levels of PTEN, which in turn may result in insufficient phosphorylation of second

lipid messengers PI3-phosphate, PIP2 and PIP3 [167].

PI3K and AKT are also involved in mediating depressive-like behavior in mice induced by stress [168, 169]

and inhibitors of PI3K/ AKT have been shown to prevent antidepressant-like effects (characterized by decreased

immobility time) induced by creatine in mice following the stress-inducing tail suspension test [170, 171]. Together,

these results highlight that the phosphorylation of AKT and the downstream effects might be of interest as a

potential treatment of depression. Previous work has indicated that deficits in vital cellular processes such as cell

survival and neuroplasticity are observed in major depression [172]. Therefore, looking into the enzymatic activity

of PTEN and PI3K and their association with abnormalities in neurotrophic signaling is pertinent [167].

30



Chapter 2. A potential role for the dusp family of genes in mental and neurodegenerative disorders

DUSP1 and Depression

DUSP1 has also been documented to play a role in the pathophysiology of depression in human subjects [173].

For instance, dusp1 mRNA expression was shown to be increased in the hippocampus of depressed patients when

compared to healthy controls [174]. As negative regulators of DUSP1, MAPK and its downstream kinases were

decreased in the prefrontal cortical areas and the hippocampus of suicide subjects with depression [158, 175, 176].

Recent evidence from animal studies suggests the involvement of MKPs in depression-like behavior. For instance, in

one study, DUSP1 protein levels were observed to be increased in the hippocampus of stressed rats when compared

to controls in the resident-intruder paradigm. Kinase substrates of DUSP1, including phosphorylated MEK1/2 and

ERK1/2, were decreased in the hippocampus of stressed rats when compared to controls [177]. In another stress

model – the chronic unpredictable stress (CUS) model - the upregulated protein levels of DUSP1 in the hippocampus

was rescued by the antidepressant fluoxetine, two weeks after inducing depressive-like behaviors in rodents [174].

Similarly, the upregulated protein level of DUSP1 in the ventrolateral orbital cortex of rats subjected to chronic

unpredictable mild stress was attenuated by enhancing miR-101 expression, and so was the depressive-like behavior

[178]. miR-101 is a functional silencing small RNA targeting dusp1 [179, 180] and the amyloid precursor protein

(APP) [181]. Moreover, overexpression of DUSP1 in the hippocampus induced anhedonia-like behavior, including a

reduced preference for sucrose and increased frequency of failure-to-escape in the active avoidance test [174]. Dusp1

knockout mice were also resistant to CUS-induced depressive-like behaviors [174].

Antidepressant treatments have an impact on the expression of DUSP1 in healthy animal subjects. For example,

the administration of fluoxetine reduced dusp1 mRNA expression in the prefrontal cortex of healthy rats [182].

Moreover, electroconvulsive therapy (ECT), a treatment for drug-resistant depression, induced upregulation of

dusp1 mRNA levels in all hippocampal subregions, and the prefrontal cortex of healthy rats [182].

These results together strengthen the association between DUSP1 and depression. Future studies looking into

treatments for depression should consider targeting DUSP1 as a therapeutic strategy by, for example, making use

of small RNAs, particularly miRNAs, to silence the expression of DUSP1 hence reversing signs and symptoms of

depression.

DUSP4 and Depression

Analyses of postmortem brain tissue samples indicated increased protein levels of DUSP4 (aliases MKP-2, the

ERK1/2 phosphatase) in prefrontal cortical areas and the hippocampus of patients with major depressive disorder

following the death by suicide compared to non-psychiatric control subjects. This increase was accompanied by

decreased expression of mRNA and protein levels of ERK1 and ERK2, resulting in reduced MAPK activity [158].

Another study showed sex-dependent differential expression of dusp4 mRNA in the ventral subiculum of patients

with depression compared to healthy controls; with differences observed in male but not in female subjects [183].

DUSP4 protein expression remained unchanged in the hippocampus and the frontal cortex of rats subjected
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to prenatal stress [184] and in a male rat model of depression, which was induced by neonatal treatment with

clomipramine [185]. Treatments, including antidepressants and ECT, have led to changes in DUSP4 expression in

healthy animals. For instance, ECT treatment in healthy male rats induced increased expression of dusp4 mRNA

in the dentate gyrus (DG) of the hippocampus and the prefrontal cortex [182].

Although these findings suggest DUPS4 changes in both human patients and animals subjected to antidepressant

treatments ECS, the available studies do not show DUSP4 change in the stress paradigm in animals, like the prenatal

stress and depression model of neonatal treatment with clomipramine. These unchanged results might be due to the

limitations of the stress paradigm in animals. Besides, even though studies show DUSP4 level is sex-dependent in

human depression studies, no studies show that the DUSP4 level is sex-dependent in animal models of depression,

which creates limitations in specifying the involvement of DUSP4 in depression.

DUSP6 and Depression

In post-mortem brain tissue, dusp6 mRNA was shown to be differentially expressed in the ventromedial prefrontal

cortex of patients with depressive disorder in a sex-specific manner [183]. Besides, the DUSP6 substrates, phospho-

ERK1/2, showed elevated protein expression in the prefrontal cortex of female patients with depressive disorder

[183]. Downregulation of DUSP6 mediated by virus injection in the ventromedial prefrontal cortex of chronic stressed

induced depressive-like phenotype in female mice, but not male mice. The overexpression of dusp6 mediated by a

Herpes simplex virus vector rescued the depressive-like behavior in female mice [183]. This sex-differential response

of the stressed mice suggests that DUSP6 exerts a sex-specific role in the stress response, possibly via an interaction

with sex-specific hormones.

Moreover, viral-mediated downregulation of dusp6 was accompanied by increased phosphorylated ERK1/2 levels

in the ventromedial prefrontal cortex of stressed female mice compared to control [183]. However, the total ERK1/2

protein levels in the DUSP6-downregulated female stressed mice remain unchanged in the ventromedial prefrontal

cortex compared to control. These findings resemble findings observed in post-mortem brain tissue analyses of

female patients diagnosed with depression. Females diagnosed with depression showed elevated levels of phospho-

ERK1/2 in the prefrontal cortex compared to healthy female controls. Elevated phospho-ERK1/2-reactive cell

density mainly localized in layers II/III and layers V/VI of the prefrontal cortex of female patients with depressive

disorder [183].

Additionally, ECT and administration of antidepressants are shown to have an impact on DUSP6 expression.

For instance, ECT induces the upregulation of dusp6 mRNA levels in the prefrontal cortex and DUSP6 protein

levels in the hippocampus and prefrontal cortex of healthy rats [182]. The administration of fluoxetine, however,

reduced the mRNA expression of dusp6 in the prefrontal cortex of healthy rats [182]. This discrepancy in results

highlights the need to further investigate the involvement of DUSP6 in mood disorders such as depression.
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DUSP2, DUSP12, DUSP19, DUSP23, DUSP24 and Depression

The subregions of the hippocampus exhibit differential RNA expression of mkps in post-mortem brain samples

of patients diagnosed with depressive disorder. For instance, while DUSP2 and DUSP19 show higher expression

in the hippocampal DG than in the CA1, mRNA levels of dusp12 and dusp24 are increased in the CA1 region

of postmortem brain tissue of patients diagnosed with depression [174] as compared to healthy controls. Another

study showed differential expression of dusp19 mRNA in the ventral subiculum and of dusp23 mRNA in the

nucleus accumbens and the Broadman area of male patients with depressive disorder, but not in female patients

[183]. These results indicate that distinct dusp genes may be linked with depression differently, including sex-specific

effects. Despite these observations, further experimental studies are needed to better understand the involved of

MKPs in depression and eventually target their expression to reverse depressive symptoms.

2.3.2 Bipolar disorder

Bipolar disorder is characterized by mood instability, with episodes of mania and depression. Bipolar disor-

der is a complex disorder with high estimated heritability. Despite the accumulating evidence of the etiology of

bipolar disorder, the underlying biological mechanisms that give rise to this mood disorder remain elusive [186].

Besides underlying genetic factors, environmental risk factors have also been identified as being partly responsible

for the onset of bipolar disorder [187]. Bipolar disorder is associated with multiple dysregulations including dis-

turbed brain development, neuroplasticity, and chronobiology, specifically, neurotransmitter, neurotrophic factors,

neuroinflammation, autoimmunity, cytokines, stress axis activity, oxidative stress, and mitochondrial dysfunctions

[188].

DUSP2 and Bipolar disorder

It has been observed that patients diagnosed with bipolar disorder have increased proportions of monocytes in

the blood or cerebrospinal fluid (CSF) compared to controls [189, 190]. It has also been found that the monocytes of

patients with bipolar disorder and the offspring of bipolar parents show aberrant levels of dusp2 mRNA expression.

For instance, patients with bipolar disorder taking medication show elevated blood mRNA levels of dusp2 compared

to healthy controls. DUSP2 carries a strong correlation to the mRNA expression of inflammatory cytokines [191].

Dusp2 mRNA expression has been shown to be significantly higher in monocytes of patients with mood disorder

compared to healthy controls [192]. Furthermore, lithium carbonate- and antipsychotic-treated patients with bipolar

disorder exhibited lower levels of expression of dusp2 mRNA in monocytes compared to non-lithium- and non-

antipsychotic-treated patients with bipolar disorder [192]. Thus, DUSP2 may be an attractive target for further

analyses in patients with bipolar disorder.
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DUSP6 and Bipolar disorder

There is a positive association between the dusp6 gene and patients with bipolar disorder [193, 194]. A genetic

study, including 160 patients with a diagnosis of schizophrenia, 132 patients with bipolar disorder, and 336 healthy

controls, indicated that the G allele of the T/G polymorphism of the dusp6 gene was significantly more common

in patients with bipolar disorder than controls. However, there was no difference between schizophrenia patients

and controls. This contrast suggests a specific association of the dusp6 gene with bipolar disorder, but not with

schizophrenia [194]. However, this association was not observed in male patients with bipolar disorder [194], hence

suggesting a sex-specific effect.

The lower expression of dusp6 gene observed in postmortem brain samples of patients with bipolar disorder

has been found to show sex-specificity, with a reduced level of mRNA transcripts expression in female but not

male patients with bipolar disorder [195]. Additionally, in vitro studies demonstrated functional Leu114Val and

Ser144Ala polymorphisms in dusp6 blunted the effects of lithium on ERK1/2 activation by using SH-SY5Y human

neuroblastoma cells infected with recombinant adenoviruses [193]. Other evidence has suggested that DUSP6 may be

linked with bipolar disorder, possibly via the involvement of the ERK pathway and circadian rhythm dysregulation

[194].

Also, DUSP6, a negative regulator of ERK1/2, has been linked to the disruption of the circadian rhythm in cell

cultures of fibroblasts derived from patients with bipolar disorder. The knock-down of dusp6 in these fibroblasts has

been shown to reverse lithium-induced increases in amplitude of circadian rhythm. That being said, the inability

of lithium to regulate circadian rhythms in bipolar disorder may reflect reduced ERK activity, which is partially

regulated by DUSP6 [196]. Thus, DUSP6 may be playing a crucial role in regulating circadian rhythms and in the

onset and course of bipolar disorder [193].

2.3.3 Autism spectrum disorders (ASD)

Autism spectrum disorder is a developmental disorder characterized primarily by a lack of social reciprocity

accompanied by repetitive behavior such as stereotypical or repetitive motor movements. The heritability of ASD

is considerably high, and common genetic variants have been shown to play a role in conferring risk to ASD [197].

Besides, indirect evidence suggests a contribution of environmental factors in interaction with genetic factors in the

development of ASD [198].

PTEN and ASD

Pten gene mutations have been shown to be risk factors for ASDs associated with macrocephaly [199, 200, 201].

This specific type of ASD associated with macrocephaly is termed PTEN-ASD, typically characterized by reduced

levels of PTEN protein expression in conjunction with increased brain size and cognition impairment [202]. In the

last decades, pten mutation frequencies in PTEN-ASD has been reported in ten human studies [203].
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Moreover, pten loss in mice leads to alterations in synapses and cytoarchitecture [203]. Ablation of pten in neural

stem cells in the subgranular zone of the hippocampus of mice leads to increased proliferation and differentiation

rate of the stem cells, which later developed into hypertrophied neurons [204]. Several mouse models characterized

by pten deficiency or dysfunction show autism-like behaviors, including social deficit and repetitive behavior [134].

One of these models, pten(m3m4), exhibits the same disrupted genes as those in human ASD [205], including genes

related to myelination such as myelin basic protein. Interestingly, pten(m3m4) animals present an enlarged corpus

callosum, white matter abnormalities, and impaired learning and memory processes [202].

DUSP15 and ASD

The analysis of peripheral blood from 255 children affected by ASD and 427 healthy controls revealed that

DUSP15 could be a susceptibility biomarker for ASD [206]. Additionally, recurrent identical de novo mutations of

dusp15 were found via exome sequencing using 175 samples from ASD cases and their parents [207]. Therefore,

DUSP15 seems to carry a peculiar role in ASD risk and should be further investigated as a potential biomarker for

ASD in children.

2.3.4 Schizophrenia

Schizophrenia is a debilitating disease affecting various daily functions, including self-care, social aspects, and

occupational functions [208, 209]. The symptoms of schizophrenia include hallucination, delusion, bizarre behavior,

anhedonia, and concentration problems [210]. Evidence shows that the factors contributing to schizophrenia include

genetic factors, early environmental influences, and social factors (e.g. poverty) [208, 209]. Schizophrenia is a

complex disease affecting 1-3 % of the population. It is also considered among the top ten causes of disability

worldwide [208]. Dysfunction of dopaminergic neurotransmission and synaptic function seems to contribute to

psychotic symptoms and abnormalities of neuronal connectivity, respectively [211]. Current first-line treatment

mainly includes the administration of antipsychotic drugs (such as chlorpromazine and haloperidol) combined with

psychotherapy, social support, and rehabilitation [211].

