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While there exists an abundance of open biomedical data, the lack of high-quality metadatamakes it challenging
for others to find relevant datasets and to reuse them for another purpose. In particular, metadata are useful to
understand the nature and provenance of the data. A common approach to improving the quality of metadata
relies on expensive human curation, which itself is time-consuming and also prone to error. Towards improving
the quality of metadata, we use scientific publications to automatically predict metadata key: value pairs.
For prediction, we use a Convolutional Neural Network (CNN) and a Bidirectional Long-short term memory
network (BiLSTM). We focus our attention on the NCBI Disease Corpus, which is used for training the CNN
and BiLSTM. We perform two different kinds of experiments with these two architectures (i) we predict the
disease names by using their unique ID in the MeSH ontology and (ii) we use the tree structure of MeSH
ontology to move up in the hierarchy of these disease terms which reduces the number of labels. We also
perform various multi-label classification techniques for the above-mentioned experiments. We find that in
both cases CNN achieves the best results in predicting the superclasses for disease with an accuracy of 83%.
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1 INTRODUCTION
Enormous amounts of biomedical data have been and are being produced at an unprecedented
rate by researchers all over the world [11]. This is mainly due to advancements in molecular
technologies that have enabled extensive profiling of biological samples and have unleashed a
myriad of so-called ‘omics data such as gene expression, microRNA expression, DNA methylation,
and DNA mutation data. During the last decade journals, investigators, funding agencies have
realized that this data should be stored, shared with and used by other investigators. However, to
enable reuse, there is an urgent need to understand the structure of datasets and the experimental
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conditions under which they were produced [3]. That is, there is an urgent need for an accurate,
structured and complete description of the data – defined as metadata.

While there exists an abundance of open biomedical data, the lack of high-quality metadata makes
it challenging for others to find relevant datasets and to reuse them for another purpose [9, 12].
This, in turn, can facilitate a data-driven approach by combining and analyzing similar data to
uncover novel insights or even more subtle trends in the data. These insights can then be formed
into a hypothesis that can be tested in the laboratory [1]. In particular, metadata are useful to
understand the nature and provenance of the data. A common approach to improving the quality
of metadata relies on expensive human curation, which itself is time-consuming and also prone to
error. Poor metadata leads to the problems of (i) interpretability - can we understand what was
done in the biomedical experiment?; (ii) findability - to find all studies that meet constraints (e.g.
all studies for a particular disease); and (iii) re-usability - to use this data for discovery, validation,
and reproducibility.
The FAIR principles specify desirable criteria that metadata and their corresponding datasets

should meet to be Findable, Accessible, Interoperable, and Reusable [20]. For data to be FAIR,
metadata needs to be accurate and uniform (relying on controlled terms where possible). However,
currently, there is a large amount of biomedical metadata, which is of poor quality; that is, it is
extremely heterogeneous and which makes data reuse extremely difficult [9]. One of the major
challenges towards assessing and improving the quality of biomedical metadata is the size of data
that is present. Delving further into the problem at hand – let’s take an example of Gene Expression
Omnibus (GEO) dataset [8] which is a widely used database for cross-species gene expression data.
Currently users can submit data to GEO via three ways: (i) Spreadsheets, (ii) SOFT format (plain
text), (iii) MINiML format1 (XML). When users submit data to GEO via a spreadsheet, it requires
them to fill out a metadata template that follows the guidelines set out by the Minimum Information
About a Microarray Experiment (MIAME) guidelines [4]. GEO allows users to specify metadata
in the form of textual key: value pairs (e.g. sex: female). However, since there is no structured
vocabulary or format available, the 44,000,000+ key: value pairs suffer from numerous quality issues
such as:

• minor spelling discrepancies (e.g. age at diagnosis (years), age at diagonosis (years);
genotype/varat, genotype/varaiation, genotype/variaion genotype/variataion)

• having different syntactic representations (e.g. age (years), age(yrs) and age_year)
• using different terms altogether to denote one concept (e.g. disease vs. illness vs. condition)
• using two different key terms in one (e.g. disease/cell type, tissue/cell line, treatment age).

