

Improving supply chain performance

Citation for published version (APA):

Rajabighamchi, F. (2024). Improving supply chain performance: order picking and service network design.
[Doctoral Thesis, Maastricht University]. Maastricht University. https://doi.org/10.26481/dis.20240305fr

Document status and date:
Published: 01/01/2024

DOI:
10.26481/dis.20240305fr

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 16 May. 2024

https://doi.org/10.26481/dis.20240305fr
https://doi.org/10.26481/dis.20240305fr
https://cris.maastrichtuniversity.nl/en/publications/ee92e814-6196-4e0e-9e22-06284f31253d

Doctoral thesis

IMPROVING SUPPLY CHAIN

PERFORMANCE

ORDER PICKING AND
SERVICE NETWORK DESIGN

Farzaneh Rajabighamchi

2023

IMPROVING SUPPLY CHAIN

PERFORMANCE

ORDER PICKING AND
SERVICE NETWORK DESIGN

Dissertation

To obtain the degree of Doctor at Maastricht University,
on the authority of the Rector Magnificus, Prof. dr. Pamela Habibović,

in accordance with the decision of the Board of Deans,
to be defended in public

on Tuesday 5 of March 2024, at 16.00 hours

by

Farzaneh Rajabighamchi

Promotor
Prof. dr. Stan van Hoesel (Maastricht University)
Prof. dr. Inneke Van Nieuwenhuyse (Hasselt University)

Copromotor
dr. Christof Defryn (Maastricht University)
Prof. dr. Kris Braekers (Hasselt University)

Assessment Committee
Prof. dr. Célia Paquay (Université de Liège)
Prof. dr. Kenneth Sörensen (University of Antwerp)
Prof. dr. Fred Vermolen (Hasselt University)
Prof. dr. Tjark Vredeveld (Chair, Maastricht University)

© Farzaneh Rajabighamchi, Maastricht 2023.
All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written per-
mission of the author.

Cover
Production Publisher Maastricht University
ISBN 978-94-6469-386-7

To my Family, for their unconditional love and eternal support

Acknowledgments

“If I have seen a little further it is by standing on the shoulders of giants” –
Sir Isaac Newton (1676). There are so many people to whom I feel the need to
express my deepest gratitude, as they have raised me up and allowed me to
reach beyond. First, I would like start by thanking my supervisors Prof. Stan
van Hoesel and Dr. Christof Defryn for their invaluable advice and contin-
uous support during my PhD study. Their immense knowledge and experi-
ence have encouraged me in all the time of my academic research and daily
life. Very special thanks to Stan who was always approachable and advising
me to enjoy my life as much as possible. There was never a moment in which
I felt alone, and I knew I could always count on a word of understanding,
motivation and orientation from you, even when the path was a bit cloudy.
I am incredibly grateful for all the help and support my supervisor in Has-
selt University, Inneke van Nieuwenhuyse gave me. She was always patient
and helpful with my bothering questions. I would also like to thank all the
members of the assessment committee for taking the time to carefully read
the thesis and for their invaluable comments.

I would like to express my highest love and gratitude to my lovely family.
Without their eternal love, tremendous unconditional support and encour-
agement in my life, it would be impossible for me to complete my study.
There is no bigger treasure than having you all in my life and no bigger joy
than to be able to share this achievement with you. Thanks in believing in me
and teaching me to be the best version of myself. Your sacrifices and tireless
dedication to my well-being have shaped me into the person I am today. Your
guidance has been my compass, navigating me through life’s challenges with
a warm heart. I would like to especially thank my sister, whom without this
would have not been possible. Reyhaneh, your support, understanding, and
love mean the world to me. Through thick and thin, your presence has been
my constant source of strength. You have always been there for me when-
ever I needed. You are not only my sister, but also my best friend in life, my
partner in crime, and my rock. I have learned a lot from you and I am very
thankful for everything.

I am especially grateful to my best friend Ebrahim for all his helps and sup-
port. Ebrahim, for being there at every step of the way. Thank you for bring-
ing me up, for calming me down, for making me feel confident and capable.

vii

Acknowledgments

It would have been very hard without you. I am very proud and grateful for
having you by my side.

I am very thankful for my Iranian colleagues, Ashkan and Arman. Spend-
ing time together with our Iranian colleagues in the Netherlands has been a
source of comfort and camaraderie, especially as we navigate the challenges
of being away from our homeland. The shared language and culture cre-
ate a unique bond that goes beyond professional collaboration. Whether it’s
sharing stories over a cup of Persian tea, celebrating cultural festivities, or
simply supporting each other during moments of homesickness, the sense of
community we’ve cultivated is invaluable. In these shared moments, we find
solace and connection, making our workplace feel like a home away from
home.

I would like to thank my friend and colleague, Son Tran for a cherished time
spent together in the KE. Also my sincere thanks to my colleagues Li, Cate-
rina, Luca, Niels, Dewi, Aida, Francois, Freija, Marie, Joep, Francesco, Niloo-
far and Daniel for making PhD life very exciting and happy for me. I would
like to express my sincere gratitude to my amazing friends Shafagh and Sasan
for always being there for me. Knowing that you are by my side, made it more
bearable for me to go through this adventure. Shafagh, you are like a sister
to me and your company makes me very happy and delighted. I am deeply
grateful to Johaness, who have been like an older brother for me and I am
very thankful to have him in my life.

Many thanks to my dearest friends and colleagues Aditya and Benoit who
made the first two years of my PhD , the best years of my life. Benoit, I deeply
appreciate your kindness and hospitality that made me feel at ease and that I
can count on you as a great friend of mine. Aditya, although you were not the
best neighbour :D, but you were a kind, fun, and easygoing colleague with
whom I had the happiest time.

I extend my deepest appreciation to my devoted boyfriend, Mathijs, whose
unwavering support, encouragement, and understanding have been the pil-
lars of my academic journey. His patience, motivation, and belief in my abil-
ities have been instrumental in overcoming the challenges and obstacles that
inevitably arise during such an extensive research undertaking. I am also
profoundly thankful to his family for being there for me and for their hospi-
tality, love and support, that allowed me to focus on my work with a sense of
comfort and belonging.

Farzaneh Rajabighamchi

viii

Contents

Acknowledgments vii

1 Introduction 1
1.1 Order picker routing in the warehouse 1
1.2 Multi-commodity network design problem 5

2 Graph reduction for the planar Travelling Salesman Problem. An
application in order picking 9

2.1 Introduction . 11
2.2 Related literature . 12
2.3 Problem description . 16
2.4 Properties of the lay-out graph GL and the pick locations

graph GPL . 21
2.5 Mathematical formulation . 28
2.6 Model implementation and numerical results 29
2.7 Concluding Remarks . 36

3 The order picking problem under a scattered storage policy 37
3.1 Introduction . 39
3.2 Literature Review . 40
3.3 A Generalized TSP formulation for order picking under a

scattered storage policy . 44
3.4 Guided Local Search algorithm 50
3.5 Model implementation and numerical results 60
3.6 Conclusion . 76

4 The periodic multi-commodity service network design problem with
regular and express deliveries under demand uncertainty 79

4.1 Introduction . 81
4.2 Literature review . 82
4.3 Single-period service network design problem 85
4.4 Branch-and-price algorithm . 90
4.5 Multi-period service network design problem 95
4.6 Model implementation and computational experiments . . . 100
4.7 Conclusion . 113

Contents

5 Summary 115

6 Impact of the Thesis 119

Bibliography 121

Published work 139

About the author 141

List of Figures

1.1 Different clustering topologies. 4

2.1 Picker routing heuristics considered to retrieve items of a pick
list (from Croucamp and Grobler [44]). 14

2.2 A standard warehouse lay-out (from Roodbergen [135]). 17
2.3 Two other warehouse lay-outs (from Celik and Sural [30]). . . . 18
2.4 Graph GL for standard warehouse lay-out (from [135, 32]). . . . 19
2.5 Graph GL for a fish-bone warehouse lay-out (from [32]). 19
2.6 Transforming GL to GPL. 20
2.7 Distance of vertices in the same block, but different aisles. . . . 21
2.8 Five different ways for aisle traversal (from [125]). 22
2.9 The change of largest gap and removing extra nodes in an aisle 23
2.10 Edge twice in same direction . 24
2.11 No alternating edges . 25
2.12 No alternating vertices (the nested structure of the occurrence

of the vertices in the walk . 26
2.13 From degree > 2 to degree = 2 26
2.14 No alternating vertices. 27
2.15 Graph reduction example . 28

3.1 Warehouse layout and graph representation (adapted from Rood-
bergen [137]). Each colour represents a SKU that should be
picked from the warehouse. As multiple locations have the
same colour, it is sufficient to visit one location for each colour. . 45

3.2 Overview of the Guided Local Search algorithm. 51
3.3 Constructive algorithms to generate an initial solution. 54
3.4 Moves considered in VNS algorithm from [119] 58
3.5 Visualisation of the INTER-SWAP move. 58
3.6 Visualisation of the DOUBLE-BRIDGE move. 59
3.7 Sensitivity analysis of GLS algorithm for optimal tuning of α . 61
3.8 Comparing solution methods for instances with cluster size=2 . 63
3.9 Comparing solution methods for instances with cluster size=10 64
3.10 Comparing solution methods for instances with cluster size=20 64
3.11 Boxplots of VNS and GLS to compare the stability of algorithms 65
3.12 Relative improvement of VNS by applying GLS in case of clus-

ter size=2 . 66

List of Figures

3.13 Relative improvement of VNS by applying GLS in case of clus-
ter size=10 . 66

3.14 Relative improvement of VNS by applying GLS in case of clus-
ter size=20 . 66

3.15 Comparison between the running time of VNS & GLS in case
of cluster size=2 . 67

3.16 Comparison between the running time of VNS & GLS for clus-
ter size=5 . 67

3.17 Comparison between the running time of VNS & GLS for clus-
ter size=10 . 67

3.18 Comparison between the running time of VNS & GLS for clus-
ter size=20 . 68

3.19 Sensitivity analysis of Warehouse Layout 69

4.1 Gap percentage for different number of scenarios n (with N =
60 and M = 30). 101

4.2 (Relative) solution time vs number of scenarios 102
4.3 Number of scheduled trucks for different values of the express

cost coefficient. 105
4.4 The percentage of unused capacity (empty truckload) for the

scheduled truck service. 106
4.5 Total network cost as a function of the hub capacity, measured

as a percentage of the maximum hub capacity QV
MAX 107

4.6 Different cost factors as a function of the hub capacity, mea-
sured as a percentage of the maximum hub capacity QV

MAX . . . 108
4.7 Vehicle utilization of the scheduled truck service as a function

of the hub capacity, measured as a percentage of the maximum
hub capacity QV

MAX . 108
4.8 Inventory cost analysis for Canad benchmark cases 109
4.9 Total network cost as a function of the standard deviation of

the demand, denoted by α. 110
4.10 Commodity variance analysis for Canad benchmark cases . . . 111
4.11 VSS and EVPI Percentage with respect to the objective function

value of the stochastic mode . 112

List of Tables

2.1 Notation for TSP model. 29
2.3 Numerical results of proposed model on different instances . . 31
2.4 Numerical results of the proposed model on different instances 33
2.5 Number of unsolved instances after 30 minutes. Benchmark

against [125] . 33
2.6 Average computation time (seconds) for instances solved in 30

minutes. Benchmark against [125]. 34
2.7 Average number of arcs in TSP graph and Steiner graph, with

and without pre-processing. Benchmark against [125]. 34
2.8 Numerical results of the proposed model on different instances

with three blocks and comparison with [146] 35

3.1 Mathematical notation for the DFJ and MTZ model. 47
3.3 Summary of all mathematical notation. 49
3.5 Result for instances with cluster size=1 70
3.6 Result for instances with cluster size=2 71
3.7 Result for instances with cluster size=5 72
3.8 Result for instances with cluster size=10 73
3.9 Result for instances with cluster size=20 74
3.10 Mean & SD of GLS for large-scale instances 75

4.1 Mathematical notation for the MILP formulation of the deterministic multi-
commodity network design problem with express deliveries. 88

4.3 Additional mathematical notation for the master problem. . . . 92
4.5 Additional notation for the sub-problem. 94
4.7 Additional notation for the two-stage scenario-based stochas-

tic programming model. 97
4.9 Different steps of the SAA implementation. 99
4.11 Results for the branch-and-price algorithm on the determinis-

tic single-period problem variant (R instances). 103
4.12 Results for the branch-and-price algorithm on the determinis-

tic single-period problem variant (C instances). 104

1
Introduction

Supply chain optimization is a widely studied topic in Operations Research
with work on topics from production and service planning, storing and in-
ventory management, and scheduling, routing, sourcing, and distribution
among others.

In this thesis, two different supply chain problems are investigated. This
introductory chapter establishes important concepts underlying the results in
this thesis. In Section 1.1, the notion of order picker routing problem is for-
mally introduced and two different variants of this problem which includes
chapters two and three of this thesis, are discussed. In Section 1.2, we intro-
duce the multi-commodity network design problem addressed in the fourth
chapter.

1.1 Order picker routing in the warehouse
Warehouses play a crucial role in the supply chain management since they are
used by all different types of businesses that need to temporarily store prod-
ucts in bulk before either shipping them to other locations or individually to
end consumers. Warehousing makes it easier to receive, store and distribute
the goods as all the goods are stored in a central location. This helps in re-
ducing transportation costs and increasing the value of goods as products are
available at the right place, at the right time. One of the processes within

1

Chapter 1. Introduction

warehouses that provide significant cost-saving potential is the so-called or-
der picking.

Valle, Beasley, and Cunha [168] define order picking as retrieving prod-
ucts from storage in response to specific customer requests and it is mostly
done manually by dedicated employees called pickers. Despite numerous at-
tempts to automate the picking process, manual order picking methods are
still widely used in industry [46]. Picker-to-part order picking systems are
the most significant manual methods [88]. In such systems, order pickers ful-
fill customer orders by traversing the picking area of the warehouse. Picking
orders are customer orders that are processed on the same tour. Every tour
begins and ends at the depot, and it covers all of the storage locations (pick
locations) for the required items that are included in the corresponding pick-
ing order.

According to Tompkins et al. [161], this process can account for as much
as 55% of the total warehouse operating cost. The order picking process
comprises various activities such as setup, searching, and traveling between
items. Tompkins et al. [161] state that the latter can consume 50% of an order-
pickers time, which in manual-picking systems constitutes high costs. Hence,
optimizing the routes taken by order-pickers provides significant savings po-
tential. In addition, shorter traveling distance results in a quicker picking
process, which is a crucial link between order picking and service levels. Or-
der picking is part of the process of fulfilling customer orders. The speed and
efficiency of the order picking process can affect the delivery time of a cus-
tomer’s order, which can affect customer satisfaction.

A tour’s length is influenced by the sequence in which the selected loca-
tions are meant to be visited. The Picker Routing Problem includes determi-
nation of this sequence as well as the shortest route to collect them and it can
be phrased as follows. Let a list of picking orders be given which includes the
required products and their known storage locations. The sequence in which
the pick locations are to be visited for each picking order, as well as the path
across the warehouse’s picking area corresponding to it, must be decided in
order to minimize the length of the overall tour.

The Picker Routing Problem has been extensively researched in the lit-
erature, and there are numerous different techniques to solve it. However,
the majority of methods apply simple routing techniques such as S-shape
strategy, which is prevalent due to its practicability and simplicity of imple-
mentation, that could lead to quite protracted journeys [136]. These routing
techniques used in reality result in trips that are up to 48% longer than an

2

optimal tour [160]. Given that the development of such long tours is likely to
have a major negative influence on the efficiency of the picking process, the
approaches offered to date cannot be deemed satisfactory.

In the second and third chapter of this thesis, we focus on the Order
picker routing problem in the warehouse- Therefore, It is very important to
describe the warehouse layout addressed in this thesis and further supple-
mentary information on storage and picker routing.

Chapter 2 of this thesis deals with the single order picker routing prob-
lem within a conventional multi-block warehouse layout. This problem en-
tails collecting items from storage in response to customer requests. We con-
sider the case where every product in the warehouse has a unique location
and the order picker must visit only that specific location in order to pick the
product in the order list.

In the literature, exact algorithms only exist for small warehouses with
few cross aisles, while for other larger warehouse types some heuristic and
meta-heuristic methods are provided.

This chapter presents a new efficient exact pre-processing algorithm for
graph reduction, removing the unnecessary vertices and edges from the graph
which are not part of the optimum solution, resulting in a significant reduc-
tion in the calculation time. Though most warehouse lay-outs in the literature
are indeed modelled on grid graphs, this is not a limitation for our algorithm.
The proposed algorithm can be used for any warehouse layout, as long as it is
represented as a planar graph., which makes this method more practical. The
presented method allows us to solve adequately big (more realistic) instances
in few seconds and it gives the optimum solution for all the instances.

Ho and Sarma [74] state that while items of the same stock keeping unit
(SKU) are generally co-located in traditional warehouses, tracking technolo-
gies and automatic identification allow for free-form storage (scattered stor-
age policy). This implies that identical SKUs can be positioned in multiple
locations throughout the warehouse. In chapter 3, we will answer the fol-
lowing two questions: Which SKU locations should be visited to pick the
requested items? What is the shortest route containing the chosen locations?
This extended problem can be formulated as a Generalized Traveling Sales-
man Problem (GTSP), where a cluster is defined as containing all identical
SKUs.

In the last decades, there have been several variants of the TSP stud-
ied including generalized traveling salesman problem (GTSP) in which the

3

Chapter 1. Introduction

graph nodes are partitioned into a group of clusters. The objective is to find
a minimum-cost tour spanning a subset of items such that exactly one item
from each cluster is included in the tour. Due to its various real-world practi-
cal applications, the GTSP has drawn considerable attention in mathematical
models, approximation and heuristic and meta-heuristic algorithms. One of
the applications for the GTSP is the order picking problem in the warehouse.
Each cluster represents possible locations associated with a specific product,
and it is assumed that a single order picker is able to deliver all the products
on the same tour.

While the storage assignment of items in the warehouse constitutes a
complex problem, it is not unlikely to assume that clusters will often overlap.
El Krari et al. [54] define overlapping clusters as those that share a geographi-
cal space, i.e. when drawing their borders, they find themselves intertwined.
Figure 1.1 shows examples of non-overlapping and overlapping clusters.

Figure 1.1: Different clustering topologies.

In this dissertation, I propose an MILP formulation of the problem and
present a heuristic solution method for the GTSP with geographical over-
lap between clusters, as all products are scattered throughout the warehouse
and the product clusters are not separated geographically, which is a more
general form of GTSP. The motivation for this research stems not only from
the potential benefits that can be achieved within the efficiency of a ware-
house but, also because of the fact that very little attention has been given
to this problem when accounting for the overlap of clusters. To the best of
our knowledge, there exists no paper in the literature taking this aspect of the

4

problem (overlapping clusters in the order picking problem) into account.
Our proposed exact model for GTSP, outperforms the existing exact models
for GTSP in the literature (with different applications than the order picking
problem). We propose a Guided Local Search (GLS) algorithm that exploits
problem-specific information during the search procedure to guide the local
search operators to promising areas of the search space. The algorithm is im-
plemented on a set of benchmark instances from the literature.

1.2 Multi-commodity network design problem
Over the last decades, technological advances and economic development
have drastically changed numerous facets of our society. Higher standards
of living have not only led to increased demand for goods, but also to a shift
in preferences in the customers’ decision-making process. Convenience has
become a key factor driving customers’ purchase decisions. E-commerce is
thriving and home delivery has evolved to a must for a large group of cus-
tomers, in order to benefit from faster or customizable delivery options. To
stay competitive in this environment, businesses have to adapt their strate-
gies to these changes in consumer behavior.

Courier service companies, such as Amazon, Walmart, Ebay Gati, and
Blue Dart have recognized customer thirst for convenience and seized this
opportunity, offering a wide range of on-demand services. These couriers col-
lect historic data on the deliveries that were requested by repeat customers,
as well as one-time customers, and they can utilize these data to make a rea-
sonable forecast for future demands. Since the transportation of goods is not
a value adding process and transportation makes up a significant part of the
operational costs, it should come to no surprise that efficient route planning
lies at the core of their functioning. Couriers try to minimize their total costs.
One of the most efficient ways to reduce the total costs is by incorporating ex-
press services into their route planning which allows for cutting costs by out-
sourcing (if they can not do it themselves) inconvenient requests, and over-
demand.

In today’s international context, the planning and coordination of all nec-
essary logistics operations within a supply network is a tedious task. As
supply chain partners often established strong dependencies on each other
— with the aim to improve overall efficiency of the network —, any delay or
disruption in the transport flows between these partners will create a signifi-
cant impact on the underlying operations [4, 52, 37].

5

Chapter 1. Introduction

To plan and execute all required logistical operations within the supply
chain, companies rely on third party logistics service providers (3PLs). These
3PLs manage the flow of goods between the different supply chain entities
by either dispatching their own vehicles or by subcontracting logistics service
providers to execute the required transportation requests [140, 118, 94]. A 3PL
is responsible for coordinating all material flows that belong to the supply
network. The network consists of multiple hubs, which either take the form of
transshipment points within the supply network or represent a local supply
node uniting multiple suppliers within a certain region. The flow density
between each pair of hubs varies significantly over time (some connections
are seldom used, others have high volumes every day) and is uncertain (exact
volumes are only known last-minute). As the 3PL does not have its own fleet
of trucks, it relies on — often local — subcontractors (carriers) to execute the
transports.

We distinguish two types of agreements between the 3PL and its subcon-
tractors. First, there is a long-term agreement to establish a periodic, fixed ca-
pacity on some of the network connections. For example, a truck is chartered
every Monday and Thursday on a predefined link. As these long-term com-
mitments are valuable to the carriers, competitive prices can be negotiated for
the service. However, setting up this collaboration comes with a cost mainly
related to Loss of control, sharing resources, integration of information and
technology, trust, or willingness to change, etc. On top of that, sufficient flow
should be guaranteed as the payment is always for the full truckload (i.e., in-
dependent from the actual load). Second, the 3PL can book an ad-hoc express
delivery on the spot market. This service is more flexible and its cost depends
on the volume and trajectory of the actual load.

Shipping operations must be well coordinated in order to meet the due
dates of customer orders. This gives rise to a multi-commodity network de-
sign problem with delivery time, namely how the commodities of the various
orders are to be assigned and in which sequence and in which point of time
the hubs are to be visited.

We focus on the network design problem with split demand, where we
allow the commodities to be split over multiple paths from their origins to
their destinations. Furthermore, we consider a case in which the logistic com-
panies make use of two distinct modes of transportation in order to transport
the commodities between hubs: scheduled trucks (services), which operate
on a fixed schedule for each period (i.e, one week), and this schedule is re-
peated periodically throughout the planning horizon (year or season etc.),

6

and express delivery, which is used to meet demand that exceeds scheduled
deliveries (services) or that requires expedited delivery. While a scheduled
vehicle is strictly less expensive than an express vehicle, it must be paid
regardless of capacity utilization, whereas the express truck’s cost is deter-
mined by the package’s weight and total distance traveled. This further com-
plicates the problem by mandating the formation of a cost-effective equilib-
rium between scheduled and express vehicles capable of delivering all com-
modities within the specified time periods.

Furthermore, we considered the finite inventory capacity at each hub,
which to the best of our knowledge is rarely taken into account in the existing
literature. the amount of capacity used in each hub depends on the transport
decisions taken, and varies over time; thus, it must be taken into account as
a constraint for future transport decisions. The amount of capacity used in
each hub on a given day has an impact on the capacity available the next day,
implying that we must account for variations in hub capacities (in literature,
each day has an independent capacity from previous or following days and
in the day after, everything starts again to the default capacity). Moreover, we
assume the overall demand for the commodity served by each route cannot
exceed the vehicle capacity.

We consider uncertain demand for each period, therefore, we make use
of a scenario-based two-stage stochastic model to solve the problem. Monte
Carlo sampling and Sample Average Approximation (SAA) Method is used
for constructing scenarios. Additionally, we consider a delivery date for each
commodity to its destination hub. The cost of inventory storage may differ in
different hubs, therefore the inventory cost must be included in our objective
function and is added to the travel cost for the associated commodity to get
the total cost. Additionally, we have no limits on vehicles returning to their
origin at the end of the time horizon. We are just concerned with the number
of vehicles at each hub remaining constant at the end of the period. In other
words, the number of available vehicles in each hub at the start of each time
horizon (beginning of the week) should be equal to the number at the end.

Chapter 4 of this thesis aims to cover several logistical decisions such
as transport mode selection, freight planning and load allocation to these
modes, fleet sizing, service routing and scheduling, and more importantly the
inventory management in the hubs. We focus on the network design problem
with split demand, where we allow the commodities to be split over multiple
routes from their origins to their destinations.

7

Chapter 1. Introduction

We present an MILP formulation for the multi-commodity service net-
work design problem with delivery time that includes express deliveries and
uncertainty in demand.

The objective is to reduce total costs throughout the planning horizon.
Due to the NP-hardness of the problem at hand, we employ a column gener-
ation strategy, in which the pricing problem is recast as a routing problem for
each commodity, embedded in a branch-and-bound framework.

The main contributions of the chapter are the following: first, we con-
sider multi-commodity network design models over time to allow differenti-
ation between the (periodic) scheduled truck services and the ad-hoc express
delivery option. Second, we account for potential capacity limitations in the
hub and manage inventory levels accordingly. Furthermore, we incorporate
the delivery time for commodity delivery, which makes our model more re-
alistic. We develop competitive solution approaches based on an integration
of column generation and branch-and-price to solve this realistic variant of
the Multi-Commodity Network Design Problem (MCNDP). Moreover, we ex-
tend our models and results to a setting with uncertain demand and present
a two-stage, scenario-based stochastic model which is solved using the av-
erage approximation method. Finally, a broad range of managerial insights
have been generated by means of an extensive sensitivity analysis.

8

2
Graph reduction for the planar

Travelling Salesman Problem. An
application in order picking

Adapted from: [. Rajabighamchi, van Hoesel, and Defryn [132]]

9

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

Abstract
This chapter presents an improved exact algorithm for solving the order picker
routing problem, a special case of the planar Travelling Salesperson Problem.
The algorithm heavily relies on graph reduction techniques: it removes un-
necessary vertices and edges from the planar graph that are not necessary in
the optimal solution. As a result, we achieve a significant increase in calcula-
tion speed and reduction in the running time. The order picker routing prob-
lem entails collecting items from storage in response to customer requests.
We use the Traveling Salesperson Problem (TSP) to optimize the routes taken
by order pickers. In the literature, exact algorithms –typically based on dy-
namic programming- only exist for small warehouses with a small number
of blocks, while for larger warehouse layouts mainly heuristic and meta-
heuristic methods are provided.

The presented graph reduction method allows us to solve larger — more
realistic — instances in a short amount of time. Our algorithm is tested on dif-
ferent problem instances from the literature and its performance is compared
with the current state-of-the-art. We conclude that our algorithm outperforms
existing algorithms in terms of simplicity, size and calculation time.

10

2.1 Introduction
For businesses operating with physical products, warehouses play an inte-
gral part in the efficiency of their supply chains. [64] highlight that — while
modern supply chains have aimed at reducing inventory through initiatives
such as “Just-In-Time” — warehouses are still present in most supply chain
stages. The warehousing service is a very important component of the logis-
tics system and plays a vital role in the supply chain process by balancing
supply and demand. Thanks to the rapid growth of the e-commerce sector
(accelerated by the COVID19 pandemic), the number of warehouses has even
increased considerably over the last decade [50, 29]. As a result, supply chain
sectors and specifically warehouses are forced to further streamline processes
by increasing efficiency and cutting costs, while still ensuring high service
levels to their customers [Dembińska [49] and Gutelius, Theodore, et al. [65]].

A warehouse process that provides significant cost-saving potential, is
the order picking process as it is estimated to account for up to 55 percent of
the total warehouse operating cost [161]. Efficient warehousing provides an
important economic benefit to the business as well as to the customers. Due
to the introduction of operating programs (such as cycle time reduction and
quick response to orders) and new marketing strategies (e.g., micro market-
ing), the order picking process has become increasingly significant to manage.
Moreover, catalyzed by the rapid technological advancements, the world of
e-commerce is transforming fast. This significant growth in digital marketing
together with the daily increase in the number of customers that buy online
imposes challenges for warehouses to remain responsive as well as efficient.
Any under-performance in order picking can result in high operational costs
and an unsatisfactory service for the warehouse as well as the supply chain
as a whole.

The order picking process is defined as the retrieval of products from their
storage locations based on customer orders. Various activities comprise the order-
picking process, including, e.g., traveling between items and packaging the
order. Tompkins et al. [161] state that travelling can consume up to 50% of
a picker’s time, which in manual-picking systems constitutes high (labour)
costs. As a result, efficient routing algorithms are needed to optimize the pick
tours for retrieving the products from storage.

The problem of sequencing and finding an optimal route for a picker,
i.e., obtaining the shortest tour that starts and ends at the depot and visits
all items included in an order list (each item is visited exactly once) resembles

11

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

the Traveling Salesperson Problem (TSP). The TSP is an NP-hard optimization
problem (see Garey, Graham, and Johnson [59], Liers, Martin, and Pape [98],
and Arora [9]). Within the academic literature, therefore, exact algorithms for
solving TSP are only available for small instances.