DUSP4 and Schizophrenia

A post-mortem brain study demonstrated decreased DUSP4 protein levels in the cerebellar vermis of the patient

with schizophrenia compared to control [212]. This is particularly interesting given the increasing evidence showing

the involvement of the cerebellum in psychiatric disorders, mainly schizophrenia. As substrates of DUSP4, ERK

protein levels also seem to be disrupted in the postmortem brains of schizophrenia patients. For instance, ERK1

protein expression is reduced in the prefrontal cortex, while ERK2 is elevated in the thalamus [213].
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DUSP22 and Schizophrenia

The hypermethylation of the dusp22 promoter has been reported in a recent study investigating genetic vul-

nerability to schizophrenia [214]. The blood and brain tissue of patients exhibited significant hypermethylation at

the dusp22 gene promoter. Furthermore, the dusp22 gene promoter showed higher DNA methylation levels in the

famine-exposed schizophrenia patients compared to non-famine exposed groups. Thus, famine seemed to be a sus-

ceptible factor in the onset of schizophrenia. In an in vitro model of famine, nutritionally deprived patient-derived

fibroblasts showed hypermethylated dusp22. These results suggest an association between epigenetic changes on the

dusp22 gene and increased susceptibility to the impact of an environmental risk factor on mental disorders [214].

Although no correlation was found to exist between DNA methylation and gene expression of the dusp22, these

results suggest changes in gene expression regulation of dusp22, in response to extreme conditions like famine, may

moderate or mediate risk for schizophrenia. Additionally, the hypermethylation of dusp22 in the blood and brain

of schizophrenia patients that were not exposed to famine, also suggests that dysregulations in dusp22 methylation

are associated with underlying mechanisms in the onset and development of schizophrenia. Further research on the

involvement of DUSP22 in neuronal development is required to strengthen this association and better understand

the changes that are brought by aberrant dusp22 methylation.

MTMR2, MTMR9 and Schizophrenia

Mtmr9 mRNA level was found to be reduced approximately two-fold in peripheral blood lymphocytes from

patients with schizophrenia compared to healthy controls [215]. Furthermore, mtmr2 mRNA was shown to be

lower in the superior temporal cortex of patients diagnosed with schizophrenia as compared to controls without a

schizophrenia diagnosis [216]. These results suggest that further research into MTMR9 is required to investigate

whether it would eventually be qualified as a biomarker for the diagnosis of schizophrenia.

2.3.5 Post-traumatic stress disorder (PTSD)

PTSD symptoms include intrusions, avoidance/numbing, hyperarousal, sensitization to stressors, and negative

alterations in cognitions and mood. The cause of the PTSD remains elusive, and various factors have an impact on

the pathology of PTSD, including genetic factors, trauma exposure, and interaction between gene and environment

[217, 218]. The global burdens of PTSD in public health are substantial because the symptoms lead to impaired

functions in several aspects of one’s life, including health, social, and professional life [219]. Given the complexity of

the pathology of PTSD, the treatment of PTSD consists of various methods, including pharmacologic approaches

[220, 221], psychotherapies [222], and mindfulness [223].
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DUSP22 and PTSD

Differential DNA methylation at the DUSP22 gene is receiving increased attention to psychiatric disorders such

as schizophrenia and PTSD. A recent longitudinal study in a Dutch military cohort identified changes in DNA

methylation at several differentially methylated positions, including DUSP22 [41]. Decreased DNA methylation

around the DUSP22 gene was linked to increased PTSD symptoms [41]. Although this observation was not replicated

in an independent replication study, a thorough understanding of the role of epigenetic changes around the DUSP22

gene in the face of extreme environmental conditions like traumatic stress and famine is required.

2.4 DUSP genes and neurological disorders

Accumulating evidence from the current literature on the link between DUSP genes and neurological disorders

such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and epilepsy, is described

in the following section. The summary of the pathological implication of DUSP family members in neurological

disorders is presented in Appendix TableA.4.

2.4.1 Alzheimer’s disease (AD)

AD is characterized by progressive memory loss, impairments in cognition, and neuropsychiatric disturbances

such as mood and personality changes, anxiety, and aggression [224]. The prevalence of AD is 10–30 % in individuals

over 65 years, with incidence doubling every ten years after 60 [225, 226]. The pathophysiological hallmarks of

AD are the accumulation of extracellular amyloid-beta (Aβ) plaques and intracellular neurofibrillary tangles of

hyperphosphorylated-tau that lead to neuronal loss due to neurotoxic effects. So far, there is no cure for AD, and

the current treatment options have been shown to only slow down its progression [227].

DUSP1 and AD

The protein level of DUSP1 decreased in the hippocampus and temporal cortex of patients diagnosed with AD

compared to aged match healthy controls [228]. Similarly, DUSP1 protein levels were decreased in the hippocampus

of APP/PS1 transgenic AD model mice at the age of 9 months compared to control mice [228]. DUSP1 inhibits

the amyloidogenic process through the ERK/MAPK signaling pathway, and DUSP1 reduces Aβ generation and

plaque formation and alleviates synaptic and cognitive impairments in APP/PS1 mice [228]. In PC12 cell culture,

DUSP 1 mitigates Aβ-induced apoptosis, oxidative stress, and neuroinflammation by inhibiting the JNK signaling

pathway, thereby playing a neuroprotective role. From the animal and cell culture studies, DUSP1 alleviates amyloid

beta-induced neurotoxicity [229]. The results suggest that DUSP1 impairment facilitates the pathogenesis of AD,

whereas the upregulation of DUSP1 plays a neuroprotective role to reduce Alzheimer related phenotypes [228].
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DUSP26 and AD

DUSP26 protein was observed to be elevated in the hippocampal of postmortem brain tissue of patients with

AD compared to controls [230]. In the APP-expressing HEK293/APP695 cell lines, overexpression of DUSP26

increased Aβ42 levels by twofold [230], In contrast, the enzymatically inactive mutant of dusp26 failed to induce

Aβ oligomers or APP processing. Thus, DUSP26 has been linked to Aβ generation and APP processing in these

cell lines [230], thereby suggesting the involvement of DUSP26 in the pathophysiology of AD.

SSH1, SSH3 and AD

SSH1 protein level showed a 45 % significant reduction in the frontal cortex of patients diagnosed with AD

compared to healthy controls. This reduction was accompanied by unchanged pSSH1 levels, which led to the

significant decrease of the pSSH1/SSH1 ratio indicative of the inactivation of SSH1 in human AD [100]. Besides,

ssh3 mRNA was shown to be differentially expressed in the hippocampus, the temporal and frontal cortex, as well

as in the whole blood of patients diagnosed with AD in comparison with healthy controls [231]. SSH phosphatase

dephosphorylates cofilin, and the reduced protein expression and inactivation of SSH1 were further accompanied

by an increase in cofilin1 phosphorylation/inactivation in human and animal studies [100]. Hyperphosphorylation

of cofilin can result in tau pathology, which can be induced by Aβ oligomers [232].

DUSP22 and AD

Analyses of blood/brain samples indicated that methylation of the region in dusp22 correlated linearly and

powerfully with the Braak stages of neuropathology, an index of AD progression (Pearson correlation coefficient

r = 0.95, p < 0.05) [233]. In the hippocampus of patients diagnosed with AD, hypermethylation of the dusp22

promoter and decreased protein expression of DUSP22 as compared to age-matched controls have been reported

[233]. Reductions in DUSP22 levels may lead to increased tau phosphorylation due to weaker inhibitory control

of protein kinase A-mediated tau-phosphorylation, at least as suggested by findings in neuronal cell lines [233].

Besides, it has been found in SK-N-BE(2) cell culture studies that are depleting DUSP22 through small hairpin

RNA’s resulted in a higher survival capability than cells with control or healthy and overexpression of DUSP22

[233]. It would be interesting for future studies on AD pathophysiology to establish the regulatory role of DUSP22

in tau phosphorylation, Aß accumulation, and neuronal death in AD.

PTEN and AD

AD is associated with excessive recruitment of PTEN into synapses, leading to aberrant synaptic depression

[134]. It has furthermore been observed that layer III of the temporal cortex in patients with AD showed a 15 % loss

of PTEN immunoreactive neurons compared to controls, while the majority of the layer III temporal cortex were

PTEN immunoreactive in control cases [234]. PTEN protein levels decreased in the AD temporal cortex compared

38



Chapter 2. A potential role for the dusp family of genes in mental and neurodegenerative disorders

with matched controls, and PTEN level has been negatively correlated with the severity of neurofibrillary pathology

or senile plaques [235].

It has been observed in AD, that PTEN delocalizes from the nucleus to the cytoplasm and intracellular neu-

rofibrillary tangles in postmortem brain tissues [236]. The nuclear PTEN immunoreactivity reduced in neurons

of the CA1, subiculum, and entorhinal cortex of AD cases, while the PTEN immunoreactivity increased in apical

dendrites in the CA1 and subiculum in AD cases compared with control [235]. However, in the temporal cortex,

PTEN protein levels were not significantly different in either nucleus or membrane fractions in AD postmortem

brains and controls [234]. Instead, the ratio of Ser380 p-PTEN / total PTEN protein reduced in temporal cortical

homogenates in AD compared to control [234], which indicated reduced PTEN phosphorylation at residue Ser380

in AD. Decreased PTEN and increased tau phosphorylation were evident in frontal cortex brain slices of AD [237].

This suggests that PTEN phosphorylation is involved in AD pathology and that PTEN dynamics in AD brain

might be region dependent.

PTEN contributes to AD pathology in animal and cell culture models [238]. Overexpression of PTEN induces

synaptic depression, similar to Aß-induced depression in transgenic mice [239]. Additionally, the overexpression of

the PTEN protein in Chinese hamster ovary cells reduces tau phosphorylation [240]. Another study demonstrated

that overexpression of PTEN decreases the formation of tau aggregates in COS-7 cells.

In contrast, the phosphatase-null or inactive PTEN increases tau aggregation in rat cortical primary neurons

transfected with a mutant form of pten [237]. The loss of PTEN causes neurodegeneration through the hyper-

phosphorylation of tau and neurofilaments in mouse cerebellar neurons [241]. However, induction of PTEN is

accompanied by okadaic acid-induced tau phosphorylation, while the knockdown of PTEN reduced tau hyper-

phosphorylation in SH-SY5Y neuroblastoma cells, and increased cell proliferation and survival. Inhibition of PTEN

reduces tau phosphorylation in SH-SY5Y neuroblastoma cells [242]. Furthermore, inhibition of PTEN via intracere-

broventricular delivery of a PTEN inhibitor, VO-OHpic, rescued Aβ42-induced impairment in both basal synaptic

transmission and LTP, as well as spatial learning tasks, in APP/PS1 transgenic mouse model of AD [239].

The PDZ-binding domain of PTEN is central to Aβ-induced synaptic toxicity and cognitive dysfunction [239].

Deletion of this PDZ-binding domain results in resistance to Aβ toxicity in postsynaptic neurons [239]. Overex-

pression of PTEN reduced tau phosphorylation in Chinese hamster ovary cells [240]. Thus, taken together, these

findings indicate that PTEN may be centrally involved in moderating or mediating AD’s pathophysiology.

2.4.2 Parkinson’s disease (PD)

PD is a progressive disease with motor and non-motor symptoms, which consist of slow movements, tremors,

rigidity, impaired balance during walking, various disturbances in autonomic functions with orthostatic hypotension,

constipation, sleep disturbances, and a spectrum of neuropsychiatric symptoms [243]. The cause of PD is unknown

but is believed to involve both genetic and environmental factors [244]. Parkinson’s disease affects 1 % of the
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population above 60 years old and is more frequently prevalent in men than women [245]. The main hallmarks

of PD are Lewy bodies and the degeneration of dopaminergic neurons in the substantia nigra. However, recent

findings suggest that PD’s pathophysiology is heterogeneous. Other protein aggregates like α-synuclein, DJ-1 [246],

tau, and β-amyloid also play a role [247] in the onset and progression of the disease.

PTEN and PD

Protein level of nuclear PTEN has been shown to be significantly increased by 5.6-fold in the substantia nigra

of PD brain compared to the age-matched controls. PTEN downstream regulators, PI3K regulatory subunit p85,

PIP3, and Akt1/2/3 protein levels decreased by two-fold in nuclear of substantia nigra region of PD brain samples

compared to the age-matched controls [248].

Downregulation of PTEN inhibits elevated levels of intracellular reactive oxygen species and neuronal death in

rat hippocampal and in human dopaminergic SH-SY5Y neurons caused by neurotoxin 1-methyl-4-phenylpyridinium

iodide toxicity which mimic PD [249]. PTEN deletion in adult dopaminergic neurons protects these neurons from

6-hydroxydopamine (6-OHDA) neurotoxicity and restores striatal dopamine levels in mouse models of PD [250].

PTEN has been involved in response to DNA damage repair in PD [251]. Specific defects in DNA impact the

dopaminergic system and are associated with PD pathology in both cell and animal models [252]. Thus, PTEN

does play a role in DNA damage in PD.

DUSP1 and PD

There are currently few studies on DUSP1 in patients with PD. However, one study reported decreased dusp1

mRNA expression in the dorsolateral prefrontal cortex of idiopathic PD patients [253]. In cell culture studies using

neuronal PC12 cells, Serial Analysis of Gene Expression-based study showed that acute (8 hours) exposure to 6-

OHDA, a dopaminergic neurotoxin commonly used to induce PD-like symptoms in experimental studies [254, 255],

induced a 35-fold increase of dusp1 mRNA levels [256]. Moreover, dusp1 mRNA was transiently upregulated in

the SN 4 days post-6-OHDA administration in the medial forebrain bundle lesion model in rats [257]. Besides,

dusp1 mRNA expression was increased in rat striatum treated with 6- OHDA followed by injection of SKF38393,

a selective dopamine receptor D1 agonist [258]. DUSP1 has been shown to promote the growth and elaboration

of dopaminergic neuronal processes, protecting them from the neurotoxic effects of 6-OHDA [259]. This study

indicates that DUSP1 may have a neuroprotective effect, at least in PD rodent models [259].

