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Chapter 1

Clinical Radiotherapy
Despite the recent advances in public healthcare, cancer remains one 
of the main factors in morbidity and mortality[1]. Cancer treatment 
varies based on not only the type of cancer but also its stage at the 
time of diagnosis[2]. Nevertheless, the major treatment modalities 
are surgery, radiation, and systematic therapies[3]. Radiation therapy, 
commonly referred to as radiotherapy, encompasses a range of cancer 
treatments utilizing ionizing radiation with the aim of inducing an anti-
tumor response. Nearly half of cancer patients receive radiotherapy 
treatment at least once in the course of their treatment[4]. This form of 
therapy can be further categorized into internal radiation therapy, i.e. 
brachytherapy, where a radiation source is positioned within the body 
in close proximity to malignant cells, and external beam radiotherapy, 
which employs an external apparatus to generate and administer the 
radiation beam to the patient[5]. Throughout the course of this thesis, the 
term “radiotherapy” exclusively pertains to external beam radiotherapy.
The general clinical workflow for patients receiving radiotherapy includes 
various steps depicted in Figure 1.1a. Following a diagnosis, it is usually 
required to obtain a computer tomography (CT) scan to acquire anatomical 
information about the tumor and organs at risk. Thereafter, a medical 
specialist carefully investigates the obtained images to distinguish healthy 
tissue from malignant tumors and provide a detailed treatment plan. 
The main goal of the treatment plan is to target and eliminate all the 
tumor cells while preserving maximal healthy tissue. Once the optimized 
treatment plan is ready, the patient will be called back to receive the 
prescribed radiation dose, often in the form of several treatment fractions, 
adding up to the total therapy dose.

Tissue Segmentation + Treatment Planning

Fraction 1 Fraction 2

A

CT

B

Tissue Segmentation + Treatment Planning

Fraction 1 Fraction 2

Figure 1.1 – Radiotherapy workflow in (A) clinical and (B) pre-clinical practice 
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Pre-clinical Radiotherapy
Most of the progress achieved in clinical radiotherapy originates from 
technological breakthroughs within the last century, often lacking 
substantial supporting evidence from comprehensive pre-clinical 
investigations involving animal models[6]. Consequently, a range of 
radiobiological and physics studies becomes essential, serving not only 
to authenticate prevailing patterns in clinical radiotherapy but also to 
propel our comprehension of diverse hypotheses within the realm of 
cancer radiotherapy. As a result, the domain of pre-clinical radiotherapy 
plays a significant and increasing role in assessing emerging trends like 
FLASH radiotherapy[7] and the augmentation of fundamental insights, 
particularly aimed at enhancing the effectiveness of cancer treatment 
outcomes.
Historically, radiobiological experiments were performed using clinical 
radiotherapy setups, resulting in imprecise radiation administration that 
bore no resemblance to the actual clinical scenario[6], [8]. The gap between 
the clinical workflow and the required pre-clinical experimental setup 
was eventually addressed in 2007 by developing small-animal precision 
radiotherapy platforms. The emergence of small-animal imaging and 
irradiation platforms empowered many cancer biology and physics studies 
in the past two decades[9]. Nowadays, the conventional pre-clinical 
workflow closely mirrors the clinical counterpart, as illustrated in Figure 
1.1b. Presently, two commercially accessible platforms for small-animal 
irradiation platforms exist: SARRP (Xstrahl Life Sciences,  Suwanee, 
GA, USA) and SMART+ (Precision X-ray Inc., Madison, CT, USA).  The 
key distinction between these systems lies in the SMART+ platform’s 
rotating gantry, which differs from the rotating bed in the SARRP system. 
Therefore, the imaging beam passes through the anterior-posterior 
(head-tail) direction in SARRP, while the SMART+ system’s imaging beam 
is directed in the dorsal-ventral orientation, passing through less tissue. 
CT scan is commonly regarded as the preferred imaging method for 
most pre-clinical investigations into cancer due to its ability to provide 
both anatomical structures and the electron density data necessary 
for calculating the radiation dose during the planning of radiation 
treatments[10]. However, given the diminutive size of the subjects being 
imaged, namely small rodents, a heightened level of spatial resolution 
is imperative. Consequently, the imaging modalities employed in these 
systems can perform micro Cone-Beam CT (CBCT) scans with voxel sizes 
smaller than 0.001 mm3. This refinement often entails an increased X-ray 
irradiation dose administered to the animals during imaging, a factor of 
significance, particularly in longitudinal studies[11], [12]. Workman et al. 
underscored the importance of managing imaging doses, suggesting 
that the cumulative dose should remain below 1 Gy to avoid overdosing 
healthy tissue with X-ray radiation and avert potential therapeutic impact 
on the tumor[13].
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Bioluminescence Imaging
Figure 1.2 provides an overview of the available imaging modalities for 
guiding small animal radiotherapy through imaging. Among different 
functional imaging modalities, optical imaging emerges as a notable 
choice due to its capacity to provide high-resolution visualizations while 
maintaining economical operational considerations. Operating within 
the optical spectrum, including not only the visible light range but also 
the ultraviolet (UV) and infrared (IR) spectrum, this approach enables 
the acquisition of tissue imagery without any X-ray imaging radiation 
impact on the subject. Notably, Bioluminescence Imaging (BLI), a 2D 
planar optical imaging modality, capitalizes on luminescent emissions 
originating from genetically modified tumor cells. Figure 1.3 summarizes 
the workflow required for acquiring a BLI.
In BLI, tumor cells are genetically modified to express luciferase, an 
enzyme cloned from firefly. Once the genetically modified tumor cells are 
implanted into the rodent, they can be activated by a specific substrate 
called luciferin. Consequently, only the implanted genetically modified 
tumor cells will emit light shortly after luciferin injection. Hence, BLI 
constitutes a cheap alternative form of functional imaging characterized 
by its absence of background noise since the only light source within a 
totally dark, light-tight imaging cabinet is the genetically modified tumor 
cells. However, a combination of the genetic modifications performed 
on the tumor and the injection of firefly-originated luciferin substrate 
prevent any clinical application for BLI. Nevertheless, BLI started gaining 
the attention of researchers in pre-clinical cancer research, with the first 
successful firefly luciferase cloning in 1985[14], [15], increased to more than 

CT

MRI

PET/SPECT

Ultrasound

Optical Imaging

Bioluminescence 
Imaging

Fluorescence 
Imaging

Cherenkov 
Imaging

Figure 1.2 – Overview of the small-animal image-guidance modalities in pre-clinical cancer 
research
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120 BLI-related papers per year published from 2016-2018 underlining 
different BLI applications in cancer research[16].
Due to the lack of background noise, BLI can facilitate tumor growth 
monitoring in-vivo without any radiation burden on the animal. However, 
the 2D information obtained from BLI does not include accurate spatial 
information about tumor location. As shown in Figure 1.3,  2D BLI 
includes a diffused signal without any volumetric information about the 
tumor, such as shape, depth, and 3D location. Thus, BLI cannot enable 
accurate tumor radiation targeting in 3D with comprehensive radiation 
delivery systems available. As a result, the practical utility of BLI in pre-
clinical cancer investigations can be fully exploited by reconstructing 3D 
Bioluminescence Tomography (BLT), an imaging modality that leverages 
data acquired from 2D BLI at varying angles to reconstruct the spatial 
distribution of the light source, herein referred to interchangeably as 
the tumor or radiation target.  

Firefly

Cloning

Luciferase 
Gene

Gene Transfer

Genetically-Modified 
Tumor Cells

Tumor 
Implantation

Tumor-Bearing 
Mouse

Imaging Session

D-Luciferin 
Injection

Tumor-Bearing 
Mouse

Light-Emitting 
Tumor

Imaging

Sensitive Camera

RotationRo
ta

tio
n

Figure 1.3 – General Workflow in Bioluminescence Imaging (BLI)
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Bioluminescence Tomography
In order to reconstruct the 3D BLT from BLI projections from different 
angles, an accurate model of light propagation is essential to estimate 
the Bioluminescence images from any arbitrary source. The Radiative 
Transport Equation (RTE) and its approximations are the most popular 
forward models used in the literature[17]–[20]. Upon establishing the 
forward model governing light propagation, an iterative optimization 
problem can be constructed, thereby solving the inverse problem, i.e., 
the BLT reconstruction problem. In other words, as illustrated in Figure 
1.4, in each iteration, an estimation of the light source is made, and the 
resulting BLI projections are computed based on the forward model. The 
final solution is a specific light source that minimizes the error between 
the measured and calculated BLI. 
However, the aforementioned solution to the BLT reconstruction problem 
is highly ill-posed. Hence, there is no unique answer for the reconstruction 
problem, and often, prior information together with a regularization term 
is required to reduce the ill-posedness and assist the solution. Artificial 
Intelligence (AI), on the other hand, proved to be a useful tool in solving 

Observations Tumor

Forward Problem

Forward 
Model

Error

Inverse Problem

?

Stability

Existing

Uniqueness

Observations Tumor

Ill-posed Problem

Figure 1.4 – Conventional solution for the BLT reconstruction problem 
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ill-posed problems in other applications. Therefore, this thesis introduces 
an AI-based approach toward the 3D BLT reconstruction problem and 
distances from the more conventional model-driven methods. 
The methods proposed in this thesis employ the Bioluminescence Skin 
Fluence (BSF) as the primary input for the AI models. This choice is rooted 
in the convenience of obtaining BSF directly from the 2D BLI images 
through a process of back-projection onto the surface of the CT scan. 
Alternatively, BSF can also be effectively simulated within the Monte Carlo 
Simulation (MCS) environment, obviating the need for computationally 
expensive photon transport calculations in the open space between the 
animal’s surface and the camera detector. This strategic utilization of 
BSF establishes an intermediary state between the MCS simulations 
and empirical BLI measurements, thereby facilitating the creation of a 
realistic MCS training database. 

Bioluminescence-Based Treatment Planning 
Once the 3D BLT is obtained, it can be utilized to target the tumor with 
radiation and monitor its response to radiotherapy. Employing BLT for 
tracking tumor evolution and guiding targeting strategies not only serves 
to mitigate the cumulative X-ray imaging exposure inflicted upon the small 
animal, a particularly relevant consideration in longitudinal investigations. 
In addition, it facilitates replacing other ionizing functional imaging 
modalities and thus alleviates the demands associated with radiation 
protection measures. Figure 1.5 represents a BLI-based radiotherapy 
workflow. For BLI-based treatment planning to work, it is often required 
to obtain the 3D spatial information by obtaining a CT scan. However, 
since only an approximation of the animal’s outer boundary is needed 
at this stage, a much lower-resolution low-dose CT scan can be enough. 

Radiation Delivery

Bioluminescence Imaging

Image-Guidance

BLI-based Treatment Planning

Imaging
X-RAY ON

Bioluminescence 
Tomography 

Reconstruction

Treatment 
Planning

Figure 1.5 – BLI-based radiotherapy workflow. 
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Alternatively, a high-resolution high-dose CT can be obtained before 
the tumor implantation and used for registration reference to a very 
low-resolution CT, such as scout CT scans, acquired at each radiation 
delivery session. Consequently, the X-ray imaging radiation burden on 
the animals is reduced greatly by adapting the BLI-based treatment 
planning.

Objectives and Outline of the Thesis
The principal objective of this thesis involves an in-depth exploration aimed 
at refining the quality of BLT reconstruction, with a parallel emphasis on 
its application in advancing pre-clinical radiotherapeutic interventions. 
While the primary focus is on glioblastoma multiforme (GBM) as the 
main malignancy type in this thesis, the developed methodologies can 
be adapted to various other applications with minimal modifications. To 
accomplish this overarching goal, the thesis first introduces the current 
state-of-the-art BLI application in GBM pre-clinical research in Chapter 
2. This section portrays a representative illustration of 2D BLI integration 
within the conventional pre-clinical GBM workflow, which is primarily 
limited to the surveillance of tumor progression. Subsequent chapters, 
spanning from Chapter 3 to Chapter 6, focus on the development of 
various novel AI-based approaches geared towards enhancing the efficacy 
of BLI-based treatment planning for GBM. Consequently, Chapter 7 
addresses the manufacturing methods for obtaining tissue-mimicking 
optical phantoms to not only standardize and calibrate the measurement 
workflow but also to spare animals as much as possible. Finally, the 
last chapter includes a thorough discussion about this subject, including 
the limitations of the proposed methods and ways to improve it further.
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Abstract
Glioblastoma multiforme (GBM) is a common and aggressive malignant 
brain cancer with a mean survival time of approximately 15 months 
after initial diagnosis. Currently, the standard-of-care (SOC) treatment 
for this disease consists of radiotherapy (RT) with concomitant and 
adjuvant temozolomide (TMZ). We sought to develop an orthotopic 
pre-clinical model of GBM and to optimize a protocol for non-invasive 
monitoring of tumor growth, allowing for determination of the efficacy 
of SOC therapy using a targeted RT strategy combined with TMZ. A 
strong correlation (r = 0.80) was observed between contrast-enhanced 
(CE)-CT-based volume quantification and bioluminescent (BLI)-integrated 
image intensity when monitoring tumor growth, allowing for BLI imaging 
as a substitute for CE-CT. An optimized parallel-opposed single-angle RT 
beam plan delivered on average 96% of the expected RT dose (20, 30 
or 60 Gy) to the tumor. Normal tissue on the ipsilateral and contralateral 
sides of the brain were spared 84% and 99% of the expected dose, 
respectively. An increase in median survival time was demonstrated for 
all SOC regimens compared to untreated controls (average 5.2 days, p 
< 0.05), but treatment was not curative, suggesting the need for novel 
treatment options to increase therapeutic efficacy.
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2

1. Introduction
Glioblastoma multiforme (GBM) is an aggressive and frequently occurring 
primary malignant brain cancer with a mean survival time of less than 
15 months after initial diagnosis, regardless of treatment [1]. Despite 
recent advancement in the understanding of the molecular pathogenesis 
behind the disease and improvement in diagnostic ability, little has 
changed in terms of prognosis. GBM remains a lethal disease, and most 
patients (>70%) will die within two years[1,2]. Standard-of-care therapy 
for newly diagnosed GBM consists of surgical resection, if feasible, and/or 
regional radiotherapy (RT) with concomitant or adjuvant temozolomide 
(TMZ), which provides an improvement in median survival of only 2.5 
months[1]. Bevacizumab is approved for patients with recurrent GBM, 
but only prolongs progression-free survival with no impact on overall 
survival[3].
Until recently, large-field single-beam irradiation was commonplace in 
pre-clinical animal studies[4,5]. Radiation dose was crudely estimated 
and efficacy studies were often hampered by high doses of radiation to 
healthy tissue. Therefore, tumors were often implanted subcutaneously to 
enable relatively easy targeting with a single beam and some shielding. 
Yet subcutaneous glioma models lack the appropriate central nervous 
system microenvironment and are poorly predictive of therapeutic 
outcome, particularly for anti-angiogenic drugs or metabolic inhibitors[6]. 
Orthotopically implanted gliomas in syngeneic, immunocompetent 
animals are thought to provide the most accurate representation of 
the biological features of cancer growth and metastasis in humans[7]. 
Modern techniques now permit closer replication of clinical practice 
when irradiating orthotopic models, and recently developed treatment 
planning systems allow for better protection of healthy tissue from the 
radiation dose[4,5,8,9].
The histopathological characteristics of human GBM include areas of 
intratumoral hypoxia and necrosis[10], in addition to a diffuse growth 
infiltrate into the neuropil[11]. Yet, frequently used pre-clinical GBM 
models (e.g., C6, 9L, and U87) are generally immunogenic to the 
host, contain minimal hypoxia, and tumor growth is sharply delineated 
with little infiltration into normal brain tissue[12–14]. In experimental 
neurooncology, there is thus a strong need for clinically relevant pre-
clinical models that are reproducible and physiologically applicable to 
the human condition. The F98 rat glioma cell line was originally obtained 
following administration of ethylnitrosourea to pregnant rats, whose 
progeny developed brain tumors[15]. Similar to the features of human 
GBM, these gliomas have an infiltrative pattern of growth, are weakly 
immunogenic, express relevant cellular markers and have areas of tumor 
hypoxia with a necrotic core[12,16–18], making them a strong candidate for 
use as an orthotopic GBM model.
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The aim of this study was to use the F98 orthotopic rat glioma model 
to optimize a targeted RT strategy for GBM in a manner which is similar 
to clinical practice. Development of a RT beam protocol that maximally 
spared the radiation dose to healthy tissues then allowed for accurate 
determination of the efficacy of SOC therapy in this model for the first 
time.

2. Results
2.1. Orthotopic F98 GBM Tumors Can Be Monitored Non-
Invasively by BLI and CE-CT
In order to monitor tumor growth and treatment efficacy non-invasively, 
F98 glioma cells were engineered to overexpress firefly luciferase, 
permitting bioluminescent imaging (BLI) of tumor cells[19]. To allow 
longitudinal treatment monitoring without cumulative radiation dose, 
we investigated whether BLI-based signal intensity could substitute for 
CE-CT-based tumor volume assessment. BLI signal was observed and 
localized to the tumor site and CE-CT confirmed that BLI signal was 
related to tumor growth (Figure S1A,B). Both increased exponentially 
over time (r = 0.88 and 0.96 respectively, Figure 2.1A,B), and the 
bioluminescent signal correlated significantly with the tumor volume 
assessed by CE-CT imaging (r = 0.80, p ≤ 0.01, n = 12, Figure 2.1C). 
This correlation allowed for BLI-based signal intensity to be used as a 
substitute for CE-CT imaging.

2.2. Radiation Treatment Planning Allows for Precise Tumor 
Targeting and Maximal Sparing of Healthy Tissues
In order to optimize tumor targeting with maximal sparing of organs at 
risk (OARs) during radiation treatment for SOC therapy, four different 
radiation plans were evaluated using a planned dose of 60 Gy as an 
example. The resulting dose–volume histograms (DVHs) and dose 
metrics of the tumor and key OARs for each of the in vivo radiation 
treatment plan options is shown in Figure 2.2 and Table S1, respectively. 
The dose–volume metrics indicate that there is no significant difference 

Figure 2.1 - Bioluminescent (BLI) signal intensity and contrast-enhanced (CE)-CT-based tumor 
volumes are significantly correlated. (A) BLI signal intensity over time of n = 7 orthotopic F98 lu-
ciferase-expressing glioblastoma (GBM) tumors; (B) CE-CT-derived tumor volume measurements 

over time of n = 6 orthotopic F98 luciferase-expressing GBM tumors; (C) correlation between 
CE-CT-derived tumor volume and BLI signal intensity for n = 6 animals.
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in the mean dose delivered to the tumor using each of the plans (p = 
0.54); all plans deliver ≥99% of the expected dose to the tumor area. 
The uniformity of the dose (as measured by the dose to the hottest 5% 
(D5) and 95% (D95) of the tumor volume) was also very similar across 
all four treatment plans, ranging from 102 to 103% and 95 to 98% for 
average D5 and D95, respectively. 
To assess normal tissue sparing, we evaluated the dose delivered to the 
ipsilateral side of the brain (not including the tumor) and the contralateral 
side of the brain to the tumor site. On the ipsilateral side, there was no 
significant difference in mean dose delivered to this area (p = 0.07), 
with all treatment plans sparing this side of the brain ≥80% of the 
planned dose. However, on the contralateral side of the brain, Plan 3 and 
4 received a significantly reduced mean dose when compared to Plan 1 
and 2 (p ≤ 0.001), improving normal tissue sparing on this side of the 
brain from 92 to 97%. For this reason, Plan 1 and 2 were immediately 
eliminated as possible radiation plan options. Although there was no 
significant difference in the mean dose received on the contralateral side 
between Plan 3 and 4 (1.8 and 1.6 Gy, respectively p = 0.76), when 
looking into the uniformity of the delivered dose (minimum dose to the 
hottest 5% (D5) and 95% (D95) of the area volume), the D5 value for 
Plan 4 was moderately lower than for Plan 3, suggesting improved tissue 
sparing. The AP-PA plan (Plan 4) was therefore selected for use in the 
SOC efficacy experiments. 