Looking at these issues it can be seen that there is an urgent need to solve this research problem
which would in-turn facilitate the re-usability of data.

Using domain experts for the curation of assessing the quality of metadata is not only time
consuming, but also not scalable. Moreover, without a standardized set of terms with which to fill
out the template fields (in the form when filling out the metadata), there are different versions of
the same term without any (semantic) links between them, thus leading to several quality problems.
Thus, there is a need for efficient methods for curating the metadata. In our previous projects [15, 16]
we tried to cluster similar terms together using topic modeling and machine learning respectively.
But when dealing with the values, it is very complex to map them to a concept because of a large
amount of data. Whereas in scientific publication, we can identify values and then map them to a
particular concept; this can be done per document. Therefore, we could exploit the information
present in the scientific publication - where we aim to automatically predict metadata from scientific

1‘MIAME Notation in Markup Language’ format
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publications (unstructured text) using Machine Learning or Deep Learning, in other words, we
want to build aMetadata Wizard.

We hypothesize that the scientific publications have in-depth descriptions of the experiments
performed which facilitate predicting better quality metadata. This work assesses the extent up-to
which experimental metadata (key: value pairs - for example, disease: tuberculosis) is predicted
automatically using the scientific publications. More specifically, we want to automatically predict
the values where the input is the abstract from a scientific publication. For instance, if a scientific
publication reports information about myocardial infarction - we want to have the method to
output the same automatically.

The contributions of this work are: (i) we develop a deep learning model for identifying metadata
using scientific publications focusing on the metadata category disease; (ii) we perform empirical
experiments on NCBI disease corpus [7] to identify disease categories and specific disease using
different neural network approach; and lastly (iii) we present an analysis of results. In this manu-
script, we discuss the methodology (Section 2), then we move on to results (Section 3), followed by
conclusion, limitations and future work.

2 METHODOLOGY
The task of text classification or text categorization requires the following: assign a set of predefined
categories to unstructured text that can be used to organize and structure the text appropriately,
according to the use case. Text classification is a central problem with several applications in
biomedicine. For instance, problems such as recognizing reportable cases of cancer from pathology
reports, identifying certain phenotypes from clinical notes, performing word sense disambiguation
(that is, given a context determine the semantic meaning for the usage of an ambiguous word),
and associating medical subject headings (MeSH terms) to scientific articles, can all be reduced to
instances of generic text classification problem. Further, text classification can be grouped into two
categories namely, (i) multi-class classification (i.e. labels are mutually exclusive) and (ii) multi-label
classification where each input can be assigned to more than one label. By definition, it is clear that
multi-class classification is a special case of multi-label classification, and hence the latter problem
becomes more harder to solve than the former.

We perform two experiments for the problem of text classification: (i) Multi-label classification
and (ii) Deep learning - specifically Convolutional Neural Network (CNN) and Bidirectional Long
Short Term Memory (BiLSTM). We illustrate a comparison of the performance of the methods
mentioned above in Section 3. The motivation behind this comparison of employing two techniques
is to answer the research question: which method performs better when we deal with the prediction
of metadata (See Figure 1).

Fig. 1. Overview of the Metadata Wizard methodology.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:4 Nayak et al.

2.0.0.1 Multi-label Classification. The dataset was tested with three types of problem transfor-
mations: (i) Binary Relevance (BR), (ii) Label Powerset (LP) and (iii) Classifier Chains (CC). The
problem transformations were used from scikit-multilearn that is a library specific to multi-label
classification built on top of the well-known scikit-learn. [19]. The classifiers that were tested using
these transformations are listed as follows:

• Multi-layer Perceptron classifier (MLP classifier)
• Multi-label k Nearest Neighbour (MLkNN)
• Random Forest Classifier
• Decision Trees Classifier.

We selected these four classifiers as these are most widely used classifiers when performing a
multi-label classification. For each combination, the evaluation metrics used were: accuracy and
weighted F1 score. The classifiers and the metrics were calculated using scikit-learn [17]. The
impurity measures for Decision trees and Random forest are kept as default (which is zero).

