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General Introduction



Chapter 1. General Introduction

Background & Challenges

Respiratory diseases present in a wide spectrum of manifestations, pri-
marily imaged through Computed Tomography (CT) scans [1]. Gen-
erally, these diseases can be categorized as focal or diffuse [2]. Focal
diseases are localized to a specific area, e.g., lung nodules or pulmonary
embolism [2], while diffuse diseases, such as interstitial lung disease
(ILD) and most pleural diseases, are more widespread across the lungs
and pleura [3]. Diffuse diseases share common challenges in radiological
evaluation: they all cover an extended number of CT slices in tho-
racic CT scans, making their burden notoriously hard to quantify [4,
5, 6, 7]. Standardizing radiological methods to evaluate the extent of
the patient’s disease is therefore challenging, often in contrast with the
clinical practice, which requires evaluation criteria that are easy to use,
time-efficient, and cost-effective [8]. These restrictions have led to us-
ing approximations as evaluation criteria, most prominently diameters,
for example in tumor diameters to estimate the total tumor volume,
and visual inspections, for example to estimate the percentage affected
lung parenchyma. The subjectivity and estimation error of these meth-
ods can lead to variability in the measurement, and therefore diagnosis,
which can impact treatment decisions and patient outcomes [8].

This dissertation analyzes two examples of diffuse pulmonary diseases:
COVID-19 and asbestosis. COVID-19 has greatly impacted the need
for radiological evaluation, with 700 million cases and nearly 7 million
deaths as of November 2023 [9]. The pandemic has highlighted the
role of radiology in disease management [10]. However, for COVID-19
lesion quantification on CT, there is a lack of consensus on which imag-
ing features are most predictive of disease severity, making it difficult to
quantify the severity of the disease accurately [11, 12]. Moreover, cog-
nitive biases make radiologists vulnerable to overestimating the extent
of diseases [11], underscoring the necessity for quantitative volumetric
assessment. Asbestosis, an ILD caused by long-term occupational expo-
sure to asbestos, has seen an increasing incidence rate since 1990, lead-
ing to 9400 diagnoses worldwide in 2017 [13]. Despite efforts to regulate



asbestos use, cases are particularly reported in high-income regions [13].
The visual assessment of asbestosis in CT scans is subject to consid-
erable inter-observer variability, which makes it difficult to assess the
true extent of the fibrotic tissue [14]. This visual inspection currently
determines the eligibility for state aid: patients with asbestos-induced
fibrosis qualify for financial compensation when the fibrosis is assessed
to cover more than 5% of the lung parenchyma. Considering the difficul-
ties of determining the percentage of affected lung parenchyma visually
[11], there is a growing need for improved assessment methods for this
disease.

Similar to asbestosis, the primary cause of diffuse pleural diseases such
as pleural plaques and pleural mesothelioma is the inhalation of as-
bestos fibers [15, 16, 17]. While asbestosis diagnoses quality for state
aid, patients with pleural plaques currently do not, partly due to in-
conclusive evidence about their effect on lung function, exacerbated by
difficulties in quantifying pleural plaque volume [17, 18]. Investigating
the relationship between pulmonary function parameters and the extent
of pleural plaques could clarify the impact of plaques on lung function,
potentially justifying state aid for affected patients [14, 19]. However,
the visual quantification of pleural plaque extent and volume is chal-
lenging [20], highlighting the need for accurate quantification methods
to support research on the clinical significance of pleural plaques.

Pleural mesothelioma is an aggressive tumor that is difficult to as-
sess due to its irregular shape and growth patterns. It has an age-
standardized rate of 0.30 per 100,000 individuals with the highest inci-
dence in Northern Europe [21]. Despite being a rare disease, its impact
is underlined by the poor median survival ranging from 8.7 months [22]
to 10.3 months [23], barely increasing over the past 50 years [21]. The
lack of curative treatments and the challenges in evaluating new ther-
apies, partly due to the tumor’s unique crescent shape, contribute to
difficulties in disease management [24]. The current gold standard of
evaluating therapeutic response, i.e. assessing the reaction of the tumor
to a given treatment, is Response Evaluation Criteria In Solid Tumors
(RECIST). Primarily used in clinical trials, it involves diameter mea-
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surements at various CT scan slices and subsequent comparisons with
follow-up images [25]. Treatment response is classified based on diame-
ter changes, with over 20% increase indicating progressive disease (PD)
and over 30% decrease classifying partial response (PR) [25]. Complete
response (CR) is rare in mesothelioma cases [26].

The mesothelioma-specific modified RECIST (mRECIST) differs by
measuring the diameter perpendicular to the thoracic cavity contour
rather than the longest diameter [27]. Typically, the best-observed re-
sponse (PD, SD, or PR) during a trial is reported. However, significant
interobserver variability remains, as demonstrated in a recent phase II
trial where experts agreed on the primary endpoint in only 53% of the
patients for the best-observed response [28], which could have happened
due to differences in defining the tumor’s location and measurement an-
gle [24]. These challenges underscore the need for more precise methods
to quantify the entire disease burden at one single time (CT scan) and
assess treatment effects over time (difference over multiple CT scans).
Such advancements are essential for enhancing the evaluation of both
new and existing treatments for pleural mesothelioma.