Figure 2.2 - Radiation treatment planning. (A) Representative beam set-up in the axial plane for 
four radiation treatment plans: Plan 1—360° arc; Plan 2—two angled beams; Plan 3—two an-

gled beams, parallel opposed; Plan 4—anterior/posterior opposed (AP-PA). (B) The corresponding 
dose–volume histograms for each radiation treatment plan. R brain = right brain; L brain = left 

brain.
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2.2. SOC Treatment Using a Targeted Radiation Strategy 
Demonstrates Anti-Tumor Efficacy but Is Not Curative
Optimization of the radiation treatment plan allowed for subsequent 
testing of SOC therapy in this model. A dose response of radiation from 
0 to 60 Gy was used in an attempt to determine the dose of radiation 
that locally controls 50% of the tumors (TCD50). An increase in median 
survival time was demonstrated for all SOC regimens compared to 
untreated control animals (on average 5.2 days, p < 0.05, log-rank test), 
but this was not curative for any animals (Figure 2.3A). Surprisingly, 
there was no relationship between the increase in radiation dose and 
median survival time. Animals treated with 30 Gy received the largest 
survival benefit (23.5 days) in comparison to the animals treated with 
20 or 60 Gy (19 and 18 days, respectively). In total, 75% of the animals 
treated with 60 Gy demonstrated ≥10% body weight loss, compared to 
63% for the 20 and 30 Gy treatment groups (Figure 2.3B). In addition, 
the body weight loss in the 60 Gy group occurred at an earlier time point 
on average than in the 30 Gy group (day 16 and 18, respectively), after 
which there was a steady decline to humane endpoint with no recovery.
Radiation dose metrics of the treated animals were analogous to those 
generated in Plan 4 (AP-PA) during the optimization phase. On average 
across all treatment groups, the tumor received 96.4% of the expected 
dose (Table 1). The ipsilateral side of the brain (not including the tumor) 
was spared on average 84% of the dose. In fact, 95% of this area 
received ≤0.2 Gy, regardless of the administered dose. The remaining 
5% of the area was not spared. However, due to the angle of the beams, 
this was not unexpected. The contralateral side of the brain was even 
further spared from radiation (by an average of 99% of the dose), thus 
illustrating our targeted radiation strategy.

Figure 2.3 - Therapeutic efficacy of standard-of-care (SOC) therapy using a targeted radiation 
strategy (A) Kaplan–Meier survival curves of animals following orthotopic F98 GBM implantation 

and a single dose of targeted radiation (as specified) with concomitant temozolomide (TMZ). 
Survival endpoint was defined as the time an animal left the experiment for humane reasons. n ≥ 

8 animals per treatment group. (B) Body weight loss of the treatment groups over time follow-
ing surgical implantation of the tumor. Percentage body weight change relative to starting body 

weight was determined.
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3. Discussion 

Modern techniques have allowed for closer replication of human 
radiotherapy practice; fractionated therapy is now possible with multiple, 
conformal beams and sophisticated dose calculation algorithms. However, 
these methods require high-resolution imaging techniques to allow for 
precise and accurate beam positioning, particularly when working with 
orthotopic tumor models such as GBM. CT is the preferred imaging 
modality for the target delineation and treatment planning of solid tumors 
using external beam radiation therapy as it most closely mimics clinical 
practice[20]. Here, a CT-based treatment planning system (SmART-ATP) 
allowed for delivery of a highly localized prescribed dose to an isocenter 
placed at the center of the target (tumor). Dose calculations performed 
using this set-up result in greater dose homogeneity and minimization 
of the dose received by the OARs[4,5,8,9].
The AP-PA beam plan was chosen for the SOC efficacy study as this plan 
maximized normal tissue sparing. While this plan accurately delivered the 
proposed radiation dose to the tumor (99% of the planned mean dose 
was delivered to the experimental tumors), the normal tissue sparing in 
the experiment was slightly greater than expected, thus exemplifying our 
targeted irradiation strategy. The ipsilateral side of the brain without the 
tumor was expected to be spared 82% of the planned dose (49 Gy), but 
was in fact spared 84% (50 Gy). In addition, the minimum dose for the 
hottest 5% of this area (D5) was reduced from 59.8 Gy to just 52.9 Gy.
It is possible to use other methods for treatment planning, such as 
MRI, which is generally considered the standard imaging modality for 
pre-clinical intracranial tumors. Previous reports suggest that MRI and 
CT-derived GBM tumor volume measurements show a strong correlation 
in vivo[21]. However, others have reported that CT was not sufficient to 
achieve accurate irradiation of the target in a GBM model (although 
this was performed without contrast)[22]. MRI was required in the study 
mentioned to deliver a homogeneous dose using a more complicated 
arrangement of three non-coplanar arcs. Regardless, in the absence 
of robust radiation treatment planning software for MRI, additional CT 

Planned 
Dose 
(Gy)

Tumor Dose (Gy) R Brain without Tumor 
Dose (Gy)

L Brain

Mean D95 D5 Mean D95 D5 Mean D95 D5

20 Gy 19.4 ± 0.3 16.8 ± 0.2 22.2 ± 0.3 3.8 ± 0.3 0.00 20.0 ± 0.4 0.11 ± 0.1 0.00 0.09 ± 0.1

30 Gy 28.1 ± 3.0 21.3 ± 11 30.4 ± 0.3 4.1 ± 1.5 0.08 ± 0.0 26.1 ± 7.6 0.58 ± 0.4 0.07 ± 0.1 1.1 ± 1.0

60 Gy 59.2 ± 1.5 54.1 ± 9.4 61.0 ± 0.4 9.3 ± 3.8 0.22 ± 0.1 52.9 ± 19 1.2 ± 0.9 0.19 ± 0.1 3.0 ± 4

Table 2.1 - Dose–volume histogram metrics for different tissue structures (tumor, right brain (R 
brain) without tumor, and left brain (L brain)) in treated animals (20, 30 or 60 Gy as indicated) 

using the AP-PA radiation treatment plan (Plan 4). Numbers are the mean and standard deviation 
of n ≥ 7 animals per treatment group. D95 = dose to 95% of the target volume; D5 = dose to 5% 

of the target volume.
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scans are still required to perform dose calculations, thereby limiting 
the utility of this approach[22–24].
Optimization of the radiation treatment plan allowed for subsequent SOC 
efficacy testing. Although each treatment group individually provided 
significant additional efficacy when compared to untreated controls, 
there was no improvement in efficacy with regard to the radiation dose-
response tested. Animals in the 30 Gy treatment group received the 
largest therapeutic benefit and the TCD50 was unable to be determined. 
This can be explained in part by the body weight loss observed following 
treatment. Animals in the 60 Gy group suffered from earlier and more 
severe body weight loss, which had a major impact on overall survival. 
It is unknown whether this is occurring due to radiation toxicity or 
tumor progression, although it is likely to be a combination of the two. 
Others have successfully delivered a single fraction of 60 Gy to rats 
bearing human GBM, with animals surviving for at least ten weeks after 
treatment[25]. However, only a portion of the tumor received 60 Gy in 
the study mentioned, resulting in severe necrosis in these areas of the 
tumor[25]. The clinical symptoms of radiation-induced necrosis include 
worsening neurologic signs and symptoms and neurocognitive decline[26], 
which when extrapolated to whole tumor irradiation could possibly 
explain the toxicity observed in our study. Standard radiotherapy for 
patients with GBM is a fractionated schedule of 2 Gy per day, five days 
per week, for six weeks for a total of 60 Gy[1]. However, the approximate 
relative biological effectiveness of this is likely to be closer to 20 Gy[22]. A 
hypofractionated schedule might potentially reduce toxicity and improve 
efficacy in the context of our study (e.g., six fractions of 10 Gy), as 
hypofractionated radiotherapy schemes have been successfully utilized in 
patients to improve convenience and tolerance to therapy, particularly in 
the elderly, where treatment-related toxicities are a main concern[27,28].
Similar to what is observed in patients, while SOC was therapeutically 
effective, it was not curative, suggestive again of the clinical relevance of 
F98 to human GBM. Extensive tumor hypoxia, necrosis, and an infiltrative-
like growth pattern of irregular tumor borders and peripheral extension 
into the surrounding tissue was demonstrated in F98 tumors (Figure 
S1C,D) and is also frequent in human GBM, being negative prognostic 
indicators associated with biological and clinical aggressiveness, 
shorter time to tumor recurrence, and reduced survival[29,30]. Hypoxic 
tumor cells are genetically unstable and show increased expression of 
O6-methylguanine-DNA-methyltransferase (MGMT) expression, a DNA 
repair enzyme known to negate TMZ-induced DNA alkylation[31]. Thus, 
tumor hypoxia is thought to confer resistance to TMZ chemotherapy. 
Targeting of these hypoxic cells could therefore increase the therapeutic 
efficacy of TMZ treatment. Hypoxia-activated prodrugs (HAPs) are 
selectively activated by enzymatic reduction in hypoxic cells, and may 
provide a means to test this hypothesis. One of the most clinically 
advanced HAPs, evofosfamide, has successfully demonstrated efficacy 
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towards glioblastoma in a pre-clinical rodent model[32] and in human 
patients[33] but has yet to be combined with SOC. HAP administration 
prior to SOC therapy could potentially remove both the TMZ-resistant 
and radio-resistant hypoxic cells, providing additional benefit to both 
components of SOC.
Immune suppression also plays an important role in GBM progression 
through a variety of mechanisms, including recruitment of M2-associated 
macrophages to the tumor microenvironment[34] and expression of 
potent immunosuppressive factors including TGF-β (transforming growth 
factor beta) and PD-L1 (programmed death-ligand 1)[35]. In addition, 
TMZ can induce lymphopenia in malignant glioma patients treated with 
SOC therapy[36]. Combining SOC with an immune-stimulating approach 
could therefore be advantageous. However, recently developed cancer 
immunotherapies have had disappointing results in this disease setting, 
likely due to the fact that only a single component of the anti-tumor 
immune response is targeted[37]. Tumor-targeting bacteria that can cross 
the blood–brain barrier such as Clostridium could be used to provide 
an inflammatory payload exquisitely to the tumor microenvironment, 
potentially combining the innate immune response to infection with 
effective stimulation of immune memory against the tumor[38]. Overall, 
our therapeutic results suggest that a combination of treatment modalities 
with SOC will be required to improve therapeutic outcome.
In this study, we also demonstrate a significant correlation between 
bioluminescent signal intensity and tumor volume assessed by CE-CT 
in the F98 model. Similar correlations (r > 0.54) have previously been 
reported for orthotopic mouse GBM in mice [20,39]. However, these 
studies were performed using a human primary GBM cell line that lacks 
key features of clinical GBM[13]. Importantly, the correlation observed 
in this study suggests that BLI can be used as a surrogate for CE-CT, 
reducing the radiation burden of using frequent CE-CT scans for long-
term treatment monitoring and providing an integrated platform for 
GBM evaluation. 

4. Materials and Methods
4.1. Generation of the F98 Lucifrase-Expressing Cell Line
F98 GBM cells (kindly provided by Prof. C. Vanhove, Ghent University, 
Belgium) were cultured in DMEM (Dulbecco’s modified eagle medium) 
supplemented with 10% fetal bovine serum (Sigma-Aldrich, Zwijndrecht, 
Netherlands). Cells were transduced with a lentiviral vector harboring 
a PGK-driven FLuc+ (pLenti PGK V5-LUC neo (w623-2), a gift from Eric 
Campeau (Addgene plasmid #21471; http://n2t.net/addgene:21471; 
RRID:Addgene_21471)) [40]. Neomycin selection began 48 h after 
transduction and after three weeks of continuous selection, cells could be 
used in experiments. Cells were tested for the presence of mycoplasma 
prior to injection into animals.
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4.2. Orthotopic GBM Tumor Implantation
Implantation of the orthotopic GBM tumors was performed as 
previously described [22], with some modifications. Briefly, young 
(8–12 weeks) female F344/IcoCrl rats were ordered from Charles River 
(‘s-Hertogenbosch, Netherlands). Then, 30 min prior to surgery, animals 
were administered analgesia by intraperitoneal injection (buprenorphine, 
0.05 mg/kg). Following sedation (first 4% isoflurane in an induction box, 
then 2.5% for maintenance), each rat was placed in a stereotaxic frame 
and the top of the skull was shaved and disinfected with isobetadine. 
A small incision was made through the skin along the length of the 
middle of the skull and connective tissue was removed using a sterile 
cotton bud, before the area was treated with lidocaine (1–2%). A burr 
was used to drill a hole in the skull 2 mm caudal and 2.5 mm right from 
bregma. In total, 20,000 cells (in 5 µL of phosphate buffered saline (PBS)) 
were slowly (2 µL per minute) injected at a depth of 3 mm. The needle 
was then left for 5 min to ensure no reflux of cells. The drill hole was 
closed with bone wax (Aesculap AG®, B.Braun, Melsungen, Germany) 
and non-absorbable sutures (Ethicon, Johnson & Johnson, Amersfoort, 
Netherlands) were used to close the incision. Post-operative analgesia 
was given as required (carprofen, 2–4 mg/kg in the drinking water). All 
animal experiments were in accordance with local institutional guidelines 
for animal welfare and approved by the Animal Ethical Committee of 
the University of Maastricht (Protocol # 2017-012).

4.3. Microscopy
Excised rat brains were fixed in neutral-buffered formalin (4%) before 
embedding in paraffin wax. Sections (7 µm) were cut, mounted onto 
poly-L-lysine-coated slides, and heat-fixed for 30 min at 58 °C. Paraffin 
was removed and sections were rehydrated using sequential immersions 
in 100% xylene, 100% ethanol, 80% ethanol, 50% ethanol and 100% 
distilled water. At this point, hematoxylin and eosin (H&E) staining 
was performed. Following an additional antigen retrieval step, staining 
for hypoxia was performed using pimonidazole in accordance with the 
manufacturer’s instructions (Hypoxyprobe™-1 Omni Kit, Hypoxyprobe, 
Burlington, MA, USA). All images were acquired on a M8 Microscope and 
Scanner (Precipoint, Freising, Germany).

4.4. Bioluminescence Imaging and Analysis
Under isoflurane anesthesia, whole-body white light and BLI scans 
from a dorsal position were acquired using an iXon Ultra 897 camera 
(Andor Technology Ltd., Belfast, United Kingdom) in the X-Rad 225Cx 
machine (Precision X-ray, Inc, North Branford, CT, USA) using no filters 
(open modus), ten minutes after intraperitoneal injection of D-luciferin 
(150 mg/kg, Perkin Elmer, Rotterdam, Netherlands). BLI images were 
acquired with a gain of 5 and an exposure time of 0.005 s (white light) 
or 60 s (BLI). Signal intensity parameters were consistent for all images 
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(either white light or BLI). The cumulative raw BLI intensity signal was 
corrected with the background signal corresponding to an area on the 
rat skin distant from the skull.

4.5. Contrast-Enhanced CT (CE-CT) Imaging and Analysis
Under isoflurane anesthesia, CT images of the skull area were acquired 
using an X-Rad 225Cx small-animal irradiator (Precision X-Ray, Inc) 
immediately following intravenous injection of contrast-enhancing agent 
(60 mg/kg Omnipaque, GE Healthcare, Eindhoven, Netherlands). CT 
acquisition parameters, CT number to density calibration and medium 
segmentation, were performed as described previously[41]. The CT imaging 
dose was 30 cGy. Images were reconstructed using Feldkamp’s filtered 
back-projection (Pilot version 1.14.4, Precision X-Ray, Inc).

4.6. Radiation Treatment Planning and Dose Calculation
Treatment plans based on 1) 360° arc, 2) two angled beams (15°/345°), 
3) two angled beams, parallel opposed (15°/195°) and 4) anterior/
posterior opposed (AP-PA, 0°/180°) using a 5 mm circular collimator 
(SmART-ATP version 2.0, Smart Scientific Solutions B.V., Maastricht, 
Netherlands) were compared for mean dose (Dmean), dose to 95% 
(D95) and dose to 5% (D5) of the CT-delineated tumor volume. Dose 
calculations were performed with the Monte Carlo dose engine DOSXYZnrc 
(National Research Council Canada) using an intrinsic dose uncertainty set 
to 5% in the target volume. Radiation delivery was performed according 
to ACROP guidelines as previously described[42,43]. Briefly, irradiations 
were performed at 225 kVp and 13 mA, with an inherit 0.8 mm beryllium 
filter and an additional 0.3 mm copper filter, resulting in a spectrum with 
a half value layer of 0.98 mm copper. The 5 mm beams had a full-width 
half maximum of 4.9 mm and a penumbra size of 0.5 mm (20–80% of 
maximum dose) at the isocenter and a dose rate of approximately 2.5 
Gy/min at the source-to-isocenter distance of 303.6 mm. All calculated 
dose values were scored as dose-to-medium, transport-in-medium.

4.7. Tumor Growth Delay
Tumor-bearing rats were randomized to treatment groups after second 
positive BLI and first positive CT signal and irradiated with 0, 20, 30 
or 60 Gy. Concomitant temozolomide (29 mg/kg, Bioconnect, Huissen, 
Netherlands) was administered by intraperitoneal injection daily for four 
days, beginning on the day of irradiation. Tumor growth was monitored 
3× per week using BLI and body weight was monitored daily. BLI-
based tumor volume was determined by signal intensity and CT-based 
tumor volume was calculated using a summation of all planes. Animals 
were sacrificed if body weight loss exceeded 20% of the pretreatment 
value or if neurological symptoms were observed (humane endpoint). 
Kaplan–Meier plots were constructed to calculate median time to survival 
endpoint, defined as the time an animal left the experiment due to 
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humane endpoint (clinical neurological symptoms and/or body weight 
loss, indicative of tumor progression). Treatment efficacy was assessed 
by comparing the median survival time with untreated control animals.

4.8. Statistical Analysis
Statistical analyses (one-way ANOVA, Student’s T-test, log-rank test) 
were performed using GraphPad Prism Software (version 5.03). A p-value 
< 0.05 was considered statistically significant.

5. Conclusion
In summary, optimization of a targeted RT treatment strategy for GBM 
resulted in maximum sparing of healthy brain tissue while ensuring 
accurate delivery of ≥99% of the dose to the tumor area. However, 
it appears that truly effective GBM therapy will require a combination 
of treatment modalities with SOC to increase therapeutic efficacy and 
improve clinical outcome. Use of a clinically relevant orthotopic model 
with multimodal imaging capability such as this will be essential for 
pre-clinical development in this context.
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Supplementary Material

Figure S1 - F98 tumor growth over time as determined by non-invasive BLI and CE-CT imaging. 
(A) Representative 2D BLI images overlaid over the white light image of the animal and (B) The 
corresponding CE-CT images of the same animal (tumor delineated in white). Both image sets 

are at selected time points after surgical implantation of F98 cells in the brain. Representative (C) 
H&E and (D) Pimonidazole (hypoxia) GBM image.

Plan
Tumor Dose (Gy) R Brain without Tumor 

Dose (Gy)
L Brain

Mean D95 D5 Mean D95 D5 Mean D95 D5

Plan 1 59.5 ± 0.5 57.1 ± 2.1 61.2 ± 0.2 10.3 ± 0.7 0.30 ± 0.00 52.6 ± 3.5 6.2 ± 0.8 0.25 ± 0.05 24.3 ± 3.0

Plan 2 59.8 ± 0.2 58.2 ± 0.4 61.6 ± 0.7 10.4 ± 1.0 0.25 ± 0.05 56.1 ± 2.1 3.7 ± 1.7 0.23 ± 0.04 24.3 ± 8.9

Plan 3 59.7 ± 0.3 58.6 ± 0.4 60.9 ± 0.2 12.3 ± 0.9 0.30 ± 0.00 60.0 ± 0.3 1.8 ± 0.9 0.23 ± 0.04 5.0 ± 6.3

Plan 4 59.9 ± 0.1 57.1 ± 0.1 61.2 ± 0.3 11.0 ± 1.3 0.25 ± 0.05 59.8 ± 0.4 1.6 ± 0.7 0.23 ± 0.04 3.5 ± 3.2

Table S1 - Dose-volume histogram metrics for different tissue structures (tumour, right brain (R 
brain) without tumour, left brain (L brain)) using the four different radiation plans described in 
Figure 3. Prescribed dose was 60 Gy. Numbers are the mean and standard deviation of n = 4 

individual animals bearing an orthotopic F98 GBM. D95 = dose to 95% of the target volume, D5 = 
dose to 5% of the target volume.
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Abstract

Objective: Bioluminescence imaging (BLI) is a valuable tool for non-
invasive monitoring of glioblastoma multiforme (GBM) tumor-bearing 
small animals without incurring x-ray radiation burden. However, the 
use of this imaging modality is limited due to photon scattering and 
lack of spatial information. Attempts at reconstructing bioluminescence 
tomography (BLT) using mathematical models of light propagation show 
limited progress. 

