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1
Introduction

The field of toxicology originates from the science of poisons, with the
very first observed toxic effects likely observed by accident in ancient
times. With humanity learning about harmful substances came practi-
cal applications, such as poisoning enemies through exposure to tox-
icants [1]. Later, around the sixteenth century, it was determined that
any substance that can harm or kill at a high enough dose is a poi-
son, with a relationship between the dose and the effect: the dose-
response relationship [2]. With the publication of “Traite des Poisons”
in 1814 by Orfila [3], toxicology as a field of science was born, defined
by scientific investigation and evaluation of toxic exposures. With
the improved scientific understanding and development of analytical
methodologies, the field of toxicology has progressed to an era of un-
derstanding toxicants and their effects on the molecular level [4].

Nowadays, the toxicology domain can be subdivided into clinical,
forensic, and regulatory toxicology, the latter of which includes
occupational and environmental toxicology, and workspace drug
testing [4]. Regulatory toxicology involves the assessment of potential
hazards and risks of exposure to toxicants and the regulation

1



Chapter 1. Introduction

thereof, based on exposure and potency. By systematic evaluation
and integration of qualitative and quantitative information, risk
assessment aims to identify potential adverse health effects resulting
from exposure to hazardous stressors [5].

The origin of toxicological data for regulatory purposes can originate
from various sources, including human in vivo databases, animal ex-
perimentation, in vitro cell cultures, and in silico methods. Tradition-
ally, regulatory hazard and safety assessments on chemicals heavily
rely on animal experimentation [6]. However, these come with a high
cost in resources and time, and therefore the throughput of testing
was limited, which cannot keep up with the increasing number of
new chemicals and nanomaterials that require assessment. Further-
more, animal models introduce uncertainty in assessing hazards for
humans [7], and the use of animal models encounter ethical and soci-
etal concerns [8, 9].

In 1959, there was the first description of the widely implemented 3Rs:
Reduction, Refinement and Replacement [10, 11]. These are aimed to
improve experimental design to minimize the number of animals used,
minimize animal suffering and improve welfare. Ultimately, a transi-
tion towards non-animal approaches would be made, replacing animal
experimentation with in vitro and in silico methods [8, 12].

With the development of so-called New Approach Method-
ologies (NAMs), this issue would be addressed. NAMs can
drive the paradigm shift from animal experiments to robust,
targeted, mechanism-based in vitro and in silico methods. These,
particularly as a complementary testing battery, can be used for
hazard assessment, prioritization, read-across, and screening of
chemicals [13–15]. However, while many efforts focus on the
development of NAMs, procedures for the validation and approval
for risk assessment purposes should still be defined for optimal
uptake by regulators [16–18]. For example, a major challenge lies in
the design of a set of in vitro assays to produce results that can be used
as good predictors of in vivo toxicities [19, 20].
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1.1 Novel technologies
In recent decades, various new technologies have emerged to allow
large-scale examination of biological responses upon exposure
to a stressor and elucidate the underlying mechanisms of action.
These so-called “omics-technologies” include the characterization
of a wide range of biomarkers on the level of DNA (genomics),
mRNA (transcriptomics), protein (proteomics) and small molecules
(metabolomics), among others. Toxicogenomics, a recent branch
in the domain of toxicology, focuses on the use of these omics
technologies to study the molecular and cellular processes caused by
toxicants [21–25].

Although toxicogenomic, specifically transcriptomic approaches
such as microarrays are powerful tools for risk and hazard
identification [26–29], they are not yet widely applied in risk
assessments. Various issues have been expressed such as the lower
specificity and sensitivity on individual genes when compared to
RT-PCR, the statistics involving the false discovery rate, and the large
scale of single datasets [30]. Furthermore, there is no consensus on the
storage, curation, processing, and normalisation of the data, and there
is uncertainty introduced in the interpretation of the data. Another
concern is the reproducibility of the experiments and processing.
Therefore, omics approaches are often regarded as hypothesis
generation, and there is a lack of confidence in their implementation
in risk assessments [31, 32]. There is also a validation barrier that
needs to be addressed, where omics approaches should be validated
on their consistency and reliability, the software used to collect and
analyse the data, the application and relevance for the biological
endpoint to assess, and the ability to generalize or specify for smaller
target populations [32].

To improve the standardization, reliability, and transparency of tran-
scriptomics, recent efforts have focused on providing guidelines and
best practices for omics data generation, handling and the conversion
of raw datasets into biological observations [33–36]. This has also led
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Chapter 1. Introduction

to the recent development of the Transcriptomics Reporting Frame-
work by the Organisation for Economic Co-operation and Develop-
ment (OECD) Extended Advisory Group on Molecular Screening and
Toxicogenomics (EAGMST), focused on the reporting of omics studies
in toxicology to increase transparency and standardization in reporting
of data and associated metadata [37]. Furthermore, case-study-driven
studies focus on the potential applications of transcriptomics data and
address aspects that currently limit their uptake in regulatory risk as-
sessments. For instance, the generation of a predictive toxicogenomics
space can explain dose-dependent cytotoxicity and provide a proba-
bility score for the induction of drug-induced liver injury [38].

After processing transcriptomics data, paired samples with
different gene expression patterns are compared to generate lists
of differentially expressed genes (DEGs). These can provide
insights into the potency of stressors on the test system under
various treatment conditions involving concentration, time, and
exposure patterns [33]. By grouping genes based on their functional
annotations, pathway-specific perturbation estimates can be
generated. This can be done based on gene sets annotated in Gene
Ontology [39, 40] for the function of genes, or molecular pathway
databases that describe the involvement of genes in the complexity
of biological pathways in detail [35]. One of the molecular pathway
databases with such functional annotations of genes and pathways is
the community-driven database WikiPathways [41]. Together with
its accompanying pathway drawing and analysis tool PathVisio [42],
WikiPathways allows for the tailored development and curation of
molecular pathways and the analysis of a variety of omics datasets.

1.2 Adverse Outcome Pathways
Since their first description in 2010 [43], AOPs have become a cen-
tral concept in the field of risk assessments, particularly to drive the
paradigm from using animal models for safety assessments towards
in vitro systems [44–46]. This is in line with the previously described
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3Rs, which have been a goal in toxicological risk assessments for a long
time. The purpose of AOPs is to capture and reuse existing mechanistic
information on toxicological processes and identify gaps of knowledge
to be investigated.

The concept of AOPs describes a simplified biological description of
toxicological processes in response to stressors such as chemicals,
nanomaterials, or types of radiation. The complete toxicological
pathway is broken down into smaller processes called Key
Events (KEs), which are defined as measurable endpoints and
essential for progression towards the Adverse Outcome (AO), the
apical endpoint that is relevant for risk assessment [47]. The most
upstream, i.e. the first KE in the AOP, is the Molecular Initiating
Event (MIE), which contains evidence for the activation by their
specific (group of) stressors. All KEs, including MIE and AO, are
connected by Key Event Relationships (KERs), which describe the
biological basis of causation based on biological understanding and
empirical support. These connect the molecular processes in response
to stressor exposure, through increasing levels of biology (cell, tissue,
organ), with the adverse effects on the level of the individual or
population. By design, AOPs are stressor agnostic, meaning that
any trigger of a particular MIE can potentially activate a cascade of
downstream KEs [48], and KEs can be shared among AOPs, creating a
larger AOP Networks [49, 50]. Qualitative descriptions of AOPs are
generally captured and stored within the AOP-Wiki, a core part of the
AOP Knowledge Base (AOP-KB) and an initiative by the OECD to
serve as a platform for collaborative development and communication
with regulators [48]. Within this thesis, the AOP-Wiki is a central
theme of integration, improving its interoperability.

To be implemented in risk assessments, AOPs can be used to
inform hypothesis-driven Integrated Approaches to Testing and
Assessment (IATA), pragmatic, science-based solutions to efficient
and cost-effective chemicals hazard characterization [51, 52]. For
example, skin sensitization was the first apical endpoint for which
IATA, consisting of in silico, in chemico and in vitro tests, were
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Chapter 1. Introduction

generated on the basis of an AOP [52–57]. However, the acceptance
of AOPs as an information resource faces challenges in the overall
confidence, completeness, and usefulness [58]. To increase confidence,
the weight of evidence considerations have been described based on
the Bradford-Hill criterea [59, 60].

1.2.1 Quantification of Adverse Outcome Pathways
While AOPs are generally based on scientific literature, many efforts
have focused on the quantification of AOPs, single KEs, and KERs with
experimental data or computational predictions. These are generally
referred to as various types of quantitative AOPs (qAOPs). Besides
the quantitative weighing of evidence in weight-of-evidence qAOPs,
for example, using the extended Bradford-Hil criteria [60], the more
data-driven qAOPs are empirical dose-response based qAOPs, prob-
abilistic qAOPs, and mechanistic qAOPs [61, 62]. In dose-response-
based qAOPs, equations are fitted to measures of each KE at expo-
sures of increasing dose, which are mathematically adjusted to obtain
chemical-independent KER quantification [62]. Probabilistic qAOPs
provide predictive relationships between KEs and can cover complete
AOPs. For example, AOP Bayesian networks have been implemented
to predict the probability of chemicals to cause liver steatosis [63], re-
nal toxicity [62], or ATP production associated growth inhibition [64],
among others. Finally, mechanistic (or systems toxicology) qAOPs
provide the most insights into biological processes. Unlike the other
qAOP types, mechanistic qAOPs describe the biological complexity
with feedback and feed-forward loops, regulatory processes and mod-
ulating factors [61, 62]. Generally, the conversion of a complete AOP
into a qAOP is challenging, especially when working with public data,
with limiting factors such as data availability and usefulness, the sep-
aration of data across different studies, and the accessibility and trans-
ferability of established quantitative models [65]. AOPs are also re-
garded as a pushing force in the design and development of computa-
tional models that can predict the activation of particular measurable
endpoints related to KEs [66]. For example, the AOP of aromatase in-
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hibition leading to reproductive impairment is supported by a set of
predictive computational models on molecular, cellular, and popula-
tion level KEs [67].

1.2.2 Adverse Outcome Pathways and transcriptomics
Another type of quantification in AOP involves large-scale omics ap-
proaches, with various applications in the development and support
of AOPs. For example, it is described that omics approaches can aid
AOP development by defining MIEs and KEs, supporting analysis or
validation of KEs by providing supportive evidence and providing
biomarkers for hazard identification [68, 69]. Omics can serve in the
understanding of biological networks and assess or verify the mode of
action of chemicals [70, 71], which can be useful for grouping chemi-
cals and performing read-across [69]. To structure the process of AOP
integration with transcriptomics data, a data fusion pipeline has been
developed to generate AOP-based molecular pathway networks based
on a variety of toxicology databases [72]. Its purpose is to be used for
the analysis of transcriptomics data in the regulatory context. Using
WikiPathways as a tool to describe the biological complexity of the
AOP, it was possible to identify the dysregulation of genes and pro-
cesses associated with the KEs of the AOP [72]. Besides the support
of existing AOPs, transcriptomics data can also drive the generation
of computationally predicted AOP (cpAOP) scaffolds to support the
development of AOPs [73].

1.2.3 Integration of data and resources
Since AOPs describe an aggregation of toxicological information
on all levels of biological organization which is stored in public
resources [74], their development can be supported by data-driven
approaches. For example, data from the Comparative Toxicogenomics
Database (CTD) [75] and ToxCast can be utilized to generate cpAOPs
based on the chemicals of interest [76]. It is expected that the
integration of public resources through computational approaches
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can speed up the mostly expert-reliable development of AOPs. By
combining automated tools for AOP development with the AOP-KB
as a knowledge management tool, the continuously expanding source
of information can increase the quantity and quality of AOPs [74]. For
example, the integration of various techniques for MIE prediction
and KER support was tested in thyroid hormone-related toxicity,
providing an efficient way to extend AOP knowledge and assess
health hazards [77].

With the transition toward more data-driven approaches and the goal
to make data more useful by integration and reuse, Linked Open
Data solutions have been defined for handling data. For example,
the Resource Description Framework (RDF) model describes data
in semantic triples, defined by combinations of subjects, predicates
and objects which jointly make up statements in a machine-readable
way [78]. RDF is supported by annotations with ontologies and
persistent identifiers. To standardize ontologies, the Web Ontology
Language (OWL) was defined for representing knowledge, grouping,
and relations between concepts, adding more extensive semantics
to RDF triple statements [79]. Furthermore, identifiers can be
standardized by the implementation of Internationalized Resource
Identifiers (IRIs), providing unique identification of resources and
their contents [80]. The query language to explore the vastness of RDF
data and its extensive interoperability capabilities is SPARQL Protocol
and RDF Query Language (SPARQL), allowing flexible, reusable
queries across resources.

Such technologies to annotate data and improve the semantic mean-
ing of data and knowledge are in line with the so-called Findable, Ac-
cessible, Interoperable, and Reusable (FAIR) principles, standing for
Findable, Accessible, Interoperable and Reusable [81, 82]. These prin-
ciples were designed to increase the overall usability of data by ap-
plying standards and extensive metadata to describe each dataset. By
design, RDF and Ontologies are such standards to create linked data,
aiming for consistent reporting of data and metadata across resources
and disciplines, focusing on interoperability.
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As such, semantic web applications are also applied in toxicology
research, to annotate experimental data and metadata, and employ
linked data practises in databases [83]. Large initiatives such as
OpenTox [84], eTOX [85], eNanoMapper [86] have focused on
optimizing data interoperability, both by the creation of centralized
data repositories supported by linked data, but also providing
resources for data annotation and integration of toxicological data,
such as the nanotoxicology-focused eNanoMapper Ontology [87]
and FAIRification workflow [88], or the OpenTox Application
Programming Interface (API) [89, 90].

The efforts to improve data interoperability also focus on AOPs and
related resources, including the AOP-Wiki. With the aim to capture
as much as possible of toxicological space as possible, the Key Event
Components (KECs) were introduced to the AOP-Wiki [91]. These are
focused on the implementation of ontologies to annotate KEs, specif-
ically on biological processes and biological objects, covering all bi-
ological levels. The aim of introducing ontologies to the AOP-Wiki
was to make linked data, to explore connections with other resources
based on standardized annotations of concepts. This aspect will be
investigated in more detail in Chapter 3. Another effort to centralize
AOP concept annotations is the AOP Ontology (AOPO) [92], which
has been implemented in the AOPXplorer, a Cytoscape plugin, for the
annotation of AOP-related concepts. This can be used for creating AOP
networks, as has been investigated for hepatotoxicity [93] and neuro-
toxicity [94].

1.3 Thesis outline
With the advancements in scientific methodologies over the past
decades, the risk assessments of chemicals and other types of stressors
are moving toward more extensive, high-throughput screenings.
Not only do we learn about the hazards and risks of these, but
the focus is on understanding the mechanism of the interactions of
stressors with the biological system, the resulting cellular responses,
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Chapter 1. Introduction

and the consequential adversities with sufficient exposure. With this
thesis, we expect that the application of high-content data, such as
transcriptomics, together with AOPs, may be an effective way to both
assess adverse effects caused by stressors, and inform us about the
mechanistic effects as well in detail. By addressing the integration
of AOPs with experimental data and molecular pathways, we
aimed to facilitate data analysis and the eventual transition toward
high-throughput, high-content data applications in risk assessments.

Within Chapter 2, we show the community-driven developments
within the molecular pathway database called WikiPathways, a
resource that allows for interoperability with other resources and can
serve as a platform for omics data analysis with PathVisio. Because
our aim is to integrate resources for omics analyses with AOPs, we
explored the AOP-Wiki and its current coverage of interoperability
aspects in Chapter 3. By looking into molecular descriptors and
ontologies, we explored ways of linking the AOP-Wiki with
WikiPathways.

Following that, we implemented semantic web technologies in the
AOP-Wiki datasets and developed an RDF schema for it in Chapter 4.
We enriched the data with ontologies, standard vocabularies, and
persistent identifiers, and made the data explorable with SPARQL
queries. As an extension, the AOP-DB was also converted to an RDF
format in Chapter 5, providing additional resources to connect to
the KEs of the AOP-Wiki. As an illustration of the usefulness of
the conversion to RDF, we developed an AOPLink computational
workflow, that utilizes, among other services, the AOP-Wiki RDF and
AOP-DB RDF to automatically explore experimental data to support
any AOPs that exist in the AOP-Wiki, presented as a Jupyter notebook
in Chapter 6.

Following the semantification of the AOP-related resources, we intro-
duced a transcriptomics data analysis framework that combines AOPs
and molecular pathways in WikiPathways in Chapter 7, which we
called molecular AOPs. We explored and discussed their usefulness
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and provided use cases as examples, focusing on various AOPs and
transcriptomics data sets. Finally, this work is summarized and dis-
cussed, looking at its implications and overall impact.
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Chapter 2. WikiPathways: connecting communities

Abstract
WikiPathways (wikipathways.org) is a biological pathway database
known for its collaborative nature and open science approaches.
With the core idea of the scientific community developing and
curating biological knowledge in pathway models, WikiPathways
lowers all barriers for accessing and using its content. Increasingly
more content creators, initiatives, projects and tools have started
using WikiPathways. Central in this growth and increased use of
WikiPathways are the various communities that focus on particular
subsets of molecular pathways such as for rare diseases and lipid
metabolism. Knowledge from published pathway figures helps
prioritize pathway development, using optical character and named
entity recognition. We show the growth of WikiPathways over the
last three years, highlight the new communities and collaborations
of pathway authors and curators, and describe various technologies
to connect to external resources and initiatives. The road toward
a sustainable, community-driven pathway database goes through
integration with other resources such as Wikidata and allowing more
use, curation and redistribution of WikiPathways content.
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Figure 2.1: WikiPathways Graphical Abstract. WikiPathways enables research communities to
collaborate on molecular pathway curation to create reusable, machine-readable pathway mod-
els. The pathway collections are freely available and integrated with many analysis tools and
resources.
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2.1 Introduction
The WikiPathways project was founded in 2007 upon the idea that ev-
eryone should be able to participate in the collection and curation of
scientific knowledge [1]. No single research team can match the diver-
sity and depth of expertise represented by the greater scientific com-
munity. Putting the tools of content creators and database maintainers
into the hands of content consumers completes a virtuous cycle that
powers growth and quality control which scales with the acquisition
of new knowledge. Our approach is reflected in open science and FAIR
principles [2].

WikiPathways is a database of biological pathway models collected
and curated by the research community. Anyone at any time can con-
tribute their pathway knowledge using freely available pathway edit-
ing tools. All edits are attributed to a registered author and screened
by at least one other curator by means of organized and distributed
community curation. This approach allows WikiPathways to grow at
the scale of new discoveries and with input from diverse sources of
pathway knowledge.

As previously reported, WikiPathways relies on communities of path-
way authors and curators, pathway users, and developers to assemble,
update and distribute content for myriad research applications [1, 3–
7] In this update, we highlight unparalleled growth in content with
more than seventy new pathways and thousands of revisions each
year. We also present several research communities that we have col-
laborated with and empowered, including the COVID-19 Disease Map
project [8], LIPID MAPS [9] and the rare disease community. Further-
more, to strengthen community building and curation, we started or-
ganizing monthly Curation Cafe events focused on selected topics, e.g.
improving the quality of existing or creating novel pathways. We also
detail some of the latest infrastructure updates, tool development and
dissemination work which improve the free exchange of pathway in-
formation across platforms and within common analytical workflows.
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2.2 Content and general updates
In the three years since our last update [7], over 70 new
pathways per year (on average) were added to our data release
(releases.wikipathways.org). In this section, we report on the
content updates between the data releases on 10 September 2017 and
10 September 2020. Overall, WikiPathways currently contains a total
of 2,857 pathways for all species, out of which 1,777 are included in
the species-specific analysis collections. In the last three years, the
content at WikiPathways has seen 10,079 user contributions, and 122
new contributors joined our community (Figure 2.2A). Although
the content at WikiPathways represents human biology to a large
extent, a total of 29 species are supported including vertebrates,
invertebrates, plants, eukaryotic microorganisms and bacteria. Our
human pathway collection has been extended consistently with 242
pathways (Figure 2.2B), and 9,014 genes and proteins, of which 12%
are new to the database. Furthermore, of the 1,886 metabolites added,
69% were new, as a result of a concerted effort on metabolite curation.
These datanodes are connected by 46,105 interactions, of which there
are currently 4,026 more than in September 2017 (Figure 2.2C).

Based on data from Google Analytics in the last three years, the main
WikiPathways website has recorded on average 700 visitors per day an
international audience (33% from North America, 32% from Asia, 25%
from Europe). Additionally, our REST webservice API recorded 27 mil-
lion requests during this three-year time span. Importantly, in an effort
to produce a more accessible and sustainable resource, we regularly
disseminate pathway content to third-party tools and databases (see
section “Connections to other initiatives”), which generate secondary
usage statistics not reported here.

2.2.1 Pathway lifecycle
New biological knowledge is published every day, and as part of the
curation process, pathway models get revised over time with this new
information, in addition to other updates and corrections. Quality as-
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Figure 2.2: Recent growth of WikiPathways. The y-axes represent data for the human pathways
accumulated in the database (approved content via rdf.wikipathways.org), focusing on the
last three years (x-axes). A. Total counts for all revisions, including contributor and automated
revisions (black squares), the subset of revisions made by contributors (black diamonds) and
individual contributors (red circles). B. Total human pathway count. C. Total counts for genes
and proteins (black squares), interactions (black diamonds) and metabolites (red circles). Data
colors match corresponding y-axes.

surance of the WikiPathways content is accomplished continuously, by
a combination of a weekly manual curation by a member of an orga-
nized team of curators, computer-assisted curation processes [7] and
monthly curation cafes. Our manual curation protocol is designed as
an interactive set of tasks which cover a wide range of topics, from re-
cent edits and additions, assessing redundancy and overlap, to prob-
lematic content. It has been used successfully for the past three years
and has greatly streamlined and standardized the process. The ease-
of-use has also made it easy to bring in new contributors. Additionally,
the computer-assisted curation tools are used effectively and its reper-
toire of tests has been expanded to better support the ongoing curation
efforts and challenges in the WikiPathways database (github.com/
BiGCAT-UM/WikiPathwaysCurator).

Each edit in a wiki-based system is recorded as a revision in the path-
way history. These revisions are a measure for community activity
and engagement. Pathway edits cover adding new biological knowl-
edge, annotating the pathways with metadata (description, ontology
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tags), improving the layout of a pathway diagram, and any combina-
tion thereof. Figure 2.3 shows that pathways from the human pathway
analysis collection are updated regularly. While only 6 out of 639 path-
ways have not been updated yet, 14 pathways have more than 100 revi-
sions including the "Integrated Breast Cancer Pathway" (WP1984, 445
revisions, 14 curators, [10]), the "Aryl Hydrocarbon Receptor" path-
way from NetPath (WP2586, 256 revisions, 9 curators, [11, 12]), and
the "Selenium Micronutrient Network" (WP15, 208 revisions, 15 cura-
tors, [13]), displaying that the collaborative nature of WikiPathways is
a clear asset to pathway curation.

Figure 2.3: The number of revisions and contributors for all pathways in the human pathway
analysis collection. The x-axis depicts how often pathways were updated (revised) on a loga-
rithmic scale. The y-axis depicts the number of contributors who have worked on a pathway.
The size of the dots expresses the number of pathways for that combination of contributors and
revisions.
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2.2.2 Pathway figures in published literature
Even with the continued growth at WikiPathways, approximately only
50% of protein-coding human genes are represented in pathway mod-
els. Despite the availability of free pathway modelling tools, such
as PathVisio [14], CellDesigner [15] or Newt [16], the vast majority
of pathway content is still shared as static images in published fig-
ures. Each month, an estimated 1,000 figures representing pathway
content are published and collected at PubMed Central (PMC) [17].
Hence, the WikiPathways project initiated an analysis to convert pub-
lished pathway figures into pathway models, using a pipeline begin-
ning with a PMC image search, followed by machine learning, op-
tical character recognition and named entity recognition. We identi-
fied 64,643 pathway figures published over the past 25 years and ex-
tracted 1,112,551 human genes, representing 13,464 unique genes [18].
These include over 3,600 genes not previously included in WikiPath-
ways nor Reactome collections (as of January 2020). Based on en-
richment analysis of disease-annotated gene sets against these path-
way figures, the genes represent a wide range of diseases, including
various types of cancer, cardiomyopathy, and diabetes. Prioritizing
novel genes and rare diseases, we are using these published path-
way figures as starting points for collaborative curation events. We
have made all of the pathway figure content available via an inter-
active web interface (gladstone-bioinformatics.shinyapps.
io/shiny-25years).

2.3 Pathway curation communities
The collaboration with various communities is an essential
part of WikiPathways, where portals serve as a functional
framework for communities with focused pathway interests
(portals.wikipathways.org).Portal maintenance instructions
are provided to enable communities to design and maintain portals
themselves, with assistance from the WikiPathways team if needed.
Here, we highlight recent community efforts in collaboration with
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WikiPathways. All pathways receive a tag specifically for their
community, allowing for automated downloads of these pathway col-
lections through the REST API (webservice.wikipathways.org)
with the "getCurationTagsByName" function, and our RDF format
with SPARQL queries (rdf.wikipathways.org, [6]).

2.3.1 COVID-19
The COVID-19 Disease Map project aims to understand biological
processes relevant to the COVID-19 pandemic [8]. From the start
of this international effort, WikiPathways has been committed to
contributing to this initiative by building, curating and sharing
pathway models with a liberal license (CC0) and under FAIR
community standards. Currently, the WikiPathways COVID-19 portal
(covid.wikipathways.org, see Figure 2.4) contains a collection
of eleven molecular pathways on SARS-CoV-2 itself, nine on other
coronaviruses from earlier outbreaks, and several known processes
involving ACE2, the main target membrane enzyme of SARS-CoV-2
for entering host cells. Identifiers and cross-references for coronavirus
genes and proteins are provided through a Wikidata project [19].
Our pathway models are regularly updated and integrated into the
COVID-19 Disease Map. For this initiative, we are currently adapting
the data model to allow better support for multi-species pathways,
annotation of evidence information and annotation of complexes.

2.3.2 Rare diseases
Rare diseases affect relatively few people, with the exact definition
varying between 5 and 80 individuals per 100,000 for a given rare dis-
ease. However, it is estimated that up to 5.9% of the general popu-
lation is affected by a rare disease. The majority of these disorders
are genetic, 4,440 of 6,172 in total counted by ORPHANET [20]. For
many disease-causing genes, there is little known about the normal
gene function, and this knowledge is scattered over scientific publica-
tions and databases. Within WikiPathways there is a specialized por-
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Figure 2.4: The COVID-19 Portal on WikiPathways (covid.wikipathways.org). The portal
contains relevant information for COVID-19-related research, including all molecular pathways,
contributors, and publications.

tal for exploring, curating, and expanding the collection of rare dis-
ease pathways (raredisease.wikipathways.org), partnered by
EJP-RD (European Joint Programme on Rare Diseases), ELIXIR (Eu-
ropean Bioinformatics infrastructure programme) and the Dutch Rett
expertise centre (Maastricht University Medical Centre). The portal is
used to capture knowledge from literature and data to gain a better
understanding of these complex disorders. The pathways are created
and curated in collaboration with disease experts, currently covering
over 60 rare diseases including very different types of diseases, e.g.
laminopathies, ciliopathies, disorders of sexual development and fer-
tility, and copy number variation syndromes.

2.3.3 Inborn Errors of Metabolism (IEM)
Inborn errors of metabolism are a subsection of the rare disease field,
which are captured in the "IEM portal" (iem.wikipathways.org),
containing molecular pathways connecting clinical biomarkers
to disorders. We have started a collaboration with the authors
of the book "Physician’s Guide to the Diagnosis, Treatment, and
Follow-Up of Inherited Metabolic Diseases" [21] and are currently
processing all included pathways, as well as integrating these
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in the IEMbase [22]. The portal currently covers 19 chapters, 23
approved pathways, over 350 diseases linked to OMIM identifiers
and 68 unique Disease Ontology terms, and is expected to be
expanding with the coverage of additional chapters. Examples
of data analysis for these (and other) pathways can be found at
bigcat-um.github.io/PathwayAnalysisBlauBook. The
disease nodes are currently represented as Labels with hyperlinks in
the pathway models. We are planning to extend the data model with a
non-molecular data node (e.g. Annotation / Phenotype) that will not
be used for data analysis but can be annotated with a proper identifier
for computational processing of the information.

2.3.4 Lipids
Lipids are a fascinating class of chemical compounds that serve several
roles within organisms and are difficult to measure in a wet lab set-
ting. The LIPID MAPS team has initiated a collaboration [9] with the
WikiPathways community to maintain and extend their lipid pathway
content, leading to the addition of nine highly curated lipid pathways
for mouse, the original pathways are available at lipidmaps.org/
resources/pathways/vanted.php. These pathways have been
homology converted to their human counterpart and are now part
of the Lipids Portal (lipids.wikipathways.org). Annotating in-
dividual lipids instead of lipid classes can be quite complicated; this
phenomenon is in most cases due to a lack of biological knowledge on
individual lipids. Furthermore, several cases are known where homol-
ogy mapping between different species for proteins is hampered, e.g.
for stearoyl-CoA desaturase-1 having four isoforms in mice compared
to only two in humans [23].

2.3.5 Adverse Outcome Pathways
Since the introduction of Adverse Outcome Pathways (AOPs)
to support regulatory decision making for risk assessment of
chemicals [24], the primary focus of AOP research groups has been
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capturing mechanistic data in written format. However, since the
majority of biological processes described in AOPs are biological
pathways that exist as pathway models on WikiPathways, the AOP
Portal (aop.wikipathways.org) has been created to capture all
pathways relevant to toxicological assessments [25]. These molecular
AOPs contribute to the understanding of AOPs and facilitate the use
of various omics approaches in risk assessments [26]. One challenge
lies in the unique rationale behind molecular AOPs, where biological
processes are connected in a chain of Key Events (KEs) that make an
AOP, rather than presenting one molecular pathway. Second, KEs
often describe disturbances or adverse responses already captured
in molecular pathways in WikiPathways [25] and therefore AOPs
are modelled as meta-pathways. These combine pathway nodes
and KE nodes in one data model, which is linked to the AOP-Wiki,
aopwiki.org).

2.4 Connections to other initiatives
WikiPathways enables anyone to freely share, redistribute, use,
and adapt pathway content in the database, by removing any
barriers for people to decide to contribute to or use WikiPathways.
Furthermore, WikiPathways provides a variety of options to access
the data for use, through downloads in various formats for individual
pathways or pathway collections, from the pathway editor and
analysis software PathVisio [14], through the WikiPathways REST
API and rWikiPathways R package, or through the WikiPathways
SPARQL endpoint. These aspects make WikiPathways content easy to
implement in services, tools, workflows or distributions.

2.4.1 BridgeDb
Managing molecular pathways requires robust use of database iden-
tifiers for all pathway components (genes, proteins, metabolites, com-
plexes, diseases, interactions). Recently, mappings to the EBI Complex
Portal [27] and IUPHAR/BPS Guide to PHARMACOLOGY [28] have
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been added to the identifier mapping framework BridgeDb [29] which
is integrated with WikiPathways.

2.4.2 Wikimedia Toolforge
The pathway viewer widget was updated and moved to
Wikimedia Toolforge allowing users to integrate the pathways
from WikiPathways into their own website with more ease
(widget.wikipathways.org). The widget unifies identifiers from
the data source originally specified by the pathway author, to provide
several commonly used data sources for additional exploration.
Metabolite identifiers are unified by BridgeDb to include ChEBI,
HMDB and Wikidata identifiers. For gene products, the Wikidata API
is used for mapping of NCBI Gene, Ensembl, HGNC and Wikidata
identifiers. In the future, the mapping for gene products will also be
done using BridgeDb.

2.4.3 SPARQL explorer
To make access to the WikiPathways RDF more user-
friendly, we have introduced Wikipathways SNORQL
(github.com/wikipathways/snorql-extended), a new
extended implementation of the SNORQL user interface (UI), to be
our go-to semantic web browser (sparql.wikipathways.org).
WikiPathways SNORQL is a query editor that offers syntax highlight-
ing for writing and executing SPARQL queries directly on our existing
SPARQL endpoint (sparql.wikipathways.org/sparql). Fur-
thermore, the user interface provides a query examples panel which is
auto-populated with SPARQL queries from a customizable GitHub
repository (github.com/wikipathways/SPARQLQueries). This
repository stores queries in folders divided over particular topics,
communities, collaborations functionality, or external data sources
for federated queries, allowing new users to navigate through our
example queries panel with more ease (Figure 2.5). Overall, the new
UI allows collecting, storing, exploring and reusing SPARQL queries
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on the WikiPathways data.

Figure 2.5: The WikiPathways SNORQL user interface (sparql.wikipathways.org). The
WikiPathways SNORQL semantic web browser allows for user-friendly access to the WikiPath-
ways RDF through providing example SPARQL queries (right panel).

One example of semantic interoperability using federated SPARQL
queries is our collaboration with neXtProt. The neXtProt [30]
knowledge resource of the Swiss Institute of Bioinformatics aims to
document inter- and intra-individual diversity of human proteins by
integrating information from a variety of protein resources. To extend
the knowledge on proteins towards systems and biological pathways,
federated SPARQL queries have been developed in collaboration,
harnessing the semantic web capabilities to connect neXtProt with
WikiPathways knowledge.

2.4.4 Wikidata
The CC0 license of WikiPathways also enabled interoperability
through Wikidata, the linked data repository of Wikipedia [31].
Like Wikipedia, Wikidata is a knowledge-sharing platform open
to all (humans and software). In collaboration with the Gene Wiki
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and Reactome teams, we developed bots to add information about
the curated pathways to Wikidata [19, 32]. The WikiPathways bot
creates Wikidata items for each pathway and the content thereof
in WikiPathways and aligns those with the Wikidata items on
associated genes, proteins, metabolites, literature citations, and
ontology annotations (e.g., wikidata.org/wiki/Q28031254). The
WikiPathways content of the human pathway analysis collection in
Wikidata gets updated after each monthly release.