2.0.0.2 Deep Learning. The advent of deep neural networks (deep nets) in the last decade or so has
led to a foundation for generic alternatives to supervised learning, especially for the task of object
classification. Deep nets eliminate the laborious process of feature engineering and automatically
learn high-level representations of input which suites best for the underlying classification problem.
Although the resurgence of deep nets was initially meant for the field of computer vision, recently
it has also been applied to natural language processing tasks (NLP)[2, 6, 14] primarily through
learning distributed representations of words as vectors in high dimensional space. These vectors
help the model in guiding elementary tasks such as part-of-speech (POS) tagging and parsing as
well as abstract tasks such as text classification and machine translation. Typically, the novel deep
learning approaches for text classification rely on architectures based on convolutional neural
networks (CNNs) or recurrent neural networks (RNNs) [21].

In Figure 2, you can see a typical deep learning-based text classification architecture pipeline.

Fig. 2. Typical neural network based deep learning architecture for multiclass classification of texts.

For the neural network approach, we utilized the pre-trained word embeddings - GloVe: Global
Vectors for Word Representation [18] of dimension 300. For data preprocessing, we used the
tokenizer API from Keras [5]. The CNN and BiLSTM architectures were used from PyTorch2. The
dropout rate has been kept 0.2 in all the neural network models. The activation function used is
Rectified Linear Unit (ReLU). The number of hidden layers is kept 256. The models are trained using
2https://pytorch.org/
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the Adam optimizer [13]. For validating the results using the neural networks, we split the data
into training and validation sets. The training set is 80% of the whole data, and the validation set is
the rest 20%. A similar train-test split was done for the baseline multi-label classification 80%-20%.

3 RESULTS AND DISCUSSION
The source code of our pipeline and resulting data is available in GitHub for re-use and analysis at
https://github.com/MaastrichtU-IDS/metadata-wizard. The results are presented using the neural
network model, and they are compared with baseline multi-label classification methods. The
comparison is divided into two parts (i) predicting the disease terms and (ii) predicting the superclass
of the disease terms.

Furthermore, we would like to describe how these scores are calculated in a multi-label setting.
Hence, for this purpose, statistical measures are used based on the confusion matrix shown in
Table 1. In the confusion matrix, TP is the number of times the positive class (1) is classified correctly,
FP means the number of times the negative class (0) is misclassified as positive (1), TN means the
number of times the negative class is classified correctly and FN is the number of times the positive
class (1) is classified incorrectly.

Predicted
0 1

Actual 0 true negative (TN) false positive (FP)
1 false negative (FN) true positive (TP)

Table 1. Confusion Matrix - table that is used to calculate evaluation metrics

The metrics that have been used in this project are defined as follows:

• Accuracy = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 , which is the percentage of times where the model gives correct

results.
• Precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃 , this is also known as the positive predictive value. This metric tells the
percentage of relevant results among the predicted results.

• Recall = 𝑇𝑃
𝑇𝑃+𝐹𝑁 , also known as sensitivity. This is the percentage of positive instances classified

correctly among all the correctly classified instances.
• F1 score = 2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 , this is used when we have a class which has a smaller number of
occurrences. It helps in combining the trade-offs of precision and recall.

Now we define the metrics in terms of multi-label classification. For this purpose, we use an
example demonstrated in Table 2:

Input 𝑦 (𝑖) (Actual label) 𝑦 (𝑖) (Predicted Labels)
𝑥 (1) [1 0 1 0] [1 0 0 1]
𝑥 (2) [0 1 0 1] [0 1 0 1]
𝑥 (3) [1 0 0 1] [1 0 0 1]
𝑥 (4) [0 1 1 0] [0 1 0 0]
𝑥 (5) [1 0 0 0] [1 0 0 1]

Table 2. An example of predictions in a multi-label classification to depict evaluation metrics

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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We start by defining the accuracy:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1
𝑁

𝑁∑
𝑖=1

|𝑦 (𝑖) ∧ 𝑦𝑖 |
|𝑦 (𝑖) ∨ 𝑦𝑖 |

(1)

where ∧ and ∨ are logical OR and AND operations, which are applied vector-wise. Then we define
the F1 measure for the multi-label classification:

𝐹1 =
1
𝑁

𝑁∑
𝑖=1

2|𝑦 (𝑖) ∧ 𝑦𝑖 |
|𝑦 (𝑖) | + |𝑦𝑖 |

(2)

Overall, higher the value of accuracy and F1 score the better the learning algorithm.