2.4.3 Huntington’s disease (HD)

HD is a devastating heritable neurological disease characterized primarily by progressive motor and cognitive

impairments, as well as psychiatric symptoms, including affective disorder symptoms that often precede other

symptoms [260]. HD is typically induced by a highly polymorphic CAG trinucleotide repeat expansion in exon-
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1 of the gene encoding the huntingtin protein [261]. Huntingtin protein is widely expressed during development

and exhibits a complex and dynamic distribution within cells [262]. Besides genetic factors, cerebral vitamin B5

deficiency is a potential cause of HD [263]. Most European populations show a relatively high prevalence (4-8 per

100,000), but HD is notably rare in Finland and in Japan [264]. The underlying neuropathology is characterized

by neuronal loss, striatum microglial activation, and neuro-inflammation within the striatum [265, 266]. Many

genetically modified animal models of HD recapitulate some of the pathophysiological features observed in humans,

but many drug designs based on animal models of HD have failed in clinical trials [267].

DUSP1 and HD

Reduced DUSP1 levels were observed in animal models of HD [268], and enhancing DUSP1 expression has

been shown to significantly reduce neuronal cell death in HD animal models induced by lentiviral infection and

expression of a mutated huntingtin gene. In a cell culture studies comprising primary striatal rat neurons exposed to

a pathological construct comprising the N-terminal fragment of polyglutamine-expanded huntingtin (Htt171–82Q),

overexpression of DUSP1 inhibited apoptosis [269]. This DUSP1-mediated neuroprotection has been suggested

to be dependent on the activity of phosphatases and occur through direct regulation of JNKs and p38s [269].

Mutant dusp1 selectively targeting JNK or p38, preserves significantly fewer NeuN-positive cells in primary striatal

neurons exposed to Htt171–82Q fragments than in wild-type DUSP1 primary neuron HD models, indicating that

dual targeting of JNK and p38 by DUSP1 may exert neuroprotective effects [269]. These findings suggest that this

DUSP1 regulated pathway may represent a novel candidate as a therapeutic target in HD.

PTEN and HD

Elevated PTEN expression, together with amplification of BDNF signaling, seems to result in neuroplasticity

abnormalities in the indirect pathway of the spiny projection neurons from brain slice of the BACHD mouse

model and Q175 knock-in mouse model of HD [270]. Furthermore, plasticity and LTP aberrations were rescued by

inhibiting PTEN in indirect pathway spiny projection neurons of a transgenic HD mouse model [271].

P53 has been shown to transiently upregulate PTEN protein and mRNA levels in medium spiny neurons in

the striatum of TIF-IA knock-out mice, a transgenic model of HD [272]. TIF-IA inactivation leads to nucleolar

disruption, which is also a common finding in HD pathology [273]. TIF-IA deletion, together with PTEN or p53

deletion in mice, exhibited increased levels of apoptotic cells in the striatum [272]. However, TIF-IA deletion

combined with PTEN and p53 deletion did not show increased apoptotic cells in the striatum. Thus, PTEN

and p53 prolong neuronal survival upon nucleolar disruption [272]. The upregulation of PTEN impairs kinase

mammalian/mechanistic target of rapamycin function in medium spiny neurons [272].

Future studies investigating PTEN regulation will contribute to understanding the etiology of HD and to the

development of new therapeutic strategies targeting PTEN.
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2.4.4 Epilepsy

Epilepsy is characterized by recurrent unprovoked seizures and accounts for the highest disability-adjusted life

year rates among neurological disorders [274]. Epilepsy is caused by various factors, including genetic influence, head

trauma, brain disease like brain tumors or strokes, infectious diseases, prenatal injury, or developmental disorders.

Epilepsy affects more than 65 million people worldwide [275]. Gliosis, imbalance of ion and water homeostasis,

increased extracellular glutamate, altered neural circuits, damaged blood-brain barrier are omnipresent in epilepsy

in animal models or patients [276]. Antiepileptic drugs are the first-line treatment, but alternative treatments,

including surgical resection of the seizure focus, ketogenic diets, vagus nerve stimulators, and implantable brain

neurostimulators are available for patients with seizures that are not controlled with medication [277].

Laforin and Lafora disease (LD)

LD is a progressive neurological disorder characterized by intractable myoclonic seizures, emotional disturbance,

and cognitive decline. Hallmarks of this disease are primarily attributed to the accumulation of hyperphosphorylated

insoluble poly-glucosan called Lafora bodies (LBs). LBs are caused by mutations in either the atypical DUSP laforin,

emp2A, or nhlrc1. Laforin genes encode phosphatases that dephosphorylate glycogen. Glycogen, a potent energy

storage molecule in animals, is degraded by glycogen phosphorylase and glycogen debranching enzyme. In the brain,

the accumulation of glycogen in neurons can lead to neuronal loss, locomotive defects, and neurodegeneration in

mice and Drosophila. As such, a reduction of glycogen synthesis may prevent LBs formation and subsequent

neurodegeneration and seizure susceptibility, thus preventing LD progression [278, 279, 280].

PTEN and Epilepsy

pten mutations have been observed in patients with epilepsy and a variety of comorbidities, including cancer [281,

282]. PTEN sequence analysis performed on a case where the individual suffered from both epilepsy and Cowden

syndrome, an inherited disorder characterized by noncancerous growths, identified a heterozygous missense mutation

in pten [283]. Resection of high-grade glioma tissue from patients with seizures exhibited reduced PTEN expression

compared to patients with glioma without seizures [284]. Pten mutations have also been reported and used in

several animal models of cortical dysplasia, which is also a contributor to epilepsy in adults [285]. For instance, the

inhibition of PTEN rescued neuronal death in a mouse model of temporal lobe epilepsy, implying an excitotoxic

role for PTEN. This inhibition has also been shown to exert potent anti-inflammatory and neuroprotective effects

[286]. These results confer additional support to the role of PTEN in neuronal dysfunction.

DUSP1 and Epilepsy

A study on kainic acid-induced limbic seizures in rats reported that DUSP1 protein expression was transiently

induced in the dentate granule cells of the hippocampus, outer layers of the neocortex, and neurons of the lateral
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nucleus of the bed of the stria terminalis in rat with the seizures as compared to untreated controls [287]. On a

subcellular level, DUSP1 colocalizes with its substrate, MAP kinase, in neuronal nuclei, which has been linked to

inhibition of the seizure response in an animal model of temporal lobe epilepsy [287, 288]. Given these results,

DUSP1 induction seems to have a partial role in the inhibition of MAP kinase activity following seizures.

2.5 Conclusions

This review provides an extensive overview of research findings on the role of several dusp genes and their

involvement in the onset and development of certain mental and neurological disorders. The body of literature on

dusp genes does show the great diversity of biological processes in which dusp genes are involved, and it is therefore

not surprising that genomic variations in dusp genes have been linked to several mental and somatic disorders.

It is furthermore noteworthy that the first wave of epigenetic studies has identified epigenetic changes in partic-

ularly one dusp gene, i.e., dusp22, to be linked to a range of mental as well as neurological disorders, i.e., altered

methylation in the dusp22 gene has been observed in PTSD patients, in patients diagnosed with schizophrenia and

in AD patients as compared to controls.

The current state of the literature is nevertheless in a very early stage, and our review of the literature indicated a

plethora of findings that are most challenging to converge into a common pathway. We did find a more comprehensive

line of converging evidence from human observational studies and experimental studies using and model systems

on the DUSP family genes ssh and pten suggesting intricate links to neuroplasticity, cellular proliferation, survival,

and cellular architecture.

To reiterate, it is reasonable to suggest that dusp genes are possibly involved in biological processes underly-

ing and/or mediating the onset and course of mental health and neurological disorders. Because candidates from

epidemiological cohort studies cannot be thoroughly tested for causality in observational studies, it would be inter-

esting to consider targeting the next phase of experimental cell and animal studies on manipulating the expression

of distinct DUSP mentioned above family genes, in a cell type- and/or circuit-specific as well as temporal- specific

manner (e.g., by combining genetic editing with optogenetics) in order to better understand their involvement in

the etiopathogenesis of neurological and mental disorders, and as potential promising therapeutic targets.
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This thesis describes my studies investigating the mechanisms underlying susceptibility to traumatic stress using

rodent models. To address this aim, my thesis covered studies on the following four research questions:

• 1 Are dusp genes and other genes related to mental and neurodegenerative disorders? How is the DUSP22

protein expressed in the rodent brain?

• 2 How is stress-related protein MYT1L expressed in the mouse brain?

• 3 Does exposure to social defeat stress correlate with altered MBP protein expression patterns in the mouse

hippocampus?

• 4 How does predator odor change the neural activity in the olfactory cortex AON compared to non-predatory

odor?

• 5 How does social defeat affect the subjects along with time? Can physical activity increase resilience to

traumatic stress?

While I introduced the concepts and research questions in Chapter 1, Chapter 2 described my extensive and

critical review of evidence from the literature on the links of DUSP family genes with mental and neurodegener-

ative disorders. I found that studies based on patients and rodents or cell models confirmed the putative role of

dusp genes in mental and neurodegenerative disorders, and I found that dusp genes regulate MAPK signaling to

mediate inflammatory response [90, 428], which is proposed to be centrally involved in the onset and course of

mental disorders [71] and neurodegenerative disorders [507]. Most dusp family genes seem to be linked with mental

and neurodegenerative disorders via a regulatory role in inflammatory responses. Thus, one could speculate that

the aberrant functioning of DUSP proteins may alter the response to inflammation and thereby increase the vul-

nerability to developing mental ill-health. The review provided insight into the relationship between inflammation

and mental/neurodegenerative disorders. Most dusp genes and their proteins were critical players mediating in-

flammation via MAPK signaling pathways in mental and neurodegenerative disorders [83]. Previous findings have

confirmed the link between the inflammatory process and multiple mental disorders [70] and neurodegenerative

diseases [508]. However, the intermediate mediators were unclear. Chapter 2 thus confirms the neuro-inflammation

theory in mental/neurodegenerative disorders. This review also provides possible intermediate mediators, DUSP

phosphatase, which dephosphorylate MAP kinases [91] and MAPK signaling pathways [156]. The MAPK family

members, p38, JNK, and ERK, are activated to produce cytokines and inflammatory mediators.

The DUSP family controls the inflammatory response via modulating MAPK signaling [90]. A significant

limitation of the review described in Chapter 2 is that most studies did not consistently operate on different levels

like proteins, mRNA, or DNA levels in the same samples. Thus, concluding how dusp genes change in response to

trauma was hard. Besides, the absence of research on upstream and downstream regulators of DUSP proteins in

patients or rodent models makes it difficult at the present moment to know how dusp genes function in response to
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trauma. Further research is needed to unravel the changes in protein, mRNA, or DNA levels in response to stress in

patients, rodents, or cell models. DUSP proteins and their upstream and downstream regulators must be studied to

present an overview of the cascade of signaling processes. Also, further studies could address causal links between

DUSP-mediated inflammation and diseases.

Chapter 3 addresses the research question, “How are DUSP22 proteins expressed in the mouse brain?”. This

Chapter reports on my study on the localization of DUSP22 in the mouse brain. My results showed the prevalent

expression of DUSPP22 in mice’s cerebellum, hippocampus, cortex, and thalamus. Immunofluorescent double label-

ing of DUSP22 with the neuronal marker NeuN showed strong co-localization, indicating the neuronal expression

of DUSP22, while this was not the case for GFAP-marked astrocytes in mice tissue. Thus, my study indicated

that DUSP22 proteins expressed prevalently in the mouse brain. Cellularly, DUSP22 is expressed in neurons rather

than in astrocytes. Dusp22 mRNA is expressed in adult mouse brains, and its protein is expressed lightly in mouse

hippocampus and cerebellum [294]. These expression profiles align with the proposal that the neuronal expression of

DUSP22 may mediate the onset of mental ill-health. Some studies have confirmed this by discovering that DUSP22

protein expression is decreased in the hippocampus of AD patients [233]. Furthermore, it has been reported that the

Dusp22 gene promoter was significantly hypermethylated in the famine exposed in schizophrenia patients compared

to controls [214]. My findings provide the first evidence of the neuronal expression patterns of DUSP22 protein in

the mammalian brain. Even though one study showed a tissue expression profile of DUSP22 in the adult mouse

via western blotting analyses [295], this does not give a direct overview of how DUSP22 is expressed in the mouse

brain. Our study is a first attempt to provide more information concerning DUSP22 expression in the mouse brain,

although our data are too limited to provide detailed and complete regional distribution patterns. As noticed by

western blotting, our data partially confirmed a brain regional-dependent expression profile of DUSP22 in the adult

mouse brain [295]. However, earlier findings in cell cultures have reported that endogenous DUSP22 was distributed

throughout the cytoplasm and was partially co-localized with cortical actin and actin stress fibers but not in the

nucleus of NIH3T3 cells [295]. These potentially conflicting observations might differ between NIH3T3 cells (mouse

embryo fibroblast cells) and mouse neuronal cells. A drawback was a high non-specific background signal, which

complicates the interpretation of the immunohistochemical data. The appropriate blocking experiments and the

fixative procedures used in the mouse studies were lacking. Future studies should, therefore, consider antibody

testing and drastically increase the number of mouse brain slices.