Proposed Solution

We hypothesize that Artificial Intelligence (AI) has the potential to aid
in increasing standardization by automating the quantification process
and reducing inter-observer variability. Automatic solutions leveraging
AT have the potential to accurately quantify pleural and lung anoma-
lies such as the volumetry of pleural plaques and mesothelioma, and
the detection of asbestosis. These automated solutions could offer a
standardized approach, reducing inter- and intra-observer variability in
the diagnostic process. The development of these Al-based solutions
involves the use of complex computational models that are trained on
extensive datasets. Convolutional neural networks (CNN) have demon-
strated remarkable success in the biomedical imaging field due to their
ability to process imaging data with varying degrees of abstraction,



and to learn imaging features automatically [29]. These properties en-
able navigation and exploration of massive datasets to discover com-
plex structures and patterns that can be employed for prediction, clas-
sification, and segmentation (labeling of each voxel). Presently, the
state-of-the-art technologies in this domain are based on these CNNs
[30]. The models typically involve subsequent filtering operations that
down-sample the input image size, effectively reducing the image to a
lower dimensional space that contains highly informative quantitative
features for classification or regression tasks [29]. For image segmen-
tation, a decoder is typically added to the model, which applies the
inverse operation to map the low dimensional space back to the full-
resolution image, thereby producing a label map. The utilization of
Al-based solutions could enable a more streamlined and standardized
diagnostic process while removing the approximate measure. However,
AT has its own challenges, such as generalizability, convergence, explain-
ability, and data quality dependence [31]. To ensure the reliability of
Al-based approaches, it is important to rigorously validate their perfor-
mance on external datasets and prospectively evaluate them in clinical
practice [32]. Such validation can help establish the robustness and gen-
eralizability of Al-based methods and demonstrate their added value in
improving the accuracy and consistency of disease quantification [31,
32].

Research Aim and Outline of Thesis

Aim

The primary objective of this thesis is to enhance the standardization of
diffuse respiratory disease evaluations. We focus on developing and val-
idating innovative methodologies for the automated and quantitative
analysis of abnormalities in chest CT scans, focusing on case studies
for asbestos-related diseases and COVID-19. By leveraging the poten-
tial of machine learning and advanced image processing techniques, we
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intend to improve the accuracy and reproducibility of disease quan-
tification in these scans. Ultimately, we envision these advancements
contributing to improved patient outcomes and better-informed clinical
decision-making.

Thesis Outline

Part I: Enhancing Disease Quantification at Baseline

Study Question: How can we refine the process of disease quantification
at baseline for various respiratory conditions using Al models?

Part II: Evaluating Therapeutic Response in Pleural Mesothelioma

Study Question: What Al-based imaging techniques can be developed
to accurately assess and classify the therapeutic response in patients
with Pleural Mesothelioma?

Part I: Enhancing Disease Quantification at Baseline

Chapter 2 focuses on Al model development for classification of as-
bestosis and the eligibility of patients for government support based on
clinical examinations.

Chapter 3 entails the prospective validation of the Al system developed
in Chapter 2 for the evaluation of eligibility for state-aid.

Chapter 4 explores the relationship between pleural plaque volume and
pulmonary function tests, and the development of automatic Al-driven
segmentation of pleural plaques to automatize the task of segmenta-
tion.

Chapter 5 evaluates an externally developed AI model for the segmen-
tation of COVID-19 affected tissue in CT scans, and the corresponding
CO-RADS score.



Part II: Evaluating Therapeutic Response in Pleural
Mesothelioma

Chapter 6 quantifies response to treatment in Pleural Mesothelioma us-
ing an Al algorithm for automatic volume quantification in CT scans. It
proposes novel volumetric cutoffs for response evaluation and performs
external validations.
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Abstract

Objectives

In many countries, workers who developed asbestosis due to their oc-
cupation are eligible for government support. Based on the results of
clinical examination, a team of pulmonologists determine the eligibility
of patients to these programs. In this Dutch cohort study, we aim to
demonstrate the potential role of an artificial intelligence (AI)-based-
system for automated, standardized, and cost-effective evaluation of
applications for asbestosis patients.

Methods

A dataset of n=523 suspected asbestosis cases/applications from across
the Netherlands was retrospectively collected. Each case/application
was reviewed, and based on the criteria, a panel of three pulmonologists
would determine eligibility for government support. An Al-system is
proposed, which uses thoracic CT images as input, and predicts the
assessment of the clinical panel. Alongside imaging, we evaluated the
added value of lung function parameters.

Results

The proposed Al-algorithm reached an AUC of 0.87 (p<0.001) in the
prediction of accepted versus rejected applications. Diffusion capacity
(DLCO) also showed comparable predictive value (AUC=0.85,
p<0.001); with little correlation between the two parameters
(r-squared=0.22, p<0.001). The combination of the imaging Al-score
and DLCO achieved superior performance (AUC=0.95, p<0.001).
Interobserver variability between pulmonologists on the panel was
estimated at «=0.65 (Krippendorff’s alpha).

12



Conclusion

We developed an Al-system to support the clinical decision-making pro-
cess for the application to the government support for asbestosis. A
multicenter prospective validation study is currently ongoing to exam-
ine the added value and reliability of this system alongside the clinic
panel.

Keywords

Asbestos, Asbestosis, Tomography, X-Ray Computed, Respiratory
Function Tests, Artificial Intelligence

Key Points

Artificial Intelligence can detect imaging patterns of asbestosis in CT
scans in a cohort of patients applying for state-aid

Combining the Al prediction with the diffusing lung function parameter
reaches the highest diagnostic performance

Specific cases with fibrosis but no asbestosis were correctly classified,
suggesting robustness of the AI system, which is currently under
prospective validation.

13
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Introduction

Asbestosis is diffuse pulmonary fibrosis emerging after prolonged,
mainly occupational, exposure to asbestos [33]. Many countries have
banned asbestos in construction and manufacturing [34]. However,
due to the long incubation time, many (former) exposed workers now
present with asbestosis[35].

Asbestosis patients with occupational asbestos exposure might be eligi-
ble for financial compensation [14]. The criteria for obtaining it varies
by country, although international attempts have been undertaken for
standardization [14, 36, 37]. Standardization is hard to achieve, with
disagreement among experts [38, 39] on the Helsinki criteria [37] for as-
bestosis hindered this process. In the Netherlands, the following criteria
are legally set for financial reimbursement: (1) Computed Tomography
(CT) imaging, preferably High-Resolution CT (HRCT) with fibrosis
covering >5% of the lung area, (2) lung function loss should be present,
and (3) occupational asbestos exposure of at least five fiber years (prod-
uct of the intensity of asbestos exposure times the occupational years
[40, 41]). Three independent and experienced pulmonologists review
the clinical case and state whether the most likely diagnosis is asbesto-
sis. The majority of votes set the diagnosis for reimbursement. Similar
procedures are followed in other countries [42, 19, 43].