Approach: This paper employed a different approach by using a deep 
convolutional neural network (CNN) to predict the tumor’s center of mass 
(CoM). Transfer-learning with a sizeable artificial database is employed 
to facilitate the training process for, the much smaller, target database 
including Monte Carlo (MC) simulations of real orthotopic glioblastoma 
models. Predicted CoM was then used to estimate a BLI-based planning 
target volume (bPTV), by using the CoM as the center of a sphere, 
encompassing the tumor. The volume of the encompassing target sphere 
was estimated based on the total number of photons reaching the skin 
surface. 

Main Results: Results show sub-millimeter accuracy for CoM prediction 
with a median error of 0.59 mm. The proposed method also provides 
promising performance for BLI-based tumor targeting with on average 
94% of the tumor inside the bPTV while keeping the average healthy 
tissue coverage below 10%. 

Significance: This work introduced a framework for developing and 
using a CNN for targeted radiation studies for GBM based on BLI. The 
framework will enable biologists to use BLI as their main image-guidance 
tool to target GBM tumors in rat models, avoiding delivery of high x-ray 
imaging dose to the animals.   
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1. Introduction
In recent years, small animal image-guided irradiation platforms have 
boosted pre-clinical cancer research. These platforms ensure accurate 
treatment planning and dose delivery to animal models[1]–[4]. They 
often use integrated cone-beam computed tomography (CBCT) as their 
primary anatomical image guidance system. Due to limited soft-tissue 
contrast, often contrast-enhanced CBCT is needed to improve tumor 
segmentation accuracy. However, in some cases, such as glioblastoma 
multiforme (GBM), tumor visibility is low even with contrast agents. 
Furthermore, despite recent advances in precision imaging systems 
dedicated to small animals, current state-of-the-art systems deliver 
a substantial imaging radiation dose to achieve the highest resolution 
required for targeting[5]. There have been several attempts to reduce 
the delivered dose by using magnetic resonance (MR) guided treatment 
planning[6]–[8]. However, since this technology is not yet integrated into 
modern pre-clinical irradiation platforms, CT-MR registration is required, 
which causes geometric uncertainties[4]. 
Bioluminescence imaging (BLI) can be a compelling option to facilitate 
image-guided radiotherapy. BLI relies on optical photons emitted by a 
chemical reaction between an enzyme and a corresponding injected 
substrate. In most in vivo BLI experiments, tumor cells are genetically 
modified to express firefly luciferase before implantation. Since these 
genetically modified cells are the only ones in the animal’s body that 
generate such enzymes, only these cells emit light upon activation. 
Therefore, hereafter the terms tumor and light source are used 
interchangeably.
BLI is performed by capturing the emitted photons outside the animal’s 
body. Therefore, it can provide fast in vivo images with minimal 
background noise and no radiation dose. Currently, BLI is mainly used 
to acquire 2D projection images, possibly at several angles. Figure 3.1 
shows a schematic representation of a small animal irradiation platform 
(X-Rad  225Cx, Precision X-ray, Inc., North Branford, CT)[9], an acquired 
slice of a CBCT volume, the result of Monte Carlo (MC) simulation of 
optical photons emerging from the skin, and the BLI observations. 
However, the lack of 3D spatial information, i.e. depth, shape and 
location, of the photon-emitting volume, as shown in Figure 3.1(d), 
currently limits BLI use in small-animal preclinical cancer research. Thus, 
the development of accurate 3D bioluminescence tomography (BLT) 
reconstruction algorithms can open new doors for pre-clinical image-
guided radiotherapy. In addition, BLT allows targeting selective regions 
inside tumors with ionizing radiation, investigating the tumor response to 
treatment, and many other research opportunities[10], [11]. However, due 
to the limitations of the BLI-based targeting, a sub-millimeter targeting 
accuracy is considered satisfactory but there are no available guidelines 
or consensus about it.
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Due to its importance in animal studies, much effort has been 
spent developing BLT reconstruction algorithms[12]–[18]. However, 
the reconstruction problem remains a challenge, and most of the 
commercial small-animal image-guided irradiators lack comprehensive 
BLT capabilities. Therefore, the development of novel methods to tackle 
this problem continues to be an active research area. We can categorize 
the current state-of-the-art methods into model-based[17], [18] and deep 
learning (DL) based algorithms[15].
Model-based reconstruction methods aim to mathematically model light 
propagation inside the biological tissue and then solve the derived highly 
ill-posed inverse problem to reconstruct the 3D source distribution. These 
conventional methods require several estimations and approximations 
to solve the mathematical models that introduce errors in the final 
solution[15]. DL-based algorithms, on the other hand, utilize artificial 
intelligence (AI) to find the optimal solution and avoid modeling errors. 
It has been shown that AI can tackle many complicated inverse problems 
more efficiently than model-based counterparts[19]. To the best of our 
knowledge, the use of AI for BLT reconstruction has been limited to 
the work of Gao et al[15]. Gao’s method consisted of registering all the 
possible inputs to a standard mesh, predicting the light source within 
the standard mesh, and then transferring back to the original space. 

Figure 3.1 - Small animal irradiation platform (X-Rad  225Cx, Precision X-ray, Inc.): (a) design of 
the integrated irradiation and imaging system (b) acquired micro-CBCT slice in an axial plane with 
hand-delineated tumor contour overlaid in yellow (c) surface rendering of Monte Carlo simulation 

of optical photons emerging from the skin (d) measured BLI signal at different angles, with the 
reference specified in (a), projected onto the optical light image.
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However, the registration algorithm embedded within Gao’s method can 
contribute considerably to the geometrical uncertainty. Furthermore, the 
multi-layer perceptron architecture used by Gao limits the maximum 
resolution or the depth of the DL algorithm that can be used. 
This paper proposes a deep learning-based framework to improve 
BLT-guided radiation targeting for orthotopic GBM tumors. While Gao’s 
method relies on registration, the proposed solution uses 3D photon 
counting at the skin boundary to predict the tumor’s center of mass (CoM) 
and provides a unified solution for different geometries. The presented 
method employs deep convolutional neural networks (CNNs), allowing 
higher input resolution compared to Gao. In addition, the proposed deep 
learning framework eliminates the necessity of image registration by 
employing transfer learning. Initially, a CNN is trained to predict the light 
source within a unique standard geometry. The acquired knowledge is 
then transferred to a second CNN to predict the light source in a variety 
of head geometries. 

2. Materials and Methods
The general framework, shown in Figure 3.2, consists of three main 
steps: (1) Monte Carlo computation of 3D bioluminescence skin fluence 
(BSF) starting from optical photons emitted from a volume source 
embedded in the specimen, (2) predicting the center of mass (CoM) of 
the source volume using a CNN, and (3) defining the targeting volume 
based on the estimated tumor volume. Here, we consider the BSF as 
the number of optical photons emerging from the skin boundary. In in 
vivo experiments, BSF can be obtained using backprojection of the 2D 
BLI images recorded by the BLI camera onto the skin surface of the 
CBCT image[9]. Currently, most BLI cameras only record under discrete 
angles, which results in a discrete sampling of the full BSF under specific 
angles. However, in this paper a continuous BSF is directly computed 
using Monte Carlo simulations, bypassing modeling the camera under 
various angles and the backprojection procedure. In addition, modelling 
of the optical camera would cause the simulations to be very slow and 
highly inefficient.
In this study, two sets of MC simulations of BSF are employed to create 
pre-training and real-case databases. The pre-training database contains 
a large number of tumor cases inside a reference geometry of one rat, 
while the real-case database includes the simulation output of several 
real rat GBM cases. By using the pre-training database, we allow a deep 
CNN to learn general features from observations inside a unique arbitrary 
geometry and then use transfer learning to generalize the acquired 
knowledge to a wide variety of rat head geometries. Subsequently, a 
regression model is used to estimate the tumor volume based on the 
input BSF. Then, assuming a spherical target volume, the predicted 
CoM and CBCT-based tumor volume can determine the target volume.
A total number of 57 labeled CBCT images are used in this study. This 
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dataset is augmented to create the pre-training database containing 
40,000 samples. The implementation details of the data augmentation 
algorithm is discussed in the supplementary materials B. The data within 
each database is split randomly into training, validation and test sets. 
Furthermore, 12-fold cross-validation is used to assess the deep learning 
model’s performance on the real-case database. This means that the 
real-case database is split into twelve parts, and a model is trained on 
11 parts and tested on the 12th part. This process is repeated for each 
of the 12 folds. This method is beneficial in evaluating small databases 
and allows the model to be trained and tested on all the samples in the 
database. Eventually, the quantified overlap between the predicted target 
volume and tumor volume will be considered as objective quality metric.

2.1. Monte Carlo simulations
In order to reconstruct the light source from the physical observations, 
i.e., 2D BLI images acquired with a camera, an accurate forward photon 
transport model is first needed. In this study, MC simulations with 
the GATE framework[20] were employed as the forward model of light 
propagation to build the necessary databases. Four major assumptions 
were made prior to the simulations: (1) tumors are uniformly labeled 
with the light-emitting agents, (2) emission intensity is constant during 
the short imaging time, (3) the only materials in the region of interest 
are bone, brain, air, and water, and (4) light scattering and absorption is 
governed by constant scattering and absorption coefficients per material. 
The first two assumptions cause the simulations to have a constant 

Figure 3.2 – The proposed framework, consisting of: (a) source training on a pre-training data-
base, consisting of the simulated bioluminescence skin fluence (BSF) of different artificial tumors 

inside a unique standard geometry (b) target training on the real-case database 
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number of emitted photons per unit volume, i.e., a voxel, while the latter 
two introduce simplification to the simulation geometry and the model. 
The starting point of this study was previous in vivo experiments of an 
F98 rat orthotopic glioma model[21]. Contrast-enhanced CBCT (CE-CBCT) 
images, with 0.1 mm resolution in all directions, were acquired at 
different time points in a tumor-growth study from 35 different animals 
resulting in 57 images in total. The brain hemispheres and tumor were 
carefully hand-delineated by trained specialists on each of these images. 
Hereafter, this database will be referred to as the F98 database. 
All the images are padded or cropped into a single grid size of 
375x450x375, equal to the most common size in the database, providing 
a fixed size. Furthermore, the Hounsfield units (HU) are converted to 
mass density using the corresponding calibration curve, generated using 
a piecewise bi-linear fit between the mean HU and the mass density 
of specific materials in the calibration phantom[22]. Subsequently, the 
simulation geometry is built by segmenting the mass density images 
into brain, water, air, and bone. The brain is considered as the hand-
delineated contour. Bone and air contours are obtained by thresholding 
the mass density image with their corresponding thresholds. Everything 
else in the image is considered as water. Eventually, the geometry of 
the simulations is configured by assigning optical properties to different 
tissue segments. Figure 3.3 shows the reduced scattering (μ’s) and 
absorption coefficients (μa) of brain and bone tissues used in this study[23], 

[24]. In addition, the predefined optical properties in GATE are used for 
water and air. The optical source is defined based on the tumor contour 
with a similar emission spectrum as firefly luciferase[25] and the same 

Figure 3.3 - Optical properties spectrum of brain and bone, and photon emission spectrum used 
in the Monte Carlo simulations [23]–[25]
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optical properties as the brain tissue (Figure 3.3). Finally, to decrease 
memory usage and simulation time, the resulting simulation geometry 
is downscaled to a 250x300x250 grid with a resolution of 0.1551 mm3.

2.1.1. Pre-training database
The pre-training database is constructed to include a large number of 
possible tumor variations inside a single reference geometry (i.e., a single 
rat specimen). Figure 3.4 displays the workflow used to build the pre-
training database. Initially, one of the F98 samples, in which the region 
of interest is located in the center of the 3D volume and there is no bed 
present in the image, is chosen as the reference geometry. However, 
instead of directly simulating different tumor shapes and positions, an 
indirect approach, based on the superposition principle, is used in this 
study. In other words, the output of the MC simulation for any arbitrary 
tumor shape is represented by the sum of the outputs of independent 
simulations of smaller volume units within the tumor.
After obtaining the simulation geometry as described in the previous 
section, the brain is further partitioned into small voxel-like portions called 
super-voxels, as shown in Figure 3.4. Each of the super-voxels includes 
several adjacent voxels grouped to decrease the total number of required 
simulations. Super-voxels are often cubical, except the super-voxels 
located at the edge of the brain. Subsequently, a MC simulation is done 
for every super-voxel inside the brain, assuming that the super-voxel 
is the light source. Therefore, after repeating this procedure for every 
super-voxel inside the brain, the simulation output of any arbitrarily 
shaped tumor can be obtained by superposition of the output of the 
MC simulations for constituent super-voxels. However, there is always 
a trade-off between the number of available tumor cases covering all 
the possible shapes, based on the size of the super-voxels, and the 
computational cost. In other words, larger super-voxels limit the size 

Figure 3.4 – Workflow used to build the pre-training database
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and shape variety of the tumors quite drastically while reducing the 
number of MC simulations needed. In this study, the maximum size of 
the super-voxels is 5x5x5 voxels, resulting in a minimum resolution of 
0.77 mm3 compared to the original resolution of 0.1551 mm3.
The required simulations and consequently the simulation time for 
building the pre-training database are substantially reduced with the 
method described above. Nonetheless, the brain includes several hundred 
thousand voxels in a micro-resolution CBCT. Therefore, even with the 
super-voxel scheme, thousands of MC simulations are still needed to 
build the pre-training database. To decrease the computation time per 
simulation, we disabled the optical absorption process in the simulations 
for the pre-training database only, since tracking the many scattering 
interactions of photons which end up being absorbed before reaching 
the skin is highly inefficient. However, disabling absorption in the MC 
simulations causes errors in the BSF since a photon might reach places 
far away from the source, which it would not be able to reach in reality. 
Nevertheless, the pre-training database serves to establish a crude 
relation between the geometry of the light source and the BSF, which 
will then in subsequent steps be refined. 
Once the BSF is known for every super-voxel, a realistic database of 
tumor cases is needed to build the pre-training database. In this study, 
the hand-delineated tumor contours of the F98 database are used 
as the possible tumor shapes. The tumor shape database is further 
augmented by applying semi-random affine transformations, with zero 
translation, to the initial shapes. The augmentation algorithm is designed 
semi-randomly to ensure that all the real shapes, with exact scale 
and orientation, are present in the final database, as well as a large 
population of random cases. Then, for each case in the augmented 
shape database, a vector of all the possible coordinates for the tumor’s 
central placement is calculated, where the entire tumor is encapsulated 
inside the brain. The final pre-training database consists of the tumor 
cases that resulted from random sampling of the coordinate vector. This 
way, we increased the size of the pre-training database drastically to 
more than 40,000 cases. Finally, the MC-simulated BSF is obtained for 
each of these cases by combining the simulation output corresponding 
to super-voxels inside the tumor.

2.1.2. Real case simulations
In the second database, hereafter referred to as real-case database, one 
MC simulation is performed for each of the samples in the F98 animal 
experiment. In contrast to the pre-training database, one simulation 
geometry is constructed for each animal, based on their respective 
CE-CBCT head volume, as described before. In addition, the light source 
is considered as the hand-delineated tumor contour. Furthermore, the 
photon absorption process is modelled in the MC simulations for this 
database to better fit the actual measurements.
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2.2. CNN-based Center of Mass predictor
This study uses a 3D CNN consisting of five convolutional layers, one 
max-pooling layer, and two fully connected layers to predict the tumor’s 
CoM (Figure 3.2). The network’s input consists of the normalized 3D 
BSF at the skin level, and the output is the set of 3D coordinates of the 
tumor’s CoM. Input normalization is performed by rescaling the values 
of 3D BSF within the range [0,1]. The hyperparameters of the network 
are optimized by a manual grid search using the pre-training database. 
Furthermore, an on-the-fly data augmentation algorithm, consisting of 
rigid-body transformation, is implemented for the real-case training phase 
to increase model robustness and generalizability. The aforementioned 
transformation includes small random rotations around the sagittal axis 
and translation since the prone animal is supported by a bed and an 
anesthesia nose cone. In addition to data augmentation, we included 
additive Gaussian noise in the on-the-fly data augmentation algorithm 
to make the model more robust against realistic measurement noise. 
As shown in Figure 3.5, the training process consists of the following 
steps: (i) collection of pre-processing steps including normalization and 
on-the-fly augmentation, (ii) applying the current state of the CNN model 
to the data and predicting the CoM, (iii) comparing the predicted CoM 
with the ground truth based on a loss function and (iv) adjusting the 
parameters of the CNN model to minimize to the error. In this paper, we 
used the mean squared error (MSE) as the loss function determining the 
error between the predictions and the ground truth. Furthermore, an 
early stopping criterion based on the best validation loss is implemented 
to avoid possible overfitting.
The proposed framework utilizes transfer learning to improve the learning 
procedure. Transfer learning consists of first training a model on a 
general large database and then fine-tuning that model for a specific 
task[26]. As a result, the pre-trained model learns the most important 
features from a sufficiently meaningful database and fine-tunes the 
learned knowledge to fit best to the target problem. Romero et al. 
showed transfer learning is beneficial in cases with small-size training 
database, only if the pre-training corresponds to the same anatomical 
site as the target problem. In other words, the similarity between pre-
training and the target databases can impact the performance of the 
deep learning model[27]. Therefore, in this study, both pre-training and 
real-case databases are built using MC simulations, thus ensuring the 
similarity between source and target task. However, there are still two 
major differences: (1) the pre-training database consists of various tumor 
shapes inside a unique head geometry while this is not the case for the 
real-case database, and (2) MC simulation in the pre-training database 
is done without considering optical photon absorption. Subsequently, 
any solution on the source domain cannot achieve high performance 
when directly applied on the target domain. Therefore, weights trained 
during the pre-training are transferred to a new identical model as the 
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initial weights. This process is known as transfer learning[26] and is often 
used to overcome issues caused by small-sized training database in the 
target task. As a result, the new model can employ the acquired prior 
knowledge in the context of the target problem. Consequently, all the 
transferred weights are re-trained using the real-case database to yield 
the best result. Further details about the implementation of the transfer 
learning algorithm used in this paper are provided in the Supplementary 
Material, section C.

2.3. Targeting planning volume
In this study, the hand-delineated CBCT-based tumor contours are 
considered the ground truth for the gross tumor volume (GTV). The 
GTV is further simplified and approximated as the enclosing sphere 
containing the tumor since almost all commercially available small animal 
irradiators currently lack the capability to shape complex radiation fields 
and offer mostly circular or rectangular fields [4]. Furthermore, tumors 
are typically irradiated with substantial geometric margins to avoid tumor 
miss and take tumor motion and setup uncertainties into account[28]. 
Therefore, we can estimate the BLI-based GTV (bGTV) and build the 
corresponding planning target volume (PTV) with the predicted tumor’s 

Figure 3.5 – details of the training process: 3D bioluminescence skin fluence (BSF) is used as input 
for the network after pre-processing steps and the parameters of the network are adjusted based 

on the loss function, i.e. mean square error.
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CoM and volume. Tumor cells are the only bioluminescence light emitter 
inside the animal resulting in an almost zero background signal. Thus, 
the total number of detected photons correlates linearly with the tumor 
volume[17], [21]. Therefore, tumor volume can be estimated by performing 
logistic regression between the total number of surface photon counts 
and the tumor volume in the training database. 
Once the BLI-based gross tumor volume (bGTV) is obtained, a sphere 
around the predicted CoM is considered as the bioluminescence-based 
PTV (bPTV). The radius of the bPTV is calculated based on equation (1)

      (1)

Where bGTV is the bioluminescence-based gross tumor volume and m 
is a constant margin. Here, the sum of the average CoM and volume 
prediction uncertainties is considered as the margin (Equation 2).

 (2)

This study uses two metrics to evaluate the predicted bPTV, namely 
tumor and healthy tissue coverage. We defined the coverage metric for 
the tissue of interest as follows:

   (3)
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predicted planning volume and the total number of voxels for each specific 
tissue. In an ideal case, the algorithm should score 0% healthy tissue 
coverage while targeting all of the tumor. However, this is not feasible 
due to the spherical approximation of the tumor shape.
In order to underline the inherent uncertainties of the proposed method 
and their contribution to the targeting accuracy, the coverage metrics 
are employed in four different scenarios: (a) the ideal case in which 
both CoM and tumor volume are estimated perfectly with zero error, 
namely GT1, (b) the situation where the CoM is perfectly captured but 
the tumor volume is estimated according to the proposed solution, 
GT2, (c) the case in which the volume is predicted accurately with no 
error but CoM is predicted using the CNN network, referred as GT3, 
and (d) both CoM and volume are predicted according to the presented 
solution. Furthermore, the three ideal cases, namely GT1-3, do not 
contain any added margin (m = 0) to allow a fair investigation of each 
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uncertainty source in the proposed framework and show the effect of 
added margin. Consequently, separating the effect of each prediction 
uncertainty provides a better understanding of the proposed method 
and its limitations.