Chapter 4 addressed my research question, “Does exposure to social defeat stress correlate with altered MBP

protein expression patterns in the mouse hippocampus?”. This study investigates the protein expression of MBP in

the brain and its change in the brain in response to chronic stress. Results showed that MBP protein was widely

expressed in the hippocampus of the mouse brain. Compared to the control, SD mice showed increased MBP

expression in the CA1 radiatum layer of the hippocampus of SD mice, where MBP expression correlated positively

to sociability score and corticosterone level within SD groups. Thus, our analyses of MBP protein expression in the

133



Chapter 8. Discussion

SD model suggested that MBP in the CA1 region of the hippocampus may be involved in the impact of SD stress on

sociability and stress response. This study partially met our hypothesis that MBP protein is prevalently expressed

in the hippocampus. However, our results did not support the hypothesis of MBP reduction in the hippocampus

in response to SD stress since human and animal studies had revealed that chronic stress resulted in a deficiency

of MBP [344, 76]. Instead, MBP expression increased in the CA1 radiatum layer of the hippocampus of SD mice

compared to controls. Thus, our study showed increased MBP expression in mice hippocampus in response to

social defeat, while one other mouse study found evidence of reduced MBP-positive staining area of mPFC [344]

and nucleus accumbens [509] in response to social defeat.

Similarly, another study showed a significant decrease of MBP-positive staining in mPFC immediately after

the last session of intermittent social defeat stress exposure during early adolescence, which persisted until later in

the early adulthood of mice [48]. These conflicting results might be due to several factors, including the regional

specificity of the effects, the severity of the defeat, or the duration of follow-up. I found that the length of myelinated

segments indicated by MBP immunoreactivity showed a significant positive correlation with social interaction in

defeated mice but not in the unstressed control group [509]. This difference suggested that changes in myelinated

segments’ length represent an adaptive response to the social defeat stress [509]. Furthermore, social behavior is

reduced in mice seven days after induced demyelination measured by MBP reduction via focal injection of lysolecithin

into the mPFC. The social behavior is restored in mice 21 days after induced demyelination due to increased MBP

[509]. This experiment demonstrates that MBP increases social behavior in non-stressful conditions and modulates

social behavior under social defeat stress. One proteomic analysis of the frontal cortex showed a significant increase

in MBP in the stress resilient group in response to social defeat [342]. However, one study does not support this

MBP elevation in the mPFC of resilient mice in response to social defeat. The levels of MBP did not significantly

differ between susceptible and resilient mice [509]. These unmatched results might be due to different sample sizes

per group: while only three mice per group were used in the study by Valentina Bonnefil [509]. 12 mice per group

were used in the study by Viktoria Stelzhammer [342]. Our findings were supported partially by a study that

MBP immunoreactivity in mPFC was positively correlated with social interaction in SD mice but not in the control

group [509]. Our study discovered a positive correlation between MBP expression in the hippocampus and social

interaction ratios with the SD group but not with controls. However, MBP expression in the nucleus accumbens was

not significantly correlated to social behavior [509]. Thus, MBP correlation to social score was region dependent,

suggesting that MBP in mPFC and hippocampus represent an adapting and coping response to social defeat stress.

Our research’s significant limitations are that we did not evaluate the MBP expression in response to SD in other

brain areas, like the prefrontal cortex. Hence, we cannot conclude that MBP increases in response to SD trauma.

Future studies should focus on the MBP expression in various limbic brain regions in response to social defeat to

provide an overview of MBP expression in response to stress. Besides, splitting the SD group into susceptible and

resilient subgroups and investigating MBP expression in the subgroups can unravel the involvement of MBP in
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social behavior.

MBP has a close relationship with MYT1L. MYT1L overexpression in rat oligodendrocyte precursor cells resulted

in an elevation of MBP. Increased MBP-positive cells bind to the upstream MBP transcription initiation site [19].

I was interested in knowing how MYT1L is expressed in the mouse brain.

MYT1L was also found to be associated with mental disorders, including depression, schizophrenia [78, 368,

369, 370, 373, 374], intellectual disability [363, 378, 379, 377], autism [380], attention-deficit/hyperactivity disorder

[381], epilepsy [382], and PTSD [451] in an attempt better to understand its role in mental and neurodegenerative

disorders. In Chapter 5, I performed a study to address the research question, “Where is MYT1L protein expressed

in the mouse brain?”. My study investigated the expression patterns of MYT1L in the mouse brain. Chapter 5

reports the findings of our immunohistochemistry analyses of MYT1L in the brains of mice. My results showed

that MYT1L is widely expressed throughout the mouse brain, including the hippocampus, cortex, striatum, amyg-

dala, and cerebellum. Thus, this expression pattern covers some limbic brain areas of mice’s brains, including the

hippocampus, cortex, and amygdala, which suggests that MYT1L might be involved in central circuitries involved

in cognitive functioning and/or emotion processing. Evidence from other studies has supported our findings that

MYT1L is expressed widely in the brain. Myt1l mRNA is expressed in the human adult brain’s frontal cortex,

hippocampus, basal ganglia, and hypothalamus [363].The expression of myt1l mRNA was detected in the brain

during rat brain development and continued to be expressed at detectable levels in the adult rat brain. By develop-

mental stage P15, MYT1L protein expression is observed in hippocampal formation. Myt1l mRNA is restricted to

neurons in the CNS. However, myt1l mRNA does not exist in the forebrain cultures of the E16 rat. This culture is

enriched in astrocytes and oligodendrocytes [355]. However, one study stated that MYT1L protein was expressed in

cultured oligodendrocytes from P0 rat cerebra but not in GFAP-positive astrocytes [367]. These conflicting results

might be due to the difference in developmental stages of rat brain cultures. None of the studies overviewed the

MYT1L protein expression in the brain. Our study filled the gap with the immunohistochemistry study in the

whole mouse brain. Myt1l mRNA expression reached a maximum on birthdays and decreased during development

[355]. These high levels observed during embryonic stages might be related to its roles in pro-neuronal function by

direct repression of many different somatic lineage programs except the neuronal program [358]. This pro-neuronal

function is critical for the developmental brain. One of the study’s significant limitations was the limited sample size

and lack of double-labeling experiments. Besides, it is beyond the study to address how MYT1L brain expression

changes in response to stress or any correlation to susceptibility because this was not studied. Future studies could

focus on cell-type-specific labeling of MYT1L (i.e., performing co-labeling studies with markers of distinct neuronal

populations) to see whether MYT1L expresses in various regional subtypes of neurons. Besides addressing the

correlation between MYT1L and stress, future studies should investigate associations between MYT1L expression

and differential behavioral phenotypes of stress-exposed animals.

Predator odor can successfully induce stress behavior. Moreover, the neural activity in the olfactory system
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in the stress response remained unknown. In Chapter 6, I addressed the fourth research question of my thesis,

“How does predator odor change the neural activity in the olfactory cortex AON compared to non-predatory odor?”.

In this study, we detect the (excitatory and inhibitor) firing patterns of AON brain regions in response to odor

application. Most significant single-unit signals during non-odor application were excitatory compared to baseline

activity without odor application. However, predator odor 2MT alone induced more inhibitory responses than

excitatory ones.

Furthermore, 2MT induced less inhibitory response than VB and Secba and more inhibitory than IAA. This

indicated that non-predator odor could induce an inhibitory response similar to predator odor, but the degree of

inhibition varied across different odors. The results of the firing pattern in the AON in the presence of odor can be

excitatory and inhibitory, which was supported by the fact that AON harbors excitatory pyramidal neurons and

inhibitory interneurons [397]. Most studies used a chemical analog to fox feces, TMT, to test neuronal activity in

response to predators [423, 422, 419]. However, the product was not available due to supply reasons. We used 2MT

chemically, like TMT, which has been shown to induce fear and anxiety behavior in mice [510, 419]. However, how

this product 2MT induces neuronal activity is unknown.

These results prove that AON brain regions are indispensable to odor processing. Our data have contributed to

a further overview of how AON responds to odor presentation, including non-predator and predator odor. The AON

response to an odor can be excitatory and inhibitory irrespective of the odor’s innate meaning. Even though most

non-predatory odors induce more excitatory response in AON than inhibitory response, predator odors induce more

inhibitory response than the excitatory response in AON, and some non-predatory odors can induce an inhibitory

response in AON similar to 2MT.

The study also had limitations. Since we did not test anxiety and depression behavior in the mice after odor

presentation, we cannot conclude that the 2MT-induced AON response in our study indicated innate fear response

directly, though 2MT successfully induced freezing behavior in other studies [510, 419]. In one session, the non-

predator odors were only 3 (VB, Secba, and IAA) tested with predator odor 2MT. Due to the limited non-predator

odor selection, we could only see the inhibitory response in both predator and non-predatory odors.

Future studies should perform a series of behavior tests after the 2MT odor presentation to confirm that the

neuronal activity recorded corresponds to innate fear. Future experiments should test more non-predator odors and

2MT or other predator odors like cat urine in one session.

In Chapter 7, I addressed the research question, “How does social defeat affect the subjects along with time?

Can physical activity increase resilience to traumatic stress?”

Using a large-scale animal study in which mice were exposed to social defeat stress, our analyses showed that

SD has detrimental effects on behavior and stress physiology. Furthermore, the LT cohort showed a less pronounced

SD effect than ST via different behavioral results. However, increasing physical activity before exposure to chronic

social defeat did not show resilience-enhancing properties in response to SD exposure. Our findings suggest that
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chronic social stress negatively impacts mice behavior and is differentially associated with behavioral outcomes in ST

and LT follow-up groups. However, physical activity did not exert a stress-resistant impact on SD stress. Our study

partially confirmed the hypothesis that SD negatively impacts mice’s behavior and stress physiology. However, SD

did not affect anxiety but increased social behavior and suppressed corticosterone concentration, which was not an

appliance to our hypothesis. Besides, the LT follow-up cohort showed less SD impact than ST, which was fully

confirmed in our study. Lastly, physical activity did not bring resilience to mice exposed to SD, which was out of

our hypothesis.

Contrary to our study, many studies reported that social defeat would increase anxiety [511, 512]. These

conflicting results might be due to the EZM test being performed for a longer time (14 days in ST) after the SD

stress paradigm, which results in recovery to some degree in mice.

In our study, the SD mice in ST and LT showed more social behavior than their controls, contrary to other

studies that reported that SD mice showed less social behavior than controls [441, 513, 48]. These conflicting results

might be due to a compensatory mechanism in response to stress. Some studies reported overeating behavior in

response to stress in humans [514] and mice [515]. One study reported that social and physical stress alone would

reduce prosocial behavior. Furthermore, combining the two stressors could restore pro-sociality in healthy young

participants [516]. Our SD stress paradigm in mice combined physical and social stress, like in human studies.

The reason might be that social anxiety modulated trust behavior significantly, with higher social anxiety levels

associated with increased trust [516].

Our study showed SD increased sucrose intake one month after the SD stress paradigm in the LT, which indicated

reduced anhedonia behavior, but without a difference ten days after SD stress in the ST group between treatments.

In contrast, many other studies reported that SD rodents showed reduced sucrose intake than controls immediately

or two days after stress [488, 511]. One study showed that SD mice reduced sucrose intake during the SD paradigm

but did not show sucrose preference seven days after stress [441]. These studies showed anhedonia behavior during

SD or days after SD, while our study reported long-term follow-up compared to the earlier studies. Even the ST

follow-up cohort was examined ten days after the SD stress paradigm, which was a long wait for recovery. It is

reasonable to have no significant results in the Sucrose preference test in our ST cohort because the period is enough

to recover from stress. Besides, our study indicated a long-term effect on SD stress in sucrose preference.

Furthermore, our study showed that physical activity did not exhibit resilience-enhancing properties in response

to SD exposure. However, other studies discovered that voluntary wheel running promoted resilience to chronic

social defeat stress in mice [470, 517]. This conflicting result might be because the running wheel for physical

exercise was taken away from the cages during recovery time in our study, introducing stress. Another difference

is that these studies monitor the wheel’s speed instead of the time wheel stays in the cage. One limitation of our

study was that the mice arrived at different time points, resulting in group differences.

Thus, the findings of our study suggested that social defeat increases social behavior, which might be due to a
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combination of social stress and physical stress in the SD paradigm modulating social trust in mice and restoring

or increasing social behavior. Besides increased social behavior in response to stress, we have reported increased

sucrose intake one month after social defeat, indicating reduced anhedonia behavior after social defeat. Most studies

only focus on hours, days, and weeks after social defeat. We tested sucrose intake more than one month after social

defeat stress, which may reflect evidence of enhanced eating behavior or altered metabolism in response to stress

in human studies [518].

Given that we did not see physical activity’s effect on social defeat stress, it could be concluded that physical

activity does not exert resiliency to stress. Lastly, whether social defeat increases social behavior remains controver-

sial, and future studies should focus on the correlation between social trust and social defeat. I would recommend

future studies to avoid batch differences and advise running wheels to remain in the cage throughout the experiment.

Concluding remarks

My study underscored many genetic and environmental factors linked to mental and neurodegenerative disorders,

including DUSP and myelin-related genes. Dusp family genes encoded phosphatase play a role in mental and

neurodegenerative disorders. One of the dusp genes, dusp22, may be particularly important as a candidate gene. I

found that DUSP22 was prevalently expressed throughout the mouse brain.

The myelin-related genes, MBP, showed increased protein expression in the CA1 region of the mouse brain’s

hippocampus in response to the SD stress paradigm. Also, the myelin-related gene MYT1L showed prevalent

expression in the mouse brain.

Predator odor is a natural threat to rodents and can induce anxiety or fear behavior [409, 387]. Contrary to cat

odor effects in the amygdala [421], our study showed that fox odor analog, 2MT inhibited firing pattern rodents

AON of the olfactory brain structure.