This law-driven diagnosis does not coincide entirely with the clini-
cal, multidisciplinary board meeting-driven diagnosis. Additionally, a
shared limitation is the unknown inter-rater variability, leaving the qual-
ity and reproducibility of the final verdict unknown. This could lead to
the same patient receiving different diagnoses for unclear cases. Alter-
natively, obvious cases are still processed by three experts, where their
effort could have had more impact analyzing the unclear cases.

We hypothesize that a system based on artificial intelligence (AI) could
replicate the assessments of the three experts. Al is a method to auto-
matically extract data patterns from raw data (e.g. CT scans) to predict
outcomes of interest (e.g. decision of the pulmonologists’ panel). In this

14



study, we aim to develop and test an Al-system to assess applications
of subjects with recorded exposure to asbestos, and determine whether
they are eligible for financial support. If the Al is certain about its
prediction, one pulmonologist could be sufficient to verify the Al as-
sessment. More pulmonologists can be assigned to process the unclear
case when the Al is uncertain. The resulting Al-algorithm evaluates eli-
gibility and can be implemented uniformly in multiple centers, allowing
for increased consistency in handling financial support requests.

Material and Methods

Datasets

We performed a retrospective analysis on a dataset of prospectively
included applicants for financial support, collected by the Dutch Insti-
tute of Asbestos Victims (IAS) and the Netherlands Cancer Institute
(NKI; Amsterdam/NL) between 05/2014 and 11/2019 [14]. Applicants
gave informed consent for the use of their data. CT scans with 3mm
slice thickness/increment were preferred over lmm due to hardware con-
straints. While <1mm slices are preferred in clinics for diagnosing ILDs,
the GPU cannot process hundreds of <lmm slices as one volume.

Exclusion criteria for the current analysis were: no chest-CT scan avail-
able, lungs not fully present in the scan, slice thickness >5mm, or
absence of panel verdict. The dataset was divided between training,
validation, and test sets based on a random, reproducible split. Each
set consisted of an equal ratio of positive/negative cases. For evalu-
ation, four contradictory cases (interstitial lung disease (ILD) but no
asbestosis, or asbestosis but little to no ILD) were held out.

When available, the following lung function tests were retrieved: vi-
talcapacity (VC, em?), forced vital capacity (FVC, cm?), and diffusing
capacity of the lung for carbon monoxide (DLCO, mL/min/mmHg). To

15
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compensate for differences in body type, the lung function parameters
are denoted in percentage (%) of expected value. To quantify the loss
of lung function, Hagmolen Of Ten Have et al. adapted the American
Medical Association (AMA) classes described by Rondinelli et al. [44].
The worst-recorded parameter between FVC and DLCO was converted
to an impairment class (AMA class, Table 2.1). AMA >2 is regarded
as sufficient for financial support (see Supplement).

Class 0 1 2 3 4

FVC >80% 70-79% 60-69% 50-59% <50%
DLCO >75% 65-74% 55-64% 45-54% <45%

Table 2.1: Table for converting loss of lung function to a specific AMA class
(Guides to the Evaluation of Permanent Impairment Sixth Edition). FVC
and DLCO values are the corrected percentages for age, length, and sex of
the predicted normal value. The parameter with the highest loss determined
the AMA class, which in turn was correlated to the extent of the financial
reimbursement.

Design of the Artificial Intelligence

We designed an Al-system for the assessment of eligibility of asbestosis
financial support applications following subsequent steps: 1. identifi-
cation of the lungs and surrounding tissue in chest-CT scans through
a localizer, 2. detection of anomalies within the lungs with a detector,
and 3. automatic assessment of eligibility through a classifier, based on
the CT scan and the anomalies found in 2. These modules function syn-
chronously within the overall Al-diagnostic-system (Figure 2.1). The
code is publicly available on the Al-repository of our department!, en-
abling other researchers to redo a similar study.

"https://github.com/nki-radiology/asbestosis
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Prediction

Detector) (. \ Classiﬁer) ’

Figure 2.1: An overview of the Al-system with the Localizer, Detector, and
Classifier modules. The red outline indicates the areas of interest for each
module.

Localizer

This module aims to detect and segment the lungs. We reused an
Al-model? of LaLonde et al. [45]. Once it identified the lungs, we auto-
matically removed all non-lung pixels from the image. This facilitates
the subsequent analysis, ensuring that they will only be performed on
lung tissue.

Detector

The goal of this module is to highlight anomalies in the lungs. We
based the design on a set of algorithms for anomaly detection, called
variational autoencoders (VAE) [46]. In our case, we trained a VAE on
a dataset of chest-CTs (see Supplement). By training this network on
healthy CT slices, the VAE learns to synthesize healthy lung structures.
When a CT with lung anomalies is presented to the network, the VAE
will reconstruct those abnormal regions of the lungs poorly, since they
are not learned during training. This phenomenon allows us to high-
light the anomalies, effectively creating an anomaly heatmap (details in
Supplement).

*https://github.com/lalonderodney/SegCaps
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Classifier

This module aims to identify patients who received a positive assessment
for asbestosis financial support. We based our design on the ResNet
architecture [47], which is commonly employed for image classification
tasks. We trained the network using the CT+anomaly heatmap as input
and the asbestosis panel verdict as training objective, where the cross-
entropy loss function quantified the difference between AI prediction
and panel verdict. Once trained, the network made predictions between
0 and 1, to be interpreted as a probability, with 0 being no evidence to
support positive assessment and 1 being the opposite.