In this chapter, we present an exact graph reduction algorithm for solv-
ing Steiner TSP in a planar grid graph with an application in order picker
routing problem in general warehouse lay-outs using the TSP model. The TSP
for order picking has a special structure in two ways. First, the warehouse
lay-out provides an underlying planar graph. Second, all pick locations are
found in aisles where they have degree 2 in the planar graph. Both properties
are extensively used within our approach to reduce the size of the graph of
the TSP. Thus, in the first step, we transform the Steiner TSP to a TSP problem
by transforming the layout planar grid graph into a complete TSP graph (this
graph may not be planar graph) and then, we remove a substantial amount
of nodes and edges in the TSP graph. Finally, the Miller-Tucker-Zemlin for-
mulation of the TSP is used to solve the problem to optimality.

The remainder of this paper is structured as follows. In section 2.2, we
review the related studies in the literature. In Section 2.3 we provide a formal
problem description and briefly represent the warehouse layout with a math-
ematical explanation. The graph reduction methods are provided in section
2.4. The mathematical formulation of the problem is provided in section 2.5.
Furthermore, in section 2.6, the computational results are presented. The con-
clusions of our work are presented in Section 2.7 along with some further re-
search suggestions.

2.2 Related literature
The order picking problem has been the subject of significant research in
the past few decades, with numerous solution approaches proposed, includ-
ing Dynamic Programming, Integer Linear Programming (ILP), and various
heuristics. Most research has focused on modeling the problem as either a
Traveling Salesman Problem (TSP) or a Steiner TSP which reduces the graph
complexity and forms a more flexible network topology by the creation of ad-
ditional nodes [157]. Cases where the warehouse has one or two blocks have
been shown to be solvable in polynomial time.

Ratliff and Rosenthal [134] and Cornuéjols, Fonlupt, and Naddef [39]
were the first to propose a dynamic programming approach for a warehouse

12

with one block, which was polynomial in the number of items and aisles. This
approach was then extended by Roodbergen and De Koster [136] to the case
of two blocks and later by Cambazard and Catusse [25] to warehouses with
h cross-aisles (maximum h to be solved exactly is 8); the latter being solvable
non-polynomially but exponential in h.

In some papers, the Steiner TSP is used for solving this problem since it
is not necessary to visit all vertices in the warehouse graph. The Steiner TSP
was first studied by Cornuéjols, Fonlupt, and Naddef [39] and Fleischmann
[57]. Several other formulations for the compact Steiner TSP were proposed
by Letchford, Nasiri, and Theis [95], Pansart, Catusse, and Cambazard [125],
Scholz et al. [147], and Valle, Beasley, and Cunha [167]. In the literature, there
are three main approaches used in order to model the order picker routing
problem with Steiner TSP: the first approach is transforming the Steiner TSP
to TSP and then implementing MILP to reduce the size of the graph in addi-
tion to solving it. one example can be [147]. In the second approach, first, the
Steiner TSP is transformed to TSP and then some graph reduction algorithm
is implemented and finally the reduced graph is solved by a MILP. In the cur-
rent study, this approach is implemented. In the third approach, the Steiner
TSP is reduced and directly solved by an MILP (without transforming it to
TSP). An example of this approach is [125]

The order picker routing problem has also been studied by modelling
it as the capacitated vehicle routing problem (CVRP) in multiple studies, in-
cluding Glock and Grosse [61] and Scholz and Wäscher [148]. In the CVRP
formulation for this problem, each pick location is considered a node that
should be visited only once by a vehicle (i.e., picker). The vehicle capacity is
given by the picking trolley or forklift capacity. The objective is to find routes
with the minimal total travel distance or time.

Given the limitations of the existing exact methods, in practice , the order
picking problem is typically solved using heuristics. Common methods are
the largest gap, return, midpoint, composite routing strategy, the combined
routing strategy and finally, the S-shape method in which order pickers move
in a S-shape curve along with the pick locations [62, 53, 68, 126]. A prelimi-
nary research on heuristic routing in warehouses with multiple parallel aisles
was done by Hall [68]. Some of the important and commonly used heuristic
algorithms are illustrated in figure 2.1.

The S-shape strategy leads to a route in which each aisle containing a pick
location to be visited is completely traversed, and aisles where nothing has
to be picked are skipped. The picker enters an aisle from one end and leaves

13

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

Figure 2.1: Picker routing heuristics considered to retrieve items of a pick list (from Croucamp
and Grobler [44]).

from the other end, starting at the left side of the warehouse. After picking the
last item, the order picker returns to the front end of the aisle. This S-shape
strategy is used frequently, because it is very simple to use and to understand.

The Largest Gap strategy has the picker entering an aisle as far as the
largest gap within the aisle, with a gap representing the distance between
any two adjacent picks, between the first pick and the front aisle, or between
the last pick and the back aisle. The largest gap is the part of the aisle that
the order picker does not visit, and if the largest gap is between two adja-
cent picks, the picker performs a return route from both ends of the aisle. If
a return route is needed, it can be taken from either the front or back aisle.
This method is particularly useful when switching aisles takes little time and
there are not many picks per aisle. In their study, Ho and Tseng [75] present
a new way to solve the picker routing problem by combining the largest gap
heuristic with a simulated annealing heuristic. Their proposed method is

14

more efficient than the largest gap heuristic alone.

In the Return strategy, the picker enters every aisle as far as the last pick
location and then returns back to the cross aisle and enters the next aisle.
After picking the last item from the last aisle, the order picker returns to the
front end of the aisle.

The combined heuristic uses both the Largest Gap and S-Shape heuristics.
This means an aisle is either fully traversed or entered and exited from the
same side. The best option is chosen between these two methods, and then
the next aisle is entered. This process is repeated until the last item is picked,
and the picker returns to the depot. The combined routing heuristic is one of
the best heuristic methods available and is provided in Roodbergen [137] and
Roodbergen and De Koster [136].

The S-shape and largest gap heuristics are the most commonly used rout-
ing policies in real warehouses. This is because order pickers prefer straight-
forward and easy-to-understand routing schemes.

In Petersen [127], more advanced heuristics are presented and their per-
formance is compared to the optimal algorithm. De Koster and Van Der Poort
[47] developed an algorithm for finding the shortest order picking routes in
a warehouse with decentralized depositing 1. In the same year, Roodbergen
and De Koster [138] provide three heuristics for different situations, includ-
ing a narrow-aisle warehouse used by order picking trucks. Vaughan [170]
present a routing heuristic that makes use of dynamic programming for ware-
houses with more than two cross aisles and studied the effect of warehouse
cross aisles on order picking efficiency.

Petersen and Aase [128] evaluate several picking, routing, and storage
policies to determine which policy or combination of policies would provide
the biggest tour reduction in total, considering four factors: picking policy,
routing policy, storage policy, and average order size.

In a recent study by Weidinger, Boysen, and Schneider [176] on the picker-
routing problem for mixed shelves warehouses, a nearest neighborhood heuris-
tic method is proposed. It considers a cart pushed by the picker that allows
for the assembly of multiple orders concurrently and multiple access points

1This refers to a layout where multiple depots and staging areas are distributed across multiple
locations or areas within the warehouse instead of having a central depot.

In this setup, order pickers can deposit the collected order list directly at the nearest avail-
able depositing point rather than having to transport them to a central location.

15

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

to the central conveyor system where completed orders are handed over. Fur-
thermore, Theys et al. [160] propose and compare the LKH (Lin–Kernighan)
TSP heuristic with some of the existing heuristics in the literature such as S-
shaped and largest gap and concluded that the LKH heuristic provides better
solution quality (closer to optimum), although its computation time is higher.

Various metaheuristic methods have been proposed in addition to the
heuristic methods discussed in the literature, such as genetic algorithms [11,
164], Ant Colony Optimization [96, 34, 48], particle swarm optimization [63,
149, 99], and tabu search [40]. Chabot et al. [33] use an adaptive large neigh-
borhood search (ALNS) to solve the order picker routing problem and com-
pare their proposed heuristic solution with four other existing heuristics in
the literature, namely S-shape, the largest gap, the mid-point, and the com-
bined heuristics, showing that the ALNS outperforms the other four heuris-
tics. Bódis and Botzheim [22] applied a bacterial memetic algorithm based
on pick list characteristics and order picking system characteristics to solve
the order picker routing problem. Recently, Zhou et al. [182] developed three
routing metaheuristics, namely a genetic algorithm, an ant colony optimiza-
tion, and a cuckoo search algorithm, to solve the order picker routing prob-
lem in non-conventional fishbone warehouses with narrow aisles and a sin-
gle storage system. The fishbone layout combines the conventional vertical
picking rows of a warehouse with a second set of horizontal picking rows,
which are separated by a V-shaped diagonal cross-aisle which traverses the
entire warehouse. Ardjmand, Bajgiran, and Youssef [7] investigated the or-
der picker routing problem using two genetic algorithms with a list-based
simulated annealing. Metaheuristic methods improve the performance of the
calculation method and reduce the running time by finding an approximate
solution for the problem.

2.3 Problem description

In this section, we model the warehouse lay-out as a graph GL and formulate
the problem of picking orders as a shortest (closed) walk problem on GL.
Then, we define a smaller graph GPL solely on the pick locations as vertices.
On this graph the problem can be defined as a TSP. The TSP problem is easier
to formulate and solve compared to the shortest walk problem. Afterwards,
in Section 2.4, we develop ideas to reduce the number of edges and vertices
in GPL drastically to obtain good solution times.

16

2.3.1 Graph representation of the warehouse layout

Standard, multi-parallel-aisle warehouses consist of a number of longitudinal
pick aisles, where product items can be picked, and intersecting cross aisles
that connect these pick aisles. In practice, the cross aisles do not contain any
items to pick but just allow the order picker to move efficiently from one pick
aisle to another. The items are stored on both sides of the pick aisles. Order
pickers are assumed to be able to traverse the aisles in both directions and to
change direction within the aisles.

Each order consists of a number of items that are usually spread over
multiple aisles. We assume that the items of an order can be picked in a single
round. The task of a picker is to find a route (a closed walk) that starts at a
depot, and then visits all picking locations, and ends at the depot again. This
route should, of course, be as short as possible.

Each standard warehouse lay-out is divided in a number of blocks. A
block is a row of pick aisles between two cross aisles. A detailed picture of
the standard warehouse lay-out is given in figure 2.2.

Figure 2.2: A standard warehouse lay-out (from Roodbergen [135]).

17

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

Though most warehouse lay-outs in the literature are indeed modelled
as the standard lay-out above, this is not a limitation. Other lay-outs, such as
the fish-bone lay-out, flying V, Chevron etc. have been researched too (see,
e.g., Çelik and Süral [32] and Figure 2.3). For our research, the lay-out does
not really matter: As long as it can be drawn in the plane (planar graph with
corner points of aisles as the nodes and the aisles as the edges), our results
apply. A planar graph is a graph which can be drawn on a 2D plane without
any of its edges crossing each other. Please note that the requirement for
the planar graph is only for the layout graph (GL). The GPL and the graph
resulted from the reduction may not be planar.

Figure 2.3: Two other warehouse lay-outs (from Celik and Sural [30]).

2.3.2 The pick location problem as a shortest walk problem

We model the lay-out of the warehouse with a graph GL = (VL, EL). Every
point in the lay-out where two or more aisles meet is a vertex in VL. Each aisle,
connecting two such vertices, is represented by an edge in EL. When picking
locations are added as vertices, each edge in EL is replaced by a path, which
might be the combination of edges if the aisle contains picking locations (see
figure 2.4). An edge in EL may or may not contain picking locations. This
brings us to the second part of the definition of GL: a second set of vertices is
defined by the pick locations.

For the standard lay-out described above, this results in a grid graph
with symmetric distance. For the fish-bone and other warehouse lay-outs the
graph is somewhat different. However, since all lay-outs are 2-dimensional
physical structures, GL is planar.

18

Now, every edge {v, w} ∈ EL containing pick locations is replaced by a
path as follows. Suppose that the edge {v, w} contains j − 1 pick locations
(p1, . . . , pj−1). Let v = p0 and w = pj . We now replace the edge {v, w} with
the path v = p0, p1, . . . , pj = w. So, besides adding the vertices p1, . . . , pj−1,
we also add the edges {pi−1, pi}, (i = 1, . . . , j) to EL. Note that the vertices
representing pick locations have degree 2 — which is important for the re-
mainder of our analysis.

A special vertex in VL is the depot, where we start and end the pick tour.

The graph GL for two example lay-outs is illustrated in Figures 2.4 and
2.5. Here, black dots represent pick locations and white dots represent corner
points of aisle.

Figure 2.4: Graph GL for standard warehouse lay-out (from [135, 32]).

Figure 2.5: Graph GL for a fish-bone warehouse lay-out (from [32]).

Each edge {v, w} ∈ EL has a length dvw, representing the actual distance
between the vertices v and w in the warehouse lay-out. Thus, this is simply
the length of the edge in the lay-out connecting v and w.

We then define the order picking problem as follows: find a shortest walk
in GL that starts and ends at the depot, visiting each vertex, representing a
pick location in VL, at least once.

19

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

2.3.3 Modelling the pick location problem as a TSP

The problem can be modelled as a TSP on a graph, containing only the nodes
of the pick locations. This graph GPL = (VPL, EPL) only contains the vertices
of GL that represent pick locations and the depot. Each edge {v, w} ∈ EPL

has a length that is the shortest distance between the pick locations v and w
in the lay-out graph GL. Please note that GPL may no longer stay planar.
In GPL, the problem is to find the shortest tour through all vertices, i.e., the
standard TSP problem. An example of transforming GL to GPL is illustrated
in figure 2.6

Figure 2.6: Transforming GL to GPL.

Distances in GPL if the underlying graph GL is from a standard lay-out

Consider the standard lay-out (see again Figure 2.4), where GL is a grid
graph. Let (xi, yi) be the coordinates of product location i, (i = 1, . . . , |VL).
Without loss of generality and to simplify notation we assume the direction
of x and y align with the cross aisle and pick aisle, respectively. To travel be-
tween two product locations i and j, the picker will always prefer the shortest
path. To calculate the length of each edge in GPL, which is the shortest path
between the two vertices (either a pick location or the depot) of the edge, we
do the following:

1. If both nodes (product locations) are in different blocks (different row
of aisles) the shortest distance between the two nodes is calculated as
the Manhattan distance, which is the rectilinear route measured along

20

parallels to the horizontal and vertical axes of the plane. The Manhattan
distance between two points with coordinates (x1, y1) and (x2, y2) is

d12 =| x1 − x2 | + | y1 − y2 | .

2. If both nodes (product locations) are in the same block (same row of
aisles), the shortest path has to go through one of the two cross aisles
adjacent to the block. The length of both possible paths is then deter-
mined and the shorter one is kept. Therefore, for two points with coor-
dinates (x1, y1) and (x2, y2) we will have

d12 = {min{γ1 + γ2, β1 + β2}+ | x1 − x2 |} = {| x1 − x2 | + | y1 − y2 | +2×min{γ1, γ2, β1, β2}}.

Here, γi, (i = 1, 2), is defined as the difference between the yi-coordinate
of each location with the cross node located above it, and βi, (i = 1, 2),
is defined as the difference between the yi-coordinate of each location
with the cross node located below it. A graphical sketch of the ware-
house lay-out for this case is illustrated in figure 2.7.

Figure 2.7: Distance of vertices in the same block, but different aisles.

2.4 Properties of the lay-out graph GL and the pick
locations graph GPL

In this section we do two things: reduction of vertices and reduction of edges
in GPL. First, we show that some pick locations need not be present in GPL.

21

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

Second, we show that there is an optimal walk in GL that can be translated
into an optimal tour in GPL, using only a very small portion of the edges in
GPL. Roughly speaking, we only need the edges of GPL that correspond to
shortest paths in GL with at most one intermediate pick location.

2.4.1 Visiting pick locations in GL

Following Pansart, Catusse, and Cambazard [125], there are three different
ways by which items in each aisle in a warehouse can be picked, as illustrated
in figure 2.8:

1. Visit the complete aisle in one direction (two ways). See 2.8a, and 2.8b.

2. Enter the aisle from one of the corner nodes until you reach the last
product location on the aisle and then return to the same corner node
(two ways). See 2.8c, and 2.8d.

3. Let the biggest gap between two pick locations be the one between pi−1

and pi. Enter the aisle from corner node p0 to pi−1 and return, and from
corner node pj to pi and return. See 2.8e.

Figure 2.8: Five different ways for aisle traversal (from [125]).

Consequently, there are at most 4 pick locations in each aisle [125]: the
ones closest to the corner nodes and the ones that have the biggest gap be-
tween them. Note that there can be fewer than four relevant pick locations
on an aisle, or some of the nodes could coincide. When removing irrelevant
nodes one should pay attention to the situation where the biggest gap may

22

move. (See figure 2.9) Meaning that by removing a node, the gap between the
remaining nodes in the aisle may get bigger than the initial gap. In that case
we take care of that in the model by adding constraints that force necessary
edges to be in the walk. To do this, we use the algorithm proposed by [125]
and do the following:

for every aisle do∣∣∣ - Compute the largest gap between two vertices∣∣∣ - Identify the two sets containing all products below and above the largest gap (call
them set T and set S). These sets can be empty or singleton.∣∣∣ - In each subset, keep the two products that are the farthest apart (t1, t2 ∈ T and
s1, s2 ∈ S)∣∣∣ - Add the constraints forcing the order picker to traverse each set once. (In the math-
ematical model it translates into the following constraints: ({s1, s2}+ {s2, s1} >= 1 if
s1 ̸= s2 and {t1, t2}+ {t2, t1} >= 1) if t1 ̸= t2.
In these constraints, {s1, s2} refers to the edges in set S connecting first and second
farthest products.
end

Figure 2.9: The change of largest gap and removing extra nodes in an aisle

2.4.2 Properties of an optimal walk in GL

Lemma 2.4.1. An optimal walk in GL = (VL, EL) that visits all pick locations at least once,
will not use any edge in GL twice, or more, in the same direction.

23

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

Proof. Consider a walk W . Let the edge e = {v, w} ∈ EL be used twice (or more)
in the direction v → w by W . Then, W contains two paths from w to v, say P1 and
P2. The walk is now: W = (v, w, P1, v, w, P2, v). Now, consider the walk W ′ =
(w,P1, v, P

−1
2 , w), where P−1

2 is the path P2 traversed in backward direction. W ′ is
shorter than W as it does not use the edge e anymore. Moreover, it visits every vertex
that W visits, using edges from W . Concluding, W cannot be optimal. The proof is
visualized in Figure 2.10.

Figure 2.10: Edge twice in same direction

In Kai and Chuanhou [81], a somewhat more complicated proof is given of this
lemma. From Lemma 2.4.1, we can conclude that in an optimal walk, every edge is
traversed at most twice. And if twice, then in opposite directions.

Lemma 2.4.2. If an optimal walk in GL = (VL, EL) uses the edge e = {ve, we} twice — in
opposite direction, as a consequence of the previous lemma — say, W = (ve, P1, ve, we, P2, we, ve),
then the paths P1 and P2 have no vertices of GL in common.

Proof. Suppose that a walk W contains e = {ve, we} twice (in opposite direction), and
that a vertex v ̸= ve, we is visited by both paths P1 and P2. Then the walk can be
described as

W = (ve, P
′
1 , v, P

′′
1 , ve, we, P

′
2 , v, P

′′
2 , we, ve)

Here: P1 = (P
′
1 , v, P

′′
1) and P2 = (P

′
2 , v, P

′′
2), where

P
′
1 is a path from ve to v.

P
′′
1 is a path from v to ve.

P
′
2 is a path from we to v.

P
′′
2 is a path from v to we.

24

From W we create a better walk W ′ as follows:

W ′ = (ve, P
′
1 , v, P

′′
2 , we, P

′
2 , v, P

′′
1 , ve)

W ′ visits all vertices of W , but does not use the edge e = {ve, we} anymore and
thus, it is shorter. See a visual of this proof in Figure 2.11.

Figure 2.11: No alternating edges

As a corollary we now have the following Theorem.

Theorem 2.4.3. Consider an optimal walk W in GL = (VL, EL) that visits the pick location
v1 twice. If there is a vertex v in W , also visited twice, then these locations are not visited in
an alternating way, i.e., W = (v1, P1, v, P2, v1, P3, v, P4, v1) is not possible.

Note that P1 and P3 denote paths from v1 to v and P2 and P4 are paths from v to
v1.

The proof of this theorem leans on the fact that the pick location vertices have
degree 2 in GL. This applies for any practical lay-out, due to the fact that the pick
location vertices lie on a path representing an aisle between the two corner vertices of
the aisle.

Proof. If vertex v1 is visited twice, then both incident edges must be used twice (each
in opposite direction): If only one incident edge is visited twice, or both edges are
visited once, then v1 is visited only once.

Consider one of the two edges, say e1 = {v1, v2}. Now, the optimal walk W can
be described as W = (v1, P1, v1, e1, v2, P2, v2, e

−1
1 , v1). According to lemma 2.4.2, the

paths P1 and P2 have no vertex in common. Thus, a vertex v ̸= v1, v2 that occurs twice
in W , does so either twice in P1 or twice in P2.

25

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

This brings us to the conclusion that all vertices in the optimal walk that are
visited twice are not alternating. For a specific vertex, say v, this means that, in the
walk (v, P1, v, P2, v) the occurrence of the other vertices visited twice are either both
in P1 or both in P2. Thus, the occurrence of the vertices has a nested structure. See
the visualization in Figure 2.12. In this figure, the circle represents the complete walk
W . Each piece between two connected vertices (red lines) on the circle represents a
subpath of W , with only vertices that are visited exactly once by W .

v1

v6

v6
v7

v8

v8
v7

v1
v4

v2

v3

v3

v2

v4
v5

v5

Figure 2.12: No alternating vertices (the nested structure of the occurrence of the vertices in
the walk

In case a vertex v has degree higher than 2, theorem 2.4.3 does not apply, since
the theorem uses that if a node is visited twice then an edge is visited twice, and this
need not be true when a vertex has degree higher than 2.

However, for a node with degree higher than two, we can take one of its incident
edges and move it up that edge a small amount ϵ. Then, we can apply the previous
theorem again (see figure 2.13), as all vertices of GPL have degree 2 again in GL. This
may not be useful to the picker routing problem that we treat, but it is helpful for the
TSP problem in general planar graphs.

Figure 2.13: From degree > 2 to degree = 2

26

2.4.3 From an optimal walk in GL to an optimal TSP tour in GPL

Figure 2.12 illustrates an example of how pick locations appearing twice could be on
the optimal walk W in GL. Each connection between two such vertices is a path in
GL with possibly some vertices that occur exactly once. We shall transform the walk
W into a tour on the pick locations only, e.g., the vertices in GPL. In doing so we only
use a limited set of edges in GPL.

We start with removing the vertices of W that are not pick locations. Every sub-
path that begins and ends with a pick location — with no other intermediate pick
locations — is replaced by a single edge. This results in a walk W ′ in GPL: the vertices
are only pick locations, and the edges connect two pick locations. This walk is optimal
as the ”contracted” sub-paths are shortest paths in GL with the same length. The pick
locations that occur twice in W also appear twice in the new walk W ′. Our next step
is to remove one of the two occurrences of these vertices.

First, we number the occurrences of these doubly occurring vertices in the order
that we visit them on the walk W ′. See figure 2.14. Now note that due to theorem
2.4.3, the two occurrences have different parity: one has an odd number, the other an
even number. Next, each occurrence of a vertex with an even number is removed by
connecting the neighbor pick locations (independent of whether these occur once or
twice in the walk) with a direct edge. Note that this edge is present in GPL. Now, the
new walk contains only edges of EPL. Moreover, the edges that we use have at most
one pick location on the path in GL. Finally, each pick location is now visited exactly
once. Thus, not only is the walk a tour in GPL, but it only uses edges on which at
most one intermediate pick location is present. Thus, in solving the TSP problem of
GPL, we can restrict ourselves to using such edges only.

1

2

3

4

5

6

7
8

9

10

11

12

13

14
15 16

Figure 2.14: No alternating vertices.

In figure 2.15, we translated the lay-out graph GL to the graph GPL with only the
edges needed to find an optimal TSP tour. The figure illustrates how the graph GPL is

27

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

reduced to a graph with a much smaller amount of edges than in the complete graph
GPL. The depot node V1, for example, is not connected to the product locations v19,
v20 and v21, since there exist more than one pick locations on the possible shortest
paths between them.

V1 V2 V3 V4 V5

V6 V7 V8 V9 V10

V11 V12 V13 V14 V15

v16

v20
v18

v17

v21

v19

(a) GL warehouse layout.

V1

v16

v20
v18

v17

v21

v19

(b) GPL with reduced set of edges.

Figure 2.15: Graph reduction example

2.5 Mathematical formulation
We now formulate the proposed exact picker routing model described above using the
model presented in [114]. In this model, we are looking for the shortest tour in GPL

such that the order picker visits all the ordered product locations only once, starting
and ending from the depot. VPL refers to all the vertices of the GPL (product lo-
cations). The problem is formulated as a traveling salesman problem (TSP). Remark:
Common practice is that nodes in mathematical formulations are described with in-
dices i and j, rather than the descriptions v and w. In the sequel we shall do that as
well. Nodes 0 and n+ 1 are considered to be the visiting order of the depot in the be-
ginning and the end of the tour. The mathematical model for the general TSP problem
is as follows:

28

Table 2.1: Notation for TSP model.

Parameters
dij Distance between nodes indexed i and j.

Decision variables
xij Binary variable, 1 if arc (i, j) is traversed by the picker; 0 otherwise.
ui Position of node i in the pick tour.

min
∑
i,j

dijxij (2.1)

s.t.∑
i:i ̸=j

xij = 1 ∀j ∈ VPL (2.2)

∑
j:j ̸=i

xij = 1 ∀i ∈ VPL (2.3)

ui − uj + n ∗ xij ≤ n− 1 ∀i, j ∈ VPL (2.4)

u0 = 0 (2.5)

un+1 = n+ 1 (2.6)

u ∈ Z, xij ∈ {0, 1} ∀i, j ∈ VPL (2.7)

The objective function (2.1) minimizes the total distance travelled by the picker.
Constraints (2.2) and (2.3) force the order pickers to enter and exit every location ex-
actly once, respectively. Constraints (2.4) eliminates sub-tours by allocating an index
to each visited location. In constraints (2.5) and (2.6) the depot is initiated as the start
and the end of the tour, respectively. Finally, constraints (2.7) set the domain of the
decision variables.

2.6 Model implementation and numerical results
To test the performance of our graph reduction approach, we perform a set of com-
putation experiments on two different benchmark, single block instances from Scholz
et al. [147] and multi-block instances from Theys et al. [160].

The mathematical model presented in this paper is implemented in GAMS 24.2
and solved using IBM CPLEX 12.6. All experiments are run on on a 11th Gen In-

29

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

tel(R)Core i5-1135G7@2.0GHz and 8GB of RAM. The computing time for each instance
is limited to 30 minutes. The CPLEX version and the computer used is well-matched
with the ones used in [147] and [125], so that the computational time comparison is
fair.

2.6.1 Single block: comparison with instances presented in
[147]

The numerical results using the first benchmark instances from [147] containing only
a single block (two cross aisles) are given in table 2.3. In this table, the two parameters
given as m and n, are the number of aisles and the number of items in the order list
respectively. Furthermore, the column R− edges refers to the number of edges in the
graph after the reduction is implemented. We solved each instance 10 times and put
the average results in the table 2.3. The numerical results of from [147] are presented
in the last column.

As shown in this table, the average graph reduction in comparison to the TSP
model (complete graph without reduction) is 72.85%, which is significant. Further-
more, for all of the instances, our model gives the optimal solution almost instanta-
neously. The maximum computation time for the biggest instance (with 30 aisles and
90 products) is 7.6 seconds, which is considerably less compared to 786.29 seconds by
[147].

Furthermore, the authors extended their work to present a new MILP and graph
reduction method for the larger warehouses with 2 and 3 blocks. [146]. However, for
some of the larger instances with more than 15 aisles, their algorithm is not able to
find the optimal solutions within the time limit of 30 minutes. More precisely, for 10%
of the instances with only 3 blocks, no optimal solutions were reported. However, we
will show in the next section that our model with the help of the pre-processing phase
is able to solve much larger instances in a very short time.

2.6.2 Multi-block: Comparison with the instances presented in
[125]

The second benchmark is from [125] and consists of 9 different scenarios: three dif-
ferent numbers of aisles (5,15,60), three different numbers of cross-aisles (3,6,11) and
three different numbers of products in the order (15,60,240). We solve these instances
on the multi-block warehouse. The results are presented in table 2.4. In this table, the
column ”Concorde” refers to the running time using Concorde solver on a complete
graph (before reduction) and the column ” Concorde+” refers to the running time us-
ing Concorde on the reduced graph. This helps us better understand the effect of our
reduction algorithm on the Concorde solver. It is shown that our algorithm is still

30

Table 2.3: Numerical results of proposed model on different instances
m-n Time (s) VarNum ConNum Initial edges R-edges Reduction(%) Shcolz(s)

5-30 0.031 68 93 435 21 95 0.09
5-45 0.046 76 101 990 29 97 0.09
5-60 0.063 84 109 1770 41 97 0.09
5-75 0.081 92 116 3492 50 98 0.09
5-90 0.109 100 125 4005 64 98 0.10

10-30 0.047 256 301 435 136 68 1.60
10-45 0.110 274 319 990 145 85 1.03
10-60 0.125 292 337 1770 191 89 1.42
10-75 0.281 360 413 2775 213 92 1.36
10-90 0.906 376 423 4005 220 94 0.62
15-30 0.479 456 504 435 167 61 2.29
15-45 1.187 576 631 990 247 75 5.28
15-60 2.297 620 685 1770 346 80 10.64
15-75 2.337 698 782 1914 391 79 15.10
15-90 2.508 730 813 2106 438 79 19.41
20-30 1.225 438 484 435 315 27 10.57
20-45 1.391 812 878 990 349 64 27.32
20-60 1.651 1016 1091 1770 476 73 114.33
20-75 1.981 1030 1108 2775 495 82 216.63
20-90 3.023 1046 1129 4005 679 83 485.71
25-30 0.911 618 672 435 206 52 54.46
25-45 2.160 1090 1178 990 377 62 85.46
25-60 2.425 1270 1353 1770 588 66 258.92
25-75 3.063 1346 1437 2775 703 74 527.39
25-90 4.469 2106 2213 4005 939 76 646.59
30-30 3.234 626 681 435 348 20 204.18
30-45 5.547 1176 1250 990 511 48 406.19
30-60 6.328 1906 2007 1770 627 64 508.80
30-75 7.042 2409 2521 2775 833 70 638.89
30-90 7.601 2862 2981 4005 997 75 786.29

31

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

very effective when using Concorde solver by reducing the running times. The col-
umn ”Total arcs” and ”Reduced arcs” refer to the number of arcs in our graph, before
and after implementing the proposed reduction algorithm. As it is shown in the ta-
ble 2.4, our method is able to solve all the multi-block instances optimally in less than
70 seconds with CPLEX and in less than 5 seconds with Concorde.