Social stress is one of the common environmental factors contributing to mental and neurodegenerative disorders.

SD paradigm had an impact on behavior in mice. Contrary to other studies, our study showed that SD increased

social behavior, and physical exercise did not promote social stress resilience.

Future studies of the dusp22 gene may focus on comparing its protein expression and its upstream or down-

stream regulators in the post-mortem human brains of various mental and neurodegenerative disorders. Moreover,

manipulating dusp22 in rodents could unravel the mechanism of the role DUSP22 played in stress-related behavior.

For instance, the genetic knockout or knockdown of dusp22 in rodents can observe behavioral changes in various

behavior tests. Future studies of myelin-related genes should focus on how myt1l and mbp change in response to

stress in all the limbic brain regions. Whether physical exercise promotes resilience to stress should have prolonged

physical exercise time and running wheels throughout the various tests. Predator odor-induced stress should have

behavior tests on these mice to confirm that they were stressed.

The findings reported in my thesis serve as an important step in elucidating the mechanisms underlying the

response to several stressors.
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Mental health and neurodegenerative disorders pose enormous personal and socioeconomic burdens worldwide.

Among the mental disorders, schizophrenia and bipolar disorder have the lowest prevalence. However, they are

associated with severe impairment, while major depressive disorder has a median prevalence rate of more than

5 % of the population with an enormous impact, as measured in disability-adjusted life years. Over the past

generation, the global burden of neurodegenerative disorders like Parkinson’s and Alzheimer’s disease has more

than doubled due to the increasing number of older people. The neurodegenerative disease frequently disrupts

emotional, cognitive, and social behavior. However, many patients and their families do not receive adequate

care. Besides, neurodegenerative disorders are most common among older adults who usually have a pension, while

stress-induced psychiatric disorders are most common among young and middle-aged people who should be the

most productive power in society. Therefore, research on psychiatric disorders could potentially improve the lives

of many of the most productive age groups and benefit a country’s GDP.

Treating psychiatric disorders suppresses symptoms and may induce various side effects. Similarly, treating

neurodegenerative diseases does not cure them but may (at best) reduce the progression. A better understanding

of the mechanism underlying mental health and neurodegenerative disorders is needed to pave the way to better

treatment and prevention.

The current widely accepted framework in stress-related mental disorders is the Gene-Environment interaction

model. The idea of the framework results from two common findings: one is that mental disorders have environ-

mental causes, and the other is that people respond differently to the same environmental stressors. Later, the

model is better revised as poly-gene-environmental causation of mental illness. To fulfill the framework’s potential,

we join the forces of neuroscience. The work presented in this dissertation attempts to understand several genetic

players underlying susceptibility to traumatic stress in the neurons of patients or rodent models. Besides, scientific

work should always have societal implications. We discuss chapter by chapter.

In chapter 2, the review highlights that dusp family genes have a close relationship with mental and neurode-

generative diseases. The dusp family genes are not fully understood in the mechanism of mental disorders. Most

studies are correlational, not causal. Therefore, this thesis highlights more research on the future causal relationship

between dusp genes and mental disorders. Besides, the involvement of the dusp family gene in mental disorders fits

the poly-gene-environmental framework. The poly-genetic causes of mental disorders could relieve a small amount

of the blame game within families while treating adolescents diagnosed with mental disorders. For example, parental

barriers are very common in providing health care to adolescents diagnosed with depression. More than half of

the adolescents do not have access to treatment due to parental motivation and support. The major concern is

that parents do not want to get blamed for their upbringing style (environmental factor) that might bring about

their child’s mental disorders. Although this thesis does not deny the environmental factors in the onset of mental

disorders, the poly-genetic findings could partly relieve the guilty feelings of parents or the anger of the sick child.

In chapter 3, we focus on the protein expression pattern of these related genes and the change of their expres-
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sion in response to stress in the brains of mice. One of the genes, dusp22, which belongs to the limbic brain regions

involved in psychiatric disorders, is expressed prevalently in the mouse brain. This finding is another evidence

of studying brain evolution: our brains evolved from vertebrates’ simpler and smaller brains. The phylogenetic

approach assumes that living mammals contain primitive traits or features maintained from a distant ancestor.

Thus, traits common to clade members are considered to be most likely inherited from a common ancestor rather

than independently evolved specializations. The common traits between mice and the human brain are likely to

originate from the common ancestors of mammals. Stress-related gene dusp22 and its translated protein DUSP22

are expressed prevalently in the stress-related brain regions, the prefrontal cortex. The common features of DUSP22

expression can be evidence of the common ancestor of humans and mice. In addition, this common feature legit-

imates studying the human brain via investigating mice brains alongside other common features. Although other

primates are more closely related to humans, mice are more available and have fast reproductive rates, which is

ideal for scientific research.

In chapter 4, MBP protein expression increased in the CA1 of the hippocampus of mice in response to social

defeat. MBP is a marker of myelination, and many psychiatric disorders show alterations in myelin. Myelin

ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the

overall function of neuronal circuits [569]. Our study demonstrates the myelin alterations in the hippocampus of

mice exposed to social defeat, indicating that stress is associated with the myelin alterations in the brain. This

gives insight into the impact of stress and the potential harm to the human brain in modern society. Morden

humans are suffering from more chronic stress than ever before. Penn State researchers looked at data from 1,499

adults collected in 1995 and then from 782 different adults 17 years later in 2012. Both different groups were

interviewed daily for eight straight days. They were asked about stressful experiences they had over the past 24

hours. Researchers found that day-to-day stress and a sense of lower overall well-being were much higher in the

2010s compared to the 1990s [519]. Reducing stress practices could be a healthy lifestyle in modern society.

In addition, our study shows brain alterations in the hippocampus, which might indicate memory deficits, and

future research could focus on memory and MBP in the hippocampus for further understanding.

Besides the mbpgenes, myt1l in chapter 5 is expressed prevalently in the limbic brains of mice. Meanwhile,

variations in myt1l have been associated with autism, intellectual disability, and schizophrenia in humans. This

finding shows the common gene between humans and mice and could be a basic foundation for studying autism,

intellectual disability, and schizophrenia via mouse models. Recent manipulation of myt1l in mice successfully

mimics the human phenotype of autism-related social impairments, especially in males [520].

Chapter 6 tested the neuronal firing pattern in awake-behaving mice exposed to fox-urine odor chemicals

2MT. This study is different from previous studies because it tests the real-time neuronal reactions of mice to

stress-related odors. With the availability problem of TMT fox odor in research materials, 2MT is a substitute for

widely researched TMT. However, the related research literature is scarce, and this study provides a reference for
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future research on fox-odor-induced stress in mice. In addition, AON is a brain structure receiving information from

the hippocampus, and this connection gives a good foundation for researching traumatic experiences recalled by

the odor. For instance, the burning BBQ might remind the combat soldiers of their traumatic memories of burning

flesh during wartime. As we know, a war is going on in Ukraine, and the Ukrainian soldiers are traumatized by

the odor in the warzone, including burning gasoline, bodies, and gun powders. I hope this study could benefit the

research aimed at combat soldiers.

Furthermore, the study found that most non-predator odors induced excitatory responses in AON. In contrast,

the predator odor 2MT induced predominantly inhibitory AON responses. This result indicates that predatory

odor inhibits neuronal activity in AON, and this discovery does not show direct application but indirectly gives

implications for future research, like neuronal response between natural innate fear and conditioned fear in mice.

We used the social defeat paradigm as a stress model. The social defeat paradigm is one stress paradigm that

successfully induces psychiatric disorders-like behavior in rodents. In chapter 7, we did an animal experiment

using social defeat, showing surprising results contrary to other studies. For instance, socially defeated mice showed

increased social behavior. Physical exercise did not promote resilience to stress inflicted by social defeat.

Further investigation is needed to confirm the results by modifying the social defeat paradigm to avoid severe

injuries or animal loss. Another modification of the experiment is the homogeneous control of mice or randomization.

For example, the mice’s arrival should be under the same circumstances between the long-term and short-term

cohorts. The third modification is the daily handling of the control and stress groups to avoid bias between stress

and non-stressed control groups. Lastly, the physical exercise should be arranged along with the experiment timeline

until the end.

So, upon reflection on the impact of my work on various levels, I cannot find a once-and-for-all answer to mental

disorders. The progression of a tiny step requires much work, which can not help the suffering people right now,

but hopefully for the people in the future.
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A.1 DUSP genes family members

Table A.1: DUSP genes family members.

DUSP genes family members

Family Isoforms Synonym Gene ID MIM* Chromosome

Slingshot SSH1 SSH1L 54434 606778 12q24.11

SSH2 SSH2L 85464 606779 17q11.2

SSH3 SSH3L 54961 606780 11q13.2

PRLs PRL1 PTP4A1 7803 601585 6q12

PRL2 PTP4A2 8073 601584 1p35.2

PRL3 PTP4A3 11156 606449 8q24.3

CDC14s CDC14A hCDC14 8556 603504 1p21.2

CDC14B HCDC14B 8555 603505 9q22.33

CDC14C CDC14CP 168448 N/A 7p12.3

PTENs PTENα PTENα N/A N/A N/A

PTENβ PTENβ 5728 601728 10q23.31

Myotubularin MTM1 MTM1 4534 300415 Xq28

MTMR1 MTMR1 8776 300171 Xq28

MTMR2 MTMR2 8898 603557 11q21

MTMR3 MTMR3 8897 603558 22q12.2

MTMR4 MTMR4 9110 603559 17q22

MTMR5 SBF1 6305 603560 22q13.33
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Continuation of Table A.1

Family Isoforms Synonym Gene ID MIM* Chromosome

MTMR6 MTMR6 9107 603561 13q12.13

MTMR7 MTMR7 9108 603562 8p22

MTMR8 MTMR8 55613 N/A Xq11.2

MTMR9 MTMR9 66036 606260 8p23.1

MTMR10 MTMR10 54893 N/A 15q13.3

MTMR11 MTMR11 10903 N/A 1q21.2

MTMR12 MTMR12 54545 606501 5p13.3

MTMR13 SBF2 81846 607697 11p15.4

MKPs MKP1 DUSP1 1843 600714 5q35.1

MKP2 DUSP4 1846 602747 8p12

MKP3 DUSP6 1848 602748 12q21.33

MKP4 DUSP9 1852 300134 Xq28

MKP5 DUSP10 11221 608867 1q41

MKP7 DUSP16 80824 607175 12p13.2

PAC1 DUSP2 1844 603068 2q11.2

Hvhr3 DUSP5 1847 603069 10q25.2

MKP-X DUSP7 1849 602749 3p21.2

Hvh5 DUSP8 1850 602038 11p15.5

MK-STYX STYX-L1 51657 616695 7q11.23

Atypical Laforin EPM2A 7957 607566 6q24

STYX STYX 6815 615814 14

DUSP3 VHR 1845 600183 17q21

DUSP11 PIR1 8446 603092 2p13.2

DUSP12 YVH1 11266 604835 1q23.3

DUSP13A TMDP 51207 613191 10q22.2

DUSP13B MDSP 51207 613191 10q22.2

DUSP14 MKP-L 11072 606618 17q12

DUSP15 VHY 128853 616776 20q11.21

DUSP18 LMWDSP20 150290 611446 20q12.2

DUSP19 SKRP1 142679 611437 2q32.1

DUSP21 LMWDSP21 63904 300678 Xp11.3

DUSP22 JSP1 56940 616778 6p25.3
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Continuation of Table A.1

Family Isoforms Synonym Gene ID MIM* Chromosome

DUSP23 LDP-3 54935 N/A 1q23.22

DUSP26 LDP-4 78986 N/A 8p12

DUSP27 DUPD1 92235 N/A 10q22.2

End of Table

Note: N/A:Not Available. MIM: Online Mendelian Inheritance in Man®
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A.2 Atypical DUSP genes members

Table A.2: Atypical DUSP genes members

Atypical DUSP genes members

HUGO Patterson Huang and Tan

DUSP3 DUSP3 DUSP3

DUSP11 DUSP11 DUSP11

DUSP12 DUSP12 DUSP12

DUSP13A DUSP13A DUSP13

DUSP13B DUSP13B

DUSP14 DUSP14 DUSP14

DUSP15 DUSP15 DUSP15

DUSP18 DUSP18 DUSP18 (DUSP20)*

DUSP19 DUSP19 DUSP19

DUSP21 DUSP21 DUSP21

DUSP22 DUSP22 DUSP22

DUSP23 DUSP23 DUSP23

DUSP26 DUSP26 DUSP26(DUSP28;DUSP24)*

DUSP27 DUSP27 DUSP27

Laforin Laforin

STYX STYX

DUSP1

DUSP2

DUSP6

DUSP5

End of Table

Note:* DUSP18 was renamed to DUSP20 while DUSP24 and DUSP28

were changed to DUSP26.
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A.3 DUSP protein or RNA expression in animal and human brain

Table A.3: DUSP Protein or RNA expression in animal and human brain

DUSP Protein or RNA expression in animal and human brain

Isoforms Expression Protein/mRNA Species Ref.

SSH1 Frontal cortex Protein Human [100, 101]

Cerebellum

Primary cortical neurons Protein Mice [100]

Ganglion neurons Protein Chick [104]

SSH2 Brain mRNA Mice [521]

Thalamus

Hippocampus

SSH3 Hippocampus mRNA Human [231]

Temporal gyrus

Frontal gyrus

Prefrontal cortex mRNA Mice [522]

Hypothalamus

Amygdala mRNA Mice [523]

PRL2 Cerebellum mRNA Human [118]]

Cerebral cortex

Neuronal lineages mRNA Zebrafish [524]

CDC14A Cortical slices mRNA Human [525]

Cerebral cortex Protein Human *[296]

hCDC14Bpar Adult/fetal brain mRNA Human [128]

hCDC14B1 Hippocampus mRNA Human [128]

Prefrontal cortex

Amygdala

Hypothalamus

hCDC14B2 Hippocampus mRNA Human [128]

Prefrontal cortex

Amygdala

Hypothalamus

hCDC14B3 Hippocampus mRNA Human [128]

Prefrontal cortex
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Continuation of Table A.3

Isoforms Expression Protein/mRNA Species Ref.