2.4.5 Scholia
Scholia is a graphical user interface that aggregates information
from Wikidata around topics [33, 34], such as genes, proteins,
metabolites, pathways, authors, articles, and organizations.
In collaboration with the Scholia team, we developed Scholia
templates for WikiPathways pathways and all pathways in
Wikidata are now also addressable as Scholia topic pages
scholia.toolforge.org/wikipathways/WP111. These pages
show the participants of the pathway (genes, protein, metabolites),
the literature cited by the pathway, and articles citing the pathway.
Moreover, similarly to linking to PubMed and Europe PMC, the
literature section now links to Scholia pages for the cited articles.

2.4.6 Nanopub
Nanopublications for WikiPathways have been released for several
years now in collaboration with their international community [35].
The nanopublications are created using a combination of nanopub-
java library [36] and SPARQL queries against the WikiPathways RDF
(see github.com/wikipathways/nanopublications). This re-
sults in three types of nanopublications, for three types of facts in
WikiPathways: complexes, interactions, and general participation in
pathways. Nanopublications are currently only generated if the com-
plex, interaction, or participation is linked to a specific literature ref-
erence, identified by a PubMed identifier, which is used as part of the

33

wikidata.org/wiki/Q28031254
scholia.toolforge.org/wikipathways/WP111
github.com/wikipathways/nanopublications


Chapter 2. WikiPathways: connecting communities

provenance of the nanopublication. Nanopublications are findable us-
ing semantic web identifiers for genes and proteins [37], but using the
pathway identifier we can also find all nanopublications that originate
from the corresponding pathway, such as WP15, for example with
curl -X GET "http://grlc.np.dumontierlab.
com/api/local/local/find_nanopubs_with_uri
?ref=http://identifiers.org/wikipathways/
WP15_r107118" -H "accept: text/csv"
with a command line.

2.4.7 Europe PMC and other PubMed interoperability
The PubMed identifier is still the primary, global identifier
used by WikiPathways to identify the literature cited. In 2018
we started contributing links between PubMed articles and
pathways in WikiPathways (excluding the Reactome-synced
pathways [5]) to Europe PMC via the External links service
(europepmc.org/LabsLink) functionality [38]. This allows Europe
PMC to show the pathways from WikiPathways that mention that
article in their database. The WikiPathways website now also links to
Europe PMC for cited articles in the literature section on a pathway
page, making the integration bi-directional.

2.4.8 Enrichment analysis tools
Functional enrichment analysis is a popular approach for character-
izing differentially expressed genes based on Gene Ontology terms,
pathways and other annotated gene sets. We release a standard Gene
Matrix Transposed (GMT) file each month that includes the latest set
of curated pathways approved for enrichment use cases. Using this
file, WikiPathways content can be added to any protocol supporting
the GMT standard. A number of R packages and online tools that per-
form enrichment analysis have incorporated WikiPathways into their
methods and vignette examples, including g:Profiler [39], clusterPro-
filer [40], rSEA [41], Enrichr [42], IMPaLa [43] and WebGestalt [44].
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Human and mouse WikiPathways gene sets are now also available in
the Molecular Signatures Database (MSigDb, [45]) for the GSEA soft-
ware [46].

2.4.9 MINERVA
The interoperability between the MINERVA platform [47] and the
WikiPathways GPML got a boost with the COVID-19 Disease Map
project [8]. In this large international effort, it is crucial to be able to
communicate between the different resources to share, collect and
unify the content. The MINERVA software can now import and
export GPML files from WikiPathways. This facilitates the integration
of WikiPathways pathways in the larger disease map but also allows
export of other models to GPML enabling distribution of the content
in RDF format in the future.

2.4.10 BEL Ecosystem
Several researchers involved in the Biological Expression Language
(BEL) project [48] are harmonizing the information of different path-
way databases including WikiPathways. Bio2BEL converts the content
from several pathway databases into BEL and stores causal and correl-
ative relations between biological entities across multiple modes and
scales as a biological network [49]. ComPath aims to evaluate the cov-
erage, agreements, and discrepancies between the pathway databases
in terms of gene content [50]. PathMe provides normalizations be-
tween these pathway databases for other content (e.g. protein-protein
interactions, complexes) [51]. This information is integrated into Path-
wayForte [52] and the feedback from these analyses led to additional
curation efforts on WikiPathways including renaming of pathways.

2.4.11 Network Data Exchange - NDEx
The Network Data Exchange (NDEx) is a public resource for
publishing and sharing biological networks and gene sets [53], and
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WikiPathways is closely collaborating with the NDEx team. First,
we regularly deposit the WikiPathways human pathway analysis
collection into a dedicated collection at NDEx (ndexbio.org/#/
user/363f49e0-4cf0-11e9-9f06-0ac135e8bacf), with over
600 pathways included. Second, as part of the Clinical Proteomic
Tumor Analysis Consortium (CPTAC) initiative, we have led the
curation of 28 cancer-specific pathway models and the organization
of 87 cancer-related pathways, all of which we have merged into 11
network models representing common cancer hallmark categories
(cptac.wikipathways.org). We regularly deposit these network
models at NDEx. Third, we have extracted gene sets from over 32,000
pathway figures with 10 or more genes and have deposited them at
NDEx [53] for manual download and programmatic access, as well as
facilitated Cytoscape workflows and enrichment analysis via NDEx
Integrated Query (iquery.ndexbio.org).

2.5 Future work
With the ever-growing collection of curated and published pathway
information, the WikiPathways team is working towards a more sus-
tainable and scalable infrastructure for all pathway knowledge. This
work will involve the development of new tools and services, contin-
ued integration into community-run resources like Wikidata, and close
coordination with other pathway databases and biocuration teams.
For example, we are building a pathway knowledge management sys-
tem using git version control, with automated diff and merge capa-
bilities to synchronize curation efforts across multiple sites. Pathway
edits made at Wikidata, NDEx, WikiPathways or Reactome would es-
sentially open a request to merge and redistribute the new informa-
tion. Utilizing gene, metabolite and disease content extracted from
published pathway figures, we will organize focused curation efforts
aimed at converting content as pathway models. This process will be
facilitated by the addition of a portal highlighting and organizing this
content.
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We are also integrating pathway information into new platforms for
biomedical research and discovery. This work includes the continued
support for third-party pathway analysis tools online and via R and
Python packages, as well as new knowledge bases that connect path-
way information to other genomic and phenotypic models of biology.
For example, we are contributing curated and published pathway in-
formation to the NCATS’ Biomedical Data Translator program [54] us-
ing the BioThingsExplorer (biothings-explorer.readthedocs.
io) and Smart API [55].

2.6 Conclusion
The content of WikiPathways increases every day due to the combined
effort of multiple communities, including curators of pathway models
and authors of pathway figures. A wide variety of third-party an-
alytical tools utilizes the content distributed by WikiPathways, cre-
ating an immeasurable user base. WikiPathways is defined by the
people authoring, curating and utilizing pathway knowledge. We in-
vite all researchers interested in pathways to directly participate in the
WikiPathways project.

2.7 Data availability
All WikiPathways data, including older data releases, are stored on
data.wikipathways.org. Scripts and SPARQL queries used to generate
the data published here can be found on GitHub [56].
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Chapter 3. WikiPathways as a Data-Source

Abstract
A paradigm shift is taking place in risk assessment to replace
animal models, reduce the number of economic resources, and
refine the methodologies to test the growing number of chemicals
and nanomaterials. Therefore, approaches such as transcriptomics,
proteomics, and metabolomics have become valuable tools in
toxicological research, and are finding their way into regulatory
toxicity. One promising framework to bridge the gap between the
molecular-level measurements and risk assessment is the concept
of adverse outcome pathways (AOPs). These pathways comprise
mechanistic knowledge and connect biological events from a
molecular level toward an adverse effect outcome after exposure to a
chemical. However, the implementation of omics-based approaches in
the AOPs and their acceptance by the risk assessment community is
still a challenge. Because the existing modules in the main repository
for AOPs, the AOP Knowledge Base (AOP-KB), do not currently
allow the integration of omics technologies, additional tools are
required for omics-based data analysis and visualization. Here we
show how WikiPathways can serve as a supportive tool to make
omics data interoperable with the AOP-Wiki, part of the AOP-KB.
Manual matching of key events (KEs) indicated that 67% could be
linked with molecular pathways. Automatic connection through
linkage of identifiers between the databases showed that only 30%
of AOP-Wiki chemicals were found on WikiPathways. More loose
linkage through gene names in KE and Key Event Relationships
descriptions gave an overlap of 70 and 71%, respectively. This shows
many opportunities to create more direct connections, for example
with extended ontology annotations, improving its interoperability.
This interoperability allows the needed integration of omics data
linked to the molecular pathways with AOPs. A new AOP Portal
on WikiPathways is presented to allow the community of AOP
developers to collaborate and populate the molecular pathways that
underlie the KEs of AOP-Wiki. We conclude that the integration of
WikiPathways and AOP-Wiki will improve risk assessment because
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omics data will be linked directly to KEs and therefore allow the
comprehensive understanding and description of AOPs. To make this
assessment reproducible and valid, major changes are needed in both
WikiPathways and AOP-Wiki.
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3.1 Introduction
The last decades have seen many developments in risk assessment
strategies for an ever-growing number of chemicals and nanomateri-
als, aiming to reduce the use of animals and cost of risk assessment
and to increase the predictive value. In parallel to these changes, ex-
perimental approaches in regular toxicology research have also made
major steps setting up novel high-throughput technologies for generat-
ing large-scale (omics) datasets such as transcriptomics, metabolomics,
and proteomics. However, these technologies are not consistently im-
plemented in regulatory risk assessment and there is a need for proper
integration of knowledge, testing systems, and analysis tools for these
approaches to be of added value over existing methodologies in risk
assessment.

To support the paradigm shift toward animal-free, cheap and more ef-
fective risk assessments of chemicals, the concept of adverse outcome
pathways (AOPs) emerged [1], which integrate mechanistic knowl-
edge of the toxicological effects of chemical compounds and nanoma-
terials and thereby assist integrated approaches to testing and assess-
ment strategies. AOPs are structured as logical sequences of causally
linked and measurable biological events [key events (KEs)] that oc-
cur after exposure to a stressor that triggers a biological perturbation,
called the molecular initiating event (MIE). These KEs are connected
by Key Event Relationships (KERs) and describe the downstream ef-
fects on increasing levels of biological organization, from molecular,
cellular, tissue, organ, individual, and population responses toward
an adverse outcome (AO) [2–4].

The Organisation for Economic Co-operation and Development
(OECD) was the first organization to embrace AOPs by launching
the AOP Development Programme in 2012 for the establishment
of AOPs in a qualitative way and provide guidance material for
standardized, structured development of AOPs [5, 6]. With that, the
AOP Knowledge Base (AOP-KB (aopkb.oecd.org/index.html))
emerged in 2014 as a collective platform of various tools to assist in
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the development of AOPs. Its main components are the AOP-Wiki
(aopwiki.org), Effectopedia (effectopedia.org) and the
AOPXplorer Cytoscape application.

The AOP-Wiki is the result of collaboration between the European
Commission’s Joint Research Center (JRC) and the United States En-
vironmental Protection Agency (US EPA). It is developed to be a cen-
tral knowledge-sharing platform which facilitates cooperative devel-
opment of AOPs and strictly follows the OECD’s guidance materials
for AOP development. Nowadays, it is the most actively used module
of the AOP-KB and with the recent efforts on annotation with ontol-
ogy tags, it has been aiming for semantic interoperability. This started
with the development of the AOP Ontology [7] and recently, the ad-
dition of various other ontologies to match the various domains de-
scribed in AOPs, from Gene Ontology for biology annotation toward
the Population and Community Ontology for annotation of events on
the population level [8].

Effectopedia [9] is another tool from AOP-KB, developed by OECD,
dedicated to the collaborative development of quantitative AOPs. The
AOP diagram is the focal point of its user interface providing visual
means for adding new and navigation through existing AOP elements,
offering easy access to their description. In addition to KE and KER, Ef-
fectopedia also has an explicit representation of test methods, collected
data and executable models. The integration of response data in KER
allows the system to predict downstream KEs using measurements or
models for upstream KEs that can be measured using in chemico, high
throughput and or in vitro methods. The goal of fully quantified AOPs
is to allow the prediction of an adverse outcome in time and magni-
tude using a minimum number of experimental measurements for KE
responses that cannot be adequately modeled by other means.

The third is AOPXplorer, a Cytoscape application, meant for building
networks of KEs, forming AOP Networks (AOPNs) and allow data
visualization of various types on top of the AOPNs. The goal of
AOPXplorer is to help investigators and risk assessors understand
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how chemical exposures result in information flow throughout the
AOPN, allowing them to make defensible stories and inferences about
potential adverse outcomes.

It has been postulated that omics technologies can be used for vari-
ous goals in regulatory toxicology, such as biological read-across based
on molecular events to prioritize chemicals for testing, cross-species
extrapolation to link to evolutionary biology and the identification of
KEs [10]. Although omics approaches have already been used in toxi-
cology to define specific modes of action [11] or identifying biomark-
ers [12], they have not found their way into regulatory acceptance for
assessment of chemicals and nanomaterials [13, 14]. There is a need
for well-established experimental protocols for data generation, stor-
age, processing, analysis, and interpretation to reach regulatory ac-
ceptance. Besides, an integration framework for data interpretation
to identify relevant molecular changes and pathways is required, as
well as the filling of knowledge gaps that keep risk assessors from
causally linking molecular events to an adverse outcome at a higher
level of biological organization [13, 15–18]. Taken together, the level
of uncertainties and inconsistencies in experimental design should be
minimized to allow omics approaches in risk assessment and AOPs. So
far, various ideas have emerged to introduce omics data to the concept
of the AOPs, such as a pipeline for KE enrichment [19], workflow for
computationally predicted AOPs from public data [20] and the Tran-
scriptomics Reporting Framework [21].

There is a demand for a consistent, well-defined protocol to analyze
and integrate the data in order to describe the molecular effects down-
stream of an MIE [15]. Molecular pathway databases and tools ex-
ist to analyze omics datasets through pathway analysis, which hap-
pens through probability scoring of pathways containing differently
expressed genes and thereby reducing the number of dimensions of
omics datasets to the number of biological pathways. Various molec-
ular pathway databases exist which could be viable tools for the in-
tegration of omics approaches in regulatory risk assessment, such as
KEGG [22], Reactome [23] and WikiPathways [24].
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In this paper, we describe how WikiPathways
(wikipathways.org) [24] an open-science molecular
pathway database which captures mechanistic knowledge in pathway
diagrams, can be a supportive database for AOPs and the analysis
and interpretation of omics datasets through pathway analysis.
WikiPathways has similar levels of coverage of genes and metabolites
as Reactome and KEGG [24, 25] and performs better in covering
signaling pathways [26]. This can be done with PathVisio [27], a
pathway diagram drawing tool that is connected to WikiPathways,
in which omics data can be visualized and pathway analysis can be
performed. Also, WikiPathways exists as a Cytoscape application,
which allows the same pathways to be used for network analysis [28].

Thanks to the adaptability and accessibility of WikiPathways, commu-
nities can collaborate on creating, assessing and improving the under-
standing of molecular pathways [29]. Therefore, WikiPathways could
be a valuable tool for the risk assessment community. It can provide
improved molecular descriptions of early KEs which support biologi-
cal plausibility. At the same time, it can serve as empirical support to
KERs and allow the integration of omics technologies in the concept of
AOPs in a systematic manner. As illustrated in Figure 3.1, ideally, all
KEs in AOP-Wiki are linked by at least one molecular pathway, which
can be highlighted by omics analysis and thereby revealing KEs. How-
ever, WikiPathways needs to be integrated with the existing modules
in the AOP-KB. Here, we focus on the AOP-Wiki by describing its cur-
rent implementation of semantic annotations and we will show how
we can connect the AOP-Wiki with WikiPathways through identifiers
for genes, proteins and metabolites, and ontologies [30], which are pre-
defined vocabularies used to describe knowledge and assist in the in-
tegration of data sources. Furthermore, we will propose a strategy for
future work on connecting the two databases, describing the planned
work on WikiPathways and suggestions for improving the AOP-Wiki
and its contents to allow linkage of databases.
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Figure 3.1: Illustrative description of the linkage of KEs of an AOP with molecular pathways
described in WikiPathways and the practical application of transcriptomics. Transcriptomics
and pathway enrichment analysis are commonly used to elucidate molecular pathways affected
after exposure to a chemical or stress signal. In this illustration, gene expression levels in
WP3942 [31] are significantly changed (red and blue nodes in the pathway diagram, for up- and
downregulation). Because this pathway is linked to the MIE and first KE, these are hypotheti-
cally affected by the chemical, highlighted with red borders and require validation. WP143 [32] is
not affected by the exposure of this chemical at the same time and dose, and the KE that is linked
to this biological pathway is not considered to be affected but could follow later or at a higher
dose. AO, adverse outcome; KE, key event; MIE, molecular initiating event; PW, pathway; WP,
WikiPathways.

3.2 Materials and Methods
3.2.1 Retrieval of AOP-Wiki Data
The AOP-Wiki allows the use of their data for publication purposes,
by storing permanent quarterly downloads on the website (aopwiki.
org/downloads). For this paper, we used the AOP-Wiki XML file of
April 1st, 2018, containing all AOP-Wiki content.
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3.2.2 Parsing the AOP-Wiki XML
The AOP-Wiki XML was parsed with Python 3.5 [33] and the Element-
Tree XML API with the “.parse”-function which resulted in an Ele-
mentTree wrapper class that represents an entire element hierarchy.
The information, that was required for the experiments, was extracted
included stressor information, ontology annotations, and information
on KEs and KERs. The source code, as well as a brief tutorial on the
execution of it, are available on GitHub [34].

3.2.3 BridgeDb Identifier Mapping in R
In order to perform identifier mapping for the chemicals that are stored
on AOP-Wiki with CAS Registration Numbers (CAS numbers), we
used the BridgeDb, an identifier mapping framework [35]. The CAS
numbers from the AOP-Wiki were saved as plain text file and im-
ported in RStudio (version 1.1.447; R version 3.4.4) [36, 37], in which
the R-package BridgeDbR [38] was utilized to map the CAS numbers
to ChEBI identifiers with the BridgeDb metabolite identifier mapping
dataset [24]. The R code used for the identifier mapping is available on
GitHub along with a tutorial to execute the script [34].

3.2.4 WikiPathways Data
Information from WikiPathways was retrieved using the WikiPath-
ways SPARQL endpoint (sparql.wikipathways.org) [39], version
20180610. SPARQL is a query language to select specific subsets of
data from a collection of RDF, a standard framework for knowledge
descriptions. For this manuscript, various queries were performed to
request information about WikiPathways’ use of ontologies and to re-
trieve pathways for lists of genes related to KEs.

3.2.5 Textual Identifier Mapping for Genes and Proteins
In order to perform identifier mapping on the free-text descriptions
of AOP-Wiki, we downloaded a human gene identifier dataset from
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the HUGO Gene Nomenclature Committee (HGNC) [40] in May 2018
via genenames.org, a curated online repository for HGNC-approved
gene nomenclature, gene families and associated resources [41]. A cus-
tom download was performed in which we requested HGNC IDs, ap-
proved symbols, approved names, previous symbols, synonyms, and
Ensembl IDs. These identifiers were loaded in Python and used to fil-
ter the descriptions of KEs for genes, which are filtered for KEs on the
molecular, cellular, tissue, and organ level of biological organization.
Also, the KERs that connect these KEs were parsed and identifiers were
mapped on their descriptions and texts on biological plausibility and
empirical support.

3.2.6 Manual Matching of AOP-Wiki KEs to Molecular
Pathways on WikiPathways

All AOP-Wiki KE IDs on the molecular, cellular, tissue, and organ level
were extracted and their corresponding web pages were opened on
aopwiki.org. From the KE titles and descriptive text, pathway names
were selected and queried on wikipathways.org via the search-bar for
molecular pathways. If results showed up for this initial search, the
KE was considered present in WikiPathways. If the KEs did not con-
tain a direct mention of a pathway, the genes and proteins were noted
and were queried for their presence in pathways via the WikiPathways
SPARQL endpoint. For KEs at the cellular level, at least the majority
of the genes and proteins should be present in at least one pathway.
However, for molecular KEs that describe only an interaction between
two molecules, only the presence of the target molecule in WikiPath-
ways was necessary to consider the KE covered by WikiPathways. This
method was meant to give a rough overview of the overlap between
the AOP-Wiki and WikiPathways databases. Because it does not in-
clude synonyms or ontological similarity, this overview is expected to
underestimate the overlap.
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3.3 Results
For hard linkage of the two databases, meaning explicit identifier
matching, we looked at the usage of ontology annotations of the
AOP-Wiki and WikiPathways. For the AOP-Wiki we extracted
ontology annotations from KEs on the molecular, cellular, tissue and
organ level and identified which ontology sources were currently
in use for biological processes, biological objects, cell-terms, and
organ-terms. As shown in Figure 3.2, a large amount of KEs are not
yet annotated with ontology tags. When looking more in detail, one
can notice that biological processes are mostly described with Gene
Ontology (GO) tags, especially at the molecular and cellular KEs
whereas the biological objects are mostly annotated with tags from
ChEBI and Protein Ontology (PR). Although AOP-Wiki contains
various ontology sources, WikiPathways only uses three: Pathway
Ontology (PW), Cell Ontology (CL), and the Disease Ontology (DO)
(Figure 3.3). However, apart from the CL for a contextual description
of the process, WikiPathways and AOP-Wiki do not share ontologies
for other biological elements.

Although no direct mappings through ontologies are possible at the
moment of writing this paper, an alternative approach for hard linkage
is the mapping of chemicals, metabolites, and genes to WikiPathways.
Although we do not expect to find many of the AOP-Wiki stressor
chemicals in WikiPathways, we wanted to identify the existing overlap
of chemicals between the two databases nevertheless. First, we found
all 306 stressors, describing 207 chemicals, which were annotated with
205 CAS numbers. We mapped these CAS numbers to ChEBI IDs in R
with BridgeDbR and created a SPARQL query to find all pathways that
have any of the metabolites included. This resulted in a total 194 out
of 205 CAS numbers mapped to 298 ChEBI IDs, of which 48 mapped
to a total of 133 WikiPathways.

As opposed to the hard linkage of the two databases, we also
investigated a soft linkage, which entails the indirect linking of
these databases through a text-based identifier mapping approach

53



Chapter 3. WikiPathways as a Data-Source

Figure 3.2: Ontology usage of AOP-Wiki for KEs on the molecular, cellular, tissue, and organ
level of biological organization. GO, gene Ontology; CHEBI, chemical entities of biological
interest; PRO, protein ontology; MI, molecular interactions; CL, cell ontology; UBERON, uber
anatomy ontology; FMA, foundational model of anatomy; VT, vertebrate trait; HP, human phe-
notype ontology; MP, mammalian phenotype ontology; WIKI, AOP-Wiki; MeSH, medical subject
headings.

of human genes and performed a similar SPARQL query as for the
metabolites (Figure 3.4). After extracting all KE descriptions from the
AOP-Wiki, we mapped gene identifiers, symbols, alternative names,
and previous names from HGNC to each description, leading to the
identification of 523 genes in a total of 234 KE descriptions out of
787 KEs. In total, 70% of these genes were found in the molecular
pathways of WikiPathways. Also, identifier mapping was performed
on all 874 KERs that connect the KEs on the molecular, cellular, tissue
and organ level. This was done on all texts for KER descriptions,
biological plausibility, and empirical support, when available, and
resulted in the identification of 417 genes, of which 296 are present in
pathways on WikiPathways, which is 71%.
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Figure 3.3: WikiPathways statistics. The total number of molecular pathways in the WikiPath-
ways database, and the level of pathway annotations with ontology tags. PW, pathway ontology;
CL, cell ontology; DO, disease ontology.

Furthermore, to benchmark the hard and soft connections between the
AOP-Wiki and WikiPathways through ontologies and identifiers, we
performed a full-scale manual check for all KEs on the molecular, cel-
lular, tissue, and organ level of biological organization. This showed
us that at least 2/3rd of all KEs can be mapped to molecular pathways
on WikiPathways.
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Figure 3.4: AOP-Wiki statistics on KEs and KERs, identifier mapping with HGNC identifiers
and links to molecular pathways in WikiPathways. The KEs on the molecular, cellular, tissue,
and organ level of biological organization and the KERs that connect them were parsed for texts
of descriptions, on the biological plausibility and on the empirical support. HGNC Identifier
mapping was performed to find all human genes described in the key event descriptions, after
which these genes were queried on WikiPathways to find pathways that contain these genes.

3.4 Discussion
In this paper we explored possibilities for the integration of
WikiPathways in the AOP-KB through ontologies, identifiers and
manual judgment, to support AOPs and become a valuable tool in
regulatory risk assessment. We looked at hard and soft linkages
between the AOP-Wiki, the most actively used AOP module of the
AOP-KB, and WikiPathways. We did this by extracting different
types of information from the AOP-Wiki, such as chemical CAS
numbers, KE and KER descriptions, and ontology annotations, and
we performed a manual judgment of the linkage.

We found that the AOP-Wiki uses various ontologies to describe the
different elements of KEs. To link the underlying molecular pathways
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to these KEs, we are mainly interested in the Biological Process that is
annotated in the KEs, which describe the biology of the KEs. However,
the ontologies currently used in the AOP-Wiki do not directly connect
with the ontologies that describe the molecular pathways of WikiPath-
ways. Consequently, manual effort is currently required to make this
mapping, which negatively impacts the scalability.

Furthermore, we focused on the metabolites and genes/proteins
described on the AOP-Wiki. For the metabolites, we parsed all
CAS numbers, mapped these to ChEBI identifiers, and found
that only 16% of these are found in WikiPathways. This is not
unexpected, because most toxicological effects are caused by
exogenous compounds, whereas WikiPathways mostly stores
biological pathways containing endogenous metabolites. In fact, most
WikiPathways that contain such a stressor do so because the pathway
described the biotransformation of the toxic compound.

On the other hand, gene/protein identifiers that we obtained
through mapping with an HGNC dataset did show high coverage
by WikiPathways (70%). However, with the gene/protein identifier
mapping, we only focused on human variants, although KE
descriptions on the AOP-Wiki cover a variety of species. The
taxonomic information is absent in most KEs and if it is available, the
taxonomy identifiers are inconsistent, so we were not able to take
this into account in our experiment of identifier mapping. Although
species specification with ontologies does exist on the AOP-Wiki,
the number of annotations and the consistency in reporting should
increase for it to become a useful piece of data.

Apart from the automated linkages, we performed a manual check,
which indicated that the majority of the processes in the AOP-Wiki
KEs are covered by the WikiPathways database, either completely, as
a part of a pathway or, in case of molecular interactions, the target
molecule is part of a molecular pathway. This indicates us that there
is potential in the interoperability of AOP-Wiki and WikiPathways to
describe KEs. However, there is no one-to-one mapping of biological
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pathways possible. For example, molecular-level KEs currently often
describe a single interaction between a list of stressors and a molecule,
which would only be a part of a biological pathway on WikiPathways,
besides the downstream cascade of molecular effects. Also, KEs on
the tissue- and organ-level of biological organization are often non-
specific. This could lead to the mapping of multiple molecular path-
ways to a single AOP-Wiki KE, even with the current WikiPathways
content.

Besides the identification of connections between the AOP-Wiki and
WikiPathways for improved descriptions of KEs, we aim for the pos-
sibility to introduce omics data analysis in the concept of AOPs. How-
ever, one concern mentioned in literature in the implementation of
transcriptomics data in the concept of AOPs is the difference in the
causal and reactive pathways [42]. Transcriptomics studies, for exam-
ple, do not differentiate in its measurements between these two types
of pathways, and by focusing on gene expression fold changes, path-
way enrichment may highlight the reactive pathways. However, KEs
may describe a causal event or pathway. Therefore, AOP-Wiki KE de-
scriptions would not necessarily overlap with the results from path-
way analysis with omics data. This should be taken into account in the
descriptions of the molecular responses of KEs as this might impact
the usability of omics approaches and their connections to KEs on the
AOP-Wiki.

It is expected that omics approaches have great potential in the field of
regulatory toxicology [13, 15]. However, there is a demand for well-
described protocols and tools for omics data analysis and interpreta-
tion. The integration of WikiPathways in the AOP-KB as a data source
and as omics data analysis tool allows more detailed descriptions of
KEs and consistency in analysis and interpretation of omics data in the
concept of AOPs. For that, you would ideally have molecular mech-
anistic descriptions for all AOP events in WikiPathways. The current
analysis shows that useful connections already exist. To prepare for
the integration of molecular pathways in the concept of AOPs, we cre-
ated an AOP Portal on WikiPathways (aop.wikipathways.org), in
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which all molecular pathways that are linked to AOP-Wiki KEs will
be gathered and stored. This portal is meant to bridge the molecular
knowledge and expertise of biologists and toxicologists to the frame-
work of AOPs and allows the whole community to contribute to the
collection of molecular pathways. This collection will be available for
pathway analysis and network analysis with omics data for large-scale
hypothesis generation for AOPs in response to a stressor or for biolog-
ical read-across on the AOP level [15]. That would allow a more con-
sistent, standardized approach for the integration of omics approaches
in AOPs, and thus for regulatory use.

A variety of molecular pathway databases could fill this role as an
omics analysis and interpretation tool for toxicological effects, such as
KEGG and Reactome. However, molecular pathways can vary across
pathway databases due to differences in pathway annotations by fo-
cusing on specific cellular contexts, such as diseases or specific cell
types [43]. Moreover, Reactome and KEGG cannot be tailored like
WikiPathways for specific communities or purposes such as described
in this paper [29, 44]. Besides, the accessibility of WikiPathways, be-
ing a community-driven, free-to-use molecular pathway database, fits
with the existing AOP-KB modules and meets the requirements iden-
tified by the OECD: open access, standardized representation of data,
and consistency in reporting [8, 45]. Because the AOP-KB is driven by
a scientific community to develop, share and discuss AOPs, this com-
munity can also describe the molecular processes underlying the AOPs
and contribute to WikiPathways and expand the AOP Portal.

Other work on the linkage of data related to the AOP-Wiki is the devel-
opment of the AOP-DataBase (AOP-DB) [46]. This database will soon
be publicly available and will contain various types of information
linked to gene IDs that is useful for AOPs to provide a standardized,
systematic structure for AOP development. Among a large amount of
data, biological pathways from databases such as KEGG, Reactome,
and ConsensusDB are included based on GO annotations of KEs in
AOP-Wiki [46]. While the AOP-DB connects pathway databases based
on the ontology annotations to of existing AOPs and assisting the iden-
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tification of putative AOPs, we think that a direct link between KEs
and molecular pathways would be valuable and more reliable.

In order to make a connection between AOP-Wiki and WikiPathways,
we recommend a couple of improvements in terms of annotations and
accessibility of the data. Since January 2018, the AOP-Wiki made avail-
able full XML files containing all data, which are stored as permanent
downloads, as well as nightly exports of the full database. These files
need to be parsed to retrieve the data, as described in this paper. This
could be improved by developing an RDF version of the AOP-Wiki, al-
lowing federated SPARQL queries to request all data, enable automatic
information sharing, and has the use of ontologies as a core feature.

Furthermore, the current implementation of annotations with ontolo-
gies could be improved by annotating more specific elements of the
KEs, as the existing KE components describe the KEs in general. More
detailed annotations could be performed for many elements. For ex-
ample, key genes, proteins, and metabolites should be annotated, as
well as detection methods and biological assays, which can be an-
notated with ontologies such as the Chemical Methods Ontology or
BioAssay Ontology. Also, when biological pathways are described in
a KE, annotations with the Pathway Ontology would allow a direct
connection to the WikiPathways database including all genes, proteins,
and metabolites involved, which are annotated with various databases
through BridgeDb in the WikiPathways diagrams.

Besides the ontology annotations, the only molecules annotated on
the AOP-Wiki are the chemicals related to stressors, which are iden-
tified with CAS numbers. However, not all of these CAS numbers
are linked to open structure data that is incorporated in the BridgeDb
mapping that we performed. It is essential that these CAS numbers
are included in public databases, such as WikiData [47] or that pub-
lic database identifiers are used, such as from ChEBI or even Wikidata
as an outside database for chemical information. Besides chemicals,
nanomaterials, which are extensively investigated for toxicity, also re-
quire annotations, for example with the eNanoMapper ontology [48].
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Also, the free-text descriptions of KEs that describe the biological pro-
cess can also be improved by more consistent reporting, such as a fixed
vocabulary for all genes, proteins, and metabolites involved in the bi-
ological processes. For example, listing the most important molecules
by HGNC symbols or ChEBI IDs for a KE would improve machine-
readability and the automated discovery of new connections between
KEs.

On the other hand, WikiPathways will also need to undergo
updates to fit the connection as described, with a specific category
of KE-related molecular pathways and the need for so-called
meta-pathways to create an AOP Network. Also, the AOP Portal
will be populated with pathways in a case-study approach, proving
the usefulness of the database. Other improvements related to
toxicity research is the linkage to kinetics databases, more info on
post-translational modifications of proteins, and improved semantic
annotations of localizations, for example, specific organelles, cells, or
tissues.

Taken together, we claim that a tight integration of WikiPathways and
AOP-KB will improve risk assessment because we can link omics data
directly to KEs and therefore AOPs. However, to make assessment
reproducible and valid, major changes are needed.
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Chapter 4. AOP-Wiki in a semantic web format

Abstract
The AOP-Wiki is the main platform for the development and storage
of Adverse Outcome Pathways. These Adverse Outcome Pathways
describe mechanistic information about toxicodynamic processes and
can be used to develop effective risk assessment strategies. However, it
is challenging to automatically and systematically parse, filter, and use
its contents. We explored solutions to better structure the AOP-Wiki
content and to link it with chemical and biological resources. Together
this allows more detailed exploration which can be automated.

We converted the complete AOP-Wiki content into Resource
Description Framework (RDF) as triples. We used over twenty
ontologies for the semantic annotation of property-object relations,
including the Chemical Information Ontology, Dublin Core, and
the Adverse Outcome Pathway Ontology. The latter was used over
8,000 times. Furthermore, over 3,500 link-outs were added to twelve
chemical databases and over 7,500 link-outs to four gene and protein
databases.