Table 2.5 illustrates the number of unsolved instances within the 30 minutes time
limit both for [125] and our proposed method. In this table, SCFS+ stands for the
standard single commodity flow formulation with pre-processing and the additional
valid inequalities and PDYN refers to a dynamic program, both proposed by [125].

As it is shown in this table, [125] are not able to solve larger instances with 240
products or more than 6 cross-aisles (15-11-240, 5-11-240, 60-11-240, 60-3-240, 60-6-
240). Furthermore, their proposed dynamic program is very efficient for the small
instances, however, it is not scalable and it becomes intractable for instances with
more than 6 cross-aisles. Our model, however, is able to solve all the instances to
optimality within the time limit.

Moreover, the average computation time (in seconds) for these instances are pre-
sented in table 2.6. In this table, SCFS+, PDYN, CDE and CDE+ refer to the ingle
commodity flow formulation, dynamic programming, Concorde and Concorde after
reduction times respectively in [125]. CPLEX+, our CDE and Our CDE+ refer to the
running times with CPLEX using reduction method, Concorde times before and af-
ter implementing our reduction algorithm respectively. Our Concorde times before
reduction is lower that the ones in [125]. However, it can be seen that the Concorde
times after reduction for both our reduction and algorithm and the one presented in
[125] are equal on average. It is shown that the average running time for the largest in-
stance solved in less than 30 minutes for [125] is 111.64 seconds which is 3 times larger
than our results in CPLEX. Comparing the running times using CPLEX solver, the av-
erage computation time for our model is 16.40 seconds for all the instances which is
55% lower than their proposed single commodity flow formulation solved by CPLEX.

It is worth mentioning that the lower total average time for the dynamic program
model for [125] is due to the fact that this model is only able to solve the smaller in-
stances. Moreover, dynamic programming is not ideal for problems with constraints
such as precedence, flow directions, or multiple depots: a MILP better addresses
such requirements [125]. Furthermore, horizontal and vertical components employed
in dynamic programming cannot be used in general warehouses (does not consider
aisles), however our algorithm is applicable on any warehouse layout with planar
graph. Furthermore, the SCFS+ model proposed in [125] uses ”warm start” or an
initial upper-bound obtained by LKH (Lin–Kernighan–Helsgaun) algorithm which
affects their computational time. There are other aspects in addition to the running
time, which make our algorithm more effective. The main advantage of our method

32

Table 2.4: Numerical results of the proposed model on different instances
Aisles Cross aisles Products CPLEX(sec) Concorde(sec) Concorde+(sec) Total arcs reduced arcs reduction%

5 3 15 0.25 0.02 0.01 105 61 41.9
5 3 60 1.84 0.22 0.18 1770 375 78.8
5 3 240 5.36 1.57 1.09 28680 797 97.2
5 6 15 0.14 0.02 0.01 105 67 36.2
5 6 60 2.16 0.17 0.09 1770 399 77.5
5 6 240 11.3 3.81 1.28 28680 1188 95.9
5 11 15 0.23 0.03 0.02 105 72 31.4
5 11 60 5.97 0.16 0.09 1770 403 77.2
5 11 240 15.42 5.87 3.95 28680 1309 95.4
15 3 15 0.27 0.01 0.01 105 77 26.7
15 3 60 9.28 0.29 0.16 1770 436 75.4
15 3 240 25.32 7.23 4.72 28680 4062 85.8
15 6 15 0.09 0.03 0.02 105 82 21.9
15 6 60 10.27 0.31 0.26 1770 567 68.0
15 6 240 42.09 8.21 5.23 28680 4139 85.6
15 11 15 0.38 0.02 0.01 105 83 21.0
15 11 60 19.38 0.22 0.16 1770 556 68.6
15 11 240 49.32 9.52 3.77 28680 4454 84.5
60 3 15 0.28 0.03 0.02 105 81 22.9
60 3 60 14.28 0.16 0.12 1770 656 62.9
60 3 240 55.92 10.34 5.81 28680 7974 72.2
60 6 15 0.25 0.01 0.01 105 83 21.0
60 6 60 18.55 0.34 0.18 1770 734 58.5
60 6 240 61.48 11.18 5.75 28680 9468 67.0
60 11 15 0.19 0.01 0.01 105 82 21.9
60 11 60 24.33 0.29 0.23 1770 858 51.5
60 11 240 68.24 12.19 4.41 28680 10374 63.8

Table 2.5: Number of unsolved instances after 30 minutes. Benchmark against [125]
Total # aisles # cross-aisles # products

5 15 60 3 6 11 15 60 240

SCFS+ 18 1 4 13 1 2 15 0 0 18
PDYN 90 30 30 30 0 0 90 30 30 30
Our method 15 0 6 9 4 5 6 0 1 14

instances 270 90 90 90 90 90 90 90 90 90

is the simplicity of the model (TSP), with lower number of constraints and variables
and it can be easily implemented without using complex computer programs.

We further compare the number of arcs and the reduction percentage for our
proposed graph reduction algorithm and the one presented in [125]. The results are
presented in table 2.7. As it is shown in this table, our proposed graph reduction
algorithm performs really well with an average reduction of 60% for all the instances.
When comparing the number of arcs in the graph, we can see that these numbers both
for before and after reduction are very higher (on average 3.6 times higher) than the
number of arcs in our graph which is very considerable. In the algorithm proposed
by [125], the number of arcs after reduction are on average 33% of the total arcs before
reduction. However this number for our algorithm is 15% which is much lower.

33

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

Table 2.6: Average computation time (seconds) for instances solved in 30 minutes. Benchmark
against [125].

Total # aisles # cross-aisles # products

5 15 60 3 6 11 15 60 240

SCFS+ 36.07 23.89 56.96 27.12 3.44 35.88 71.69 0.07 4.05 111.64
PDYN 0.27 0.05 0.16 0.61 0 0.54 - 0.24 0.27 0.30
CDE 6.86 17.61 2.11 0.88 14.82 3.89 1.88 0.01 0.13 20.45
CDE+ 1.6 3.45 1.04 0.30 2.20 1.55 1.04 0.01 0.1 4.68
Our Cplex+ 16.40 4.85 17.37 27.05 12.53 16.27 20.38 0.23 11.78 37.16
Our CDE 4.34 4.21 3.98 4.84 3.87 5.34 3.81 0.02 0.24 12.77
Our CDE+ 1.6 1.08 1.93 2.25 1.78 1.98 1.52 0.01 0.16 4.00

Table 2.7: Average number of arcs in TSP graph and Steiner graph, with and without pre-
processing. Benchmark against [125].

Total # aisles # cross-aisles # products

5 15 60 3 6 11 15 60 240

TSP 20580 20580 20580 20580 20580 20580 20580 240 3660 57840
TSP+ 6676 2319 6042 11665 3744 7238 9046 217 2350 17460
Reduction% 68 89 71 43 82 65 56 9 36 70
Our TSP 11018 11435 11435 11435 11435 11435 11435 105 1770 28680
Our TSP+ 1830 519 1606 3367 1613 1858 2021 76 553 4862
Our Reduction% 60 70 60 47 63 59 57 27 69 83

34

Table 2.8: Numerical results of the proposed model on different instances with three blocks and
comparison with [146]

m-n CPLEX Time(sec) Scholz time(sec)

5-30 0.51 0.37
5-45 0.63 0.40
5-60 0.76 0.44
5-75 0.90 0.47
5-90 0.106 0.56
10-30 0.71 1.57
10-45 0.88 1.83
10-60 0.94 1.79
10-75 1.29 2.31
10-90 2.37 3.16
15-30 4.89 14.00
15-45 6.27 6.44
15-60 7.69 7.20
15-75 10.73 17.79
15-90 12.04 14.00
20-30 6.02 7.25
20-45 8.45 17.06
20-60 11.22 66.37
20-75 13.09 100.81
20-90 14.64 108.43
25-30 7.18 18.47
25-45 9.27 22.50
25-60 13.64 93.28
25-75 15.07 170.96
25-90 16.72 205.47
30-30 11.08 71.38
30-45 14.50 58.65
30-60 16.66 232.28
30-75 18.03 155.85
30-90 21.78 339.70

35

Chapter 2. Graph reduction for the planar Travelling Salesman Problem.
An application in order picking

2.7 Concluding Remarks
This study aimed to develop an efficient algorithm for the planar TSP, specifically for
the order pickers routing problem in a multi-block warehouse layout. While exact
algorithms for small warehouses exist in the literature, solution algorithms for larger
warehouse layouts often rely on (meta)heuristic approaches.

The proposed algorithm utilizes graph reduction to eliminate unnecessary ver-
tices and edges from the graph (The network size reduction achieved by our algorithm
for a single block warehouse was, on average, 72.85% and for multi-block warehouses
60%), resulting in a significant reduction in computation time. This approach is ap-
plicable to any warehouse layout presented as a planar graph, making it practical for
real-world applications.

To solve the routing problem, a general TSP model was used. The algorithm was
implemented on various problem instances from the literature, and its performance
was compared with existing methods. The results showed that the proposed algo-
rithm performs really well and compared to the existing methods in the literature, our
method is better in terms of simplicity, size, and calculation time. Overall, the results
indicate that the proposed algorithm is a promising approach for solving the Steiner
TSP in a planar graph with an application in order pickers routing problem in multi-
block warehouse layouts. This algorithm can be applied on any other problem with
the same graph structure which makes it very efficient and practical.

36

3
The order picking problem under a

scattered storage policy

Adapted from: [. Rajabighamchi, van Hoesel, and Defryn [133]]

37

Chapter 3. The order picking problem under a scattered storage policy

Abstract
When warehouses are operated according to a scattered storage policy, each Stock
Keeping Unit (SKU) is stored at multiple locations inside the warehouse. Such a con-
figuration allows for improved picking efficiency, as now an SKU can be picked from
the location that is most compatible with the other SKU’s in the picking batch. Seizing
these benefits, however, comes at the cost of additional decisions to be made while
planning the picking operations. Next to determining the sequence in which SKU’s
will be retrieved from the warehouse, the location at which each SKU needs to be
extracted has to be chosen by the planner. In this chapter, we model the order pick-
ing problem under a scattered storage policy as a Generalized Travelling Salesperson
Problem (GTSP). In this problem, the vertices of the underlying graph are partitioned
into clusters from which exactly one vertex should be visited in each cluster. In our
order picking application, each cluster contains all product locations of a single SKU
on the order list. The aim is to design a pick tour that visits all product locations
of the SKU’s on the pick list (i.e., visit each cluster exactly once) and minimizes the
total travel distance. We present an ILP formulation of the problem and a variable
neighbourhood heuristic, embedded in a guided local search framework. The perfor-
mance of both methods is tested extensively by means of computational experiments
on benchmark instances from the literature.

38

3.1 Introduction
In recent years, the advent of e-commerce and the relentless pursuit of customer sat-
isfaction have reshaped the logistics and warehouse management paradigms. Ware-
houses are no longer perceived merely as storage spaces but as dynamic hubs requir-
ing precision and agility in their operational strategies. One critical aspect of ware-
house management that significantly influences overall efficiency is the order picking
process. As the heartbeat of warehouse operations, order picking involves retrieving
products (in the remainder of the chapter referred to as SKUs) from storage locations
to fulfill customer orders accurately and promptly [46, 168]. The choice of a storage
policy profoundly impacts the order picking process, and one such policy that has
gained attention for its potential benefits is the Scattered Storage Policy, where items
are dispersed across the warehouse based on factors such as demand patterns, prod-
uct characteristics, and frequency of retrieval.

The problem of finding the optimal pick tour (i.e., a minimum cost / length tour
that starts and ends at the depot and visits all SKU locations from the current pick list)
is closely related to a variant of the Travelling Salesperson Problem (TSP). Often, a
Steiner TSP formulation is used, in which aisle intersections are added as intermediary
nodes that could (but should not) be part of the tour.

In this chapter, we study the order picking problem in combination with a scat-
tered storage policy [74]. As nowadays warehouse operations are commonly sup-
ported by warehouse management software, there is no real need to group all SKUs
of a certain type at the same storage location. Incoming SKUs can be put away at
any available storage location from which they can be retrieved once ordered. Conse-
quently, SKUs are scattered around the different storage locations and each SKU becomes
available at different locations within the warehouse and each storage location con-
tains only one SKU.

The adoption of the Scattered Storage Policy is driven by several compelling ad-
vantages. First, it introduces enhanced flexibility and adaptability, allowing ware-
houses to easily adjust to changes in product demand, inventory size, and SKU vari-
ability. Unlike traditional centralized storage systems, scattered storage permits a de-
centralized arrangement, optimizing space utilization and maximizing storage capac-
ity. The dispersion of products minimizes the likelihood of congestion and bottle-
necks, leading to smoother order picking processes and enhanced overall warehouse
throughput. Moreover, scattered storage improves accessibility and retrieval speed,
strategically distributing items for quicker retrieval. This not only reduces travel
distances for order pickers but also contributes to faster order fulfillment times, ul-
timately enhancing customer satisfaction through timely deliveries. Moreover, the
Scattered Storage Policy facilitates adaptation to variable demand profiles, allowing
warehouses to dynamically respond to changes in customer preferences and market
trends.

39

Chapter 3. The order picking problem under a scattered storage policy

Under such scattered storage policy, the construction of the pick tours combines
the decision on the storage location from which the required SKUs will be picked with
the generation of optimal pick tours in which these selected locations are visited. As
out of all available storage locations for each SKU the decision maker can select the
location that is most compatible with that of all other SKUs to be picked within the same
tour, more efficient pick tours can be constructed.

This chapter contributes to the academic literature on warehouse operations in
the following ways:

• Denoting all storage locations from which an SKU can be picked as a cluster
from which exactly one location should be visited to pick the corresponding
SKU, we formulate the order picking problem under a scattered storage policy
as a Generalized Travelling Salesperson Problem (GTSP).

• We present an improved ILP formulation for the GTSP and prove its perfor-
mance against state-of-the-art formulations by means of extensive computa-
tional experiments.

• To allow for scalability and solve larger problem instances fast, we present a
guided local search heuristic for which we obtain very competitive results.

The remainder of the chapter is organized as follows: we discuss the relevant
literature in section 3.2. In section 3.3 we formally define the generalized traveling
salesman problem for the order picking problem under a scattered storage policy. Sec-
tion 3.4 details our Guided Local Search algorithm for solving the problem after which
we test the performance of our formulations and benchmark our heuristic solution ap-
proach against the current state-of-the-art in Section 3.5. Finally, we summarize our
main conclusions in Section 3.6.

3.2 Literature Review
3.2.1 The order picking problem

Due to its importance in the domain of warehouse operations, the order picking prob-
lem has received significant attention in the past decades [107, 124, 1, 169]. The main
body of research on the modelling of order picking problems relies on the mathemati-
cal formulation of the Travelling Salesperson Problem (TSP) or the capacitated vehicle
routing problem. We divide the existing literature in contributions that focus on exact
methods and those that present heuristics.

Almost all of the exact algorithms addressed in the literature for the order picker
routing problem, are applied in single-block warehouses. Ratliff and Rosenthal [134]
is one of the earliest studies on the optimal order picker routing problem. In this

40

study, the authors introduce a dynamic programming approach for a warehouse lay-
out with only one block (i.e., no cross aisle), which is polynomial in the number of
items and aisles. This approach is extended for a two-block warehouse (i.e., one cross
aisle) in Roodbergen and De Koster [136] and to a multi-block warehouse (i.e., more
than one cross aisle) in Cambazard and Catusse [25]. There exist several extensions
to the algorithm proposed by [134], each accounting for slight variations in the prob-
lem definition. One of these extensions is the study by Žulj et al. [183]. Here, the
authors account for precedence constraint with respect to the picking sequence of the
SKUs, based on, e.g., their weight, category, etc. Celik and Süral [31] add additional
turn penalties to model that account for the loss of time (speed reduction) each time a
picker changes direction within a picking aisle.

The studies by Letchford, Nasiri, and Theis [95], Scholz et al. [147], and Pansart,
Catusse, and Cambazard [125] rely on the definition of the Steiner TSP to model the
order picker routing problem. In these models, the warehouse is represented by a
graph in which the nodes are the union of all SKU storage locations, the depot and all
aisle intersections (as these are the main decision points on the route of the picker).

Chabot et al. [33], Irnich, Toth, and Vigo [79], Scholz et al. [147], and Glock and
Grosse [61] model the order picking problem as a vehicle routing problem which they
solve using branch-and-cut.

For the online order picking problem (i.e., new customer orders arrive over time)
Lu et al. [104], Cambazard and Catusse [25], Matusiak et al. [110], and Masae, Glock,
and Vichitkunakorn [108] present a dynamic programming formulation.

Apart from these exact methods — which quickly become intractable for increas-
ing instance sizes — a wide range of heuristics and metaheuristics have been devel-
oped to solve the order picking problem. According to Masae, Glock, and Grosse
[107], (meta)heuristic algorithms account for around 85% of all contributions on the
order picker problem.

The best known heuristic algorithms are the S-shape heuristic, the largest gap heuris-
tic and the midpoint routing method [68, 28]. Hybrid extensions of these algorithms have
been suggested by Chabot et al. [33], Menéndez et al. [113], Matusiak, De Koster, and
Saarinen [109], and Chen, Xu, and Wei [35].

Scholz and Wäscher [148], Theys et al. [160], and Hsieh and Tsai [77] rely on a
TSP formulation of the order picking problem which they solve using the well-known
Lin-Kernighan (LKH) heuristic [101, 71].

Pferschy and Schauer [129] consider different starting and ending points for each
pick tour and proposed three heuristics based on different insertion methods com-
bined with a 3-opt local search.

In the majority of the cases, (meta)heuristics have been employed to solve com-
bined problems that integrate order picking with order batching (i.e., group multiple

41

Chapter 3. The order picking problem under a scattered storage policy

orders together to be picked in a single pick tour, especially useful in e-commerce en-
vironments where order sizes are rather small) and batch sequencing (i.e., in which
order should the constructed batches be picked such that average or worst response
times are minimized). Examples include particle swarm optimization [99, 8], memetic
algorithms [22, 22], ant colony optimization [36, 96, 48, 34, 35], genetic algorithms [182, 7]
and tabu search [40].

3.2.2 The Generalized Travelling Salesperson Problem

The Generalized Travelling Salesperson Problem (GTSP) is defined as an extension of
the Travelling Salesperson Problem in which the nodes are partitioned into clusters.
To serve a cluster it is sufficient that exactly one node of the cluster is visited. The aim
is to find a minimum cost / length tour that visits each cluster exactly once.

The GTSP is first introduced by [73]. Since then, the problem has been used
to model a wide range of real-life problems [89], such as scheduling problems [17],
vehicle routing problems [177], manufacturing problems [156, 76, 90] and telecommu-
nication network design [18].

To solve the GTSP exactly, the problem can be converted into a TSP using dy-
namic programming, after which it can be solved using dedicated TSP solvers [122].
In the transformed graph, each arc represents the shortest path between each pair of
product locations from the original graph, changing the problem into a clustered TSP
with a fully connected directed graph, which is afterwards altered into a standard
TSP. Such a transformation, however, drastically increases the problem’s dimension
(in some cases by a factor three or more) [93, 97].

Baniasadi et al. [15] develop a transformation method that is able to convert the
Clustered GTSP to a TSP. A Clustered GTSP is defined as a GTSP where in each cluster
is further subdivided in multiple sub-clusters that have to be visited consecutively.
As the Clustered GTSP reduces to the GTSP with only one sub-cluster per cluster, the
transformation method can be applied to turn the GTSP into a TSP instance.

[92, 91] propose a branch-and-bound algorithm to solve the GTSP. In [92] the
authors present a first integer programming formulation for the symmetrical GTSP. In
Laporte, Mercure, and Nobert [91], the model is extended to the asymmetrical GTSP.
In Salman, Ekstedt, and Damaschke [143] a branch-and-bound algorithm is combined
with dynamic programming to solve the GTSP with precedence constraints (i.e., some
locations have to visited before others) after which they present a comparison between
different bounding methods for this problem.

A branch-and-cut strategy is applied by Fischetti, Salazar González, and Toth
[56] for the symmetric GTSP. The authors solve a series of LP relaxations while adding
valid inequalities to tighten the lower bound using a heuristic algorithm.

42

[121] develop a Lagrangian based approach to transfer the asymmetric GTSP into
an asymmetric TSP. Relying on the principles of the Lagrangian relaxation — which
removes the flow balancing constraints and adds the corresponding terms to the ob-
jective function, making sure that the optimality conditions of the original problem
remains — a lower bound to the problem is computed. To find an upper bound, a
heuristic algorithm is employed that removes arcs and nodes. This is done by com-
puting the optimal dual solution, the reduced arc costs and their effect on the objective
value.

A broad range of heuristic algorithms have been proposed for the GTSP. Similar
to what we see for the exact methods, a first group of heuristics relies on a transforma-
tion of the GTSP into an asymmetric TSP, e.g. by means of a Noon-Bean transformation
[20]. Amongst others, the Noon-Bean transformation is used in Helsgaun [72] after
which the obtained TSP is solved using the Lin–Kernighan heuristic [101].

Karapetyan and Gutin [83] propose an adaptation of the Lin–Kernighan heuristic
for solving the GTSP with non-overlapping clusters directly, by rearranging the path,
breaking the path and improving the tour.

Multiple researchers rely on a local-search based algorithm for solving the GTSP
by applying the 2-Opt, 3-Opt, and k-Opt operators [100, 23, 180, 86, 67].

Hu and Raidl [78] present a variable neighbourhood search including a gener-
alized 2-opt neighborhood to speed up the search and node exchanges based on the
Lin-Kernighan heuristic.

[153] propose a large neighbourhood search based on repeated worst removal
and the cheapest insertion of the vertices from and into the tour. In each iteration, one
would look for the removal operation (i.e., take out one node in the tour) that reduces
the tour length the most. The node is then inserted at the position where it increases
the tour length the least.

Other heuristics that have been developed for the GTSP include genetic algo-
rithms [181, 154, 152], memetic algorithms [66, 23], Particle Swarm Optimization [151]
and Ant Colony Optimization [180].

Existing models and algorithms developed for the GTSP mainly rely on the im-
plicit assumption that clusters are defined geographically, i.e., clusters do not overlap
in the geographical space [54]. Consequently, inter-cluster distances (defined as the
distance between two sets of points) can be used as a proxy for the distance between
two arbitrary vertices from different clusters and a tour can be constructed first at the
cluster level.

Grouping different SKU locations within a warehouse in the same cluster, how-
ever, violates this principle and will give rise to an overlapping graph. El Krari et al.
[54] define overlapping clusters as those that share a geographical space (i.e., when
drawing their borders, they find themselves intertwined). To the best of knowledge,

43

Chapter 3. The order picking problem under a scattered storage policy

only Nalivajevs and Karapetyan [120] consider the order picking problem within a
scattered storage policy. The authors developed an instance generator and propose a
conditional Markov chain search that combines different algorithms to solve the problem
at hand. However, the scope of this algorithm is still limited, limiting the instances to
single-block warehouse layouts and making them not very representative for today’s
warehouses.

3.3 A Generalized TSP formulation for order picking
under a scattered storage policy

In this section, we formally define the order picking problem under a scattered storage
policy. We first introduce the mathematical notation associated with the warehouse
layout. Then, we model the problem as a generalized TSP. Finally, we present an
improved mathematical formulation for the GTSP.

3.3.1 Representation of the warehouse layout

We assume a traditional multi-parallel aisle (rack and shelf) warehouse that contains
a predefined number of pick aisles where SKUs are stored. Additionally, the ware-
house contains a given number of intersecting cross aisles that do not contain any
SKUs but can be used by the picker to travel efficiently between different pick aisles.
As such, the warehouse is divided in a number of blocks, defined as a row of pick
aisles between two cross aisles. Moreover, there is a depot located in the front of the
warehouse where the picker starts and ends each pick tour (the depot could be seen
as the packing area where all picked items are collected and prepared for shipment).

Adopting the common assumptions proposed by Pansart, Catusse, and Cam-
bazard [125], all aisles have equal lengths and are sufficiently narrow such that pickers
can pick from both sides while traversing the aisle (i.e., there is no additional delay
for changing the pick side). Additionally, pickers can travel through the aisles in any
direction and are able to change direction within the aisles if preferred.

Let G = (V ,E) be the graph representation of the warehouse, in which V de-
notes the set of all vertices (SKU locations and the depot) and E is the set of all edges.
The depot, included in the set V is denoted by ”0”. For all (i, j) ∈ E, dij denotes the
distance between storage locations i and j.

Let K be the set of unique SKUs in the warehouse. To represent the storage loca-
tions that contain the same SKU, V is partitioned into |K|+1 disjoint subsets (one for
each SKU and another one that contains solely the depot). These subsets are referred
to as clusters and denoted by Ck with k = {0, 1, . . . , |K|}) — such that V =

⋃
k Ck

44

and Cl ∩ Ck = ∅ | l, k ∈ {0, 1, . . . , |K|}, l ̸= k. Also, given that each SKU can be
picked from at least one storage location, |Ck|≥ 1.

Based on the pick list containing all the SKUs that should be picked in the current
tour, the warehouse representation is reduced by eliminating all SKU locations and the
corresponding clusters that should not be visited by the picker. Let Ḡ = (V̄ , Ē) be the
reduced graph in which V̄ is the set of all storage locations of the SKUs that should be
picked (including the depot) and Ē the set of all edges connecting the vertices in V̄ .

Figure 3.1 contains a visual representation of a typical warehouse layout next to
it’s grid graph representation. Each colour represents a SKU (the vertices in G) that
should be picked from the warehouse.

Figure 3.1: Warehouse layout and graph representation (adapted from Roodbergen [137]).
Each colour represents a SKU that should be picked from the warehouse. As multiple loca-
tions have the same colour, it is sufficient to visit one location for each colour.

3.3.2 Definition of the path between two SKU locations
Let (xi, yi) be the coordinates of SKU location i, (i = 1, . . . , |V̄ |). Without loss of
generality and to simplify notation we assume the direction of x and y align with the
cross aisle and pick aisle, respectively. To travel between two SKU locations i and j,
the picker will always prefer the shortest path. The calculation of the shortest path
length is the same as the previous chapter section 2.3.3.

As we assume a picker will pick each SKU only from a single storage location
(i.e., there is always sufficient inventory at each SKU location to satisfy the demand),

45

Chapter 3. The order picking problem under a scattered storage policy

all dij for which i and j contain the same SKU (travel between vertices of the same
cluster) could be ignored (we do not connect the vertices belonging to the same SKU).

3.3.3 Existing mathematical model formulations

3.3.3.1 DFJ formulation of the GTSP

The first integer linear programming formulation of the GTSP was proposed by
[92] using the Dantzig–Fulkerson–Johnson (DFJ) model. They consider the case where
at least one node from each cluster must be visited. They proved that for the Euclidean
distances case exactly one node from each cluster is visited, using the fact that the
distances satisfy the triangle inequality. This inequality also holds in our case, plus the
fact that each location is supposed to hold ”enough” inventory, thus we can conclude
that also in our case exactly one of the locations of each cluster is visited. The Dantzig–
Fulkerson–Johnson (DFJ) formulation of [92] is presented below.

In the order picking problem, the nodes refer to the product locations in the ware-
house and the edges refer to the shortest path between two nodes. The order picker
starts his cycle from the depot and after visiting each cluster exactly once and collect-
ing the products present in the order list, by selecting the shortest route, he returns
to the depot. Given the warehouse representation and a list of storage locations to be
visited by the picker, let xij be a binary decision variable denoting whether the edge
(i, j) ∈ Ē is traversed by the picker. Moreover, we will use yi to model whether vertex
i ∈ V̄ is visited by the picker. To ensure that all required SKUs are picked, exactly one
yi variable should be set to 1 in each cluster.

The set of variables and parameters used in mathematical formulations for the
GTSP using integer linear programming is described as follows:

min
∑

(i,j)∈Ē

dijxij (3.1)

∑
i∈Ck

yi = 1 ∀k ∈ K̄ (3.2)

∑
i∈V̄ |i̸=j

xij = yj ∀j ∈ V̄ (3.3)

∑
j∈V̄ |j ̸=i

xij = yi ∀i ∈ V̄ (3.4)

∑
i∈CT |i̸=j

∑
j∈CT |j ̸=i

xij ≤ |CT | − 1 ∀CT (3.5)

46

Table 3.1: Mathematical notation for the DFJ and MTZ model.