Amygdala

Hypothalamus

hCDC14C Adult brain mRNA Human [128]

Embryonic forebrain,

Dorsal telencephalon

PTENs Cerebral cortex Protein Human *[296]

Cerebellum

Hippocampus

Anterior olfactory nucleus Protein Rat [143]

Cerebral cortex

Amygdaloid nucleus

Hippocampus

Purkinje’s cells

Basal ganglia

Thalamus

Midbrain Pons

Ventral prefrontal cortex Protein Human [167]

Layer III temporal cortex Protein Human [234]

Frontal cortex Protein Human [237]

Myotubularin Spinal cord mRNA Human [149]]

Substantia nigra

Cerebral cortex Protein Human *[296]

Hippocampus

Cerebellum

MKP1 Hippocampus Protein/mRNA Human/Mice [174]

(DUSP1) Caudate mRNA Human [269]

Temporal cortex Protein Human [228]

Cerebral cortex Protein Human [158]

Cerebellum

Striatum mRNA Mice [269]

Striatum mRNA Rat [526]

Thalamus Cortex
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Continuation of Table A.3

Isoforms Expression Protein/mRNA Species Ref.

Neocortex Protein Rat [287]

BNST

MKP2 Cerebellar vermis Protein Human [212]

(DUSP4) Cortex Protein Human [158]

Hippocampus

Cerebellum

The medial prefrontal cortex mRNA Rat [182]

Lateral frontal cortex

Parietal cortex

Hippocampus

MKP3 The medial prefrontal cortex mRNA Rat [182]

(DUSP6) Lateral frontal cortex

Parietal cortex

Hippocampus

Ventromedial PFC mRNA Human/Mice [183]

Striatum mRNA Rat [526]

Cortex

Hippocampus

PAC1 Hippocampus Protein/mRNA Mice [527]

(DUSP2) Hippocampus mRNA Human [174]

Hvhr3 Brain (not specified) mRNA Mice [528]

(DUSP5) Nucleus accumbens mRNA Mice [529]

Medial prefrontal cortex mRNA Rat [530]

MKP-X Whole-brain mRNA Mice [531]

(DUSP7)

Hvh5 Amygdala mRNA Human [532]

(DUSP8) caudate nucleus

Corpus callosum

Hippocampus

Hypothalamus Thalamus

Subthalamic nucleus

Substantia nigra
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Continuation of Table A.3

Isoforms Expression Protein/mRNA Species Ref.

MTMR2 Cortex Protein/mRNA Rat [533]

Hippocampus

Cerebellum

MTMR5 Brain Protein Mice [534]

The sciatic nerve

Laforin Cerebellum mRNA Mice [535]

(EPM2A) Hippocampus

Cerebral cortex

Olfactory bulb

DUSP12 Hippocampus mRNA Human [174]

DUSP14 Retinal ganglion cells mRNA Rat [536]

DUSP15 Schwann cell mRNA Rat [537]

Myelinating Oligodendrocytes mRNA Rat [538]

DUSP18 Fetal brain mRNA Human [539]

DUSP19 Hippocampus mRNA Human [174]

Ventral subiculum mRNA Human [183]

DUSP22 Hippocampus Protein Human [233]

DUSP23 Nucleus accumbens mRNA Human [183]

The Broadman area

DUSP26 Hippocampus Protein/mRNA Human [230, 174]

End of Table

Note:* (www.proteinatlas.org)

BNST:The bed nucleus of the stria terminalis
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A.4 DUSP genes in normal and pathological brain function

Table A.4: DUSP genes in normal and pathological brain function

DUSP genes in normal and pathological brain function

Isoforms Function in Normal Brain Function in Pathological Brain

SSH1 SSH1 along with Cofilin1 promoted

dynamic changes in the cytoskeleton

needed for axon engagement like growth

cone collapse and neurite outgrowth,

and myelination in Schwann cells in rat

[111, 112]

SSH1 reduced and remained inactive as

Cofilin1 in the frontal cortex of sporadic

AD in human [100].

SSH1 increases growth cone motility and

extension, and the growth cone becomes

slender and branchy in chick [104]

SSH1 reduced protein level and be-

came inactive as Cofilin1 in the brain

of APP/PS1 mice model of AD [100].

SSH3 SSH3 mRNA is differentially regulated

gene in hippocampus tissue, temporal

gyrus tissue, frontal gyrus tissue and

whole blood in patients diagnosed with

AD [231].

SSH3 mRNA has been found to be

downregulated in central amygdala

Drd2-expressing population following

foot shock fear conditioning compared to

controls in mice [523].

SSH3 mRNA is over expressed in pre-

frontal cortex, and hypothalamus in

mice subjected to maternal separation

for 3 h per day and lasted for 14 days

[522].
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Isoforms Function in Normal Brain Function in Pathological Brain

PRL3 PRL3 promotes cell proliferation, migra-

tion, and invasion in glioblastoma cells

in Human [540, 541]

CDC14A CDC14A involved in cell cycle regulation

of human brain vascular endothelial cells

following injury induced by high glucose,

free fatty acids, and hypoxia [542].

Upregulated in response to Amyloid-

Oligomers in adult human cortical brain

slices [525].

CDC14B Regulates RNA polymerase II and re-

presses cell cycle transcription in pri-

mary mouse embryonic fibroblasts [543].

Involved in glioblastoma growth in hu-

man [544]

PTENs PTEN single nucleotide polymorphisms

associated with increased risk of depres-

sion in a Chinese cohort [166].

PTEN protein levels are higher in post-

mortem lysates of the ventral prefrontal

cortex from suicide victims diagnosed

with depression when compared to non-

depressed healthy controls [167].

PTEN moved to nucleus and promoted

neuron survival in mice [545]

PTEN recruitment controls synaptic

and cognitive function in AD model

App/Psen1 mice [239].

PTEN and β-catenin signaling regulates

normal brain growth trajectory by con-

trolling cell number, and imbalance in

this relationship can result in abnormal

brain growth in mice [546].

PTEN mediates brain growth during

development and PTEN mutation-

induced Autism-like behavior in mice

[546, 547, 548, 549, 550].
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Isoforms Function in Normal Brain Function in Pathological Brain

PTEN mutations are late events in the

malignant progression of glioma, and the

occurrence of PTEN mutations are sig-

nificantly correlated to patients’ short-

term survival [551].

PTEN mutation coexisted with autism

behavior and macrocephaly in human

[552].

MKP1(DUSP1) MKP1 controls axon branching induced

by BDNF signaling via mediating JNK

deactivation in mice [553].

Depression mice model showed increased

hippocampal MKP1 expression, which

can be normalized by antidepressant,

while mice lacking MKP1 are resilient to

stress [174].

MKP-1 functions in light-dependent

and time-of-day-dependent manners

in the mice central clock structure-the

suprachiasmatic nucleus [554].

MKP1 mRNA increased in the DG and

CA1 of human diagnosed with depres-

sion [174].

Increased MKP-1 expression levels could

be the cause of the high resistance to

conventional chemotherapeutics in hu-

man glioblastoma multiforme in human

[555]

DUSP1 protein levels increased in the

hippocampus [177] and the ventrolateral

orbital cortex [178] of stressed rats when

compared to controls.
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Isoforms Function in Normal Brain Function in Pathological Brain

MKP2(DUSP4) MKP2 promotes neuroplasticity and

memory, and its deletion impairs

synaptic plasticity and hippocampal-

dependent memory in mice [556]

MKP2 were significantly decreased in

cerebellar vermis from schizophrenic

patients compared to control subjects

[212].

MKP2 was increased in BAs 8, 9, 10,

and hippocampus, without any change

in the cerebellum of depressed suicide

subjects compared with control subjects

[158].

MKP3(DUSP6) DHA-enriched fish-oil induced MKP3

that enhance GFAP in developing rat

brain astrocytes [557]

DUSP6 mRNA was differentially ex-

pressed in post-mortem tissue ventro-

medial PFC of patients with depressive

disorder in a sex-specific manner [183].

Hvhr3(DUSP5) Regulate the signaling of pressure-

dependent myogenic cerebral arterial

constriction in rat [558]

DUSP5 served as transcriptional target

of tumor suppressor p53 in glioblastoma

in human [559].

MKP-X(DUSP7) The expression of DUSP7 was mediated

by ERK1/2 activity both in resting and

LPS-stimulated microglia in rat [560].

DUSP7 mRNA expression was reduced

in the whole brain after chronic am-

phetamine injections in mice [531].

Hvh5(DUSP8) Abundant in human and mice brain and

inactivate mitogen-activated protein ki-

nase [532]

Hvh5 mRNA was induced in the nucleus

accumbens, caudate putamen, frontal

cortex, and hippocampus by i.p. In-

jection of cocaine and fluoxetine in rat

[561].
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Isoforms Function in Normal Brain Function in Pathological Brain

MK-STYX (STYX-L1) MK-STYX induced neurite extensions

through the Rho signaling pathway and

forms synapse in PC-12 cells. MK-STYX

altered their morphology in primary hip-

pocampal neurons in rat [562, 563]

MK-STYX missense mutation was iden-

tified in intellectual disability, accompa-

nied by seizures and behavioral problems

in human [564].

MK-STYX was differentially expressed

in the blood of depression patients [565,

566] or depressive-like behavior in mice

[566].

MTMR2 MTMR2 contributes to the maintenance

of excitatory synapses by inhibiting ex-

cessive endosome formation and destruc-

tive endosomal traffic to lysosomes in rat

[533]

Loss of MTMR2 in Schwann cells causes

CMT4B1 neuropathy, which is charac-

terized by a dysmyelinating neuropathy

with myelin outfoldings in mice [567]

MTMR2 interacted with the neurofila-

ment light chain protein, NF-L, in both

Schwann cells and neurons in rat and

human [153].

Mutation in the MTMR2 gene is a

causative mutation in patients with

Charcot-Marie-Tooth Disease Type 4B1

[568].

MTMR4 MTMR4 was differentially expressed be-

tween grade II-III gliomas and (grade

IV) glioblastomas in human [569].

MTMR5(SBF1) MTMR5 suppress neurite growth in hip-

pocampal neurons in rat. Overexpression

of MTMR5 reduce hippocampal neurite

outgrowth [570].

SBF1 mutations may cause a syndromic

form of autosomal recessive axonal neu-

ropathy (AR-CMT2) in addition to

CMT4B3 in Human [571].
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MTMR7 An intronic variant was identified in the

genetic locus of MTMR7 linked to vari-

ant Creutzfeldt-Jakob disease suscepti-

bility in human [572].

MTMR7 was differentially expressed in

the substantia nigra of patients with PD

in the GWAS study [573].

MTMR8 The copy number loss for MTMR8 was

identified in 65 % of the glioblastoma

multiforme patient sample [574].

MTMR10 MTMR10 was affected via 15q13.3 mi-

crodeletion and displayed strong phe-

notypes related to autism-like behavior

[575, 576] and autism like behavior in

mice.

MTMR10 was affected via 15q13.3 dele-

tion and was present in ADHD patients

[577].

MTMR11 MTMR11 was frameshift mutated in

children with epileptic encephalopathies

[578]

MTMR13 Mtmr13-/- mice show both the initial

dysmyelination and later degenerative

pathology of [579, 580].
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Mutation in the MTMR13 gene as-

sociated with a classical Charcot-

Marie-Tooth 4B2 phenotype in human

[581, 582]

Laforin(EPM2A) The phosphatase activity of laforin is

dispensable to rescue Epm2a -/- mice

from Lafora disease [583].

EPM2A gene was expressed lower to

control cells in fibroblasts from Lafora

disease in human [584].

EPM2A gene has 11 kinds of mutations

in the patients of Lafora disease in hu-

man [585].

DUSP11 DUSP11 mRNA was downregulated in

the model of nicotine-induced seizures in

mice [586].

DUSP13A DUSP13A interacts with the N-

terminal domain of Apoptosis signal-

regulating kinase 1 in an oxidative

stress-independent manner in brain

neuroblastoma. The knock-down of

DUSP13A decreased the phosphoryla-

tion and activation of apoptosis signal-

regulating kinase 1 [587].

DUSP14 DUSP14 is a direct negative-feedback

mechanism of MDMA-induced ERK sig-

naling in the striatum of mice [588].

DUSP14 mRNA was upregulated in the

frontal cortex in response to Environ-

mental chronic mild stress in mice [589].
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DUSP14 was a gene target limiting

axon growth and regeneration down-

stream of Krűppel-like transcription fac-

tor 9 (KLF9)’s ability to suppress axon

growth in retinal ganglion cells of rat

[536].

DUSP14 was the delayed primary re-

sponse genes downregulated in DG neu-

rons of mice experienced foot shock after

24 hours in mice [590].

DUSP14 was decreased in HD mice and

can be enriched after pridopidine treat-

ment in mice [591]

DUSP15 DUSP15 is necessary for full activa-

tion of ERK1/2 phosphorylation and

represses expression of several myelin

genes, including myelin basic protein, in

Schwann cells of rat [537].

The SNP (rs3746599) of DUSP15 was

significantly associated with autism in

human [206].

DUSP15 influences oligodendroglial dif-

ferentiation and myelin gene expression

in rat [538]

DUSP19 The mRNA levels of DUSP19 were in-

creased in the dentate gyrus from de-

pression postmortem tissue [174].