Results
The performance of the proposed method is evaluated in two parts: (1) 
CoM prediction accuracy and (2) planning coverage evaluations. For the 
former, we investigated the CoM predictions using the ∆CoM metric, which 
measures the Euclidean distance in millimeter between the CT-based 
and predicted CoM. For the latter, tumor and healthy tissue coverage 
metrics are obtained, which quantify which percentage of each tissue 
falls inside the planning volume (Eqs 2-3). This section describes all the 
objective measures with the median, interquartile range, and outliers.
The proposed method provided excellent performance in ∆CoM. As 
shown in Figure 3.6, the proposed method can achieve submillimeter 
accuracy in CoM predictions in both databases. The median ∆CoM in 
the pre-training database is around 0.1 mm with an interquartile range 
of 0.12 mm which is of the same order as the image slice thickness in 
the CT image (0.1 mm). The method's performance decreased when 
moving to the real-case database with a median and interquartile range 

Figure 3.6 - Performance evaluation of the proposed method in CoM prediction: (a) comparison 
of model performance in pre-training and real-case database (b) scatter plot of ∆COM vs tumor 
volume in pre-training database (c) scatter plot of ∆COM vs tumor volume real-case database
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of 0.6 ± 0.43 mm with only one outlier of 1.5 mm, corresponding to a 
1 mm3 tumor. Figure 3.6 (b) and (c) show the variation of ∆CoM based 
on the tumor volume in each database. As shown in Figure 3.6 (b), the 
proposed method can provide accurate results for various tumor sizes 
and in most cases the predicted CoM falls within the boundaries of the 
tumor. However, the model struggles to predict the CoM for very small 
tumors, with a volume smaller than 10 mm3 (about 2700 image voxels), 
since the resulting BSF is relatively small and susceptible to noise. In 
practice, targeting tumors below 10 mm3 is very challenging because it 
would require beams of approximately 1-3 mm. If we exclude the results 
of this category of tumors, the model performance improves to 0.5 ± 
0.4mm. In addition to accurate predictions, DL models can provide fast 
inference. The proposed network’s average prediction time is 18.87 ± 
0.04 ms on an NVIDIA Quadro RTX 5000 GPU (Santa Clara, CA, USA).
Figure 3.7 underlines the importance of transfer learning with the 
pre-training database in the proposed framework. In this figure, two 
models have been trained with an identical training database: one is 
a raw model with randomly initialized weights and the other model is 
the result of pre-training. These two models are referred to as model 
without and with transfer learning in Figure 3.6. As shown, the training 
loss, i.e., the mean squared error between predicted and actual CoM in 
the training phase, starts at a much lower point and converges better 
to the end point. Therefore, the model with transfer learning is far more 
capable in learning and converging towards a better solution.
The performance evaluation of the bPTV is shown in Figure 3.8, with a 
linear fit of CT-based GTV versus the total BSF shown in supplementary 
materials (Pearson’s rvalue of 0.8). bPTV estimation based on the 

Figure 3.7 – Effect of transfer learning on the training process: Progression of training loss of 
the first 150 epochs for a network without transfer learning (blue) and the same network with 

transfer learning (red).
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3predicted CoM shows promising results. The proposed method averages 
more than 94 ± 9 % tumor coverage while keeping the mean healthy 
tissue coverage around 7 ± 3 %. 
Finally, Figure 3.9 presents the visualization of the BLI-based tumor 
targeting as elaborated in this paper. As can be observed, the proposed 
method provides good overlap of the targeting volume with the tumor 
while sparing most of the healthy tissue. 

Figure 3.8 – Performance evaluation of tissue coverage: (a) boxplot of coverage of tumors (red) 
and normal tissue (blue) (b) effect of tumor volume on both tissue coverages

Figure 3.9 – visualizations of the output in three different animals (a-c) shown in different planes. 
Green, red, and yellow contours represent brain, tumor and predicted BLI-based targeting vol-

ume respectively.
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Results of the uncertainty analysis of the proposed solution are presented 
in Figure 3.10. The first ground-truth case (GT1) targets only 79% of 
the tumor with maximum healthy tissue conservation, with an average 
brain coverage of 0.5%. In the second ideal case (GT2), both metrics 
on average increased to 84% and 0.9%. Finally, the third ideal scenario 
(GT3) resulted in a substantial decrease in the tumor coverage with an 
average of 49.3% while further increasing the average brain coverage 
to 1%.

Discussion
This paper proposed a deep CNN to predict the tumor's CoM based 
on BLI and estimate the treatment volume accordingly. Nearly all 
previously published methods rely on very complicated and approximative 
mathematical physics models of light propagation to predict light 
distribution within the biological tissue as a surrogate for tumor location. 
Solving these models needs various approximations and estimations, 
which can reduce the reconstruction accuracy. In contrast, AI algorithms 
can learn the best statistical model that can be fitted to the data. Although 
often slow during the training process, AI solutions can be fast during the 
inference phase. The proposed method achieves a runtime of milliseconds 
in the inference phase and it can thus contribute substantially to real-
time targeting once translated to real BLI measurements. Furthermore, 
the proposed solution can predict the location of the tumor with sub-
millimeter accuracy and construct a spherical target volume that captures, 
on average, more than 94% of the tumor while only including 7% of the 
brain volume, all of which provide an accurate BLI-based GBM targeting 
for rat models. 

Figure 3.10 – The performance of the proposed method in four different scenarios: (GT1) both 
CoM and tumor volume are estimated ideally equal to the ground truth, (GT2) CoM is predicted 

accurately but volume is estimated according to the proposed framework, (GT3) volume esti-
mation is accurate while CoM is predicted using the deep learning model, and the result of the 

proposed solution as presented in Figure 3.8.

GT1 GT2 GT3 Proposed GT1 GT2 GT3 Proposed

0

20

40

60

80

100

Tu
m

or
 C

ov
er

ag
e 

(%
)

0

2

4

6

8

10

12

14

16

18

B
ra

in
 C

ov
er

ag
e 

(%
)



45

A DL framework for BLI CoM-guided glioblastoma targeting

3

In this study, we only investigated the feasibility of using a CNN to 
improve the reconstruction accuracy of BLI determined volumes. The 
proposed method can achieve high accuracy in predicting tumor location 
and encompassing volume in the reference geometry. In the pre-training 
database, the accuracy of the position prediction is approximately equal to 
the CBCT imaging resolution used to create the inputs. However, training 
one model for each unique animal is a cumbersome task. Therefore, we 
explored transfer learning to solve this issue and extrapolate the learned 
knowledge to predict CoM in different animals. Figure 3.6 highlights the 
added value of transfer learning. Although we noticed a slight increase 
in the ∆CoM in the real-case database compared to the pre-training, the 
final result still provides sub-millimeter accuracy in most cases. 
Since designing complex field shaping devices for small animal irradiation 
platforms is a very challenging task, all commercial units use static 
collimators with circular or rectangular shapes to irradiate the planned 
volume. Therefore, in this study, the BLI-based gross target volume was 
estimated using a sphere around the predicted CoM. As shown in Figure 
3.7, the bPTV covers 94% of the tumor on average and spares most 
of the normal tissue around it. Therefore, the proposed algorithm can 
be used to provide bioluminescence-based targeting for a large variety 
of cases. However, in this paper, only simulated BSF and not camera-
acquired BSF of real-case GBM bioluminescence acquisitions are used, 
as the first step towards developing a CNN-based method for BLI-based 
targeting. However, approximating the target volume as an enveloping 
sphere brings inherent error to the proposed solution, which is shown 
in Figure 3.10. In the best-case scenario, for which both CoM and the 
volume are known, employing the enveloping sphere approximation will 
reduce the tumor coverage score substantially. However, this effect can 
be mitigated by adding a margin to the spherical envelope. Furthermore, 
it has been confirmed that the volume estimation is overestimating 
the size of the tumor in most cases. However, the inaccuracy imposed 
by estimating tumors with their enveloping sphere, even in the best-
case scenario, limits the overall accuracy of the model. In the future, 
more advanced AI models can be employed to enhance the proposed 
framework and enable full tumor shape prediction. In addition to the 
inherent limitations of the spherical estimation method used here, the 
uncertainties incorporated in CoM and volume predictions, as presented 
in Figure 3.10, contribute to increased brain coverage while reducing 
tumor coverage. However, the added margin compensates for such 
errors and provides an acceptable tumor coverage while keeping the 
brain coverage below 10%. 
In reality, BSF cannot be measured directly and it should be reconstructed 
using a limited set of projections captured by the camera. This, in the 
best case, can only generate a partial indirect measurement of the actual 
BSF. In the future, the proposed framework of this paper will be adopted 
for real measurements and the accuracy of the model will be further 
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improved by adding more training samples to the database.
The presented CNN-based framework can achieve deeper layers in limited 
memory compared to the fully connected multi-layered perceptron (MLP) 
counterpart implemented by Gao[15]. Therefore, CNN-based models can 
extract and learn more features in the same amount of memory. In 
addition, Gao's model relies on registration between a standard mesh 
and the input mesh, which brings additional computational cost and 
uncertainty. Deng et al.[17] present a CoM prediction algorithm with 
comparable accuracy to this paper's CNN-based framework. While both 
Deng’s method and the method presented in this work are based on a 
combination of CoM and volume predictions to target tumors, Deng’s 
method relies on mathematical models of light propagation and a 
measured unirradiated tumor growth curve. Comparison of the reported 
results, between the CNN-based and Deng’s method, shows the superior 
performance of the CNN-based method. While Deng et al. achieved an 
average of 1 mm ∆CoM, the proposed CNN-based method can result 
in 0.6 mm ∆CoM on average. However, the observed improvement in 
the presented CNN-based method can be linked to the use of idealized 
cases, i.e., MC simulations, in this study. Nonetheless, a drawback of 
Deng’s method is its dependence on the unirradiated tumor growth 
curve. Considering the purpose of BLI-based targeting, tumors will 
likely respond to the treatment which slows their growth and puts the 
reliability of tumor growth curve into question. Consequently, their 
proposed algorithm cannot be employed in fractionated radiation studies. 
The presented method, on the other hand, does not rely on the tumor 
growth curve and can be a useful tool in small animal GBM studies.
The proposed CNN architecture imposes a limitation on the general use 
of the developed method. In other words, the predicted single-coordinate 
CoM limits the valueability of the proposed framework for metastatic 
tumors where two or more clusters of tumor cells or formed. However, 
the studied rat GBM model is not a metastatic tumor model and only 
forms a single compact tumor upon proper implantation. To address this 
limitation, in future works image-to-image transformer networks such 
as U-Net and autoencoders can be utilized.
The findings of this paper should be extended and validated in in-phantom 
and in vivo animal studies. Thus longitudinal BLI imaging can replace 
longitudinal CE-CBCT imaging, delivering no imaging dose to the animals.  
Furthermore, the presented framework can be extended using more 
sophisticated deep learning models, such as generative adversarial 
networks (GANs), to obtain the BLI-based tumor contour. This would 
allow for even more accurate targeting and facilitates animal studies 
even further. In addition, continuous bioluminescence imaging in contrast 
to imaging at discrete angles might add value to the reconstruction 
algorithms. However, measurement noise due to hardware limitations 
might be a bottleneck in such an approach. 
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Conclusion
In this paper, we developed a framework using deep learning for 
bioluminescence-based targeting for GBM animal models. The proposed 
model can predict the tumor's CoM with submillimeter accuracy, except for 
tumors smaller than 10 mm3. In addition, we showed that the accuracy 
of the proposed planning scheme with circular encompassing fields is 
sufficient for targeting with a high average tumor coverage. Our findings 
can open the door to further investigation of AI-based approaches in 
the field of bioluminescence tomography. This paper's findings can help 
biologists investigate GBM using bioluminescence markers. CNN based 
BLI targeting may also reduce the planning time compared to physics 
model-based counterparts. However, this paper mainly focused on 
developing the framework based on Monte Carlo simulations to generate 
the necessary training database. Further studies are needed to extend 
the framework for real BLI measurements. 
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Supplementary Material
A- F98 Database
The main data used in this study was obtained from a previous study, 
namely the F98 database, as described in Mowday et al, Cancers 2020. 
This database contains a number of glioblastoma (GBM) rat models 
imaged at different time points, resulting in 57 original cases in total. A 
total number of 20,000 initial luciferase-enabled GBM cells are implanted 
at a certain location inside the brain. In this study, we used the CE-CBCT 
images together with the hand-delineated brain and tumor contours from 
this database. Supplementary Figure 1 shows some examples from this 
database showing the range of variation in tumor size, shape and depth.
The Euclidian distance between the tumor’s center of mass (CoM) and 
the nearest air voxel is reported as the CoM depth in the Supplementary 
Figure 2. As can be observed, the tumors can have a range of depths 
inside the brain which makes the reconstruction task more challenging.

B- Tumor Augmentation for pre-training database
In this paper, a novel algorithm was developed to expand the variations 
inside the F98 database for building a pre-training database. This 
algorithm, as shown in Supplementary Figure 3, relies on the F98 
database as the starting point. Once the tumor images are extracted 
from this database, they are cropped to include only the smallest region 
containing the tumor. The produced 3D masks are then scaled up or 
down according to a set of 10 randomly generated scaling factors. For 
each scale in the scaling set, a maximum of 100 random cases of tumor 

Supplementary Figure 1 – A sample of tumor shape variations and location in 3D: (a) 3D visual-
ization of a sample image from the F98 database with the tumor shown as red, (b-e) different 

3D views of different samples in the database showing the variations in shape, size and location 
(depth) of the tumor
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Supplementary Figure 2 – Tumor depth variations as a function of the tumor volume: CoM depth 
feature is computed as the Euclidian distance between the tumor’s CoM and the closest air voxel

Supplementary Figure 3 – The tumor augmentation algorithm used for building the pre-training 
database
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images are then created with different placement in the brain, resulting 
in a maximum of 1000 tumor images per initial tumor image obtained 
from F98 database.
In order to randomly distribute the scaled tumor masks in the brain, 
voxels inside the brain in the reference geometry are sampled in three 
dimensions and listed inside a vector. These coordinates are considered 
as the center of the tumor in a binary mask with the same size as the 
reference geometry, hence allowing the tumor to be placed in any random 
position in the brain. Therefore, a random coordinate from this list is 
selected for each iteration and a tumor mask is created accordingly. 
Then, a random rigid-body transformation consisting of 3D random 
translation and rotation is applied to the tumor mask to account for the 
sampling frequency and to add more variations to the shapes. Finally, 
the resulted tumor mask is checked to make sure the entire tumor is 
located inside the brain and, if true, save the output. Once the tumor 
images are obtained, a simple code is used to find all the super-voxels 
inside the tumor and summing up the output of the corresponding Monte 
Carlo simulations.

Supplementary Figure 4 – Different schemes to apply transfer-learning: (a) all the layers are cop-
ied and trained on the new model (b) Only the first few or all the convolutional layers are copied 

and trained (c) All the layers are copied but only the fully connected (FC) layers are trained (d) 
Only the first few or all the convolutional layers copied and not trained on the new model
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C- Transfer learning
Bioluminescence tomography (BLT) reconstruction problem is highly 
ill-posed, and it is very common to use additional a-priori information 
to solve this problem. In this paper, a-priori information is fed into the 
convolutional neural network in the format of transfer-learning, meaning 
that first a network is trained on a large-sized database containing 
variations of tumors inside a unique rat geometry, namely the source 
task. Once the model is trained and can predict CoM in the source task, 
the acquired knowledge is transferred to a new network for the target 
task. Transferring the knowledge into this new network is performed by 
copying learned parameters to an identical otherwise empty model. This 
process, known as transfer-learning, can be done in different schemes, 
as shown in Supplementary Figure 4. 
In this paper, copying all the weights and training all the copied layers, 
as shown in Supplementary Figure 4 (a), yielded the best results. This 
can be due to the similarity between the source and target task causing 
the trained network on the pre-training database to be a good initial 
point for the real-case database. Supplementary Figure 5 shows the 
transfer-learning process as used in this paper.

Supplementary Figure 5 – Transfer-learning process used in this paper: first the 3D CNN model 
is trained on the pre-training database and then all the learned parameters are transferred and 

fine-tuned in new identical model
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D- Bioluminescence-based tumor volume estimation
Tumor volume is estimated using a linear fit between the total number of 
photons emerging from the skin in the Monte Carlo simulations and the 
CE-CBCT based gross tumor volume (cGTV), as shown in Supplementary 
Figure 6. The Monte Carlo simulations used in this figure are extracted 
from the real-case database, hence include the photon absorption.

Supplementary Figure 6 - Linear fit used for bioluminescence-based volume estimation: x-axis 
is the integral of the BSF (overall detected photons) and the y-axis is the CE-CBCT based tumor 

volume
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Abstract

Objective: A novel solution is required for accurate 3D Bioluminescence 
Tomography (BLT) based glioblastoma (GBM) targeting. The provided 
solution is computationally efficient to support real-time treatment 
planning, thus reducing the X-ray imaging dose imposed by high-
resolution micro cone-beam CT.

Approach: A novel deep learning approach is developed to enable BLT-
based tumor targeting and treatment planning for orthotopic rat GBM 
models. The proposed framework is trained and validated on a set of 
realistic Monte Carlo simulations. Finally, the trained deep learning model 
is tested on a limited set of BLI measurements of real rat GBM models.

Significance: Bioluminescence Imaging (BLI) is a 2D non-invasive optical 
imaging modality geared toward pre-clinical cancer research. It can be 
used to monitor tumor growth in small animal tumor models effectively 
and without radiation burden. However, the current state-of-the-art 
does not allow accurate radiation treatment planning using BLI, hence 
limiting BLI’s value in pre-clinical radiobiology research.   

Results: The proposed solution can achieve sub-millimeter targeting 
accuracy on the simulated dataset, with a median dice similarity 
coefficient (DSC) of 61%. The provided BLT-based planning volume 
achieves a median encapsulation of more than 97% of the tumor while 
keeping the median geometrical brain coverage below 4.2%. For the real 
BLI measurements, the proposed solution provided median geometrical 
tumor coverage of 95% and a median DSC of 42%. Dose planning using 
a dedicated small animal treatment planning system indicated good BLT-
based treatment planning accuracy compared to ground-truth CT-based 
planning, where dose-volume metrics for the tumor fall within the limit 
of agreement for more than 95% of cases. 

Conclusion: The combination of flexibility, accuracy, and speed of 
the deep learning solutions make them a viable option for the BLT 
reconstruction problem and can provide BLT-based tumor targeting for 
the rat GBM models.
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1. Introduction
In the past decades, image-guided small animal precision irradiation 
systems have found their way into the pre-clinical cancer research[1], 

[2]. These systems mainly use micro cone-beam computed tomography 
(μCBCT) as their primary image guidance and allow clinically relevant 
conformal irradiation for small animals. However, to visualize small 
tumors with high spatial resolution, it is often necessary to increase 
the X-ray imaging dose in these systems. In general, a voxel size of 
approximately 100 μm is required to visualize the anatomical structures 
of rats or mice. Achieving such a high resolution usually imposes high 
imaging X-ray doses in the range of 10-100 cGy to the animal[3], [4]. 
Native μCBCT images, without the use of contrast media, result in poor 
imaging contrast, especially for pre-clinical glioblastoma (GBM). Hence, 
contrast-enhanced CBCT (CE-CBCT) is often employed to improve tumor 
visualization[5]–[7]. The accumulated X-ray imaging radiation dose limits 
the number of imaging sessions within a longitudinal study and therefore 
hinders effective pre-clinical research.
Bioluminescence imaging (BLI) has been introduced as an alternative 
to other functional imaging modalities, such as Positron Emission 
Tomography (PET). BLI allows functional tumor imaging without any 
radiation burden for the animal. In addition, it often constitutes a 
cheaper functional imaging solution without any background noise. 
Hence, recently BLI has become a very attractive imaging modality for 
small animal pre-clinical cancer research.
However, at the time of this publication, most commercially available 
systems do not fully utilize BLI-based targeting and irradiation possibilities 
[8]. This is mainly due to the lack of 3D information based on 2D 
bioluminescence images. Many groups, including ours, have tried various 
solutions to tackle the bioluminescence tomography (BLT) reconstruction 
problem[9]–[12].
In contrast to other mathematically-driven solutions[9]–[11], [13], our efforts 
have mainly been focused on deep learning (DL) based solutions. 
Previously, we proposed a 3D Convolutional Neural Network (CNN) to 
predict the tumor’s center of mass (CoM) and to construct a spherical 
volume around the CoM as the targeting volume[12]. Although the CoM-
based method provides an effective solution to enable DL-assisted BLI-
based tumor targeting in pre-clinical practice, it has several shortcomings 
due to its simplified spherical targeting geometry. In this paper, a novel 
artificial intelligence (AI) based algorithm is developed to predict the 
3D shape and location of the tumor for rat GBM models. The proposed 
solution relies on a 3D ResNet architecture adopted from the RatLesNet 
model, originally developed by Valverde et al., 2020 for lesion detection 
in rodent Magnetic Resonance Images (MRI). Furthermore, the proposed 
solution employs Monte Carlo simulations (MCS) to provide a realistic 
training database for the DL model as an alternative to a large set of 
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acquired images. The performance of the trained model is then evaluated 
on the MCS database and a smaller set of real measured BLI using a 
variety of objective quality metrics, such as dice similarity coefficient, 
geometrical convergence metrics, and dose-volume metrics. 