Sets and indices

V Set of all the nodes (all storage locations of SKUs) in the graph, V =
{0, 1, 2, ..., n}. The depot node is denoted by 0.

V̄ ⊆ V The set of all storage locations of SKUs on the picking list, including the
depot.

K The set of all SKUs in the warehouse.
K̄ ⊆K The set of all SKUs on the picking list.

T ⊆ V̄ Non-empty subset of nodes in which not all SKUs are represented, i.e.,
there is a k ∈ {0, . . . , K̄} | T ∩ Ck |= 0.

CT Set of the SKUs with at least one element and at most |K̄| elements in T
in which 1 ≤ |CT |< |K̄|.

Ck Set of all nodes in the cluster k.

Parameters

dij Length of edge (i, j).

Decision variables

xij Binary variable that equals 1 if edge (i, j) is traversed from i to j; 0 other-
wise.

yi Binary variable that equals 1 if vertex i is visited and 0 otherwise.
up order of visiting cluster p in the tour for MTZ subtour elimination con-

straint
wpq Binary variable that equals 1, if the order-picker visits a node of SKU q

immediately after visiting a node from SKU p and 0 otherwise

The objective function (1) minimizes the total distance travelled by the pickers. Con-
straints (2) ensure that every SKU must be visited exactly once. The flow constraints
are indicated by constraints (3) and (4). These constraints ensure that if an item is
picked in a given tour, one incoming and one outgoing edge to this node from other
nodes should exist. Constraints (5) are the subtour elimination constraints.

3.3.3.2 MTZ formulation of GTSP

The second ILP formulation considered in this study is the GTSP formulation
proposed by [82] and improved by [26] using Miller–Tucker–Zemlin (MTZ) subtour
elimination constraints. The mathematical formulation is the following:

47

Chapter 3. The order picking problem under a scattered storage policy

min
∑

(i,j)∈Ē

dijxij (3.6)

wpq =
∑
i∈Cp

∑
j∈Cq

xij ∀p, q ∈ K̄ | p ̸= q (3.7)

∑
p|p̸=q

wpq = 1 ∀q ∈ K̄ (3.8)

∑
q|q ̸=p

wpq = 1 ∀p ∈ K̄ (3.9)

∑
j∈V̄ \{i}

xji −
∑

j∈V̄ \{i}

xij = 0 ∀i ∈ V̄ (3.10)

up − uq + |K̄|wpq ≤ |K̄|−1 ∀p, q ∈ K̄ | p ̸= q (3.11)

2 ≤ up ≤ |K̄|+1 ∀p ∈ K̄ | p ̸= 1;u1 = 1 (3.12)

xij ∈ {0, 1} ∀i, j ∈ V̄ (3.13)

The objective function (3.6) is minimizing total distance traveled by the order
picker. Constraints(3.7) are the definition of the auxiliary variables, wpq , in terms of the
defined decision variables xij . Constraints (3.8) and (3.9) ensure that every SKU must
be visited exactly once by ensuring that the degree of the incoming and outgoing arcs
from each SKU is equal to 1, respectively. Constraints (3.10) state that entering flow
to every node should be equal to exiting flow (flow balance constraints). Constraints
(3.11 and 3.12) are the subtour elimination constraints, which represent the visiting
order for all SKUs.

3.3.4 Reflection on existing formulations

In the DFJ formulation, the computational time goes up easily as the number of con-
straints grows exponentially in the number of nodes in the graph. More specifically,
the number of subtour elimination constraints equals (2K̄ − K̄ − 1), where K̄ is the
number of SKUs. This implies that solving this model must be done with a separation
routine on the subtour elimination constraints, which is time-consuming.

[82] show that the MTZ formulation contains O(n2) binary variables and O(n2)
constraints. As such, the number of variables and constraints are polynomial in the
size of the problem. This formulation, however, makes use of three types of variables:
one based on the nodes (all SKU locations), one based on the clusters (subsets of SKU
locations that contain the same SKU), and one based on the arcs.

48

3.3.5 A new mathematical formulation for the GTSP

In this section, we present a new mathematical formulation for the GTSP that com-
bines the beneficial characteristics of the above-mentioned DFJ and MTZ formula-
tions. This new formulation is based on decision variables at the storage location
level. For the subtour elimination constraints, we rely on the MTZ approach.

Table 3.3: Summary of all mathematical notation.

Sets

V The set of all the vertices in the graph (complete warehouse).
V̄ ⊆ V The set of all storage locations of SKUs on the picking list, including the

depot.
Ck The set of all vertices in cluster k.
K The set of all SKUs in the warehouse.
K̄ ⊆K The set of all SKUs on the picking list.

Parameters

dij Length of edge (i, j).

Decision variables

xij Binary variable that equals 1 if edge (i, j) is traversed from i to j; 0 other-
wise.

yi Binary variable that equals 1 if vertex i is visited and 0 otherwise.
ui The position of vertex i in the tour.

min
∑

(i,j)∈Ē

dijxij (3.14)

∑
i∈Ck

yi = 1 ∀k ∈ K̄ (3.15)

∑
i∈V̄ |i̸=j

xij = yj ∀j ∈ V̄ (3.16)

∑
j∈V̄ |j ̸=i

xij = yi ∀i ∈ V̄ (3.17)

u0 = 1 (3.18)

ui − uj + |K̄|xij ≤ |K̄|−1 ∀i, j ∈ V̄ \{0} | i ̸= j (3.19)

2 ≤ ui ≤ |K̄|+1 ∀i ∈ V̄ \{0} (3.20)

ui ∈ N ∀i ∈ V̄ (3.21)

xij , yj ∈ {0, 1} ∀i, j ∈ V̄ (3.22)

49

Chapter 3. The order picking problem under a scattered storage policy

The objective function (3.14) minimizes the total distance travelled by the picker.
Constraints (3.15) ensure that each SKU on the pick list is picked exactly once. Con-
straints (3.16) and (3.17) set the incoming and outgoing edges for each visited cluster.
In constraints (3.18) the depot is set as the first vertex in the pick tour. The positions
of all other vertices in the tour are set via constraints (3.19), after which the domain of
these positions is bounded by the number of clusters that will be visited in the com-
plete pick tour in constraints (3.20). Finally, the domains of the decision variables are
managed by constraints (3.21) and (3.22).

3.4 Guided Local Search algorithm
To solve the order picking problem under a scattered storage policy, we develop a
strong heuristic algorithm based on the Variable Neighbourhood Search (VNS), which
is one of the most recent meta-heuristics for local search, embedded in a Guided Local
Search (GLS) framework. The GLS algorithm sits on top of a local search and makes
use of search related information in order to change its behavior and guide the local
search [165]. The GLS adds a set of penalty terms to the cost function of the problem,
to help local search algorithms escape from local minima. Whenever local search gets
caught in a local optimum, the penalties and objective function are modified and local
search is called again to optimize the modified cost function.

In this variant of local search, problem-specific features of the solution are con-
sidered directly in the objective function, thereby ‘guiding’ the search to solutions that
possess most features of high quality solutions.

3.4.1 Overview of our GLS procedure
In this section, we provide a brief overview of the different components within our
GLS algorithm. In the following sections, we will elaborate on each of these in more
details. The flow diagram of our GLS algorithm is provided in Figure 3.2. In figure 3.2,
r is the set of shaking phase operators, for r = 1, ..., rmax, and l is the set of local search
moves, for l = 1, ..., lmax. M is the number of features. To avoid the complexity in the
algorithm, the VNS step (line 10) is illustrated in pink box in more details in figure 3.2.
For a better understanding, the pseudo-code of VNS is presented in algorithm 1.

First, an initial solution is generated by means of a constructive heuristic. As we
only accept feasible solutions, this initial solution will be a tour that starts and ends at
the depot and visits exactly one storage location for each required SKU.

Then, we evaluate the initial solution based on its augmented objective function.
The augmented objective function is a combination of the actual objective function (in
our case the minimization of the total distance travelled) with a series of penalty terms.
These penalty terms focus on problem-specific features that are likely not appearing

50

Figure 3.2: Overview of the Guided Local Search algorithm.

51

Chapter 3. The order picking problem under a scattered storage policy

Algorithm 1 VNS Algorithm

1: x← initial solution made by a Construction Method; ▷ Set x as the
incumbent solution

2: while Stopping Criterion do
3: r ← 1;
4: while r ≤ rmax do
5: {Shaking}: Generate a starting point x′ at random from Nr(x);
6: {Local search}
7: Set ℓ← 1
8: while ℓ ≤ ℓmax do
9: Explore the Nℓ (x

′) and find the best neighbor, x′′ ;
10: {Move or not}:
11: if f (x′′) < f (x′) then
12: set x′ ← x′′ and ℓ← 1;
13: else set ℓ← ℓ+ 1;
14: end if
15: end while
16: {Improve or not}
17: if f (x′′) < f (x) then
18: (x← x′′) and (r ← 1);
19: else set r ← r + 1;
20: end if
21: end while
22: end while
23: x← best solution found with respect to objective function g;
24: return x

52

in the optimal solution (e.g., very long travel distance between two consecutive picks).
By penalizing these undesirable solution features, we help the algorithm to converge
towards the more promising regions of the solution space faster. Moreover, the penal-
ties are updated dynamically to help the local search heuristic to escape local optima
(e.g., by suddenly allowing solutions that score less high on the included criteria) or
to focus on high quality regions (e.g., by punishing certain criteria more) [173].

In the actual local search phase, we improve the current solution by exploring
a series of local search neighbourhoods sequentially. As such, we make use of the
principles of Variable Neighbourhood Search. If no improvements can be found (i.e.,
the algorithm is stuck in a local optimum), a shaking phase – often referred to as a
perturbation – helps to reach different regions of the solution space, after which the
algorithm continues its search.

3.4.2 Step 1: Generate an initial solution
The aim of this step is to generate a feasible solution to the order picking problem
under a scattered storage policy. To achieve this, we propose the following two ap-
proaches: a greedy nearest neighbour heuristic and a farthest insertion algorithm. The
performance of both methods on the final solution is assessed (see Section 3.5) but no
significant difference in final results (i.e., after the local search) could be found. Thus,
since both of the constructive algorithms find the solution in less than one second, we
run both algorithms, we select the best generated solution among them and use it as
the initial solution for our GLS heuristic.

The first method, a greedy nearest neighbour heuristic is an adaptation of the nearest
neighbour heuristic for the TSP. The picker starts at the depot after which the storage
location that contains an SKU on the pick list and is closest to the current location is
visited. Each time a storage location is added to the pick tour, all storage locations
from the same cluster are removed from the graph. This procedure is repeated it-
eratively until all required SKUs have been picked. Then the picker moves from its
current location back to the depot. As all distances in the graph are known, the pro-
cedure is very fast. However, due to the myopic decisions (i.e., we only consider a
decision on the next location to visit), inefficient connections towards the end of the
route are likely.

Second, we propose a farthest insertion algorithm, which works as follows: in the
first step, we find for each SKU on the pick list the storage location that is closest to
the depot. Then, among these locations we add the one that is farthest away from
the depot to the pick tour. Knowing that we have to pick each SKU on the pick list,
we know that for sure we need to travel up to this point into the warehouse (i.e., the
nearest storage location of the SKU that is furthest away from the depot). For each
next SKU, we perform a cheapest insertion (i.e., the storage location that increases the
length of the pick tour the least is included into the partial tour. We continue until

53

Chapter 3. The order picking problem under a scattered storage policy

all required SKUs have been visited by the picker. Figures 3.3a and 3.3b illustrate an
example of the greedy and farthest insertion constructive solution respectively for the
case where 3 clusters of products with 3 items (nodes) each exist.

(a) Greedy nearest neighbour heuristic. (b) Farthest insertion algorithm.

Figure 3.3: Constructive algorithms to generate an initial solution.

3.4.3 Step 2: Define the augmented objective function
Following the definitions from Alsheddy et al. [5], let F be set of solution features
by which the quality of a solution can be assessed. For each feature i ∈ F , let Ii be
a binary variable indicating whether the feature is present in the current solution or
not (also denoted as the indicator function). Let pi record the number of times that
feature i has been penalised (appeared in the local minima) and initially it is set to
zero. Finally, we define λ as an overall weight factor for penalty dedicated to the
features in the objective function. As such, λ balances the importance of the penalty
factors over the main objective function (i.e., the minimization of the total distance
travelled) and, thereby, controls the degree of guidance within the GLS. The value of
λ is defined with parameter tuning (the value of λ depends on another parameter (α
which will be explained later). Furthermore, let c = {c1, c2, . . . , c|F |} be a cost vector,
in which ci denotes the cost of feature i and will be defined later.

Denoting the main objective function (i.e., minimizing the total distance travelled
by the order picker) by g(s), the augmented cost function is given by

h(s) = g(s) + λ
∑
i∈F

piIi(s)ci (3.23)

The objective within the GLS algorithm is to minimize the augmented cost func-
tion h(s).

54

Each time a local minimum s∗ is found by the algorithm (and thus the augmented
cost function cannot be optimised further), we will evaluate the current solution based
on its solution features. This evaluation is done based on a so-called utility function
util(s∗, fi) that scores the solution s∗ on each feature i. Then the algorithm penalizes
the maximum utility of each features. For instance, if our feature is the length of
the edges in the tour, the algorithm calculates the utility of this feature and penalizes
the longest edge in the current tour. Thus, for a local minimum, we calculate the
maximum utility of every feature and penalize it in our augmented objective function.
The general formulation for the utility function is as follows:

util(s∗, i) = Ii(s
∗)

ci
(1 + pi)

(3.24)

If a feature is not present in s∗ (denoted by the indicator function Ii(s
∗) = 0), then

the utility of penalizing it equals to 0. For a feature that is present (Ii(s∗) = 1), its cost
ci will be computed. If a feature is penalized multiple iterations in a row, its penalty
parameter pi (which works as a counter) increases which will dampen the importance
of the feature’s utility which, at its turn, inserts more diversification on the search (i.e.,
other features will become more important in the augmented cost function).

To guide our local search to the more promising solutions, we define the follow-
ing features:

1. The maximum number of times that each picker-aisle is visited.
This feature tries to force the algorithm to pick all the items needed in the same
aisle in one visit and avoids visiting an aisle more than twice (we know that
in optimal solution, each aisle should be visited at most once in each direction).
Thus, the algorithm chooses the aisle with the maximum number of visits (max-
imum utility) and penalizes it. Let T a be the number of times that aisle a ∈ A
is visited (A is the set of aisles) in our current solution s∗, then the utility of this
aisle is given by:

util(s∗, 1) = max
a

[
Ia1 (s

∗)
T a

pa1 + 1

]
(3.25)

As part of our augmented objective function, we will punish the aisle with the
largest utility. pa1 is the penalty counter for aisle a.

2. The maximum number of times that each cross-aisle is visited.
Similar to feature one, here we try to penalize the number of times that each
cross-aisle is visited, so that we reduce the extra movements of an order picker
in the warehouse. Let T c be the number of times that cross-aisle c ∈ C is visited
(C is the set of cross-aisles) in our current solution s∗, then the utility of this

55

Chapter 3. The order picking problem under a scattered storage policy

cross-aisle is given by:

util(s∗, 2) = max
c

[
Ic2(s

∗)
T c

pc2 + 1

]
(3.26)

As part of our augmented objective function, we will punish the cross-aisle with
the largest utility. pc2 is the penalty counter for cross-aisle c.

3. The maximum number of SKUs picked from each aisle.

The idea is that we would like to pick all items, while having to visit as few
aisles as possible. Unlike the first two penalties, the cost associated with this
feature is not as clear. The algorithm aims to visit the minimum number of
aisles, which contain items from a large variety of clusters. Hence, the aim is to
traverse those aisles which contain a large set of items from different clusters.
Therefore, we wish to penalize the aisles which have low utilization (visited
while picking the least number of SKUs in it). Considering that in the optimal
case, we expect that in an aisle visit, an order-picker collects as many products
as possible, in order to reduce the number of times other aisles are visited. To
guide the search mechanism based on this feature, let Na be the number of
SKUs picked in aisle a in our current solution s∗, then the cost of this feature is

defined as
(

1
Na

)
. As a result, the utility of this feature is given by:

util(s∗, 3) = max
a

[
Ia3 (s

∗)
1

Na(pa3 + 1)

]
(3.27)

As part of our augmented objective function, we will punish the aisle with the
largest utility. pa3 is the penalty counter for aisle a.

4. The longest edges. Our last important feature to be penalized is the longest
edge travelled in the warehouse. If the length of an edge ij which is the shortest
path connecting node i to node j in our solution is too high, it can be a sign of
non-optimality since it may be the case that the order-picker has visited some
aisles without picking any item on his way, or maybe the destination node of
the edge could be visited by another closer node. Intuitively, we do not want
long edges but cannot exclude them at the beginning of the search procedure,
as they may be part of the optimal solution. Thus, we penalize them during the
search if they appear in local optima instead of disregarding them.

The utility function of this feature is as follows:

util(s∗, 4) = max
ij

[
Iij4 (s∗)

dijxij

pij4 + 1

]
(3.28)

56

where xij is a binary variable taking value 1 if order picker visits node j imme-
diately after visiting node i and dij denotes the length of the edge. A natural
choice for the cost associated with these solution features is the length of the
analogous edge.

3.4.4 Step 3: Improvement by means of local search

Variable Neighbourhood Search

To improve the quality of the initial solution, we make use of variable neighbourhood
search. Having defined multiple local search operators, the algorithm changes the
operator as soon as no further improvement can be found in the current neighbour-
hood (i.e., the search is stuck in a local optimum). The following neighbourhoods are
checked consecutively within our algorithm (see figure 3.4):

• 2-OPT. For a given set of two arcs in a single route that construct a crisscross
(cross each other), this move substitutes them with two new arcs by reversing
the sequence of the nodes visited in between.

• 3-OPT. Remove three arcs and interchange their position in the itinerary.

• INTRA-SWAP. This move selects two random nodes (clusters) in our current
solution (route) and swaps the nodes of these positions in the current route.

• INSERT. This move selects two random positions of nodes in our current solu-
tion (route) and inserts one of these randomly chosen elements in front of the
second element.

• REVERSE. This move selects two random positions of nodes in our current so-
lution (route) and reverses the local path between these two randomly chosen
elements.

Shaking phase

Once a local optimum has been reached, the algorithm makes use of a shaking pro-
cedure to escape from it. The shaking procedure, inspired by the work of Sengupta,
Mariescu-Istodor, and Fränti [150] and Tuononen [166], executes random moves from
either of the two following operators.

• INTER-SWAP. This move selects one random node (cluster) in our current solu-
tion (route) and replaces another node of the same cluster (which currently is
not part of the solution) with the existing node of that cluster (see Figure 3.5).

57

Chapter 3. The order picking problem under a scattered storage policy

Figure 3.4: Moves considered in VNS algorithm from [119]

• DOUBLE-BRIDGE. This move consists of a sequence of two disconnected 2-
exchange moves. In the first exchange, the algorithm removes two random
edges from the current tour and links their endpoints by adding new edges, re-
sulting in two sub-tours. The second exchange removes two other edges, one
from each sub-tour and reconnects the two parts by creating a bridge and mak-
ing a feasible tour (see Figure 3.6).

Figure 3.5: Visualisation of the INTER-SWAP move.

3.4.5 Stopping criterion
The algorithm stops as soon as a maximum number of iterations of the VNS without
improvement has been performed (which we fix to 1000) or if the running time ex-

58

Figure 3.6: Visualisation of the DOUBLE-BRIDGE move.

ceeds 60 minutes.

3.4.6 GLS pseudo-code

The pseudo-code of our GLS algorithm is provided in Algorithm 2.

Algorithm 2 Pseudo-code for our Guided Local Search algorithm
(p,g,λ, (I1, ..., Im), (c1, ..., cm)M)).
1: k ← 0; ▷ iteration counter
2: x← initial solution made by a Construction Method;
3: { set all penalties to 0}
4: for i← 1 until M do
5: pi ← 0;
6: end for
7: {define the augmented objective function }
8: update the augmented objective value and set h(x)← g(x) + λ

∑
i∈M piIici

9: while Stopping Criterion do
10: xk+1 ← VNS (xk, h);
11: {compute the utility of features }
12: {penalize features with maximum utility}
13: for All i such that utili is maximum do
14: pi ← pi + 1;
15: end for
16: k ← k + 1;
17: end while
18: x∗ ← best solution found with respect to objective function g;
19: return x∗

59

Chapter 3. The order picking problem under a scattered storage policy

3.5 Model implementation and numerical results
3.5.1 The instances
We perform computational experiments by generating a set of random instances, based
on the instance generation procedure described in Theys et al. [159]. 1

The benchmark used in our study is the one from [125] and [159] consisting of 27
different scenarios: three different number of aisles (5,15,60), three different number
of cross aisles (3,6,11) and three different number of products in the order (15,60,240).
As previously mentioned, there are no papers in the literature considering the GTSP
in multi parallel aisle warehouses and the order picking problem.

3.5.2 Some details on implementation
All algorithms presented in this chapter are implemented in Java, and the ILP formu-
lations are solved with IBM CPLEX 12.1.0 with default parameters. The time limit for
the exact algorithms has been set to 3600 seconds. Testing has been carried out on
a 11th Gen Intel(R)Core i5-1135G7@2.0GHz and 8GB of RAM. It will be shown that
high-quality solutions can be generated for real size instances of the order picker rout-
ing problem within a reasonable time. Please note that our instances are not exactly
the same than those solved by [148] but were generated with the same parameters. It
is worth mentioning that in all the result tables, GLS refers to the case where VNS and
GLS are combined and VNS refers to the single VNS heuristic without any penalizing
and augmented objective function. This is done in order to see the effect of ”guiding”
on the solution and the computation times. Moreover, for each instance, we run the
heuristic algorithms (VNS and GLS) 10 times and report the mean values in the tables.

3.5.3 Parameter tuning
Another important part of our sensitivity analysis is the parameter tuning in order
to find the best values for the penalty coefficients (λ) in our GLS algorithm. Recall
that the λ parameters control the degree to which the respective penalties influence
the search procedure. As it has been previously stated, these parameters present a
trade-off between exploration and exploitation of the search space. Hence, the choice
of the values associated with these parameters will impact the efficiency of the search
procedure. Since the effectiveness of exploration and exploitation is highly dependent
on the landscape of the search space, the choice of the λ parameters will, in general,
be instance specific. Based on computational experiments for several problems, [174]
observed that the basis of obtaining good values for these parameters can be found by

1More information about the instances and instance generator can be found via https://
homepages.dcc.ufmg.br/˜arbex/orderpicking.html.

60

https://homepages.dcc.ufmg.br/~arbex/orderpicking.html
https://homepages.dcc.ufmg.br/~arbex/orderpicking.html

dividing the objective value within a local optimum by the number of solution features
present in this solution. In another words, λ is computed dynamically after finding
the first local optimum and before penalizing the features for first time. Having an α
parameter which is calculated by sensitivity analysis, λ is calculated by

λ =
αg(s∗)

|Fs∗ |
(3.29)

in which s∗ and Fs∗ denote the local optimum and the features present in the
solution. The value of the α parameter should be between 0 and 1, using the infor-
mation from [173] since we are using the same 2-opt and 3-opt operators in our VNS
heuristic. To optimize performance on a built model, parameter tuning is necessary
for any algorithm. To do so, we add each penalising feature to the objective function
separately and then solve the model (run the algorithm) for several values of α and
find the best point where our total cost is minimized. Figure 3.7 illustrates the optimal
value for our α parameter.

Figure 3.7: Sensitivity analysis of GLS algorithm for optimal tuning of α

3.5.4 Comparison between state-of-the-art formulations on
traditional problem

We first assume that in our GTSP, each cluster consists of only one node, changing
the problem to normal TSP, and then we solved our exact and heuristic algorithms to
have a better comparison and to examine the efficiency of our proposed algorithm.
In table 3.5, we solve the instances on the multi-block warehouse and each cluster

61

Chapter 3. The order picking problem under a scattered storage policy

containing only one location (TSP). As shown in this figure, for all the instances of
different sizes, our model has the optimal solution in less than one minute. The cal-
culation times are based on CPLEX solver time. It is illustrated in this figure that our
proposed MILP(MILP proposed) gives better solutions in comparison with the MILP
in the literature using MTZ formulation (given in column ’MILP old’) in a shorter
running time. In this table ’O’ means Optimal solution, ’F’ is used to show Feasible
solution and NS means no solution. In this table, MILP best cost refers to the the best
objective value among the first two columns.

Both of our constructive algorithms (greedy and Farthest-Insertion) give us the
initial solution in less than one second. Furthermore, their solution quality is not
comparable since non of them is outperforming the other one in the solution quality.
For some instances, the greedy algorithm gives better solutions and for the other ones,
the Farthest-Insertion. No pattern for their solution quality based on different instance
sizes has been found. Thus we run both algorithm and since they are both very fast,
we select the best generated solution among them and use it as the initial solution for
our GLS heuristic. To have an analysis over the efficiency of the GLS and how much
it improves the VNS without penalties, we separate these two parts and solve the
instances with both of them (VNS refers to the case where there is no penalising and
GLS refers to the VNS embedded in GLS having penalty functions). Since in this table,
we consider only one item inside each cluster (TSP), the instance sizes are smaller than
the other sets and our MILP model is giving optimal solution for most of the instances.
Therefore, the improvement of the mathematical model by VNS is on average 6.5%.
Also the average improvement of VNS by adding GLS is 2%. This number gets higher
if the instance sizes (items in each cluster) increase.

It is worth mentioning, that our GLS heuristic is capable of finding the optimal
solutions for most of the instances along with our proposed MILP, but in a much
shorter running time (less than 3.5 seconds for all instances). The other non-optimal
instances, are having a huge negative gap with our exact solution, which shows the
improvement in our heuristic solution. For bigger instances, the heuristic stops by the
termination criteria regarding no improvements for 1000 iterations.

3.5.5 Performance analysis for increasing cluster size

In this section, we examine the performance of our exact and heuristic algorithms on
4 different cluster sizes (2,5,10,20) and solve our instances based on these cluster sizes.
In tables 3.6-3.9, the numerical results for the cluster sizes 2,5,10 and 20 are reported
respectively. The ”MILP model old” referes to the results from the old MTZ formu-
lation in the literature solved and implemented on our computer with CPLEX 22.1.
As it is shown in these tables, with the increase in cluster sizes and accordingly the
instance sizes, our proposed MILP is not able to give us a feasible solution within the
time limit of one hour. However, our heuristic algorithm is able to solve the problem

62

and give us a good solution in a very short time (for our biggest instance with 4800
nodes, the running time is 52.5 seconds which makes it remarkably fast). For the clus-
ter size 1,2 and 5, our proposed MILP can provide optimal or feasible solutions, but
for the larger instances, the model is not able to give any solutions within 60 minutes.
The other notable point in these tables is the comparison between our proposed MILP
and the existing MILP in the literature. On average, the running time of our proposed
MILP is 20% less than the other MILP in the literature, and the quality of the solutions
generated by our MILP is on average 15% better than the existing MILP.

Comparing the solutions before and after implementing the guided local search
algorithm (we call them GLS and VNS (which does not contain guided local search)),
we can see that implementing GLS and penalizing the features of the solutions has an
improvement of 15% on average; and this percentage is higher for bigger instances
than for small instances with 2 products in each cluster, for which the average im-
provement is 4%. The comparison between objective functions of our proposed MILP
and VNS and GLS for instances with cluster size 2,10 and 20 are shown in figures 3.8-
3.10.

Figure 3.8: Comparing solution methods for instances with cluster size=2

In table 3.10, we analyse the mean and the standard deviation of the solutions
for different instances, and in figure 3.11 these values are illustrated by the boxplot.
In our heuristic algorithm, we solve each large-scale instance (each cluster containing
20 products) 10 times and calculate the mean and standard deviations of the solutions
in order to analyse the stability of our algorithm. Thus, the observations hold in each
boxplot is the 10 results obtained from the repetitions of the application of the algo-
rithm. As is shown in figure 3.11, the size of the boxes for different instances in a VNS
algorithm is larger than the size of boxes in GLS, which means that the standard de-
viation of the solutions generated by GLS is lower than the ones generated by a VNS

63

Chapter 3. The order picking problem under a scattered storage policy

Figure 3.9: Comparing solution methods for instances with cluster size=10

Figure 3.10: Comparing solution methods for instances with cluster size=20

64

algorithm. In other words, a GLS algorithm is much more stable and robust compared
to the VNS.

Furthermore, the percentage of improvements of GLS implemented on a VNS
algorithm for cluster sizes 2,10 and 20 is illustrated in figures 3.12-3.14. For the smaller
cluster size (2), the average improvement achieved by GLS is 4% which is much lower
than the percentage of improvements in larger instances (cluster size 20) for which this
value is 15%. The reason for this is that in the smaller instances, our VNS algorithm is
also able to find optimal or close to optimal solutions. Therefore, a GLS algorithm does
not add to much to the VNS algorithm. However, in bigger instances, the solutions
found by GLS have much better quality and the running times of the GLS is much
lower than the VNS or MILP. In figures 3.15-3.18 the comparison between the running
time of VNS and GLS algorithms are illustrated for different cluster sizes. These charts
show that in the smaller instances (cluster size 2 and 5) the running time of GLS is on
average 80% less than the running time of VNS, and this value drops to 50% for larger
instances with 10 and 20 products in each cluster. These numbers show the efficiency
of our proposed GLS algorithm and its significant improvements both in run time and
the quality of the solutions.