Data Curation and Labels

To minimize differences between imaging protocols and artifacts from
foreign metal bodies, e.g. pacemakers, all Hounsfield Units (HU) were
clipped between -1024 HU (air) and 3072 HU (dense bone) [48] and
scaled on 0—1 interval. To include adjacent tissue of the thoracic
wall (such as pleural plaques/thickening), we dilated the segmentations
through morphological operators with a kernel of 13x13x5 voxels. Sub-
sequently, they were visually inspected and adjusted in 3DSlicer (v4.10)
[49] if the pleura was not present in the dilation.

The segmented lungs in the CT were cropped to 192x192x96 (sagittal,
coronal, axial) and rescaled where needed due to hardware constraints.
The ground-truth, i.e. the label, was implemented in two configura-
tions: hard and soft. The hard labels were binary (i.e. asbestosis or
not), whereas the soft labels reflected the panel’s agreement (i.e. ratio
of positive assessments). These soft labels were implemented to inves-
tigate whether the Al could replicate that level of agreement. When
pulmonologists disagree, soft labels penalize uncertain Al predictions
less than hard labels. In specific, an Al prediction during training of
0.5 (uncertain) is closer to the fraction of pulmonologists positive: 0.33

18



(1/3 pulmonologist, 0.17 off target, soft label) than the final verdict of
the panel: 0 (1/3 pulmonologist, 0.5 off target, hard label).

Statistical Analysis

To evaluate the panel’s inter-observer variability, we calculated Krip-
pendorft’s alpha, where o« = 1 reflects perfect agreement and o = 0
disagreement [50]. The performance of the models was evaluated using
the ROC-AUC and standard measures of accuracy, sensitivity, speci-
ficity, and positive and negative predictive value. We performed Mc-
Nemar’s test to test for significant differences in performance between
different methods. The correlation between lung functions and Al pre-
dictions was estimated via r-squared (r2). To visualize the areas where
the model focused on in the CT scan, we traced the activations back to
the input, creating so-called saliency maps [51]. These saliency maps
can be interpreted as overlays, which contain higher values on areas of
the CT that contribute more towards the final prediction. Furthermore,
we aimed to develop models that did not produce significant outliers, i.e.
incorrect predictions close to 0 and 1. This improves the explainability
of predictions to both applicants and physicians.

Results

Study cohort

In total, we retrospectively collected n=523 applications for financial
support. Median age was 75 years (IQR 69—80). The dataset contained
two female applicants (0.4%). The pool of pulmonologists consisted
of n=23 experts, with 20 years of experience at the median (16—27).
For each application, n=3 pulmonologists were assigned to process the
application, with each pulmonologist having the same probability of
getting assigned.

19
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At the database lock of November 2019, n=16 did not receive an assess-
ment of the panel. Of the n=507 remaining cases, n=233 applicants re-
ceived a positive assessment (46.0%), with n=166 (71.2%) unanimously.
The remaining n=274 applications did not meet the criteria, with n=219
(79.9%) unanimous assessments. Inter-observer variability between pul-
monologists was estimated at alpha=0.65 (Krippendorff’s alpha), with
75.9% unanimously (n=385).

For AT development, n=88 additional applications were excluded: n=78
for absence of fully imaged lungs in the CT and n=10 for CT slice
thickness >5mm. A total of n=419 formed the study dataset. The
excluded cases did not differ significantly by age or lung function. CT
scans protocol were heterogeneous due to the multicenter origin of the
data (median, CI): Voltage (120 kVp, 118.7—121.3), Tube current (194
mA, 177.4—210.6), Slice Thickness (3 mm, 2.85—3.14).

Al Training

We split the dataset into a training (n=263), validation (n=64), and
test set (n=88), based on a train-test split of 80/20 [52], with a repro-
ducible pseudo-randomization [sklearn v0.24.1]. We ran experiments
with different label formats (i.e. soft, which reflects the agreement, and
hard, which is binary), and with and without anomaly heatmap.

Al Predictive Performance

Soft labels combined with the anomaly heatmap yielded the best per-
formance in all metrics (Table 2.2). Soft labels yielded a more uni-
form prediction distribution between 0 and 1 compared to hard labels
(soft std=0.33, hard std=0.40, p<0.001). Following the McNemar test
comparing the predictions, the soft label model yields higher perfor-
mance (AUC=0.87, CI: 0.78—0.94, p<0.001) than the hard label model

20



(p=0.017) Moreover, soft labels with anomaly heatmap performed sig-
nificantly better than soft labels without heatmap (p=0.042), indicat-
ing that both the soft labels and anomaly heatmap were required for
increased performance. While the setup without anomaly heatmap and
with hard labels scored best on sensitivity and negative predictive value,
the overall performance of the soft label with anomaly heatmap was
significantly better as well (p=0.017, McNemar test) (Table 2.2). The
model yields an accuracy of 0.82 (0.74—0.90), with a sensitivity of 0.76
(0.62—0.88), and a specificity of 0.87 (0.77—0.96). Positive and neg-
ative predictive values were 0.84 (0.71—0.95) and 0.81 (0.69—0.91),
respectively.

Label AnomalyACC SENS SPEC PPV NPV p-

Heatmap value
Hard No 0.65 0.93 0.40 0.58 0.86 0.017
Soft  No 0.66 0.78 0.55 0.60 0.74 0.042
Hard Yes 0.65 0.46 0.81 0.68 0.63 0.043
Soft  Yes 0.82 0.76 0.87 0.84 0.80 -

Table 2.2: The results of the different tested setups of Al-models. The bold
number shows the maximal performance in terms of the metric of that column.
Hard labels are binary, while soft labels reflect the agreement of the pulmo-
nologists on the panel. The p-values were calculated with the McNemar test
compared to the best performing model (soft labels with anomaly heatmap).