DUSP22 The promoter hypermethylation of the

DUSP22 gene was identified in the hip-

pocampus from controls and AD pa-

tients. DUSP22 inhibits PKA activity

and thereby determines tau phosphoryla-

tion status and CREB signaling [233].
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DUSP22 gene promoter showed higher

DNA methylation levels in the famine-

exposed schizophrenia patients compared

to non-famine exposed groups [214].

Increased DNA methylation

within/around the DUSP22 gene was

linked to increased PTSD symptoms in

human [41]

DUSP23 DUSP23 affected neuronal differentiation

in mice. The knock-down of DUSP23 de-

creased neuronal differentiation in terms

of neuronal outgrowth and the expres-

sion of neuronal marker proteins [592].

The mRNA expression of the gene

DUSP23 was significantly lower in pa-

tients that have died from the disease

compared with neuroblastoma patients

with no evidence of disease [593].

DUSP26 DUSP26 suppresses receptor tyrosine

kinases and regulates neuronal develop-

ment in zebrafish [594].

DUSP26 was differentially expressed be-

tween grade II-III gliomas and (grade

IV) glioblastomas in human [569].

DUSP26 inhibition via NSC-87877 func-

tion in neuroblastoma, resulting in de-

creased tumor growth and increased p53

and p38 activity in mice [595].

DUSP26 expression and JNK activation

were enhanced in the hippocampus of

AD patients [230].

DUSP27 The variant rs950302 of cytosolic gene

DUSP27 associate with heroin addiction

vulnerability in African Americans [596].

End of Table

167



Appendix A. Appendix

AD: Alzheimer’s disease; HD: Huntingdon’s disease; CMT4: Charcot-

Marie-Tooth Neuropathy Type 4.
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A.5 DUSP genes expression in non-brain tissues in animal and human

Table A.5: DUSP genes expression in non-brain tissues in animal and human

DUSP genes expression in non-brain tissues in animal and human

Protein Tissue/ Cell line Species Protein/

mRNA

Ref.

SSH1 PC-3 Cell Human Protein [597]

aortas Mice Protein [598]

keratinocytes Human Protein [102]

SSH2 carcinoma cell lines Human Protein/mRNA [599]

vascular smooth muscle cell Rat mRNA [600]

PC12 Cell Human Protein [601]

CD4+ T cells Human Protein [602]

keratinocytes Human Protein [102]

SSH3 colorectal cancer Human Protein/mRNA [603]

prostate cancer Human Protein [604]

blood Human mRNA [231]

PRL1 liver, intestine Mice Protein/mRNA [605]

mid guts Drosophila mRNA [524]

testis Mice Protein [606]

prostate Human mRNA [607]

ovarian cancer Human Protein/mRNA [608]

PRL2 lung cancer Human Protein/mRNA [609]

ovarian cancer Human Protein/mRNA [608]

testis Mice Protein [606]

thymocyte Mice mRNA [610]

skeletal muscle Mice Protein/mRNA [611,

120]

PRL3 colon cancer Mice/Human Protein/mRNA [612,

613]

prostate cancer Human Protein/mRNA [614]

ocular melanoma cells Human Protein [615]

breast cancer Human Protein/mRNA [616]

skeletal muscle, heart Human mRNA [119]
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Ref.

skeletal muscle, heart Mice mRNA [120]

CDC14A brain vascular endothelial cell Human Protein [542]

oocytes Mice Protein [617]

gastric tissue Human mRNA [618]

HeLa cells Human Protein [131]

lymph nodes, liver, colon, kidneys, testis Human Protein [296]

CDC14B HeLa cells Human Protein [619]

bone osteosarcoma epithelial cells (U2OS Line) Human Protein [620]

lymph nodes, liver, colon, kidneys, testis Human Protein [296]

*

oocytes Mice Protein/mRNA [617]

CDC14C vulva precursors C. elegans Protein [621]

mononuclear cells Human mRNA [622]

PTENs endometrial cancer Human Protein [623]

pancreas Human Protein/mRNA [142]

colorectal cancer Human Protein [624]

cochlear lateral wall Mice Protein [625]

uterus Mice Protein [626]

ovary cells Chinese

hamster

Protein [240]

Myotubularins lung, muscles, endocrine tissue, bone marrow, im-

mune system, liver, gallbladder, and pancreas

Mice Protein [296]

*

skin, lung, vagina Human mRNA [149]

lung, muscles, endocrine tissue, bone marrow, im-

mune system, liver, gallbladder, and pancreas

Human Protein [296]

*

DUSP1 atherosclerotic lesions Mice Protein/mRNA [627]

U937 Cells Human Protein [628]

liver Mice Protein/mRNA [629]

cardiomyocytes Mice Protein/mRNA [630]

ovarian carcinoma Human Protein/mRNA [631]

cochlea Mice mRNA [632]
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Ref.

DUSP4 T cells Human Protein/mRNA [633]

prostate, testis, pancreas, adrenal cortex, and stom-

ach

Human mRNA [633]

heart, spleen, lung, liver, kidney, testis, muscles Rat mRNA [634]

alveolar macrophage cell Mice Protein [635]

aortic endothelial cell Rat Protein [636]

DUSP6 lung, heart, spleen,liver, kidney Rat mRNA [637]

breast cancer cell line Human Protein/mRNA [638]

Umbilical vein endothelial cell Human Protein/mRNA [639]

embryo Mice mRNA [640]

DUSP9 placenta, kidney, Embryonic liver Human mRNA [641]

adipose tissue Mice mRNA [642]

placenta Mice Protein [643]

splenic dendritic cells Mice Protein/mRNA [644]

DUSP10 heart, lung, liver, skeletal muscle, kidney Mice mRNA [645]

skeletal muscle, liver Human mRNA [646]

colon carcinomas Human mRNA [647]

CD4 T cells Mice mRNA [648]

DUSP16 intestine Mice mRNA [649]

kidney, intestine, testis Mice mRNA [650]

CD4+ T cells Mice Protein [651]

DUSP2 bone marrow-derived macrophage Mice Protein [652]

adipose tissue Mice mRNA [653]

primary colorectal cancer Human Protein [654]

monocyte Human mRNA [191]

blood Human mRNA [192]

DUSP5 Cerebral arterial muscle Rat Protein/mRNA [558]

adipose tissue Mice Protein/mRNA [655]

colon-cancer cell lines Human Protein/mRNA [559]

skeletal muscle, adipose tissue Human mRNA [656]

DUSP22 colorectal cancer Human mRNA [657]
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blood Human mRNA [233]

heart, skeletal muscle Mice Protein [295]

thymus, Spleen, Prostate, Testis, Blood lymphocytes Mice mRNA [658]

T cell Mice Protein [299]

DUSP8 heart, skeletal muscle Human mRNA [532]

pancreatic islets Human Protein [659]

cardiac myocytes Mice/Rat Protein [166]

kidney Mice Protein [660]

MK-STYX ovarian cancer Human Protein [661]

HeLa cell Human Protein [662]

PC12 cells Rat Protein [563]

blood Mice Protein [566]

MTM1 skeletal muscle, testis Human mRNA [663]

blood platelets Human Protein [664]

blood platelets Mice Protein [664]

MTMR1 muscles Human Protein/mRNA [665]

muscles , heart Mice Protein [666]

MTMR2 C2C12 cells Mice mRNA [667]

blood leukocytes Human mRNA [568]

liver, nerve Mice mRNA [668]

muscle Mice mRNA [567]

superior temporal cortex Human mRNA [216]

MTMR3 oral cancer Human Protein [669]

Gastric / colon carcinoma Human mRNA [618]

monocyte-derived macrophages Human Protein/mRNA [670]

breast cancer Human Protein [671]

MTMR4 COS1 cells Monkey Protein [672]

heart, kidney, spleen, liver, colon, testis, muscle, pla-

centa, thyroid gland, pancreas, ovary, prostate, skin,

peripheral blood, bone marrow, fetal liver

Human mRNA [673]

HeLa cell Human Protein [674]
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papillary thyroid cancer Human Protein [675]

MTMR5 NIH 3T3 Mice Protein [676]

blood, buccal swab Human Protein [677]

testis, brain, colon Mice mRNA [678]

testis Human Protein/mRNA [678]

MTMR6 ovarian cancer cells Human Protein [671]

heart, brain, spleen, lung, liver, muscle, kidney Mice Protein [679]

MTMR7 brain, liver, kidney, and testis Mice mRNA [680]

brain Mice Protein [680]

myoblasts Mice Protein/mRNA [681]

colorectal cancer Human Protein/mRNA [682]

MTMR8 heart, spleen, kidney, liver, leukocyte, ovary, muscle,

testis, lung, skin, small intestines, prostate

Human mRNA [683]

Megakaryocytic MEG-01 cells Human mRNA [664]

muscle, artery Zebra fish mRNA [684,

685]

MTMR9 blood Human mRNA [686]

peripheral blood leukocyte Human mRNA [687]

Megakaryocytic MEG-01 cells Human mRNA [664]

peripheral blood lymphocytes Human mRNA [215]

MTMR10 peripheral blood Human mRNA [688]

lymphoblastoid cell lines Human mRNA [689]

MTMR11 breast tumor Human mRNA [690]

blood Human Protein [691]

inner ear hair Mice mRNA [692]

MTMR12 skeletal muscle Zebra fish Protein/mRNA [693]

MTMR13 placenta, testis, fetal brain Human mRNA [694]

sciatic nerves Mice Protein [579]

spinal cord, sciatic nerve, lymph node, adrenal gland,

bone marrow, stomach

Human mRNA [695]
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Laforin brain, skeletal muscle, placenta, lung, kidney, pan-

creas, heart, liver

Human mRNA [696]

spleen, thymus, prostate, testis, ovary, small intes-

tine, colon, peripheral blood lymphocytes, heart,

brain, placenta, lung, liver, skeletal, muscle, kidney,

pancreas

Human mRNA [697]

Heart, liver, skeletal muscle, brain Mice Protein [583]

STYX colorectal cancer Human Protein [698]

Testis Mice Protein [699]

HeLa cell Human mRNA [700]

DUSP3 endothelial cells Human Protein [701]

prostate cancer Human Protein/mRNA [702]

platelets Human Protein [703]

brain, lung, heart, stomach, liver, kidney, testis,

spleen, skeletal muscle, small intestine

Mice Protein [704]

platelets Mice Protein [703]

DUSP11 colonic mucosa Human mRNA [705]

HEK293T Human Protein [706]

WI38 fibroblasts Human mRNA [707]

DUSP12 A549 cells, MCF-7 cells Human Protein [708]

liver Mice Protein [709]

adipose tissue Mice Protein [710]

DUSP13A skeletal muscle Human Protein/mRNA [711]

diaphragm, Muscle Mice mRNA [711]

DUSP13B testis Mice/Rat Protein/mRNA [711,

712]

skeletal muscle, testis, spermatocytes, round sper-

matids, testicular germ cells

Mice mRNA [713]

DUSP14 bone marrow-derived cells Mice Protein [714]

myocardial tissue Mice/Human Protein [715]

liver Human/Mice Protein/mRNA [716]

174



Appendix A. Appendix

Continuation of Table A.5

Protein Tissue/ Cell line Species Protein/

mRNA

Ref.

blood Human mRNA [717]

DUSP15 testis Human mRNA [718]

spinal cord Mice mRNA [538]

DUSP18 brain, pancreas, kidney, liver, skeletal muscle, heart,

lung, placenta, spleen, peripheral blood, testis, leuko-

cyte, colon, thymus, small intestine, prostate, ovary

Human mRNA [539]

breast, lung, colon, prostate, ovary human cancer cell

line

Human mRNA [719]

DUSP19 heart, lung, liver, pancreas Human mRNA [720]

brain, placenta, lung, small intestine, heart, liver,

kidney and testis

Mice mRNA [721]

cartilage Human mRNA [722]

DUSP21 testis Human mRNA [723]

colorectal cancer Human mRNA [724]

DUSP22 blood Human mRNA [214]

DUSP23 spleen, prostate, colon, adrenal gland, mammary

gland, thyroid, trachea, uterus, bladder

Human mRNA [718]

CD4+ T cells Human mRNA [725]

breast cancer Human Protein [726]

heart, liver, spleen, testis Mice mRNA [727]

DUSP26 liver Mice mRNA [728]

kidney Human Protein [729]

normal thyroid tissue Human mRNA [730]

brain tumour, neuroblastoma, ovarian cancer cell

lines

Human mRNA [731]

DUSP27 somites Zebra fish mRNA [732]

tonsils Human mRNA [733]

skeletal muscle, liver, kidney Human mRNA [734]

skeletal muscle, liver, and fat Mice Protein [734]

End of Table
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BNST:The bed nucleus of the stria terminalis
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A.6 Schematic representations of the structure of the family members

of the DUSP proteins

SSH-1

SSH-1*

SSH–2

SSH–2*

SSH–3

SSH–3*

A B P S

A B P S

A B P

A B P

A B P

A B P

Figure 1: Structures of SSH family phosphatases. The schematic diagrams show protein structures of mouse (m),
human (h), and Drosophila (D) SSHs. The highly conserved regions between SSH family proteins are indicated as
A, B, P (protein phosphatase) and S (serine-rich) domains (adapted [98, 96])
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WPD loop P loop

PTP domain

Polybasic region CAAX

Prenylation motif

Figure 2: Simplified schematic diagram of the PRL proteins. The PTP domain is responsible for enzymatic activity,
requiring the P-loop residues and the WPD loop residues for phosphate transfer. A polybasic region localizes next
to the PTP domains and mediates membrane or nuclear localization of PRLs. The CAAX protein prenylation
anchors the PRLs to the cellular membrane (simplified from [735])