Figure 3.11: Boxplots of VNS and GLS to compare the stability of algorithms

65

Chapter 3. The order picking problem under a scattered storage policy

Figure 3.12: Relative improvement of VNS by applying GLS in case of cluster size=2

Figure 3.13: Relative improvement of VNS by applying GLS in case of cluster size=10

Figure 3.14: Relative improvement of VNS by applying GLS in case of cluster size=20

66

Figure 3.15: Comparison between the running time of VNS & GLS in case of cluster size=2

Figure 3.16: Comparison between the running time of VNS & GLS for cluster size=5

Figure 3.17: Comparison between the running time of VNS & GLS for cluster size=10

67

Chapter 3. The order picking problem under a scattered storage policy

Figure 3.18: Comparison between the running time of VNS & GLS for cluster size=20

3.5.6 Warehouse Layout Comparison
In this section, we examine the effects of different warehouse sizes on the proposed al-
gorithm. To do so, we consider instances with 20,60 and 100 products and 5,10,15 and
20 clusters. The average computational running times for all problem instances are
plotted in figure 3.19. The figure is separated into sub-figures for the instances related
to the different cluster sizes. Furthermore, the nine different warehouse configura-
tions are sorted along the x-axis according to the increasing number of total aisles
contained in the warehouse. For example, the label k5h3 refers to the configuration
with five aisles and three cross aisles, which is the smallest configuration considered
in this chapter. In this graph, n is considered as the number of products in the in-
stance.

In this figure, it is shown that the computational performance across all config-
urations with twenty items is very stable. A slightly increasing trend, especially for
twenty clusters, can be identified when moving to sixty items. This implies that the
computational performance worsens as the size of the warehouse grows. This trend
becomes more evident when considering the instances containing one hundred items.
However, it can also be seen that the warehouse configuration is not the driving factor
affecting the running times, but rather the number of items and clusters. This also
conforms to the design of the algorithm since the number of iterations performed is
solely based on these two factors.

68

Figure 3.19: Sensitivity analysis of Warehouse Layout

69

Chapter 3. The order picking problem under a scattered storage policy

Table 3.5: Result for instances with cluster size=1

70

Table 3.6: Result for instances with cluster size=2

71

Chapter 3. The order picking problem under a scattered storage policy

Table 3.7: Result for instances with cluster size=5

72

Table 3.8: Result for instances with cluster size=10

73

Chapter 3. The order picking problem under a scattered storage policy

Table 3.9: Result for instances with cluster size=20

74

Table 3.10: Mean & SD of GLS for large-scale instances

75

Chapter 3. The order picking problem under a scattered storage policy

3.6 Conclusion

In this chapter, we developed a new mathematical model in addition to a guided
local search heuristic for the Generalized Travelling Salesman Problem (GTSP) with
geographical overlap between clusters, with the application in order picking problem
in the warehouse with scattered storage policy. This MILP model and the proposed
GLS algorithm can be used for any warehouse layout (general graph), which makes
this method more practical. To the best of our knowledge, for this problem, no exact
algorithm for warehouses with more than two blocks exist in the literature. However,
our proposed model can be implemented in warehouses having many more than two
blocks. The motivation for this research stems not only from the potential benefits
that can be achieved within the efficiency of a warehouse, but also because of the fact
that very little attention has been given to this problem when accounting for scattered
storage policy where the clusters overlap.

The proposed algorithm exploits problem-specific information during the search
procedure to help guide the local search operators to promising areas of the search
space. Based on the computational results, the algorithm performs very well. When
considering a larger number of clusters, the algorithm finds the optimal solution in
most cases, which is guaranteed by the exact methods. The algorithm often obtains a
better solution over the best known in the remaining cases. It has been shown that the
proposed GLS applies to a wide variety of warehouse configurations and can obtain
high-quality solutions within seconds or at most a few minutes. Moreover, for solving
the large scale instances with up to 4800 nodes, we implemented our GLS heuristic
which is significantly fast (with computation time less than one minute). Moreover,
the quality of the solutions for medium to large instances are much better than our
MILP. Our algorithm is able to solve all the instances and gives very good solutions in
a very short amount of time.

A significant limitation of this study is the implementation of the two exact for-
mulations used to obtain the results for the instances, which are used to judge the
quality of the proposed heuristic algorithm. The limitation stems directly from the
implementation of the subtour elimination constraints. The number of subtour elim-
ination constraints grows exponentially with the number of clusters. Hence the way
in which these are implemented in the commercial solver significantly determines
the computational performance. As a result, many instances containing fifteen and
twenty clusters were not solved to optimality and retained a large GAP following the
time limit of 3600 seconds. This not only restricted the analysis that could be made
on the solution quality and computational performance between the heuristic and
exact methods, but also on the size of the instances which could be considered. Fur-
thermore, as a result of not being able to judge the exact quality of the solutions, the
analysis which could be done on the performance across various warehouse layouts
was also affected.

76

Future researches can consider due dates for order list, dynamic customer or-
ders, zoning and multiple pickers joint problems. Development of problem-specific
solution procedures, integration of batching/order selection decisions and inclusion
of uncertain expected orders should also be taken into account in the decision-making
process. Furthermore, future research could also focus on the pre-processing (graph
reduction) in the presence of scattered storage policy where the clusters overlap.

77

4
The periodic multi-commodity

service network design problem
with regular and express deliveries

under demand uncertainty

Adapted from: [. Rajabighamchi, van Hoesel, and Defryn [131]]

79

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

Abstract
This chapter studies the routing of multiple commodities (shipments) through a net-
work with the aim to minimize the total cost. To transport these commodities from
their origin to their destination hub, a combination of different services can be used,
including scheduled trucks (following a dedicated trajectory, similar to bus routes)
and express delivery. Each commodity starts its itinerary at its origin hub and needs
to arrive at its destination hub before its deadline. The following cost factors are con-
sidered in the model: a fixed cost as well as a distance-based travel cost for the sched-
uled truck services, a cost for express delivery between each pair of hubs based on the
size of the commodity, and the inventory holding cost at each hub.

We first define the problem as a mixed-integer linear program (MILP). To solve
this MILP, we apply a branch-and-price algorithm that relies on column generation.
In a second phase, we extend our model formulation to also deal with demand uncer-
tainty (i.e., the size of each shipment varies) and present a two-stage, scenario-based
stochastic model which we also solve using the branch-and-price algorithm. To gener-
ate the scenarios for the stochastic model, we apply Sample Average Approximation
(SAA). Extensive computational experiments, including a sensitivity analysis are pre-
sented.

80

4.1 Introduction
In today’s international context, the planning and coordination of all necessary logis-
tics operations within a supply network is a tedious task. As supply chain partners
often established strong dependencies on each other — with the aim to improve over-
all efficiency of the network —, any delay or disruption in the transport flows between
these partners will create a significant impact on the underlying operations [4, 52, 37].

To plan and execute all required logistical operations within the supply chain,
companies rely on third party logistics service providers (3PLs). These 3PLs manage
the flow of goods between the different supply chain entities by either dispatching
their own vehicles or by subcontracting logistics service providers to execute the re-
quired transportation requests [140, 118, 94].

The problem presented in this chapter is motivated by a case study in which a
3PL is responsible for coordinating all material flows that belong to the supply net-
work of a large construction company within Europe (company names are confiden-
tial). The network consists of multiple hubs, which either take the form of transship-
ment points within the supply network or represent a local supply or demand node
(potentially uniting multiple suppliers / customers within a certain region for sim-
plicity). The flow density between each pair of hubs varies significantly over time
(some connections are used only seldom, others have high volumes every day) and
is uncertain (exact volumes are only known last-minute). As the 3PL does not have
its own fleet of trucks, it relies on — often local — subcontractors (carriers) to execute
the transports. It is worth mentioning that since the company did not provide us any
real data or detailed information, at the end of this research, we were not able to show
them any solution methods or compare the results with their case.

We distinguish two types of agreements between the 3PL and its subcontractors.
First, there is a long-term agreement to establish a periodic fixed capacity on some of the
network connections. For example, a truck is chartered every Monday and Thursday
to drive a fixed trajectory. As these long-term commitments are valuable to the carri-
ers (these provide a predictable income), competitive prices can be negotiated for the
service. However, sufficient flow should be guaranteed over the link, as one should
always pay for a full truckload, independent from the actual load. Second, the 3PL can
book an ad-hoc express delivery on the spot market. This service is more flexible and its
cost depends solely on the volume and trajectory of the actual load at a particular time
(i.e., there is no long-term commitment here).

To model the decisions faced by the 3PL, we use a service network design problem
(SNDP) formulation. SNDPs mainly support tactical decisions (e.g., fleet size, trans-
port modes, . . .) for the routing of commodities (such as goods, data, people, . . .)
within a network that consists of interconnected hubs and where the transport of a
commodity occurs between its source and destination node. Variants of the SNDP

81

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

have been successfully applied to many problems in, e.g., road transportation plan-
ning [105, 42, 139], railway planning [14, 102, 10, 178], flight scheduling [80, 19, 106]
and telecommunication [116, 115, 111].

This chapter contributes to the academic literature in the following ways. First,
we consider a service network design model over time to allow differentiation be-
tween the (periodic) scheduled truck services and the ad-hoc express delivery option.
To the best of our knowledge, we are the first to distinguish these two transport modes
with their individual cost structure. Second, we enrich the current state-of-the-art for-
mulations by accounting for hub capacities and manage inventory levels accordingly.
Third, we develop competitive solution approaches based on a branch-and-price algo-
rithm with a column generation algorithm in each node to solve this realistic variant
of the SNDP. Moreover, we extend our models and results to a setting with uncertain
demand and present a two-stage, scenario-based stochastic model which is solved us-
ing the sample average approximation method. Finally, a broad range of managerial
insights have been generated by means of an extensive sensitivity analysis.

The remainder of the chapter is organized as follows. In Section 4.2, the relevant
literature is discussed. We present a formal problem statement and a mathematical
model formulation in Section 4.3. Section 4.4 details a column generation solution ap-
proach for the deterministic problem variant. This model is extended towards stochas-
tic demands in Section 4.5. The implementation of the models and an extensive set of
computational experiments are presented in Section 4.6, after which we summarize
the main conclusions and limitations of our research in Section 4.7.

4.2 Literature review
4.2.1 Service network design problem

In this section, we review the literature on the service network design problem (SNDP)
as we identified this problem is most closely related to the main topic of this manuscript.
Early research on the service network design problem dates back to Crainic and Rousseau
[41] and Farvolden and Powell [55]. Since then, many researchers have been attracted
to extend these models to incorporate more realistic problem features [142]. Since our
focus is on exact solution approaches, we will limit ourselves to contributions from
the literature in which such methods have been presented. For an overview of the
state-on-the-art on heuristic and metaheuristic solution procedures, we refer the in-
terested reader to Salimifard and Bigharaz [142].

Within the exact solution approaches, we distinguish two main research direc-
tions. First, there are methods that rely on branching strategies, such as branch-and-
bound, branch-and-price(-and-cut) and column generation (see, e.g., Andersen et al.
[6], Sarubbi et al. [145], Akyüz, Öncan, and Altınel [3], Boccia et al. [21] and Canel et

82

al. [27]). Second, there are the contributions that focus on decomposition-based methods
(see, e.g., Teypaz, Schrenk, and Cung [158], Oğuz, Bektaş, and Bennell [123], Rahma-
niani et al. [130], Çakır [24] and Moradi, Raith, and Ehrgott [117]). In what follows,
we highlight the most related and relevant contributions.

Boccia et al. [21] propose a multi-commodity location routing problem which they
solve using a branch-and-cut algorithm. Given a set of potential facility locations and
a set of demands (commodities), the multi-commodity location routing problem is
about deciding how many and which of these facilities to open in order to minimize
the total cost (i.e., a fixed cost for opening a facility and a variable cost based on the
routing of the commodities) while covering all demand.

Wang et al. [175] propose a service network design model in which the routes for a
heterogeneous fleet of vehicles should be determined, given a set of delivery points
with predefined demand. The authors present both arc-based and path-based math-
ematical formulations to model the problem. To solve the problem, a hybrid algo-
rithm is used that combines exact and heuristic techniques (including column gener-
ation, cutting planes and local search) to solve large-scale instances. The exact solvers
within the algorithm are responsible for providing lower bounds and feasible solu-
tions, whereas local search is used to generate feasible upper bounds. The presented
computational experiments demonstrate the potential of a heterogeneous fleet in tac-
tical planning, as this provides higher vehicle loading rates less unused capacity. In
contrast to this study, the authors did not consider delivery times (deadlines), capaci-
ties in the hubs and demand uncertainty.

The capacitated multi-commodity network design problem is presented by Katayama
[84]. In this problem variant, the arcs in the network have limited capacity. The deci-
sion maker also decides which arcs (and thus which of their corresponding capacities)
to make available within the network. The total cost of the network — which is to
be minimized — is given by the routing cost for shipping all commodities from their
source to their destination and the activation of an arc. The authors present a path-
based formulation augmented with strong inequalities. They use column generation
in combination with an arc capacity scaling (i.e., a linear approximation on the use of
arc capacity) and local branching (i.e., improve the quality of the relaxed model by
also considering neighbouring solutions) to solve the problem. In this chapter, we do
not restrict the arc capacity — even though individual vehicles do have capacities, we
do not restrict the amount of vehicles that can travel on a certain arc. However, we
do consider capacity restrictions in the hubs. As the opening of hubs is a long-term
(strategic) decision, we do not consider the opening/closing of hubs nor flexibility in
the available capacity.

Trivella et al. [163] develop a mathematical path based model formulation for
the multi-commodity network flow problem with soft transit times. The model explicitly
discourages the use of long commodity routes by means of a penalty for delays. The
authors present a column generation approach to solve the problem. The economic

83

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

implications on costs and delays for different definitions of the penalty functions are
discussed within a context of the liner shipping industry. In Çakır [24], the authors use
Benders decomposition to solve the multi-commodity, multi-mode distribution planning
problem. In this multi-commodity flow problem, commodities do not have a dedicated
source node but some nodes are labeled as general source node. Consequently, the
demand of each destination node can be fulfilled from any source node.

4.2.2 Demand uncertainty and stochastic models
In this section, we review the most relevant research contributions concerning stochas-
tic network design and network flow optimization models under uncertainty. Most
stochastic models that focus on demand uncertainty make use of two-stage stochastic
programming [38]. In a first stage — before the realization of the stochastic demand —
these models (partially) set the values of some of the decision variables that need to
be fixed before the true demand can be observed. Hence, these decisions are scenario-
independent, yet they typically put constraints on the further (scenario-dependent)
decisions. Thus the first stage variables are not directly influenced by the uncertainty
while considering also the expected cost of the second stage model (i.e., after the real-
ization of the stochastic demand). Two-stage stochastic programming was introduced
by Dantzig [45] and has been applied successfully to tackle different supply chain
problems [87, 12].

The multi-commodity redistribution problem with stochastic supply, demand and
network is studied by Gao and Lee [58]. The authors focus on the redistribution of
commodities to respond to different realizations of the demands. To solve the prob-
lem, the authors make use of a two-stage, scenario-based stochastic programming
model. In the first stage, the authors minimize the total dissatisfaction cost (unmet
demand and oversupply) over different demand and supply scenarios. In the second
stage, the authors vary the network availability and minimize the total response time.

Barbarosoǧlu and Arda [16] use a two-stage stochastic programming model to
optimize the transport of first-aid commodities to disaster-affected areas. A multi-
commodity, multi-modal network flow formulation is developed to describe the flow
of material over an urban transportation network. The random variables in this study
are dedicated to the resource requirements, which are assumed uncertain after a disas-
ter has occurred. Hamdan and Diabat [69], then, apply a two-stage stochastic model
to plan the production, inventory and location decisions in a red blood cell supply
chain under demand uncertainty. Similarly, Dillon, Oliveira, and Abbasi [51] propose
a two-stage stochastic model for inventory management in a blood supply chain by
considering uncertain demand.

The generation of scenarios — as well as determining the optimal number of sce-
narios — largely affects the performance of stochastic programming models. These
decision should therefore be taken with care. Löhndorf [103] review the most common

84

methods for scenario generation in the context of stochastic programming, including
the quasi-Monte Carlo method, moment matching, methods based on probability metrics, and
the Voronoi cell sampling method. The Monte Carlo method — better known as Sam-
ple Average Approximation (SAA) — is a well-known approach to reduce the size of
stochastic optimization problems by considering a subset of (preferably independent)
scenarios after which a deterministic problem is solved for each of these. For a clear
guide to SAA, we refer the interested reader to Kim, Pasupathy, and Henderson [85].
Within the context of supply chain network design, Santoso et al. [144] make use of the
SAA scheme. In combination with an accelerated Benders decomposition algorithm,
they can compute solutions to large-scale problems with a huge number of scenarios.

Sörensen and Sevaux [155] study a stochastic vehicle routing problem. The au-
thors propose a method to combine a sampling-based approach to estimate the robust-
ness or flexibility of a solution with a metaheuristic optimization technique, which
allowed them to solve large problems with more complex stochastic structures. Men-
doza et al. [112] propose a bi-objective multi-commodity vehicle routing problem with
stochastic demand. The goal is to simultaneously minimize the total expected cost of
a set of routes and the coefficient of variation. The authors use chance constraints
to make sure that the probability of a route duration is less than its maximum given
threshold. Monte Carlo simulation is applied for the feasibility check of these chance
constraints.

Based on the presented literature review, we conclude that only few mathemat-
ical programming models for variants of the service network design problem have
been proposed. Moreover, these models lack the inclusion of important real-life prob-
lem features such as heterogeneous vehicles (more specifically the inclusion of the
possibility to use express delivery services), multi-commodity problems over time in
which commodities have dedicated release times and deadlines, capacitated hubs and
periodicity of the planning over time. The current manuscript aims to fill this research
gap by considering the mentioned elements in the context of a multi-commodity ser-
vice network design problem.

4.3 Single-period service network design problem

In this section, we formally present the multi-commodity service network design problem
with regular and express deliveries for a single period (typically a week). This period is
subdivided in multiple time intervals (e.g., days) for each of which a decision has to
be made regarding the capacity on the individual network links and the flow over
each link. For now, we will limit ourselves to a deterministic variant of the problem.

85

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

4.3.1 Mathematical notation and model assumptions

We are given a network, represented by the complete graph G(V ,A) in which V is
the set of vertices (hubs) and A the set of arcs. For each (i, j) ∈ A, cij and τij represent
the cost associated with traversing the arc and the travel time, respectively. Inside each
hub, we distinguish two different processes: storage and cross-docking. Storage refers
to the possibility to store shipments over multiple time intervals (i.e., the arrival time
interval of the shipment is different from the departure time interval). For each vertex
i ∈ V , the storage capacity is limited and denoted by QV

i . Cross-docking refers to
the process of receiving, sorting, recombining and dispatching incoming shipments
within the same time interval, usually within a few hours [141]. As these activities do
not make use of the internal storage space of the hub, we do not limit these by the hub
capacity.

Let K be the set of all shipments (commodities) that should be served by the
network. For each shipment k ∈ K, Ok and Dk denote the source (origin) and des-
tination node, respectively. The volume of the shipment is denoted by qk. We allow
the splitting of this volume such that partial customer orders can be transported via
a different route through the network, if desirable. Furthermore, each shipment has
a release time lk, defined as the time at which the shipment becomes available at its
source, and a dispatching time uk, at which the shipment will be sent from its destina-
tion hub to the customer. This dispatching time can be interpreted as a hard deadline
for the transport activities within the network related to this shipment. In case the
shipment arrives at the destination hub before its dispatching time, it will be tem-
porarily stored in inventory.

To execute the necessary transportation requests, the logistics service provider
can choose between the following three transport options:

1. Scheduled truck service: based on long-term contracts, a dedicated capacity is
available on certain routes in the network. Because of the long-term stability of
these routes, competitive prices can be negotiated for installing the capacity. Let
F denote the fleet of scheduled trucks, each with a capacity QF . For this service,
we incur both a fixed cost for establishing a truck connection and a distance-
based variable cost, denoted by cF and cij , respectively. There should not be a
one-to-one relationship between a shipment and a scheduled truck service as a
shipment can switch to another truck at any hub.

2. Express delivery: The full transport of the shipment can be outsourced to a third-
party logistics provider at a fixed rate based on the origin – destination as well
as the volume of the shipment. This option is more expensive than using the
capacity of the scheduled truck service, but offers more flexibility.

3. Mixed scenario: To execute the required transport operations, a combination of
scheduled truck services and express delivery can be used. This means that

86

for certain connections the scheduled truck service will be used, whereas other
parts of the itinerary will be covered using the express service.

The goal is to decide on the required capacity for the scheduled truck service and
design the corresponding routes for these vehicles. Here, the decision maker trades off
installing more capacity on the scheduled truck service versus accepting the (higher)
costs of express delivery. Over high demand connections, the service providers likely
prefer the scheduled truck service as loading rates can be high and the fixed cost of
establishing the connection can be divided over a larger volume. For low demand
connections, it might not be worth installing a scheduled truck service and an express
delivery will then be preferred.

4.3.2 Mixed Integer Linear Programming formulation
We now model the deterministic network design problem with express deliveries as a
mixed integer linear problem. Assuming that each period is identical, we will focus on
a single period with T time intervals. For example, T can represent one week, which
can be subdivided in 7 days, denoted by t = {1, . . . , 7}. By imposing that the status
of the network (i.e., amount of truck available in each hub) at the end of the period
equals the initial status, the logistics plan can easily be repeated for each consecutive
period.

The following decisions have to be made:

1. The total number of scheduled trucks available at hub i at time t, denoted by fit.

2. The routes covered by the scheduled trucks, represented by decision variable zijt,
denoting the number of scheduled trucks traversing arc (i, j) at time t.

3. The itinerary for each shipment k ∈ K, based on the following decision variables:

• The quantity of shipment k shipped over arc (i, j) using a scheduled truck
service at time t denoted by xk

ijt.

• The quantity of shipment k shipped over arc (i, j) using the express deliv-
ery service at time t, denoted by ekijt.

4. Inventory decisions within each hub, given by the quantity of shipment k kept in
inventory at hub i at time t, denoted by Iikt.

To allow tractability of the model and avoid (unnecessary) complexity, the model
is built according to the assumption that no partial shipments can be handed over to
the next period. This means that all shipments must be handled within the period un-
der consideration and — consequently —- that all shipments are assumed to have a
release time and delivery date within the current period T . Within our model formu-
lation, this also means that all inventory levels will equal zero at the start and the end

87

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

Table 4.1: Mathematical notation for the MILP formulation of the deterministic multi-commodity net-
work design problem with express deliveries.

Sets

V The set of all vertices (hubs) in the network.
A The set of all arc (i, j), with i, j ∈ V .
K The set of all shipments that should be served by the network.
T The set of all time intervals.

Parameters

QV
i The storage capacity of hub i.

hi Inventory cost per time interval per unit of volume at hub i.
cij The cost to traverse arc (i, j) with a scheduled truck.
τij The travel time over arc (i, j) for a scheduled truck.
τEij The travel time for shipping by express over arc (i, j).
Ok The source node (origin) for shipment k.
Dk The destination node for shipment k.
qk The volume of shipment k.
lk The release time of shipment k.
uk The time at which the shipment will be dispatched from its destination hub to the

customer.
cEij The cost per volume-unit to use express delivery on arc (i, j).
QF Capacity of a scheduled truck.
cF Fixed cost for establishing a scheduled truck.

Decision variables

f0
i The number of scheduled trucks available at hub i at the beginning of the time

horizon.
fit The total number of scheduled trucks that remain at hub i at the end of time t.
zijt The number of scheduled trucks traversing arc (i, j) at time t.
ekijt The volume of shipment k shipped by express mode over arc (i, j) at time t

xk
ijt The volume of shipment k shipped by scheduled truck over arc (i, j) at time t.

Iikt The volume of shipment k kept in inventory at hub i at time t.

88

of the period T . The assumption can be justified by the fact that the presented model
has the purpose to support tactical (or even strategical) decisions with respect to the
long-term contracts and required capacities for the scheduled truck services. In this re-
spect, shipments can be generated (e.g., based on historical traffic data) such that they
represent the partial trips typically covered within a single period. For operational
decision support (e.g., the day-to-day dispatching of shipments), other methods can
be used that take the established capacity of the scheduled truck service as given and
optimize loading rates and costs based on, e.g., a rolling time window approach.

The full MILP formulation of the deterministic network design problem with
express deliveries is given below. We summarize all notation in Table 4.1.

min

∑
i∈V

cF f0
i +

∑
t∈T

 ∑
(i,j)∈A

cijzijt +
∑

(i,j)∈A

∑
k∈K

cEije
k
ijt +

∑
i∈V

∑
k∈K

hiIikt

 (4.1)

s.t.

∑
k∈K

xk
ijt ≤ QF zijt ∀(i, j) ∈ A;∀t ∈ T (4.2)

fit = fi(t−1) +
∑

(j,i)∈A|t−τji≥1

zji(t−τji)
−

∑
(i,j)∈A

zijt ∀i ∈ V ; ∀t ∈ T \{1} (4.3)

fi1 = f0
i −

∑
(i,j)∈A

zij1 ∀i ∈ V (4.4)

f0
i = fiT ∀i ∈ V (4.5)

Iikt − Iik(t−1) +

 ∑
(i,j)∈A

xk
ijt −

∑
(j,i)∈A

xk
ji(t−τji)

︸ ︷︷ ︸

scheduled truck

+

 ∑
(i,j)∈A

ekijt −
∑

(j,i)∈A

ek
ji(t−τE

ji)

︸ ︷︷ ︸

Express

=

0 ∀k ∈K;∀t ∈ [lk, uk]; ∀i ∈ V \{Ok, Dk}
qk ∀k ∈K; t = lk; i = Ok

−qk ∀k ∈K; t = uk; i = Dk

(4.6)

Iikt = 0 ∀i ∈ V ; ∀k ∈K; ∀t /∈ [lk, uk] (4.7)∑
k∈K

Iikt ≤ QV
i ∀i ∈ V ;∀t ∈ T (4.8)

ekijt, x
k
ijt, Iikt ≥ 0 ∀i, j ∈ V ; ∀t ∈ T ; ∀k ∈K (4.9)

f0
i , fit, zijt ∈ N ∀i, j ∈ V ;∀t ∈ T (4.10)

Objective function. The goal is to minimize the total cost of running the network
over the full planning horizon T , given in Equation (4.1). This objective function con-

89

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

tains the following terms: the sum of the fixed and variable cost related to the sched-
uled trucks, the cost of using express deliveries for the (partial) shipments that are not
transported using the scheduled truck and the inventory holding costs at the hubs.
Note that the total amount of scheduled trucks established in the network is given
by the sum of all trucks initiated at the hubs at the start of the period, denoted by∑

i∈V f0
i .

Constraints. To ensure feasibility of the network, the following constraints with
respect to the truck routes, the itineraries of the commodities and the inventories in the
hubs should be satisfied. Constraints (4.2) ensure that for each arc at each time the total
flow dedicated to the scheduled truck service does not exceed the scheduled truck
capacity available on the arc. Constraints (4.3) take care of the allocation of scheduled
trucks over the different hubs in the network at each time interval. The number of
trucks available at hub i at the end of time t is given by the amount trucks stationed
at this hub at the end of t − 1 plus the incoming trucks minus the outgoing trucks.
The initial allocation of trucks at the start of the period is given by constraints (4.4). To
allow the schedule to be repeated over time, the starting configuration is set equal to
the ending configuration in constraints (4.5).

The inventory levels are controlled by constraints (4.6). These constraints define
the (partial) amount of shipment k in different hubs (potential transshipment points,
origin and destination) over time. Once the shipment has been released into the sys-
tem (t ≥ lk), this amount equals the total volume of the shipment received in each
hub minus what has left the hub either via a scheduled truck or express delivery. By
means of constraints (4.7), we explicitly set all inventory levels to zero for times that
the shipment is not active in the network (i.e., before its release time and after its dis-
patching time). Constraints (4.8) control the storage capacity of each hub.

Finally, the domain of the decision variables is set by constraints (4.9) and (4.10).

4.4 Branch-and-price algorithm
Branch-and-price (BP) algorithms embed dynamic column generation into a branch-
and-bound framework to solve a MILP. We apply a best-first branching strategy on the
number of trucks on each arc, denoted by zijt.

In each node of the search tree, we apply the column generation algorithm to
solve the linear problem relaxation (relaxing the integrality constraint on the zijt vari-
able). Each time no additional columns (routes) improve the master problem and the
LP-relaxed solution does not satisfy the integrality conditions we use bounding on
each branch and solve two separate column generation algorithms for each branch as
follows: zijt < ⌊zijt⌋ and zijt ≥ ⌈zijt⌉.

90

In what follows, we will go deeper on the column generation approach that is at
the core of each node in our branch-and-price algorithm. The MILP model presented
above aims to integrate the routing decisions for the scheduled trucks and — if de-
sirable — the use of the express delivery service with the individual (partial) routes
for each commodity flowing through the network. As a result, it easily becomes in-
tractable, even for small instances.

To decouple the complexity of finding good routes for the vehicles from the
routes of the commodities, we will rely on a Dantzig-Wolfe decomposition [179] and
solve the problem using a column generation framework in which a master problem
and sub-problem (the pricing problem) are solved in an iterative way.

To initialize the column generation procedure, we start with the situation in
which no scheduled truck routes are established and solve the master problem. As
a result, all shipments will be sent directly from source to destination via a dedicated
express delivery. Even though this solution is feasible, it is likely not optimal as no
bundling opportunities are seized, even not for shipments with the same origin and
destination.