The distribution of the predicted scores is shown in Figure 2.2A, strat-
ified according to the agreement of pulmonologists in the panel (i.e.
number of pulmonologists that gave a positive assessment). We per-
formed visual analysis of outliers where all three pulmonologists were
positive, but the model prediction was negative (n=5). Most of those
applicants (n=4) had a severe reduction in lung function, but the fibro-
sis in the CT scans did not reflect this.
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Figure 2.2: The colors reflect the agreement of the panel of pulmonologists:
asbestosis negative (red dots), one out of three positive (orange), two out of
three positive (light green), asbestosis positive (green dots). (A-C) Violin plots
on different setups of prediction. The y-axis shows the agreement of the panel
of pulmonologists. The x-axis shows the predicted probability of asbestosis.
p<0.001 between the predictions in class 0 and 3 for all setups. (A) The
prediction of the Al-model. (B) The score of the Al-model linearly weighted
with the DLCO. (C) The prediction of the Al-model that took both the CT
and the DLCO as input. (D) Bar plot of the diagnostic value (expressed as
AUC) of the different lung function parameters, the AMA class, and the AI-
model. (E-G) Probability of asbestosis predicted by the Al-model versus (E)
AMA, (F) FVC, and (G) DLCO. The horizontal dotted line indicates the cut-
off value for lung function loss, the vertical dotted line indicates the cut-off of
the AT prediction. (H) Shows several cases where the amount of fibrotic tissue
does not reflect the diagnosis of the pulmonologists. The symbols of each
example are visualized in E-G when the respective lung function parameter of
the patient is known.

Integration of Lung Function Tests

DLCO yielded predictive performance close to the Al-model
(AUC=0.85, CI: 0.80—0.89, p<0.001). The remaining lung function
parameters yielded lower results: AUC=0.67 for VC (CI: 0.60—0.72,
p<0.001), AUC=0.63 for FVC (CI: 0.56—0.68, p<0.001), and
AUC=0.83 for AMA (CI: 0.78—0.87, p<0.001).

Interestingly, the DLCO showed a weak correlation with the Al predic-
tion (r?=0.22, p<0.001), suggesting they can be independent predictors
of asbestosis. We tested a simple combination, formalized as the aver-
age between Al-score and DLCO-value — ((1-DLCO)+AI)/2; and an
advanced combination strategy, where the DLCO is added as additional
input to the Al-system.

The simple combination yielded an AUC of 0.95 (0.89—0.98, p<0.001),
with an accuracy of 0.84 (0.76—0.92), a sensitivity of 0.77 (0.63—0.89),
and a specificity of 0.91 (0.81—1.00). Positive and negative predictive
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values were 0.91 (0.80—1.00) and 0.78 (0.65—0.90), respectively. Fur-
thermore, from the distribution of the scores, this setup reported no

false negative or false positive under 0.35 and above 0.60, respectively
(Figure 2.2B).

The advanced combination strategy yielded an AUC of 0.92 (0.86—
0.97, p<0.001), an accuracy of 0.84 (0.76—0.92), with a sensitivity of
0.74 (0.60—0.87), and a specificity of 0.94 (0.85—1.0). Positive and
negative predictive values were 0.94 (0.83—1.0) and 0.77 (0.64—0.89),
respectively. The spread of predictions in agreement with the pulmo-
nologists was wider, as shown in Figure 2.2C. More specifically, this
model predicts more CT scans closer to either zero or one than the Al
and the simple combination do.

Following the AUC (Figure 2.2D) and outliers, the simple combination
of AI+DLCO was considered the best model. Compared to the ad-
vanced combination, it yielded a distribution of predictions with lower
standard deviation and was more interpretable due to DLCO weighting
apart from the Al-model.

AMA Class Decomposition

To meet the requirement of lung function loss for financial reimburse-
ment, AMA>2 is needed. Figure 2.2E shows how the AI prediction
distributes over the AMA classes. When decomposing the AMA class
in FVC and DLCO, the differences in predictive values become notice-
able. FVC values (Figure 2.2F, AUC=0.63) were more scattered than
the DLCO values (Figure 2.2G, AUC=0.87). The held out cases with
FVC or DLCO reported (Figure 2.2H) show how the specific cases inter-
act with the Al prediction and the lung function parameters in Figure
2.2E-G.
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Visual Interpretation

To enhance interpretability, we generated saliency maps showing that
the asbestosis-positive cases show more activations than the asbestosis-
negative cases (Figure 2.3). From visual inspection, we can see that the
CT scan with visible ILD yields more activations, indicating that the
Al-system learned to identify ILD. In the CT scan where ILD is barely
visible, there were hardly activations of the Al-system.
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Figure 2.3: Saliency map yielded by the Al-model of two CT scans in the test
set. The areas in yellow represent the attention of the model. The left side
shows a slice from the top of the lungs, the middle a slice in the middle of
the lungs, and the right side a slice from the bottom of the lungs. (A) CT
scan where 3/3 pulmonologists were positive and the model yielded a high
probability of asbestosis (0.81). (B) CT scan where 0/3 pulmonologists were
positive and the model yielded a low probability of asbestosis (0.19).
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Discussion

The current process for the assessment to determine the eligibility for
financial support of workers who had been in contact with asbestos
is laborious, costly, and has high intra-observer variability [14]. This
study aimed to automate and standardize this process via artificial in-
telligence (AI) [53]. To do this, we have implemented an Al-system
[47] that uses thoracic CT scans to replicate the assessment of a panel
of three pulmonologists (as required by national law). Our Al-model
to automatically classify the eligibility of applicants for state-aid for
people with asbestosis yielded significant results and classified eligible
applications with high accuracy. The best performing lung function pa-
rameter DLCO showed comparable results [54]. The combination of the
AT+DLCO yielded a superior predictive performance than either Al or
DLCO alone.