The AOP-Wiki RDF has been made available at aopwiki.rdf.bigcat-
bioinformatics.org where SPARQL queries can be used to answer bio-
logical and toxicological questions, such as listing measurement meth-
ods for all Key Events leading to an Adverse Outcome of interest. The
full power that the use of this new resource provides becomes apparent
when combining the content with external databases using federated
queries. Overall, the AOP-Wiki RDF allows new ways to explore the
rapidly growing Adverse Outcome Pathway knowledge and makes
the integration of this database in automated workflows possible.
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4.1 Introduction
Since its establishment in 2010, the Adverse Outcome Pathway (AOP)
concept has become a prominent tool for the risk assessment com-
munity [1, 2]. AOPs are a chain of biological processes, called Key
Events (KEs), starting from a molecular perturbation with a stressor
towards an Adverse Outcome (AO), connected by Key Event Rela-
tionships (KERs). AOPs exist to capture all mechanistic toxicological
knowledge from literature and data, to direct future studies to fill gaps
of existing knowledge, and to drive Integrated Approaches to Testing
and Assessment (IATA) development [1, 3]. This was demonstrated
with the AOP-based IATA for skin sensitization, resulting in various
IATA with combinations of in vitro and in silico assays outperforming
animal tests [4].

The majority of the AOPs are developed and stored in the AOP-Wiki
(aopwiki.org), which is part of the AOP Knowledge Base, released
in 2014 as a result of the AOP development program initiated by
the Organisation for Economic and Collaborative Development
(OECD) [5]. This wiki is designed to facilitate collaborative
development of qualitative AOP descriptions, and thereby promote
their incorporation into risk assessments and stimulate effective reuse
of mechanistic toxicological knowledge [6, 7].

The resulting AOPs describe much of the biological context surround-
ing toxicological processes, most of the information on genes, chemi-
cals, biological pathways, and phenotypes, among other things, are al-
ready captured in specialised databases or ontologies outside of AOP-
Wiki [8]. However, the AOP-Wiki has limited possibilities for link-
ing of external information and data, mostly consisting of free-text de-
scriptions and links to the US CompTox Chemistry Dashboard [9] and
to NCBI for taxonomic applicability [10]. An initiative to make the
reporting more consistent was the introduction of Key Event Compo-
nents [11] for the annotation of Biological Processes, Biological Objects
and Biological Actions for KEs, and annotations of cell types and or-
gans in which KEs can occur.
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Since the AOP-Wiki is the central repository for AOPs and therefore
a key player in the shift towards animal-free testing strategies, it
is essential that its contents can be queried and utilized effectively
to answer biological questions and to reuse existing knowledge.
However, accessing the data computationally or linking with other
resources is hardly possible when only downloadable eXtensible
Markup Language (XML) data dumps are provided that consist
mostly of free text. Because of these aspects, parsing and querying the
continuously growing amount of information in the AOP-Wiki is a
complex, time-consuming task. This is a problem because it prevents
the integration of AOP knowledge with other data and resources.

This could be resolved by applying Linked Open Data solutions,
such as structuring the data in a Resource Description Framework
(RDF) model [12], introducing persistent identifiers and semantic
annotations, and implementing Application Programming Interfaces
(APIs) for accessing the data. RDF represents knowledge as semantic
triples, in which a subject, predicate and object, together define a
statement and assist in the meaningful representation of knowledge
in a machine-readable manner.

These concepts are generally in line with the FAIR principles [13] for
data and knowledge management, developed to enhance the Findabil-
ity, Accessibility, Interoperability, and Reusability of data and allow
computational support of data usage. For example, such as the solu-
tions applied by the Swiss Institute of Bioinformatics with the develop-
ment of neXtProt Linked Data by implementing RDF annotations for
easier exploration and retrieval of data through web services [14, 15].

Also, the use of ontologies and vocabularies for semantic annotations
allows for the integration of data between resources, such as the direct
linking of chemical or protein databases with WikiPathways [16, 17].

In this paper we show how using RDF makes the AOP-Wiki content
more usable for automated exploration in combination with other ex-
isting semantic web based information sources. We describe our im-
plementation of Linked Open Data solutions for the AOP-Wiki to in-
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troduce new, effective ways of accessing and using the data. These so-
lutions will enhance the usefulness of the AOP-Wiki to risk assessors,
developers, and modelers, and facilitate answering complex research
questions, also across databases or as part of automated workflows.
We hypothesise that with the implementation of RDF, with the use of
standard ontologies for semantic modelling of information captured in
AOPs, the data can be better exploited [18]. Furthermore, the domain-
specific AOP Ontology (AOPO), in combination with other relevant
ontologies, can be used to link various pieces of mechanistic toxicolog-
ical information and thereby facilitate knowledge-based hazard identi-
fication using AOPs [19]. The use of persistent, unique and resolvable
identifiers allows the interoperability with other related data sources.
When combined with computational tools that can access experimen-
tal data these approaches can make AOP information a core element
for predictive modelling [20].

4.2 Methods
4.2.1 Registering AOP-Wiki identifiers in Identifiers.org
Prior to the development of the AOP-Wiki RDF, we registered the iden-
tifiers for the AOP, KE, KER, and stressor in the Minimum Information
Required In the Annotation of Models (MIRIAM) Registry [21] to allow
Identifiers.org to resolve Internationalized Resource Identifiers (IRIs).
In order to make all identifiers in the AOP-Wiki resolvable and link-
ing to their corresponding database webpages, these IRIs, along with
a variety of chemical and gene database identifier types, were imple-
mented in the AOP-Wiki RDF.

4.2.2 XML-to-RDF conversion code
The code for the XML-to-RDF conversion was written as a Jupyter
notebook using Python version 3.7.3 in JupyterLab version 0.35.5, and
is stored in GitHub (github.com/marvinm2/AOPWikiRDF) [22].
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Downloading and parsing the AOP-Wiki XML

It downloads the AOP-Wiki XML quarterly download file of January
1st, 2021 from aopwiki.org/downloads and parses the the file with
the ElementTree XML API Python library. Next, the Jupyter note-
book stores all the AOP-Wiki content in a Python nested dictionary
data model, one for each of the main components which form the ba-
sis of the existing AOP-Wiki. These are the AOPs, KEs, KERs, stres-
sors, chemicals, taxonomy, cell-terms, organ-terms, and the KE Com-
ponents, which comprise of Biological Processes, Biological Objects
and Biological Actions.

Figure 4.1: General overview of the AOP-Wiki RDF scheme. Arrows show the directional re-
lationships described in the RDF. Grey boxes are the basic elements of the AOP-Wiki. Green
boxes indicate added chemical IDs using BridgeDb. Red boxes indicate added gene/protein IDs
using Protein Ontology mapping. The yellow box indicates the text-mapped gene IDs and the
blue boxes indicate the added gene/protein IDs mapped from the text-mapped gene IDs using
BridgeDb.
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Semantic annotation in the RDF

Terms from common biomedical terminologies and standard meta-
data vocabularies were used as predicates. These terms were retrieved
from BioPortal [23] or in the corresponding Web Ontology Language
(OWL) [24] files stored in GitHub. These ontologies include Dublin
Core [25], DCMI Metadata Terms [26], RDF Schema [27], Friend Of
A Friend [28], Adverse Outcome Pathway Ontology [19], Phenotypic
Quality Ontology [29], Chemical Information ontology [30], NCI The-
saurus [31], Measurement Method Ontology [32], Simple Knowledge
Organization System [33], National Center for Biotechnology Informa-
tion Organismal Classification [10], Gene Ontology [34], EDAM bioin-
formatics operations, types of data, data formats, identifiers, and top-
ics [35], Provenance, Authoring and Versioning [36], Vocabulary of
Interlinked Datasets [37], Data Catalog Vocabulary [38]. Table S4.1
provides an overview of these, including their prefixes and IRI pat-
terns. Furthermore, the IRIs were completed for annotations that al-
ready exist in the AOP-Wiki such as the KE Components, cell-terms
and organ-terms. These annotations include terms of the Cell Ontol-
ogy [39], Uber-anatomy ontology [40], Gene Ontology [34], Molecular
Interactions Controlled Vocabulary [41], Mammalian Phenotype On-
tology [42], Medical Subject Headings [43], Human Phenotype Ontol-
ogy [44], Population and Community Ontology [45, 46], Neuro Behav-
ior Ontology [47], Vertebrate trait ontology [48], PRotein Ontology [49],
Chemical Entities of Biological Interest [50], and Foundational Model
of Anatomy Ontology [51]. These ontologies are listed in Table S4.2
(Annex) together with their prefixes and IRI patterns.

Addition of gene and protein identifiers

In order to increase the number of annotations and add more types of
gene and protein identifiers for improved linking of data and reposi-
tories, the XML-to-RDF conversion includes two methods of mapping
to gene and protein identifiers.
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Table 4.1: Ontologies and vocabularies used in the RDF.
Ontology name Prefix in RDF Base IRI
Dublin Core [25] dc http://purl.org/dc/elements/1.1/

DCMI Metadata Terms [26] dcterms http://purl.org/dc/terms/

RDF Schema [27] rdfs http://www.w3.org/2000/01/rdf-schema#

Friend Of A Friend [28] foaf http://xmlns.com/foaf/0.1/

Adverse Outcome Pathway Ontology [19] aopo http://aopkb.org/aop_ontology#

Phenotypic Quality Ontology [29] pato http://purl.obolibrary.org/obo/PATO_

Chemical Information ontology [30] cheminf http://semanticscience.org/resource/CHEMINF_

NCI Thesaurus [31] nci http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#

Measurement Method Ontology [32] mmo http://purl.obolibrary.org/obo/MMO_

Simple Knowledge Organization System [33] skos http://www.w3.org/2004/02/skos/core#

National Center for Biotechnology ncbitaxon http://purl.bioontology.org/ontology/NCBITAXON/

Information Organismal Classification [10]
Gene Ontology [34] go http://purl.obolibrary.org/obo/GO_

EDAM bioinformatics operations, types of data, edam http://edamontology.org/

data formats, identifiers, and topics [35]
Provenance, Authoring and Versioning [36] pav http://purl.org/pav/

Vocabulary of Interlinked Datasets [37] void http://rdfs.org/ns/void#

Data Catalog Vocabulary [38] dcat http://www.w3.org/ns/dcat#

The first of which is based on existing Biological Object annotations
with PRotein ontology (PR) terms [49] in the AOP-Wiki, which
were mapped to identifiers from NCBI Gene [52] and UniProt [53],
and symbols from the HUGO Gene Nomenclature Committee
(HGNC) [54] with the PR mapping file, promapping.txt, downloaded
from proconsortium.org/download/current on May 10th,
2020.

The second method involved textual gene identifier mapping for KEs
and KERs, for which we extracted approved symbols, names, and
synonyms for all human genes from the HGNC (downloaded from
genenames.org [54] in January 2020). After loading in the HGNC
file, a symbol dictionary was created which included all official gene
symbols, names and alternative gene names, and the library has been
extended with variants of textual separators surrounding the symbols
to avoid partial word overlaps. Next, text matching was done for each
KE and KER description, the MIE- and AO-specific section of KEs,
and biological plausibility and empirical support sections of KERs.
For each perfect match, the matching HGNC identifier was added to
the KE and KER dictionaries to store KE-gene information.
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BridgeDb identifier mapping

On top of the chemicals already present in the AOP-Wiki and
the genes and proteins IDs added to the RDF with the textual
mapping of HGNC symbols, we extended the coverage of external
molecular databases using BridgeDb, an identifier mapping service
for chemicals, genes, proteins, and interactions [55]. The “requests”
Python library (version 2.22.0) was used for calling BridgeDb’s "xref"
function to perform identifier mapping for chemicals and HGNC IDs
that resulted from the textual mapping. The BridgeDb service was
loaded with the Metabolite BridgeDb ID Mapping Database (version
HMDB4.0.20190116-CHEBI193-WIKIDATA20201104, released on 4
November 2020) [56] and the Gene/Protein BridgeDb ID Mapping
Database (version 91, released on 9 May 2018) [57]. For chemicals,
the CAS IDs from the AOP-Wiki XML were used as input to retrieve
identifiers from ChEBI [50], ChemSpider [58], Wikidata [59, 60],
ChEMBL [61], PubChem [62], Drugbank [63], KEGG [64], LIPID
MAPS [65], and HMDB [66]. For genes, the HGNC IDs were
used to request matching identifiers for NCBI Gene, UniProt and
Ensembl [67].

File creation

All AOP-Wiki content, persistent identifiers, ontology annotations,
and additional information for chemicals, genes and proteins,
were stored into three RDF files using Turtle (ttl) syntax. While
the central AOP-Wiki RDF file (AOP-Wiki.ttl) contains all existing
AOP-Wiki components plus added chemical identifiers and identifiers
mapped from PR terms in Biological Objects, the second file
(AOP-Wiki-genes.ttl) contains all the text-mapped gene IDs and
matching identifiers added by BridgeDb (Figure 4.1. These files are
accompanied by a metadata file (AOP-Wiki-void.ttl) which describes
the datasets, code, and provenance, using standard vocabularies for
semantic annotations of metadata, such as Dublin Core [25, 26], Data
Catalog Vocabulary [38], Friend of a Friend [28], and Vocabulary of
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Interlinked Datasets [37].

4.2.3 Validation and testing of the RDF
The RDF files were validated with the IDLab Turtle validator [68], an
open-source RDF validator for Turtle syntax and XSD datatype errors.

Figure 4.2: The AOP-Wiki SNORQL User Interface. The AOP-Wiki SNORQL User Interface
allows for user-friendly access to the AOP-Wiki RDF by syntax highlighting and through pro-
viding a SPARQL Examples panel (right panel).
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Loading and testing the RDF

After validation of the RDF, the AOP-Wiki RDF was loaded in a public
SPARQL endpoint (aopwiki.rdf.bigcat-bioinformatics.
org/sparql) and is accessible through the developed SNORQL User
Interface (aopwiki.rdf.bigcat-bioinformatics.org, Figure
4.2).

The data was tested with a Jupyter notebook that executes SPARQL
queries through the SPARQL endpoint. These SPARQL queries
retrieve metadata and the statistics for types of subjects, frequency
of ontology usage, and the number of link-outs to the various
databases [22]. All SPARQL queries used for the testing of the RDF are
available in the SPARQL Examples panel in the AOP-Wiki SNORQL
User Interface.

Validation of the SPARQL endpoint

On January 17th, 2021, the AOP-Wiki SPARQL endpoint was regis-
tered in YummyData [69], which monitors compliance with Linked
Data standards and scoring each SPARQL endpoint on availability,
freshness, operation, usefulness, validity and performance to calculate
the Umaka Score. The scoring is done on a daily basis by performing
SPARQL queries and HTTP requests related to the various measures
for each aspect. YummyData also provides feedback on how to im-
prove the score, which was used for improving the AOP-Wiki RDF
and SPARQL endpoint.

4.3 Results
The main result of this project is an RDF schema and scripts that lead
to the production of RDF content for all AOP-Wiki content with addi-
tional semantic annotations, persistent identifiers and extended iden-
tifiers for genes and chemicals, and consists of 122,576 unique triples
consisting of 15,132 unique subjects, 158 unique predicates, and 53,087
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unique objects (Figure 4.1). The semantic annotation was done using
eight standard metadata vocabularies and seventeen domain-specific
ontologies and vocabularies. We here detail these results.

The metadata vocabulary we used most is Dublin Core, of which
terms are present in 49,710 triples in the AOP-Wiki RDF. Its original
set of terms was used to relate various subjects to their identifier,
title, description, source, and creator, and the extended set of terms
was used to describe the alternative name, abstract, creation and
modification date, and relational information to other subjects with
’dcterms:isPartOf’. Other standard vocabularies we extensively used
are the RDF vocabulary to describe the type of subjects with the
’rdf:type’ term which we used 21,541 times, and the RDF Schema
vocabulary to describe the label of subjects with the ’rdfs:label’ was
used 6,617 times. Furthermore, the Friend Of A Friend vocabulary is
used to define the webpage URLs of AOPs, KEs, KERs and stressors
with ’foaf:page’ a total of 3,335 times, and the term ’skos:exactMatch’
was used 8,765 times to map chemical and gene/protein identifiers
to other database identifiers. The NCI Thesaurus is used a total of
523 times for objects and 2,975 times for describing seven distinct
properties of AOPs, KEs, KERs, such as overall assessment and
applications of AOPs, biological plausibility and uncertainties of
KERs, among others.

Developed for the AOP domain of research and facilitate consistent
reporting, the AOPO has been used for the semantic annotations for
AOP-specific elements. Terms of the AOPO were used to provide re-
lational information for AOPs, KEs, KERs, and life-stage applicability,
stressors, chemicals, and cell- and organ-terms. In total, the AOPO is
used 8,913 times for predicate annotations, and 2,937 times as object
annotations.

4.3.1 Adverse Outcome Pathways
The 316 AOP subjects have 26 different types of predicates to
create triples (Figure 4.3). The overall most used vocabulary for
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predicates is Dublin Core and its extended set of terms, creating
triples for the identifier, title, alternative title, creator, abstract,
description, source, access rights, creation and modification date
for AOPs. The majority of these predicates also exist for other
subjects. The AOPO is used to connect AOPs to KE subjects with
the predicates ’has_key_event’, ’has_molecular_initiating_event’
and ’has_adverse_outcome’, and connect with KER subjects with
the predicate ’has_key_event_relationship’. Other terms of the
AOPO were used for describing the overall applicability, life stage
applicability, and weight of evidence. Furthermore, AOP subjects
are unique to contain information on the quantitative considerations
of the AOP, which is linked with ’edam:operation_3799’ The link
with stressors, overall assessment description, KE essentiality, and
the potential applications of the AOP were annotated using the
NCI Thesaurus terms ’nci:C54571’, ’nci:C25217’, ’nci:C48192’, and
’nci:C25725’, respectively. Finally, the sex applicability of AOPs
is annotated with ’pato:0000047’ which stands for biological sex
(Figure 4.3).

4.3.2 Key Events and Key Event Relationships
Whereas the majority of triples for KEs and KERs have predicates
identical to ones for AOPs, there are properties that are unique to
the 1131 KEs and 1363 KERs (Figure 4.4). For KEs. these properties
include measurement methods, level of biological organization,
and structured information on cell-terms, organ-terms, Biological
Processes, Objects, and Actions (Figure 4.4). The measurement
methods are coupled to 350 KEs with the predicate ’mmo:0000000’
from the Measurement Method Ontology, which stands for
measurement method, and level of biological organization is linked
with the ’nci:C25664’ to all KEs. Cell terms and Organ terms
are described with the AOPO terms ’aopo:CellTypeContext’ and
’aopo:OrganCotext’, respectively. The Biological Process triples have
the predicate ’go:008150’ which stands for biological process, and
the Biological Objects and Actions are linked with ’pato:0001241’
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Figure 4.3: Adverse Outcome Pathways and their properties in RDF. From left to right, the
columns indicate predicates, objects and an example of the object taken from the RDF. Aster-
isks indicate the object IRIs that connect to other subjects in the RDF.

and ’pato:0000001’, respectively. These ontological annotations
are connected through IRIs of other subjects in the RDF. A shared
predicate with AOPs is the term ’nci:C54571’ for MIEs that have links
to stressors in the AOP-Wiki (Figure 4.4).

Properties that are specific to the 1363 KERs are the biological
plausibility, empirical support, uncertainties, which we linked with
the predicates ’nci:C80263’, ’edam:data_2042’ and ’nci:71478’. These
stand for the rationale, evidence, and uncertainty, respectively.
Also, the RDF connects the upstream and downstream KEs
of KERs with the terms ’aopo:has_upstream_key_event’ and
’aopo:has_downstream_key_event’ from the AOPO (Figure 4.4B).
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Figure 4.4: Key Events and their properties in RDF. From left to right, the columns indicate
predicates, objects and an example of the object taken from the RDF. Asterisks indicate the object
IRIs that connect to other subjects in the RDF.

Similar to AOPs, triples describing the applicability of KEs and KERs
exist for life stage and sex. However, unique to KEs and KERs is the
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taxonomic applicability which is linked with ’ncbitaxon:131567’. Also,
KE and KER triples describe relational information to AOPs with ’dc-
terms:isPartOf’.

4.3.3 Stressors and Chemicals
The RDF contains general stressor information such as descriptions
and identifiers, and stressor triples describe their connections to MIEs
and AOPs with ’dcterms:isPartOf’. 63% of the 523 stressors are also
linked to chemicals with the predicate ’aopo:has_chemical_entity’
(Figure 4.5A). The 329 chemical subjects are annotated with CAS and
CompTox identifiers, and 320 also have InChIKeys, all of which we
annotated with the Chemical Information Ontology (Figure 4.5B).
Furthermore, the chemicals have predicate ’skos:exactMatch’ to
link to all mapped chemical subjects present in the RDF, providing
link-outs to nine additional external databases (Figure 4.6A). We
annotated these with ’rdf:type’ and terms from the Chemical
Information Ontology. In total, there are 3,904 link-outs to twelve
different chemical databases, allowing users to explore the AOP-Wiki
by using their preferred type of chemical identifiers.

4.3.4 Ontological annotations
Since the taxonomies, cell terms, organ terms, and the KE components
all already have ontological annotations in the AOP-Wiki, they have
the same properties that describe their type (4.6B), identifier, title and
source. These titles are based on the user-provided entries in the AOP-
Wiki. Unique for the biological objects annotated with the Protein
Ontology is the inclusion of the ’skos:exactMatch’ predicate linking to
576 matching identifiers from UniProt, HGNC and NCBI Gene (Figure
4.6C) to 126 Protein Ontology tags which are used in 166 KEs.
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Figure 4.5: Stressors and chemicals and their properties in RDF. From left to right, the columns
indicate predicates, objects and an example of the object taken from the RDF. Asterisks indicate
the object IRIs that connect to other subjects in the RDF.

4.3.5 Gene and protein identifiers
Extending the links of KEs and KERs with genes and proteins, RDF
triples of 846 unique text-mapped gene identifiers on KEs and KERs
are stored in a separate file. These make triples of KE and KER
subjects to link to the mapped HGNC identifiers with the predicate
’edam:data_1025’, which stands for Gene identifier. These HGNC
identifiers are subjects themselves, and have the ’skos:exactMatch’
predicate to link to matching identifiers from UniProt, NCBI Gene,
and Ensembl, providing a total of 6,001 link-outs using this method
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Figure 4.6: Ontology annotations and molecular identifiers. A. Cell-terms, organ-terms, tax-
onomies, Key Event Components and type annotation in the RDF. The asterisk indicates the
matching identifiers to other subjects in the RDF. B. Gene and protein databases, their type an-
notation, and the number of identifiers present in the RDF. Values in #1 are based on Protein
Ontology mappings, and values in #2 are based on textual mapping with HGNC symbols. C.
Chemical databases, their type annotation and the number of identifiers present in the RDF.

(Figure 4.6C).

4.3.6 Federated SPARQL query example
The addition of external identifiers facilitates the execution of
federated SPARQL queries to combine resources, such as the example
shown in Figure 4.2, which is located in the SPARQL example panel
under the folder ’F. Federated’. The SPARQL query looks up all
entities defined as a Chemical in the AOP-Wiki RDF with the predicate
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and subject ’a cheminf:000000’, and extracts their names, mapped
identifiers, and linked stressors. Next, the query looks for AOPs that
mention the stressor. The next line in the query restricts the results
by explicitly adding the type of ’a aopo:AdverseOutcomePathway’.
Similarly, the query makes sure that the mapped identifier of the
chemical is from the ChEBI database by defining the mapped
identifier as type ’cheminf:000407’. This is followed by the ’SERVICE’
statement which defines the external SPARQL endpoint and defines
the federated part of the query. In this example, the external SPARQL
endpoint is WikiPathways (sparql.wikipathways.org/sparql),
where the ChEBI identifier is used to match relevant pathways using
’dcterms:isPartOf’. The last part of the SPARQL query retrieves
information about the pathway and filters for human pathways. This
SPARQL query results in a table of 211 rows with each chemical,
their ChEBI identifier, related stressor and AOP, and the molecular
pathways that the chemical is involved in. These linked pathways
provide additional insights in the general functions of chemicals and
their involvement in cellular processes and responses.

4.3.7 Validation by YummyData
As an external validation of the developed SPARQL endpoint
and RDF, YummyData indexes and ranks the AOP-Wiki
SPARQL endpoint based on an array of tests on a daily basis
(yummydata.org/endpoint/142). As of February 2021, the
AOP-Wiki SPARQL endpoint is considered A rank with a Umaka
score above 80, consistently scoring above average on all aspects.
Incidentally the Umaka score drops slightly below 80, giving it a B
rank.

4.4 Discussion
The work described in this paper has led to the creation of AOP-Wiki
RDF based on the existing AOP-Wiki XML, combined with a variety
of ontologies and enriched with persistent identifiers. Besides, the
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data is extended with additional identifiers for chemicals, proteins and
genes. The RDF has been validated, loaded on a SPARQL endpoint,
and tested using a Jupyter notebook, and is indexed in YummyData
for external validation of the SPARQL endpoint. These developments
made AOP-Wiki content ready for use in risk assessment workflows,
through coding environments, or in federated SPARQL queries.

Because the AOPO is developed for consistent reporting in the domain
of AOPs and allowing the integration of data and tools [19], it was an
obvious choice to implement the AOPO for semantic annotations in
the AOP-Wiki RDF. The ontology includes a variety of AOP-specific
definitions for properties and classes which were directly applicable to
AOP-Wiki content in the RDF. However, these do not fully cover all
types of entities and relationships that exist in the AOP-Wiki. For ex-
ample, while it has terms to describe the connections between AOPs,
KEs and KERs, there is no annotation for the link with stressors. Simi-
larly, terms are lacking for sex and taxonomic applicability, KE compo-
nents, KER-specific information, and AOP assessment sections such as
KE essentiality and quantitative considerations, among others.

For the terms missing in the AOPO, we selected definitions from a
wide range of other ontologies and vocabularies for the semantifica-
tion of predicates and subjects, including NCI Thesaurus [31], NCBI of
Organismal Classification, Gene Ontology, and Measurement Method
Ontology, among others. Whereas the majority of the AOP-Wiki con-
tents are generic and can be described with well-established meta-
data ontologies, some properties of AOPs, KEs and KERs could not
be found, leading to the selection of more general terms, lacking detail
that would be preferred. With the conversion to RDF, most of the nec-
essary terms have been uncovered and documented, and these will be
added to the AOPO.

Because the realm of AOPs includes many types of data, knowledge,
repositories and services, the development and implementation of a
central, community-wide vocabulary would facilitate their integration.
Since the AOPO has been developed to fill that purpose, it could be ex-
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tended to include descriptions of classes and properties for all ontol-
ogy terms used in the AOP-Wiki RDF. Having a central, field-wide on-
tology for AOPs helps maintaining a high quality vocabulary through
continuous development and involvement of the community. Such an
ontology would facilitate the annotation and integration of data, re-
sources and tools, as is done with the eNanoMapper ontology in the
nanotoxicology community [70].

With the increased importance of consistent use of identifiers to inte-
grate knowledge and data, our implementation of persistent identifiers
for AOPs, KEs, KERs, Stressors, chemicals, proteins and genes will
benefit the integration of the AOP-Wiki with other resources, data, and
tools [71]. These persistent identifiers stored in the MIRIAM registry
are stable, unique, resolvable, documented, and directly link to the cor-
responding entries in the databases [21, 72]. Furthermore, our efforts
have introduced additional content to the AOP-Wiki RDF through ID
mappings and text-mapping for chemicals and genes, providing more
ways of extrapolating the data and linking with other resources and
data.

While we have added molecular identifiers to increase the number of
link-outs and improve the usefulness of the database, our addition of
genes through textual ID mapping does introduce errors to the AOP-
Wiki RDF. The automated process on free-text content assumes good
practice in writing gene symbols and names according to the HGNC
guidelines [73]. Although HGNC strives for stable gene symbols and
makes justified changes for problematic ones [54], some gene sym-
bols still overlap with free-text abbreviations in the AOP-Wiki and are
therefore falsely recognised.

Opportunities exist to improve the AOP-Wiki machine-readability by
having more structured text and annotations for molecular entities,
pathways, organs, species and other biological concepts that are
relevant for AOPs and not yet covered by the KE Components.
Text-mining tools, such as ProMiner [74], ContentMine [75] and
PolySearch2 [76], could be implemented for extracting biological
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concepts and understanding associations to add more structured
information in the AOP-Wiki and facilitate the integration with other
databases and tools. Once such concepts are recognised and extracted,
the RDF could be extended and increase the interoperability of the
AOP-Wiki with external databases, such as pathway databases.

The AOP-Wiki RDF allows for new and efficient ways of accessing
the data, and using it to answer questions. By loading the RDF
in a SPARQL endpoint, SPARQL queries can be used to access
the data and extract all necessary information. It allows complex
queries across the complete AOP-Wiki database, optional filtering
for any variable, and requesting an outputs suitable for answering
the research question. Furthermore, these SPARQL queries can be
executed from most coding environments as part of larger workflows
or data pipelines. It also facilitates direct linkage of databases
through federated SPARQL queries, which returns information
across databases with a single query. Any database with a SPARQL
endpoint can be used for such questions across databases, such as
WikiPathways [16, 17], Wikidata [59, 60], neXtProt [15], UniProt [53],
ChEMBL-RDF [77], DisGeNET [78, 79], Rhea [80], Pathway
Commons [81], among others. Examples of federated queries are
stored in the SPARQL Examples panel in the AOP-Wiki SNORQL
User Interface aopwiki.rdf.bigcat-bioinformatics.org
(Figure 4.2).

Another way of using the RDF to extract AOP-Wiki content is through
a web service such as the git repository linked data API constructor
(grlc) [82], which can build a Web API on top of a SPARQL endpoint
with predefined SPARQL queries. While more straight-forward than
SPARQL queries, the API is limited to the predefined SPARQL queries
and variables implemented in these.

An advantage of creating RDF for the AOP-Wiki is the ability to link
and expand AOP-Wiki content with information from other databases.
For example, the AOP-DB combines knowledge from the AOP-Wiki
with annotations of genes, chemicals, diseases, tissues, pathways, on-
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tologies, and ToxCast data [83, 84]. Future work should focus on in-
tegrating such efforts by developing RDF and thereby allow full inte-
gration of their data and tools [85] with the AOP-Wiki RDF and other
databases.

In terms of compliance with Linked Data standards according to the
YummyData registry, the AOP-Wiki SPARQL endpoint consistently
scores above average in availability, freshness, operation, usefulness,
validity, and performance [69]. With a consistent A rank, the AOP-
Wiki SPARQL endpoint is placed among the 10% best-scoring of the
70+ SPARQL endpoints registered in YummyData. However, inciden-
tally the Umaka score dropped due to slow server response or when
the service has been down for maintenance or data loading. Based on
the feedback given by YummyData, a point for improvement would be
supporting more response formats of the SPARQL endpoint to increase
the usefulness score.

The implementation of compact identifiers and development of a
formal, machine-readable RDF schema makes the content of the
AOP-Wiki more findable and interoperable to other components of
the database, and by allowing SPARQL queries and API to explore
the data, the AOP-Wiki database was made accessible through new
methods. Furthermore, the addition of link-outs to various chemical,
gene and protein databases, as well as the data storage in an RDF
format and implementing Linked Open Data standards, has made the
data more interoperable with other databases and tools. Furthermore,
the AOP-Wiki has recently introduced licenses on its content, and
the code for the creation and validation of the AOP-Wiki RDF are
available under MIT license. These provide clear statements and
terms of using, sharing and modifying the content. Taken together
with the addition of metadata and semantic information represented
by ontology annotations, the content of the AOP-Wiki has been made
more accessible and reusable. Therefore, the development of the
AOP-Wiki RDF addresses all major FAIR principles [13].

Overall, the AOP-Wiki RDF allows for new ways of exploring the data,

87



Chapter 4. AOP-Wiki in a semantic web format

using it in automated workflows, from coding environments, or di-
rectly through a SPARQL endpoint. With the implementation also
comes the possibility to execute federated queries to combine data of
multiple resources and answer more elaborate questions. For example,
Key Events can be linked to the results of ToxCast assays that measure
the activity of the protein described, or molecular pathways can be ex-
plored for a more detailed description of mechanistic processes.

4.5 Data links
All data and code used in this manuscript are publicly available. The
main conversion code, statistics code and the created Turtle files can
be found on github.com/marvinm2/AOPWikiRDF. The AOP-Wiki
XML can be downloaded on aopwiki.org/downloads. The HGNC
mapping file can be downloaded via genenames.org and the Protein
Ontology mapping file can be downloaded with proconsortium.
org/download/current.
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Annex

Table 4.2: Prefixes in the RDF for the Key Event Component annotations.
Ontology name Prefix in RDF Base IRI

Cell Ontology [39] cl http://purl.obolibrary.org/obo/CL_

Uber-anatomy ontology [40] uberon http://purl.obolibrary.org/obo/UBERON_

Gene Ontology [34] go http://purl.obolibrary.org/obo/GO_

Molecular Interactions Controlled Vocabulary [41] mi http://purl.obolibrary.org/obo/MI_

Mammalian Phenotype Ontology [42] mp http://purl.obolibrary.org/obo/MP_

Medical Subject Headings [43] mesh http://purl.bioontology.org/ontology/MESH/

Human Phenotype Ontology [44] hp http://purl.obolibrary.org/obo/HP_

Population and Community Ontology [45, 46] pco http://purl.obolibrary.org/obo/PCO_

Neuro Behavior Ontology [47] nbo http://purl.obolibrary.org/obo/NBO_

Vertebrate trait ontology [48] vt http://purl.obolibrary.org/obo/VT_

PRotein Ontology [49] pr http://purl.obolibrary.org/obo/PR_

Chemical Entities of Biological Interest [50] chebio http://purl.obolibrary.org/obo/CHEBI_

Foundational Model of Anatomy Ontology [51] fma http://purl.org/sig/ont/fma/fma
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Chapter 5. The AOP-DB Resource Description Framework

Abstract
Computational toxicology is central to the current transformation oc-
curring in toxicology and chemical risk assessment. There is a need for
more efficient use of existing data to characterize human toxicological
response data for environmental chemicals in the US and Europe. The
Adverse Outcome Pathway (AOP) framework helps to organize exist-
ing mechanistic information and contributes to what is currently be-
ing described as New Approach Methodologies (NAMs). AOP knowl-
edge and data are currently submitted directly by users and stored
in the AOP-Wiki (aopwiki.org). Automatic and systematic pars-
ing of AOP-Wiki data is challenging, so we have created the EPA Ad-
verse Outcome Pathway Database. The AOP-DB, developed by the
US EPA to assist in the biological and mechanistic characterization of
AOP data, provides a broad, systems-level overview of the biological
context of AOPs. Here we describe the recent semantic mapping ef-
forts for the AOP-DB, and how this process facilitates the integration
of AOP-DB data with other toxicologically relevant datasets through a
use case example.
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5.1 Introduction
There is a need for more efficient use of existing data through im-
proved data integration and compatibility of data structures to char-
acterize human toxicological response data for environmental chem-
icals. Assessors in the US are moving towards the use of existing
mechanistic data (in vitro and in silico) that provide insights into ad-
verse outcomes in humans [1–4], and reduced animal testing [5]. The
Adverse Outcome Pathway (AOP) framework helps to organize exist-
ing mechanistic information and contributes to what is currently be-
ing described as New Approach Methodologies (NAMs) [6]. The US
EPA Adverse Outcome Pathway-Database (AOP-DB) is a decision sup-
port tool for risk assessors, developed by the EPA’s Center for Public
Health and Environmental Assessment, which contributes to NAMs
(e.g., computational toxicology tools) used for the Toxic Substances
Control Act (Public Law 114–182, 2016). The AOP-DB has been made
available through the Office of Science Management as a public EPA
database since November 2021. Pertinent AOP-DB data is currently
integrated with the CompTox Chemicals Dashboard (comptox.epa.
gov/dashboard/chemical_lists/AOPSTRESSORS), which maps
the Distributed Structure-Searchable Toxicity records to the most cur-
rent list of AOP-DB stressors.