2. Materials and Methods
2.1. Problem Formulation
To solve the BLT reconstruction problem, an accurate model of optical light 
propagation in the biological tissue is needed. The diffusion approximation 
(DA) of the radiative transport equation is the most commonly used 
forward model in the literature. Following the notation used by[15], the 
DA is expressed as:
 
-∇.(D(r)∇Φ(r)) + μa(r)Φ(r) = S(r)      (r∈Ω)  (1)
 
Where D is the optical diffusion coefficient depending on the 3D position 
r ∈ R 3 inside the region of interest Ω, Φ represents the photon density 
(Watt/mm2) and S denotes the power density of the internally located 
light source (Watt/mm3). Furthermore, the optical diffusion coefficient is 
defined as D(r)=  1⁄3(μ's (r) + μa (r)), where μa and μ's are the absorption 
and reduced scattering coefficients (mm-1). 
The DA equation is solved using the following Robin boundary condition:

 Φ(r) + 2A(r;n,n') D(r) (υ(r)  . ∇Φ(r))=0     (r∈∂Ω).   (2)

Where A(r;n,n') represent the boundary mismatch resulting from the 
two different refractive indexes at the boundary, and υ is the unit outer 
normal at the boundary ∂.

MΦ = FS  (3)

Where M and F are positive system matrices resulting from FEM. Equation 
(3) can be rewritten as:

Φ=M-1 FS=AS  (4)

Most mathematically derived approaches then define a cost function 
with a specific regularization term and attempt to locate the optimal 
light source by minimizing this cost function. In this paper, however, 
following the same notation, the BLT reconstruction inverse problem 
can be expressed as:

S=𝓕 -1 (Φ)  (5)
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In equation (5), 𝓕 -1 is a non-linear function that links the measured 
photon flux to the corresponding source, resulting from the solution to 
the inverse problem.
It has been proven that the BLT reconstruction problem is highly ill-
posed[16]. Often various prior information or regularization methods are 
utilized to decrease the ill-posedness of the problem. In this paper, a 
DL model is used to directly learn a novel solution for S based on the 
best fit to the observations.
Following the notation of E et al., 2020, the output of a multi-layered 
DL model can be expressed as:

           (6)

Wherewk
ik+1ik

1

with k ϵ [0,L] are the weights of the network in different 
layers. Furthermore, xi0

1

indicates the input of the DL model, i.e. 
bioluminescence surface photon count. The activation function H

1

 is an 
arbitrary non-linear function that gives the DL model further degrees of 
freedom in modeling non-linear phenomena. In this notation, the bias 
term in each layer is generalized as a weight. 
DL models can be considered as universal function approximators and 
thus if the DL model is designed and trained properly, it can learn a 
mathematical model 𝒢, in equation (6), that best fits the provided data 
and, in theory, can be an estimation for 𝓕 -1 in equation (5). Figure 4.1 
depicts the overview of the DL-based proposed framework in this paper 
to solve the BLT inverse problem. 

2.2. Monte Carlo Simulations 
MCS is considered the gold standard for photon transport simulations 
and can provide more accurate ground-truth data for the AI model than 
other analytical model counterparts. Therefore, due to the lack of a 
considerable amount of ground-truth labeled BLI measurements (which 
is a common problem in biological experiments), a larger database of 
MCS is generated and utilized to train and validate the AI model. 
To build the MC database representative of the real GBM BLI measurements, 
a database of CE-CBCT images of real GBM is employed. This database, 
hereinafter called the F98 database, consists of 57 cases with CE-CBCT 
images of an orthotopic F98 rat GBM animal model, imaged at several 
time points in our previous work[5]. Each of the cases within the F98 
database further includes hand-delineated contours for normal brain and 
tumor tissue by a trained biologist. In addition to these contours, two 
separate thresholds are applied to the mass density image, obtained 
from the original CE-CBCT, to generate bone and air masks. The resulting 
contours are combined to create the MCS geometry, as shown in Figure 
4.2 and explained in our previous publication[12] in more detail. The 
hand-delineated tumor contour is then used to constitute a uniformly and 
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Figure 4.1 – Overview of the proposed DL-based framework for the BLT reconstruction problem: 
the raw Monte Carlo (MC) output and bioluminescence skin fluence (BSF) overlaid on top of the 

CT scan in the second box just for visualization.
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isotropically-emitting light source with a similar light emission spectrum 
to the firefly luciferase light emerging from the tumor. In other words, 
in this study, substructures within the tumor, such as necrotic and 
hypoxic regions, are ignored. Therefore, the uniformly emitting tumor 
approximates the real emission of the bioluminescence-enabled tumor.
The simulation geometry and the light-emitting source are presented to 
the MCS engine, namely the Geant4 Application for Tomographic Emission 
(GATE)[18]. In this study, various wavelength-dependent optical properties 
are assigned to each tissue in the MCS geometry. These properties 
included a tissue-dependent absorption and scattering coefficient, 
presented in Figure 3 of our previous work[12], which was obtained from 
previous work[19]–[21]. Furthermore, two simplifications are included in 
the MCS: (a) tumor tissue has the same optical properties as the brain 
tissue, and (b) everything other than the brain, air, skull, and the tumor 
is considered water since its contribution to the simulation output is 
negligible. The water regions account for the small regions in the medial 
longitudinal fissure, the space between the brain and the skull, and the 
rest of the soft tissue in the head and neck region. As shown in Figure 
4.2, the aforementioned water-equivalent region is either filled with 
cerebrospinal fluid, which has similar optical properties to water or 
located far from the relevant scoring region of interest, which causes 
its optical properties to be insignificant.  
The MCS output is scored using the GATE fluence actor which tracks 
photons entering or exiting a specified geometry. In a voxelized geometry, 
such as the one used in this study, the fluence actor registers the 
photons passing through each individual voxel and saves them as a 
raw 3D image volume. Furthermore, the constant number of emitted 
photons per unit volume, i.e. voxels inside the tumor volume, is set to 

Figure 4.2 – Different Materials in the MCS: the brain optical properties are extracted from[19], 
The skull optical properties from[20]. Everything other than that, i.e. body and air, are assigned to 

water and air.
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provide an average statistical simulation uncertainty below 0.2% for an 
average-sized tumor.

2.3. Deep Learning Solution
2.3.1. Pre-Processing of the MCS Output
Two main pre-processing steps are considered to create the training 
database from the MCS output: (a) converting the raw 3D MCS output to 
the 3D bioluminescence skin fluence (BSF) by applying the corresponding 
skin mask and (b) normalizing the BSF data. 
As mentioned previously, raw MCS output includes the resulting photon 
count at every voxel in the voxelized geometry. To consider only the MCS 
output for voxels visible to the camera, and thus creating the subsequent 
BSF, a skin mask is constituted based on the original CT scan and the 
location of a hypothetical camera. This is done by a three-step process: 
(a) obtaining an air mask from the original CT image by using a constant 
HU threshold, (b) computing an approximate skin contour by applying 
morphological operators to the air mask and (c) removing any unwanted 
voxels that are not visible to the camera such as voxels located in the 
inner part of ears using a simplified ray-tracing algorithm. The location 
of a hypothetical rotating camera used in this study corresponds to 
the commercially available small animal irradiating platform (X-RAD 
225Cx, Precision X-ray Inc., North Branford, CT, USA). Furthermore, a 
set of five camera viewing angles is considered, based on real animal 
experiments, to obtain the visible skin voxels. Details of the algorithm 
used for computing the skin mask can be found in supplementary 
materials, sub-section S1.   
Once the BSF is obtained for every case in the MCS database, the 
volumetric images are normalized in both intensity and size. Intensity 
normalization is performed by normalizing the volumetric images to 
have a median of zero and a standard deviation of one. In addition to 
the intensity normalizers, all the volumetric images in the database are 
moved to a fixed input grid of 375 x 450 x 375 voxels, by padding or 
cropping the original input, to have equal image dimensions required 
by the DL algorithm. Thereafter, all the samples in the database are 
down-scaled to a smaller 250 x 300 x 250 volume to minimize the GPU 
memory needed for training.

2.3.2. Training and Validation of the AI Model
In this study, a previously developed fully convolutional neural network 
architecture, namely RatLesNet[14], is employed to solve the BLT 
reconstruction problem. The RatLesNet model was originally developed 
to segment small brain lesions in rodent magnetic resonance images 
(MRI). Therefore, it is a suitable candidate for the BLT reconstruction 
problem since the final aim of the current study is also the segmentation 
of small tumors from 3D BSF images. Furthermore, an automatic 
hyperparameter optimization algorithm (Optuna)[22] is used to obtain 
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the best set of hyperparameters by solving an optimization problem 
that samples hyperparameters from a pre-defined search space using 
the tree-structured Parzen estimator algorithm[23]. The hyperparameters 
included in the search space consist of the number of filters in 
convolutional layers, loss function, and the optimization algorithm. 
Hence, the original architecture of the RatLesNet is kept intact. More 
details on the hyperparameter optimization and the search space for each 
hyperparameter are shown in supplementary materials, supplementary 
table 1. 
An exclusion criterion based on the tumor volume is defined removing 
tumors smaller than 10 mm3, reducing the total number of MCS samples 
to 42 cases. This is due to the fact that such a small tumor: (a) requires 
collimated beams smaller than 3 mm for targeting, which will increase 
the dose delivery uncertainty, (b) emits fewer bioluminescence photons, 
and (c) cause additional challenges for the DL model due to high level 
of class imbalance in the prediction image. 
Once the exclusion criteria are applied and the optimal set of 
hyperparameters is obtained, the remaining MCS database is shuffled 
randomly and divided into different subsets for training, validation, and 
test. A 9-fold cross-validation algorithm is used to train, validate and test 
the model on all the cases in the database. In other words, as shown in 
Figure 4.3, for each fold five cases (12% of total samples) are reserved 
for testing and five more for validation. The rest of the samples are used 
to train the model. During the training phase, one DL model is trained 
for each fold using the training and validation set, keeping the test set 

Figure 4.3 – Graphical representation of the 9-fold cross-validation method used in this study: In 
each fold (other than the last one) five samples are reserved for test and the rest are shuffled into 

five validation and 32 training samples.
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unobserved. This results in nine distinct trained models for each fold and 
allows the model to be tested on all 42 cases using the corresponding 
fold in which the specific case is in the test database. 

2.4. Robustness Evaluation Using Synthetic Cases
A set of 42 cases is artificially generated to evaluate the robustness 
of the proposed deep learning solution for cases outside the initial 
training distribution and quantify the performance gain upon retraining 
the network with newly added samples. The synthetic case database 
includes randomly augmented tumor shapes inside randomly selected 
rat MCS geometry, placed in either (a) a random location in the brain 
or (b) near the center of mass of the original tumor with respect to 
the selected MCS geometry. These two categories of synthetic cases 
are further complemented with cases where the original tumor for the 
selected MCS geometry is either replaced by (c) the predicted tumor by 
the proposed deep learning solution for the same case or (d) one of the 
two flat tumors in the F98 database. Therefore, each of the categories 
represents a true out-of-distribution (OOD) scenario. For example, 
category (a) represents cases where differently shaped tumors are 
implanted in anatomical locations far from the standard implantation 
site in the F98 database. In contrast, categories (b) and (c) represent 
cases where new variations of tumor shapes are located around the 
same implantation site. 
Once the MCS geometry for the synthetic cases is obtained, a fast 
MCS is performed for each case with fewer photons per unit volume of 
tumors. This also enables the investigation of the model's sensitivity 
with respect to the statistical noise in the MCS output. Thereafter, the 
same pre-processing steps, introduced previously, are applied, and a 
new synthetic case database is generated. The synthetic case database 
is then utilized in two scenarios: (a) as the test data for the network 
trained with original F98 cases to establish robustness against new 
cases, and (b) added to the training data to obtain the performance 
gain when the model observes such OOD cases. For scenario (a), where 
the synthetic cases are used as test data without further training, all 
nine models obtained from the 9-fold cross-validation are utilized, and 
the final prediction is considered as the result of the majority voting of 
all models.

2.5. Geometrical Evaluation
To quantify the model’s absolute performance, the BLT problem is 
considered analogous to the auto-contouring problem[24]. This is possible 
by converting the raw prediction output of the AI model for the location 
of the photon source to a binary mask using a pre-defined constant 
threshold. Hence, segmentation quality evaluation metrics, consisting of 
∆CoM, dice similarity coefficient (DSC), and a set of geometrical coverage 
scores are used to evaluate this aspect of the solution. 
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DSC is defined as the ratio of the overlapping region between the two 
contours, the ground-truth tumor and the predicted BLT source, and 
the overall volume covered by both contours:

DSC =
2TP

2TP + FN + FP

1

   
Where TP (True Positive) is the overlap region between the ground-
truth tumor contour and the predicted BLT source, FP (False Positive) 
is the part of the predicted BLT source which is not in the ground truth, 
and FN (False Negative) is the missing part of the ground truth in the 
BLT predictions. ∆CoM, on the other hand, quantitively measures the 
Euclidean distance between the centers of mass of the predicted BLT 
source and the ground-truth tumor contour.
The output of the RatLesNet is the binary 3D BLT source prediction 
and can be considered as the BLI-based gross tumor volume (bGTV). 
In this paper, a 3D uniform margin is added to the bGTV to construct 
the BLI-based planning target volume (bPTV). The size of the added 
margin is optimized using the MCS database. More details are provided 
in supplementary material, section S3. Furthermore, healthy brain tissue 
is computed by subtracting the CT-based gross tumor volume (cGTV) 
from the brain contour used in the MCS. 
Thereafter, geometrical coverage scores for corresponding tissues are 
computed as the percentage of tissue that falls within the bPTV with 
respect to the total volume of the tissue:

Ctissue =
volume (bPTV ∩ tissue )

volume ( tissue )
× 100

1

Therefore, the ideal results will be Ctumor=100% and Cbrain=0%, meaning 
that the predicted BLT-based planning volume includes all the tumor 
tissue while not targeting any normal brain tissue. However, in practice, 
this is not feasible with external radiation beams traversing the brain and 
often the added margin will impose normal tissue coverage intentionally 
to avoid tumor recurrence.

2.6. BLT-based irradiation planning evaluation
Another important aspect of the BLI-based tumor predictions is the 
evaluation of irradiation planning with photon beams. Therefore, a set 
of dose metrics are used to evaluate the BLI-based tumor irradiation, 
including dose-volume metrics (DVM) and dose-volume histograms 
(DVH) for each tissue. Here, in order to avoid uncertainties in margin 
selection in small animal radiotherapy, conformal radiation treatment 
delivery plans are made based on the cGTV or on the bGTV by two 
independent observers using the small animal radiotherapy treatment 
planning software (SmART-ATP version 2.0, SmART Scientific Solutions 
B.V., Maastricht, Netherlands). In other words, no additional margin, 
other than the imposed margin by choosing a circular collimator, chosen 
from a real set of available collimators with diameters of 1, 3, 5, 8, and 
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10 mm, is considered for the treatment plans. 
In routine pre-clinical practice, the objectives of the study determine 
the configuration of the beams in a case-dependent manner. Therefore, 
biologists have to select proper beam configurations per case. However, 
to normalize the beam configuration in this study, treatment plans are 
limited to two anterior/posterior parallel opposed beams with the isocenter 
located at the center of the target volume. This beam configuration is 
chosen based on the work of Mowday et al., 2020, proving it to have the 
highest healthy tissue spearing effect. In each case, as shown in Figure 
4.4, the isocenter and width of two parallel-opposed circular-collimated 
beams are selected based on the ground truth cGTV or on the result of 
the proposed method, i.e. bGTV. 
Photon dose calculations were done using the DOSXYZnrc Monte Carlo 
transport code (National Research Council Canada) within SmART-ATP 
with a constant statistical dose uncertainty of 5% to the target volume. 
The plans used 225 kVp X-rays (0.3mm Cu filter) and were made to 
deliver 20 Gy to the isocenter located at the center of the target volume 
in the brain. 
Once the treatment planning is completed, a set of DVM is computed for 
each case. These metrics include: (a) mean dose (Dmean), and (b) dose 
to 95% (D95) of the CT-delineated tumor and dose to 5% (D5) of the 
brain tissue. DVM for all the cases in the MCS database are presented 
in scatter plots, allowing quantitative comparison between the reference 
CT-based plan and the resulting BLI-based plan. In addition to DVM, for 
a handful of representative cases, the DVH is also presented.