The sub-problem aims to find promising routes for each individual shipment for
which a scheduled truck service can be used. By focusing solely on the most promising
routes for an individual shipment, the size of the problem is kept as small as possible
and many high-quality routes can be added to the master problem in each iteration.
Once routes have been generated by the sub-problem, the master problem is run again
with the aim to route all shipments through the available network in an optimal way
(i.e., select a combination of routes, potentially complemented with one or multiple
express connections, for each shipment). This procedure is iterated until no more
routes (columns) with negative reduced cost can be found.

4.4.1 Master problem

The master problem determines the flow of all shipments through the network using
a combination of scheduled trucks or express delivery — defined as routes. These
routes, denoted by R, are dedicated to specific shipments (i.e., the set of routes avail-
able for shipment k is denoted by Rk ⊂ R) and generated by the sub-problem.

Each route r ∈ Rk is characterized by a binary parameter wrt
ij , denoting whether

the route r runs over the link (i, j) at time t. The quantity of shipment k transported
using this route r is given by xk

r . We summarize the additional notation for the master
problem in Table 4.3.

The master problem is defined mathematically as follows:

91

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

Table 4.3: Additional mathematical notation for the master problem.

Sets

R The set of all routes in the master problem.
Rk ⊂ R The set of all routes of scheduled trucks for shipment k.
Ar The set of all arcs in route r.

Parameters

wrt
ij Binary parameter denoting whether route r runs over the link (i, j) at time t.

Decision variables

xk
r The amount of shipment k ∈ K shipped via route r ∈ Rk .

min

∑
i∈V

cF f0
i +

∑
t∈T

 ∑
(i,j)∈A

cijzijt +
∑

(i,j)∈A

∑
k∈K

cEi,je
k
ijt +

∑
i∈V

∑
k∈K

hiIikt

 (4.11)

s.t.

∑
k∈K

∑
r∈Rk

xk
rw

rt
ij ≤ QF zijt ∀(i, j) ∈ A; ∀t ∈ T (4.12)

Iikt − Iik(t−1) +
∑

r∈Rk

xk
r

 ∑
(i,j)∈Ar

wrt
ij −

∑
(j,i)∈Ar

w
r(t−τji)

ji

+

 ∑
(i,j)∈A

ekijt −
∑

(j,i)∈A

ek
ji(t−τE

ji)

=

0 ∀k ∈K; ∀t ∈ [lk, uk]; ∀i ∈ V \{Ok, Dk}
qk ∀k ∈K; t = lk; i = Ok

−qk ∀k ∈K; t = uk; i = Dk

(4.13)

xk
r ≥ 0 ∀k ∈K; ∀r ∈ R (4.14)

Constraints (4.3), (4.4), (4.5), (4.7), (4.8), (4.9) and (4.10).

Objective function. The objective function of the master problem is equal to the
objective function of the global MILP formulation, presented in Section 4.3.2. The
function minimizes the total cost of the network, including the fixed and variable cost
of the scheduled trucks, the cost for all express deliveries and the inventory holding
cost in the hubs.

92

Constraints. To comply with the route-based formulation required for connecting
the master and its sub-problem, we slightly adapted some of the constraints from the
global MILP formulation.

Constraints (4.12) set the required amount of scheduled trucks that drive over
arc (i, j) at time t, given by zijt, based on the total flow over the routes that make use
of this arc. Similar to our global MILP, we assume that each shipment can be split in a
continuous way over different routes.

Constraints (4.13) are the flow balancing constraints in which we account for
the inventory at the hubs. The third term of the equation accounts for changes in
the inventory related to the shipment flowing through the available scheduled truck
routes. The last (fourth) term on the left-hand side of the equation accounts for express
deliveries of the shipment from the current hub to other hub(s) in the network.

Finally, constraints (4.14) set the domain for the newly added decision variable
xk
r .

4.4.2 Route generation sub-problem

The aim of the sub-problem is to generate additional routes that can be added to the
set R and considered by the master problem. A route is defined as a path of one or
multiple arcs in our network. To generate many promising routes fast, we run the
sub-problem for each shipment separately.

Let z be the objective function of Master Problem (MP). Moreover, let µijt be
the dual variables corresponding to the capacity constraint (4.12) and γikt the dual
variables for the flow balancing constraints (4.13).

We also define yijt as a binary variable that takes the value 1 if arc (i, j) is used at
time t in the generated route, 0 otherwise. For modelling purposes, we also introduce
Sit and Eit to represent the starting and ending node of the route, respectively. As the
final itinerary of a shipment in the master problem can be defined as a combination of
routes — potentially also including one or multiple express arcs —, we do not impose
that the starting (or ending) hub of the generated routes coincide with the source (or
destination) hub of the shipment.

Finally, let IBit be an auxiliary binary variable that takes the value 1 if there is a
positive inventory in hub i at time t, 0 otherwise. Again, we summarize the additional
mathematical notation in Table 4.5.

The total reduced cost for shipment k is computed using equation (4.15), which
accounts for all reduced costs for the master problem constraints with the non-basic
variable xk

r , i.e., constraints (4.12) and (4.13).

93

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

Table 4.5: Additional notation for the sub-problem.

Parameters

µijt Dual variable for constraints (4.12) of the master problem (capacity constraint).
γikt Dual variable for constraints (4.13) (inventory and flow balancing constraint).

Decision variables

yijt Binary variable that equals 1 if arc (i, j) is traversed at time t, 0 otherwise.
IBit Binary variable that equals 1 if there is a positive inventory in hub i at time t

(
∑

k∈K Iikt > 0), 0 otherwise.
Sit Binary variable that equals 1 if the current route starts in hub i at time t, 0 otherwise.
Eit Binary variable that equals 1 if the current route ends in hub i at time t, 0 otherwise.

Zk =
∑
t∈T

−
∑

(i,j)∈A

yijtµijt −
∑

(i,j)∈A

yijtγikt +
∑

(j,i)∈A

yji(t−τji)γikt

 (4.15)

Then, the route generation sub-model is given by the following mathematical
program.

min
[
Zk

]
(4.16)

s.t.

∑
i∈V

(uk−τE
iDk

)∑
t=(lk+τE

Oki
)

Sit = 1 (4.17)

∑
i∈V

(uk−τE
iDk

)∑
t=(lk+τE

Oki
)

Eit = 1 (4.18)

Sit + Eit ≤ 1 ∀i ∈ V ; ∀t ∈ T (4.19)

IBit − IBi(t−1) − Sit + Eit =
∑

(j,i)∈A

yji(t−τji)
−

∑
(i,j)∈A

yijt ∀i ∈ V ; ∀t ∈ T (4.20)

yijt, I
B
it , Sit, Eit ∈ {0, 1} ∀i, j ∈ V ; ∀t ∈ T (4.21)

94

Objective function. The objective function of the sub-problem is the minimization
of the reduced cost. If this optimal reduced cost is negative, the corresponding route
will be added to the set of routes considered by the master problem.

Constraints. Constraints (4.17) and (4.18) ensure that routes have exactly one start-
ing and one ending node, which are visited within a feasible time window for the
shipment under consideration. Constraints (4.19) force the starting hub and time to
be different from the ending hub and time.

The generated route should not only represent a path from start to end node,
also the time at which different links are used should be consistent by considering
intermediate storage in a hub if necessary, as seen in constraints (4.20).

Finally, constraints (4.21) take care of the domain constraints for the decision
variables.

Once the sub-problem is solved for all shipments, the generated routes will be
added to the master problem. This is done via the parameters wrt

ij , which represent
the yijt variables for each route.

4.5 Multi-period service network design problem
In the previous sections, we determined scheduled truck routes for a single period
(e.g., week) with multiple time intervals. As these routes are established through long-
term collaboration with dedicated carriers, they will be repeated every period. For
example, if a scheduled truck connection is installed between two hubs during the
first time interval of the period (e.g., Monday), this service will be provided every
Monday. In this Section, we therefore extend the problem definition to a multi-period
time horizon.

As demand is not constant, but might differ between periods, we need to estab-
lish the scheduled truck routes such that the overall long-term cost is minimized. If for
most Mondays, e.g., the demand for connection A-B is rather low, we rather not install
a scheduled truck over this connection on Monday (as this leads to large unused ca-
pacities during most weeks) but cover the demand with occasional express deliveries.
If, on the other hand, demand is consistently high on Mondays, it might be beneficial
to install a (less expensive) scheduled truck service that covers this connection.

To determine the optimal configuration of the scheduled truck services over mul-
tiple periods, we make use of a stochastic optimization model to account for the vari-
ability (and thus uncertainty) in the demand over time. More specifically, we employ
a two-stage scenario-based stochastic programming model for this purpose.

95

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

4.5.1 Two-stage scenario-based stochastic programming model

The main idea behind the two-stage stochastic programming model is that we sep-
arate decision variables that depend directly on the scenarios (i.e., what will remain
constant over the different periods) and are defined prior to the realization of the un-
certain parameters, which occurs later in the second stage, from the decision variables
that are impacted directly by the realization of the demand (i.e., what will change
every period). The first set of variables are related to the scheduled truck routes, as
these are part of a long-term collaboration and thus cannot be altered every period.
The second set of variables relates to the volumes transported via the express delivery
service as well as the inventories at the different hubs, as these will vary every period
depending on the demand scenario.

The formulation of the two-stage problem assumes that the uncertain data (i.e.,
the demand realization) can be modelled as a random vector with a known proba-
bility distribution which remains constant over time. Consequently, one may reliably
estimate the underlying probability distribution after which the optimization on the
expected value could be justified by the law of large numbers [172, 60, 162]. Therefore,
the objective function is to minimize the the first-stage costs while in addition to the
expected value of the random second-stage costs.

We will model the demand realization by means of a random vector with a finite
number of realizations (the scenarios). In our problem, the random vector consists
of only one random parameter, being the demand (commodity size) between origin-
destination pairs. Let Ω be the set of scenarios (indexed by s). The probability of each
scenario is denoted by P (s), ∀s ∈ Ω. Additionally, we extend the decision variables
denoting the flow in the network with an index s to account for the differences in
demand for each shipment k between each scenario. For an overview of the additional
notation, we refer to Table 4.7.

We extend our original mathematical problem to a two-stage stochastic program-
ming model as follows.

min

∑

i∈V

cF f0
i +

∑
(i,j)∈A

∑
t∈T

cijzijt

︸ ︷︷ ︸

First stage

+E [φ]

 (4.22)

s.t.∑
k∈K

xk
ijts ≤ QF zijt ∀(i, j) ∈ A; ∀t ∈ T ; ∀s ∈ Ω (4.23)

96

Table 4.7: Additional notation for the two-stage scenario-based stochastic programming
model.

Sets

Ω The set of all scenarios, indexed by s.

Parameters

qks The total volume of shipment k under scenario s.

Decision variables

ekijts The (partial) volume of shipment k shipped by express mode over arc (i, j) at time
t under scenario s.

xk
ijts The (partial) volume of shipment k shipped over arc (i, j) at time t under scenario

s.
Ikits The (partial) volume of shipment k kept in inventory at hub i at time t under sce-

nario s.

Ikits − Iki(t−1)s +

 ∑
(i,j)∈A

xk
ijts −

∑
(j,i)∈A

xk
ji(t−τji)s

+

 ∑
(i,j)∈A

ekijts −
∑

(j,i)∈A

ek
ji(t−τE

ji)s

=

0 ∀k ∈K; ∀t ∈ [lk, uk]; ∀i ∈ V \{Ok, Dk}; ∀s ∈ Ω

qks ∀k ∈K; t = lk; i = Ok;∀s ∈ Ω

−qks ∀k ∈K; t = uk; i = Dk; ∀s ∈ Ω

(4.24)

Ikits = 0 ∀i ∈ V ;∀k ∈K; ∀t /∈ [lk, uk]; ∀s ∈ Ω (4.25)∑
k∈K

Ikits ≤ QV
i ∀i ∈ V ; ∀t ∈ T ; ∀s ∈ Ω (4.26)

ekijts, x
k
ijts, I

k
its ≥ 0 ∀i, j ∈ V ; ∀t ∈ T ; ∀k ∈K; ∀s ∈ Ω (4.27)

Constraints (4.3), (4.4), (4.5), and (4.10).

Objective function. Equation (4.22) minimizes the cost associated with the first
stage variables (i.e., the scheduled truck service) plus the expected value for the sec-
ond stage cost. The latter cost is defined as a weighted sum of the cost of the outcome
for each scenario multiplied by its respective probability, such that

E [φ] =
∑
s∈Ω

P (s)φs. (4.28)

97

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

The second stage cost of scenario s, denoted by φs, is given by the following
equation. The first term accounts for the cost of all required express deliveries for the
shipments that could not be transported entirely by the scheduled truck services. The
second term relates to the inventory holding costs in each hub.

φs =
∑
t∈T

 ∑
(i,j)∈A

cEije
k
ijts +

∑
i∈V

∑
k∈K

hiI
k
its

 (4.29)

Constraints. Some constraints of the original model are updated to account for the
different demand scenarios. Equation (4.23) ensures that under no scenario, the ca-
pacity of the arcs (with respect to the installed scheduled truck capacity) is violated.
Constraints (4.24) connect the flows over the network links — both using scheduled
trucks as well as express delivery — with the inventory at the different hubs over
time. The inventory is initialized to zero for all time intervals a shipment is not in the
system by constraints (4.25). Constraints (4.26) ensure the capacity of the hub is never
exceeded. Finally, the domain constraints for the newly added decision variables are
denoted by constraints (4.27).

4.5.2 Scenario generation using Sample Average
Approximation

As the size of the network, the amount of shipments and the number of time inter-
vals per period increase, the number of required scenarios to realistically represent
the possible demand outcomes grows fast. To keep the model tractable, we make use
of Sample Average Approximation (SAA). This technique relies on the generation of sce-
narios by means of Monte Carlo simulation [171]. Assuming that each scenario occurs
with the same probability, we can rewrite equation (4.28) to

E [φ] =
1

|Ω|
∑
s∈Ω

φs. (4.30)

To construct our scenarios, we draw the volume of each shipment k, denoted by
qks, from a normal probability distribution N(µk, σk).

Following Verweij et al. [171], Bagaram and Tóth [13], and Ahmed, Shapiro, and
Shapiro [2], the steps that are considered within our SAA implementation are summa-
rized in Table 4.9.

To test the relationship between the number of scenarios in the two-stochastic op-
timization model and the optimality gap, we conducted a computational experiment
which is discussed in detail in Section 4.6.2.

98

Table 4.9: Different steps of the SAA implementation.

Step 1. Initialize the number of independent samples, (SAA replications), de-
noted by M , as well as the sample size (number of scenarios)n. In other
words, we generate M independent problems with n scenarios each,
and then solve these M problems and calculate their average objective
value. Each sample contains one value for the demand size between ev-
ery origin-destination pairs. For defining the value of the M , we used the
method presented in Ahmed, Shapiro, and Shapiro [2] which is based on
the probability of the best improvement in the objective value. The sam-
ple size dictates the number of scenarios you will consider. The larger
this value, the better the accuracy (lower optimality gap) at the expense
of larger computing times. n is set to a small number such that n << N ,
in which N is defined as the largest sample size for which the stochastic
model is tractable.

Step 2. Generate M independent samples — each of size n — and solve the two
stage stochastic problem for each sample.

Step 3. Compute the mean and the variance of the results obtained in step 2. The
average objective value is used as a lower bound for the stochastic prob-
lem.

Step 4. Solve the stochastic model with N scenarios to find a (close to) optimal
solution x̂. Use this solution to set the first stage variables of the two-stage
stochastic model for the M independent samples. Solve these models and
again take the average objective function value now as an upper bound
for the stochastic problem.

Step 5. Compare the lower and upper bound computed in steps 3 and 4, respec-
tively by determining the optimality gap which is the difference between
upper and lower bound.

Step 6. If the optimality gap found in step 5 is small enough, you stop. Otherwise,
increase the sample size n and return to step 2.

99

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

4.6 Model implementation and computational
experiments

4.6.1 Test instances

The algorithms presented in this chapter are tested extensively on a variant of the
Canad problem instances1 for the multi-commodity network design problem [43, 70]. In
total, 41 instances are considered (from which 14 R and 27 C instances), which we
altered to comply with our problem definition.

More specifically, we added a release and dispatching time (deadline) for each
shipment as follows: first, we scale the time horizon to ensure that no dispatching
time (deadlines) falls beyond the length of the period T . Then, for each shipment, we
randomly select a release time such that the time difference between the release time
and deadline is at least the transit time given in Hellsten et al. [70].

Furthermore, we also changed the cost structure of the instances to match the
difference between the scheduled truck service and the express delivery option in the
following way: the express cost per volume unit per arc is set in such a way that if
the shipped volume is less than half of the truckload, then transporting the commod-
ity by express mode is cheaper than shipping it by scheduled truck and vice versa.
The scheduled truck capacity is fixed to 30 tons (based on long-haul transportation
trucks). In Hellsten et al. [70], the fixed costs are given for each arc. To transform
these into a fixed cost for a vehicle, we compute the shortest path for each shipment
and take the average of the corresponding fixed costs of the respective arcs. For the
variable cost, we take the unit flow costs given in the benchmark instances. Since this
ratio is instance dependant (it varies when the network density, size and the distances
changes), we can not set a unique value of variable cost and express cost for all the in-
stances. Therefore, for each instance size, we compute the average variable cost for all
the arc in the network (c̄ij =

∑
(i,j)∈A

cij
|A|), and then depending on the instance size

we select the value for express cost in such a way that the following equality holds:

cEij = (cF + c̄ij)/(0.5Q
F ∗ c̄ij) ∗ cij

We refer to the fraction
(
2
cF+c̄ij
QF c̄ij

)
as the express coefficient. As a result of this

procedure, also the express costs are instance-dependent.

In all instances, a single period (week) contains 7 consecutive time intervals
(days), so t = {1, 2, . . . , 7}. The hub capacity is assumed to be 1000, and inventory
cost per unit per day is 2.

1The original instances can be downloaded via https://commalab.di.unipi.it/
datasets/mmcf/#Canad or https://zenodo.org/record/4050442.

100

https://commalab.di.unipi.it/datasets/mmcf/#Canad
https://commalab.di.unipi.it/datasets/mmcf/#Canad
https://zenodo.org/record/4050442

All instances are solved using CPLEX 12.8 with default parameters on a MAC-
BOOK AIR with an APPLE SILICON M1 CHIP and 16GB of RAM. Computational time
is limited to 7200 seconds (2 hours).

4.6.2 Impact of the number of scenarios on the optimality gap

To test the impact of the number of scenarios on the optimality gap, we conducted a
small computational experiment. We set M (the number of independent replications)
equal to 30 and, given our hardware setup, N was found to be around 60 scenarios. We
then varied the sample size n from 5 to 60. The results are summarized in Figures 4.1
and 4.2.

Figure 4.1: Gap percentage for different number of scenarios n (with N = 60 and M = 30).

Figure 4.1 shows the average optimal gap value for all the instances for different
numbers of scenarios. The figure shows that as the number of scenarios increases, the
solutions converge toward the optimal value, meaning that larger number of scenarios
result in a lower optimality gap. However, as shown in Figure 4.2, larger sample sizes
lead to a significant increase in solution time. The value on the y-axis represents the
average solution time for all the instances (stochastic variant), divided by the objective
function of the deterministic model (with only one scenario).

Based on this experiment, we conclude for our experiments that solving with up
to 30 scenarios is sufficient to obtain close-to-optimal solutions (1.5% gap on average).

101

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

Figure 4.2: (Relative) solution time vs number of scenarios

4.6.3 Results for the deterministic single-period problem variant

Performance analysis of the branch-and-price algorithm

We analyse the performance of the branch-and-price algorithm on the different in-
stances. A detailed overview of the results is presented in Tables 4.11 and 4.12.

Each instance is characterized by the number of hubs (nodes in the network), the
number of arcs, and the number of shipments, denoted by |V |, |A| and |K|, respec-
tively.

Next to the objective function value, we report on the number of columns added
to the model (#col), the number of nodes in the branch-and-price tree (#nodes), the
optimality gap (Gap(%)) and the computation time (Time (s)). The optimality gap is
computed as follows:

Optimality Gap (%) =
OptValue − Lower bound

OptValue
∗ 100

Based on the results in Tables 4.11 and 4.12, we see that the smaller instances
(with ≤ 20 hubs and ≤ 50 shipments) are all solved to optimality within the two-hour
time limit. Except for instance C36, a 3% optimality gap remains.

For the larger R instances (see Table 4.11) with more than 50 shipments, 1 instance
(out of 6) is still solved to optimality (R11.1). An average optimality gap of 2.47% and
3.57% is found for the R instances with 100 and 200 shipments, respectively. With

102

Table 4.11: Results for the branch-and-price algorithm on the deterministic single-period prob-
lem variant (R instances).

Inst. |V | |A| |K| Obj. #col #nodes Gap (%) Time (s)

R04.1 10 60 10 10200.95 148 216 0% 182.3
R07.1 10 82 10 10402.83 387 414 0% 489.4
R05.1 10 60 25 24442.39 500 392 0% 448.6
R08.1 10 83 25 22084.3 671 531 0% 232
R09.1 10 83 50 37401.92 498 706 0% 1318.2

optimal 5/5
Average 0% 534.1

R10.1 20 120 40 32728.53 1100 1822 0% 2193.6
R13.1 20 220 40 31497.12 2672 4263 0% 4058.5
R16.1 20 314 40 32549.78 3049 2544 0% 6244.7

optimal 3/3
Average 0% 4165.6

R11.1 20 120 100 81768.7 1290 3074 0% 6916.9
R14.1 20 220 100 74208.35 1033 935 2.6% 7200
R17.1 20 318 100 74266.11 2841 5029 4.8% 7200

optimal 1/3
Average 2.47% 7105.6

R12.1 20 120 200 152209.11 1528 1118 1.7% 7200
R15.1 20 220 200 133881.56 2924 3812 5% 7200
R18.1 20 315 200 132956.13 2002 3684 4% 7200

optimal 0/3
Average 3.57% 7200

optimal 9/14
Average 1.29% 4148.87

103

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

Table 4.12: Results for the branch-and-price algorithm on the deterministic single-period prob-
lem variant (C instances).

Inst. |V | |A| |K| Obj. #col #nodes Gap (%) Time (s)

C33 20 228 40 148638.88 2343 3574 0% 3752
C35 20 230 40 113698.45 1222 926 0% 4020.7
C36 20 230 40 139436.73 1217 1603 3% 7200
C41 20 288 40 137455.48 3112 5161 0% 3085.8
C42 20 294 40 161605.96 2533 2117 0% 3102.9
C43 20 294 40 137794.95 3205 5008 0% 3371.4
C44 20 294 40 153048.34 1844 1962 0% 3241.4

optimal 6/7
Average 0.43% 3967.74

C37 20 228 200 12172.44 1170 2409 5% 7200
C38 20 230 200 14931.77 1966 3277 0% 4422.6
C39 20 229 200 14436.66 1233 1493 6.9% 7200
C40 20 228 200 12703.92 1890 2855 4.5% 7200
C45 20 294 200 13589.56 2736 2719 10% 7200
C46 20 292 200 14197.69 2349 3901 13% 7200
C47 20 291 200 14376.92 1721 1355 4.4% 7200
C48 20 291 200 25285.64 2439 3984 108% 7200

optimal 1/8
Average 18.98% 6852.83

C49 30 518 100 14318.39 6928 13722 9.5% 7200
C50 30 516 100 13897.58 5821 7407 11% 7200
C51 30 519 100 14973.29 3829 3365 7.1% 7200
C52 30 517 100 16721.7 3271 7691 3.8% 7200
C57 30 680 100 13810.24 7419 21502 5.4% 7200
C58 30 680 100 13771.14 5516 7921 5.2% 7200
C59 30 687 100 26641.45 4528 11829 129% 7200
C60 30 686 100 13855.5 7709 22640 5.9% 7200

optimal 0/8
Average 22.11% 7200

C53 30 520 400 63779.25 4080 10428 169.2% 7200
C54 30 520 400 66407.1 2592 6116 184.1% 7200
C55 30 516 400 67828.75 6982 15208 187.5% 7200
C56 30 518 400 65287.05 4090 10382 178.4% 7200

optimal 0/4
Average 179.8% 7200

optimal 7/27
Average 38.92% 6259.14

104

an overall average optimality gap of 1.29%, we obtain competitive results for the R
instances.

For the larger C instances (see Table 4.12) we see that the branch-and-price model
is viable for most instances with 20–30 hubs and 100–200 shipments with optimality
gaps below or around 10%. The average results are impacted heavily by the high
optimality gaps for instance C48 (108%) and C59 (129%). The two-hour time limit is
clearly insufficient to solve instances with ≥ 30 hubs or ≥ 200 shipments to optimality.

For the largest instances with 30 hubs and 400 shipments, we even notice very
large optimality gaps. From this point onwards, the branch-and-price algorithm be-
comes really intractable.

The numerical results show promising outcomes in terms of convergence, speed
and solution accuracy. Furthermore, the sensitivity analysis performed on key param-
eters demonstrated the robustness of the numerical model and its ability to capture
subtle variations in the system. Based on the obtained results, we are satisfied with
the performance demonstrated by our proposed mathematical model and the solution
method. These results bolster our confidence in the chosen numerical approach and
its suitability for investigating complex transport systems.

Impact of express delivery option

A unique feature of our problem formulation is the possibility to make use of an ex-
press delivery service if the costs for establishing all required capacities within the
network becomes too high. In this section, we study the impact of including the ex-
press option by varying the express cost. To simulate changes in the express cost, we
multiply its value by a coefficient which we vary between 0.2 and 2.

Figure 4.3: Number of scheduled trucks for different values of the express cost coefficient.

105

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

Figure 4.3 reveals that with high express costs, the decision maker is reluctant
to use it as installing a scheduled truck service will be cheaper although its capacity
will not be used efficiently (see below). As a result, more scheduled trucks will be
installed such that all hubs are connected to the scheduled truck network. However,
if express costs are low, the volume shipped via express will increase and scheduled
trucks will only be established on the connections where loading rates are very high
(up to the point where no scheduled trucks will be installed as they are never compet-
itive against the express service).

Figure 4.4: The percentage of unused capacity (empty truckload) for the scheduled truck ser-
vice.

The relationship between the capacity utilization of the scheduled truck service
and the express cost is visualized specifically in Figure 4.4. In this figure, each obser-
vation refers to the average empty capacity of the scheduled trucks for one instance.
In the case express costs are too high, and therefore the service is hardly used, we
observe that the unused capacity of the scheduled truck service ranges between 10
and 30 percent (on average slightly below 20%). By making the express service more
attractive, inefficient scheduled truck transports are replaced by express delivery up
to the point where we see a close to 100% capacity utilization (≥ 95%) of all scheduled
trucks in the system.

Impact of hub capacity and inventory holding cost

Another unique feature of our model is the consideration of capacity restrictions in
the hubs. We expect that the more we restrict the capacity of the hubs, the higher the
operational cost will be as it is more likely that shipments will have to deviate from
their shortest / cheapest route from source to destination to avoid capacity violations
in the hubs.

106

For each instance, we first determine the maximum hub capacity QV
MAX . This is

the minimum capacity for which the capacity constraints become non-binding (i.e.,
capacity is no longer a constraint in our optimization model and the solution matches
the solution with infinite capacity in the hubs). We now run different simulation ex-
periments in which we set the hub capacity equal to a percentage of the maximum
hub capacity.

Figure 4.5: Total network cost as a function of the hub capacity, measured as a percentage of
the maximum hub capacity QV

MAX .

Figure 4.5 visualises the relationship between QV
MAX and the total network cost.

The base line is given by the scenario with infinite capacity (a very large number). The
more we restrict the hub capacity, the higher the total network cost. We see that the
total cost increases slightly, with an average cost increase of around 10% if only one
fifth of the non-binding hub capacity is available in the network.

Further analysis reveals that this increase is mainly due to an increase in fleet
size for the scheduled truck service and a slightly higher utilization of the express
delivery option (see Figure 4.6). The reason is twofold. First, the lack of capacity
requires shipments to deviate from their shortest path more often. To accommodate
these detours, more capacity is required in the scheduled truck service. Second, these
detours increase the cost of a shipment when shipped via the scheduled truck service.
Consequently, the express delivery option becomes more attractive to cover certain
connections.

The fact that the additional truck capacity installed when the hub capacities are
very restrictive is corroborated by the relationship between the capacity utilization of
the scheduled trucks (measured as the percentage of unused volume) and the maxi-
mum hub capacity QV

MAX given in Figure 4.7. The Figure shows that despite the in-

107

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

Figure 4.6: Different cost factors as a function of the hub capacity, measured as a percentage
of the maximum hub capacity QV

MAX .

Figure 4.7: Vehicle utilization of the scheduled truck service as a function of the hub capacity,
measured as a percentage of the maximum hub capacity QV

MAX .

108

crease in fleet size, the vehicle utilization increases slightly, from around 85% to close
to 90%. This shows that due to limited hub capacities, it becomes more attractive to
have the shipments ‘stored’ during transport. In other words, due to the limited hub
capacities, the model is forced to do detours, which requires not only more scheduled
trucks, but also longer total transit times between origin and destination (longer path).
This automatically leads to more ”storage in transit” in order to meet the deadline at
the source.

Similar conclusions are found when increasing the inventory holding costs. For
increasing values of the holding cost, keeping inventory in the hubs becomes less
attractive and more costly. As such, the same decision will be made as when inventory
capacity is restricted by the model. We prefer keeping shipments moving on the road
by installing a larger fleet of scheduled trucks to bridge the gap between their release
time and dispatching time and are willing to accept express deliveries from source to
destination more often as no intermediate inventory costs occur then (See figure 4.8).