The AOP-DB integrates AOP content to help users characterize AOPs
from the OECD-funded AOP-KB (aopkb.oecd.org/index.html)
effort, where the AOP-Wiki (aopwiki.org) is the primary repository
for direct user submission of AOP information to the AOP-KB. Because
the AOP-Wiki data is challenging to parse in its current format [7, 8],
the AOP-DB was developed to assist in automating and organizing
AOP data, as well as integrating with publicly available datasets to al-
low biological and mechanistic characterization of AOPs and provide
a systems-level overview of the biological context of AOPs [9, 10]. Re-
cent updates to AOP-DB in version 2 [11, 12] include 280 AOPs (1,111
KEs) from the AOP-Wiki XML. The semantic mapping of AOP-DB
data, described herein, extends AOP capabilities to users through the
incorporation of the Research Description Framework (RDF), which
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creates additional ontological linkages and improves capabilities for
computational analyses (Figure 5.1). These tools are useful to AOP
users trying to retrieve information for AOP development or to un-
derstand and characterize existing AOPs. Here we describe the recent
semantic mapping efforts for the AOP-DB, and how this process inte-
grates AOP-DB data with other toxicologically relevant datasets.

Figure 5.1: The OECD funded AOP-KB currently support the AOP-Wiki. The EPA AOP-DB,
currently slated as a third-party tool for integration with the AOPKB 2.0, automatically and pro-
grammatically pulls AOP data from the AOP-KB XML, and extends AOP capabilities to users
with semantic resources like WikiPathways and the OpenRiskNet e-infrastructure that incorpo-
rate the Research Description Framework (RDF). Integration of data across the AOP-KB (AOP-
Wiki), AOP-DB, and expanding research frameworks through WikiPathways and the EU funded
OpenRiskNet, creates additional ontological linkages and improves capabilities for computa-
tional analyses. These tools are useful to AOP users trying to retrieve information for AOP
development, as well as those trying to understand and characterize existing AOPs.

As part of OpenRiskNet, a 3 years project supported by the Euro-
pean Commission within Horizon2020 EINFRA-22-2016 Programme,
the US EPA AOP-DB was selected as an Implementation Challenge
winner. The Implementation Challenge was created to select external
tools for use in risk assessment to be prioritized for integration in the
OpenRiskNet e-Infrastructure (openrisknet.org) and foster collabora-
tive interaction between project partners. In contribution to this effort,
US EPA and Maastricht University project partners have completed the
semantic mapping of several AOP-DB data tables into RDF, which is a
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standard model for data interchange [13]. The application of RDF de-
fines relationships between data objects using triplestores that include
three positional statements (subject, predicate and object). The map-
ping of AOP-DB data to the RDF data model stores relevant AOP in-
formation in a computer-readable format, and contributes to the iden-
tification, disambiguation, and meaningful linkage of AOP data with
other data structures, following FAIR (findable, accessible, interopera-
ble, and reusable) principles [14, 15].

5.2 Materials and Methods
We selected seven AOP-DB data tables for semantic integration, specif-
ically the Gene Interaction, Biological Pathway, Toxcast Assay, Taxon-
omy, Chemical-Gene, Gene Info, and Key Event tables. In developing
the AOP-DB RDF, we implemented the most recent version of the SQL
AOP-DB [16] to map each table of interest into RDF triples. Each ta-
ble was filtered using the R version 3.6 and Rstudio version 1.2.83 (R
Core Team, 2020) to include only records involving a molecular initiat-
ing event (MIE) or key event (KE) that maps to a molecular identifier
(e.g., gene, protein, cytokine). Code was developed to implement each
record as input, modify and filter the AOP-DB table data, and output
each modified record to an RDF triple. Additionally, subjects were cre-
ated for Ensembl and UniProt identifiers. Ontology terms were refer-
enced using BioPortal [17] in order to find the most appropriate ontol-
ogy terms for each entity, in line with the AOP-Wiki RDF [18] for op-
timal interoperability between the two resources. Terms were selected
with the most accurate description from ontologies that are relevant to
the context of the field. For the development of the AOP-DB RDF, sev-
eral ontologies and consistent vocabularies have been included. Fur-
thermore, publicly available datasets included in the AOP-DB for RDF
mapping are described in detail in Mortensen et al. (2021). Table 5.1
provides an overview of the included ontologies and database links,
including their prefix in the RDF and their corresponding Internation-
alized Resource Identifier (IRI).
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5.2.1 Testing the AOP-DB RDF
Using a Jupyter notebook (Jupyterlab version 3.2.5, Python version
3.8.5), the AOP-DB SPARQL endpoint has been tested by executing
SPARQL queries, using the SPARQLWrapper Python library (version
1.8.5). SPARQL queries were used to extract statistics of the data,
and a federated SPARQL query was constructed to explore the
integrative capabilities of the AOP-DB RDF. The Jupyter notebook,
SPARQL queries for extracting data counts, and instructions
for setting up the AOP-DB SPARQL endpoint are available on
github.com/BiGCAT-UM/AOP-DB-RDF.

5.3 Results
5.3.1 The AOP-DB Semantic Mapping
The AOP-DB RDF schema developed according to the methods de-
scribed above resulted in the primary and secondary table structure, as
illustrated in Figure 5.2. The AOP-DB extends AOP-Wiki RDF with the
inclusion of gene/protein, chemical, ToxCast, and biological pathway
and taxonomy information. In total, the RDF contains 157 kEs, 376
NCBI genes linked to KEs, 93,449 Chemical-Gene Interactions (3,982
unique chemicals and 122 unique genes), 763,446 Protein-Protein In-
teractions, 1,143 ToxCast Assays 110,833 Biological Pathways from 10
sources, and 22 taxonomies. Also, the NCBI Gene IDs were matched
to 299 Ensembl IDs and 1,026 UniProt IDs. The AOP-DB RDF data ta-
bles associate the gene and protein information of AOP genes to chem-
ical, pathway, and assay information organized within the AOP-DB
(Mortensen, 2020; Mortensen, 2021).

The Key Event subjects are linked to NCBI Genes through the
‘data_1,027’ term of the EDAM ontology, which in turn is linked to
pathways and assays with respectively the terms ‘pw:0000001’ from
the Pathway Ontology and ‘mmo:0000441’ from the Measurement
Method Ontology. Furthermore, matching identifiers were linked
with ‘skos:exactMatch’, providing IRIs of Ensembl IDs, HGNC
Symbols, and UniProt IDs. On the other hand, Chemical-Gene
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Table 5.1: Overview of ontologies, consistent vocabularies and databases included in the AOP-
DB RDF.

Ontologies and Vocabularies
Name Prefix in RDF IRI

AOP Ontology [19] aopo http://aopkb.org/aop_ontology
BioAssay Ontology [20] bao http://www.bioassayontology.org/bao

Chemical Information ontology [21] cheminf http://semanticscience.org/resource/CHEMINF
Dublin Core dc http://purl.org/dc/elements/1.1

EDAM Ontology [22] edam http://edamontology.org/
Friend Of A Friend foaf http://xmlns.com/foaf/0.1

Logical Observation Identifier Names and Codes [23] loinc http://purl.bioontology.org/ontology/LNC
Molecular Interactions [24] mi http://purl.obolibrary.org/obo/MI

Measurement Method Ontology [25] mmo http://purl.obolibrary.org/obo/MMO
NCBI Taxonomy [26] ncbitaxon http://purl.bioontology.org/ontology/NCBITAXON

Pathway Ontology [27] pw http://purl.obolibrary.org/obo/PW
RDF Schema rdfs http://www.w3.org/2000/01/rdf-schema

Semantics Science Ontology [28] sio http://semanticscience.org/resource
Simple Knowledge Organization System skos http://www.w3.org/2004/02/skos/core

Uber Anatomy Ontology [29] uberon http://purl.obolibrary.org/obo/UBERON
Databases
AOP-Wiki aop.events http://identifiers.org/aop.events

Comptox Dashboard [30] assay https://comptox.epa.gov/dashboard/assay_endpoints
CAS Common Chemistry cas https://identifiers.org/cas

Ensembl [31] ensembl http://identifiers.org/ensembl
HUGO Genome Nomenclature Committee [32] hgnc https://identifiers.org/hgnc

NCBI Gene ncbigene https://identifiers.org/ncbigene
Uniprot [33] uniprot https://identifiers.org/uniprot

KEGG Pathways [34] kegg.pathway https://identifiers.org/kegg.pathway
PharmGKB Pathways [35] pharmgkb.pathways https://identifiers.org/pharmgkb.pathways

Small Molecule Pathway Database [36] smpdb https://identifiers.org/smpdb
BioCyc [37] biocyc https://identifiers.org/biocyc

BioCarta Pathways biocarta.pathway https://identifiers.org/biocarta.pathway
Reactome [38] reactome https://identifiers.org/reactome

NCI Pathway Interaction Database [39] pid.pathway https://identifiers.org/pid.pathway
NetPath [40] netpath http://netpath.org/pathways?path_id=

WikiPathways [18] wikipathways https://identifiers.org/wikipathways
AOP-DB Chemical-Gene association chemicalgeneassociation http://example.org/ChemicalGeneAssociation

AOP-DB Protein Interaction proteinInteraction http://example/proteinInteraction

interactions, Protein-protein interactions, ToxCast assays, and
Pathways have links to NCBI Gene subjects through the term
‘data_1,027’ from the EDAM ontology. Finally, taxonomy is
referenced by ToxCast assay and pathway subjects through the term
‘ncbitaxon:131,567’ indicating cellular organism.

5.3.2 The AOP-DB SPARQL Endpoint
The AOP-DB RDF can be explored through the AOP-DB SPARQL
(aopdb.rdf.bigcat-bioinformatics.org/sparql). It allows
custom SPARQL queries to return output tables in a variety of
formats, where it is possible to directly combine different resources
with federated SPARQL queries.
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Figure 5.2: AOP-DB Semantic Mapping. Semantic mapping illustrating the predicates and ob-
jects of the nine core subject types in the AOP-DB RDF (in blue). Vertical columns show subjects,
and the middle and right columns indicate predicates and objects, respectively. Where applica-
ble, the type of entry is indicated (literal or IRI). Yellow objects with an asterisk (*) indicate the
connection between their subjects and the subjects of other tables. The interaction with the AOP-
Wiki RDF is highlighted at the Key Events and Adverse Outcome Pathways (in green). Forward
slashes indicate the inclusion of multiple objects as part of the subject-predicate-object triple.

5.3.3 AOP-DB RDF Use Case Example
SPARQL queries can be used to query the RDF in order to answer bio-
logical and toxicological questions, such as which molecular targets
(e.g. genes/proteins), chemical stressors, key events, or in vitro as-
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says are relevant for adverse outcomes of interest. The use case ex-
amples provided herein illustrate the utility of the AOP-DB RDF con-
tent, as well as the power of integrating these data with other diverse,
external databases using federated queries. Our first use case imple-
ments the AOP-DB RDF to identify AOP-relevant molecular targets
that have associated ToxCast assay targets, which has previously not
been possible. The automated linkage of ToxCast assays and KEs in
AOP-Wiki can serve as a prioritization tool by exploring the activation
of KEs by the many chemicals that have been investigated in ToxCast.
The second use case shows the integration of the AOP-DB RDF with
other databases that provide access to their data through SPARQL end-
points. A single SPARQL query can be executed to extract AOP IDs,
KE IDs, KE titles and protein names from the AOP-Wiki RDF, extract
protein descriptions from the Protein Ontology, and the names and de-
scriptions of pathways in WikiPathways, all based on the NCBI Gene
IDs captured in the AOP-DB. Through the integration of these diverse
data sources, we can effectively explore the data and build automated
computational workflows to address questions of toxicological con-
cern.

5.4 Conclusion
A central goal of computational toxicology is to predict and explain
how the human body responds after exposure to specific xenobiotics or
other chemicals in silico. This effort has been hampered by several ma-
jor limiting factors, including fragmented and poorly structured data,
and insufficient access to computational resources and expertise. The
AOP-DB RDF and SPARQL endpoint created and discussed herein al-
low improved access to rigorously structured AOP data and other as-
sociated data of toxicological interest. This work improves compu-
tational organization and efficiency, through improved data integra-
tion, for toxicological and related datasets, and contributes to contin-
ued progress in computational toxicology, chemical screening and the
improvement of human health risk assessment.
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The AOP-DB RDF will be improved with regular data updates
and continued data integration with relevant datasets. Future
work includes semantic integration of AOP-DB disease-gene data,
tissue-specific gene interaction networks, AOP functional single
nucleotide polymorphism (SNP) and population SNP frequency
information and chemical-specific datasets.
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AOPLink Jupyter Notebook:

Extracting and analysing data
related to an AOP of interest
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6.1 Introduction
In order to drive the transition toward in vitro and in silico methods
for risk assessment of chemicals and nanomaterials, the project
OpenRiskNet has aimed to develop virtual research environments
for integrating and analysing data, creating simulations and
deploy computational models. These developments were driven
by case studies [1], demonstrating the capabilities to end-users
of such a platform, including risk assessors, regulators, and
fellow researchers, aligned with the SEURAT-9 risk assessment
framework [2]. One of these case studies was AOPLink
(openrisknet.org/e-infrastructure/development/
case-studies/case-study-aoplink), which explored Adverse
Outcome Pathways (AOPs) and supporting experimental data. In
general, AOPs contain descriptions of mechanistic knowledge of
toxicological processes and are based on scientific literature [3].
However, the use of AOPs for regulatory purposes also requires
qualitative and quantitative validation [4], which can be found in
literature and databases. The main goal of the case study is to establish
links between AOPs in the AOP-Wiki and supporting experimental
data, allowing the identification of AOPs based on data, and finding
data related to the AOP of interest. This case study has resulted in a
Jupyter notebook, combining the functionalities of a set of services
and repositories that were developed or implemented during the
project, including the AOP-Wiki SPARQL endpoint [5], AOP-DB
SPARQL endpoint [6], BridgeDb webservice [7], EdelweissData
Explorer for ToxCast and TG-GATEs data, ChemIdConverter, and
WikiPathways SPARQL endpoint [8, 9]. This Jupyter notebook
represents a computational workflow that starts with the selection
of an AOP of interest, explores related information, and looks
up supporting assay data in ToxCast and transcriptomic data in
TG-GATEs, followed by pathway analysis of transcriptomics data
that was retrieved. This Jupyter notebook is available on github.
com/OpenRiskNet/notebooks/blob/master/AOPLink/
ExtractingandanalysingdatarelatedtoanAOPofinterest.
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ipynb. However, some of the services have been relocated or are not
functional anymore since the creation of the Jupyter notebook.
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6.2 Jupyter notebook
Extracting and analysing data related to an AOP of
interest
Citation: Marvin Martens, Thomas Exner, Tomaž Mohorič, Chris T
Evelo, Egon L Willighagen. Workflow for extracting and analyzing
data related to an AOP of interest. 2020

One of the main questions to solve in AOPLink is the finding of data
that supports an AOP of interest. To answer that, we have developed
this Jupyter notebook that does that by using a variety of OpenRiskNet
services:

• AOP-Wiki RDF
• ChemIdConvert
• AOP-DB RDF
• BridgeDb
• EdelweissData explorer
• WikiPathways

After selecting an AOP of interest, information is extracted from the
AOP-Wiki RDF, ChemIdConvert, and AOP-DB RDF, to get a better un-
derstanding of the AOP. Next, the EdelweissData explorer was used
to search for fitting data sets from ToxCast and TG-GATES based on
the genes and compounds linked to the AOP of interest. The final
part involves pathway analysis using the transcriptomics data of TG-
GATES and the molecular pathways of WikiPathways, identifying sig-
nificantly affected pathways upon exposure to the chemicals of inter-
est.

In order to execute the Jupyter notebook, a set of Python libraries are
required. The following section should import, or install, all of them.

[1]: import sys

!{sys.executable} -m pip install --upgrade pip
!{sys.executable} -m pip install watermark
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try:
from SPARQLWrapper import SPARQLWrapper, JSON

except ImportError:
!{sys.executable} -m pip install sparqlwrapper
from SPARQLWrapper import SPARQLWrapper, JSON

try:
from pyvis.network import Network

except ImportError:
!{sys.executable} -m pip install pyvis
from pyvis.network import Network

try:
from IPython.display import display, HTML, IFrame

except ImportError:
!{sys.executable} -m pip install ipython
from IPython.display import display, HTML, IFrame

try:
import urllib

except ImportError:
!{sys.executable} -m pip install urllib
import urllib

try:
import simplejson as json

except ImportError:
!{sys.executable} -m pip install simplejson
import simplejson as json

try:
import pandas as pd

except ImportError:
!{sys.executable} -m pip install pandas
import pandas as pd

try:
import re

except ImportError:
!{sys.executable} -m pip install re
import re
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try:
import requests

except ImportError:
!{sys.executable} -m pip install requests
import requests

try:
import warnings

except ImportError:
!{sys.executable} -m pip install warnings
import warnings

try:
import statistics

except ImportError:
!{sys.executable} -m pip install statistics
import statistics

try:
from edelweiss_data import API, QueryExpression as Q

except ImportError:
!{sys.executable} -m pip install edelweiss_data
from edelweiss_data import API, QueryExpression as Q

pd.set_option(’display.max_colwidth’, -1)
warnings.filterwarnings("ignore", category=UserWarning)

Define the AOP of interest
This Jupyter notebook focuses on the AOP of interest, which is based
on the identifier of the AOP. The identifiers of AOPs can be found on
the AOP-Wiki website.

[2]: AOPid = "37"

Set service URLs
The notebook uses a variety of external services. To keep an overview
of these, their URLs are defined at the start of the notebook.
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[3]: # SPARQL endpoint URLs
aopwikisparql = SPARQLWrapper("http://aopwiki-rdf.prod.
↪→openrisknet.org/sparql/")

aopdbsparql = SPARQLWrapper("http://aopdb-rdf.prod.
↪→openrisknet.org/sparql/")

wikipathwayssparql = SPARQLWrapper("http://sparql.
↪→wikipathways.org/sparql/")

# ChemIdConvert URL
chemidconvert = ’https://chemidconvert.cloud.douglasconnect.
↪→com/v1/’

# BridgeDB base URL
bridgedb = ’http://bridgedb.prod.openrisknet.org/’

# EdelweissData API URL
edelweiss_api_url = ’https://api.staging.kit.cloud.
↪→douglasconnect.com’

AOP-Wiki RDF
Service description
The AOP-Wiki repository is part of the AOP Knowledge Base (AOP-
KB), a joint effort of the US-Environmental Protection Agency and Eu-
ropean Commission - Joint Research Centre. It is developed to facili-
tate collaborative AOP development, storage of AOPs, and therefore
allow reusing toxicological knowledge for risk assessors. This Case
Study has converted the AOP-Wiki XML data into an RDF schema,
which has been exposed in a public SPARQL endpoint in the Open-
RiskNet e-infrastructure.

Implementation
First, general information of the AOP is fetched using a variety of
SPARQL queries, using predicates from the AOP-Wiki RDF schema.
This is used for: - Creating an overview table of the AOP of interest -
Extending the AOP network with connected AOPs
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Second, stressor chemicals are retrieved and stored for further analysis
and fetching of data.

Creating overview table
[4]: #Define all variables as ontology terms present in AOP-Wiki

↪→RDF

title = ’dc:title’
webpage = ’foaf:page’
creator = ’dc:creator’
abstract = ’dcterms:abstract’
key_event = ’aopo:has_key_event’
molecular_initiating_event = ’aopo:
↪→has_molecular_initiating_event’

adverse_outcome = ’aopo:has_adverse_outcome’
key_event_relationship = ’aopo:has_key_event_relationship’
stressor = ’ncit:C54571’

#Create the list of all terms of interest
listofterms = [title, webpage, creator, abstract, key_event,
↪→molecular_initiating_event, adverse_outcome,
↪→key_event_relationship, stressor]

#Initiate the DataFrame
AOPinfo = pd.DataFrame(columns=[’Properties’], index =
↪→[list(listofterms)])

#Query all terms of interest in the selected AOP
for term in listofterms:

sparqlquery = ’’’
PREFIX ncit: <http://ncicb.nci.nih.gov/xml/owl/EVS/

↪→Thesaurus.owl#>

SELECT (group_concat(distinct ?item;separator=";") as ?
↪→items)

WHERE{
?AOP_URI a aopo:AdverseOutcomePathway;’’’+term+’’’ ?item.
FILTER (?AOP_URI = aop:’’’+AOPid +’’’)}
’’’
aopwikisparql.setQuery(sparqlquery)
aopwikisparql.setReturnFormat(JSON)
results = aopwikisparql.query().convert()
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for result in results["results"]["bindings"]:
if ’identifiers.org’ in result["items"]["value"]:

AOPinfo.at[term, ’Properties’] = ’, ’.
↪→join(result["items"]["value"].split(’;’))

else:
AOPinfo.at[term, ’Properties’] =

↪→result["items"]["value"]

display(AOPinfo)

Properties
dc:title PPARalpha-dependent liver cancer

foaf:page http://identifiers.org/aop/37
dc:creator J. Christopher Corton, Cancer AOP Workgroup. National Health and

Environmental Effects Research Laboratory, Office of Research and
Development, Integrated Systems Toxicology Division, US Environmental

Protection Agency, Research Triangle Park, NC. Corresponding author
for wiki entry (corton.chris@epa.gov)\n

dcterms:abstract Several therapeutic agents ... overlapping dose levels.\n
aopo:has_key_event http://identifiers.org/aop.events/1170,

http://identifiers.org/aop.events/1171,
http://identifiers.org/aop.events/227,
http://identifiers.org/aop.events/716,
http://identifiers.org/aop.events/719

aopo:has_molecular_initiating_event http://identifiers.org/aop.events/227
aopo:has_adverse_outcome http://identifiers.org/aop.events/719

aopo:has_key_event_relationship http://identifiers.org/aop.relationships/1229,
http://identifiers.org/aop.relationships/1230,
http://identifiers.org/aop.relationships/1232,
http://identifiers.org/aop.relationships/1239

ncit:C54571 http://identifiers.org/aop.stressor/11,
http://identifiers.org/aop.stressor/175,
http://identifiers.org/aop.stressor/191,
http://identifiers.org/aop.stressor/205,
http://identifiers.org/aop.stressor/206,
http://identifiers.org/aop.stressor/207,
http://identifiers.org/aop.stressor/208,
http://identifiers.org/aop.stressor/210,
http://identifiers.org/aop.stressor/211

6.2.1 Generating AOP network
[5]: #Generate network from AOP + interlinked AOPs.

Key_Events = str(AOPinfo.iat[4, 0]).split(’, ’)

#From all the KEs from the selected, get the other AOPs in
↪→which they are present, and find all KEs of those other
↪→AOPs

for Key_Event in Key_Events:
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sparqlquery = ’’’
SELECT ?MIE_ID ?KE_ID ?AO_ID ?KER_ID ?KE_Title
WHERE{
?KE_URI a aopo:KeyEvent; dcterms:isPartOf ?AOP_URI.
?AOP_URI aopo:has_key_event ?KE_URI2; aopo:

↪→has_molecular_initiating_event ?MIE_URI; aopo:
↪→has_adverse_outcome ?AO_URI; aopo:
↪→has_key_event_relationship ?KER_URI.

?KE_URI2 rdfs:label ?KE_ID; dc:title ?KE_Title.
?MIE_URI rdfs:label ?MIE_ID.
?AO_URI rdfs:label ?AO_ID.
?KER_URI rdfs:label ?KER_ID.
FILTER (?KE_URI = <’’’+Key_Event+’’’>)}
’’’
aopwikisparql.setQuery(sparqlquery)
aopwikisparql.setReturnFormat(JSON)
results = aopwikisparql.query().convert()

MIEs = set([])
KEs = set([])
KEtitle = {}
AOs = set([])
KERs = set([])
for result in results["results"]["bindings"]:

MIEs.add(result["MIE_ID"]["value"])
AOs.add(result["AO_ID"]["value"])
KEs.add(result["KE_ID"]["value"])
KERs.add(result["KER_ID"]["value"])
KEtitle[result["KE_ID"]["value"]] =

↪→result["KE_Title"]["value"]

#List all intermediate KEs that are not MIEs or AOs
KEsIntermediate = []
for item in KEs:

if item not in MIEs and item not in AOs:
KEsIntermediate.append(item)

#Initiate network figure
net= Network(height="100%", width="100%")

#Add nodes for Molecular Initiating Events, Key Events, and
↪→Adverse Outcomes to the network figure
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for MIE in MIEs:
net.add_node(MIE, color = ’lightgreen’, size = 50, shape

↪→= ’circle’, font = ’20px arial black’, title =
↪→KEtitle[MIE])

for KE in KEsIntermediate:
net.add_node(KE, color = ’khaki’, size = 50, shape =

↪→’circle’, font = ’20px arial black’, title = KEtitle[KE])

for AO in AOs:
net.add_node(AO, color = ’salmon’, size = 50, shape =

↪→’circle’, font = ’20px arial black’, title = KEtitle[AO])

#Add all Key Event Relationships to the network figure after
↪→querying all KERs for all KEs in AOP-Wiki RDF

for KER in KERs:
sparqlquery = ’’’
SELECT ?KE_UP_ID ?KE_DOWN_ID
WHERE{
?KER_URI a aopo:KeyEventRelationship; rdfs:label ?KER_ID;

↪→ aopo:has_upstream_key_event ?KE_UP_URI; aopo:
↪→has_downstream_key_event ?KE_DOWN_URI.

?KE_UP_URI rdfs:label ?KE_UP_ID.
?KE_DOWN_URI rdfs:label ?KE_DOWN_ID.
FILTER (?KER_ID = "’’’+KER+’’’")}
’’’
aopwikisparql.setQuery(sparqlquery)
aopwikisparql.setReturnFormat(JSON)
results = aopwikisparql.query().convert()
for result in results["results"]["bindings"]:

net.add_edge(result["KE_UP_ID"]["value"],
↪→result["KE_DOWN_ID"]["value"], width = 2, color =
↪→’black’, label = KER, arrows = ’to’)

net.show(’mygraph.html’)
IFrame(src=’./mygraph.html’, width=700, height=600)
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[5]:

6.2.2 Query all chemicals that are part of the selected AOP
[6]: sparqlquery = ’’’

PREFIX ncit: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.
↪→owl#>

SELECT ?CAS_ID (fn:substring(?CompTox,33) as ?CompTox_ID) ?
↪→Chemical_name

WHERE{
?AOP_URI a aopo:AdverseOutcomePathway; ncit:C54571 ?Stressor.
?Stressor aopo:has_chemical_entity ?Chemical.
?Chemical cheminf:CHEMINF_000446 ?CAS_ID; dc:title ?
↪→Chemical_name.

OPTIONAL {?Chemical cheminf:CHEMINF_000568 ?CompTox.}
FILTER (?AOP_URI = aop:’’’+AOPid +’’’)}
’’’
aopwikisparql.setQuery(sparqlquery)
aopwikisparql.setReturnFormat(JSON)
results = aopwikisparql.query().convert()

Chemical_names = {}
CompTox = {}

for result in results["results"]["bindings"]:
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try: CompTox[result["CAS_ID"]["value"]]
↪→=result["CompTox_ID"]["value"]

except: pass
for result in results["results"]["bindings"]:

try: Chemical_names[result["CAS_ID"]["value"]]
↪→=result["Chemical_name"]["value"]

except: pass

Chemdata = pd.DataFrame(columns=[’Chemical_name’, ’CAS_ID’,
↪→’CompTox_ID’])

for CAS_ID in Chemical_names:
Chemdata = Chemdata.append({

’Chemical_name’ : Chemical_names[CAS_ID],
’CAS_ID’ : CAS_ID,
’CompTox_ID’ : CompTox[CAS_ID],
}, ignore_index=True)

display(Chemdata)

Chemical_name CAS_ID CompTox_ID
0 Di(2-ethylhexyl) phthalate 117-81-7 DTXSID5020607
1 Gemfibrozil 25812-30-0 DTXSID0020652
2 Nafenopin 3771-19-5 DTXSID8020911
3 Bezafibrate 41859-67-0 DTXSID3029869
4 Fenofibrate 49562-28-9 DTXSID2029874
5 Pirinixic acid 50892-23-4 DTXSID4020290
6 Ciprofibrate 52214-84-3 DTXSID8020331
7 Clofibrate 637-07-0 DTXSID3020336

[7]: compounds = []
for index, row in Chemdata.iterrows():

compounds.append(row[’CAS_ID’])
compounds

[7]: ['117-81-7', '25812-30-0', '3771-19-5', '41859-67-0',
↪→'49562-28-9', '50892-23-4', '52214-84-3', '637-07-0']
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ChemIdConvert
Service description
The ChemIdConverter allows users to submit and translate a variety
of chemical descriptors, such as SMILES and InChI, through a REST
API.

Implementation
Convert selected chemical names and display their chemical structures
in a dataframe. It takes CAS IDs as an input, and translates them into
Smiles and InChI Keys.

[8]: compoundstable = pd.DataFrame(columns=[’CAS_ID’, ’Image’,
↪→’Smiles’, ’InChIKey’])

# Fill "compounds" with the "smiles" by the compound name.
for compound in compounds:

smiles = requests.get(chemidconvert + ’cas/to/smiles’,
↪→params={’cas’: compound}).json()[’smiles’]

inchikey = requests.get(chemidconvert + ’smiles/to/
↪→inchikey’, params={’smiles’: smiles}).json()[’inchikey’]

compoundstable = compoundstable.append({’CAS_ID’:
↪→compound, ’Image’: smiles, ’Smiles’: smiles, ’InChIKey’ :
↪→inchikey}, ignore_index=True)

def smiles_to_image_html(smiles): # "smiles" shadows
↪→"smiles" from outer scope, use this function only in
↪→"to_html().

"""Gets for each smile the image, in HTML.
:param smiles: Takes the "smiles" form "compounds".
:return: The HTML code for the image of the given smiles.
"""
return ’<img style="width:150px" src="’ +

↪→chemidconvert+’asSvg?smiles=’+urllib.parse.
↪→quote(smiles)+’"/>’

# Return a HTML table of "compounds", after "compounds" is
↪→fill by "smiles_to_image_html".

HTML(compoundstable.to_html(escape=False,
↪→formatters=dict(Image=smiles_to_image_html)))
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[8]:

CAS_ID Image Smiles InChIKey

0 117-81-7 CCCCC(CC)COC(=O)c1ccccc1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N

1 25812-30-0 Cc1ccc(C)c(OCCCC(C)(C)C(O)=O)c1 HEMJJKBWTPKOJG-UHFFFAOYSA-N

2 3771-19-5 CC(C)(Oc1ccc(cc1)C2CCCc3ccccc23)C(O)=O XJGBDJOMWKAZJS-UHFFFAOYSA-N

3 41859-67-0 CC(C)(Oc1ccc(CCNC(=O)c2ccc(Cl)cc2)cc1)C(O)=O IIBYAHWJQTYFKB-UHFFFAOYSA-N

4 49562-28-9 CC(C)OC(=O)C(C)(C)Oc1ccc(cc1)C(=O)c2ccc(Cl)cc2 YMTINGFKWWXKFG-UHFFFAOYSA-N

5 50892-23-4 Cc1cccc(Nc2cc(Cl)nc(SCC(O)=O)n2)c1C SZRPDCCEHVWOJX-UHFFFAOYSA-N

6 52214-84-3 CC(C)(Oc1ccc(cc1)C2CC2(Cl)Cl)C(O)=O KPSRODZRAIWAKH-UHFFFAOYSA-N

7 637-07-0 CCOC(=O)C(C)(C)Oc1ccc(Cl)cc1 KNHUKKLJHYUCFP-UHFFFAOYSA-N
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AOP-DB RDF
Service description
The EPA AOP-DB supports the discovery and development of putative
and potential AOPs. Based on public annotations, it integrates AOPs
with gene targets, chemicals, diseases, tissues, pathways, species or-
thology information, ontologies, and gene interactions. The AOP-DB
facilitates the translation of AOP biological context, and associates as-
say, chemical and disease endpoints with AOPs (Pittman et al., 2018;
Mortensen et al., 2018). The AOP-DB won the first OpenRiskNet im-
plementation challenge of the associated partner program and is there-
fore integrated into the OpenRiskNet e-infrastructure. After the con-
version of the AOP-DB into an RDF schema, its data will be exposed
in a Virtuoso SPARQL endpoint.