3.1 Predicting Disease Terms
In the following paragraphs we present the results of both approaches.

3.1.1 Multi-label Classification. For baseline multi-label classification, two types of feature ex-
traction techniques were used: (i) TF-IDF and (ii) Bag of words representation (BoW). The results
for these two techniques are presented in Tables 3 and 4. For both the techniques, the maximum
feature length is kept at 200. It can be seen that the Multilayer Perceptron (MLP) classifier performs
the best in both the techniques of feature extraction.

There is a difference in the performance if we compare the different feature extraction methods;
the TF-IDF technique performs better than BoW. The TF-IDF normalizes the outputs, which is
why this technique is known to perform better when it comes to the feature selection; it can be
observed from the results as well. Since the dataset has a large number of diseases - 588, and a
limited number of abstracts, the accuracy of predictions is not very high. The highest accuracy that
we get here is ≈ 19%.

Classifiers Random forest Decision Tree MLPClassifier MLkNN
Problem
Transformations BR LP CC BR LP CC BR LP CC k=20 k=30 k=10 k=5

Accuracy 0.101 0.075 0.088 0.044 0.107 0.082 0.170 0.189 0.164 0.164 0.138 0.176 0.176
F1 score 0.125 0.191 0.117 0.259 0.208 0.250 0.207 0.233 0.203 0.194 0.184 0.238 0.232

Table 3. Results for disease terms using TF-IDF feature selection.

Classifiers Random forest Decision Tree MLPClassifier MLkNN
Problem

transformations BR LP CC BR LP CC BR LP CC k=20 k=30 k=10 k=5

Accuracy 0.088 0.126 0.088 0.082 0.094 0.113 0.132 0.157 0.126 0.088 0.088 0.107 0.082
F1 score 0.106 0.160 0.090 0.256 0.191 0.257 0.175 0.217 0.171 0.098 0.091 0.128 0.163

Table 4. Results for disease terms using bag of words feature selection.

3.1.2 Neural Network Results. For the neural network method, two models were trained - (i)
BiLSTM and (ii) CNN. The embedding dimension in both cases is 300, where the input sequences
are kept as 200 for which the results are discussed. The models are also retrained for a sequence
length of 150 and 250 to check whether the accuracy increases or decreases. The results of the
models are presented in Table 5. The number of epochs is kept high (200) because of a large number
of labels.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Validation accuracy Sequence Length
BiLSTM 0.177 200

0.168 150
0.099 250

CNN 0.31 200
0.283 150
0.335 250

Table 5. Results for deep neural networks for predicting disease terms.

From Table 6, it can be seen that the CNN outperforms all the baseline methods and the BiLSTM.
The BiLSTM has a lower accuracy than the highest baseline MLP classifier. One explanation would
be that since the RNN treats the input as a sequence, and its a very long sequence, as it goes ahead
working on word after word, it forgets what happened in the words before. Even though we’re
using a bidirectional RNN, perhaps the left to right forgets what happened at the start, say by the
time it reaches mid sequence, and the right to left forgets what it saw in the first (rightmost) terms
by the time it reaches mid sequence too.

In CNNs, the convolution kernels are time-invariant, so they cannot distinguish between different
parts of the sequence. As a disadvantage, they cannot easily make inferences which require using
context and need to treat the input as a sequence. However, in this case, it might not be needed.
Abstracts may somewhere mention a particular disease keyword which is enough on its own to
detect which class it belongs to (and this detection requires no sequential treatment of input, which
is similar to ‘find a word’).

Method Accuracy
MLP Classifier

(TF-IDF) 0.189

MLP Classifier
(BoW) 0.157

CNN
(length = 250) 0.335

BiLSTM
(length = 200) 0.177

Table 6. Best performing methods when predicting disease terms.