(a) Optimal fleet size for different inventory cost (b) percentage of empty trucks with respect to
different inventory cost

Figure 4.8: Inventory cost analysis for Canad benchmark cases

4.6.4 Results for the stochastic multi-period problem variant

Impact of demand variance

To generate the instances, the stochastic demand for shipment k under scenario s was
generated based upon a normal distribution as follows,

109

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

qks = N(qk, αqk)

in which qk represents the average demand of shipment k. The standard devia-
tion is defined as a proportion α of the mean value. In this section, we will vary the
variability in the data by changing the value for α within the interval [0, 0.5].

Figure 4.9: Total network cost as a function of the standard deviation of the demand, denoted
by α.

The relationship between the total network cost and the value of α is visualized
in Figure 4.9. When α equals zero — our baseline scenario (deterministic)— , there is
no variability in the demand (i.e., there is only one scenario with the demand for each
shipment equal to qk in each period). As expected, the total network cost grows for
increasing values of α, but the increase remains relatively small (with up to 10% cost
increase on average for α equal to 0.5).

Investigating the relationship between α and the network configuration, we see
that the demand uncertainty mainly impacts the need for express delivery. The vol-
ume shipped via express delivery increases fast, even for small values of α. It is nice to
see that our simulation results align with the original motivation for considering ex-
press delivery as an alternative transport mode. Whereas the scheduled truck service
provides a baseline capacity on the links of the network where a considerable flow is
guaranteed, express delivery offers the flexibility to absorb the variations above this
baseline capacity.

110

(a) Optimal fleet size under different standard deviations

(b) Expected express transportation volume under different standard devi-
ations

Figure 4.10: Commodity variance analysis for Canad benchmark cases

111

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

The Expected Value of Perfect Information (EVPI) and Value of Stochastic
Solution (VSS)

In this section, we compare the performance of our two-stage stochastic model with
decision making based upon expected values or under perfect information. In deci-
sion making based upon expected value, we solve the model only once for a single
(average) scenario, i.e., we would consider solely the scenario in which

qk =
1

|Ω|
∑
s∈Ω

qks.

To solve the model under perfect information, we first compute the total network
cost of each individual scenario. Then, we take the average over all objective function
values found as the expected cost under perfect information (recall that we assume
each scenario to occur with the same probability).

Figure 4.11: VSS and EVPI Percentage with respect to the objective function value of the
stochastic mode

Figure 4.11 summarizes our main results. Here, we plot the expected value under
perfect information (EVPI) as well as the value of stochastic solution (VSS). Both mea-
sures are computed relative to the total network cost obtained when applying the
two-stochastic model. The value of perfect information relates to the decrease in total
network cost once the decision maker no longer faces uncertainty on the demand for
each shipment. In other words, having perfect information will lead to a decrease of
1.8% on average in total network cost.

The value of stochastic solution compares decision making under expected value
with the stochastic model. In other words, if the decision maker would ignore the

112

demand variability and solely optimize for the expected values for qk, the average
cost would be around 3.2% higher.

4.7 Conclusion
Motivated by a real case study from the industry, we presented a periodic multi-
commodity service network design problem to model the decisions of a 3PL when
managing all logistics operations of a supply network using both scheduled truck ser-
vices (representing long-term agreements with carriers to provide regular capacities
on specific network links) and ad-hoc express delivery. Next to the multi-modal ap-
proach, we also include the time dimension, hub capacities and account for stochastic
demand.

Our computational experiments show that our proposed exact model performs
very well. For the small instances with up to 20 hubs and 50 (shipments), the model
finds the optimal solution within the time limit. For the average instances with 20-30
hubs and up to 100 commodities, our exact model gives very promising solutions with
maximum of 10% optimal gap, and for the large instances (30 hubs and more than 100
commodities) the optimal gap within the time limit is 20% on average.

Adding the option of express delivery as an alternative to the scheduled truck
service leads to a lower network cost. This is due to the fact that express deliveries can
replace low-volume connections where installing a fixed capacity is not cost-effective.
This is similar to passenger transport, where bus services are replaced by on-demand
bus lines or taxi rides in rural areas with very low demand.

Furthermore, we show that limiting the available hub capacity increases the fleet
size for the scheduled truck service and express delivery. At the same time, it leads to
better vehicle utilization for the scheduled truck service. Similar results were found
when the inventory holding cost increases. In both scenarios, we observe that the
available scheduled truck capacity is used as inventory capacity during transport to
bridge the gap between release time and dispatching time. Moreover, adding the
express delivery improves the objective function and decreases the total costs in com-
parison to the case where there exists no express delivery and all the commodities are
transported by the scheduled trucks.

We extend the deterministic single-period model to a stochastic multi-period
variant in which the variation in demand over the different periods is included ex-
plicitly in the model. In contrast to a deterministic case, based on the average demand
solely, the inclusion of stochastic demand leads to a 3.2% network cost reduction on
average.

As we present an exact solution method, based upon the principles of branch-
and-price, we see that the model lacks some scalability towards large (potentially

113

Chapter 4. The periodic multi-commodity service network design problem
with regular and express deliveries under demand uncertainty

more realistic) instances. The development of an efficient heuristic and sample strat-
egy that allows good convergence to the optimal solution in a short computation time
would be valuable.

Further promising extensions of the model left for further research are the addi-
tion of a delivery time window (instead of a fixed dispatching time), a heterogeneous
fleet for the scheduled truck service (e.g., large trailers vs small(er) vans), social con-
straints related to the drivers (e.g., breaks, route duration, etc.), and additional sources
of uncertainty (e.g. stochastic travel times,etc.). Another itinerary for further research
could be the modelling of the pricing decision of the scheduled truck services between
the 3PL and the carrier or set of potential carriers each covering a certain part of the
envisaged network.

114

5
Summary

The overarching objective of this thesis is to develop some mathematical models and
algorithms for optimizing two challenging and important problems in supply chain
management, namely the order picker routing problem in the warehouse and the
multi-commodity network design problem. In order to reach this objective, we started
with an introduction chapter to understand the fundamental properties of the prob-
lems. In the second and third chapter, we studied the order picker routing problem
in a standard warehouse layout since warehousing service is a very important com-
ponent of the logistics system and plays a vital role in the supply chain process. Due
to the many new technological advancements such as significant growth in digital
marketing and e-commerce, introduction of operating programs such as Just-In-Time
(JIT), cycle time reduction and quick response to orders and new marketing strategies
such as micro marketing, the number of warehouses worldwide has seen significant
growth. One of the processes within warehouses that provide significant increase
in the efficiency and cutting the costs while ensuring high customer service levels is
the so-called order picking. Order picking is often cited as one of the most critical
process among the internal logistics operations due to its massive time and energy re-
quirements. Researchers have already created a variety of exact and heuristic routing
methods to reduce the price of order picking. However, the exact algorithms that do
model the particularities of the order picking environment are not scalable and they
only exist for small warehouses with only two blocks (see Roodbergen and De Koster
[136] and Cornuéjols, Fonlupt, and Naddef [39], while for other larger warehouse
layouts, some heuristic and meta-heuristic methods are provided. Moreover, the al-
gorithms that solve the problem to optimality, are based on very general assumptions
(solve it like a TSP) which leads to inefficient running times that are not applicable in
real-life (same day delivery and JIT).

115

Chapter 5. Summary

In the second chapter of this thesis, we proposed an exact model that relies on
the particularities of a warehouse environment that is better scalable thanks to inten-
sive graph reduction. The average graph reduction in comparison to the complete
graph (before pre-processing) is 72.85%, which is really considerable. To the best of
our knowledge our exact algorithm is the first proposed algorithm in the literature
which can be implemented in warehouses with much more than two blocks and the
computation time is comparable and less than one minute. Our mathematical model
solves all the instances optimally. Furthermore, we proved that our proposed graph-
reduction algorithm in addition to the exact model can be generalized for all planar
TSPs, which leads to better performance for a whole set of optimization problems, not
only order picker routing problem in the warehouse.

Planar graph reduction methods can be useful to researchers, industry, and soci-
ety in several ways by designing efficient network topology since it has various appli-
cations such as transportation networks, biological network, electronic circuit design,
image and video processing, graph theory, social networks, and communication net-
works and power grids. By reducing the complexity of the network, planar graph
reduction methods can lead to simpler and more efficient network designs, and re-
duce the computational complexity of graph algorithms, which can save time and
resources.

In an industrial perspective, our proposed algorithm could be easily integrated
in existing warehouse management software, and it would help companies to rely on
higher-quality solutions (optimal) for a realistic problem size resulting in a very fast
and efficient delivery system. To do so, some additional steps are needed to put our
results into practice, such as designing a new software, prototyping, programming,
marketing etc.

In the third chapter, we went a step further, considering more general and real-
istic case of order picking within modern warehouses with scattered storage policies.
In industry, many warehouses products are stored at multiple locations as a result of
random / scattered storage policies. These policies are used since they are easy to
implement, scalable and flexible in handling the seasonality without reserving unnec-
essary capacity for peak periods of a product. However, in industry, very simplified
and basic algorithms are applied in such a picking environment (easier for operators),
which is resulting in the routes far from the optimal solution. Our proposed exact
GTSP model in addition to the heuristic algorithm could easily be used by warehouse
operators and satisfies the current needs by saving time and increasing the efficiency.

In the literature, while the GTSP has received significant attention, the research
has primarily focused on non-overlapping clusters. The existing algorithms rely on
problem-specific characteristics that assume the clusters to be non-overlapping geo-
graphically. In our proposed order picker routing problem, we identified a field of
application where this criteria no longer holds. Consequently, the existing algorithms
would not be able to exploit this feature and would – likely – perform worse. Our goal

116

was to develop an algorithm that can deal with the clustered substructure of the prob-
lem as good as possible, without having to rely on the assumption of non-overlapping
clusters. This research was motivated not only by the potential efficiencies that can be
achieved in a warehouse, but also by the fact that very little attention has been paid to
this problem when accounting for the overlap of clusters. In the third chapter of this
thesis, a new problem was introduced and mathematically formulated (GTSP with
overlapping clusters), Moreover, we linked it to existing concepts and developed a
heuristic algorithm for obtaining high-quality solutions. Our algorithmic ideas can
easily be transferred to similar problems in the field of logistics.

Currently the models discussed in the chapters two and three of this thesis are
limited to environments with only one picker. However, as a future research, one can
consider the possibility to extend our models to multiple order pickers and analyze the
impact of the employment of multiple order pickers on the average processing time
of the orders. In this case we might consider the optimal number of pickers and order
assignment policies to each order picker. Another approach could be assigning each
order picker to a specific zone in the warehouse and try to assign them to only part of
the items in each order, located in their zone. In addition to this modifications, vari-
ous promising areas for further research can be identified in the field of order picker
routing problem. One of these modifications to the current study might be taking
into account numerous deposit locations (depots) and investigating its effects on tour
lengths. Moreover, due dates for order list, dynamic customer orders, development
of problem-specific solution procedures, and inclusion of uncertain expected orders
should also be taken into account in the decision-making process. Furthermore, for
chapter three of the thesis, future research could also focus on the pre-processing of
the graph and developing a graph reduction method in the presence of overlapping
clusters.

In the fourth chapter of this thesis, we consider a variant of multi-modal Multi-
commodity Network design problem with delivery time and stochastic demand. The
problem presented in this chapter is motivated by a case study in which a 3PL is re-
sponsible for coordinating all material flows that belong to the supply network of a
large construction company within Europe (company names are confidential). This
study contributes to the academic literature in the following ways. First, we consider
multi-commodity service network design models over time to allow differentiation
between the (periodic) scheduled truck services and the ad-hoc express delivery op-
tion. Moreover, we consider the delivery date for commodities, and finally fleet man-
agement by determining the allocation and fleet size of each type of transportation
mode at each hub for each time period. These assumptions make our model more
realistic. Second, we account for potential capacity limitations in the hub and man-
age inventory levels accordingly. Furthermore, we develop competitive solution ap-
proaches based on an integration of column generation and branch-and-price to solve
this realistic variant of the MCND. Moreover, we extend our models and results to
a setting with uncertain demand and present a two-stage, scenario-based stochastic

117

Chapter 5. Summary

model which is solved using the sample average approximation method. Finally, a
broad range of managerial insights have been generated by means of an extensive
sensitivity analysis.

Future contributions for this study can include considering heterogeneous vehi-
cles with different capacities, improving the solution method (column generation and
branch and price), taking into account the multi-period planning since our proposed
model is focused on a single period with multiple time intervals. Moreover, robust
optimization with service levels and time window for commodity delivery could be
other future research directions.

118

6
Impact of the Thesis

In this thesis we study two lines of work, first the order picker routing problem in a
warehouse, and second, the multi-commodity network design problem. Both prob-
lems play a pivotal role in shaping operational efficiency, customer satisfaction, cost
reduction, and ultimately, an enhanced supply chain performance.

From an economical perspective, using the proposed models and algorithms can
improve the efficiency of warehouse and distribution center operations, which can
contribute to economic growth and development. Another economical outcome of
this thesis is that the proposed models can result in an increased competitiveness
for different logistic businesses This can benefit society by promoting innovation and
economic growth. One of the social benefits of this thesis is improving the working
conditions for warehouse and distribution center employees. This can improve job
satisfaction and employee retention. Moreover, the proposed models in this thesis can
result in a better resource allocation in warehouses and distribution centers which can
help organizations allocate resources more effectively and make better use of their la-
bor force.

As a take-away from this thesis, our proposed models and algorithms in the field
of supply chain optimization can bring benefits to researchers by helping them work-
ing on these problems to develop new mathematical models, algorithms, and software
tools to solve them. These innovations can lead to improvements in supply chain
management and logistics, as well as new business opportunities for companies in
the industry. In an industrial perspective, the current research can help improving
the efficiency of warehouse and distribution center operations, resulting in reduced
costs, improved delivery times, and increased customer satisfaction. This can benefit

119

Chapter 6. Impact of the Thesis

both the industry and society by increasing customer loyalty and promoting economic
growth.

Moreover, improving supply chain performance in the fields of order picking
and service network design can result in increased industry profitability, enhanced
customer satisfaction, and a market advantage. Moreover, our proposed algorithm
could be easily integrated in existing warehouse management software, and it would
help companies to rely on higher-quality solutions (optimal) for a realistic problem
size resulting in a very fast and efficient delivery system. To do so, some additional
steps are needed to put our results into practice, such as designing a new software,
prototyping, programming, marketing etc.

In addition to all the results and contributions to the literature, achieved by this
thesis, our approaches for the studied problems are versatile in the sense that they can
be used in combination with other approaches to help improve the further research or
initiate further research on their respective problems.

120

Bibliography

[1] Amir Reza Ahmadi Keshavarz, Davood Jaafari, Mehran Khalaj, and
Parshang Dokouhaki. “A survey of the literature on order-picking sys-
tems by combining planning problems”. In: Applied Sciences 11.22 (2021),
page 10641.

[2] Shabbir Ahmed, Alexander Shapiro, and Er Shapiro. “The sample av-
erage approximation method for stochastic programs with integer re-
course”. In: Submitted for publication (2002), pages 1–24.

[3] M Hakan Akyüz, Temel Öncan, and İ Kuban Altınel. “Branch and
bound algorithms for solving the multi-commodity capacitated multi-
facility Weber problem”. In: Annals of Operations Research 279.1 (2019),
pages 1–42.

[4] Michael Omotayo Alabi and Ojelanki Ngwenyama. “Food security
and disruptions of the global food supply chains during COVID-19:
building smarter food supply chains for post COVID-19 era”. In: British
Food Journal (2022).

[5] Abdullah Alsheddy, Christos Voudouris, Edward PK Tsang, and Ah-
mad Alhindi. Guided Local Search. 2018.

[6] Jardar Andersen, Marielle Christiansen, Teodor Gabriel Crainic, and
Roar Grønhaug. “Branch and price for service network design with
asset management constraints”. In: Transportation Science 45.1 (2011),
pages 33–49.

[7] Ehsan Ardjmand, Omid Sanei Bajgiran, and Eyad Youssef. “Using list-
based simulated annealing and genetic algorithm for order batching
and picker routing in put wall based picking systems”. In: Applied Soft
Computing 75 (2019), pages 106–119.

[8] Ehsan Ardjmand, Heman Shakeri, Manjeet Singh, and Omid Sanei Ba-
jgiran. “Minimizing order picking makespan with multiple pickers in
a wave picking warehouse”. In: International Journal of Production Eco-
nomics 206 (2018), pages 169–183.

[9] Sanjeev Arora. “Approximation schemes for NP-hard geometric opti-
mization problems: A survey”. In: Mathematical Programming 97 (July
2003), pages 43–69. DOI: 10.1007/s10107-003-0438-y.

121

https://doi.org/10.1007/s10107-003-0438-y

Bibliography

[10] Abbas Azadi Moghaddam Arani, Fariborz Jolai, and Mohammad Mahdi
Nasiri. “A multi-commodity network flow model for railway capacity
optimization in case of line blockage”. In: International Journal of Rail
Transportation 7.4 (2019), pages 297–320.

[11] Amir Hossein Azadnia, Shahrooz Taheri, Pezhman Ghadimi, Muhamad
Zameri Mat Saman, and Kuan Yew Wong. “Order batching in ware-
houses by minimizing total tardiness: a hybrid approach of weighted
association rule mining and genetic algorithms”. In: The Scientific World
Journal 2013 (2013).

[12] Hossein Badri, SMT Fatemi Ghomi, and Taha-Hossein Hejazi. “A two-
stage stochastic programming approach for value-based closed-loop
supply chain network design”. In: Transportation Research Part E: Lo-
gistics and Transportation Review 105 (2017), pages 1–17.

[13] Martin B Bagaram and Sándor F Tóth. “Multistage sample average
approximation for harvest scheduling under climate uncertainty”. In:
Forests 11.11 (2020), page 1230.

[14] A Balakrishnan, TL Magnanti, and P Mirchandani. Annotated bibliogra-
phies in combinatorial optimization, chap. 18, Network Design. 1997.

[15] Pouya Baniasadi, Mehdi Foumani, Kate Smith-Miles, and Vladimir
Ejov. “A transformation technique for the clustered generalized trav-
eling salesman problem with applications to logistics”. In: European
Journal of Operational Research 285.2 (2020), pages 444–457.

[16] Gulay Barbarosoǧlu and Yasemin Arda. “A two-stage stochastic pro-
gramming framework for transportation planning in disaster response”.
In: Journal of the operational research society 55.1 (2004), pages 43–53.

[17] Ramin Bazrafshan, Sarfaraz Zolfani, and S.M.J. Mirzapour Al-e-hashem.
“Comparison of the Sub-Tour Elimination Methods for the Asymmet-
ric Traveling Salesman Problem Applying the SECA Method”. In: Ax-
ioms 10 (Feb. 2021), page 19. DOI: 10.3390/axioms10010019.

[18] Tolga Bektaş, Güneş Erdoğan, and Stefan Røpke. “Formulations and
branch-and-cut algorithms for the generalized vehicle routing prob-
lem”. In: Transportation Science 45.3 (2011), pages 299–316.

[19] Nicolas Belanger, Guy Desaulniers, François Soumis, and Jacques Desrosiers.
“Periodic airline fleet assignment with time windows, spacing con-
straints, and time dependent revenues”. In: European Journal of Opera-
tional Research 175.3 (2006), pages 1754–1766.

122

https://doi.org/10.3390/axioms10010019

[20] David Ben-Arieh, Gregory Gutin, M Penn, Anders Yeo, and Alexey
Zverovitch. “Transformations of generalized ATSP into ATSP”. In: Op-
erations Research Letters 31.5 (2003), pages 357–365.

[21] Maurizio Boccia, Teodor Gabriel Crainic, Antonio Sforza, and Claudio
Sterle. “Multi-commodity location-routing: Flow intercepting formu-
lation and branch-and-cut algorithm”. In: Computers & Operations Re-
search 89 (2018), pages 94–112.

[22] Tamás Bódis and János Botzheim. “Bacterial memetic algorithms for
order picking routing problem with loading constraints”. In: Expert
Systems with Applications 105 (2018), pages 196–220.

[23] Boris Bontoux, Christian Artigues, and Dominique Feillet. “A memetic
algorithm with a large neighborhood crossover operator for the gen-
eralized traveling salesman problem”. In: Computers & Operations Re-
search 37.11 (2010), pages 1844–1852.

[24] Ozan Çakır. “Benders decomposition applied to multi-commodity, multi-
mode distribution planning”. In: Expert Systems with Applications 36.4
(2009), pages 8212–8217.

[25] Hadrien Cambazard and Nicolas Catusse. “Fixed-parameter algorithms
for rectilinear steiner tree and rectilinear traveling salesman problem
in the plane”. In: European Journal of Operational Research 270.2 (2018),
pages 419–429.

[26] Giovanni Campuzano, Carlos Obreque, and Maichel M Aguayo. “Ac-
celerating the Miller–Tucker–Zemlin model for the asymmetric travel-
ing salesman problem”. In: Expert Systems with Applications 148 (2020),
page 113229.

[27] Cem Canel, Basheer M Khumawala, Japhett Law, and Anthony Loh.
“An algorithm for the capacitated, multi-commodity multi-period fa-
cility location problem”. In: Computers & Operations Research 28.5 (2001),
pages 411–427.

[28] Jose Alejandro Cano, Alexander Alberto Correa-Espinal, and Rodrigo
Andrés Gómez-Montoya. “An evaluation of picking routing policies
to improve warehouse efficiency”. In: International Journal of Industrial
Engineering and Management 8.4 (2017), pages 229–238.

[29] Angelo Castelda. Understanding The Impacts of eCommerce On Ware-
house Operations. https://www.floship.com/blog/_ecommerce-
warehouse-operations/. Accessed: 2020-05-27.

123

https://www.floship.com/blog/_ecommerce-warehouse-operations/
https://www.floship.com/blog/_ecommerce-warehouse-operations/

Bibliography

[30] Melih Celik and Haldun Sural. “The order picking problem in fish-
bone aisle warehouses”. In: (2012).

[31] Melih Celik and HALDUN Süral. “Order picking in a parallel-aisle
warehouse with turn penalties”. In: International Journal of Production
Research 54.14 (2016), pages 4340–4355.

[32] Melih Çelik and H Süral. “Order picking in a parallel-aisle warehouse
with turn penalties”. In: International Journal of Production Research 54.14
(2016), pages 4340–4355.

[33] Thomas Chabot, Rahma Lahyani, Leandro C Coelho, and Jacques Re-
naud. “Order picking problems under weight, fragility and category
constraints”. In: International Journal of Production Research 55.21 (2017),
pages 6361–6379.

[34] Fangyu Chen, Hongwei Wang, Yong Xie, and Chao Qi. “An ACO-
based online routing method for multiple order pickers with conges-
tion consideration in warehouse”. In: Journal of Intelligent Manufactur-
ing 27.2 (2016), pages 389–408.

[35] Fangyu Chen, Gangyan Xu, and Yongchang Wei. “Heuristic routing
methods in multiple-block warehouses with ultra-narrow aisles and
access restriction”. In: International Journal of Production Research 57.1
(2019), pages 228–249.

[36] Tzu-Li Chen, Chen-Yang Cheng, Yin-Yann Chen, and Li-Kai Chan.
“An efficient hybrid algorithm for integrated order batching, sequenc-
ing and routing problem”. In: International Journal of Production Eco-
nomics 159 (2015), pages 158–167.

[37] Martin Christopher. “The mitigation of risk in resilient supply chains”.
In: (2018).

[38] Jean-François Cordeau, Gilbert Laporte, Martin WP Savelsbergh, and
Daniele Vigo. “Vehicle routing”. In: Handbooks in operations research and
management science 14 (2007), pages 367–428.

[39] Gérard Cornuéjols, Jean Fonlupt, and Denis Naddef. “The traveling
salesman problem on a graph and some related integer polyhedra”.
In: Mathematical programming 33.1 (1985), pages 1–27.

124

[40] Pablo Cortés, Rodrigo A Gómez-Montoya, Jesús Muñuzuri, and Alexan-
der Correa-Espinal. “A tabu search approach to solving the picking
routing problem for large-and medium-size distribution centres con-
sidering the availability of inventory and K heterogeneous material
handling equipment”. In: Applied Soft Computing 53 (2017), pages 61–
73.

[41] Teodor G Crainic and Jean-Marc Rousseau. “Multicommodity, mul-
timode freight transportation: A general modeling and algorithmic
framework for the service network design problem”. In: Transporta-
tion Research Part B: Methodological 20.3 (1986), pages 225–242.

[42] Teodor Gabriel Crainic, Pierre Dejax, and Louis Delorme. “Models for
multimode multicommodity location problems with interdepot bal-
ancing requirements”. In: Annals of Operations Research 18.1 (1989), pages 277–
302.

[43] Teodor Gabriel Crainic, Antonio Frangioni, and Bernard Gendron. “Bundle-
based relaxation methods for multicommodity capacitated fixed charge
network design”. In: Discrete Applied Mathematics 112.1-3 (2001), pages 73–
99.

[44] Marco Croucamp and Jacomine Grobler. “Metaheuristics for the robot
part sequencing and allocation problem with collision avoidance”. In:
Progress in Artificial Intelligence: 20th EPIA Conference on Artificial Intel-
ligence, EPIA 2021, Virtual Event, September 7–9, 2021, Proceedings 20.
Springer. 2021, pages 469–481.

[45] George B Dantzig. “Linear programming under uncertainty”. In: Man-
agement science 1.3-4 (1955), pages 197–206.

[46] René De Koster, Tho Le-Duc, and Kees Jan Roodbergen. “Design and
control of warehouse order picking: A literature review”. In: European
journal of operational research 182.2 (2007), pages 481–501.

[47] René De Koster and Edo Van Der Poort. “Routing orderpickers in a
warehouse: a comparison between optimal and heuristic solutions”.
In: IIE transactions 30.5 (1998), pages 469–480.

[48] Roberta De Santis, Roberto Montanari, Giuseppe Vignali, and Eleonora
Bottani. “An adapted ant colony optimization algorithm for the mini-
mization of the travel distance of pickers in manual warehouses”. In:
European Journal of Operational Research 267.1 (2018), pages 120–137.

125

Bibliography

[49] Izabela Dembińska. “The Impact of E-Commerce Development on the
Warehouse Space Market in Poland”. In: Economics and culture 13.2
(2016), pages 5–13.

[50] M Devaraj. Impact of eCommerce Growth on the Logistics Sector. https:
//www.linkedin.com/pulse/impact-ecommerce-growth-
logistics-sector-devaraj-m/?trk=pulse-article_more-
articles_related-content-card. Accessed: 2022-06-23.

[51] Mary Dillon, Fabricio Oliveira, and Babak Abbasi. “A two-stage stochas-
tic programming model for inventory management in the blood sup-
ply chain”. In: International Journal of Production Economics 187 (2017),
pages 27–41.

[52] Scott DuHadway, Steven Carnovale, and Benjamin Hazen. “Under-
standing risk management for intentional supply chain disruptions:
Risk detection, risk mitigation, and risk recovery”. In: Annals of Oper-
ations Research 283.1 (2019), pages 179–198.

[53] Goran Dukic and Cedomir Oluic. “Order-picking methods: improving
order-picking efficiency”. In: International Journal of Logistics Systems
and Management 3.4 (2007), pages 451–460.

[54] Mehdi El Krari, Belaı̈d Ahiod, El Benani, and Youssef Bouazza. “A pre-
processing reduction method for the generalized travelling salesman
problem”. In: Operational Research 21.4 (2021), pages 2543–2591.

[55] Judith M Farvolden and Warren B Powell. “Subgradient methods for
the service network design problem”. In: Transportation Science 28.3
(1994), pages 256–272.

[56] Matteo Fischetti, Juan José Salazar González, and Paolo Toth. “A branch-
and-cut algorithm for the symmetric generalized traveling salesman
problem”. In: Operations Research 45.3 (1997), pages 378–394.

[57] Bernhard Fleischmann. “A cutting plane procedure for the travelling
salesman problem on road networks”. In: European Journal of Opera-
tional Research 21.3 (1985), pages 307–317.

[58] Xuehong Gao and Gyu M Lee. “A stochastic programming model
for multi-commodity redistribution planning in disaster response”. In:
IFIP international conference on advances in production management sys-
tems. Springer. 2018, pages 67–78.

126

https://www.linkedin.com/pulse/impact-ecommerce-growth-logistics-sector-devaraj-m/?trk=pulse-article_more-articles_related-content-card
https://www.linkedin.com/pulse/impact-ecommerce-growth-logistics-sector-devaraj-m/?trk=pulse-article_more-articles_related-content-card
https://www.linkedin.com/pulse/impact-ecommerce-growth-logistics-sector-devaraj-m/?trk=pulse-article_more-articles_related-content-card
https://www.linkedin.com/pulse/impact-ecommerce-growth-logistics-sector-devaraj-m/?trk=pulse-article_more-articles_related-content-card

[59] M. R. Garey, R. L. Graham, and D. S. Johnson. “Some NP-Complete
Geometric Problems”. In: Proceedings of the Eighth Annual ACM Sympo-
sium on Theory of Computing. STOC ’76. Hershey, Pennsylvania, USA:
Association for Computing Machinery, 1976, pages 10–22. DOI: 10.
1145/800113.803626.

[60] Manfred Gilli, Dietmar Maringer, and Enrico Schumann. Numerical
methods and optimization in finance. Academic Press, 2019.

[61] Christoph H Glock and Eric H Grosse. “Storage policies and order
picking strategies in U-shaped order-picking systems with a movable
base”. In: International Journal of Production Research 50.16 (2012), pages 4344–
4357.

[62] Marc Goetschalckx and H Donald Ratliff. “Order picking in an aisle”.
In: IIE transactions 20.1 (1988), pages 53–62.