Implementation
Extract all genes related to AOP of interest Find all ToxCast assays
linked to those genes

[9]: Key_Events = str(AOPinfo.iat[4,0]).split(’, ’)
Genes = []
#from the KEs, get the AOPs
for Key_Event in Key_Events:

sparqlquery = ’’’
SELECT DISTINCT ?KE_ID ?Entrez_ID WHERE{
?KE_URI edam:data_1027 ?Entrez_URI. ?Entrez_URI edam:

↪→data_1027 ?Entrez_ID.

FILTER (?KE_URI = <’’’+Key_Event +’’’>)}
’’’
aopdbsparql.setQuery(sparqlquery)
aopdbsparql.setReturnFormat(JSON)
results = aopdbsparql.query().convert()
for result in results["results"]["bindings"]:

Genes.append(result["Entrez_ID"]["value"])
print(Genes)

['5465', '403654', '19013', '25747']
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BridgeDb to map identifiers
Service description
In order to link databases and services that use particular identifiers
for genes, proteins, and chemicals, the BridgeDb platform is integrated
into the OpenRiskNet e-infrastructure. It allows for identifier mapping
between various biological databases for data integration and interop-
erability (van Iersel et al., 2010).

Implementation
The genes from AOP-DB are mapped to identifiers from other
databases using BridgeDb. Variable values are filled for
inputdatasource and outputdatasource identifiers based
on BridgeDb’s documentation on system codes. Also, the species is
specified as a value in the variable Species.

[10]: inputdatasource = ’L’
outputdatasource = [’H’,’En’]
Species = [’Human’,’Dog’,’Mouse’,’Rat’]
Mappings = {}
HGNC = []

for source in outputdatasource:
Mappings[source] = []
for Entrez in Genes:

for species in Species:
allmappings = re.split(’\t|\n’, requests.

↪→get(bridgedb + species + ’/xrefs/’ + inputdatasource + ’/
↪→’ + Entrez + ’?dataSource=’+source).text)

if allmappings[0] is not ’’:
break

Mappings[source].append(allmappings[0])

ids = {}
for source in Mappings:

ids[source]=[]
for identifier in Mappings[source]:

ids[source].append(identifier)
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GenesTable = pd.
↪→DataFrame(columns=[’Entrez’,’HGNC’,’Ensembl’])

GenesTable[’Entrez’] = Genes
GenesTable[’HGNC’] = ids[’H’]
GenesTable[’Ensembl’] = ids[’En’]

display(GenesTable)

Entrez HGNC Ensembl
0 5465 PPARA ENSG00000186951
1 403654 ENSCAFG00000000788
2 19013 ENSMUSG00000022383
3 25747 ENSRNOG00000021463

EdelweissData explorer
Curated datasets are made available through the EdelweissData Ex-
plorer, the main data provisioning tool in the DataCure case study of
OpenRiskNet. It is a web-based data explorer tool that gives users the
ability to filter, search and extract data through the use of API calls.
The EdelweissData Explorer serves data from ToxCast, ToxRefDB, and
TG-GATES.

Prior to using the EdelweissData explorer, the EdelweissData library
is initialized and authenticated.

[11]: api = API(edelweiss_api_url)
api.authenticate()

Tox21/ToxCast
Based on the identified genes and chemicals of interest by the AOP-
DB RDF and AOP-Wiki RDF, the EdelweissData library is used to find
datasets with those particular target genes and chemicals.

First, the assays are searched based on the Entrez gene IDs. These are,
along with their metadata, stored in a dataframe.
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Next, for those assays, all datasets are retrieved that are generated with
the compounds related to the AOP.

[12]: columns = [
# ("Endpoint", "$.assay.component.endpoint"),

("Endpoint name", "$.assay.component.endpoint.
↪→assay_component_endpoint_name.value"),

("Biological target", "$.assay.component.endpoint.target.
↪→biological_process_target.value"),

("Entrez gene ID for the molecular target", "$.assay.
↪→component.endpoint.target.intended.intended_target_gene.
↪→intended_target_entrez_gene_id.value"),

("Symbol", "$.assay.component.endpoint.target.intended.
↪→intended_target_gene.intended_target_official_symbol.
↪→value"),

("Gene name", "$.assay.component.endpoint.target.
↪→intended.intended_target_gene.intended_target_gene_name.
↪→value")]

cquery = None
for gene in Genes:

if cquery is None:
cquery = Q.search_anywhere("EPA-InVitroDBV3.2") & Q.

↪→search_anywhere("summary") & Q.exact_search(Q.
↪→column(’Entrez gene ID for the molecular target’), gene)

else:
cquery = cquery | Q.search_anywhere("EPA-InVitroDBV3.

↪→2") & Q.search_anywhere("summary") & Q.exact_search(Q.
↪→column(’Entrez gene ID for the molecular target’), gene)

ToxCast = api.get_published_datasets(limit=200,
↪→columns=columns, condition=cquery)

ToxCast

[12]:
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id version dataset Endpoint name Biological target
Entrez gene ID
for the
molecular target

Symbol Gene name

d651ef92-c12e-4eba
-8979-8dc3f77fc7f3

1
<PublishedDataset ’d65...
...ATG_PPARa_TRANS
_dn_summary_tcpl>

ATG_PPARa_TRANS_dn
regulation of
transcription
factor activity

5465 PPARA
peroxisome
proliferator-activated
receptor alpha

5a9cf864-520d-4ca0
-b77f-8333aa8a3d5c

1
<PublishedDataset ’5a9...
ATG_PPRE_CIS_dn
_summary_tcpl>

ATG_PPRE_CIS_dn
regulation of
transcription
factor activity

5465 PPARA
peroxisome
proliferator-activated
receptor alpha

cd27c421-8273-41cb
-9e11-8c96a2b30e10

1
<PublishedDataset ’cd2...
NVS_NR_hPPARa
_summary_tcpl>

NVS_NR_hPPARa receptor binding 5465 PPARA
peroxisome
proliferator-activated
receptor alpha

291d8013-662b-4b44
-aa96-894be4473d59

1
<PublishedDataset ’291...
ATG_PPRE_CIS_up
_summary_tcpl>

ATG_PPRE_CIS_up
regulation of
transcription
factor activity

5465 PPARA
peroxisome
proliferator-activated
receptor alpha

f3ebdf70-976f-4b19
-92a1-25b189fa13fa

1
<PublishedDataset ’f3e...
ATG_PPARa_TRANS_up
_summary_tcpl>

ATG_PPARa_TRANS_up
regulation of
transcription
factor activity

5465 PPARA
peroxisome
proliferator-activated
receptor alpha

[13]: cquery = None
for compound in compoundstable[’InChIKey’].values:

if cquery is None:
cquery = Q.fuzzy_search(Q.column(’InChI key’),

↪→compound)

else:
cquery = cquery | Q.fuzzy_search(Q.column(’InChI

↪→key’), compound)

ToxCastData = pd.DataFrame()
for index, row in ToxCast.iterrows():

tmpdata = row[’dataset’].get_data(limit=None,
↪→condition=cquery)

tmpdata[’Assay’]=row[’Endpoint name’]
tmpdata = tmpdata[[’Assay’, ’DTXSID’, ’Substance name’,

↪→’InChI key’, ’CAS’, ’IC50’, ’Quality check’]]

ToxCastData = pd.concat([ToxCastData, tmpdata])

ToxCastData.sort_values(by=[’InChI key’,’Assay’])

[13]:
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Assay DTXSID Substance name InChI key CAS IC50 Quality check
3714 ATG_PPARa_TRANS_dn DTXSID5020607 Di(2-ethylhexyl) phthalate BJQHLKABXJIVAM-UHFFFAOYSA-N 117-81-7 NaN []
3714 ATG_PPARa_TRANS_up DTXSID5020607 Di(2-ethylhexyl) phthalate BJQHLKABXJIVAM-UHFFFAOYSA-N 117-81-7 NaN [Borderline inactive]
3714 ATG_PPRE_CIS_dn DTXSID5020607 Di(2-ethylhexyl) phthalate BJQHLKABXJIVAM-UHFFFAOYSA-N 117-81-7 NaN []
3714 ATG_PPRE_CIS_up DTXSID5020607 Di(2-ethylhexyl) phthalate BJQHLKABXJIVAM-UHFFFAOYSA-N 117-81-7 1.414849 []
24 NVS_NR_hPPARa DTXSID5020607 Di(2-ethylhexyl) phthalate BJQHLKABXJIVAM-UHFFFAOYSA-N 117-81-7 NaN []
919 ATG_PPARa_TRANS_dn DTXSID0020652 Gemfibrozil HEMJJKBWTPKOJG-UHFFFAOYSA-N 25812-30-0 NaN []
919 ATG_PPARa_TRANS_up DTXSID0020652 Gemfibrozil HEMJJKBWTPKOJG-UHFFFAOYSA-N 25812-30-0 1.558449 []
919 ATG_PPRE_CIS_dn DTXSID0020652 Gemfibrozil HEMJJKBWTPKOJG-UHFFFAOYSA-N 25812-30-0 NaN []
919 ATG_PPRE_CIS_up DTXSID0020652 Gemfibrozil HEMJJKBWTPKOJG-UHFFFAOYSA-N 25812-30-0 1.509815 []
3245 ATG_PPARa_TRANS_dn DTXSID3029869 Bezafibrate IIBYAHWJQTYFKB-UHFFFAOYSA-N 41859-67-0 NaN [Noisy data]

3245 ATG_PPARa_TRANS_up DTXSID3029869 Bezafibrate IIBYAHWJQTYFKB-UHFFFAOYSA-N 41859-67-0 0.918967
[Hit-call potentially
confounded by
overfitting]

3245 ATG_PPRE_CIS_dn DTXSID3029869 Bezafibrate IIBYAHWJQTYFKB-UHFFFAOYSA-N 41859-67-0 NaN [Noisy data]
3245 ATG_PPRE_CIS_up DTXSID3029869 Bezafibrate IIBYAHWJQTYFKB-UHFFFAOYSA-N 41859-67-0 1.208669 []
4050 ATG_PPARa_TRANS_dn DTXSID3020336 Clofibrate KNHUKKLJHYUCFP-UHFFFAOYSA-N 637-07-0 NaN []
4050 ATG_PPARa_TRANS_up DTXSID3020336 Clofibrate KNHUKKLJHYUCFP-UHFFFAOYSA-N 637-07-0 1.653510 []
4050 ATG_PPRE_CIS_dn DTXSID3020336 Clofibrate KNHUKKLJHYUCFP-UHFFFAOYSA-N 637-07-0 NaN []
4050 ATG_PPRE_CIS_up DTXSID3020336 Clofibrate KNHUKKLJHYUCFP-UHFFFAOYSA-N 637-07-0 NaN [Borderline inactive]
353 NVS_NR_hPPARa DTXSID3020336 Clofibrate KNHUKKLJHYUCFP-UHFFFAOYSA-N 637-07-0 NaN []
2464 ATG_PPARa_TRANS_dn DTXSID8020331 Ciprofibrate KPSRODZRAIWAKH-UHFFFAOYSA-N 52214-84-3 NaN [Noisy data]

2464 ATG_PPARa_TRANS_up DTXSID8020331 Ciprofibrate KPSRODZRAIWAKH-UHFFFAOYSA-N 52214-84-3 0.009889
[Hit-call potentially
confounded by
overfitting]

2464 ATG_PPRE_CIS_dn DTXSID8020331 Ciprofibrate KPSRODZRAIWAKH-UHFFFAOYSA-N 52214-84-3 NaN []
2464 ATG_PPRE_CIS_up DTXSID8020331 Ciprofibrate KPSRODZRAIWAKH-UHFFFAOYSA-N 52214-84-3 1.722385 []
132 ATG_PPARa_TRANS_dn DTXSID4020290 Pirinixic acid SZRPDCCEHVWOJX-UHFFFAOYSA-N 50892-23-4 NaN [Noisy data]
132 ATG_PPARa_TRANS_up DTXSID4020290 Pirinixic acid SZRPDCCEHVWOJX-UHFFFAOYSA-N 50892-23-4 0.745003 []
132 ATG_PPRE_CIS_dn DTXSID4020290 Pirinixic acid SZRPDCCEHVWOJX-UHFFFAOYSA-N 50892-23-4 NaN []
132 ATG_PPRE_CIS_up DTXSID4020290 Pirinixic acid SZRPDCCEHVWOJX-UHFFFAOYSA-N 50892-23-4 1.307836 []
409 NVS_NR_hPPARa DTXSID4020290 Pirinixic acid SZRPDCCEHVWOJX-UHFFFAOYSA-N 50892-23-4 0.943310 []
3855 ATG_PPARa_TRANS_dn DTXSID2029874 Fenofibrate YMTINGFKWWXKFG-UHFFFAOYSA-N 49562-28-9 NaN [Noisy data]
3855 ATG_PPARa_TRANS_up DTXSID2029874 Fenofibrate YMTINGFKWWXKFG-UHFFFAOYSA-N 49562-28-9 0.727661 []
3855 ATG_PPRE_CIS_dn DTXSID2029874 Fenofibrate YMTINGFKWWXKFG-UHFFFAOYSA-N 49562-28-9 NaN []
3855 ATG_PPRE_CIS_up DTXSID2029874 Fenofibrate YMTINGFKWWXKFG-UHFFFAOYSA-N 49562-28-9 1.191227 []
255 NVS_NR_hPPARa DTXSID2029874 Fenofibrate YMTINGFKWWXKFG-UHFFFAOYSA-N 49562-28-9 NaN []

TG-GATES
Based on the chemicals of interest, all transcriptomics datasets from
TG-GATES are queried that are the result of exposure to those chemi-
cals.

[14]: columns = [
("Compound", "$.Compound.Name"),
("InChI Key", "$.Compound.\"InChI Key\""),
("CAS", "$.Compound.CAS"),
("Organism", "$.Assay.Organism"),
("Organ", "$.Assay.Organ"),
("Study type", "$.Assay.\"Study type\""),
("Dose", "$.Assay.Exposure.Dose"),
("Dosing", "$.Assay.Dosing"),
("Duration", "$.Assay.Exposure.Duration"),
("Duration unit", "$.Assay.Exposure.\"Duration unit\""),

]

cquery = None
for compound in compoundstable[’InChIKey’].values:

if cquery is None:
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cquery = Q.fuzzy_search(Q.column(’InChI Key’),
↪→compound)

else:
cquery = cquery | Q.fuzzy_search(Q.column(’InChI

↪→Key’), compound)

condition = Q.search_anywhere("TG-GATES") & Q.
↪→search_anywhere("FOLD_CHANGES") & (cquery)

TGGATES = api.get_published_datasets(limit=api.
↪→get_raw_datasets(limit=0, columns=columns,
↪→condition=condition)[’total’], columns=columns,
↪→condition=condition)

TGGATES[’Duration2’] = TGGATES[’Duration’].map(str) +
↪→TGGATES[’Duration unit’]

TGGATES[’Duration’] = TGGATES[’Duration2’]
TGGATES = TGGATES.drop([’Duration2’,’Duration unit’], axis=1)
TGGATES = TGGATES.sort_values(by=[’InChI Key’])
TGGATES

[14]:
id version dataset Compound InChI Key CAS Organism Organ Study type Dose Dosing Duration
7285e2a4-dd0d
-4585-83b6-a25
8ed097042

1
<PublishedDataset ’728...
gemfibrozil_Rat_Liver_in vivo_Repeat_
15_day_high_FOLD_CHANGES>

gemfibrozil
InChIKey=
HEMJJKBWTPKOJG-UHFFFAOYSA-N

25812-30-0 Rat Liver in_vivo high Repeat 15day

cb29047e-7d5f
-45a2-94ab-510
406abc89e

1
<PublishedDataset ’cb2...
gemfibrozil_Rat_Liver_in vivo_Repeat_
29_day_low_FOLD_CHANGES>

gemfibrozil
InChIKey=
HEMJJKBWTPKOJG-UHFFFAOYSA-N

25812-30-0 Rat Liver in_vivo low Repeat 29day

44307c2a-ee3d
-4d01-9ef2-455
1149eb528

1
<PublishedDataset ’443...
gemfibrozil_Rat_Liver_in vivo_Single_
24_hr_high_FOLD_CHANGES>

gemfibrozil
InChIKey=
HEMJJKBWTPKOJG-UHFFFAOYSA-N

25812-30-0 Rat Liver in_vivo high Single 24hr

78400e01-a092
-45be-9bbd-836
5b924383f

1
<PublishedDataset ’784...
gemfibrozil_Rat_Liver_in vitro_
2_hr_middle_FOLD_CHANGES>

gemfibrozil
InChIKey=
HEMJJKBWTPKOJG-UHFFFAOYSA-N

25812-30-0 Rat Liver in_vitro middle None 2hr

d9fbe763-8eb6
-431c-97a9-6fc
44307d27a

1
<PublishedDataset ’d9f...
gemfibrozil_Human_Liver_in vitro
_2_hr_high_FOLD_CHANGES>

gemfibrozil
InChIKey=
HEMJJKBWTPKOJG-UHFFFAOYSA-N

25812-30-0 Human Liver in_vitro high None 2hr

... ... ... ... ... ... ... ... ... ... ... ...
efeb9b4d-4315
-4e56-b8a3-151
bb4a79e77

1
<PublishedDataset ’efe...
fenofibrate_Rat_Liver_in vivo_
Single_9_hr_low_FOLD_CHANGES>

fenofibrate
InChIKey=
YMTINGFKWWXKFG-UHFFFAOYSA-N

49562-28-9 Rat Liver in_vivo low Single 9hr

96834324-4a34
-4314-bab4-a33
0cf4cefcd

1
<PublishedDataset ’968...
fenofibrate_Rat_Liver_in vivo_Single_
24_hr_middle_FOLD_CHANGES>

fenofibrate
InChIKey=
YMTINGFKWWXKFG-UHFFFAOYSA-N

49562-28-9 Rat Liver in_vivo middle Single 24hr

361abe50-9559
-4033-b614-fc9
13a26b7ae

1
<PublishedDataset ’361...
fenofibrate_Rat_Liver_in vitro_
2_hr_high_FOLD_CHANGES>

fenofibrate
InChIKey=
YMTINGFKWWXKFG-UHFFFAOYSA-N

49562-28-9 Rat Liver in_vitro high None 2hr

128264b2-6bed
-4cfd-9896-90b
7aec50a3f

1
<PublishedDataset ’128...
fenofibrate_Rat_Liver_in vivo_
Single_6_hr_high_FOLD_CHANGES>

fenofibrate
InChIKey=
YMTINGFKWWXKFG-UHFFFAOYSA-N

49562-28-9 Rat Liver in_vivo high Single 6hr

ef2ba55a-7a08
-41f3-878f-624
65cc8c33d

1
<PublishedDataset ’ef2...
fenofibrate_Rat_Liver_in vitro_
24_hr_high_FOLD_CHANGES>

fenofibrate
InChIKey=
YMTINGFKWWXKFG-UHFFFAOYSA-N

49562-28-9 Rat Liver in_vitro high None 24hr

Filtering the datasets
In most cases, TG-GATES contains multiple datasets for the chemicals
of interest, and should therefore be filtered. The next section allows the
filtering of the datasets by the different columns from the TGGATES
table.
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Identify possible values per category

First, all possible values for filters should be identified, summarizing
the TGGATES table for the columns: - Compound - Organism - Organ
- Study type - Dosing - Dose - Duration

Second, a table will be generated with the possible compounds and
their corresponding CAS IDs and InChI Keys.

[15]: #Options for categories
compounds = set(TGGATES[’Compound’].tolist())
organisms = set(TGGATES[’Organism’].tolist())
organs = set(TGGATES[’Organ’].tolist())
studytypes = set(TGGATES[’Study type’].tolist())
dosings = set(TGGATES[’Dosing’].tolist())
doses = set(TGGATES[’Dose’].tolist())
durations = set(TGGATES[’Duration’].tolist())

print(’Data available for compounds: ’+str(compounds))
print(’Data available for organisms: ’+str(organisms))
print(’Data available for organs: ’+str(organs))
print(’Data available for study types: ’+str(studytypes))
print(’Data available for dosings: ’+str(dosings))
print(’Data available for doses: ’+str(doses))
print(’Data available for durations: ’+str(durations))

#Table for compounds and corresponding identifiers
df = pd.DataFrame()
chemdict = {}

for index, row in TGGATES.iterrows():
if not row[’Compound’] in chemdict:

chemdict[row[’Compound’]] = {}
chemdict[row[’Compound’]][’CAS’] = row[’CAS’]
chemdict[row[’Compound’]][’InChI Key’] = row[’InChI

↪→Key’]

df = pd.DataFrame.from_dict(chemdict, orient=’index’)
df

Data available for compounds: {'gemfibrozil', 'fenofibrate',
↪→'WY-14643',
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'clofibrate'}
Data available for organisms: {'Rat', 'Human'}
Data available for organs: {'Kidney', 'Liver'}
Data available for study types: {'in_vivo', 'in_vitro'}
Data available for dosings: {'Repeat', None, 'Single'}
Data available for doses: {'low', 'middle', 'high'}
Data available for durations: {'3hr', '24hr', '6hr', '15day',
↪→'8hr', '4day',

'9hr', '8day', '2hr', '29day'}

[15]: CAS InChI Key
gemfibrozil 25812-30-0 InChIKey=HEMJJKBWTPKOJG-UHFFFAOYSA-N
clofibrate 637-07-0 InChIKey=KNHUKKLJHYUCFP-UHFFFAOYSA-N
WY-14643 50892-23-4 InChIKey=SZRPDCCEHVWOJX-UHFFFAOYSA-N
fenofibrate 49562-28-9 InChIKey=YMTINGFKWWXKFG-UHFFFAOYSA-N

Filter the datasets

The values identified for each column can be used to filter the datasets.

In order to do that, two lists should be filled: - A list of all categories
involved in the filter, corresponding to the column header. This list is
called list_cat - A list of the filter values for all categories included
in the category list. This list is called list_input

Note that the location of the filled values is important. The sequence
of the categories, and their values should correspond between the two
lists. For each category, one filter value can be filled in the filter list.
One can enter as many filters as necessary, from filtering for only the
organism variable to filtering for all possible variables captured in the
TGGATES dataframe. The res_df table contains the dataset(s) that
are used later for pathway analysis.

[16]: list_cat = ["Compound","Organism","Organ","Study
↪→type","Dosing","Dose","Duration"]

list_input = ["gemfibrozil", "Rat", "Liver", "in_vivo",
↪→"Repeat", "high", "8day"]
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filterlist = pd.DataFrame(
{’Category’: list_cat,
’Input’: list_input

})
display(filterlist)

def tg_gates(df, list_cat, list_input):
comb = zip(list_cat, list_input)
sub_df = df
for tup in comb:

sub_df = sub_df[sub_df[tup[0]]==tup[1]]
return sub_df

res_df = tg_gates(TGGATES, list_cat, list_input)
display(res_df)

Category Input
0 Compound gemfibrozil
1 Organism Rat
2 Organ Liver
3 Study type in_vivo
4 Dosing Repeat
5 Dose high
6 Duration 8day

id version dataset Compound InChI Key CAS Organism Organ Study type Dose Dosing Duration

e45c8706-010e
-4597-b490-df1
38f57f06e

1

<PublishedDataset ’e45...
gemfibrozil_Rat_Liver_
in vivo_Repeat_8_day_
high_FOLD_CHANGES>

gemfibrozil
InChIKey=
HEMJJKBWTPK
OJG-UHFFFAOYSA-N

25812-30-0 Rat Liver in_vivo high Repeat 8day

[22]: deg = []
for index, row in res_df.iterrows():

file = row[’dataset’].get_data(limit=100000)
assay_deg = file[((file[’logFC’] > 1) | (file[’logFC’] <

↪→-1)) & (file[’P.Value’] < 0.05) ][’ENTREZID’].unique().
↪→tolist()

if len(assay_deg) > 0:
for gene in assay_deg:

deg.append(gene)

131



Chapter 6. AOPLink Jupyter Notebook

print(’Number of differentially expressed genes:
↪→’+str(len(deg)))

degforpwanalysis = set(deg)

Number of differentially expressed genes: 50

WikiPathways RDF
Service description
WikiPathways is a community-driven molecular pathway database,
supporting wide-spread topics and supported by many databases and
integrative resources. It contains semantic annotations in its pathways
for genes, proteins, metabolites, and interactions using a variety of ref-
erence databases, and WikiPathways is used to analyze and integrate
experimental omics datasets (Slenter et al., 2017). Furthermore, human
pathways from Reactome (Fabregat et al., 2018), another molecular
pathway database, are integrated with WikiPathways and are there-
fore part of the WikiPathways RDF (Waagmeester et al., 2016). On the
OpenRiskNet e-infrastructure, the WikiPathways RDF, which includes
the Reactome pathways, is exposed via a Virtuoso SPARQL endpoint.

Implementation
The first section is to find all molecular pathways in WikiPathways
that contain the genes of interest, by matching the results of a SPARQL
query to the list of genes found with the AOP-DB RDF. The SPARQL
query extracts all Entrez gene IDs from all pathways in WikiPathways.
When overlap between those lists are found, the pathway ID is stored
in a dataframe along with its title, and organism.

The next section is for extracting all pathways for the species of in-
terest, along with all genes present. These are used later for pathway
analysis with the data extracted from TG-GATES through the Edel-
weissData explorer.
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[23]: sparqlquery = ’’’
SELECT DISTINCT (str(?wpid) as ?Pathway_ID) (str(?

↪→PW_Title) as ?Pathway_title) (fn:substring(?
↪→ncbiGeneId,33) as ?Entrez) ?organism

WHERE {
?gene a wp:GeneProduct; dcterms:identifier ?id; dcterms:

↪→isPartOf ?pathwayRes; wp:bdbEntrezGene ?ncbiGeneId.

?pathwayRes a wp:Pathway; dcterms:identifier ?wpid; dc:
↪→title ?PW_Title; wp:organismName ?organism.}

’’’
wikipathwayssparql.setQuery(sparqlquery)
wikipathwayssparql.setReturnFormat(JSON)
results = wikipathwayssparql.query().convert()

def intersection(lst1, lst2):
lst3 = [value for value in lst1 if value in lst2]
return lst3

WikiPathwaysGenes = {}
WikiPathwaysNames = {}
WikiPathwaysOrganism = {}
for result in results["results"]["bindings"]:

WikiPathwaysGenes[result["Pathway_ID"]
["value"]] = set([])

for result in results["results"]["bindings"]:
WikiPathwaysGenes[result["Pathway_ID"]
["value"]].add(result["Entrez"]["value"])

for result in results["results"]["bindings"]:
WikiPathwaysNames[result["Pathway_ID"]
["value"]] = result["Pathway_title"]["value"]

for result in results["results"]["bindings"]:
WikiPathwaysOrganism[result["Pathway_ID"]
["value"]] = result["organism"]["value"]

for lst in WikiPathwaysGenes:
genematch = intersection(WikiPathwaysGenes[lst], Genes)
WikiPathwaysGenes[lst] = [WikiPathwaysNames[lst],

↪→WikiPathwaysOrganism[lst], genematch, len(genematch)]
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WPtable = pd.DataFrame.from_dict(WikiPathwaysGenes,
↪→orient=’index’, columns=[’Pathway_title’, ’Organism’,
↪→’Entrez Gene’,’nGenes’])

WPtable = WPtable[WPtable. nGenes >= 1]
WPtable = WPtable.drop(columns=’nGenes’)
display(WPtable)

Pathway_title Organism Entrez Gene
WP1797 Circadian Clock Homo sapiens [5465]
WP3370 RORA activates gene expression Homo sapiens [5465]
WP299 Nuclear Receptors in Lipid Metabolism and Toxicity Homo sapiens [5465]
WP4721 Eicosanoid metabolism via Lipo Oxygenases (LOX) Homo sapiens [5465]
WP4447 SUMOylation of intracellular receptors Homo sapiens [5465]

WP4720
Eicosanoid metabolism via Cytochrome P450
Mono-Oxygenases (CYP) pathway

Homo sapiens [5465]

WP2011 SREBF and miR33 in cholesterol and lipid homeostasis Homo sapiens [5465]
WP2882 Nuclear Receptors Meta-Pathway Homo sapiens [5465]
WP3594 Circadian rhythm related genes Homo sapiens [5465]
WP4396 Nonalcoholic fatty liver disease Homo sapiens [5465]
WP431 Nuclear receptors in lipid metabolism and toxicity Mus musculus [19013]
WP2084 SREBF and miR33 in cholesterol and lipid homeostasis Mus musculus [19013]
WP2316 PPAR signaling pathway Mus musculus [19013]
WP447 Adipogenesis genes Mus musculus [19013]
WP509 Nuclear Receptors Mus musculus [19013]
WP1099 Nuclear receptors in lipid metabolism and toxicity Canis familiaris [403654]
WP1105 Adipogenesis Canis familiaris [403654]
WP1184 Nuclear Receptors Canis familiaris [403654]
WP1541 Energy Metabolism Homo sapiens [5465]
WP2706 Activation of gene expression by SREBF (SREBP) Homo sapiens [5465]
WP3942 PPAR signaling pathway Homo sapiens [5465]
WP2878 PPAR Alpha Pathway Homo sapiens [5465]
WP3355 BMAL1:CLOCK,NPAS2 activates circadian gene expression Homo sapiens [5465]
WP170 Nuclear Receptors Homo sapiens [5465]
WP2881 Estrogen Receptor Pathway Homo sapiens [5465]

WP2797
Regulation of lipid metabolism by Peroxisome
proliferator-activated receptor alpha (PPARalpha)

Homo sapiens [5465]

WP236 Adipogenesis Homo sapiens [5465]
WP3331 Mitochondrial biogenesis Homo sapiens [5465]
WP1822 Generic Transcription Pathway Homo sapiens [5465]
WP139 Nuclear receptors in lipid metabolism and toxicity Rattus norvegicus [25747]
WP217 Nuclear Receptors Rattus norvegicus [25747]
WP155 Adipogenesis Rattus norvegicus [25747]
WP2751 Transcriptional regulation of white adipocyte differentiation Homo sapiens [5465]

Extracting patways for pathway analysis
Prior to extracting pathways, the species of interest should be stored
in a variable. Note that this should be the latin species name, and
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corresponding to the filtered dataset(s) from TG-GATES.

[24]: OrganismFilter = ’Rattus norvegicus’

[25]: sparqlquery = ’’’
SELECT DISTINCT (str(?wpid) as ?Pathway_ID) (str(?

↪→PW_Title) as ?Pathway_title) (fn:substring(?
↪→ncbiGeneId,33) as ?Entrez)

WHERE {
?gene a wp:GeneProduct; dcterms:identifier ?id; dcterms:

↪→isPartOf ?pathwayRes; wp:bdbEntrezGene ?ncbiGeneId.

?pathwayRes a wp:Pathway; dcterms:identifier ?wpid; dc:
↪→title ?PW_Title; wp:organismName
↪→"’’’+OrganismFilter+’’’"^^xsd:string.}

’’’
wikipathwayssparql.setQuery(sparqlquery)
wikipathwayssparql.setReturnFormat(JSON)
results = wikipathwayssparql.query().convert()

WikiPathwaysGenes = {}
WikiPathwaysNames = {}
for result in results["results"]["bindings"]:

WikiPathwaysGenes[result["Pathway_ID"]["value"]] =
↪→set([])

for result in results["results"]["bindings"]:
WikiPathwaysNames[result["Pathway_ID"]["value"]] =

↪→result["Pathway_title"]["value"]

for result in results["results"]["bindings"]:
WikiPathwaysGenes[result["Pathway_ID"]["value"]].

↪→add(result["Entrez"]["value"])

for lst in WikiPathwaysGenes:
WikiPathwaysGenes[lst] = [WikiPathwaysGenes[lst],

↪→len(WikiPathwaysGenes[lst])]

WPtable = pd.DataFrame.from_dict(WikiPathwaysGenes,
↪→orient=’index’, columns=[’Genes’, ’nGenes’])

display(WPtable)
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Genes nGenes

WP1286

{154516, 24861, 292155, 25279, 301264, 29738, 311257, 103690051, 302302, 24424,
494499, 81869, 361631, 316325, 574523, 396551, 293779, 116631, 292915, 25426,
65030, 246767, 65185, 24426, 192242, 286954, 305264, 304322, 25147, 24404,
307092, 113992, 299566, 308190, 114846, 108348061, 246245, 24422, 24192, 24902,
26760, 685402, 301517, 100910526, 310848, 24912, 500257, 361510, 295430, 353498,
81676, 25458, 500892, 363618, 310855, 171341, 154985, 29326, 297029, 286921,
58953, 116632, 246247, 24298, 500359, 116686, 100910462, 303218, 293451, 25315,
312495, 84406, 364476, 25428, 83783, 288108, 24296, 114700, 301595, 81924,
360268, 499302, 64352, 171445, 396527, 290623, 300850, 307838, 25086, 25355,
25427, 25146, 29725, 286989, 303669, 289197, 691394, 362228, 24297, 108348148, ...}

143

WP1290

{24508, 24577, 81525, 84359, 29884, 502004, 64547, 24185, 291100, 103694380,
500592, 309165, 100911660, 100360940, 309295, 117279, 25718, 60434, 292892,
364081, 362675, 492821, 25272, 296953, 78963, 687813, 78971, 25166, 83584,
25402, 24842, 316256, 64625, 290749, 114555, 314856, 25385, 312030, 64044, 140923,
24482, 309361, 25008, 64026, 24516, 116502, 314756, 156767, 25625, 103689977,
64314, 266610, 246775, 103690372, 287398, 246097, 362788, 116667, 64041, 294071,
246756, 24887, 246334, 25513, 84351, 316241, 24483, 25493, 60371, 114214, 64639,
63879, 24224, 293624, 311786, 58918, 81736, 306886}

78

WP1278
{84351, 309361, 313121, 116554, 116590, 309452, 29538, 311245, 103694380, 81736,
309165, 81780, 299331, 24481, 360640, 286908, 246756}

17

WP1279

{84581, 288588, 363481, 498109, 116590, 24185, 288533, 690966, 81649, 84577,
297893, 81504, 50658, 292778, 114486, 314322, 84582, 103695118, 81646, 58919,
100363500, 84578, 363287, 84580, 170922, 313845, 306516, 24400, 81674, 83503,
83828, 310784, 117526, 680149, 361580, 682902, 497672, 171150, 307485, 309361,
171104, 117017, 24790, 24516, 25636, 288651, 294236, 81673, 83805, 289561,
294018, 361365, 309224, 294693, 103690054, 291703, 308415, 84351, 363633, 24890,
24224, 170851, 84389, 293621, 367858, 373541, 314612, 314436, 54244, 81736,
170915, 363067, 266713, 303918}

74

WP1282 {368066, 25331, 690050, 300691, 689330, 171347, 24661, 24267, 81676} 9
... ... ...