CDC14A

CDC14B

CDC14C 

Nuclear targeting 
sequence

A 
domain

B domain NES

A 
domain

B domain

Core domain

NES

Nuclear Export Signal

PTP signature motif

Nuclear targeting 
sequence

A 
domain

B domain NES

Figure 3: Schematic of the primary structure of CDC14 in humans. The conserved domain is depicted in blue
(adapted from [130, 128])
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PBD/PTPN C tail

Catalytic active site
HCxxGxxR

C2

PDZ – binding site

Figure 4: The domain architecture of PTEN. PTEN is composed of four domains: the PIP2-binding domain
(PBD)/PTP, C2 domain, C tail domain, and a PDZ binding domain. The active catalytic site is HCxxGxxR
(adapted from review [136, 137])

Figure 5: Scaled representation of the protein domains of human myotubularins. All myotubularins share the
PH-GRAM and phosphatase (active or dead) domains. Additionally, myotubularins can also carry other functional
domains, including the PDZ binding site, the PH (Pleckstrin homology) and FYVE (Fab1-YOTB-Vac1-EEA1)
domains, as well as the DENN (Differentially Expressed in Normal and Neoplastic cells) domain. Except for
MTMR10, all myotubularins are composed of a coiled-coil domain. For each myotubularin, the amino acid length
for the most described protein isoform is indicated (adapted from review [150, 149])
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Figure 6: Classification and domain structure of the MKP family. The three subgroups are based on substrates and
subcellular localization. In addition to the MAPK binding (MKB) domain and dual-specificity phosphatase (DSP)
domain, the nuclear localization signal (NLS), nuclear export signal (NES), and PEST sequences are shown in the
figure. (adapted from [157, 156] )

180



Appendix A. Appendix

Figure 7: Atypical DUSPs predominantly contain the consensus DSP catalytic domain, whereas some atypical
DUSPs contain the CH2 domain, the carbohydrate-binding domain, and is an Arginine-rich or Proline-rich region
(adapted from [86])
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A.7 Weight comparison between all factors over the course of the ex-

periment

Table A.6: Weight Comparison between all Factors over the Course of the Experiment.

df F - value pη2 P - value
Time of Measurement (ST vs LT) 1 58.240** 0.284 0
ToM ×SD 1 7.025** 0.046 0.009
ToM ×PhA 1 0.13 0.001 0.719
Time of Measurement×SD×PhA 1 0.347 0.002 0.557
SD 1 1.046 0.007 0.308
PhA 1 0.133 0.001 0.716
SD×PhA 1 0.569 0.002 0.452
Error 147

Note:ToM = Time of Measurement

p < .05 = *, p < .01 = **
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A.8 Baseline behavioral measurements

Table A.7: Baseline Locomotion (cm)

ST df F - value pη2 P - value M ±StD N
SD 1 0.027 0.000 0.870 control 1100 ± 237 24

SD 1108 ± 193 54
PhA 1 8.291** 0.101 0.005 PhA- 1163 ± 188 39

PhA+ 1047 ± 209 39
SD ×PhA 1 1.713 0.023 0.195
Error 74
LT df F - value pη2 P - value M ±StD N
SD 1 1.109 0.015 0.296 Control 1405 ± 225 23

SD 1461 ± 223 54
PhA 1 25.147** 0.256 0.000 PhA- 1564 ± 189 38

PhA+ 1327 ± 194 39
SD ×PhA 1 0.071 0.001 0.790
Error 73
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Table A.8: Baseline SIR

ST df F - value pη2 P - value M ±StD N
SD 1 0.194 0.003 0.661 Control 117.16 ± 38.1 24

SD 122.07 ± 58.5 51
PhA 1 2.280 0.031 0.136 PhA- 131.74 ± 52.99 36

PhA+ 110.12 ± 50.07 39
SD×PhA 1 669.481 0.003 0.621
Error 71
LT df F - value pη2 p - value M ± StD N
SD 1 0.301 0.005 0.585 Control 136.81 ± 41.13 23

SD 131.59 ± 40.44 45
PhA 1 1.896 0.029 0.173 PhA- 140.12 ± 45.8 34

PhA+ 126.58 ± 33.6 34
SD×PhA 1 0.038 0.001 0.846
Error 64

Table A.9: Baseline Sociability score

ST df F - value pη2 P - value M ±StD N
SD 1 0.643 0.009 0.425 Control 0.36 ± 0.09 24

SD 0.38 ± 0.08 54
PhA 1 0.981 0.013 0.325 PhA- 0.38 ± 0.07 39

PhA+ 0.36 ± 0.09 39
SD×PhA 1 0 0 0.882
Error 74
LT df F - value pη2 p - value M ± StD N
SD 1 0 0 0.984 Control 0.35 ± 0.07 23

SD 0.35 ± 0.06 53
PhA 1 7.119** 0.09 0.009 PhA- 0.34 ± 0.06 37

PhA+ 0.37 ± 0.06 39
SD×PhA 1 1.682 0.023 0.199
Error 72

Table A.10: Baseline Sucrose (proportion)

ST df F - value pη2 P - value M ±StD N
SD 1 3.78 0.051 0.056 Control 0.73 ± 0.06 22

SD 0.71 ± 0.06 53
PhA 1 4.227* 0.056 0.043 PhA- 0.73 ± 0.07 36

PhA+ 0.7 ± 0.046 39
SD ×PhA 1 0.002 0.01 0.407
Error 71
LT df F - value pη2 p - value M ± StD N
SD 1 4.118* 0.055 0.05 Control 0.74 ± 0.04 23

SD 0.76 ± 0.06 52
PhA 1 0.73 0.01 0.396 PhA- 0.76 ± 0.05 36

PhA+ 0.74 ± 0.05 39
SD×PhA 1 3.152 0.043 0.08
Error 71
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A.9 Descriptives and statistics of the behavioural measurements

Table A.11: Locomotion

ST df F - value pη2 P - value M ±StD N
SD 1 8.009** 0.104 0.006 Control 1215.85 ± 329.98 24

SD 1057.26 ± 201.46 49
PhA 1 20.387** 0.228 0 PhA- 1217.97 ± 270.81 36

PhA+ 1003.78 ± 200.95 37
SD×PhA 1 3.992 0.055 0.05
Error 69
LT df F - value pη2 P - value M ±StD N
SD 1 0.199 0.003 0.657 Control 1171.13 ± 205.88 23

SD 1195.73 ± 201.44 45
PhA 1 0.751 0.012 0.389 PhA- 1213.76 ± 215.85 34

PhA+ 1161.06 ± 186.06 34
SD×PhA 1 0.154 0.002 0.696
Error 64

Table A.12: SIR

ST df F - value pη2 P - value M ±StD N
SD 1 0.037 0.001 0.848 Control 91.26 ± 27.22 24

SD 92.78 ± 34.49 48
PhA 1 0.679 0.01 0.413 PhA- 90.30 ± 28.93 35

PhA+ 94.13 ± 35.06 37
SD×PhA 1 1.135 0.016 0.29
Error 68
LT df F - value pη2 P - value M ±StD N
SD 1 3.468 0.051 0.067 Control 119.94 ± 38.51 23

SD 143.85 ± 53.9 45
PhA 1 0.001 0 0.976 PhA- 135.71 ± 48.14 34

PhA+ 135.83 ± 52.99 34
SD×PhA 1 0.011 0 0.917
Error 64

Note: p < .05 = *, p < .01 = **
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Table A.13: Sociability Score

ST df F - value pη2 P - value M ±StD N
SD 1 5.056* 0.068 0.028 Control 0.35 ± 0.08 24

SD 0.39 ± 0.08 49
PhA 1 0.094 0.001 0.76 PhA- 0.38 ± 0.09 36

PhA+ 0.38 ± 0.08 37
SD×PhA 1 1.125 0.016 0.293
Error 69
LT df F - value pη2 P - value M ±StD N
SD 1 3.149 0.048 0.081 Control 0.37 ± 0.06 23

SD 0.40 ± 0.08 44
PhA 1 1.84 0.028 0.18 PhA- 0.40 ± 0.06 34

PhA+ 0.38 ± 0.06 33
SD×PhA 1 0.441 0.007 0.509
Error 63

Table A.14: SuP Sucrose Ratio

ST df F - value pη2 P - value M ±StD N
SD 1 0.583 0.009 0.448 Control 0.79 ± 0.07 24

SD 0.78 ± 0.066 47
PhA 1 0.461 0.007 0.5 PhA- 0.78 ± 0.06 36

PhA+ 0.78 ± 0.05 35
SD×PhA 1 3.46 0.049 0.067
Error 67
LT df F - value pη2 P - value M ±StD N
SD 1 67.133** 0.516 0 Control 0.63 ± 0.04 22

SD 0.72 ± 0.04 45
PhA 1 0.16 0.003 0.691 PhA- 0.69 ± 0.05 33

PhA+ 0.69 ± 0.06 34
SD×PhA 1 0.037 0.001 0.848
Error 63

Table A.15: EZM Closed Arm (proportion)

ST df F - value pη2 P - value M ±StD N
SD 1 1.038 0.015 0.312 Control 0.82 ± 0.05 24

SD 0.81 ± 0.06 48
PhA 1 3.285 0.046 0.074 PhA- 0.80 ± 0.05 36

PhA+ 0.83 ± 0.05 36
SD×PhA 1 1.381 0.02 0.244
Error 68
LT df F - value pη2 P - value M ±StD N
SD 1 1.221 0.019 0.273 Control 0.87 ± 0.04 23

SD 0.85 ± 0.05 45
PhA 1 0.105 0.002 0.747 PhA- 0.86 ± 0.03 34

PhA+ 0.86 ± 0.05 34
SD×PhA 1 0.06 0.001 0.807
Error 64
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Table A.16: FST Immobility (proportion)

ST df F - value pη2 P - value M ±StD N
SD 1 31.457** 0.33 0 Control 0.37 ± 0.14 23

SD 0.54 ± 0.11 45
PhA 1 2.639 0.04 0.109 PhA- 0.46 ± 0.16 33

PhA+ 0.51 ± 0.13 35
SD×PhA 1 0.937 0.014 0.337
Error 64
LT df F - value pη2 P - value M ±StD N
SD 1 5.683* 0.087 0.02 Control 0.47 ± 0.14 23

SD 0.39 ± 0.11 41
PhA 1 6.733 0.101 0.012 PhA- 0.38 ± 0.14 31

PhA+ 0.45 ± 0.11 33
SD×PhA 1 1.436 0.023 0.236
Error 60
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A.10 Descriptives of the basal, stress-induced, and recovery corticos-

terone concentration

Table A.17: Descriptives of the basal, stress-induced, and recovery corticosterone concentration

ST LT
Mean ± StD N Mean ± StD N

Basal (μg/dl) Control PhA- 51,65 ± 22,43 11 165,97 ± 78,46 11
Control PhA+ 160,87 ± 61,39 12 150,12 ± 59,76 12
SD PhA- 92,95 ± 56,20 23 109,14 ± 39,57 22
SD PhA+ 85,54 ± 43,30 24 92,85 ± 46,63 21

Stress- induced (μg/dl) Control PhA- 278,8 ± 46,57 12 239,01 ± 58,78 11
Control PhA+ 275,63 ± 37,96 12 228,47 ± 40,66 12
SD PhA- 267,96 ± 52,85 19 236,25 ± 64,76 22
SD PhA+ 275,87 ± 66,64 23 223,32 ± 65,71 21

Recovery (μg/dl) Control PhA- 71,57 ± 24,21 11 206,92 ± 91,13 11
Control PhA+ 84,46 ± 35,57 12 205,75 ± 81,8 12
SD PhA- 54,19 ± 27,78 18 114,97 ± 60,44 22
SD PhA+ 54,59 ± 19,56 20 129,61 ± 45,07 20

Note: p < .05 = *, p < .01 = **
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A.11 Correlations resilience groups and behavioural, physiological data

Table A.18: Descriptives of the basal, stress-induced, and recovery corticosterone concentration

ST SIR LT SIR
r2 sig. df r2 sig. df

Locomotion 0 0.092 48 0.028 0.848 48
Sociability 0.347* 0.014 48 0.350* 0.014 47
Sucrose Preference 0 0.243 47 0.612** 0 47
Forced Swim Immobility 0.591** 0 43 -0.23 0.12 45
Elevated Zero Maze 0 0.932 47 -0.195 0.175 48
Basal Corticosterone -0.322* 0.027 45 -0.377** 0.008 47
Stress-induced 0 0.483 44 -0.221 0.126 47
Recovery Corticosterone -0.436** 0.004 39 -0.548** 0 46

Note: p < .05 = *, p < .01 = **
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A.12 Pearson correlation analysis between behavioral measures and cor-

ticosterone parameters

Table A.19: Descriptives of the basal, stress-induced, and recovery corticosterone concentration

ST cohort SIR Soc SuP Immo EZM
Baseline CORT r -0.07 -0.11 -0.09 0.06 0.03

p 0.54 0.32 0.45 0.61 0.82
Stress-induced CORT r 0.01 -0.08 -0.08 -0.18 0.05

p 0.93 0.49 0.48 0.11 0.64
Recovery CORT r -0.02 -0.22 -0.05 -0.004 0.09

p 0.84 0.05 0.66 0.97 0.45
LT cohort SIR Soc SuP Immo EZM
Baseline CORT r -0.04 0.14 -0.25 -0.07 -0.01

p 0.71 0.23 0.03* 0.54 0.96
Stress-induced CORT r -0.13 -0.17 -0.01 -0.01 -0.02

p 0.25 0.15 0.94 0.90 0.84
Recovery CORT r -0.10 -0.28 -0.37 0.03 -0.01

p 0.41 0.01* 0.0008** 0.80 0.93

Note: p < .05 = *, p < .01 = **
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