Figure 4.4 – Treatment planning visualization using two anterior/posterior parallel opposed 
circular beams around specific isocenter: in (a-c) the isocenter is located in the center of the BLI-
based tumor prediction (bGTV) while (e-g) depicts the CT-based tumor (cGTV) and its associated 

planning. In both cases, doses are scored at the brain, cGTV and bGTV.
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2.7. Case Study: Real BLI Measurements
To underline the performance of the novel method, developed using MC 
simulations, on real BLI measurements, a set of 5 real BLI measurements 
from two animals are used. The 2D BLI readings are obtained using 
the small animal radiotherapy unit equipped with a highly sensitive 
optical camera (iXon Ultra 897, Andor Technology Ltd., Belfast, United 
Kingdom). Although the optical system is fitted with a filter wheel 
enabling multispectral readings, the measurements used in this study 
are obtained using the open-filter option capturing the full spectrum of 
bioluminescence emission. In addition to the tested cases, numerous 
BLI-CT pairs have been acquired previously. However, the aforementioned 
data is not included in this study since the animals were taken out of the 
cabinet in between the two scans and are prone to displacement errors.
Following the same implantation procedure explained previously[5], a 
total of 20,000 firefly luciferase-positive GBM tumor cells are slowly 
injected into the brain. At each time point within the study, the animals 
are injected with both contrast-enhanced agents for CT (60 mg/kg 
Omnipaque, GE Healthcare, Eindhoven, Netherlands) and D-luciferin 
for BLI (150 mg/kg, Perkin Elmer, Rotterdam, Netherlands), according 
to the same protocol. Thereafter, animals are placed under isoflurane 
anesthesia and consecutive CBCT and BLI scans of the skull are obtained 
without moving or relocating the animal. 2D BLI projections are acquired 
at five angles (0°, ±30°, and ±60°) with 60 seconds exposure time and 
an electrical gain of 5. Thereafter, the 2D projections are processed using 
the provided software (Pilot, version 1.18.5.2, Precision X-Ray, Inc.) to 
obtain the 3D bioluminescence skin fluence[25]. The output of the BLI is 
therefore saved as a 3D surface mesh where the BSF is expressed as 
an attribute for each node, which then is converted to a 3D volumetric 
image on the fixed grid, used for DL model training, by triangulation of 
the mesh. The resulting 3D BSF image is dilated by a 3x3x3 structure 
element to increase the thickness of the skin and further resemble the 
MC simulations. 
The 3D BSF image for each of the five real cases is fed into the DL 
algorithm and the output prediction is compared to the ground truth tumor 
mask provided by hand-delineating 3D CE-CBCT for the corresponding 
case. The real BSF images are considered out-of-database samples for 
all the folds. Hence, allowing all different models trained as part of the 
k-fold cross-validation method to be used, thus providing 9 different 
predictions per case. Furthermore, the final output for the real BSF 
image results from majority voting on all different predictions, enabling 
a more accurate result. 
The prediction accuracy is then evaluated using DSC and ΔCoM, as 
explained in section 2.4. Furthermore, the BLI-based planning quality 
is scored both using the DVM and DVH from SmART-ATP.
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3. Results
3.1. Prediction evaluation on Monte Carlo simulations
Figure 4.5 includes the two segmentation quality metrics, namely ΔCoM 
and DSC. As shown in Figure 4.5(a-b) and further visualized in Figure 
4.7, the network prediction provides a good agreement with the ground 
truth with a median ΔCoM and DSC of 0.61 mm and 61%, respectively. 
Furthermore, the DL algorithm, on average, predicted a contour with  
ΔCoM of 0.69 ± 0.47 mm and DSC of 59 ± 17 %. Therefore, the proposed 
DL framework can infer the light source, i.e. tumor segmentation, from 
the surface photon count with sub-millimeter accuracy.
Figure 4.6 (a-b) represents the effect of the added margin on the 
geometrical coverage scores. As can be seen, with only 0.8 mm of uniform 
margin, the median tumor coverage score increases to more than 97% 
while keeping the geometrical brain coverage below 5%. Therefore, 
0.8 mm of uniformly added margin is considered as the optimal margin 
and the resulting geometrical coverage scores are depicted in detail in 
Figure 4.6 (c-d). As can be seen, the proposed solution on the median 
can achieve 97.4% geometrical tumor coverage and 4.2% geometrical 
brain coverage, considering a 0.8 mm of uniformly added margin.
In this study, two of the samples within the database were extremely 
flat tumors seated near the edges of the brain along the ventral-dorsal 
axis, as depicted with blue squares in Figure 4.5 and visualized in Figure 
4.7(d,e). Such flat tumors were misclassified as deeper implanted tumors 
beneath the ground truth volume.
The resulting BLI-based treatment planning for representative MCS 
cases is presented in Figure 4.7. As shown, the provided BLI-based 
treatment planning is identical to the CT-based treatment planning in 
cases with high DSC (Figure 4.7a). For cases with a median DSC, two 

Figure 4.5 – Performance evaluation of the proposed method on Monte Carlo simulated data-
base: (a) the ∆CoM evaluation metric and (b) DSC between the ground truth CT-based tumor and 
predicted BLI-based contour. The red dashed line shows the median value and two blue squares 
in each figure represent the two samples with extremely flat tumors which have been confused 

by the network for a deeper, more spherical tumor, displayed in Figure 4.7
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different scenarios were observed: Figure 4.7b represents cases where 
the predicted bGTV is slightly bigger than the ground-truth cGTV and 
Figure 4.7c is a case with median dice where the prediction is slightly 
smaller than the cGTV. As can be seen in the DVH plot for these cases, 
both result in good BLI-based planning. Figure 4.7b resulted in full dose 
coverage for the tumor but a slight increase in the healthy tissue, which 
is still acceptable. Figure 4.7c, on the other hand, caused a reduced 
healthy tissue dose with the cost of slightly less tumor coverage.  Finally, 
for the cases with the lowest DSC, i.e. the two flat tumors, the parallel 
opposed anterior-posterior treatment planning provides an acceptable 
plan compared to the CT-based planning (Figure 4.7d,e) since the 
placement of the predicted bGTV is directly beneath the actual tumor 
in the axial plane. 
Figure 4.8 shows the resulting DVM for the tumor and brain tissues. Since 
there is a considerable variation in tumor sizes within the MCS database, 
different collimator sizes were needed to target the respective volumes in 
each planning, ranging from 3mm up to 10 mm circular beams. In most 

Figure 4.6 – Geometrical coverage evaluation of the proposed solution: (a-b) depicts the optimi-
zation of the geometrical uniform margin, and (c-d) visualizes the resulting geometrical tumor 
and brain coverage with 0.8 mm added margin. The red arrow in (a-b) presents the selected 

margin, and the crosses illustrate outliers. The red dashed line in (c-d) shows the median value 
and two blue squares in each figure represent the two samples with extremely flat tumors.
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Figure 4.7 – Visualization of the network prediction and the resulting dose planning in selected 
cases: (a) is the best DSC, (b,c) represent cases with average DSC, and (d,e) depict the worst cases
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cases (shown with circles in Figure 4.8), the circular collimator used for 
BLI-based and CT-based plans are of the same sizes, which underlines 
the similarity in the volume of cGTV and bGTV. Nevertheless, 25% of 
the database (shown with triangles in Figure 4.8) resulted in a larger 
BLI-based collimator than the CT-based collimator, because bGTV was 
larger than cGTV. There were 22.5% of the total cases for which the 
bGTV was smaller than the cGTV and resulted in a smaller collimator, 
shown in Figure 4.8 with squares.
DSC, on the other hand, has a less descriptive role in the treatment 
planning outcome with regard to the DVM for the tumor and brain. As 
can be seen in Figure 4.8, some cases with average to high DSC scores 
did not provide the prescribed mean dose to the tumor, either due to 
a smaller collimator or a larger ΔCoM error. On the contrary, a number 
of cases with low DSC provided the prescribed mean dose to the tumor 
but at the expense of a higher mean dose to the brain tissue.

3.2. Robustness Evaluation
The robustness of the proposed solution is measured against artificially 
generated samples with additional variations outside the training 
database. As shown in Figure 4.9, the proposed solution provides less 

Figure 4.8 – Scatter plot for the DVM of tumor (a,b) and brain (c,d) in the MCS database. The 
DSC is shown as color for individual cases according to the color bar on the right. The differences 

in collimator sizes are shown as different markers for each case: circles, triangles, and squares 
are representative of cases where BLI-based collimator is equal, larger, and smaller than the CT-
based collimator.  A magnified version of the figure can be found in supplementary materials S4.
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accurate predictions for out-of-distribution samples, i.e. samples with 
additional variations than those inside the training database. Categories 
(d) and (a), namely flat and randomly located tumors, constitute the 
worst performance with a median DSC of 24% and 30%, respectively. 
However, both categories also advantage from the highest performance 
gain upon training, with a median DSC of 37% and 42%. The Category 
(b) cases, new tumor shapes in the proximity of the original CoM, yield a 
median DSC of 46% before training and 53% after training. Furthermore, 
the performance of Category (c) remained almost constant, with a median 
DSC of 68% in both scenarios. Finally, the original MCS database, which 
was utilized in training without the new synthetic cases and provided 
a median DSC of 61%, demonstrated a reduction in performance upon 
the new training and provided a median DSC of 55%. 

3.3. Case study: real BLI measurement
The performance evaluation of the proposed method on five different 
real BLI measurements is summarized in Figure 4.10(a-b). As shown in 
this figure, the overall performance of the proposed method is slightly 
reduced when applying it to the real BLI measurements, with a median 
DSC of 42.4 ± 14.8 percent and ∆CoM of 1.6 ± 0.4 mm. Furthermore, 
the coverage metrics for the real BLI measurements are visualized in 
Figure 4.10(c-d), underlining the agreement between the predicted BLT 
source and the ground truth tumor mask, with a median geometrical 
tumor coverage of 95.1 ± 11.2 % and geometrical brain coverage of 
7.5 ± 2.0 %.
The visualizations of the predictions are shown in Figure 4.11 for the 
real BLI acquisitions underlining the agreement between the predictions 
and the ground-truth tumor mask. As can be seen, in three of the total 

Figure 4.9 – Robustness analysis of the proposed solution with respect to out-of-distribution 
samples: (a) performance without additional training (b) improvements after training with new 
data. Different markers are used for various categories within the database: Categories (a) and 

(b) are respectively augmented tumor shapes at random locations and near the original location. 
Category (c) is the predicted tumor and category (d) is new flat tumors. Colored dashed lines 

represent the corresponding median for each category.  
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five cases, BLI-based treatment planning provides identical results 
to CT-based planning. For the other two cases, however, the dose to 
the tumor is slightly decreased when using BLI images, which can be 
compensated by considering a margin around the BLI-based tumor 
prediction.
The DVM for the real BLI acquisitions are presented in Figure 4.12. 
As shown, the proposed DL-based framework provides good planning 
accuracy compared to ground-truth CT-based planning. Four of the five 
cases resulted in nearly perfect agreement with the CT-based plans and 
only one of the cases (shown in Figure 4.11a) predicted a bigger BLI-
based volume which necessitated use of a larger collimator.

4. Discussion
In this study, a novel deep learning approach is developed to enable 
BLI-based irradiation planning for the GBM orthotopic rat models. The 
proposed framework is a good candidate to facilitate BLI-based planning 
for other kinds of tumor models, both in rats and mice, providing small-
animal image-guided radiotherapy without excess X-ray imaging dose 

Figure 4.10 – Performance Evaluation on 5 real BLI measurements of Glioblastoma rat models 
using an X-RAD 225Cx irradiator: (a-b) segmentation quality metrics per sample and k-fold model 

and the aggregated prediction by majority voting shown as a red “+” marker (c-d) tumor and 
brain coverage of the aggregated predicted BLT source plus 0.7mm margin.
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Figure 4.11 – Visualization of the aggregate predicted BLT source using real BLI measurement 
without added margin: red contour is the ground-truth cGTV, hand-delineated from CE-CBCT, 

and yellow is the predicted bGTV from the BLI data. DVH plot is the resulting planning for each 
contour.
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on animals. This can be further studied and developed using the same 
framework, i.e. by developing a suitable MC-based training database 
and training a similar deep learning model. 
The results of this study show the feasibility of BLI-based precision 
radiotherapy. The proposed deep learning algorithm works well in a 
large variety of simulated cases, with tumors ranging from 10-270 mm3 
in size. Tumors smaller than 10 mm3 were excluded from this study 
since they are too small to be targeted accurately using the BLI signal. 
The performance of the proposed method can be quantified in two 
distinct tasks: (a) tumor position accuracy, and (b) tumor shape 
prediction accuracy. The proposed DL-based solution provided excellent 
submillimeter accuracy for the tumor position. Despite this, the proposed 
method cannot fully capture the detailed shape characteristics of a 
tumor and often provides a smoothed-out prediction compared to the 
ground-truth tumor mask. In addition, the overly smoothed prediction 
is not necessarily a drawback of the proposed method since it is often 
needed to add a margin to the ground-truth contours. The effect of 
the added margin and the trade-off between the coverage and the 
excess treatment is presented in  Figure 4.6(a-b). As shown, a margin 
of 0.8 mm provides the best trade-off between good tumor coverage 
and limited healthy tissue exposure in the MCS database. Finally, most 

Figure 4.12 – DVM for real BLI acquisitions: (a,b) DVM for tumor, and (c,d) DVM for the brain. 
DSC is color-coded and differences in collimator size are shown as different markers: circles or 

triangles are cases where the BLI-based collimator was the same size or larger than the CT-based 
collimator.
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commercially available precision radiotherapy systems for small animals 
cannot irradiate such small detailed shape variations conformally. 
The proposed solution, with median DSC and ∆CoM of 61% and 0.61 
mm, exceeds our previous publication[12], which used an AI solution to 
predict the tumor’s CoM. Specifically, the CoM method provided median 
DSC and ∆CoM of 56% and 1.01 mm on the same database (excluding 
tumors below 10 mm3). The proposed solution is also superior to the 
mathematical solution in a similar GBM mouse model[26]. Xu et al. reported 
an average DSC and ∆CoM of 55% and 0.62 mm, which is slightly 
lower than the performance of the proposed solution. Nonetheless, 
Xu reported the results using real GBM mouse experiments, while the 
proposed solution in this study is evaluated using the MCS database 
of rat experiments, which makes a direct comparison between the two 
methods challenging. 
The DVMs for the MCS database, shown in Figure 4.8, reveal that 
the proposed DL-based solution can provide acceptable tumor dose 
coverage for most cases while delivering a limited dose to the organ 
at risk. However, in this study, no margin scheme is considered for 
planning. Therefore, both the cGTV and bGTV are considered without 
added margin and only the imposed margins by the circular collimator 
of fixed sizes are considered. Nevertheless, the effect of margins is 
investigated in the geometrical coverage evaluation, and it is likely to 
assume that adding a treatment margin would control the spread in the 
tumor dose coverage with the cost of an additional brain dose. In other 
words, the spread of points in Figure 4.8(a,b) below the identity line 
can be avoided by including a proper margin. It is shown that a margin 
of 0.8 mm can increase the median geometrical tumor coverage to 
97%. Furthermore, the results suggest that using BLI-based collimators 
smaller than 8 mm will increase the probability of delivering less dose 
to the tumor. Additionally, it is important to note that the tested beam 
configuration might influence the dose coverage greatly. Although the 
parallel opposed beam configuration is selected based on a previous 
study without any correlation to the proposed BLI-based solution, the 
beam configuration seems to compensate for the BLI-based targeting 
error. This is especially apparent for the real measurement cases where 
the displacement error in the anterior-posterior direction is mitigated 
by the proposed beam configuration. 
It is worth mentioning that in some of the cases, both in the MCS database 
and real BLI acquisitions, the predicted bGTV slightly overlaps with the 
skull, as can be seen in Figure 4.11(b). Such overlap will cause a long 
flat tail in the DVH due to the high dose in the bone when irradiating 
with 225 kV x-rays (when calculating dose-to-medium-in-medium in 
Monte Carlo dose calculations). This can be easily removed in the post-
processing steps by automatically removing the skull from the bGTV 
and only considering overlapping regions with the brain. 
The robustness analysis provided valuable insights about the proposed 
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AI-based solution. The trained model using the initial samples performs 
mediocre for out-of-distribution cases, especially flat tumors and tumors 
located at random locations inside the brain. It is speculated that poor 
performance for randomly located tumors is most likely related to the 
wrong location of the implantation drill hole with respect to the location 
of the synthetic tumor. In other words, the trained network has observed 
an indirect effect of the punctured skull since most MCS observations 
included such an effect as a hotspot in the BSF directly above the drill 
hole. Therefore, some of the synthetic cases provided unrealistic and 
unfamiliar samples for which the tumors were not located directly below 
the punctured location in the skull. In addition, another important 
observation from the robustness analysis is the reduced performance 
on the original cases once the network is trained with the additional 
synthetic cases, which again can be the result of unrealistic cases. 
The performance of the proposed solution decreased slightly for a small 
set of real BLI measurements compared to the MC simulated data. This is 
believed to be a direct outcome of the limitations of artificial intelligence 
methods, such as the proposed algorithm, and their dependence on 
the quality of the training data. Therefore, the trained model on the 
MC simulations struggles with the increased level of variations in the 
real measurements. The provided normalization and preprocessing 
steps restricted the adverse effect of the measurement noise on the 
predictions. In spite of this, a larger set of real BLI measurements is 
required to enhance the model’s robustness and reduce uncertainties, 
especially for unseen samples.  
The fully convolutional ResNet architecture enables more efficient use 
of limited hardware resources, especially the GPU, compared to the 
fully-connected multi-layer perceptron counterparts. Furthermore, the 
computational efficiency of the developed method is far superior to 
analytical models in the inference phase, making the proposed method 
a viable option for real-time BLI-based treatment planning for small 
animals. The proposed DL model, on the median, takes 532 ± 6 ms to 
predict the 3D tumor contour on an NVIDIA RTX A6000 GPU. This is of 
great importance for the small animal precision radiotherapy workflow 
since animals are required to remain under anesthesia during the whole 
imaging, planning, and treatment workflow, which makes rapid BLI 
reconstruction necessary. 
The main drawback and challenge of the proposed deep learning approach 
is the availability and quality of the training database. Despite our 
best efforts to address this problem with a high-quality MC-simulated 
database, the provided training database is considered small in the field 
of AI and can increase the probability of overfitting. This is frequently 
an issue for pre-clinical AI imaging applications. Although the proposed 
solution is optimized to decrease the effect of such a small-sized training 
database on the predictions, the epistemic uncertainty remains high, 
which specifies the performance of any machine-learning model in regard 
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to out-of-database samples. 
The proposed solution does not fully exploit the current capabilities of 
the BLI and only relies on a time and spectral-integrated acquisition. 
However, we believe that adding spectral information (using the available 
light filters) in the form of either adding more input channels or an 
ensemble of AI models per spectrum can yield better performance. In 
addition to multispectral-enabled AI, physics-informed deep learning 
models are another potential candidate for improving the outcomes of 
this study. These models can couple the flexibility of the AI solutions 
with the explainability of physics models and provide a synergy between 
the two.  

Conclusion
In this paper, a novel real-time DL solution is presented to accelerate 
the BLI-based treatment planning problem. The proposed method can 
achieve good quality planning for the majority of the cases presented 
here, and therefore demonstrates the proof of concept of using AI-based 
BLI volumetric reconstruction. However, this study is just a starting 
point for the use of fully convolutional deep learning approaches in 
this field, and like many other deep learning solutions, the quality of 
the proposed solution can be improved with more data generated from 
similar studies, and from using other information derived from the BLI 
images such as multi-spectral BLI. 
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Supplementary Figure 1 – The shape variations within the F98 database: sphericity is a metric of 
shape similarity to a perfect sphere. The sphericity of 1 is equal to a perfect sphere.

Supplementary Material
F98 Database
The database used in this study is obtained from the study by Mowday 
et al., 2020. This database includes Cone-beam CT scans (CBCT) of 34 
animals at different time points, resulting in 57 hand-delineated CBCT 
images. In this study, an exclusion criterion based on the tumor volume 
is introduced, and therefore, the size of the database is further reduced 
to 42 cases. The samples within the F98 database include a variety of 
tumor shapes and sizes. To quantify the variations within the database, 
the sphericity metric is used, which quantifies the shape similarities to 
a perfect sphere as follows:

S =
3
√
36πV 2

A

1

Where A is the surface area and V is tumor volume. Based on this 
definition for a perfect sphere, S will be equal to one.
F1 presents the shape-size variations within the F98 database. As can 
be seen in this figure, the F98 database includes a variety of tumor 
sizes (volume between 10-267 mm3) and shapes (sphericity between 
0.95 and 0.61).
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Camera Model
In this study, first, an approximation of the skin mask is created by 
applying the morphological operators on the air voxels in the CT scan, 
which can be obtained using a constant threshold. However, since 
the air voxels are used, the approximated skin mask at this stage will 
include the inner parts of the ears and the nasal cavity, as it is shown in 
Supplementary Figure 2. In an extension to our previous study (Rezaeifar 
et al., 2022), it was realized that such areas could play an important 
role in the deep learning decision as they are often in the proximity of 
the tumor and, especially for larger tumors, can result in high photon 
counts in the Monte Carlo simulations (MCS). Therefore, the deep learning 
model pays extra attention to these areas. Although in the MCS, these 
regions are accurately modeled and have acceptable photon counts, in 
reality, it is not feasible to receive any photon counts from these regions, 
mostly due to camera occlusion. Therefore an additional step is required 
to remove the redundant information from the skin mask.
In an ideal case, a ray-tracing algorithm is needed to model the camera 
occlusion accurately. However, due to the computational costs of such 
algorithms, a simplified version is employed here. Therefore, instead 

Supplementary Figure 2 – Overview of the imaging system (Xrad 225Cx, Precision X-ray, USA.) 
shown in (a), the approximated skin mask in (b), and the final modified skin mask with limited 
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Supplementary Figure 3 – visualization of ray-tracing simplification used in this study shown in a 
representative 2D slice.

of modeling the camera and its field of view using a ray-tracing model, 
camera rotation is approximated by the imaging object’s rotation. 
A second assumption is introduced by considering light beams from 
the camera to the object to be parallel. Although such simplifications 
can be considered corruptive in many applications since the main 
aim here is to remove the redundant parts of the skin mask and the 
distance between the camera and the imaged object is much higher 
than geometrical variations in the object, it can be considered as an 
acceptable simplification. Therefore, in the simplified algorithm, parallel 
rays are considered for each camera viewing angle and only the voxels 
closest to the camera are included to be located on the visible part of 
the skin. This is equal to finding the first non-zero value in the rotated 
version of the approximated skin mask along columns in the 3D volume, 
as shown in Supplementary Figure 3.
In this study, a set of five camera viewing angles are considered according 
to the real measurements, including 0, ±30, and ±60 degrees. The 
resulting binary mask from each viewing angle is rotated back to the 
original angle and summed up with the remaining angles. In the resulting 
volume, every voxel with a value larger than one is visible in at least 
one camera viewing angle and, therefore, is considered in the skin’s 
binary mask. Finally, a set of morphological operators are applied to the 
skin mask to remove small islands and also remove any gap between 
the adjacent voxels.