WP547

{85253, 306761, 24233, 79224, 24946, 25439, 113959, 25619, 24548, 24903, 83580,
24366, 298566, 81750, 116669, 117512, 29251, 25048, 29243, 113936, 295703, 65051,
79126, 288001, 289055, 29333, 29436, 117517, 302470, 25268, 289395, 50692, 24232,
24648, 54249, 24153, 29687, 192262, 313421, 64036, 64459, 24234, 362634, 304917,
155012, 24231, 25584, 287527, 81509, 24441, 25407, 312705, 24617, 24237, 54243,
290757, 84007, 64023, 260320, 25692, 294257}

61

WP505

{25125, 84353, 317376, 50554, 25712, 161452, 59328, 59107, 50658, 25313, 314322,
59086, 85435, 25495, 114208, 24881, 60584, 300054, 311061, 156726, 445442, 29357,
25631, 25296, 24835, 103691556, 311071, 24516, 24373, 81516, 94188, 367264,
25671, 29200, 50689, 25353, 316742, 367218, 25639, 367100, 29591, 83837, 29610,
293621, 367858, 54244, 24617, 81736, 81810, 25124, 170915, 313477, 497010, 84598}

54

WP654
{300711, 25203, 114483, 54237, 25112, 58919, 492821, 78963, 24708, 25402, 24842,
497672, 311562, 116502, 399489, 680110, 114851, 300668, 25729, 24887, 114212,
25309, 362817, 24224, 58918, 298795, 100363502}

27

WP89

{24493, 24471, 64159, 84359, 362456, 117279, 140657, 299625, 313121, 24708, 78963,
116554, 83584, 25402, 29432, 25385, 64044, 24835, 140926, 64026, 24516, 266610,
25591, 103689977, 289014, 287398, 246097, 362491, 315994, 116667, 360748,
114214, 25309, 24224, 58918, 60374, 116685, 100363502, 29431}

39

WP81
{24233, 24232, 362119, 29687, 192262, 312705, 313421, 64036, 362634, 24237,
298566, 64023, 117512, 24231, 117517, 298288}

16
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This section is the actual pathway analysis, using the differentially
expressed genes from TG-GATES, and the molecular pathways from
WikiPathways. With some basic statistics, a Z-score can be calculated
for all pathways. A Z-score above 1.96 is considered significant.

[26]: ngenepres = []
for index, row in WPtable.iterrows():

genepres = []
for gene in row[’Genes’]:

for sig in degforpwanalysis:
if gene == str(sig):

genepres.append(gene)
ngenepres.append(len(genepres))

WPtable[’nSigGenes’] = ngenepres
WPtable[’percentSigGenes’] = (WPtable[’nSigGenes’] /
↪→WPtable[’nGenes’])*100

total = []
for index, row in WPtable.iterrows():

total.append(row[’nSigGenes’])

StandardDeviation = statistics.stdev(total)
ExpectedValue = (sum(total)/len(WPtable))

WPtable[’Zscore’] = (WPtable[’nSigGenes’] - ExpectedValue)/
↪→StandardDeviation

WPtable = WPtable.sort_values(by=[’Zscore’], ascending=False)
WPtable = WPtable[WPtable.Zscore >= 1.96]
display(WPtable)
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Genes nGenes nSigGenes percentSigGenes Zscore

WP1286

{154516, 24861, 292155, 25279, 301264, 29738, 311257, 103690051,
302302, 24424, 494499, 81869, 361631, 316325, 574523, 396551,
293779, 116631, 292915, 25426, 65030, 246767, 65185, 24426, 192242,
286954, 305264, 304322, 25147, 24404, 307092, 113992, 299566,
308190, 114846, 108348061, 246245, 24422, 24192, 24902, 26760,
685402, 301517, 100910526, 310848, 24912, 500257, 361510, 295430,
353498, 81676, 25458, 500892, 363618, 310855, 171341, 154985,
29326, 297029, 286921, 58953, 116632, 246247, 24298, 500359,
116686, 100910462, 303218, 293451, 25315, 312495, 84406, 364476,
25428, 83783, 288108, 24296, 114700, 301595, 81924, 360268,
499302, 64352, 171445, 396527, 290623, 300850, 307838, 25086,
25355, 25427, 25146, 29725, 286989, 303669, 289197, 691394,
362228, 24297, 108348148, ...}

143 4 2.797203 5.401926

WP1307

{170670, 113976, 117243, 25330, 25413, 25288, 364975, 25062, 24849,
94340, 361676, 25014, 117035, 171155, 140547, 24539, 311569, 79223,
311849, 24158, 24538, 289481, 113965, 29367, 117543, 25757, 25287,
114024, 29740, 100911615, 25363, 298942, 64304, 25756, 50682}

35 3 8.571429 3.959527

WP506

{170670, 291468, 113976, 25330, 117243, 25413, 25288, 364975,
25062, 94340, 361676, 25014, 117035, 171155, 24539, 100911186,
311569, 311849, 24158, 289481, 24538, 113965, 29367, 117543, 25757,
25287, 114024, 29740, 100911615, 298942, 25363, 64304, 25756, 50682}

34 3 8.823529 3.959527

WP1297

{29563, 25271, 366791, 310903, 499985, 25703, 24172, 89826, 24705,
29184, 24539, 25086, 361801, 29646, 690953, 83574, 24706, 266603,
100145871, 293049, 25061, 154985, 25056, 155192, 24188, 313689,
116676, 362662, 685072, 246298, 114628, 292915, 432367, 24710,
64047, 25073, 353252, 312495, 100365047, 314264, 83783, 114106}

42 3 7.142857 3.959527

WP419
{170670, 24158, 25363, 113976, 171142, 113965, 117035, 25413,
25288, 64304, 25757, 25287, 114024, 25541, 29740, 113956}

16 3 18.750000 3.959527

WP139

{114700, 84356, 24646, 25270, 81924, 25279, 25664, 313210, 24307,
24891, 25303, 24705, 25086, 83569, 24706, 25682, 65035, 85264,
361523, 154985, 140668, 84385, 685072, 24297, 29277, 114628,
60351, 24873, 58852, 170913, 25428, 25747}

32 2 6.250000 2.517128

WP145
{25384, 24538, 84497, 25675, 300438, 25292, 310900, 25428, 25728,
296371, 25081, 24539, 25073, 24207, 25080, 299858, 81782, 313210,
108348160, 24530}

20 2 10.000000 2.517128

WP2376

{116643, 140727, 85420, 100361457, 116590, 684969, 298947, 29224,
83472, 50658, 24451, 116554, 24424, 310392, 291796, 100158233,
81869, 497672, 24919, 29437, 366960, 29739, 24565, 85421, 24534,
287876, 50689, 497931, 304127, 140668, 24314, 29292, 24426, 361632,
295549, 83688, 25445, 25522, 25150, 58960, 24185, 114846,
108348061, 26760, 114495, 25365, 64188, 24842, 100360087, 679217,
25581, 171379, 25458, 24516, 24252, 171341, 114851, 286921, 85430,
361568, 29326, 297029, 117262, 57298, 116667, 25513, 301252,
301555, 117254, 116686, 170538, 24778, 170851, 25283, 293621,
54349, 54244, 25315, 681050, 84027, 25073, 170915, 83619, 117263,
305540, 24552, 24189, 25023, 29741, 25260, 497932, 24908, 64191,
300711, 100912585, 81649, 289623, 25352, 79255, 65052, ...}

167 2 1.197605 2.517128

WP372

{170670, 113976, 117243, 25330, 25413, 25288, 364975, 25062, 24849,
94340, 361676, 25014, 117035, 171155, 140547, 24539, 311569, 79223,
311849, 24158, 24538, 289481, 113965, 29367, 25757, 25287, 114024,
100911615, 25363, 298942, 64304, 25756, 50682}

33 2 6.060606 2.517128

[33]: SigPathways = list(WPtable.index)
for WP in SigPathways:

print(WP + ’\t’ +WikiPathwaysNames[WP])
print(’\nBased on dataset(s): ’)
display(res_df)

WP1286 Metapathway biotransformation
WP1307 Fatty Acid Beta Oxidation
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WP506 Fatty Acid Beta Oxidation
WP1297 Retinol metabolism
WP419 Mitochondrial LC-Fatty Acid Beta-Oxidation
WP139 Nuclear receptors in lipid metabolism

and toxicity
WP145 Statin Pathway
WP2376 Nuclear factor, erythroid-derived 2,

like 2 signaling pathway
WP372 Beta Oxidation Meta Pathway

Based on dataset(s):

id version dataset Compound InChI Key CAS Organism Organ Study type Dose Dosing Duration
e45c8706-010e
-4597-b490-df1
38f57f06e

1
<PublishedDataset ’e45
gemfibrozil_Rat_Liver_in vivo_
Repeat_8_day_high_FOLD_CHANGES>

gemfibrozil
InChIKey=
HEMJJKBWTPKOJG-UHFFFAOYSA-N

25812-30-0 Rat Liver in_vivo high Repeat 8day

[28]: %load_ext watermark

#python, ipython, packages, and machine characteristics
%watermark -v -m -p sys, pip, SPARQLWrapper, pandas, json,
↪→re, requests, warnings, pyvis, matplotlib, numpy,
↪→IPython, urllib, seaborn, statistics

#dte
print(" ")
%watermark -u -n -t -z

CPython 3.6.3
IPython 7.9.0

sys 3.6.3 (default, May 31 2019, 13:05:43)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-36)]
pip 20.0.1
SPARQLWrapper 1.8.5
pandas 0.25.3
json 2.0.9
re 2.2.1
requests 2.22.0
warnings unknown
pyvis 0.1.7.0
matplotlib not installed
numpy 1.18.1
IPython 7.9.0
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urllib unknown
seaborn not installed
statistics unknown

compiler : GCC 4.8.5 20150623 (Red Hat 4.8.5-36)
system : Linux
release : 3.10.0-1062.1.2.el7.x86_64
machine : x86_64
processor : x86_64
CPU cores : 60
interpreter: 64bit

last updated: Thu Jan 23 2020 14:00:14 UTC

[31]: sparqlquery = ’’’
SELECT ?originaldata
WHERE{
?dataset a void:Dataset ;
pav:createdWith ?originaldata .
}’’’
aopwikisparql.setQuery(sparqlquery)
aopwikisparql.setReturnFormat(JSON)
results = aopwikisparql.query().convert()

Result = results["results"]["bindings"][0]
[’originaldata’]["value"]

print("The underlying dataset for AOP-Wiki RDF: "+ Result)

The underlying dataset for AOP-Wiki RDF:
↪→aop-wiki-xml-2019-07-01

[35]: sparqlquery = ’’’
select distinct ?dataset ?date where {
?dataset a void:Dataset ;
pav:createdOn ?date .

}’’’
wikipathwayssparql.setQuery(sparqlquery)
wikipathwayssparql.setReturnFormat(JSON)
results = wikipathwayssparql.query().convert()

Result = results["results"]["bindings"][0]
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[’dataset’]["value"]
Date = results["results"]["bindings"][0]

[’date’]["value"]

print("The WikiPathways RDF used in this notebook: "+Result+
↪→" created on "+ Date)

The WikiPathways RDF used in this notebook:
http://data.wikipathways.org/20191210/rdf/ created on
↪→2019-12-09T23:28:23.591Z
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Chapter 7. Molecular Adverse Outcome Pathways

Abstract
Adverse Outcome Pathways (AOPs) provide mechanistic insights into
toxicological processes and can facilitate a potential replacement for
animal studies with in vitro testing systems. However, the majority
of Key Events (KEs) in AOP-Wiki describe molecular and cellular pro-
cesses, which can be difficult to assess using current toxicology meth-
ods. Omics technologies, such as transcriptomics, offer a promising
approach but have not yet been widely accepted for regulatory risk
assessments due to their complexity and lack of consensus on stan-
dardization, analysis, and interpretation. In this paper, we propose the
use of molecular AOPs to connect KEs of the AOP-Wiki with curated
biological pathways in WikiPathways, enabling the analysis and inter-
pretation of transcriptomics data to identify KE activation. We demon-
strate the utility of this approach through case studies on liver steatosis
and mitochondrial complex I inhibition, where molecular AOPs were
developed and transcriptomics datasets were selected. By mapping
and analyzing the data, we were able to verify the activation of spe-
cific MIEs and KEs and assess progression across the AOP. Our find-
ings show that transcriptomics data can be used to identify the poten-
tial activation of KEs, but extensive datasets are required to fully test
the capabilities of molecular AOPs. Additionally, linking molecular
pathways and KEs can be challenging, and further refinement is nec-
essary to optimize this approach. Despite these challenges, our results
suggest that molecular AOPs have the potential to provide valuable
insights into toxicological processes and improve the use of transcrip-
tomics data in regulatory risk assessments.
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7.1 Introduction
Adverse Outcome Pathways (AOPs) have become useful tools in risk
assessments, as they provide a broad overview of events preceding a
detrimental outcome. As such, they span multiple biological organiza-
tion levels, from the molecular level to the effects on a whole organism
or even population. These types of pathways consist of three main con-
cepts: Molecular Initiating Events (MIEs), Key Events (KEs), and Ad-
verse Outcomes (AO). KEs are also linked with one another through
Key Event Relationships (KERs), from molecular interactions to pop-
ulation dynamics [1]. The KEs in an AOP are not always sufficient on
their own to lead to an AO. However, the strength of the KE concept
lies in that they are scientifically approved events that are essential
to happen in the progression of the AOP. To be a well-defined AOP,
the originating events from molecular interactions (i.e., MIE) should
have a causal, measurable, and biologically plausible link towards an
AO [2, 3]. With the evaluation of newly developed AOPs, one consid-
ers tailored Bradford-Hill criteria, in which the causality of observed
association in epidemiological studies is determined [4]. This method
considers biological plausibility, essentiality, and empirical support for
these findings [4].

The practical aspect of AOPs is that they are an integral tool of risk
assessment, where they act as scaffolds to collect and structure toxico-
logical information at differing levels of biological organization, used
to determine various apical AOs effectively after exposure to a stres-
sor [1, 5]. This is also an essential part of Integrated Approaches to
Testing and Assessment (IATA), which can include combinations of
methods and integrating results of various types. AOPs can be used as
a backbone to develop IATA [6].

However, current research is also focused on the quantification of
AOPs in addition to the descriptive mechanisms, as risk assessors
typically use numbers and thresholds to study the safety of substances
and chemicals [7–10]. These quantitative AOPs can be developed
from qualitative AOPs, providing the quantitative descriptors or
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annotations for KEs and KERs, and can serve as predictors of
adversity [7]. With the rise of genomic technologies and better
biological system modelling, it is easier to hypothesize or develop
new AOPs [11–14].

The value of transcriptomics data in toxicological research is
promising, and the technologies to produce the data are getting
cheaper, faster and protocols better established [15–17]. However,
transcriptomics technologies are not widely implemented in risk
assessments [15]. This is due to the challenges in assessing and
interpreting transcriptomics, and hurdles that exist in the general
acceptance of transcriptomics data. For example, there is no
consensus on the standardisation, reproducibility and experimental
setup of the technologies and whether these can be validated against
other, well-established approaches for measuring gene expression
changes. Furthermore, interpreting the data, distinguishing adaptive
and adverse responses, investigating cause and consequence, and
the amount of data required to make conclusions are challenges that
remain to be solved for working with transcriptomic data [12, 14, 18].
Some of these issues, such as the distinguishing between adaptive,
adverse, causative and consequential biological processes, are a key
feature of AOPs and therefore help to make these distinctions based
on our biological understanding.

For example, integrative approaches of publicly available data have
been applied to develop AO networks of biological pathways and dis-
eases which implement transcriptomics data [19], leading to its sup-
port of evidence in risk assessments. Also, the integration of tran-
scriptomics data has been studied for adverse pulmonary effects [13,
20]. The Organisation for Economic Co-operation and Development
(OECD) has recently published a formal reporting framework to tackle
the challenges of transcriptomics and metabolomics technologies in
risk assessment applications. These provide guidance on the execu-
tion and reporting of data generation, processing, analysis, methodol-
ogy and metadata [21].
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It is expected that the combination of molecular pathways and AOPs
allows the use of transcriptomics data for the measurement of KEs in
AOPs and AOP Networks [12, 22]. Whereas biomarker genes and pro-
teins exist for the validation of KEs, we believe that more elaborate
molecular pathways can provide more meaningful evidence of KE ac-
tivation using transcriptomics data [23–25]. Also, the connection be-
tween AOPs and molecular pathways offers additional insights into
the molecular mechanisms underlying the more general KEs [26] and
supports the biological plausibility of KERs.

This paper will focus on two AOPs that are well-established and have
been studied extensively for application in risk assessments. The first
one is an AOP network of liver steatosis. This AOP is particularly
well-studied AOP for applications of computational approaches and
data integration, and can be initiated through interactions with vari-
ous nuclear receptors [27–30]. The network is well-defined, and the
receptor-specific MIEs allow the investigations of known agonists and
antagonists of the receptors. This AOP network has been used to study
a range of transcriptomics datasets of multiple chemicals known to
activate specific MIEs [19, 31]. The second AOP that this paper will
look into is the AOP of mitochondrial complex I inhibition leading to
Parkinsonian motor deficits, part of a larger AOP network of mito-
chondrial inhibition leading to AOs in multiple organs including the
brain, liver, and kidneys [32]. A wide array of well-known chemi-
cals are known to interact with the electron transport chain or mem-
brane potential and disturb the production of ATP inside the mito-
chondria [33, 34]. While multiple downstream KEs are described for
this, the most important KEs central in the AOPs are oxidative stress,
unfolded protein response, and induction of cell death, described as
downstream effects of mitochondrial complex I inhibition. This also
counts for the well-established AOP of Parkinsonian motor deficits
caused by mitochondrial complex I inhibitors [35, 36].

This paper provides a new method of applying transcriptomics data
analyses and interpretations in the framework of AOPs. By doing so,
the implementation of such data in risk assessment studies can be fa-
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cilitated. To illustrate the value of this method, two case studies are
performed, including the liver steatosis AOP Network and the AOP of
mitochondrial complex I inhibition AOP leading to Parkinsonian mo-
tor deficits.

7.2 Methods
7.2.1 Development of molecular AOP
To model molecular AOPs, PathVisio 3.3.0 [37] was used to draw and
upload the molecular AOPs to WikiPathways [38], where they were
tagged and stored in the AOP Portal (aop.wikipathways.org,
Figure 7.1). For the two case studies presented in this manuscript,
the AOP-Wiki and relevant literature were used to construct AOPs.
For each KE of the AOP, corresponding molecular pathways were
identified in WikiPathways or, when necessary, developed based
on the available scientific literature. The molecular AOPs exist as
chains of Key Event nodes where each KE was annotated with the
corresponding AOP-Wiki KE identifiers if available, linked with
directed interactions representing KERs. Attached to the Event
nodes are molecular pathway nodes containing identifiers of existing
pathways in WikiPathways, using undirected interactions (see
Figure 7.2).

7.2.2 Datasets
To illustrate the implementation of gene expression data in molecu-
lar AOPs, publicly available datasets were selected in GEO [39] (see
Table 7.1). Gene expression data of primary Human hepatocytes ex-
posed to three Pregnane X Receptor (PXR) agonists from GEO dataset
GEO:GSE90122 [40] was used in the case study of liver steatosis to ex-
plore and compare the effects of agonists of the PXR receptor, one of
the MIEs of the liver steatosis AOP network. To explore the effect of
time of exposure on gene expression in the liver steatosis case study,
we also used data of HepaRG cells exposed to GW3965 (Liver X Re-
ceptor (LXR) agonist) from GEO dataset GEO:GSE123053 [41]. For a
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Figure 7.1: The AOP Portal on WikiPathways.org. On the portal, the AOP community can col-
laborate and comment on molecular AOPs and toxicity pathways.

Figure 7.2: Conceptual illustration of a molecular AOP in WikiPathways. Black boxes are Key
Events nodes, and green rounded nodes are Pathway nodes.

second case study of mitochondrial complex I inhibition, gene expres-
sion data from LUHMES cells (embryonic neuronal precursor cells) ex-
posed to rotenone (mitochondrial complex I inhibitor) from the GEO
dataset GEO:GSE116280 [42] was used to explore the effects of both
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time and dose on gene expression using molecular AOP. All datasets
originated from GEO and were processed with GEO2R [43] to gener-
ate Log2 Fold Change (Log2FC) values and perform statistical tests
to generate p-values for all reads in the comparison of samples with
chemical exposure and without chemical exposure. Next, a custom
Jupyter notebook was executed to calculate the average Log2FC val-
ues for each individual gene and Fisher’s combined probability test
was used to calculate p-values for each gene.

Table 7.1: Overview of datasets used and detailed information on relevant samples.
GEO Accession Chemical Cell type Samples Reference

number
GEO:GSE90122 Rifampicin Primary Human 1 μM, 48h, n=3 Lin et al., 2017

PXR agonist Hepatocytes
GEO:GSE90122 SR12813 Primary Human 100nM, 48h, n=3 Lin et al., 2017

PXR agonist Hepatocytes
GEO:GSE90122 T0901317 Primary Human 30nM, 48h, n=3 Lin et al., 2017

LXR/PXR agonist Hepatocytes
GEO:GSE124053 GW3965 HepaRG 2 μM, 4h / 24h, n=3 Wigger et al., 2019

LXR agonist
GEO:GSE116280 Rotenone LUHMES 50nM / 100nM, Harris et al., 2018

Mitochondrial 12h / 24h, n=3
Complex I inhibitor

7.2.3 Cytoscape for AOP Network and data visualisation
In Cytoscape (version 3.8.2), the WikiPathways app (version 3.3.7) is
used to import the molecular AOPs from WikiPathways as networks.
Next, the network was extended with gene identifiers using the
CyTargetLinker app (version 4.1.0) [44] with the WikiPathways
Linkset (downloaded from cytargetlinker.github.io/
pages/linksets/wikipathways, version 20210110). A custom
visualisation was applied to distinguish Key Event nodes (orange
diamonds) and pathway nodes (yellow squares).

Next, all datasets were imported into Cytoscape, and data were visu-
alised on the gene nodes. These were colored with a blue-white-red
gradient to represent the Log2FC values, where blue and red colors in-
dicate the down- and upregulation respectively and white indicates no
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change. Node borders are highlighted in green for significantly altered
expression levels (p-value < 0.05).

With the data visualised, the remaining genes without available data
were removed for clarity and interpretation, although these could also
inform which genes were missing in the dataset. Also, in the case of
the steatosis AOP network, the AOP was trimmed from irrelevant KEs
which were not directly involved with the chemicals that were studied.

7.2.4 Scoring Key Events
To quantify and assess the activation of KEs, the Enrichment Score
(ES) is calculated based on the number of significantly affected genes
present in molecular pathways linked to each of the KEs in the AOP
against all measured genes linked to each KE, compared to the whole
data set which was taken as the background. This is done using the
formula

Enrichment Score =
Target %

Background %
=

b
B
n
N

where:

n = number of differentially expressed genes in pathways linked to KE
N = total number of genes in pathways linked to KE
b = number of differentially expressed genes in the whole dataset
B = total number of genes in the whole dataset

Furthermore, a hyper-geometric p-value was calculated to indicate the
statistical significance (p-value < 0.05) of the enriched pathways (ES >
1). The p-value was calculated using the formula

P (x) =
n
b ∗ N−n

B−b
N
B

where:
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n = number of differentially expressed genes in pathways linked to KE
N = total number of genes in pathways linked to KE
b = number of differentially expressed genes in the whole dataset
B = total number of genes in the whole dataset

7.2.5 Pathway data visualisation
For further exploration of the biological roles of differentially
expressed genes, PathVisio was used to visualise the data on the
molecular pathways linked to activated KEs. The same as for the
molecular AOP in Cytoscape, the Log2FC values were visualised
using a blue-white-red gradient in the left side of nodes where blue
and red colors indicate the down- and upregulation respectively.
Similarly, significance was visualised by a bright green color on the
right side.

7.3 Results
In order to analyse the transcriptomic data in the case studies,
molecular AOPs were developed for the AOP network of hepatic
steatosis caused by multiple MIEs (wikipathways:WP4010,
identifiers.org/wikipathways:WP4010) and the AOP of mitochondrial
complex I inhibition leading to Parkinsonian motor deficits
(wikipathways:WP4945, identifiers.org/wikipathways:WP4945).

7.3.1 Case study 1: liver steatosis
The molecular AOP network for liver steatosis consists of 30 KE nodes
and 20 molecular pathways. In total, 578 unique genes were mapped
to 20 of the KEs through the molecular pathways. The most prevalent
gene in KEs of the AOP network is RXRA, being part of 8 of the molec-
ular pathways. It codes for the Retinoid X Receptor, one of the nuclear
receptors involved in MIEs in the AOP network of liver steatosis.
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For the datasets of PXR agonists, the PXR section of the liver steatosis
AOP network was used for data visualisation and calculation of the KE
enrichment scores (Figures 7.3, 7.4, and 7.5). In this subnetwork, eleven
KEs were linked to seven molecular pathways, containing 150 unique
genes that were measured in the datasets of PXR agonists. The KE
with the highest relative number of genes with significantly affected
expression levels across the datasets of PXR agonists is the KE245:
"PXR activation" and corresponding pathway wikipathways:WP2876,
with thirteen out of 28 genes (48%) on average having significantly
changed expression levels after exposure to one of the PXR agonists
(Figure 7.6). This KE also has the highest enrichment scores of 12.83,
9.29, and 6.31 after exposure to Rifampicin, SR12813 and T0901317, re-
spectively (Table 7.2). The downstream KEs do not show consistency
among the three PXR agonist data sets. The dataset of T0901317 ex-
posure notably shows a significant enrichment of most KEs except the
on fatty acid lysis. Also of interest is the significant overexpression of
most of the prevalent (hub) genes of the network, including ACSL1,
ACSL3, ACSL4, FASN, and ACACA, linked to at least three of the KEs
in the network.

Table 7.2: Enrichment Scores for KEs by PXR agonists. Significance is indicated with an asterisk.
Key Event Pathway Rifampicin SR12813 T0901317

KE245: PXR activation WP2876: Pregnane X 12.83* 9.29* 6.31*
Receptor pathway

KE471: FoxA2 inhibition WP5066: Foxa2 Pathway 4.79* 2.89 3.31*
KE474: HMGCS2 Down WP4718: Cholesterol 0.53 3.85* 2.94*

Regulation metabolism
KE860: Decreased WP368: Mitochondrial - 3.40 3.25*

Mitochondrial Fatty Acid LC-Fatty Acid
Beta Oxidation Beta-Oxidation

KE115: Increased WP5061: Fatty acid - - 3.07*
FA Influx transporters

KE89: De Novo WP357: Fatty Acid - 2.63 5.01*
FA Synthesis Biosynthesis

Fatty Acid Lysis WP3965: Lipid 0.83 1.00 1.90
Metabolism Pathway

Next to the PXR agonists, the second dataset was used to explore the
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Figure 7.3: Gene expression data after Rifampicin exposure visualised on PXR AOP. Red and
blue indicate up- and downregulation of gene expression (Log2FC), respectively. Green borders
indicate significance (p-value < 0.05).

effects of the LXR agonist GW3965 at different time points on the liver
steatosis AOP. The AOP network starts with the MIE of LXR activation
and includes all downstream KEs, leading to a new AOP network of
six KEs, of which four were linked to five molecular pathways. In to-
tal, 226 unique genes were part of the network and were measured in
the dataset. The gene that is involved in most KEs was FASN, which
is present in all five pathways, followed by SCD and SREBF1 which
were part of four of the molecular pathways (Figures 7.7 and 7.8). A
major difference between the time points is the number of significantly
altered genes across the AOP, where nine genes are differentially ex-
pressed at four hours of exposure, and 27 genes at 24 hours of expo-
sure. At four hours, the majority of the gene expression changes hap-
pen to the highly connected genes.

From the data on the LXR AOP, it can be noted that the MIE of LXR
activation and the KE of Fatty Acid Biosynthesis were significantly
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Figure 7.4: Gene expression data after SR12813 exposure visualised on PXR AOP. Red and blue
indicate up- and downregulation of gene expression (Log2FC), respectively. Green borders indi-
cate significance (p-value < 0.05).

enriched at both time points (Table 7.3). However, the largest KE
of SREBP-1c activation, linking to 113 genes, is only significantly
enriched at 24h of exposure to GW3965. This difference is most visible
in the SREBP pathway, whereas the AMPK pathway does not differ
between the time points.

Table 7.3: Enrichment Scores of KEs after exposure to GW3965 (LXR agonist). Significance is
indicated with an asterisk

Key Event Pathway(s) GW3965 GW3965
4h 24h

KE167: LXR activation WP2874: Liver X Receptor Pathway 12.31* 11.46*
KE66: ChREBP WP3915: Angiopoietin Like Protein 8 1.72 1.60

activation Regulatory Pathway
KE264: SREBP-1c WP1982: SREBP signaling 1.63 3.88*

activation WP1403: AMPK signaling
KE89: De Novo FA WP357: Fatty Acid Biosynthesis 6.71* 11.72*

synthesis
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Figure 7.5: Gene expression data after T0901317 exposure visualised on PXR AOP. Red and
blue indicate up- and downregulation of gene expression (Log2FC), respectively. Green borders
indicate significance (p-value < 0.05).

7.3.2 Case study 2: mitochondrial inhibition
The second case study was focused on the AOP of mitochondrial com-
plex I inhibition leading to Parkinsonian motor deficits. The developed
molecular AOP contains seven KE nodes and seven pathway nodes.
When extended using CyTargetLinker, a total of 199 gene nodes are
added to the molecular AOP network and are measured in the datasets
of Rotenone exposure to LUHMES cells. Of all the genes in this net-
work, approximately 25% show significantly altered gene expression
levels upon exposure to Rotenone.

The datasets for rotenone on LUHMES cells were visualised and they
show the significantly altered gene expression for all KEs, where 50nM
dose exhibits a stronger effect in the early KEs of mitochondrial com-
plex I and oxidative phosphorylation, and the 100nM dose causes a
higher number of gene expression changes in the AO of Parkinsonian
motor deficits (Figures 7.10 and 7.11). The only KEs that are signifi-
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Figure 7.6: Gene expression data visualised on wikipathways:WP2876 (Pregnane X receptor
pathway) for the three PXR agonists. From left to right, data is visualised for Rifampicin,
SR12813 and T0901317, in sets of Log2FC and p-values. Red and blue indicate the up- and down-
regulation of gene expression (Log2FC). Bright green marks indicate significance (p-value < 0.05).

cantly enriched are the binding and inhibiting of mitochondrial com-
plex I at 50nM Rotenone exposure (Table 7.4).
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Figure 7.7: Gene expression data after 4 hour exposure to GW3965 (LXR agonist) visualised on
LXR AOP. Red and blue indicate up- and downregulation of gene expression (Log2FC), respec-
tively. Green borders indicate significance (p-value < 0.05).

Figure 7.8: Gene expression data after 24 hour exposure to GW3965 (LXR agonist) visualised
on LXR AOP. Red and blue indicate up- and down-regulation of gene expression (Log2FC),
respectively. Green borders indicate significance (p-value < 0.05).
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Figure 7.9: Gene expression data after exposure to GW3965 (LXR agonist) visualised on the
SREBP signaling pathway (wikipathways:WP1982). The left side of each data node represents
data from 4h exposure, and the right side represents the data from 24h exposure. Red and blue
indicate the up- and down-regulation of gene expression (Log2FC). Bright green marks indicate
significance (p-value < 0.05).

Figure 7.10: Rotenone (50nM) data visualised on mitochondrial complex I inhibition AOP. Red
and blue indicate the up- and downregulation of gene expression (Log2FC). Bright green marks
indicate significance (p-value < 0.05)
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Figure 7.11: Rotenone (100nM) data visualised on mitochondrial complex I inhibition AOP.
Red and blue indicate the up- and downregulation of gene expression (Log2FC). Bright green
marks indicate significance (p-value < 0.05)
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7.4 Discussion
With this work, we have created the molecular counterparts of AOPs,
tightly linked to matching AOPs in the AOP-Wiki through the link-
ing of molecular pathways explicitly to KEs. The addition of molecu-
lar pathways to KEs to analyse transcriptomic data allows a broader
sense of the effects of toxicants when compared to biomarkers for pro-
cess activation, which most often provide limited information and are
used to measure a single KE. Therefore, these molecular AOPs can be
used to get a more thorough understanding of traditional AOPs by ex-
ploring molecular pathway models, but they also provide a method of
visualising and analysing omics datasets, which was explored in this
manuscript.

When looking at gene expression changes upon exposure to a toxicant,
the predictive value of each individual gene in the network could dif-
fer. This is where pathway models can provide additional insights into
the overall connectivity of genes and their roles in pathways [45, 46].

Table 7.4: Enrichment Scores for KEs by exposure to Rotenone at 50nM and 100nM. Signifi-
cance is indicated with an asterisk

Key Event Pathway(s) Rotenone Rotenone
50nM 100nM

KE888: Binding of inhibitor, WP4324: Assembly of 1.38* 0.93
Complex I mitochondrial complex I

KE887: Inhibition, WP4324: Assembly of 1.38* 0.93
Complex I mitochondrial complex I

KE177: Mitochondrial WP111: Electron transport chain 1.21 0.90
dysfunction

KE889: Impaired, WP4918: Cellular proteostasis 0.94 1.01
Proteostasis WP4925: Unfolded protein

response
KE890: Degeneration of WP2855: Dopaminergic 0.73 0.67
dopaminergic neurons neurogenesis

KE188: Neuroinflammation WP4919: Neuroinflammation 0.71 0.97
KE896: Parkinsonian s WP2371: Parkinson’s 0.59 1.08

motor deficit disease pathway

The first case study was focused on the liver steatosis AOP, a widely
studied and well-established AOP [27, 28, 47, 48], starting with a range
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of nuclear receptors known to be involved in maintaining lipid balance
in the liver, including LXR, PXR, PPAR, and CAR, among others [48].
With the case study, we showed that molecular AOPs can be used to
visualise transcriptomic datasets and perform enrichment analyses of
KEs. Based on the results, we can clearly identify the activated MIEs
and make comparisons between chemicals or exposure scenarios. For
example, the dataset of GW3965 could be used to investigate the dif-
ferences in gene expressions at two time points. By performing an en-
richment analysis, many processes can be assessed simultaneously and
generate hypotheses of KE activation.