By accounting for the uncertainty in the pulmonologists’ assessment
(i.e. soft labels), our model reached higher accuracy than the same
model that ignores it (i.e. hard labels). We hypothesize that the soft
labels enable the Al to learn the uncertainty in specific cases, while the
hard labels promote predicting either 0 or 100% probability. This is
supported by the difference in standard deviation in the predictions of
the soft/hard label Al-models. The level of agreement observed in the
panel of pulmonologists is lower than the cut-off considered sufficient
for reliable results [50]. Al-systems are notorious for their susceptibility
to uncertainty in the provided labels [55]. The implementation of soft
labels is based on the assumption that the levels of agreement between
pulmonologists reflect a true, underlying level of uncertainty, which is
also present in multidisciplinary meetings of interstitial expert teams
[56]. The ability of the model to replicate the uncertainty suggested
that it is not random but rather dependent on clinical or biological
characteristics. Pure binary models would allow only for two outcomes:
accept or reject. Due to the ability to replicate the uncertainty, we
accepted a third outcome: process further. We envision the unsure
cases (Al probability between 0.35-0.6) getting extra attention from the
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panel, while one pulmonologist handles the clear cases (<0.35, >0.6).
Therefore, there will always be a need for a (multidisciplinary) panel.

Lung function tests played a significant role in identifying false-negative
cases where all pulmonologists returned a positive assessment, and the
Al-model returned a negative one (Figure 2A-B: difference in top rows).
This suggested that the lung function tests largely drove the verdict for
these applicants. In other words, the Al-model could not detect a loss
of lung function based on the CT scan of these applicants. This was
supported by the weak-moderate correlation observed between DLCO
and Al-model.

DLCO contributed to the diagnostic accuracy of our model, whereas the
inclusion of FVC only deteriorated the ability to distinguish between
positive and negative applications. Two reasons might explain this phe-
nomenon: 1. the pulmonologists (unconsciously) based their verdict
mainly on DLCO, while not taking FVC into account, and 2. decreased
DLCO correlates with diffuse fibrosis, where the pulmonologists based
their verdict mainly on the radiologic features of diffuse fibrosis. These
findings align with Nogueira et al., who found that DLCO correlated
most to the short-term progression of abnormalities in HRCT [54]. It
may be beneficial for the panel to make DLCO measurements obligatory
for more consistent, standardized, and objective evaluations.

Although Al-models contain biases on their own [57], they could help
overcome human bias [58] and ensure a fairer public health policy in this
situation. Our work aligns with current literature that suggests auto-
matic Al-systems for ILD classification could improve patient healthcare
[59].

Our study contained several limitations. Because of missing lung func-
tion parameters, each lung function performance was computed on
slightly different sub-cohorts. Due to hardware limitations in the oper-
ational resolution of the Al-algorithm, we had to downsample the CT
images, blurring finer-grained structures like fibrosis [60]. While the
AT model performs excellently in classifying cases where the panel is
anonymous, it lacks explainability. Saliency maps indicate where the
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AT model is "looking at’ but are insufficient in explaining why a patient’s
application got accepted/rejected. There will always be a need for hu-
mans in these processes. Another improvement would be to include the
cumulative asbestos exposure as input. Furthermore, our analysis was
only retrospectively validated. Most Al algorithms are not validated
prospectively [61], and the value of commercially available products is
often not substantiated by peer-reviewed publications [62]. Therefore,
we chose to validate our simple combination of the Al-model and the
DLCO in a prospective setting (PROSBEST, Trial NL9064).

Given these results, we can envision an automatic and standardized
diagnostic Al-system of the application based on the CT scan and lung
function tests [63]. Further research in other clinical settings should
reveal whether the method used might be useful in diagnostication of
patients with interstitial lung disease in general.

Conclusion

We developed an Al-model to diagnose asbestosis in applicants for fi-
nancial reimbursement according to parameters set by Dutch law. Clas-
sification models based on only the CT scan and a combination of the
CT scan and the lung function test were quantitatively and qualita-
tively assessed. The model based on the CT scan and the DLCO was
superior to the other models and reached excellent diagnostic accuracy.
Whether this method could be implemented in other diagnostic settings
for asbestosis or interstitial lung diseases is under investigation.
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Supplementary Materials

Application Procedure

Currently, the members of the committee give their approval for a pos-
itive asbestosis diagnosis if three criteria are met: 1) the patient has
a sufficient history of occupational asbestos exposure, 2) the surface
of the lung parenchyma in the CT scan of the patient is at least 5%
covered with fibrosis, and 3) the patient has a reduced lung function.
This is the legal diagnosis for asbestosis, rather than the clinical one.
A committee of three pulmonologists evaluates whether the applicant
fulfills the three criteria for a positive assessment. They are blinded
to their respective diagnoses, and a unanimous decision is not required
[14]. For the first criterion, a risk matrix was developed to state the
intensity of asbestos of the most common occupations per decade, for
the period of 1945-1995. More specifically, the years of work are multi-
plied by the corresponding intensity factor for the patient’s occupations
during that time, leading to an overall grade of the intensity of total
asbestos exposure, which can be converted to fiber years. This value
has to be higher than five fiber years to meet the criterion of sufficient
history of occupational asbestos exposure. The second criterion of lung
parenchyma fibrosis is evaluated through visual radiological inspection,
where an experienced reader estimates the 3D volume of fibrosis, from
the 2D slices of the CT scan. The fibrosis has to cover at least 5%
of the pleural surface. The third criterion is lung function loss, which
is estimated on a 5-point scale based on the criteria by the American
Medical Association (AMA) and "Guides to the evolution of permanent
impairment," 6th edition 2008. These guidelines describe the three most
indicative parameters of lung function loss of applicants with asbesto-
sis: (1) forced vital capacity (FVC), (2) diffusing capacity for carbon
monoxide (DLCO), and (3) the maximal oxygen consumption (VO2
max). FVC is the total amount of air the patient can exhale by force
after a full inhalation in liters. The DLCO describes the ability of car-
bon monoxide (as a substitute for oxygen) to transfer into the blood
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in ml/min/mmHg. VO2 max is the maximal uptake of oxygen during
incremental exercise in ml/min/kg. The lowest-scoring one determines
the lung function loss category (Table 2.1). AMA class >1 is required
to meet the third criterion. Besides the AMA classification and their
corresponding lung function tests, the vital capacity (VC) is often given
to assist the pulmonologists in their assessment of the lung function of
the patient.