3.2 Predicting Super Classes
In this experiment, we use the MeSH tree structure3 to map the annotated disease names to
their superclasses (or parent classes) of the disease terms as shown in Figure 3. Since the dataset
we use involves the disease terms from the Medical Subject Headings (MeSH) ontology - which
provides hierarchically-organized terminology for indexing diseases. For example, the disease
term “Hemochromatosis” belongs to the superclass ‘Nutritional and Metabolic Diseases [C18]’ and
‘Congenital, Hereditary, and Neonatal Diseases and Abnormalities [C16]’.

3https://meshb.nlm.nih.gov/treeView

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Fig. 3. Mapping superclasses in Medical Subject Headings.

We mapped the disease terms to the 26 superclasses, as depicted in Figure 3. However, the query
returned only 48 classes. The additional 24 additional classes that are returned as a result of the
query are mentioned below:

'Physical Phenomena', 'Genetic Phenomena', 'Population Characteristics', 'Nonsyndromic
sensorineural hearing loss', 'Diagnosis', 'Physiological Phenomena', `Psychological
Phenomena', 'Cell Physiological Phenomena', 'Investigative Techniques', 'Biological
Phenomena', 'Behavior and Behavior Mechanisms', 'Immune System Phenomena', 'Reproductive
and Urinary Physiological Phenomena', 'Fluids and Secretions', 'Cells', 'Health
Occupations', `Environment and Public Health', 'Tissues', 'Mental Disorders',
'Behavioral Disciplines and Activities', 'Musculoskeletal and Neural Physiological
Phenomena', 'Therapeutics', 'Health Care Quality, Access, and Evaluation', 'Natural
Science Disciplines'.
This happens due to the fact that one disease term is sometimes present under more than one

parent class. For example the terms ‘Genetic Phenomena (ID: [G05])’ and ‘Pathological Conditions,
Signs and Symptoms [C23]’ are superclasses itself for the disease name ‘Chromosome Aberrations’
as can be seen in https://meshb.nlm.nih.gov/record/ui?ui=D002869.
As a result of extracting the super classes for disease terms, the number of labels is reduced to

48. In this experiment we perform text classification for these 48 labels.

3.2.1 Multi-label Classification. The results for the multi-label classification are present in Table 7.
Here the features were extracted using TF-IDF. Another set of features were extracted using the
bag of word representation; the results are shown in the Table 8. The maximum number of features
for both the feature extraction techniques is kept to be 200. The Label Powerset transformation
gives better performance for all three baseline classifiers. Overall, the Random forest classifier has
the highest accuracy with problem transformation of Label Powerset.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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In this setup, the feature extraction using the bag of words technique has a better performance
when compared to TF-IDF. An explanation behind this would be that in a random forest classification
method, when given a set of features and labels, it creates random subsets of features. Using these
subsets, the algorithm builds decision trees, and then it makes predictions.

Classifier Random forest Decision Tree MLPClassifier MLkNN
Problem

Transformation BR LP CC BR LP CC BR LP CC k=20 k=30 k=10 k=5

Accuracy 0.181 0.348 0.174 0.148 0.271 0.135 0.232 0.348 0.335 0.303 0.284 0.316 0.297
F1 score 0.605 0.642 0.572 0.676 0.632 0.662 0.669 0.712 0.668 0.670 0.669 0.681 0.683

Table 7. Results of predicting super class using TF-IDF feature selection.

Random forest Decision Tree MLPClassifier MLkNN
BR LP CC BR LP CC BR LP CC k=20 k=30 k=10 k=5

Accuracy 0.168 0.368 0.200 0.116 0.329 0.168 0.258 0.342 0.303 0.148 0.097 0.142 0.142
F1 score 0.605 0.649 0.554 0.641 0.657 0.630 0.668 0.672 0.674 0.520 0.510 0.521 0.531

Table 8. Results of predicting super class using Bag of words feature selection.