Although the molecular AOP can highlight which KEs are affected
based on pathway-level gene expression changes, the mapping of KEs
to molecular pathways does not always fill its purpose. Some of the
KEs in the liver steatosis AOP network are described in AOP-Wiki as
single gene expression changes, rather than processes being affected.
For example, the expression level of HMGCS2, which plays an essen-
tial role in cholesterol metabolism and ketogenesis [49], is significantly
decreased after exposure to T0901317 and Rifampicin. However, since
the focus of our analysis lies on the molecular pathways to expand
our biological understanding, the KE is only regarded as significantly
enriched within the dataset of T0901317 exposure. This can be a limita-
tion for KEs that have a clear transcriptional marker gene or gene set,
or KEs that are confined to single gene expression changes rather than
processes, when compared to our KE enrichment calculation without
taking the size of changes into account. This distinction of single mark-
ers and pathways would also be important to address for the KE of
SCD-1 (SCD) activation, which plays a role in the regulation of energy
metabolism and lipid synthesis, and has significantly increased expres-
sion levels after exposure to T0901317. In the molecular AOP network,
however, it is linked to the Cholesterol metabolism and Fatty Acid
Biosynthesis pathways, and not the specific KE of SCD-1 activation.
The data shows that only T0901317 exposure led to the enrichment of
the majority of KEs whereas the other PXR agonists only led to the en-
richment of a handful of KEs. This could be due to the described dual
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agonistic role of T0901317, as it is also an LXR agonist [50], affecting
the downstream KEs through multiple pathways.

On the other hand, the KEs of CD36 upregulation, being a fatty acid
transporter [51], does not show up as significant in the gene expres-
sion data but it is part of the Fatty Acid Transporters pathway which
is significantly enriched after T0901317 exposure. This is also the case
for the KE of CPT1A downregulation which does not show up in the
data of the PXR agonists. However, it is part of the pathway linked to
the downstream KE of Decreased Mitochondrial Fatty Acid Beta Oxi-
dation, which is significantly enriched after T0901317 exposure.

As discussed, there can be value in regarding single transcriptional
marker genes to investigate KE activation. Since individual or groups
of (computed) transcriptional biomarkers can provide great insights
into the activation of individual processes [52], further developments
of this approach should focus on combining the molecular AOPs with
stress response marker genes relevant to individual KEs. The value
of using biomarkers or defined gene sets to explore the effects of tox-
icants and xenobiotics has been shown in various studies related to
AOPs and KE activation. For example, well-described transcription
factor modulations can be explored with predictive gene sets [23] or
well-established transcriptional biomarkers based on responsive tran-
scription factors [53]. An approach to combine the well-studied and
carefully selected expression biomarkers for KE activation and molec-
ular pathways can be most informative to validate the activation of
KEs and understand the biological responses at the cellular level in
more detail. Alternatively, a ranking gene set enrichment method can
be used to take advantage of not always knowing the biomarkers of
particular processes.

With the case studies presented in this work, we limited the investiga-
tion to AOPs that involve only a single cell type. While that can be the
case for sequential KEs that are mostly on the molecular, cellular or tis-
sue level, KEs can also involve cellular communication, such as the se-
cretion of signalling molecules or recruitment of inflammatory cells, as
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inflammation plays an important role in toxic adverse outcomes [54].
For such AOPs to be fit for use as molecular AOP, multiple datasets
or single-cell transcriptomic data would be required to assess the KEs
across cell types, making the overall assessment more complex. How-
ever, the flexible nature of WikiPathways, the identifier handling by
BridgeDb and the integration of these tools in Cytoscape facilitate the
integration of data and the model.

Based on our analyses and calculations of enrichment scores, the case
studies provide a great insight into the usability and value of transcrip-
tomics data within the molecular AOPs, showing the potential activa-
tions of KEs. With the visualisation and enrichment calculations, this
method provides a quick overview of the overall activation of path-
ways that are linked to the KEs of interest. Also, it shows the inter-
play between processes within the AOP, highlighting central, highly
connected genes, whose role can be further explored in the molecular
pathways in which they exist. This is for example clearly visible in the
PXR AOP, with various members of the ACSL family being involved
in multiple KEs, as well as FASN being the most connected gene in the
network. A significant alteration of their expression levels is expected
to have a stronger impact on the overall assessment within the AOP
when compared to genes that are part of only a single pathway or KE.

With the case study on liver steatosis, we focused on highly specific
MIEs with well-studied stressors, and these show the activation of
MIE-linked pathways based on gene expression data, which was con-
sistent across the chemicals that we investigated for the different MIEs.
Furthermore, with the multiple time points in the dataset for stressor
GW3965, it is clear that the exposed cells progress through the KEs of
the AOP towards the AO, which is promising for the application of
time series exposure data on molecular AOPs. However, more exten-
sive datasets with additional time points and doses would be required
to assess the progression through the AOP based on gene expression
data.

The case study of mitochondrial complex I inhibition by rotenone is
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showing the challenges of interpreting transcriptomics data and vari-
ations in dose-response data. While in low-dose exposure we see an
abundant upregulation of genes involved at the early KEs to counter
the initial inhibition of mitochondrial complex I, this is not as clear in
the higher-dose exposure. This suggests a switch in response from re-
covery towards adverse, but this is not clearly visible in the late KEs
which represent stress response processes, none of which have been
affected significantly. With the current calculation of KE enrichment,
the whole dataset is taken as the background data, of which approxi-
mately 25% had significantly altered gene expression levels. Since the
datasets of the liver steatosis case study contain between 3% and 9% of
significantly affected genes, it could be that the disturbance of cellular
energy production causes many more processes to be affected.

This relates to our approach to developing the molecular AOPs be-
cause we limit ourselves to the known KEs and do not include addi-
tional processes or responsive (feedback) pathways in the molecular
AOP model. This constitutes a challenge in our approach, in which
the pathway’s level of detail and focus originate from their initial cre-
ation by the many contributors [55]. Since the method for creating the
molecular AOP involves the inclusion of existing pathways developed
by the community, curation might be necessary to ensure the expected
quality of pathways to support KEs and to explore the outputs of the
analyses. However, an enrichment evaluation of the whole WikiPath-
ways database and exploring gene and pathway interactions with the
AOP can potentially be used to identify missing KEs of the AOP.

Another challenge lies in the distinction between causative and re-
sponsive processes to the toxicity of stressors and understanding their
sequence based on gene expression changes. As an example where
this was possible, the MIEs of the steatosis AOP are nuclear receptor
activation pathways that cause downstream effects upon their activa-
tion or inhibition, and clearly show transcriptional changes based on
the exposure to stressors. However, the effects on pathways linked to
downstream KEs are much more subtle and respond to the changes
that occur because of the activated MIE. On the other hand, the case
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study of mitochondrial inhibition does not provide a clear-cut activa-
tion of a pathway related to the MIE but instead consists mostly of
responsive pathways to adapt to the new situation caused by the stres-
sor. To develop useful molecular AOPs, one needs to be aware of the
expected effects on the transcriptional level, which does not always
match the KE description in the AOP-Wiki, where feedback loops and
context are less present.

Whereas some KEs describe the activation of cellular responses and
processes and are therefore easily linked to their molecular pathways
in WikiPathways, other KEs can be more simple or more complex. For
example, KEs can merely describe individual molecular interactions
such as receptor activation, or describe the larger, more general inter-
play of processes, such as cell death where the measurement is focused
on cellular viability. This varying level of complexity should automat-
ically also be represented in molecular AOPs.

Based on these results, taking into account the limitations, we find that
we can explain the biological plausibility of KE activation by visualiz-
ing experimental transcriptomics data to the molecular pathways un-
derlying the KEs. The extension of AOPs with molecular markers,
gene sets, or pathways would be an essential step towards the inte-
gration of high-throughput transcriptomics data into risk assessment
studies. With these technologies getting cheaper, faster, and more reli-
able, they are becoming more frequently used in toxicological research.
Hence, a framework to connect the established AOPs on AOP-Wiki
with molecular entities through biological pathways is the logical in-
termediate.

Work is already ongoing to expand the molecular AOP contents and
on validating their utility through additional case studies and com-
paring the outcomes to other methods to measure KE activation using
gene expression data, such as the TXGMAPr tool [56] or AOP finger-
prints [57]. When new biological mechanisms are resolved, these can
be converted into molecular pathways and associated with KEs for
which that was not known so far. Second, by introducing more spe-
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cific ontological annotations of AOP-Wiki content, new literature can
be discovered, allowing a dynamic process of describing the biology
behind the AOP. Furthermore, by improving annotations of AOP con-
tent and making those annotations available through RDF [58], the au-
tomatic creation of molecular AOPs based on AOP-Wiki contents will
be possible. Validation of the method is required by comparing it with
other transcriptomic-based analysis methods or other in vitro methods
that measure KE activation. This could be done through more exten-
sive case studies on well-established AOPs in the AOP-Wiki.
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8
Discussion

In current practice, risk assessments cannot keep up with the num-
ber of chemicals that require testing [1]. The risk assessment commu-
nity aims to drive the shift from costly, time-consuming, ethically chal-
lenged in vivo experimentation on animals towards in vitro and com-
putational methods to inform risk assessments about chemical risks
and hazards and promote human safety [2]. However, the transition
from traditional chemical risk assessment towards mechanism-based
toxicity testing is slow because it relies on initiatives to develop and
evaluate novel techniques to replace animal testing [3]. Additionally,
the transition toward the implementation of those novel techniques
in risk assessments and acceptance by regulators face barriers of val-
idation, reproducibility, reliability, and overall confidence by the risk
assessment community [4, 5].

In order to guide the paradigm shift, Adverse Outcome
Pathways (AOPs) have been introduced to capture mechanistic
knowledge about toxicological processes, which summarizes existing
knowledge and organizes it in a set of measurable endpoints called
Key Events (KEs) [6–9]. While there is an increased momentum for
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AOPs towards application in risk assessments, the use of in vitro
assays and in particular large-scale omics datasets face challenges
of validation of their toxicological relevance and that hampers their
inclusion in testing strategies [10]. While getting a lot of interest and
having proven value in the exploration of toxicity pathways, the use
of transcriptomic data in risk assessment is debated because of the
complexity of analysing and interpretation of the data [10–12]. In
order to resolve these challenges, we expect that the integration of
biological databases containing biological knowledge with databases
containing experimental data can improve the usability of existing
data and scientific knowledge to generate hypotheses and guide risk
assessment approaches.

It was hypothesized that we can use large-scale gene expression profile
studies to explore the molecular modes of action of potential stressors.
This can be followed by linking such observations to risk assessment
endpoints using the established AOPs as templates to connect KEs
with molecular pathways [13–16]. With the linking of molecular path-
ways with AOPs and the resulting potential to perform transcriptomic
data analyses, we can use transcriptomic data to measure the activity
of biological processes and therefore also KEs. This leads to the concept
that if we can measure and visualise KE activation utilising transcrip-
tomic data we could better support risk assessments. Consequently,
we want to evaluate whether using the molecular structures of KEs
strengthens the potential of transcriptomics data to become a viable
resource for risk assessments. This thesis demonstrates the strength
and utility of data integration with other databases and thereby facil-
itates transcriptomics data into AOP-based risk assessments. At the
same time, by linking the AOPs to underlying biological processes,
this integration also outlines how other types of biological data could
be linked to KEs, which can facilitate the replacement of animal testing
with transcriptomics-based AOP assessment.
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8.1 WikiPathways
8.1.1 WikiPathways as an integration resource
In order to perform large-scale analysis of transcriptomic data, there is
a need for a pathway database for the biological interpretation of data,
to explain how genes are involved in biological processes. WikiPath-
ways is one such database. It was a very relevant resource in this the-
sis. Especially the open science nature and flexibility of WikiPathways
allowed us to experiment with the integration of molecular pathways
with AOPs and develop molecular AOPs as meta-pathways [17]. The
ability to update biological pathways with the latest research insights
and add pathways that were not yet sufficiently described allows the
use in processes yet not well understood [18], as is often the case in
toxicology. It is important to not only perform analyses and interpre-
tation of data but also build on the common knowledge of molecular
processes of toxicity. Together with its accompanying pathway edi-
tor tool PathVisio [19] and Cytoscape [20] which has a WikiPathways
plugin [21], the omics data analysis and visualisation capabilities of re-
lated tools are other essential aspects that make WikiPathways such a
useful resource.

We previously described in Chapter 2 the power of WikiPathways to
engage research communities to work together. We observed that
WikiPathways has had a steady growth in terms of content and
contributors, focused on community-driven pathway development
and curation [22, 23], as described in Chapter 2. Also, the resource
allows for many ways to interact with the content which are
also machine-readable, through user interfaces, through coding
environments and APIs, and through third-party tools that
have integrated WikiPathways or can easily load the content, as
well as through a SPARQL Protocol and Resource Description
Framework (RDF) Query Language (SPARQL) endpoint loaded
with the data [17, 24]. That makes the WikiPathways database
and its corresponding tools perfect to fulfil the goal of linking the
AOPs in AOP-Wiki with molecular pathways. Furthermore, the
resource has all the requirements to allow communities to collaborate
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and develop new pathway diagrams [25]. We think it has the
potential to become a main hub for molecular AOPs and bring
experts from the field together. Also, the flexible nature of identifier
handling of WikiPathways through BridgeDb [26] allows the
inclusion of KE nodes in pathway models, enabling interoperability
with external resources such as the AOP-Wiki [27]. Besides the
possibility of analysing transcriptomics data being the main focus
of this thesis, WikiPathways can be used to analyse all types of
omics data, including proteomics [28–30], metabolomics [31, 32],
epigenomics [33], genomics [34, 35], and combinations thereof [36],
highlighting the data analysis potential of WikiPathways with regards
to molecular AOPs.

8.1.2 Linking WikiPathways to the AOP-Wiki
Upon establishing that WikiPathways is a relevant resource to link
molecular pathways with AOPs, we wanted to explore how the
AOP-Wiki, the central repository for AOPs, could be integrated
with WikiPathways. We chose here to link KEs to pathways instead
of genes, as one would do when using gene activity instead of
pathway-level changes as a biomarker for KEs, adding to our
biological understanding of how these biomarkers are involved
in biological systems. Chapter 3 shows that the majority of early
KEs (molecular, cellular and tissue-level) can be linked to relevant
molecular pathways in WikiPathways and that 30% of chemical
stressors of the AOP-Wiki were found in existing pathways [27],
showing that molecular pathways can potentially cover the majority
of the known AOPs. Since WikiPathways contains mostly endogenous
metabolites and chemicals within cellular pathways, it does not
contain the majority of stressors in the AOP-Wiki which are mostly
exogenous. However, since AOPs are meant to be chemical agnostic,
meaning that the focus is on processes activated by exposure to
any stressor, there is no necessity to include all potential toxicants
within molecular pathways. On the other hand, over 70% of all
mapped genes on textual descriptions in AOP-Wiki were found in
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WikiPathways. This shows that the majority of described genes are
involved in biological processes already captured in the database,
which include stress response pathways or signaling pathways. The
remaining 30% could be genes involved in regulatory processes such
as transcription factors and micro RNA, or structural genes not part
of active processes and are therefore not represented in molecular
pathways.

As discussed in the last paragraph, the process of gene-based matching
of KEs to molecular pathways has its limitations which cause gaps and
uncertainties in the linking of KEs with molecular pathways. There-
fore, in Chapter 3, we also performed a manual analysis of all early
KEs in AOP-Wiki, showing that approximately 67% of KEs can poten-
tially be linked to molecular pathways in WikiPathways. As already
indicated, there are challenges in making the connection, where KEs
and pathways do not always match one-to-one, the biology of KEs is
not yet fully understood, or could simply not be represented as molec-
ular pathways because the KEs do not describe pathway processes or
the pathway is not represented in WikiPathways. Taken together with
the usability of WikiPathways and the identified connectivity between
it and the AOP-Wiki, the integration of the resources was expected to
facilitate the use of omics approaches in risk assessments by directly
connecting molecular pathways and KEs [27]. For example, although
the two resources apply ontologies to annotate pathways and biolog-
ical processes in KEs, these resources do not align and could there-
fore not be utilized to make connections. Furthermore, the depiction
of molecular processes in WikiPathways that underlie KEs are not al-
ways one-to-one mirrors of those KEs because the biological complex-
ity, which includes feedback loops and are typically not included in
AOPs [9]. This challenge, in particular, was discussed in more depth in
Chapter 7 with the introduction of molecular AOPs as a manually cu-
rated model to match KEs with molecular pathways. On the one hand,
this has shown us that multiple KEs can be part of the same molecu-
lar pathway, especially at the molecular and cellular level of organiza-
tion. On the other hand, single KEs can potentially involve more than
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one molecular pathway, which is the case mostly for late KEs, such
as the KE of cell death which is not always specifically described and
could involve multiple cell death pathways. The development of the
molecular AOP models and the curation or new creation of molecular
pathways linked to KEs were performed in PathVisio and uploaded to
WikiPathways.

With the challenges of automated matching of KEs and molecular
pathways discussed before based on genes and ontology terms, the
proposed method that emerged was the molecular AOP model,
which is a manual process, introduced in Chapter 7. The idea was to
develop a method that is simple and flexible, utilizes as much of the
existing pathways as possible without duplication, and allows for
data analysis and visualisation. These aspects would be essential
to expand the pool of potential users and applications and have
an approach that is in line with the existing AOP framework. The
resulting framework of the molecular AOP that we implemented
is a so-called meta-pathway that only contains links to molecular
pathways and KEs, and the connections between those, resembling
the original AOPs. This model follows the current description of
AOPs, consisting of separated KEs which as modules can exist in
multiple AOPs, which is also the case for the molecular AOP model.

To illustrate the capabilities of the molecular AOP as a meta path-
way, case studies were performed on an AOP network of liver steato-
sis [37] and an AOP of neurodegeneration [38] using public, in vitro
transcriptomics datasets. The molecular AOPs for these case studies
were developed using contents of the AOP-Wiki, and scientific liter-
ature that supports the AOPs to ensure that we selected the correct
molecular pathways for each KE. Based on the molecular AOPs en-
riched with gene expression data, we calculated KE enrichment scores,
assessing the potency of exposure scenarios on affecting KE processes.
While showing dose-response patterns in liver steatosis AOPs, the pat-
terns in KE activation with increasing dose, time, or stressor type were
not consistent across the case studies, possibly due to the differences
in the case studies, misalignment of KEs and underlying processes,

178



or regulatory and compensatory processes that are involved in the
molecular pathways. Additionally, the datasets had only limited ex-
posure scenarios, making it difficult to identify patterns. The com-
plexity of biology represented not only in molecular pathways but also
in omics datasets does not align with the simplification of biology in
AOPs. Therefore, molecular AOPs, as a literal bridge between tradi-
tional AOPs and molecular pathways, should be regarded as a link
from simplified biology to biological complexity. To create and curate
molecular AOPs, serious efforts are required to ensure that all relevant
biology can be captured and linked to the AOP, including the com-
pensatory, modulatory or feedback processes that are purposely kept
out of AOPs in the AOP-Wiki. These aspects pose challenges to the
overall acceptance of this type of analysis for application in risk assess-
ments, and additional studies with more exposure scenarios would be
required to evaluate the method for its utility.

Taken together, we argue that, based on these results and taking into
account the current limitations, the integration of AOPs and molecu-
lar pathways can become a powerful tool to support risk assessments.
We can explain the biological plausibility of KE activation by exploring
and interpreting molecular pathways, and we can use transcriptomics
data to assess KE activation based on the effect on underlying molecu-
lar pathways, although this depends on the particular case study and
dataset as described before. The molecular AOPs can serve as a flexi-
ble scaffold to combine all KEs with molecular pathways and perform
transcriptomics data analyses, which can be applied for the majority of
AOPs [27]. With increasing insights into the molecular understanding
of KEs, focused curation and pathway development approaches can
be initiated to increase the overall coverage of KEs with corresponding
molecular pathways. For example, curation efforts can be focused on
the remaining 33% of KEs that were not yet able to link to a molecu-
lar pathway, or exploring the 30% of genes in KEs that were not yet
present in WikiPathways.
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8.1.3 Expanding the utility of molecular AOPs
With WikiPathways being community-driven and freely accessible, it
provides ample opportunity for AOP developers to get involved and
develop molecular AOPs. With the setup of the AOP community por-
tal in WikiPathways, a community of pathway developers with shared
expertise is still needed. Since there is no centralized team of pathway
developers and topic experts for curation, contrary to other molecular
pathway databases such as Reactome [39–41] and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) [42], pathways in WikiPathways
can be inconsistent in the level of detail in their pathways [43, 44]. It
has also been known that the same biological pathway can be repre-
sented differently in alternative databases, which influences statistical
enrichment analyses and the overall interpretation of gene expression
data [45]. It would therefore be more optimal if we could utilize mul-
tiple pathway databases and develop integrative pathway models, in-
cluding all relevant biological knowledge that underlie the KEs [43,
45, 46]. However, where WikiPathways is flexible and allows com-
munities to co-create, other resources do generally not use a crowd-
sourcing approach like WikiPathways. For the AOP community to
get involved with WikiPathways and molecular AOPs, and use them
for analysing their transcriptomics data, there is a need for training,
and a need to prove the value and application of molecular AOPs
to encourage the AOP community. Such training materials exist for
the basics of WikiPathways and PathVisio, such as the WikiPathways
Academy [47], but these are not specifically tailored towards the de-
velopment of molecular AOPs and using these for analyses.

The molecular AOP model can combine transcriptomics data and
AOPs, it can be used to perform data analyses to find activated
KEs, to explore the molecular processes impacted by exposure to
stressors, and to generate hypotheses based on these analyses on
the molecular pathways that underlie KEs. Although the molecular
AOPs are meant to capture the complexity of cellular biology in
pathways and allow for detailed interpretation of the data, other
methods to use transcriptomics data in the risk assessment domain
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have been studied. For example, large public transcriptomics datasets
could be used for weighted gene co-expression network analysis to
develop visualisations with functional modules based on clustered
gene sets [48, 49], being a data-driven approach rather than the
literature-based molecular AOPs.

These data-driven frameworks could then be used to analyse tran-
scriptomic datasets to explore biological perturbations caused by toxi-
cants, using the functional annotations of the modules. While this type
of analysis can be of great value to rapidly explore the potential mech-
anisms of a toxicant, the applicability is limited to a handful of well-
studied endpoints as it requires large datasets to develop. Further-
more, whereas both the modules in such analysis and the KE enrich-
ment in molecular AOPs generally comprise gene lists, the molecular
AOPs have the additional benefit of specifically linking to molecular
pathways for detailed interpretation and understanding of the biolog-
ical processes. This also supports our understanding of the biological
systems and how these are connected, which relates to the KERs of
AOPs where the biological plausibility of the link between KEs is de-
scribed based on our understanding of biology. Another difference
between the methods is the basis on which the data models were built.
Whereas the TXG-MAPr models were data-driven, the molecular path-
ways and AOPs are generally based on literature and are developed
by researchers and topic experts. This makes the development and
improvement of the molecular AOPs more flexible and undergo con-
tinuous improvements based on new scientific insights, without the
dependence on large amounts of data to build new data models [17].

The human-driven strategy was also used to annotate the AOPs in
AOP-Wiki to generate AOP-derived in vitro transcriptional biomark-
ers for KEs, which could be used to derive AOP fingerprints and serve
as robust biomarkers for pulmonary fibrosis when studying Multi-
Walled Carbon Nanotube toxicity [50]. However, the process of valida-
tion of these transcriptional biomarkers is case-dependent and requires
extensive experimental confirmation. Also, similar to the TXG-MAPr
tool, these biomarker sets can be used to assess the activation of partic-
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ular processes, but are limited in the overall biological interpretation
on the pathway level and molecular interactions. Furthermore, the
data-driven and case-specific approaches are generally aimed at pro-
viding insights into specific endpoints of toxicants and require addi-
tional experimentation to expand to other endpoints or AOPs. Also, in
general, biomarker sets such as those used in the described approaches
encounter problems involving the number of false positives in the orig-
inal dataset, and most robust biomarkers correspond to late, general ef-
fects. The combination of such approaches with the AOPs could help
filter false positives that do not occur in pathways and aggregate re-
sponses on the pathway level. Since molecular AOPs are based on
literature and are linked to an extensive library of existing molecular
pathways, it is simple to expand molecular AOPs to cover other end-
points, AOPs, or AOP networks.

The concept of linking gene sets to particular processes as transcrip-
tional biomarkers was shown to have high predictive value on whether
a particular pathway is activated. For example, genotoxic compounds
and skin sensitizers can accurately be identified with curated gene
sets [51, 52]. However, an additional goal of our method was to have
an additional level of biological understanding and data interpreta-
tion which is possible through molecular pathway models. To move
forward with the development of molecular AOPs, known transcrip-
tional biomarkers could be used to verify or strengthen the matching
of KEs and molecular pathways in WikiPathways, potentially expand-
ing our mechanistic understanding of the toxicity. Whereas Chap-
ter 7 introduces the method and shows the application of the molec-
ular AOPs using two example cases, the actual validation of this ap-
proach for application and acceptance in risk assessments was not yet
investigated. We expect that the integrated approach of molecular
AOPs would make transcriptomic data analysis more robust, consis-
tent, and acceptable for omics-derived regulatory risk assessments. By
the time molecular AOPs cover most of the AOPs in AOP-Wiki, prob-
ably over the upcoming few years, the network-based analyses would
allow rapid exploration of process activation based on single exten-
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sive transcriptomic datasets instead of batteries of individual assays
that measure single KEs. Although the outcomes of molecular AOPs
might not be as robust as these specific assays, the transcriptomic data
can provide many insights, increase our understanding of the KEs,
and generate hypotheses by showing which molecular processes are
affected based on changes in gene expressions.

All molecular AOPs developed so far are stored in the AOP portal
of WikiPathways, where the toxicology community can contribute
and discuss the pathway models. Thus far, the development of
molecular AOPs was driven by project case studies, which provide
a practical approach for testing new methodologies, comparing
with other knowledge or previous findings, and refining strategies.
However, these case studies were performed with limited curation
by experts. This is why the current approach is limited, and there is
a need for more experts to evaluate the results in a crowdsourced
approach. While our approaches allow such a community approach
for knowledge, with WikiPathways for example, a general equivalent
for data analysis results does not yet exist. For further application and
implementation of molecular AOPs, expert curation of the underlying
pathways can help improve confidence in the use of molecular AOPs.
This can be achieved through tailored curation workshops with
domain experts, as was shown with the community-driven molecular
pathway on mesothelioma, which is known to be an adverse outcome
of inhalation of asbestos particulates [53].

8.2 Toxicological data
8.2.1 Omics approaches in the life sciences
Whereas the previous section focused on the linking of molecular path-
ways and AOPs, the second goal of this thesis was to make transcrip-
tomics data more accepted in risk assessment approaches. It is gener-
ally understood that omics technologies provide a tremendous amount
of data to describe the complexity of molecular biology, and have many
applications in the life sciences. This is also the case in toxicology,
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where various types of biomarkers are commonly used to assess the
activation of processes or adverse effects. For example, gene expres-
sion levels based on transcriptomic experiments can show the tran-
scriptional activation of molecular pathways, and metabolites from
metabolomics approaches can in some cases highlight functional dis-
turbances of processes. The project that is presented in this thesis
focuses on transcriptomic data, which is widely applied in toxicol-
ogy projects to uncover the mode of action of toxicants. Although
transcriptomics approaches can highlight altered gene expression lev-
els [54], the data type does have drawbacks. For example, transcrip-
tomic data only show changes in the expression of genes, after which a
myriad of processing and regulatory steps needs to happen to produce
proteins and achieve functional changes within the cell. It is therefore
complicated to correlate the changes in transcription to the potential
for adverse effects.

However, to use transcriptomics data in risk assessment, a thorough
mechanistic understanding of the pathways is needed. That is where
the simplified, linear nature of AOPs is a limiting factor, which
generally does not describe molecular pathways but rather focuses
on a larger scale of biology. AOPs have been described as the bridge
between toxicological scientists and the risk assessment community,
capturing current understanding of toxicological processes, tailored
for use and informing risk assessors. However, the current concept
limits the potential integration with experimental data and in
particular omics data that provides molecular insights and addresses
complexity. This is why the suggested solutions for implementing
omics through AOPs in risk assessments include molecular
annotations through pathways or gene lists serving as biomarkers [12,
55]. This is in line with our approach to manually develop and
curate molecular AOPs to connect molecular pathways to KEs and
thus serve as the templates required for transcriptomics analyses.
The potential for such pathway-level generalization of particular
KEs has been shown for various stress response pathways which
respond similarly, independent from the MIEs or earlier KEs that
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might cause their activation [56, 57]. Such observations are promising
for the expansion of molecular AOPs and networks as described in
Chapter 7. Whereas our connection of KEs to molecular pathways
comprises all genes and proteins involved in particular processes, a
particular focus on well-established transcriptional response gene sets
might serve for more direct read-outs on KE activation.

8.2.2 Applying Findable, Accessible, Interoperable, and
Reusable (FAIR) principles to improve the integration of
resources

As part of studying the linking of transcriptomics data and AOPs, we
explored how databases involved in that effort could be made more
accessible and reusable to facilitate the integration of other types of
data and knowledge. This would also be of more general interest since
the field of toxicology produces vast amounts of data of many differ-
ent types, which can be stored in various data repositories. For exam-
ple, public repositories such as Gene Expression Omnibus (GEO) [58,
59] and the European Nucleotide Archive which contains ArrayEx-
press [60] are used to store transcriptomics datasets, and some spe-
cific to toxicological data, such as ToxBank and Comparative Toxicoge-
nomics Database (CTD).

Furthermore, the transition in risk assessment to become more data-
driven and based on existing mechanistic knowledge of toxicological
processes relies on databases and scientific knowledge. This strength-
ens the need for efficient use and reuse of data. Since the amount
of experimental data in publicly accessible repositories is expanding
rapidly, there is a need for agreement and guidance in data handling
and standardization of life science data to improve their usability and
integrative capabilities. This is where the FAIR principles play a role
in improving the reuse of data by making the data more findable, ac-
cessible, interoperable and reusable [61].

In the life sciences, the FAIR principles are increasingly applied to
promote data reuse and have been tailored for research software as
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well [62]. For example, the application of FAIR principles is central
to the goals of the ELIXIR Toxicology Community [63], and the field
of nanomaterial toxicology also aims to apply the FAIR principles on
nanosafety data [64]. Also, a variety of tools have become available to
assess the FAIRness of data and resources, for example by using FAIR
maturity indicators on data repositories [65].

Increasing the FAIRness of a data resource can be achieved by applying
semantic web technologies, for example through the transformation of
data to RDF [66]. This makes the data accessible in more ways and
since Linked Open Data (LOD) principles [67] are applied by using
ontologies and unique, persistent and resolvable identifiers, the inter-
operable capabilities of the resource increase as well. This approach
was used, for example, to create linked open data for ChEMBL [68],
WikiPathways [24], various databases of the European Bioinformatics
Institute (EBI) [69], and DisGeNET [70], and Wikidata [71], among oth-
ers.

8.2.3 Making AOP knowledge FAIR
Within the realm of AOPs, the main database to develop en distribute
AOPs is the AOP-Wiki, comprising hundreds of qualitative descrip-
tions of AOPs including over a thousand KEs. The resource, existing
mostly of free-text descriptions and ontological annotations, has few
options to interact with the data, leaving the users to explore the ex-
tensive database by manually searching or downloading the data in
Extensible Markup Language (XML). Therefore, we envisioned a se-
mantic version of the AOP-Wiki to improve the overall usability of the
data and make the resource more FAIR.

Therefore, Chapter 4 explores methods of integration of the AOP-Wiki
with other resources using Linked Open Data standards. The RDF
model was selected to create an extended, semantically annotated ver-
sion of the contents in the AOP-Wiki. With the development of the
RDF, various ontologies and resource identifiers were added to form
the knowledge graph, making the data more interoperable and acces-
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sible [72]. When loaded into a public SPARQL endpoint, the data has
been made findable and accessible using SPARQL queries, all of which
are in line with the FAIR principles for improved data usability. Be-
sides the possibility to explore the data from computational environ-
ments and workflow systems, the SPARQL endpoint allows data flow
to and from remote resources with federated queries. Being part of
the LOD world, there is potential integration with a vast amount of
external resources.

Additional to the AOP-Wiki, the AOP-DB, an effort by the United
States Environmental Protection Agency (US EPA), contained
additional data relevant to AOPs that is not part of the AOP-Wiki [73].
The resource expands and integrates AOP knowledge by combining
various resources linked to AOPs and the AOP-Wiki, including genes,
chemicals, ToxCast assays, Single Nucleotide Polymorphisms (SNPs),
pathways, diseases, and more [74]. Chapter 5 describes the creation
of a semantic version of the AOP-DB, where the contents of seven of
its core data tables were converted into RDF [75]. This was done in
line with the AOP-Wiki RDF for optimal interoperability between
the two resources and has led to improved access to AOP data and
associated data of toxicological interest. Whereas the majority of the
core framework of the RDF could be directly linked to the AOP-Wiki
RDF, some of the predicates and object types required additional
attention to select the most fitting ontological annotations.

Overall, the development of semantic versions of the AOP-Wiki
and AOP-DB makes it possible to explore the activated biological
processes in AOPs in more ways and integrate the resources with
other sources to compare or validate found results with independent
knowledge bases. With the implementation of RDF and allowing
exploration with SPARQL queries, the types of questions that one
can pose to investigate the AOP contents exceed far beyond what
is possible with the original user interface. For example, Chapter 4
describes connections between the AOP-Wiki RDF and chemical
databases or molecular pathway databases. However, there are many
more potential connections with the resource, such as Wikidata [76].
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Wikidata aims to assemble a knowledge graph containing all
information of relevance in the life sciences, from chemical data,
to genomic data, pathways, and disease data. With the addition
of semantic data availability of the AOP-Wiki and AOP-DB, there
are ample opportunities to expand AOP knowledge and integrate
with resources such as Wikidata. Making the contents of the
AOP-Wiki more FAIR promotes the reuse of AOP knowledge. If more
toxicological resources would apply FAIR principles and expose their
data for exploration as RDF, the potential to integrate such resources
would change how we would use these resources and answer
questions relevant to risk assessments as will be explained later.