[63] Rodrigo Andrés Gómez-Montoya, Alexander Alberto Correa-Espinal,
and José Daniel Hernández-Vahos. “Picking Routing Problem with K
homogenous material handling equipment for a refrigerated ware-
house”. In: Revista Facultad de Ingenierı́a Universidad de Antioquia 80
(2016), pages 9–20.

[64] David B Grant, Chee Yew Wong, and Alexander Trautrims. Sustainable
logistics and supply chain management: principles and practices for sustain-
able operations and management. Kogan Page Publishers, 2017.

[65] Beth Gutelius, Nik Theodore, et al. “The future of warehouse work:
Technological change in the US logistics industry”. In: UC Berkeley La-
bor Center (2019).

[66] Gregory Gutin and Daniel Karapetyan. “A memetic algorithm for the
generalized traveling salesman problem”. In: Natural Computing 9.1
(2010), pages 47–60.

[67] Gregory Gutin and Daniel Karapetyan. “Generalized traveling sales-
man problem reduction algorithms”. In: Algorithmic Operations Research
4.2 (2009), pages 144–154.

[68] Randolph W Hall. “Distance approximations for routing manual pick-
ers in a warehouse”. In: IIE transactions 25.4 (1993), pages 76–87.

[69] Bayan Hamdan and Ali Diabat. “A two-stage multi-echelon stochastic
blood supply chain problem”. In: Computers & Operations Research 101
(2019), pages 130–143.

127

https://doi.org/10.1145/800113.803626
https://doi.org/10.1145/800113.803626

Bibliography

[70] Erik Hellsten, David Franz Koza, Ivan Contreras, Jean-François Cordeau,
and David Pisinger. “The transit time constrained fixed charge multi-
commodity network design problem”. In: Computers & Operations Re-
search 136 (2021), page 105511.

[71] Keld Helsgaun. “General k-opt submoves for the Lin–Kernighan TSP
heuristic”. In: Mathematical Programming Computation 1.2 (2009), pages 119–
163.

[72] Keld Helsgaun. “Solving the equality generalized traveling salesman
problem using the Lin–Kernighan–Helsgaun algorithm”. In: Mathe-
matical Programming Computation 7.3 (2015), pages 269–287.

[73] AL Henry-Labordere. “The record balancing problem: A dynamic pro-
gramming solution of a generalized traveling salesman problem”. In:
Revue Francaise D Informatique DeRecherche Operationnelle 3.2 (1969),
pages 43–49.

[74] SS Ho and S Sarma. “The fragmented warehouse: Location assign-
ment for unit-load picking”. In: 2008 IEEE International Conference on
Industrial Engineering and Engineering Management. IEEE. 2008, pages 1159–
1163.

[75] Y-C Ho and Y-Y Tseng. “A study on order-batching methods of order-
picking in a distribution centre with two cross-aisles”. In: International
Journal of Production Research 44.17 (2006), pages 3391–3417.

[76] Jeffrey Hoeft and Udatta S Palekar. “Heuristics for the plate-cutting
traveling salesman problem”. In: IIE transactions 29.9 (1997), pages 719–
731.

[77] Ling-feng Hsieh and Lihui Tsai. “The optimum design of a warehouse
system on order picking efficiency”. In: The International Journal of Ad-
vanced Manufacturing Technology 28 (2006), pages 626–637.

[78] Bin Hu and Günther R Raidl. “Effective neighborhood structures for
the generalized traveling salesman problem”. In: European Conference
on Evolutionary Computation in Combinatorial Optimization. Springer.
2008, pages 36–47.

[79] Stefan Irnich, Paolo Toth, and Daniele Vigo. “Chapter 1: The family of
vehicle routing problems”. In: Vehicle Routing: Problems, Methods, and
Applications, Second Edition. SIAM, 2014, pages 1–33.

128

[80] Chawalit Jeenanunta, Boontariga Kasemsontitum, and Tawinan Noichawee.
“A multi-commodity flow approach for aircraft routing and mainte-
nance problem”. In: 2011 IEEE International Conference on Quality and
Reliability. IEEE. 2011, pages 150–155.

[81] Zhang Kai and Gao Chuanhou. “Improved formulations of the joint
order batching and picker routing problem”. In: arXiv preprint arXiv:2207.05305
(2022).

[82] Imdat Kara, Huseyin Guden, and Ozge N Koc. “New formulations
for the generalized traveling salesman problem”. In: Proceedings of the
6th international conference on applied mathematics, simulation, modelling,
ASM. Volume 12. 2012, pages 60–65.

[83] Daniel Karapetyan and Gregory Gutin. “Lin–Kernighan heuristic adap-
tations for the generalized traveling salesman problem”. In: European
Journal of Operational Research 208.3 (2011), pages 221–232.

[84] Naoto Katayama. “A combined capacity scaling and local branching
approach for capacitated multi-commodity network design problem”.
In: Far East Journal of Applied Mathematics 92.1 (2015), pages 1–30.

[85] Sujin Kim, Raghu Pasupathy, and Shane G Henderson. “A guide to
sample average approximation”. In: Handbook of simulation optimiza-
tion (2015), pages 207–243.

[86] Natalio Krasnogor, Giuseppe Nicosia, Mario Pavone, David Pelta, et
al. Nature inspired cooperative strategies for optimization (nicso 2007). Vol-
ume 129. Springer, 2008.

[87] Kanokporn Kungwalsong, Chen-Yang Cheng, Chumpol Yuangyai, and
Udom Janjarassuk. “Two-stage stochastic program for supply chain
network design under facility disruptions”. In: Sustainability 13.5 (2021),
page 2596.

[88] Maher Lahmar. Facility logistics: Approaches and solutions to next genera-
tion challenges. CRC Press, 2007.

[89] Gilbert Laporte, Ardavan Asef-Vaziri, and Chelliah Sriskandarajah.
“Some applications of the generalized travelling salesman problem”.
In: Journal of the Operational Research Society 47.12 (1996), pages 1461–
1467.

[90] Gilbert Laporte, Luı́s Lopes, and François Soumis. “Optimal sequenc-
ing rules for some large-scale flexible manufacturing problems under
the Manhattan and Chebychev metrics”. In: International journal of flex-
ible manufacturing systems 10 (1998), pages 27–42.

129

Bibliography

[91] Gilbert Laporte, Hélène Mercure, and Yves Nobert. “Generalized trav-
elling salesman problem through n sets of nodes: the asymmetrical
case”. In: Discrete Applied Mathematics 18.2 (1987), pages 185–197.

[92] Gilbert Laporte and Yves Nobert. “Generalized travelling salesman
problem through n sets of nodes: an integer programming approach”.
In: INFOR: Information Systems and Operational Research 21.1 (1983),
pages 61–75.

[93] Gilbert Laporte and Frédéric Semet. “Computational evaluation of a
transformation procedure for the symmetric generalized traveling sales-
man problem”. In: INFOR: Information Systems and Operational Research
37.2 (1999), pages 114–120.

[94] Bernd Lauterbach, Rüdiger Fritz, Jens Gottlieb Gottlieb, Bernd Mos-
brucker, and Till Dengel. Transportation management with SAP TM. Galileo
Press Bonn, 2009.

[95] Adam N Letchford, Saeideh D Nasiri, and Dirk Oliver Theis. “Com-
pact formulations of the Steiner traveling salesman problem and re-
lated problems”. In: European Journal of Operational Research 228.1 (2013),
pages 83–92.

[96] Jianbin Li, Rihuan Huang, and James B Dai. “Joint optimisation of
order batching and picker routing in the online retailer’s warehouse
in China”. In: International Journal of Production Research 55.2 (2017),
pages 447–461.

[97] Yao-Nan Lien, Eva Ma, and Benjamin W-S Wah. “Transformation of
the generalized traveling-salesman problem into the standard traveling-
salesman problem”. In: Information Sciences 74.1-2 (1993), pages 177–
189.

[98] Frauke Liers, Alexander Martin, and Susanne Pape. Steiner trees with
degree constraints: Structural results and an exact solution approach. Tech-
nical report. Technical report, Department Mathematik, 2014.

[99] Chun-Cheng Lin, Jia-Rong Kang, Chung-Chih Hou, and Chen-Yang
Cheng. “Joint order batching and picker Manhattan routing problem”.
In: Computers & Industrial Engineering 95 (2016), pages 164–174.

[100] Shen Lin. “Computer solutions of the traveling salesman problem”.
In: Bell System Technical Journal 44.10 (1965), pages 2245–2269.

[101] Shen Lin and Brian W Kernighan. “An effective heuristic algorithm
for the traveling-salesman problem”. In: Operations research 21.2 (1973),
pages 498–516.

130

[102] Zhiyuan Lin and Raymond SK Kwan. “An integer fixed-charge mul-
ticommodity flow (FCMF) model for train unit scheduling”. In: Elec-
tronic Notes in Discrete Mathematics 41 (2013), pages 165–172.

[103] Nils Löhndorf. “An empirical analysis of scenario generation methods
for stochastic optimization”. In: European Journal of Operational Research
255.1 (2016), pages 121–132.

[104] Wenrong Lu, Duncan McFarlane, Vaggelis Giannikas, and Quan Zhang.
“An algorithm for dynamic order-picking in warehouse operations”.
In: European Journal of Operational Research 248.1 (2016), pages 107–122.

[105] T Magnanti. “L., and Wong R”. In: T.: Network Design and Transportation
Planning: Model and Algorithm Transportation Science 18 (1984).

[106] Binod Maharjan and Timothy I Matis. “Multi-commodity flow net-
work model of the flight gate assignment problem”. In: Computers &
Industrial Engineering 63.4 (2012), pages 1135–1144.

[107] Makusee Masae, Christoph H Glock, and Eric H Grosse. “Order picker
routing in warehouses: A systematic literature review”. In: Interna-
tional Journal of Production Economics 224 (2020), page 107564.

[108] Makusee Masae, Christoph H Glock, and Panupong Vichitkunakorn.
“Optimal order picker routing in the chevron warehouse”. In: IISE
Transactions 52.6 (2020), pages 665–687.

[109] Marek Matusiak, René De Koster, and Jari Saarinen. “Utilizing indi-
vidual picker skills to improve order batching in a warehouse”. In:
European Journal of Operational Research 263.3 (2017), pages 888–899.

[110] Marek Matusiak, René de Koster, Leo Kroon, and Jari Saarinen. “A
fast simulated annealing method for batching precedence-constrained
customer orders in a warehouse”. In: European Journal of Operational
Research 236.3 (2014), pages 968–977.

[111] Richard D McBride and John W Mamer. “Solving the undirected mul-
ticommodity flow problem using a shortest path-based pricing algo-
rithm”. In: Networks: An International Journal 38.4 (2001), pages 181–
188.

[112] Jorge E Mendoza, Bruno Castanier, Christelle Guéret, Andrés Medaglia,
and Nubia Velasco. “A simulation-based MOEA for the multi-compartment
vehicle routing problem with stochastic demands”. In: 8th Metaheuris-
tics International Conference (MIC). 2009.

131

Bibliography

[113] Borja Menéndez, Eduardo G Pardo, Antonio Alonso-Ayuso, Elisenda
Molina, and Abraham Duarte. “Variable neighborhood search strate-
gies for the order batching problem”. In: Computers & Operations Re-
search 78 (2017), pages 500–512.

[114] Clair E Miller, Albert W Tucker, and Richard A Zemlin. “Integer pro-
gramming formulation of traveling salesman problems”. In: Journal of
the ACM (JACM) 7.4 (1960), pages 326–329.

[115] Michel Minoux. “Discrete cost multicommodity network optimization
problems and exact solution methods”. In: Annals of operations research
106.1 (2001), pages 19–46.

[116] Michel Minoux. “Networks synthesis and optimum network design
problems: Models, solution methods and applications”. In: Networks
19.3 (1989), pages 313–360.

[117] Siamak Moradi, Andrea Raith, and Matthias Ehrgott. “A bi-objective
column generation algorithm for the multi-commodity minimum cost
flow problem”. In: European Journal of Operational Research 244.2 (2015),
pages 369–378.

[118] Joëlle Morana. Sustainable supply chain management. John Wiley & Sons,
2013.

[119] Mahdi Naderi-Beni, Ehsan Ghobadian, Sadoullah Ebrahimnejad, and
Reza Tavakkoli-Moghaddam. “Fuzzy bi-objective formulation for a
parallel machine scheduling problem with machine eligibility restric-
tions and sequence-dependent setup times”. In: International Journal of
Production Research 52.19 (2014), pages 5799–5822.

[120] Olegs Nalivajevs and Daniel Karapetyan. “Conditional Markov Chain
Search for the Generalised Travelling Salesman Problem for Warehouse
Order Picking”. In: 2019 11th Computer Science and Electronic Engineer-
ing (CEEC). IEEE. 2019, pages 75–78.

[121] Charles E Noon and James C Bean. “A Lagrangian based approach
for the asymmetric generalized traveling salesman problem”. In: Op-
erations Research 39.4 (1991), pages 623–632.

[122] Charles E Noon and James C Bean. “An efficient transformation of
the generalized traveling salesman problem”. In: INFOR: Information
Systems and Operational Research 31.1 (1993), pages 39–44.

132

[123] Murat Oğuz, Tolga Bektaş, and Julia A Bennell. “Multicommodity flows
and Benders decomposition for restricted continuous location prob-
lems”. In: European Journal of Operational Research 266.3 (2018), pages 851–
863.

[124] Johan Oscar Ong and Don Thomas Joseph. “A review of order pick-
ing improvement methods”. In: J@ ti Undip: Jurnal Teknik Industri 9.3
(2014), pages 135–138.

[125] Lucie Pansart, Nicolas Catusse, and Hadrien Cambazard. “Exact al-
gorithms for the order picking problem”. In: Computers & Operations
Research 100 (2018), pages 117–127.

[126] CG Petersen. “Routeing and storage policy interaction in order pick-
ing operations”. In: Decision Sciences Institute Proceedings. Volume 3.
1995, pages 1614–1616.

[127] Charles G Petersen. “An evaluation of order picking routeing poli-
cies”. In: International Journal of Operations & Production Management
17.11 (1997), pages 1098–1111.

[128] Charles G Petersen and Gerald Aase. “A comparison of picking, stor-
age, and routing policies in manual order picking”. In: International
Journal of Production Economics 92.1 (2004), pages 11–19.

[129] Ulrich Pferschy and Joachim Schauer. “Order batching and routing in
a non-standard warehouse”. In: Electronic Notes in Discrete Mathematics
69 (2018), pages 125–132.

[130] Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and
Walter Rei. “Accelerating the Benders decomposition method: Appli-
cation to stochastic network design problems”. In: SIAM Journal on
Optimization 28.1 (2018), pages 875–903.

[131] Farzaneh Rajabighamchi, Stan van Hoesel, and Christof Defryn. Bus
service for cargo: The periodic service network design problem with regular
and express deliveries under demand uncertainty. English. WorkingPaper
005. Netherlands: Maastricht University, Graduate School of Business
and Economics, May 2023. DOI: 10.26481/umagsb.2023005.

[132] Farzaneh Rajabighamchi, Stan van Hoesel, and Christof Defryn. Graph
reduction for the planar Travelling Salesman Problem: An application in or-
der picking. English. WorkingPaper 004. Netherlands: Maastricht Uni-
versity, Graduate School of Business and Economics, May 2023. DOI:
10.26481/umagsb.2023004.

133

https://doi.org/10.26481/umagsb.2023005
https://doi.org/10.26481/umagsb.2023004

Bibliography

[133] Farzaneh Rajabighamchi, Stan van Hoesel, and Christof Defryn. The
order picking problem under a scattered storage policy. English. Working-
Paper 006. Netherlands: Maastricht University, Graduate School of
Business and Economics, May 2023. DOI: 10.26481/umagsb.2023006.

[134] H Donald Ratliff and Arnon S Rosenthal. “Order-picking in a rectan-
gular warehouse: a solvable case of the traveling salesman problem”.
In: Operations Research 31.3 (1983), pages 507–521.

[135] Kees Jan Roodbergen. “Storage assignment for order picking in multiple-
block warehouses”. In: Warehousing in the global supply chain. Springer,
2012, pages 139–155.

[136] Kees Jan Roodbergen and René De Koster. “Routing order pickers in
a warehouse with a middle aisle”. In: European Journal of Operational
Research 133.1 (2001), pages 32–43.

[137] Kees-Jan Roodbergen. Layout and routing methods for warehouses. EPS-
2001-004-LIS. 2001.

[138] KJ Roodbergen and R De Koster. “Routing order pickers in a ware-
house with multiple cross aisles”. In: Progress in Material Handling Re-
search 1998 (1998), pages 451–467.

[139] Andreas Rudi, Magnus Fröhling, Konrad Zimmer, and Frank Schult-
mann. “Freight transportation planning considering carbon emissions
and in-transit holding costs: a capacitated multi-commodity network
flow model”. In: EURO Journal on Transportation and Logistics 5.2 (2016),
pages 123–160.

[140] Alan Rushton, Phil Croucher, and Peter Baker. The handbook of logis-
tics and distribution management: Understanding the supply chain. Kogan
Page Publishers, 2022.

[141] Sonja M Russo, Jana Voegl, and Patrick Hirsch. “A multi-method ap-
proach to design urban logistics hubs for cooperative use”. In: Sustain-
able Cities and Society 69 (2021), page 102847.

[142] Khodakaram Salimifard and Sara Bigharaz. “The multicommodity net-
work flow problem: state of the art classification, applications, and so-
lution methods”. In: Operational Research 22.1 (2022), pages 1–47.

[143] Raad Salman, Fredrik Ekstedt, and Peter Damaschke. “Branch-and-
bound for the precedence constrained generalized traveling salesman
problem”. In: Operations Research Letters 48.2 (2020), pages 163–166.

134

https://doi.org/10.26481/umagsb.2023006

[144] Tjendera Santoso, Shabbir Ahmed, Marc Goetschalckx, and Alexan-
der Shapiro. “A stochastic programming approach for supply chain
network design under uncertainty”. In: European Journal of Operational
Research 167.1 (2005), pages 96–115.

[145] Joao Sarubbi, Gilberto Miranda, Henrique Pacca Luna, and Geraldo
Mateus. “A cut-and-branch algorithm for the multicommodity travel-
ing salesman problem”. In: 2008 IEEE International Conference on Ser-
vice Operations and Logistics, and Informatics. Volume 2. IEEE. 2008, pages 1806–
1811.

[146] André Scholz. “An Exact Solto the Singleution Approach: Picker Rout-
ing Problem in Warehouses with an Arbitrary Block Layout”. In: Work-
ing Paper Series (2016).

[147] André Scholz, Sebastian Henn, Meike Stuhlmann, and Gerhard Wäscher.
“A new mathematical programming formulation for the single-picker
routing problem”. In: European Journal of Operational Research 253.1 (2016),
pages 68–84.

[148] André Scholz and Gerhard Wäscher. “Order batching and picker rout-
ing in manual order picking systems: the benefits of integrated rout-
ing”. In: Central European Journal of Operations Research 25.2 (2017), pages 491–
520.

[149] A Immanuel Selvakumar and K Thanushkodi. “A new particle swarm
optimization solution to nonconvex economic dispatch problems”. In:
IEEE transactions on power systems 22.1 (2007), pages 42–51.

[150] Lahari Sengupta, Radu Mariescu-Istodor, and Pasi Fränti. “Which lo-
cal search operator works best for the open-loop TSP?” In: Applied Sci-
ences 9.19 (2019), page 3985.

[151] Xiaohu H Shi, Yanchun Chun Liang, Heow Pueh Lee, C Lu, and QX
Wang. “Particle swarm optimization-based algorithms for TSP and
generalized TSP”. In: Information processing letters 103.5 (2007), pages 169–
176.

[152] John Silberholz and Bruce Golden. “The generalized traveling sales-
man problem: A new genetic algorithm approach”. In: Extending the
horizons: advances in computing, optimization, and decision technologies.
Springer, 2007, pages 165–181.

[153] Stephen L Smith and Frank Imeson. “GLNS: An effective large neigh-
borhood search heuristic for the generalized traveling salesman prob-
lem”. In: Computers & Operations Research 87 (2017), pages 1–19.

135

Bibliography

[154] Lawrence V Snyder and Mark S Daskin. “A random-key genetic algo-
rithm for the generalized traveling salesman problem”. In: European
journal of operational research 174.1 (2006), pages 38–53.

[155] Kenneth Sörensen and Marc Sevaux. “A practical approach for robust
and flexible vehicle routing using metaheuristics and Monte Carlo
sampling”. In: Journal of Mathematical Modelling and Algorithms 8.4 (2009),
pages 387–407.

[156] Curtis L Stowers and Udatta S Palekar. “Lot sizing problems with
strong set-up interactions”. In: IIE transactions 29.2 (1997), pages 167–
179.

[157] Yixuan Su, Meixia Li, Xi Zhu, and Chunfa Li. “Steiner TSP based on
aisle as a unit for order picking”. In: Computers & Industrial Engineering
168 (2022), page 108026.

[158] Nicolas Teypaz, Susann Schrenk, and Van-Dat Cung. “A decomposi-
tion scheme for large-scale Service Network Design with asset man-
agement”. In: Transportation Research Part E: Logistics and Transportation
Review 46.1 (2010), pages 156–170.

[159] Christophe Theys, Olli Bräysy, Wout Dullaert, and Birger Raa. “To-
wards a metaheuristic for routing order pickers in a warehouse”. In:
Evolutionary methods for design, optimization and control (2007), pages 385–
390.

[160] Christophe Theys, Olli Bräysy, Wout Dullaert, and Birger Raa. “Using
a TSP heuristic for routing order pickers in warehouses”. In: European
Journal of Operational Research 200.3 (2010), pages 755–763.

[161] James A Tompkins, John A White, Yavuz A Bozer, and Jose Mario
Azaña Tanchoco. Facilities planning. John Wiley & Sons, 2010.

[162] Rafael D Tordecilla, Angel A Juan, Jairo R Montoya-Torres, Carlos L
Quintero-Araujo, and Javier Panadero. “Simulation-optimization meth-
ods for designing and assessing resilient supply chain networks under
uncertainty scenarios: A review”. In: Simulation modelling practice and
theory 106 (2021), page 102166.

[163] Alessio Trivella, Francesco Corman, David F Koza, and David Pisinger.
“The multi-commodity network flow problem with soft transit time
constraints: Application to liner shipping”. In: Transportation Research
Part E: Logistics and Transportation Review 150 (2021), page 102342.

136

[164] C-Y Tsai, James JH Liou, and T-M Huang. “Using a multiple-GA method
to solve the batch picking problem: considering travel distance and
order due time”. In: International Journal of Production Research 46.22
(2008), pages 6533–6555.

[165] Edward Tsang and Chris Voudouris. “Fast Local Search and Guided
Local Search and Their Application to British Telecom’s”. In: TC 10 (),
page 1.

[166] Jimi Tuononen. “Analysis of rebuild local search operator for TSP”.
Master’s thesis. Itä-Suomen yliopisto, 2022.

[167] Cristiano Arbex Valle, John E Beasley, and Alexandre Salles da Cunha.
“Modelling and solving the joint order batching and picker routing
problem in inventories”. In: International symposium on combinatorial
optimization. Springer. 2016, pages 81–97.

[168] Cristiano Arbex Valle, John E Beasley, and Alexandre Salles da Cunha.
“Optimally solving the joint order batching and picker routing prob-
lem”. In: European Journal of Operational Research 262.3 (2017), pages 817–
834.

[169] Sarah Vanheusden, Teun van Gils, Katrien Ramaekers, Trijntje Cor-
nelissens, and An Caris. “Practical factors in order picking planning:
state-of-the-art classification and review”. In: International Journal of
Production Research (2022), pages 1–25.

[170] TS Vaughan. “The effect of warehouse cross aisles on order picking
efficiency”. In: International Journal of Production Research 37.4 (1999),
pages 881–897.

[171] Bram Verweij, Shabbir Ahmed, Anton J Kleywegt, George Nemhauser,
and Alexander Shapiro. “The sample average approximation method
applied to stochastic routing problems: a computational study”. In:
Computational optimization and applications 24.2 (2003), pages 289–333.

[172] Ulrike Von Luxburg and Bernhard Schölkopf. “Statistical learning the-
ory: Models, concepts, and results”. In: Handbook of the History of Logic.
Volume 10. Elsevier, 2011, pages 651–706.

[173] Christos Voudouris and Edward Tsang. “Guided local search and its
application to the traveling salesman problem”. In: European journal of
operational research 113.2 (1999), pages 469–499.

[174] Christos Voudouris, Edward PK Tsang, and Abdullah Alsheddy. “Guided
local search”. In: Handbook of metaheuristics. Springer, 2010, pages 321–
361.

137

Bibliography

[175] Zujian Wang, Mingyao Qi, Chun Cheng, and Canrong Zhang. “A hy-
brid algorithm for large-scale service network design considering a
heterogeneous fleet”. In: European Journal of Operational Research 276.2
(2019), pages 483–494.

[176] Felix Weidinger, Nils Boysen, and Michael Schneider. “Picker routing
in the mixed-shelves warehouses of e-commerce retailers”. In: Euro-
pean Journal of Operational Research 274.2 (2019), pages 501–515.

[177] Andres Weintraub, Julio Aboud, Claudio Fernandez, Gilbert Laporte,
and Enrique Ramirez. “An emergency vehicle dispatching system for
an electric utility in Chile”. In: Journal of the Operational Research Society
50.7 (1999), pages 690–696.

[178] Mackenzie G Whitman, Kash Barker, Jonas Johansson, and Mohamad
Darayi. “Component importance for multi-commodity networks: Ap-
plication in the Swedish railway”. In: Computers & Industrial Engineer-
ing 112 (2017), pages 274–288.

[179] Richard D Wollmer. The Dantzig-Wolfe decomposition principle and mini-
mum cost multicommodity network flows. Technical report. RAND CORP
SANTA MONICA CA, 1969.

[180] Jinhui Yang, Xiaohu Shi, Maurizio Marchese, and Yanchun Liang. “An
ant colony optimization method for generalized TSP problem”. In:
Progress in Natural Science 18.11 (2008), pages 1417–1422.

[181] Xi Zhao and Xiao-Ping Zhu. “Innovative genetic algorithm for solving
GTSP”. In: 2010 Second International Conference on Modeling, Simulation
and Visualization Methods. IEEE. 2010, pages 239–241.

[182] Li Zhou, Zhaochan Li, Ning Shi, Shaohua Liu, and Ke Xiong. “Perfor-
mance Analysis of Three Intelligent Algorithms on Route Selection of
Fishbone Layout”. In: Sustainability 11.4 (2019), page 1148.

[183] Ivan Žulj, Christoph H Glock, Eric H Grosse, and Michael Schnei-
der. “Picker routing and storage-assignment strategies for precedence-
constrained order picking”. In: Computers & Industrial Engineering 123
(2018), pages 338–347.

138

Published work

• Rajabighamchi, F., van Hoesel, S., & Defryn, C. (2023). Graph reduction for the
planar Travelling Salesman Problem: An application in order picking. Maas-
tricht University, Graduate School of Business and Economics. GSBE Research
Memoranda No. 004 https://doi.org/10.26481/umagsb.2023004

• Rajabighamchi, F., van Hoesel, S., & Defryn, C. (2023). The order picking prob-
lem under a scattered storage policy. Maastricht University, Graduate School of
Business and Economics. GSBE Research Memoranda No. 006
https://doi.org/10.26481/umagsb.2023006

• Rajabighamchi, F., van Hoesel, S., & Defryn, C. (2023). Bus service for cargo:
The periodic service network design problem with regular and express deliver-
ies under demand uncertainty. Maastricht University, Graduate School of Busi-
ness and Economics. GSBE Research Memoranda No. 005
https://doi.org/10.26481/umagsb.2023005

139

About the author

Farzaneh Rajabighamchi was born on December 27, 1991 in Urmia, Iran. She com-
pleted high school in 2010 and joined Isfahan University of Technology for Bachelor
in Industrial Engineering. She obtained BSc degree in 2014 with specialization in Op-
erations Research and Inventory control. Subsequently she attended MSc in Railway
Engineering from the Iran University of Science and Technology in Tehran, Iran. In
2017, she obtained a Master degree of Transportation Engineering . She joined Maas-
tricht University as a PhD candidate under the supervision of Prof. Dr. Stan van
Hoesel, and Dr. Christoff Defryn and at the Logistics Group at UHasselt, under the
supervision of Prof. dr. Inneke Van Nieuwenhuyse. The outcomes of her research
are presented in this thesis. Some parts of this thesis have been presented at various
European conferences. Her research interests are Operations Research, Optimization,
Mathematical Modelling, Transportation and Supply Chain Management. In January
2023, Farzaneh started working as a lecturer at Maastricht University.

141

	Acknowledgments
	Introduction
	Order picker routing in the warehouse
	Multi-commodity network design problem

	Graph reduction for the planar Travelling Salesman Problem. An application in order picking
	Introduction
	Related literature
	Problem description
	Properties of the lay-out graph G_L and the pick locations graph G_PL
	Mathematical formulation
	Model implementation and numerical results
	Concluding Remarks

	The order picking problem under a scattered storage policy
	Introduction
	Literature Review
	A Generalized TSP formulation for order picking under a scattered storage policy
	Guided Local Search algorithm
	Model implementation and numerical results
	Conclusion

	The periodic multi-commodity service network design problem with regular and express deliveries under demand uncertainty
	Introduction
	Literature review
	Single-period service network design problem
	Branch-and-price algorithm
	Multi-period service network design problem
	Model implementation and computational experiments
	Conclusion

	Summary
	Impact of the Thesis
	Bibliography
	Published work
	About the author