3.2.2 Neural Network Results. For the neural network method, two models were trained - (i)
BiLSTM and (ii) CNN. The dimension of the embedding matrix in both cases is 300, where the
input sequences of the abstract are kept as 200 for which the results are discussed. The models are
also retrained for a sequence length of 150 and 250 to check whether the accuracy increases or
decreases. The models are trained using the Adam optimizer [13]. The results are shown in the
Table 9. The number of epochs is kept to 65 as the number of labels is not high as in the previous
setup.

Validation
Accuracy

Sequence
Length

BiLSTM 0.623 200
0.628 150
0.697 250

CNN 0.837 200
0.76 150
0.803 250

Table 9. Results for deep neural networks for predicting super class.

Here both the BiLSTM and CNN outperform all the baseline classifiers. Overall, CNN has the
highest performance accuracy with the sequence length of 200. Another interesting observation is
that when the sequence length is increased to 250, the accuracy of the BiLSTM increases, whereas
one would think it should decrease because LSTMs tend to forget what happened previously or
ahead when the sequence length is increased.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2021.
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Method Accuracy
Random Forest and MLP Classifier

(TF-IDF) 0.348

Random Forest
(BoW) 0.368

CNN
(length = 200) 0.837

BiLSTM
(length = 250) 0.697

Table 10. Best performance among the different methods when predicting super classes.

4 CONCLUSION
In this manuscript, we focus on the research problem of automatically predicting experimental
metadata using scientific publications. This is done to tackle the problem of poor quality metadata.
To make data reusable, we need to assess the quality of metadata, and we hypothesize that using
scientific publications for prediction of experimental metadata would help with increasing this
quality.
In this work, we only focus on the prediction of metadata key type ‘disease’. We performed

two different types of experiments (i) predicting disease names and (ii) predicting superclasses of
disease names (refer Section 3). In the first experiment, we found that CNN performed best with
≈30% accuracy, but when it comes to predicting the superclasses, CNN gave a very high accuracy
of ≈80%. This is a promising result, which can be employed when we try to predict more than one
metadata key type. Since we used a limited number (793) of abstracts; therefore, to predict the
disease names, we did not get high accuracy in the first experiment. For predicting a large number
of labels, we need a higher number of abstracts for the accuracy to improve.
We used baseline multi-label classification with two different feature extraction techniques - a

bag of words and TF-IDF. We observed that the TF-IDF feature extraction technique worked better
when predicting the disease terms, but the bag of words technique worked better when predicting
superclasses (refer Section 3). From the results, we saw that rather than following the traditional
methods of extracting features in the dataset and then select a machine learning model, if we use a
pre-trained word embedding, we get better results. We use a pre-trained word embedding because
it contains global information about a word and training a word embedding from scratch requires
a large amount of data.

A major limitation to this problem is the availability of a large gold-standard dataset on which a
model could be trained. We need a large annotated dataset which could be used to train a model
which could then be used to predict metadata keys and values. The corpus that was used for this
project had a limited amount of abstracts with only disease mentions that were annotated - which
is the reason the poor results for predicting disease terms. As a part of future work, we plan to
extend our model to predict for other metadata key types such as organism, tissue, cell line etc. A
more context-specific word embedding could be used in the deep learning architecture that we
used to check whether this would help improve the predictions of the metadata. Moreover, we
plan to use transfer learning [10], to train the model on a large annotated corpus such as the data
present in BioASQ challenge4 and test in on the NCBI disease corpus.

4http://bioasq.org/participate/challenges

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://bioasq.org/participate/challenges


Experience: Automated Prediction of Experimental Metadata from Scientific Publications 1:11

REFERENCES
[1] Tanya Barrett, Stephen E Wilhite, Pierre Ledoux, Carlos Evangelista, Irene F Kim, Maxim Tomashevsky, Kimberly A

Marshall, Katherine H Phillippy, Patti M Sherman, Michelle Holko, et al. 2012. NCBI GEO: archive for functional
genomics data sets—update. Nucleic acids research 41, D1 (2012), D991–D995.

[2] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic language model.
Journal of machine learning research 3, Feb (2003), 1137–1155.

[3] Christine L Borgman. 2012. The conundrum of sharing research data. Journal of the American Society for Information
Science and Technology 63, 6 (2012), 1059–1078.