8.2.4 Showing the utility of FAIR data resources in a workflow
We wanted to know how easy it was to use these integrated services.
Therefore, to illustrate the possibilities and strengths of making re-
sources FAIR, we created a Jupyter notebook that utilizes both AOP
resources. By itself, the AOP-Wiki has limited content on quantitative
data nor does it refer to data to a large extent. Therefore, our goal was
to find and analyse experimental data that supports an AOP of inter-
est, by integrating the resource with other tools and databases within a
workflow. Chapter 6 illustrates how combining services and data can
perform this task relevant to risk assessment of identifying experimen-
tal data to support an AOP. The developed workflow supports the
re-use of data by finding experimental data that fits the context, and
could therefore limit the number of experiments that would be needed
to measure all KEs that occur after exposure to a stressor. This is also in
support of minimizing the need for experimental studies on animals,
by exploring experimental data in Toxicogenomics Project-Genomics
Assisted Toxicity Evaluation System (TG-GATES) [77], which contains
data not only on human cell lines but also on rats. By making this
Jupyter Notebook automated and only requiring the AOP ID as an in-
put, the notebook is reusable for any AOP, and the outcomes are repro-
ducible. This is in line with the larger movement in science to increase
the reproducibility of workflow results and repeatability of workflow

188



execution [78, 79]. While the amount of new data in biomedical re-
search grows at an increasing rate, it has become clear that much of
experimental results are not meaningful and hard to reproduce. This
is referred to as the reproducibility crisis and has become a major issue
that needs to be addressed in current research practice [78]. Gener-
ally, Jupyter notebooks are great tools for developing understandable,
reproducible workflows, where code, narrative text, functions and vi-
sualisations are combined in a single document, while also taking care
of all dependencies to run the workflow. However, since the current
workflow sends requests to live, external services and databases, it is
dependent on these services being available and consistent without
changing API or data to have fully reproducible results.

Ideally, all resources that are used for such workflow comply with the
FAIR principles for data and software, in order to ensure the longevity
of the functional workflow [80, 81]. To optimize the reproducibility of
computational workflows that rely on online resources and services,
they should be more stable and sustainability should be ensured.
Large projects such as the European Open Science Cloud (EOSC) have
a clear vision to ensure the implementation of FAIR principles and on
the need for sustainable research tools [82].

8.3 Adverse Outcome Pathways as a tool in risk
assessments

The central theme in this thesis is the AOP concept. Since its introduc-
tion following an era of the Mode of Action (MoA) as the focus of risk
assessment studies, the generalised AOPs have taken over toxicology
research. Generally supported as a driving force for the paradigm shift
from traditional animal testing in risk assessments toward in vitro as-
says and in silico predictions, AOPs have become a central theme in re-
cent toxicology projects (see Table 8.1). Furthermore, the Organisation
for Economic Co-operation and Development (OECD) launched the
AOP Development Programme in 2016 to support AOP development,
thus far leading to nineteen reviewed and endorsed AOPs in the AOP-
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Wiki [83]. These AOPs are for various adverse effects such as liver
fibrosis, learning and memory impairment, and various adversities
for fish. Also, multiple human-relevant AOPs were approved and
have been implemented successfully in Integrated Approaches to Test-
ing and Assessment (IATA) case studies for skin sensitization [84–86],
liver steatosis [87], Parkinsonian motor deficits [88], and developmen-
tal neurotoxicity [89, 90].

However, the AOP framework is not without flaws or drawbacks.
While informative and efficient in displaying current knowledge
of the sequential biological disturbances after stressor exposure,
the actual construction of AOPs is labour-intensive. Besides that,
there is little incentive to develop AOPs to the extent of fully usable
AOPs fit for application and push these into the public AOP-Wiki,
also because current research is focused on publications in scientific
journals which do not generally follow a format of AOPs. These are
some of the reasons for the relatively limited number of reviewed and
endorsed AOPs in the AOP Knowledge Base (AOP-KB). Furthermore,
AOPs as single, linear chains of KEs, do not always serve their
purpose by themselves for applications in risk assessments. AOP
networks can be more realistic in that respect as they describe all
pathways that can lead to a particular apical endpoint. This is one of
the reasons for the development of the AOP-Wiki RDF. Not only
can we utilize the created knowledge graph to expand contents by
linking external resources such as molecular pathway databases,
but we can also take the modular nature of AOPs to generate new
paths of KEs to form AOPs. The possibilities of data and knowledge
integration to both expand AOP knowledge and hypothesize new
AOPs have been described earlier, utilizing the existing Key Event
Components (KECs) or toxicological data to generate computationally
predicted AOPs (cpAOPs) [91].

A solution is needed to make AOPs easier to explore and use exist-
ing AOP knowledge. This is where semantic web approaches can
facilitate improving the accessibility and interoperability of AOP re-
sources. Chapters 4 and 5 contribute to the overall interoperability of

190



AOP knowledge through the introduction of global, persistent iden-
tifiers that allow the linking to other databases. For example, adding
chemical identifiers for all stressors can provide all relevant informa-
tion about them, from their structure to their role in biology, or dis-
turbance thereof, by linking the stressors to ChEBI [92], ChEMBL [68,
93], Wikidata [76], and ToxBank [94], among other resources. This
also counts for the proteins that are mapped from the biological ob-
ject annotations of KEs, providing additional links to protein and gene
databases such as UniProt [95] and Ensembl [96], among others.

Table 8.1: Recent projects in which AOPs are a central theme.

EU H2020 or
NWO NWA

Project name Grant number Website
EU-ToxRisk 681002 https://www.eu-toxrisk.eu/

OpenRiskNet 731075 https://openrisknet.org/
NanoSolveIT 814572 https://nanosolveit.eu/
RiskGONE 814425 https://riskgone.eu/

ONTOX 963845 https://ontox-project.eu/
VHP4Safety NWA https://vhp4safety.nl/

1292.19.272
CIAO https://www.ciao-covid.net/

PATROLS 760813 https://www.patrols-h2020.eu/
EDCMET 825762 https://sites.uef.fi/edcmet/
OpenTox 200787 https://opentox.net/

ERGO 825753 https://ergo-project.eu/
SmartNanoTox 686098 http://www.smartnanotox.eu/

EuroMix 633172 https://www.euromixproject.eu/
HBM4EU 733032 https://www.hbm4eu.eu/

8.4 Conclusion
In conclusion, this thesis project was aimed at making AOPs and tran-
scriptomic data more usable for risk assessment by more accurately
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describing the knowledge and data, specifically focusing on the anal-
yses and interpretation of the data. The main reason for this is the
current refrain from implementing transcriptomic data in risk assess-
ments, despite the proven value of the widely-applied technology. Be-
cause AOPs are a more commonly used knowledge framework to sup-
port risk assessments, our goal was to create a connection between
transcriptomic data and AOPs. Therefore, the first chapters of this the-
sis explored how the molecular pathway database of WikiPathways
could be integrated with the AOP-Wiki, which was thus far a stand-
alone resource with limited integrative ability. Various approaches
were evaluated and one was chosen that links KEs to full biological
processes represented in molecular pathways, making activity of bi-
ological processes rather than individual gene expression biomarkers
of KEs. It was clear that the AOP-Wiki should focus on making the
data more interoperable and FAIR, allowing more ways to explore
and analyse its contents. Therefore, the following chapters focused
on the creation of LOD of the AOP-Wiki and AOP-DB, making their
data accessible through a SPARQL Application Programming Inter-
face (API) that allows scripted querying from coding environments.
Their application was shown in an automated, flexible workflow in a
Jupyter notebook that automatically finds and analyses experimental
data to support an AOP of interest, which allows us to perform many
more actions and analyses when compared to manual approaches to
data exploration and analysis. Finally, this thesis has shown that the
combined approaches enable the application of molecular AOPs with
WikiPathways to allow the visualisation and reproducible analyses of
transcriptomic data for identifying KE activation. This provides a new
approach to visualize the data, validate the biological plausibility, and
generate new hypotheses for high-throughput studies and KE activa-
tion. This approach can potentially bridge the gap between the com-
monly used big data approaches and the risk assessment community,
where such methods have not yet played a large role. In order to prove
the usefulness of this work, future research should focus on testing
the data analysis and interpretation approaches and comparing them
to existing risk assessment strategies. As this thesis provided only a
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handful of example applications and limitations of molecular AOPs,
there is a need for validation and comparison to more traditional as-
says to assess AOP activation. By performing additional case studies
with molecular AOPs, as is currently ongoing in VHP4Safety, we will
be able to show the utility of transcriptomics in risk assessment ap-
proaches of chemicals and nanomaterials.
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Impact

This chapter outlines the impact this thesis has on society. It outlines
how this research is being picked up outside academia, and explains
how which societal problems this work addresses.

Molecular plausibility of Adverse Outcome Pathways
The main problem that this thesis focused on was the currently
limited implementation of transcriptomic data in risk assessments
of chemicals and other toxicants, while it has proven potential in
studying and understanding toxicological mechanisms. This is mainly
due to the complexity of the data, its analysis and interpretation,
and the lack of consensus and validation of producing and handling
such data. Whereas the production and handling of the data have
been addressed by the Organisation for Economic Co-operation
and Development (OECD) in the past years resulting in an OECD
reporting framework [1], the analysis and interpretation of such data
remain unspecified and unformulated. This is why we introduced the
molecular Adverse Outcome Pathways (AOPs) to provide a clear,
simple method to perform transcriptomic data analysis that is directly
aligned with AOPs, which have become an accepted framework of
toxicological knowledge to support Integrated Approaches to Testing
and Assessment (IATA) development. Additionally, the molecular
AOPs can bridge the AOPs and molecular biological and toxicological
studies, forming a graphical representation of complex biological
systems. By integrating transcriptomic data into AOPs, researchers
can better understand the potential adverse effects of exposure and
identify early biomarkers of toxicity. This knowledge can inform
regulatory decisions and ultimately lead to the development and use
of safer chemicals and nanomaterials. Additionally, the integration
of transcriptomic data into AOPs can facilitate collaborations among
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researchers from diverse fields, leading to more comprehensive and
innovative approaches to toxicity assessment. Overall, extending
AOPs with molecular entities through pathways and transcriptomic
data can accelerate scientific progress and promote the protection of
public health and the environment.

With the introduction of molecular AOPs in the WikiPathways
database and showing their value in analysing transcriptomic
datasets, the results of this thesis provide new and informative ways
to analyse and interpret transcriptomic data. Case studies were
performed on various AOPs involving mitochondrial dysfunction,
liver steatosis, Pleural Mesothelioma (PM), liver cancer, and
pulmonary fibrosis by multi-walled carbon nanotubes and by
SARS-CoV-2 exposure, thyroid-related neurodevelopmental toxicity,
and pharmacovigilance in kidneys. All of these case studies resulted
in molecular AOP models, or drafts thereof, that are stored in the
AOP Portal on WikiPathways (aop.wikipathways.org). This has
shown us that not all toxicological pathways are fully understood
yet and that in some cases, the approach to linking pathways to Key
Events (KEs) requires additional refinement regarding directionality
and differentiating between causal and consequential gene expression
changes. While the approach of molecular AOP development is
clarified in Chapter 7, we should aim to develop general guidelines
for other researchers to engage in molecular AOP development, using
them for data analysis of omics data, and compare with other methods
of measuring KE activation. This would give us better insights into
the validity and generalizability of using transcriptomic data to assess
KE activation and generate hypotheses or inform IATA strategies.

While this thesis presents a method of connecting molecular
pathways to AOPs to perform analyses of omics data, the process of
generating these has its limitations and assumptions, as discussed in
Chapter 7. To further explore methods of linking molecular entities
to AOPs and their KEs, we have submitted a project proposal to the
European Food Safety Authority (EFSA) to test various methods
of (semi-)automatically annotating KEs with genes, proteins and
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molecular pathways. This proposal, which has been accepted, also
involves comparing the approach of molecular AOPs with the more
data-driven approach of the TXG-MAPr tool [2].

Reusable AOPs
The thesis also aimed to enhance the usability of AOP content
through a Findable, Accessible, Interoperable, and Reusable (FAIR)
approach in the AOP-Wiki. This was achieved by implementing the
Resource Description Framework (RDF), improving accessibility
and interoperability of the AOP-Wiki for seamless integration with
other datasets and tools. We maintain a publicly accessible and
regularly updated SPARQL endpoint to reflect the latest AOP-Wiki
data release. Additionally, in collaboration with the United States
Environmental Protection Agency (US EPA), we developed RDF for
the AOP-DB as part of the OpenRiskNet implementation challenge.
This expanded the available AOP-related content for exploration and
integration. The AOP-Wiki RDF and SPARQL Protocol and RDF
Query Language (SPARQL) endpoint are utilized in ongoing projects
such as VHP4Safety and NanoSolveIT, where virtual infrastructures
host the SPARQL endpoints for data integration and AOP-Wiki
exploration. These resources are also utilized in the Partnership for
the Assessment of Risks from Chemicals (PARC) (eu-parc.eu), a
significant European partnership focused on chemical risk assessment
for human and environmental protection.

While Chapters 3, 4, 5, and 6 describe, apply and utilize methods to
make the contents of the AOP-Wiki more accessible and interoper-
able, there are other aspects of the AOP-Wiki that can be improved
for increased FAIRness. With the release of the AOP-Wiki version 2.5
on July 16, 2022, the resource was made more structured and intro-
duced direct links to third-party tools. This is also the case for the
AOP-Wiki SNORQL User Interface (UI) and AOP-DB SPARQL end-
point described in Chapter 4 and 5, respectively. The majority of cur-
rent efforts in the AOP-Wiki are aimed at complying with the FAIR
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principles and increasing data usability, and extensive analysis on the
FAIRness of the AOP-Wiki is currently ongoing to explore how the un-
derlying data model can be improved to comply with the FAIR prin-
ciples. Additionally, the AOP-Wiki has started linking to Wiki Kaptis
(wikikaptis.lhasacloud.org), a tool by the UK-based company
Lhasa, from KE pages, which is also planned for the molecular path-
ways of WikiPathways based on the KE-pathway mapping performed
for molecular AOPs.

An initiative that preceded this thesis project and focused on the future
integration of tools, data and information on AOPs was the develop-
ment of the AOP Ontology (AOPO) [3]. As its original implementa-
tion, the AOPXplorer utilizes the AOPO to visualize AOP networks,
and it has been used for studying various AOPs including neurotoxic-
ity [4] and hepatotoxicity [5], with a focus on gene expression data just
like the molecular AOPs. However, the AOPO has not yet been imple-
mented to annotate AOP-related content in the AOP-Wiki itself. There-
fore, developing the AOP-Wiki RDF model (Chapter 4) also aimed to
include the AOPO to annotate relationships within the data model.
The chapter also highlighted the potential additions to the AOPO in
order to cover the full domain of AOPs and related information, and
work is ongoing to expand the AOPO for complete coverage of the
AOP-Wiki data model. The alignment of resources with the AOP-Wiki
and the direction of its development was also a result of our involve-
ment with the AOP Knowledge Base (AOP-KB) development group,
which manages the AOP-Wiki and future developments are discussed.
This involvement also offered the opportunity to attend the AOP-KB
face-to-face meeting in 2019 at the US EPA in Research Triangle Park,
North Carolina, USA, to discuss approaches and share ideas for im-
proving the AOP-Wiki contents and structure.

As is clear from this thesis and the previous paragraphs, the
AOP-Wiki plays a central role in this thesis, which is a resource
where researchers can collaborate and develop AOPs. Although
there are centralized AOP development efforts pushed by the OECD
AOP Development Programme work plan, most of the AOPs in the
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resource are developed by researchers across the globe, based on
individual projects, or large consortia focusing on particular toxicities.
We were involved in coordinating and pushing AOP development
in EU-ToxRisk (eu-toxrisk.eu), leading to a public deliverable
(eu-toxrisk.eu/media/articles/files/EU-ToxRisk_D5.
1_FINAL_R1.0.pdf) and a total of twelve AOPs, of which the
majority was entered into the AOP-Wiki, including AOPs on adverse
effects on the brain, liver, kidneys, lungs and tissue development.
These are currently available for AOP users to explore or refine
further. These AOPs have the potential to establish AOP-informed
IATAs for the risk assessment of a variety of chemicals. Besides
our role in EU-ToxRisk, we were involved in the development of
COVID-19 AOPs in the community-driven project called Modelling
the Pathogenesis of COVID-19 Using the Adverse Outcome Pathway
Framework (CIAO), which is described in a later section.

Overall, this thesis had a clear focus on making AOP-related content
accessible, interoperable and therefore reusable, in line with the
FAIR principles. By making AOP contents more FAIR, researchers,
policymakers, and the public can better access and understand
the potential risks associated with exposure to certain chemicals,
substances, or nanomaterials. This increased accessibility and
understanding can lead to more informed decision-making regarding
the regulation and use of these substances, ultimately improving
public health and safety. Additionally, making AOP content more
FAIR can help promote transparency and accountability in the
scientific community, leading to more trustworthy and reliable
scientific research.

WikiPathways: community collaboration
As described in the section on molecular AOPs, the WikiPathways
database served as the second main resource of this thesis, which is
widely used in various biological research fields, as an information
resource, an integration resource, and to perform analyses of omics
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datasets. As presented in Chapter 2, the focus of WikiPathways’ cur-
rent and future developments is on the involvement of user communi-
ties. This community-driven aspect of WikiPathways can have a signif-
icant societal impact by promoting open and collaborative knowledge-
sharing in the field of biological pathways. By allowing researchers,
educators, and the public to contribute to and access high-quality path-
way information, WikiPathways helps to disseminate scientific knowl-
edge and promote openness and responsibility in scientific research
and knowledge sharing. This can lead to faster and more accurate
scientific discoveries, improved education efforts, and ultimately, bet-
ter health outcomes for individuals and communities. Additionally,
the community-driven aspect of WikiPathways can help foster a sense
of belonging and shared purpose among individuals interested in ad-
vancing the field of biology, leading to more robust and impactful col-
laborations. WikiPathways has also been utilized in the development
of a literature-based molecular pathway of PM, a rare type of lung
cancer (wikipathways.org/instance/WP5087) [6]. The develop-
ment of this molecular pathway of PM allows researchers to analyse
and interpret their data, and the pathway figure can serve as an edu-
cational resource for understanding the molecular aspects of the dis-
ease, and this will be extended with the development of a molecular
AOP of asbestos leading to PM. This ultimately aids in the increased
awareness of the biological complexity and causes of the disease and
therefore, supports the research toward better diagnosis, prognosis
and treatment.

One project that had a specific interest in making the AOP-Wiki
more interoperable with other databases such as WikiPathways
is the CIAO project (ciao-covid.net), consisting of a network
of partners from industry, policymakers, clinicians, and academic
institutes. This project focused on the development of AOP networks
for COVID-19, and evaluating the AOP-Wiki data model through
workshops and case studies regarding the data structure, annotation
of its components, and overall FAIRness. During this project, a
molecular AOP model was developed for ACE2 inhibition leading to
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pulmonary fibrosis, which was used to analyse transcriptomic data.
This work was presented during the final workshop in February 2023.

In summary, WikiPathways played a key role in this thesis and re-
lated parallel projects, acting as a central hub that fosters collabora-
tion between academia, research institutes, and industry, and facili-
tates the modeling of intricate molecular pathways. The pathways de-
veloped through WikiPathways offer valuable resources for analysing
diverse datasets and interpreting the complexities of biology. More-
over, the utility of WikiPathways extends to the development of molec-
ular AOPs, introducing an innovative approach to analyse transcrip-
tomic data and evaluate KE activation through gene expression data.
The integration of these molecular AOPs into risk assessments has the
potential to enhance the practicality of transcriptomic data and, con-
sequently, contribute to the promotion of human and environmental
safety.
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Summary

Risk assessors struggle to keep up with the growing number of chem-
icals requiring testing. The aim is to shift from costly and ethically
challenging animal experimentation to more efficient and humane in
vitro methods, in silico models, and human data for risk assessments
and human safety promotion. However, the transition involves the
challenges that come with the development of novel techniques as al-
ternatives to animal testing.

In order to support risk assessments, the Adverse Outcome
Pathway (AOP) approach has been introduced to capture and
organize literature-derived mechanistic knowledge of toxicological
processes to guide the paradigm shift in risk assessments toward
alternative models. It does this by separating the cascade of biological
perturbations upon stressor interaction into smaller, measurable
effects called Key Events (KEs). Despite the increasing number
of AOPs and the growing momentum of the use of AOPs in risk
assessments, there are challenges in validating and incorporating in
vitro targeted assays and large-scale omics datasets into the testing
strategies. Although a promising tool in many fields of biomedical
research to study molecular processes such as the understanding of
toxicological responses, the production and use of transcriptomic data
in risk assessment face barriers related to reproducibility, reliability,
and acceptance within the risk assessment community. This is
why this thesis had the two aims of improving AOP usability and
establishing a method to analyse and interpret transcriptomic data
that utilises and extends AOPs to facilitate better insights into KE
activation, with the ultimate goal to increase the overall acceptance of
transcriptomic data in risk assessments.

209



Summary

Improving AOP usability
Before being able to make a link between transcriptomic data and
AOPs, the work presented in this thesis involved the exploration
of the overall usability of AOPs which are generally stored in the
AOP-Wiki and seek interoperability with the established molecular
pathway database called WikiPathways to expand KEs with
molecular entities and processes. This has led to an introductory
description of WikiPathways and highlighting the strengths of
community-driven developments and methods of accessing data in
Chapter 2. This was followed by investigating the level of coverage
of KEs in AOP-Wiki as molecular pathways in WikiPathways in
Chapter 3. This has shown that the majority of early KEs in AOP-Wiki
have corresponding molecular pathways in WikiPathways, and
that opportunities exist to make the AOP-Wiki more linked to other
biological databases by using the ontological annotations of KEs and
molecular entities captured in their description. To further increase
the usability of AOPs in the AOP-Wiki, this thesis has resulted in
a more Findable, Accessible, Interoperable, and Reusable (FAIR)
version of the AOP-Wiki by employing semantic web technologies
and producing an Resource Description Framework (RDF) version of
the data, as described in Chapter 4. As an extension to the AOP-Wiki
RDF, various tables of the AOP-DB have been modelled into RDF
format using the same principles, which was presented in Chapter 5.
The producing of the AOP-Wiki RDF and AOP-DB RDF and loading
these into SPARQL Protocol and RDF Query Language (SPARQL)
endpoints allow the exploration and integration of the data with
external resources and allow computational querying of the contents,
which has been illustrated in Chapter 6 as a Jupyter notebook. The
flexible, reproducible workflow that is presented accesses and uses
a range of public services to find and analyse data to support an
AOP of interest, showing the utility of the semantic web versions of
AOP-Wiki, AOP-DB, and WikiPathways.
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Extending AOPs with molecular pathways
With the establishment of the AOP-Wiki and WikiPathways, Chapter 7
presents the establishment of an analysis method for transcriptomic
data, utilising WikiPathways as an integrative platform between AOPs
and molecular pathways with an intermediate model called the molec-
ular AOP. It was expected that integrating these biological databases
with experimental data holds promise for improving transcriptomic
data usability by enabling data interpretation and links to KEs to mea-
sure biological processes and KE activation. This integration poten-
tially enables the use of transcriptomics data to support AOP-based
risk assessment strategies by providing measurements and visualiza-
tions of KE activity. As illustrations and proof of principles, case stud-
ies were performed on a liver steatosis AOP network and on an AOP
that initiates with mitochondrial complex I inhibition in neuronal cells.
This has shown us that there is value in the model to analyse and in-
terpret transcriptomic data and generate hypotheses on KE activation.
However, the case studies have shown the challenges of modelling
molecular AOPs and their use with more extensive datasets, and re-
quire more comprehensive testing to define their domain of applica-
bility and technology readiness level.

Impact of this research
The overall goal of this thesis was to make better use of existing mech-
anistic knowledge in AOPs and utilise large-scale omics approaches
based on in vitro, to drive the transition away from animal testing for
the risk assessment of chemicals and nanomaterials. The increased ac-
cessibility and interoperability of the AOP-Wiki and AOP-DB could
lead to more effective use of AOP knowledge, leading to a more ef-
ficient establishment of knowledge-driven Integrated Approaches to
Testing and Assessment (IATA). Ultimately, this can facilitate better
and faster risk assessment approaches to ensure human and environ-
mental safety. Regarding the proposed method of analysing transcrip-
tomic data by utilising molecular AOPs, this novel method can aid the
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integration and utility of transcriptomic data in risk assessment, pro-
viding a clear analysis and interpretation model to assess KE activa-
tion.

Conclusion
This thesis project aimed to enhance the usability of AOPs and tran-
scriptomic data for risk assessment. First, this thesis explored integrat-
ing the molecular pathway database of WikiPathways with AOP-Wiki
to allow the establishment of a connection between transcriptomic data
and AOPs by linking KEs to biological processes represented in molec-
ular pathways. This thesis also emphasized the importance of making
the data in AOP-Wiki more interoperable and FAIR. This facilitated an
automated workflow in a Jupyter Notebook that could find and ana-
lyze experimental data to support a specific AOP of interest. Finally,
the introduced molecular AOP approach allows for the visualization
and reproducible analysis of transcriptomic data to identify KE activa-
tion, which can bridge the gap between big data approaches and the
risk assessment community.
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Samenvatting

Risicobeoordelaars hebben moeite om het groeiende aantal chemical-
iën dat getest moet worden bij te houden. Het doel is om over te
stappen van kostbare en ethisch uitdagende dierexperimenten naar
efficiëntere en diervriendelijkere in vitro methoden, in silico modellen
en menselijke gegevens voor risicobeoordelingen en bevordering van
menselijke veiligheid. Deze overgang brengt echter uitdagingen met
zich mee die gepaard gaan met de ontwikkeling van nieuwe tech-
nieken als alternatieven voor dierproeven.

Om risicobeoordelingen te ondersteunen, is de benadering van de
Adverse Outcome Pathway (AOP) geïntroduceerd om op literatuur
gebaseerde mechanismen van toxicologische processen vast te leggen
en te organiseren. Hiermee wordt de paradigmaverschuiving in
risicobeoordelingen naar alternatieve modellen begeleid. Dit wordt
bereikt door de cascade van biologische verstoringen als gevolg
van interactie met een stressor op te splitsen in kleinere, meetbare
effecten die Key Events (KE’s) worden genoemd. Ondanks het
groeiende aantal AOP’s en het toenemende momentum van het
gebruik van AOP’s in risicobeoordelingen, zijn er uitdagingen bij het
valideren en opnemen van in vitro gerichte assays en grootschalige
omics-datasets in teststrategieën. Hoewel transcriptomische gegevens
een veelbelovend instrument zijn in veel gebieden van biomedisch
onderzoek om moleculaire processen zoals toxicologische reacties
te bestuderen, worden ze geconfronteerd met belemmeringen
op het gebied van reproduceerbaarheid, betrouwbaarheid en
acceptatie binnen de risicobeoordelingsgemeenschap. Daarom had
dit proefschrift twee doelen: het verbeteren van de bruikbaarheid van
AOP’s en het vaststellen van een methode voor het analyseren en
interpreteren van transcriptomische gegevens en welke gebruikmaakt
van AOP’s en deze uitbreidt om beter inzicht te bieden in KE-activatie,
met als ultiem doel het vergroten van de algehele acceptatie van
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transcriptomische gegevens in risicobeoordelingen.

Verbetering van de bruikbaarheid van AOP’s
Voordat er een link kon worden gelegd tussen transcriptomische
gegevens en AOP’s, diende de algehele bruikbaarheid van AOP’s
verkend te worden. Deze worden over het algemeen opgeslagen
in de AOP-Wiki. Er wordt gestreefd naar interoperabiliteit met de
gevestigde moleculaire pathway-database genaamd WikiPathways
om KE’s uit te breiden met moleculaire entiteiten en processen. Dit
heeft geleid tot een introductie van WikiPathways en het benadrukken
van de sterke punten van door de gemeenschap gedreven
ontwikkelingen en methoden om toegang te krijgen tot gegevens,
beschreven in Hoofdstuk 2. Vervolgens is in Hoofdstuk 3 de mate
van overlap tussen KE’s in AOP-Wiki en moleculaire pathways in
WikiPathways onderzocht. Dit heeft aangetoond dat de meerderheid
van de vroege KE’s in AOP-Wiki overeenkomstige moleculaire
pathways heeft in WikiPathways. Bovendien zijn er mogelijkheden
om de AOP-Wiki meer te verbinden met andere biologische databases
door gebruik te maken van de ontologische annotaties van KE’s en
moleculaire entiteiten die in hun beschrijving zijn vastgelegd. Om
de bruikbaarheid van AOP’s in de AOP-Wiki verder te vergroten,
heeft dit proefschrift geleid tot een meer FAIR (Findable, Accessible,
Interoperable, Reusable) versie van de AOP-Wiki door gebruik
te maken van semantische webtechnologieën en het produceren
van een RDF (Resource Description Framework)-versie van de
gegevens, zoals beschreven in Hoofdstuk 4. Na de productie
van de AOP-Wiki RDF zijn verschillende tabellen van de AOP
Data Base (AOP-DB) gemodelleerd in RDF-formaat met dezelfde
principes, wat gepresenteerd is in Hoofdstuk 5. Het genereren van
de AOP-Wiki RDF en AOP-DB RDF en het laden van deze data in
SPARQL-eindpunten maakt de verkenning en integratie van de
gegevens met externe bronnen en het computationeel opvragen
van de inhoud mogelijk, zoals geïllustreerd in Hoofdstuk 6 door
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middel van een Jupyter-notebook. De gepresenteerde flexibele en
reproduceerbare workflow maakt gebruik van een reeks openbare
diensten om gegevens te vinden en te analyseren ter ondersteuning
van een AOP naar keuze, en toont de bruikbaarheid van de
semantische webversies van AOP-Wiki, AOP-DB en WikiPathways.

Uitbreiding van AOP’s met moleculaire pathways
Met de oprichting van de AOP-Wiki en WikiPathways presenteert
Hoofdstuk 7 de oprichting van een analysemethodiek voor
transcriptomische gegevens, waarbij WikiPathways wordt gebruikt
als een integratief platform tussen AOP’s en moleculaire pathways
met een tussenmodel genaamd de moleculaire AOP. Er werd
verwacht dat de integratie van deze biologische databases met
experimentele gegevens veelbelovend zou zijn om de bruikbaarheid
van transcriptomische gegevens te bevorderen door middel van
verbeterde gegevensinterpretatie en door koppelingen tussen KE’s
en biologische processen om de KE-activatie te meten. Door meting
en visualisaties van KE-activiteit te bieden, maakt deze integratie
het mogelijk om, maakt deze integratie maakt het mogelijk om
transcriptomische gegevens te gebruiken ter ondersteuning van op
AOP gebaseerde risicobeoordelingsstrategieën. Ter illustratie en
principieel bewijs zijn casestudy’s uitgevoerd naar een AOP-netwerk
van leververvetting en een AOP die begint met remming van
mitochondriale complex I in neuronale cellen. Dit heeft aangetoond
dat het model veelbelovend is om transcriptomische gegevens te
analyseren en interpreteren en om hypothesen te genereren over
KE-activatie. De casestudy’s hebben echter ook de uitdagingen
aangetoond van het modelleren van moleculaire AOP’s en hun
gebruik. Uitgebreidere testen zijn vereist om het toepassingsgebied
en technologische gereedheidsniveau van moleculaire AOP’s te
definiëren.
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Impact van dit onderzoek
Het overkoepelende doel van dit proefschrift was om het bestaande
mechanistische kennis in AOP’s beter te benutten en grootschalige
omics-benaderingen te gebruiken om de overgang van dierproeven
naar efficiëntere en diervriendelijkere risicobeoordeling van
chemicaliën en nanomaterialen te bevorderen. De verhoogde
toegankelijkheid en interoperabiliteit van de AOP-Wiki en AOP-DB
kunnen leiden tot effectiever gebruik van AOP-kennis, wat
vervolgens kan leiden tot een efficiëntere oprichting van op kennis
gebaseerde Integrated Approaches to Testing and Assessment (IATA).
Dit kan uiteindelijk betere en snellere risicobeoordelingsbenaderingen
faciliteren om de veiligheid en gezondheid van mens en milieu
te waarborgen. De voorgestelde methode die gebruikmaakt van
moleculaire AOPs om transcriptomische gegevens te analyseren,
kan deze nieuwe methode de integratie en bruikbaarheid van
transcriptomische gegevens in risicobeoordeling ondersteunen.
Hiermee wordt een duidelijk analyse- en interpretatiemodel geboden
om KE-activatie te beoordelen.

Conclusie
Dit proefschrift had als doel de bruikbaarheid van AOP’s en
transcriptomische gegevens voor risicobeoordeling te verbeteren.
Ten eerste heeft dit proefschrift onderzocht hoe de moleculaire
pathway-database van WikiPathways kan worden geïntegreerd
met de AOP-Wiki. De connectie hiertussen zorgt ervoor dat er
een verbinding kan worden gelegd tussen transcriptomische
gegevens en AOP’s door door KE’s te koppelen aan moleculaire
pathways. Bovendien benadrukte dit proefschrift het belang van
het interoperabel en FAIR maken van de gegevens in de AOP-Wiki.
Dit maakte een geautomatiseerde workflow mogelijk in een Jupyter
Notebook dat experimentele gegevens kon opzoeken en analyseren
ter ondersteuning van een specifieke AOP. Ten slotte maakt de
geïntroduceerde moleculaire AOP-benadering de visualisatie en
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reproduceerbare analyse van transcriptomische gegevens mogelijk,
wat de identificatie van KE-activatie kan faciliteren. Dit kan zorgen
voor een overbrugging van de kloof tussen big data-benaderingen en
de risicobeoordelingsgemeenschap en uiteindelijk een verbetering
van de veiligheid en gezondheid van mens en milieu.
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