Synthetic Cases
In order to increase the size of the training database, a set of MCS is 
performed on artificially-build cases, hereafter called Synthetic cases. The 
aim of the Synthetic case database is: (a) to evaluate the robustness of 
the model for cases outside the training database and (b) to investigate 
the performance gain once these synthetic samples are added to the 
training database. 

Angle = 0∘Angle = -30∘ Angle = 30∘
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The original F98 database, obtained from real glioblastoma orthotopic 
rat models, is utilized to create a set of Synthetic cases in four distinct 
categories. In all four categories of the Synthetic cases, the simulation 
geometry, i.e. animal anatomy with no tumor, is selected randomly from 
the F98 database. For the tumor, on the other hand, the four categories 
are different, including: (a) randomly selected tumors located near the 
center of mass (CoM) of the original tumor for the specified simulation 
geometry, (b) randomly selected tumors located at a random location 
within the brain, (c) deterministically selected tumor equal to the deep 
learning prediction for the specified tumor, and (d) one of the two flat 
tumors within the F98 database either located at the CoM of the original 
tumor or manually located at the surface of the brain. Furthermore, the 
randomly selected tumors, in categories (a) and (b), are restricted to 
tumors larger than 10 mm3 and also transformed by a random affine 
transformation to generate more tumor shape variations. The random 
affine transformation at this stage is specified by its random 360-degree 
rotation along all axes, a limited random 10-degree shear to avoid very 
flatten out shapes, and a random scaling factor.
The resulting augmented tumor shape is then placed at an arbitrary 
location inside the brain. For category (a) cases, a grid of coordinates 
inside the brain is obtained. At each iteration, one coordinate is selected 
randomly and checked whether the entire tumor shape falls inside the 
brain if its center of mass is placed on the selected coordinate.

Deep Learning Hyper-parameter Optimization
In order to optimize the hyper-parameters (HP) of the RatLesNet model 
(Valverde et al., 2020) used in this study, an automatic HP optimization 
tool, namely Optuna (Akiba et al., 2019), has been employed. Optuna 
requires a pre-defined set of HP and a search space for each to function. 
Once the setup is clear, Optuna will create a pre-defined number of trials 
on the search space and, with the help of an arbitrary cost function, 
finds the best set of HP for the model. 
In this study, the following HP is selected to be optimized using Optuna: 
(a) the number of filters in the convolutional layers, (b) the loss function 
and its parameters, and (c) the optimization algorithm and its parameters. 
The selection of the optimizable HP is based on the importance of each 
parameter in the literature and our previous experience. For example, 
it is well proven that the learning rate (lr) is the most important HP for 
deep learning algorithms (Smith, 2017) while the size of convolutional 
kernels in the model architecture might be less important. Supplementary 
Table 1 presents an overview of the optimized HP and their corresponding 
ranges.
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HP Input 
Type Range Sub-

parameters Range

Number Filters integer [12 40] - -

Loss Function categorical

MSE - -
Dice - -

Focal
α [0.2 0.8]
ɣ [0.2 0.8]

Optimizer categorical

Adam
lr [10-4 10-2]

wd [10-10 10-3]

SGD
lr [10-5 10-1]

wd [10-10 10-3]
RMSProp - -

Number of filters determines the number of learnable features inside 
the deep learning model.  In the RatLesNet architecture, the specified 
number of filters is reached in the first convolutional layer and kept 
constant throughout the network. Therefore, increasing the number of 
filters within the convolutional layers will drastically increase the GPU 
memory needed. For this reason, the maximum number of filters is 
selected based on the available GPU memory. 
Another important HP is the loss function and, in this study, three distinct 
loss functions are considered: Mean Squared Error (MSE), Dice, and 
Focal Tversky loss (Abraham and Khan, 2018). MSE simply calculates 
the error between the prediction and the ground truth (GT) and tries 
to minimize it. Dice loss, on the other hand, tries to maximize the 
overlap region between the two contours. Finally, Focal Tversky loss is 
a generalized version of dice loss that considers different weight factors 
for false positives and false negatives. The mathematical formulations 
of these loss functions are as follows:

MSE
(
V 1, V 2

)
=

1

n

∑
i,j,k

(
V 1
i,j,k − V 2

i,j,k

)2

1

Dice
(
V 1, V 2

)
= 1− 2TP

2TP + FN + FP

1

Focal
(
V 1, V 2

)
=

(
1− TP

TP + αFN + βFP

)γ

1

Supplementary Table 1 – Selection of optimized hyperparameters and their range
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Where true positive (TP) is the agreement region between the GT and 
predicted contour, false negative (FN) marks the voxels that are in 
the GT but not included in the prediction and vice versa for the false 
positive (FP). 
Finally, the optimizers used in the HP optimizations are one of the 
Adam, Stochastic Gradient Descent (SGD), and Root Mean Squared 
propagation (RMSprop) (Reddi et al., 2019) implemented in the Pytorch 
deep learning package (Paszke et al., 2019). In this study, the default 
optional parameters for each of the optimizers are considered and only 
the learning rate (lr) and the weight decay (wd) are considered as HP. 

Dose Volume Metrics
In this section, a more detailed version of the dose-volume metric plots is 
presented, including the magnified version of the plots in the main text.

Supplementary Figure 4 – magnified scatter plot for mean dose delivered to the tumor (Dmean)
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Supplementary Figure 5 – Bland-Altman acceptance plot for the mean dose to the tumor 
(Dmean)
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Supplementary Figure 6 – magnified scatter plot for the dose to 95% of tumor (D95)
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Supplementary Figure 7 – Bland-Altman acceptance plot for the dose to 95% of tumor (D95)
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Supplementary Figure 8 – magnified scatter  plot for the dose to 5% of brain (D5)
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Supplementary Figure 9 – Bland-Altman acceptance plot for the dose to 5% brain (D5)
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1. Introduction
Bioluminescence Imaging (BLI) constitutes an optical imaging modality 
geared toward pre-clinical cancer research on small animal tumor models. 
This imaging modality enables tumor growth monitoring in-vivo without 
additional X-ray radiation burden on the animals during imaging[1]. 
However, BLI’s application in routine pre-clinical cancer research remains 
quite limited to this date, with most centers using 2D BLI information to 
monitor tumor growth and little to no 3D reconstruction capabilities[2]. 
Therefore, this thesis aims to improve the BLI application in routine 
pre-clinical cancer research by enhancing the accuracy of the difficult 
Bioluminescence Tomography (BLT) reconstruction problem. 
This thesis focuses on the glioblastoma multiforme (GBM) tumor rat 
models as the primary animal model of interest. GBM is considered the 
most aggressive primary brain tumor, with the highest incidence among 
such tumors. Currently, the standard treatment for GBM includes a 
combination of radiotherapy and chemotherapy with temozolomide. In 
spite of this, GBM often relapses and has a poor prognosis. Therefore, 
fundamental pre-clinical research is essential to improve the efficacy of 
the standard treatment for GBM. 
In this chapter, we discuss different aspects of the problem at hand and 
address future perspectives. This chapter is divided into four different 
parts. The first part addresses the current BLI applications in state-of-
the-art pre-clinical cancer research studies and its limitations. Thereafter, 
the next section takes this discussion further by introducing the added 
benefits of the proposed AI-based solutions and their limitations. The 
third part aims to clarify the role of optical phantoms in enhancing BLI 
applications through standardization and quality assurance. Finally, 
future perspectives are discussed in the fourth part.

Part 1: The state-of-the-art 2D BLI 
The majority of BLI applications in pre-clinical cancer research studies 
are limited to tumor growth monitoring using 2D BLI projections. As 
shown in Chapter 2 of this thesis, the research studies in this field 
mostly use 2D BLI to monitor tumor growth over time and track tumor 
response to certain treatments[3]–[5]. In other words, a linear regression 
model is developed by linking the total number of photons reaching the 
camera at a certain projection angle to the tumor volume derived from 
the hand-delineated CT scan, as shown in Figure 2.1. A similar trend 
has been observed in the Monte Carlo Simulations (MCS) and utilized 
in Chapter 3 to estimate the volume of the sphere encapsulating the 
tumor. A direct comparison between the BLI-based growth monitoring 
fit from GBM rat models provided in Chapter 2, MCS of GBM rat models 
in Chapter 3, and GBM mouse models provided by Yahyanejad et al.[4] 
shows that the quality of the linear fit is very similar in all cases, with 
a Pearson coefficient of approximately 0.8. 
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Even though such a high Pearson coefficient signals a strong correlation 
between the BLI signal and the CT-based tumor volume and allows 
for tumor growth monitoring, it fails to capture the correct volume for 
some cases, such as flat tumors seated close to the skull. It is safe to 
assume that the multispectral measurements can help alleviate this 
issue since each spectral bandwidth includes a different portion of the 
absorption coefficient and, in theory, can help distinguish smaller flat 
tumors close to the skull from larger deep-seated tumors. To clarify this 
further, assume the two different cases where a flat tumor and a larger 
tumor result in approximately the same number of photons reaching 
the skin. Consequently, these two tumors are considered to have similar 
volumes based on the linear fit. However, the multispectral information 
hold important details that differentiate the two cases since photons 
emitted from the larger tumor have to transport in a larger portion of 
the biological tissue. Therefore such a tumor gains more photon intensity 
by the reduced absorption coefficient in a different spectral bandwidth, 
such as a near-infrared spectrum. 

Figure 8.1 – BLI-based tumor volume estimation on Monte Carlo simulation database. (a-c) rep-
resent individual BLI-based volume fits for various spectral bandwidths, (d) is the comparison of 

volume prediction accuracy based on proposed AI solutions in this thesis
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As shown in Figure 8.1, the multispectral measurements can result in a 
slightly different fit which might reduce the volume estimation errors. 
For example, the second filter used, centered around 655 nm, provides 
a better volume estimation than both open-filter, i.e. considering the 
entire photons in the visible range, and the first filter, centered around 
550 nm. This might be due to less photon absorption and scattering 
in the higher wavelengths closer to the near-infrared spectrum, which 
results in a cleaner BSF signal. 

Part 2: The AI-based solutions
This thesis represents one of the first endeavors in utilizing AI-driven 
approaches for the BLT reconstruction problem. Mathematical approaches, 
rooted in physics, demand accurate modeling and struggle with the 
complexity of biological environments. Despite potential interpretability, 
they may require substantial computational resources. In contrast, 
AI-based solutions, particularly deep learning models, exhibit greater 
adaptability to diverse conditions, rendering them more robust in 
uncertain scenarios. Their efficiency in real-time applications, facilitated 
by rapid reconstructions and reduced reliance on explicit models, stands 
out as a notable advantage.  
In this thesis, chapters 3 to 6 discuss various AI-based solutions to the 
BLT reconstruction problem. The first solution revolves around predicting 
the central location of the tumor accurately and building a spherical 
target volume that envelops it, hence called the Center of Mass (CoM) 
model. Although the CoM model provides a satisfactory solution that 
enables BLI-based tumor targeting due to static and, often, circular beam 
collimation available in small animal irradiators, it does not include any 
shape information. Consequently, an elongated tumor shape will not 
receive an accurate radiation dose since it won’t match the simplified 
spherical target volume unless unnecessarily large margins are employed. 
Therefore, Chapter 4 introduces a new deep learning approach that 
can predict the tumor's shape alongside its location, namely the BSF-
only model. Chapter 5 not only discusses different aspects of the 3D 
BLT model but also introduces a novel approach to enhance the BLT 
reconstruction problem by utilizing the multispectral information from 
different wavelength bandwidths. Finally, a CT-BLT model is introduced in 
Chapter 6 with the best performance with respect to the dice similarity 
coefficient (DSC), mainly due to employing voxel information from the 
Contrast-Enhanced Cone-Beam CT (CE-CBCT). Chapter 6 also includes 
a baseline CT-only model that does not utilize the complementary BLI 
information and contours the tumor purely based on the CT information.
Figure 8.2 presents a direct performance comparison between all of the 
AI-based solutions presented in this thesis. As depicted, the performance 
of the AI-based solutions increases with the complexity of the proposed 
AI model and the amount of complementary information presented to it. 
The CoM model utilizes a 3D convolutional neural network, which consists 
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of a simpler architecture compared to the other models and, therefore, 
ranks last in this performance comparison. The CT-BSF model, on the 
other hand, uses not only a more advanced deep learning architecture 
but also complementary CT information, thus achieves the best accuracy. 
However, the application of each model is highly dependent on the 
availability of data and resources.
Five representative cases are illustrated in Figure 8.3, providing a visual 
comparison between the five models. The first two animals correspond 
with cases with average performance across the entire database and 
different models. Consequently, the provided solutions, on average, can 
provide accurate tumor targeting. The remaining cases in this figure 
showcase samples where at least one model struggles with tumor 
delineation. The CoM model fails to accurately determine tumor location in 
rat number three. Both CT-based models, CT-BSF and CT-only networks, 
struggle with the fourth rat, while the purely BLI-based solutions can 
provide more accurate contouring for the tumor. Conversely, the BLI-
based solutions fail to distinguish the flat tumors close to the skull, while 
the CT-only model perfectly delineates such tumors.
Five representative cases are illustrated in Figure 8.3, providing a visual 

Figure 8.2 – Performance Evaluation comparison between the proposed AI-based solutions in this 
thesis
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comparison between the five models. The first two animals correspond 
with cases with average performance across the entire database and 
different models. Consequently, the provided solutions, on average, can 
provide accurate tumor targeting. The remaining cases in this figure 
showcase samples where at least one model struggles with tumor 
delineation. The CoM model fails to accurately determine tumor location in 
rat number three. Both CT-based models, CT-BSF and CT-only networks, 
struggle with the fourth rat, while the purely BLI-based solutions can 
provide more accurate contouring for the tumor. Conversely, the BLI-
based solutions fail to distinguish the flat tumors close to the skull, while 
the CT-only model perfectly delineates such tumors.
The comparison between the four models for the small tumors, i.e. 
tumors smaller than 10 mm3, is presented in Figure 8.4. All the models 

Figure 8.3 – Visualization of the tumor prediction using all the proposed AI-based solutions. Rats 
(1,2) represent two cases with median DSC across all the models. Rat 3-5 depict cases with failed 

CoM-based, CT-based, and BSF-based tumor targeting.  
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except the CoM model are trained using tumors larger than 10 mm3; 
therefore, such small tumors can test the robustness of each model. 
The three tumors were selected from 17 small tumors to have three 
classes: extremely tiny tumors (rat 1), median-sized small tumors (rat 
2), and tumors slightly smaller than the exclusion criteria (rat 3). All 
the models encompass the CT-based tumor contour in their respective 
predicted volumes, which is important for BLI-based radiation targeting 
and treatment planning applications. However, in all the cases with such 
small tumors presented here, the AI-based solutions resulted in over-
predicting the tumor contours, which is an expected behavior since the 
models are trained using larger volumes. 
The multispectral model, presented in Chapter 5, provided a better 
prediction accuracy for the small-sized tumor experiment. This might 
be due to the increased uncertainty in CT-based tumor delineation for 
such small tumors, which results in a higher interobserver variability 
and challenges for the CT-BSF model. 
Another important aspect of the AI-driven solution is prediction 

Figure 8.4 – Predicted tumor contour from different models for three different tumors smaller 
than 10 mm3. The red contour is the ground-truth CT-based tumor, and the remaining colors are 

the prediction from each proposed AI solution
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verification, allowing to know when the AI model is not certain about 
the corresponding predicted tumor volume. The presented models in this 
thesis can be tuned to provide prediction verification abilities in different 
ways. The first approach, presented in Figure 8.5, is to include a physics 
model of light propagation, such as MCS or a mathematical model, as 
a control loop to not only verify the predicted tumor volume but also 
optimize it to provide the least error between measured and simulated 
BSF.  Another approach is to include an uncertainty quantification metric, 
such as test-time dropout, in the AI model providing the prediction 
uncertainty for each case during the inference stage. Therefore, this 
metric can be presented to the user as a quality assurance tool in order 
to avoid cases with high levels of uncertainty in AI-based predictions.  
Finally, an ensemble of the different AI models presented in this thesis 
can also be utilized to alleviate the prediction verification problem. In 
theory, if various models result in hugely different tumor predictions, one 
can only conclude that one or more of the predictions are inaccurate. 
Therefore, a simple DSC metric between the predicted tumors from all 
the models can be used to distinguish errors in the predictions. 

Part 3: Optical Phantoms
Most BLI systems capture the light photons reaching the detector in a 
qualitative manner. Consequently, the absolute number of photons cannot 
be derived accurately from these measurements. The system calibration 
provides the missing link between the qualitative and quantitative BLI. 
Optical phantoms are an essential tool not only for the BLI system 
calibration but also for sparing as many animal subjects as possible. 

Figure 8.5 – Online verification and optimization algorithm for the BLI-based tumor targeting
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However, currently, there are only a few commercially available optical 
phantoms in the market, as discussed in the previous chapter. Most 
of these phantoms consist of accurately measured optical properties 
in a very simplified (cylindrical or cubical) geometry without any light 
source. Therefore, there is a need for reproducible and accurate optical 
phantoms that mimic the complex geometry of the imaging subjects 
and the light emission from a bioluminescence source. 
An ideal bioluminescence phantom (BLP) not only presents optical 
properties similar to the biological tissue but also mimics the luciferase-
enabled emission from the tumor. Therefore, in this thesis, various 
methods to manufacture such a BLP are investigated. The first approach 
involved adding scattering micro-spheres inside a fully transparent silicone 
and obtaining various mixtures with accurately estimated scattering 
properties. This method provides an ideal solution for the researchers 
without access to an integrating sphere measurement setup to measure 
the optical properties. However, due to the high viscosity of the silicone 
used in this study and the reduced surface-to-air contact inside the 
mold, the air bubbles created a real challenge. Consequently, despite 
utilizing a vacuum chamber to apply negative pressure on the bubbles, 
the majority of the bubbles remained in the phantom, especially in the 
contact surface between the two separately molded parts. In future 
studies, the air bubble challenge should be addressed using a combination 
of a much more powerful vacuum chamber and a modified version of 
the mold with increased surface-to-air contact. The second challenge 
regarding the silicone-based phantom was due to the long curing time 
of the silicone, ranging between 24 to 48 hours at room temperature. 
Such a long curing time, although a positive feature for releasing air 
bubbles, acts negatively for the added scattering particles, especially 
the heavier TiO2 particles. Consequently, such heavy particles settle at 
the bottom of the mold over time and create a heterogeneous medium 
with respect to the optical properties. Alternatively, placing the mixture 
inside the oven at an increased temperature alleviates this issue but 
causes further problems with more air bubbles trapped in the surface 
of the phantom.  
The 3D-printed phantoms are a better candidate for optical phantoms 
that can address all the aforementioned challenges in silicone-based 
phantoms. However, at the time of this study, the quality of the print and 
the obtained optical properties greatly depend on the printer setup and 
parameters such as exposure time and type of resin used. The printer 
used in this study was capable of printing only a mixture of resin and 
ink, while printing the mixture of resin and microspheres did not yield 
satisfactory results partly due to the lower viscosity of the resin compared 
to the silicone, which allowed the particles to settle down at the bottom 
of the resin tank. Furthermore, upon further investigation, especially 
after printing with fully transparent resin without any additives, it has 
been clear that the surface of the printed object is not as smooth as 
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desired. This will consequently create further uncertainties and errors in 
optical property measurements as it will cause random photon deflection 
by the surface.