[4] Alvis Brazma, Pascal Hingamp, John Quackenbush, Gavin Sherlock, Paul Spellman, Chris Stoeckert, John Aach,
Wilhelm Ansorge, Catherine A Ball, Helen C Causton, et al. 2001. Minimum information about a microarray experiment
(MIAME)—toward standards for microarray data. Nature genetics 29, 4 (2001), 365.

[5] François Chollet et al. 2015. Keras. https://keras.io.
[6] Ronan Collobert and JasonWeston. 2008. A unified architecture for natural language processing: Deep neural networks

with multitask learning. In Proceedings of the 25th international conference on Machine learning. ACM, 160–167.
[7] Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong Lu. 2014. NCBI disease corpus: a resource for disease name

recognition and concept normalization. Journal of biomedical informatics 47 (2014), 1–10.
[8] Ron Edgar, Michael Domrachev, and Alex E Lash. 2002. Gene Expression Omnibus: NCBI gene expression and

hybridization array data repository. Nucleic acids research 30, 1 (2002), 207–210.
[9] Rafael S Gonçalves, Martin J O’Connor, Marcos Martínez-Romero, John Graybeal, and Mark A Musen. 2017. Metadata

in the BioSample Online Repository are Impaired by Numerous Anomalies. arXiv preprint arXiv:1708.01286 (2017).
[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press. http://www.deeplearningbook.

org.
[11] Sharona Hoffman and Andy Podgurski. 2013. The use and misuse of biomedical data: is bigger really better? American

journal of law & medicine 39, 4 (2013), 497–538.
[12] Wei Hu, Amrapali Zaveri, Honglei Qiu, andMichel Dumontier. 2017. Cleaning by clustering: methodology for addressing

data quality issues in biomedical metadata. BMC Bioinformatics 18, 1 (18 Sep 2017), 415. https://doi.org/10.1186/s12859-
017-1832-4

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

[14] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words
and phrases and their compositionality. In Advances in neural information processing systems. 3111–3119.

[15] AZ Stuti Nayak, Amrapali Zaveri, and Michel Dumontier. 2018. Quality Assessment of Biomedical Metadata Using
Topic Modeling. In 2nd workshop on Semantic Web solutions for large-scale biomedical data analytics (SeWeBMeDA).

[16] Stuti Nayak, Amrapali Zaveri, Pedro Hernandez Serrano, Rachel Cavill, and Michel Dumontier. [n.d.]. A Machine
Learning approach towards Quality Assessment of Biomedical Metadata. Journal of Biomedical Semantics ([n. d.]).
Submitted November 2018.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[18] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 1532–1543.

[19] V. Singh. 2017. Replace or Retrieve Keywords In Documents at Scale. ArXiv e-prints (Oct. 2017). arXiv:cs.DS/1711.00046
[20] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak,

Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, Jildau Bouwman, Anthony J.
Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard Finkers,
Alejandra Gonzalez-Beltran, Alasdair J.G. Gray, Paul Groth andCarole Goble andJeffrey S. Grethe, Jaap Heringa,
Peter A.C ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Albert Mons,
Abel L. Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone, Erik
Schultes, Thierry Sengstag, Ted Slater, George Strawn, Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik
van Mulligen, Jan Velterop, Andra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun Zhao, and Barend
Mons. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3 (2016).
https://doi.org/10.1038/sdata.2016.18

[21] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018. Recent trends in deep learning based
natural language processing. ieee Computational intelligenCe magazine 13, 3 (2018), 55–75.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://keras.io
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1186/s12859-017-1832-4
https://doi.org/10.1186/s12859-017-1832-4
http://arxiv.org/abs/cs.DS/1711.00046
https://doi.org/10.1038/sdata.2016.18

	Abstract
	1 Introduction
	2 Methodology
	2.0.0.1 Multi-label Classification
	2.0.0.2 Deep Learning


	3 Results and Discussion
	3.1 Predicting Disease Terms
	3.1.1 Multi-label Classification
	3.1.2 Neural Network Results

	3.2 Predicting Super Classes
	3.2.1 Multi-label Classification
	3.2.2 Neural Network Results


	4 Conclusion
	References