Network Design & Implementation

The 3D ResNet-18 architecture was implemented (Figure 2.4). It
learned features from the CT scan (and corresponding anomaly
heatmap) from 192 x 192 x 96 x 2 through multiple convolutions with
striding operations to 6 x 6 x 3 x 512. The global average pooling
layer compresses the feature maps to a vector representation. These
512 features are subsequently fed to the logistic classifier, which
results in a corresponding probability of each class (e.g. asbestosis or
no asbestosis). For the advanced combination, where the Al-system
included the DLCO, an additional layer was implemented before the
classification layer with four fully connected nodes to summarize the
512 pooled features of the CT image input. We implemented the lung
function parameter value parallel to this layer and connected it to the
classification layer. Each setup of the 3D ResNet network was trained
using Tensorflow (v1.15.0) and Keras (v2.3.1) libraries on two NVIDIA
GeForce RTX 2080Tis. The batch size was set at sixteen total, eight
per GPU. Adam was used as optimizer, with an initial learning rate of
le-3. The AI was trained for a maximum of 200 epochs, where early
stopping was used to stop the training if the validation loss did not
improve over 30 epochs. The best model checkpoint at the end of
every epoch was performed. Data augmentation with rotation (up to
10°) around the longitudinal axis, and flipping over the sagittal plane
of the image was implemented at runtime during training.
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3D ResNet Architecture
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Figure 2.4: The architecture of the implemented 3D ResNet. The left col-
umn shows the encoder, where the image is downsampled through subsequent
ResNet blocks to generate a prediction. The right column shows the ResNet
block architecture. The black arrows represent the connections of the blocks.
The blue arrows represent the identity connections, where the output of an
activation layer is added to the input of another convolutional layer.

34



Variational Auto-Encoder - Anomaly Heatmap

Variational autoencoders (VAE) are types of networks that learn to
identify common features, or characteristics, of a reference "normal
population. When presented with "abnormal” cases (i.e. cases that fall
outside of this reference population), the algorithm will not be able to
correctly estimate these features, resulting in a deviation between the
algorithm-measured value and the actual value, i.e. an anomaly.

Variational Auto-Encoder - Dataset

To train a VAE to model healthy lung tissues, we collected a publicly-
available CT dataset of lymphadenopathy patients [64]. CT slices con-
taining labeled enlarged lymph nodes were removed, since the dataset
should only contain healthy CT slices. The dataset contained N=867
patients, corresponding to a total of N=205 519 CT scan slices.

Variational Auto-Encoder - Data curation

To mitigate differences in imaging protocols, all CT density histograms
were clipped between -1024 and 3072 Hounsfield Units (HU) and scaled
on the interval [0, 1]. Slices were also resampled to 256 x 256 due
to hardware constraints. To focus the attention of the VAE on the
lungs, we performed segmentation of the lungs, and we blackened the
background region. The segmentation was performed using a publicly-
available deep learning segmentation network [45]. Lung segmentations
were dilated through morphological operators with a kernel of 20 x 20
x 5 voxels to include adjacent tissue (i.e. thoracic wall) where pleural
plaques are commonly found.
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Variational Auto-Encoder - Network Design

The proposed network design follows the standard architecture of the
variational autoencoder [46], where encoder, latent space, and decoder
are placed in subsequent order. The encoder is composed of 6 con-
volutional blocks. Blocks are composed of repeated layers of convolu-
tions, batch normalization, and the LeakyReLU activation function[65].
Downsampling is implemented through striding. The first block starts
with 16 filters. Each subsequent block adds 16 filters. The decoder is
composed of the mirrored architecture of the encoder, where the convo-
lutional layer with stride 2 is replaced with a convolutional layer with
a single stride and a subpixel upscaling layer [66] at the end of the con-
volutional block. Sigmoid is used on the last layer of the reconstruction
to constrain the image on the interval [0, 1]. While there has been
some advancement in the architecture, most notably the usage of fully-
convolutional layers in the latent space for medical image reconstruction
[67], we kept fully connected nodes in the latent representation. This
might seem disadvantageous to spatial representations, but through in-
ternal experiments, we observed that the fully connected architecture
prevents the VAE from reconstructing anomalies with patches and fea-
tures learned from healthy tissue. Values in the latent space are re-
shaped to a 4 x 4 x 96 format and passed forward to the decoder part.
The decoder upsamples this vector through convolutional layers and
subpixel upscaling to reconstruct the full-size image.

Variational Auto-Encoder - Network Implementation

The VAE network was designed and trained using Tensorflow (v1.15.0)
and Keras (v2.3.1) libraries on an NVIDIA GeForce RTX 2080Ti.
N=195 519 slices were assigned to the training set and N=10 000 to the
validation set for monitoring the training process. The batch size was
set to 48. Adam was used as optimizer, with an initial learning rate
of 1.5e-3. The VAE trained for 200 epochs, where the weight of the
KL term in the loss was increased by 0.05 after each epoch, reaching
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a maximum value of 1.0 in total. Best model checkpoint at the end
of every epoch was performed. Data augmentation with rotation (up
to 20) and horizontal flipping of the image was implemented during
training.
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Chapter 4. Al-based pleural plaque volume and relation to PFT

Abstract

Purpose

Pleural plaques (PP) are morphological manifestations of long-term as-
bestos exposure. The relationship between PP and lung function is not
well-understood, while the time-consuming nature of PP delineation
to obtain volume impedes research. To automate the laborious task
of delineation, we aimed to develop automatic Artificial Intelligence
(AI)-driven segmentation of PP. Moreover, we aimed to explore the re-
lationship between pleural plaque volume and pulmonary function tests
(PFT).