Part 4: Future Perspectives
This thesis provides a collection of AI-based solutions for the 3D BLT 
reconstruction problem to enhance the accuracy of BLI-based tumor 
targeting and treatment planning in pre-clinical cancer research. To 
our knowledge, this thesis and publications constitute one of the first 
AI-based solutions in this field. Consequent to the AI success in other 
fields, more and more AI-based solutions are finding their way into BLT 
reconstruction problem. Running at the same time as our study, Gao 
et al. provided the first AI-based solution, published as a letter, based 
on a simple multi-layered perceptron (MLP) network using a standard 
BSF mesh[6], which is obtained by registering any arbitrary mesh to the 
standard mesh. Yue et al take this idea further by replacing the MLP 
network with a slightly more advanced one-dimension convolutional 
neural network (CNN), which can provide a more efficient learning[7].  
Zheng et al. improved the idea even further by including a self-training 
strategy on an analytical model of light propagation, still using a mesh-
based neural network trained on the standard mesh[8]. The proposed 
method by Zheng still requires registration between the arbitrary mesh 
of the experimental sample to the standard mesh used for the training. 
However, it constitutes a leap forward compared to the existing AI-based 
solutions by introducing the first truly physics-informed AI model for this 
subject. In other words, this solution is the first model that employs the 
physics models of light propagation inside the internal cost function of 
the AI, competing with the observation-driven cost function. 
The solutions in this thesis advance from one-dimensional or MLP 
networks to a much more efficient 3D CNN-based deep learning approach, 
which allows for keeping the spatial relationship between voxels in the 
image. Therefore, all the proposed methods in this thesis perform the 
reconstruction task without requiring an additional image registration 
step to register the input BSF to standard input. However, the 3D CNN 
networks come at the cost of more trainable parameters, which can 
cause overfitting issues. Consequently, several measures, such as 
employing a validation set, automatically optimized hyper-parameters 
and on-fly data augmentation, are included in the network architecture 
to avoid such issues. This helped the proposed solution to perform well 
on the test data and achieve good reconstruction performance, therefore 
enabling BLI-based tumor targeting. However, the physics-informed AI 
has the potential to increase the performance of the proposed solutions 
even further. In other words, employing physics knowledge inside the 
internal cost function of the deep learning solutions might help the model 
to learn the solution to the reconstruction problem better and faster 
using a smaller data size with more generalization ability. Therefore, 
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such methods can address one of the main drawbacks of the proposed 
solutions in this thesis: the performance dependency on a high-quality 
training database. In other words, the physics-informed deep learning 
solution can be considered a hybrid model/data-based solution that 
can lean toward either aspect when the other is limited, i.e. the model 
mostly uses physics laws when data availability is limited and vice versa. 
Another candidate to improve the accuracy of the BLI-based treatment 
planning for a wide variety of tumor models is dual-energy BLI. With the 
development of more advanced luciferase-emitting cell lines that can 
emit light with two spectral peaks[9], an extension of the multispectral 
model proposed in Chapter 5 that is analogous to the idea of dual-energy 
X-ray CT scans can be achieved. Consequently, such light-emitting 
cell lines can exploit the differences in tissues’ optical properties, i.e. 
scattering and absorption coefficient, in a wider spectral range that can 
help identify the tumor location. 
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Summary
According to the World Health Organization (WHO), nearly one in every 
six deaths worldwide is due to cancer, making it the number one death 
cause worldwide. Treating cancer is different for each person, and it 
depends on the type of cancer and how advanced it is. But for almost 
half of all cancer patients, a treatment called radiation therapy or 
radiotherapy is used at least once. This treatment option uses strong 
ionizing radiation to target tumor cells. Ionizing radiation will damage 
the targeted body tissue, and with strong enough radiation, i.e. high 
radiation dose, it can even kill the cells inside the tissue. Therefore, the 
main goal of every radiation therapy is to target and destroy the tumor 
cells with high-dose ionizing radiation with minimum effect on the rest 
of the healthy cells and tissue.
In recent years, technological advances have enabled clinicians to use 
various techniques to target tumors with radiation more effectively and 
make radiotherapy an efficient treatment for most tumor types. However, 
some tumors are more resistant to ionizing radiation or reappear after a 
short period. Glioblastoma, the most common and aggressive brain tumor, 
is one of such tumors that do respond well to the standard treatment, 
which includes a combination of radiation therapy and chemotherapy. 
Biologists have identified theoretically various reasons for this, but 
these hypotheses must be tested completely before translating into 
a clinical treatment option. Therefore, there is a need for a testing 
environment, namely preclinical research, that allows for fundamental 
research investigation and identifying new treatment options to ensure 
the safety of patients. 
Preclinical cancer research tries to improve the quality of the standard 
treatment options, with otherwise low survival rates, such as glioblastoma, 
by investigating novel ideas and hypotheses. In this field of research, new 
ideas are first tested in the lab environments on tumor cells growing in 
plates, and the treatment efficacy is monitored under the microscope. 
The next step is to ensure that the tumor cells behave similarly in the 
vicinity of other body tissues to ensure the same result in the human 
case. Therefore, the tumor cells are implanted inside small animals such 
as mice and rats and investigated even further. Since the clinical imaging 
and radiation therapy systems are too big for such small objects, a new 
field of research emerged, which resulted in commercially available 
imaging and radiotherapy systems dedicated to small animals. 
Small animal radiotherapy is a field of research that is very analogous 
to the routine clinical workflow. In other words, the animals are first 
imaged using a computed tomography (CT) system to identify the 
location of the tumor and then irradiated using X-ray radiation to destroy 
them. However, the dimensions of the animals and tumors in small 
animal radiotherapy are much smaller than the dimensions in humans, 
hence requiring a much higher precision and resolution. This increased 
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resolution often causes the CT imaging in the small animal to deliver 
a higher X-ray radiation dose during the imaging process, namely the 
imaging radiation dose. Additionally, when it is considered together with 
the lower tolerance of small animals to ionizing radiation, it underlines 
the necessity of a novel imaging technology that can identify the location 
and shape of the tumors without radiation burden on the animals. 
Bioluminescence Imaging (BLI) is an imaging technique that uses the 
same biological process from a firefly to locate the tumor. In other words, 
the tumor cells are modified in the lab to emit visible light, similar to 
a firefly. In practice, these modified tumor cells are activated when a 
substrate is present in their vicinity and will emit light. Once the modified 
tumor cells are placed inside the animals, after the injection with the 
corresponding substrate, only the modified tumor cells will light up. 
Thereafter, the emitted light will travel through the surrounding tissue 
and leave the animal’s body. By this time, the emitted light will be not 
only diffused but also reduced in intensity due to the surrounding tissue. 
However, a very sensitive camera can still see this light in a very dark 
cabinet and create the BLI images, which corresponds well with how big 
the tumor is. This imaging technology can provide helpful information 
about the effect of each treatment option, especially radiation therapy, 
on the tumor cells by looking at the changes in the emitted light over 
the course of the treatment. However, this technique is not applicable 
for human subjects since it includes tumor cell modification and injection 
of a substrate borrowed from firefly. 
BLI is used in preclinical cancer research daily to monitor tumors’ 
response to various treatments and determine which treatments are more 
effective for different tumor types. However, the BLI ability is limited 
to tumor growth monitoring, and it cannot be used for targeting the 
tumor cells with X-ray radiation. Therefore, a high-dose CT scan is still 
needed to obtain the placement of the tumor and obtain a radiotherapy 
treatment plan, which finds the best arrangement of X-ray radiation 
beams that deliver the highest radiation dose to the tumor cells and 
the lowest possible radiation dose to the healthy tissue. In other words, 
the studies that want to investigate the role of X-ray radiation in cancer 
treatment cannot employ BLI as their imaging technique and must use 
a high-dose CT scan with previously mentioned limitations. 
This thesis aims to obtain the tumor placement in three dimensions (3D) 
using the information provided by the BLI and, therefore, enabling the 
use of the BLI for preclinical cancer research in small animal radiotherapy, 
specifically for glioblastoma. Here, to obtain the required 3D information 
from the 2D BLI images, a series of novel Artificial Intelligence (AI) 
approaches are developed that can accurately predict the tumor’s location 
inside the animal. The developed techniques in this thesis can locate the 
tumor within a millimeter of its actual location. Furthermore, the Dice 
similarity coefficient is routinely used to objectively measure the quality 
of tumor segmentation in medical imaging, which scores the overlap 
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between the actual and the predicted tumor. The developed methods in 
this thesis can achieve an average Dice score ranging from 62 to 83% 
depending on the available information and the type of the employed 
AI model. Therefore allowing the biologists to target the investigated 
tumor cells using BLI. 
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SamenVatting
Volgens de Wereldgezondheidsorganisatie (WHO) is bijna één op de 
zes sterfgevallen wereldwijd te wijten aan kanker, waardoor het de 
belangrijkste oorzaak van overlijden is. De behandeling van kanker is voor 
elke persoon anders en hangt af van het type kanker en hoe ver gevorderd 
het is. Voor bijna de helft van alle kankerpatiënten wordt minstens één 
keer als behandeling radiotherapie gebruikt. Deze behandeling maakt 
gebruik van sterke ioniserende straling om tumorcellen aan te vallen. 
Ioniserende straling zal het beoogde lichaamsweefsel beschadigen, en 
met voldoende sterke straling, dat wil zeggen een hoge stralingsdosis, 
kan het zelfs de cellen binnen het weefsel doden. Daarom is het hoofddoel 
van elke bestralingstherapie om de tumorcellen te vernietigen met een 
hoge dosis ioniserende straling, maar met zo min mogelijk effect op de 
rest van de gezonde cellen en weefsels. 
In de afgelopen jaren hebben technologische vooruitgangen clinici in 
staat gesteld om verschillende technieken te gebruiken om tumoren 
effectiever met straling te behandelen en radiotherapie een efficiënte 
behandeling te maken voor de meeste soorten tumoren. Sommige 
tumoren zijn echter meer resistent tegen ioniserende straling of komen 
na een korte periode terug. Glioblastoma, de meest voorkomende en 
agressieve hersentumor, is zo’n tumor die niet goed reageert op de 
standaardbehandeling, die een combinatie van bestralingstherapie en 
chemotherapie omvat. Biologen hebben theoretisch verschillende redenen 
voor dit gedrag geïdentificeerd, maar deze hypothesen moeten volledig 
worden getest voordat ze kunnen worden vertaald naar een klinische 
behandeloptie. Daarom is er behoefte aan een testomgeving, namelijk 
preklinisch onderzoek, dat fundamenteel onderzoek mogelijk maakt en 
nieuwe behandelopties identificeert om de veiligheid van patiënten te 
waarborgen. 
Preklinisch kankeronderzoek probeert de kwaliteit van de standaard 
behandelopties, met soms lage overlevingspercentages, zoals bij 
glioblastoma, te verbeteren door nieuwe ideeën en hypothesen te 
onderzoeken. In dit onderzoeksveld worden nieuwe ideeën eerst getest 
in laboratoriumomgevingen op tumorcellen die groeien in petrischalen, 
en de behandelingseffectiviteit wordt gevolgd onder de microscoop. De 
volgende stap is ervoor zorgen dat de tumorcellen zich op vergelijkbare 
wijze gedragen in de nabijheid van andere lichaamsweefsels om hetzelfde 
resultaat in het menselijk geval te waarborgen. Daarom worden de 
tumorcellen geïmplanteerd in kleine dieren, zoals muizen en ratten, en 
verder onderzocht. 
Aangezien de klinische beeldvormings- en bestralingssystemen te 
groot zijn voor dergelijke kleine objecten, ontstond er een nieuw 
onderzoeksgebied, wat resulteerde in commercieel verkrijgbare 
beeldvormings- en bestralingssystemen die zijn toegewijd aan kleine 
dieren. Bestralingstherapie bij kleine dieren is een onderzoeksgebied 
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dat zeer analoog is aan de normale klinische workflow. Met andere 
woorden, de dieren worden eerst afgebeeld met behulp van een 
computertomografiesysteem (CT) om de locatie van de tumor 
te identificeren en vervolgens bestraald met röntgenstraling om 
de tumorcellen te vernietigen. De afmetingen en tumoren bij 
bestralingstherapie bij kleine dieren zijn echter veel kleiner dan die 
bij mensen, waardoor een veel hogere precisie en resolutie nodig is. 
Deze verhoogde resolutie zorgt er vaak voor dat de CT-beeldvorming 
bij kleine dieren een hogere dosis röntgenstraling aflevert tijdens het 
beeldvormingsproces, namelijk de beeldvormingsstralingdosis. Bovendien, 
wanneer dit samen wordt beschouwd met de lagere tolerantie van kleine 
dieren voor ioniserende straling, benadrukt dit de noodzaak van een 
nieuwe beeldvormingstechnologie die de locatie en vorm van tumoren 
kan identificeren zonder stralingsbelasting voor de dieren. 
Bioluminescentiebeeldvorming, Bioluminescence Imaging in het Engels 
(BLI), is een beeldvormingstechniek die hetzelfde biologische proces 
gebruikt als een vuurvliegje om de tumor te lokaliseren. Met andere 
woorden, de tumorcellen worden in het laboratorium aangepast om 
zichtbaar licht uit te zenden, vergelijkbaar met een vuurvliegje. In de 
praktijk worden deze gemodificeerde tumorcellen geactiveerd wanneer 
een substraat aanwezig is in hun omgeving en zullen ze licht uitstralen. 
Zodra de gemodificeerde tumorcellen in de dieren zijn geplaatst, na injectie 
met het overeenkomstige substraat, zullen alleen de gemodificeerde 
tumorcellen oplichten. Vervolgens zal het uitgezonden licht door het 
omringende weefsel bewegen en het lichaam van het dier verlaten. Tegen 
die tijd zal het uitgezonden licht niet alleen worden verspreid, maar ook 
in intensiteit verminderd zijn door het omringende weefsel. Desondanks 
kan een zeer gevoelige camera dit licht nog steeds zien in een zeer 
donkere kast en de BLI-beelden creëren, die goed overeenkomen met 
de grootte van de tumor. 
Deze beeldvormingstechnologie kan nuttige informatie verschaffen over 
het effect van elke behandelingsoptie, met name bestralingstherapie, 
op de tumorcellen, door naar de veranderingen in het uitgezonden 
licht gedurende de behandeling te kijken. Deze techniek is echter niet 
toepasbaar voor menselijke proefpersonen omdat deze tumorcelmodificatie 
en injectie een substraat geleend van een vuurvliegje omvat. BLI wordt 
dagelijks gebruikt in preklinisch kankeronderzoek om de respons van 
tumoren op verschillende behandelingen te monitoren en te bepalen 
welke behandelingen effectiever zijn voor verschillende tumortypen. De 
mogelijkheid van BLI is echter beperkt tot het monitoren van tumorgroei 
en kan niet worden gebruikt voor het richten van röntgenstraling op 
de tumor. Daarom is nog steeds een CT-scan met hoge dosis nodig om 
de locatie van de tumor te verkrijgen en een bestralingstherapieplan 
te maken, dat de beste rangschikking van röntgenstralenbundels 
vindt die de hoogste stralingsdosis aan de tumorcellen en de laagst 
mogelijke stralingsdosis aan het gezonde weefsel levert. Met andere 
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woorden, studies die de rol van röntgenstraling bij kankerbehandeling 
willen onderzoeken, kunnen geen gebruik maken van BLI als hun 
beeldvormingstechniek en moeten een CT-scan met hoge dosis gebruiken 
met eerder genoemde beperkingen. Dit proefschrift heeft als doel de 
locatie van de tumor in drie dimensies (3D) te verkrijgen met behulp 
van de informatie die wordt geleverd door de BLI en maakt zo het 
gebruik van de BLI mogelijk voor preklinisch kankeronderzoek bij 
bestralingstherapie bij kleine dieren, specifiek voor glioblastoma. Om de 
vereiste 3D informatie te verkrijgen uit de 2D BLI-beelden, zijn een reeks 
nieuwe kunstmatige intelligentie, Artificial Intelligence in het Engels (AI),  
methoden ontwikkeld die de locatie van de tumor in het dier nauwkeurig 
kunnen voorspellen. De ontwikkelde technieken in deze scriptie kunnen 
de tumor binnen een millimeter van zijn werkelijke locatie lokaliseren. De 
Dice-similariteitscoëfficiënt wordt routinematig gebruikt om de kwaliteit 
van tumorsegmentatie in medische beeldvorming objectief te meten, 
wat de overlap tussen de werkelijke en voorspelde tumor beoordeelt. 
De ontwikkelde methoden in deze scriptie kunnen een gemiddelde Dice-
score behalen variërend van 62 tot 83%, afhankelijk van de beschikbare 
informatie en het type gebruikte AI-model. Hierdoor kunnen biologen 
de onderzochte tumorcellen met behulp van BLI targeten.
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A Reflection on Scientific and Social Impacts
Bioluminescence Imaging (BLI) is a technique that’s often used in 
research to examine tumors in small animals. However, the extent of BLI 
application is limited to tumor growth monitoring, which is an important 
aspect but does not fully employ the potential of the imaging technology. 
During the course of this thesis, various advanced computer science 
methods, known as Artificial Intelligence (AI) models, are developed 
to enhance the accuracy of the 3D Bioluminescence Tomography (BLT) 
reconstructed from a set of 2D BLI images. The conducted research in 
this thesis paves the way for more advanced BLI-based tumor targeting 
in small animal irradiation platforms, which in turn reduces the ionizing 
radiation burden on the animals. Therefore, the developed methods 
within this thesis can be directly employed in the commercially available 
small animal irradiators, such as the SMART+ (Precision X-ray Inc., 
Madison, CT, USA) and the SARRP (Xstrahl Life Sciences,  Suwanee, 
GA, USA), to improve the quality of otherwise limited BLI-based tumor 
targeting with the X-ray radiation beam. Furthermore, the standalone 
Bioluminescence imaging systems, such as IVIS (PerkinElmer, Shelton, 
CT, USA) and MILabs’ stand-alone optical imaging (MILabs, Houten, 
Netherlands), can also adapt the developed AI-based methods to enhance 
the provided BLI-based volumetric tumor monitoring. In addition, the 
reduced imaging X-ray radiation dose on the animals provided by 
BLT allows for more imaging checkpoints during a longitudinal study, 
which is otherwise impossible due to the excessive accumulated X-ray 
imaging dose. Therefore, the overall quality of the conducted research 
will increase due to better overall monitoring. Furthermore, the BLI 
also enables monitoring of substructures within the tumor, such as the 
hypoxic region, which is deprived of oxygen and directly linked to the 
poor prognosis. 
The findings of this thesis help biologists to employ the full potential of 
the BLI in their research, especially in order to improve the treatment 
quality for glioblastoma patients. The developed algorithms in this thesis 
also allow for more accurate tumor volume monitoring during the course 
of the treatment in small animals and, therefore, help biologists validate 
their hypothesis and identify a more efficient treatment option for 
glioblastoma. Therefore, the outcome of this thesis indirectly contributes 
to a better treatment option for glioblastoma patients, with currently 
poor average survival time of only 12 months after the initial diagnosis. 
However, since the BLI is a dedicated imaging technology for small 
animal preclinical cancer research and is not applicable for imaging a 
human subject, the developed methods cannot directly be translated to 
clinical trials. Nevertheless, the shared fundamentals between BLI and 
various other types of optical imaging, such as fluorescence imaging, 
optical coherence tomography, and Cerenkov imaging, allow for fast 
adaptation of the proposed algorithms in other domains. In more 
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detail, other researchers can build upon the outcome of this thesis, 
communicated through scientific journals and conferences, to solve 
similar 3D reconstruction problems in other optical imaging modalities, 
some of which with clinical applications.
Even though this thesis focuses on glioblastoma, the developed methods 
in this thesis can easily be adapted for many other tumor types. In 
other words, the observation-based AI methods developed in this thesis 
can be re-trained using a new set of observations for totally different 
tumor types, such as lung cancer. Therefore, the presented AI-based 
reconstruction algorithms developed in this thesis can be employed in a 
variety of different pre-clinical cancer research in order to improve the 
quality of the conducted pre-clinical investigations, which consequently 
can play a small role in enhancing the treatment outcome for human 
patients. 
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ه و اع ماد به یفس دیش برمو باور داشتتتتتتتتتتتتتتمیر  شتتتتتتتتتتتتتتما به م  ی  ه  در کنارم بودی  تا با ایگت  
 م  بوده و ه مو 

ی
وع هر مو  یتر در زیدگ  شر

های ای  ک اب ت ی    تتتممیوشتتتمیر  ای  پارافرار برای رشتتتتر از تو  خ از ستتت م ستتت اره،
ی  اتفاقتو  بودو  ی برای م  دیش  خ از  شنگتر ها ک بودی که در طول مدت دروره دکتر

ی چنتتد برابر بودو ممنون از تو کتته در ای  راه جمتتدو   ًتتاو بتتدون تو ستتتتتتتتتتتتتتتت تر  هتتای راه دکتر
ا ط ستتتتتتتتتتتتتتتت تتتم بهم جرامش  زم برای  لوتتته بر و بتتتا پشتتتتتتتتتتتتتتتت یوتتت همراهم بودی ا   ازم در شر

 مشرلات را دادیو 
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