Methods

Radiologists manually delineated pleural plaques retrospectively in CT
images of patients with occupational exposure to asbestos (May 2014 -
November 2019). We trained an Al model with a nnUNet architecture.
Dice Similarity Coefficient (DSC) quantified the overlap between Al and
radiologist. The Spearman correlation coefficient (r) was used for the
correlation between PP volume and PFT metrics. When recorded, these
were Vital Capacity (VC), Forced Vital Capacity (FVC), and Diffusing
Capacity for Carbon Monoxide (DLCO).

Results

We trained the AI system on 422 CT scans in five folds, each time
with a different fold (n==84-85) as a test set. On these independent test
sets combined, the correlation between the predicted volumes and the
ground truth was r=0.90, and the median overlap was 0.71 DSC. We
found weak to moderate correlations with PP volume for VC (n=80, r=-
0.40) and FVC (n=82, r=-0.38), but no correlation for DLCO (n=84,
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r=-0.09). When the cohort was split on the median PP volume, we ob-
served statistically significantly lower VC (p=0.001) and FVC (p=0.04)
values for the higher PP volume patients, but not for DLCO (p=0.19).

Conclusion

We successfully developed an Al algorithm to automatically segment
PP in CT images to enable fast volume extraction. Moreover, we have
observed that PP volume is associated with loss in VC and FVC.
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Introduction

Pleural plaques (PP), a specific manifestation of asbestos exposure, of-
ten appear on the parietal pleura as localized hyalinized collagen fibers
in calcified or non-calcified forms [84, 85, 35]. The exact mechanism
of PP formation remains unclear [85, 86]. However, the likelihood of
developing PP is associated with the duration and cumulative exposure
to asbestos [87]. Despite this, PP can also form after minimal exposure
[88].

Patients with PP are typically asymptomatic [7]. Discrepancies exist
between a systematic review indicating no statistically significant asso-
ciation between PP and PFT [17] and a study demonstrating a small,
statistically significant impact on lung function [18]. Thoracic com-
puted tomography (CT) enables PP extension measurement with ex-
cellent intraobserver reproducibility (ICC: 0.98) and good interobserver
variability (ICC:0.93) [89]. However, manual segmentation of volume
is time-consuming and impractical for large population studies or clin-
ical workflow integration [90]. Consequently, the impact of PP on lung
function remains inconclusive.

Public health policies in many countries provide financial support for
patients with mesothelioma or asbestosis following occupational as-
bestos exposure [14, 19]. However, few policies consider pleural plaques
due to the lack of evidence supporting a clinically significant loss in lung
function [17]. Even with confirmation, manual volumetric assessment
would be incompatible with the current radiological workflow [90].

An alternative method for segmentation and volume quantification is
needed to facilitate extensive population studies and clinical implemen-
tation of PP volume measurements. This method should be fast, ac-
curate, and reproducible. Artificial Intelligence (AI)-based automated
segmentation could provide a potential solution by learning to identify
patterns in CT scans and yield a volumetric measurement of PP in
seconds.
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This study aims to develop an Al algorithm for the automatic segmenta-
tion of PP and examine the relationship between PP and lung function
impairment. The resulting algorithm will enable researchers to investi-
gate the correlation between PP volume and lung function, providing
a proof of concept for a clinically compatible, quantitative PP-volume
test.

Material and Methods

Datasets

We performed a retrospective analysis on a dataset of people applying
for state financial support, between May 2014 and November 2019 [14].
This dataset is comprised of a cohort of applicants who are required to
submit a CT scan acquired from their respective local hospital, along
with a PFT. The dataset was collected by the Instituut Asbestslachtof-
fers (IAS) and Section Asbestos Related Disease (SAGA). Inclusion
criteria were fully imaged lungs on CT with slice thickness < 5mm.
Thoracic CTs were collected from multiple hospitals across the coun-
try, resulting in heterogeneous data (median, CI): Voltage (120 kVp,
118.7—121.3), Tube current (194 mA, 177.4—210.6), Slice Thickness
(3 mm, 2.85—3.14). Vendors, reconstruction kernels, and contrast us-
age are listed in Table 4.1. CT scans were acquired with breath-hold
at mid-respiratory or inspiratory volume. As part of the financial sup-
port compensation procedure, three independent pulmonologists deter-
mined whether significant fibrosis was present, defined as >5% of lung
parenchyma [14].

Applicants signed a written informed consent that their data could be
used for systematic analyses. The project was approved by the institu-
tional scientific board (IRBd19-136) and performed in accordance with
the Declaration of Helsinki. The de-identification process for the data
was executed in compliance with the DICOM standard, utilizing pro-
prietary software developed within the institution.
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Manufacturer Convolution Kernel Count
GE MEDICAL SYSTEMS BONE 1
GE MEDICAL SYSTEMS BONEPLUS 10
GE MEDICAL SYSTEMS CHST 7
GE MEDICAL SYSTEMS LUNG 27
GE MEDICAL SYSTEMS SOFT 1
GE MEDICAL SYSTEMS STANDARD

Philips A 4
Philips B 41
Philips C 15
Philips E 3
Philips IMR1,SharpPlus 3
Philips L 34
Philips YA 3
Philips YC 10
Philips Medical Systems ) 1
SIEMENS B30 - B45, 130 - 145 99
SIEMENS B60 - B8O, 150 - 170 51
SIEMENS BI57 3
SIEMENS Bl64 1
SIEMENS Br40 2
SIEMENS Br69 1
SIEMENS Ub44u 1
TOSHIBA BODY 1
TOSHIBA FC02 - FC35 42
TOSHIBA FC51 - FC86 30
TOSHIBA LUNG 1
Unknown Unknown 23

Table 4.1: Technical parameters of the included CT scans, filtered by manu-
facturer and reconstruction kernel.

PFT for patients in the study dataset were retrospectively retrieved.
When recorded, the parameters were: Vital Capacity (VC), Forced Vi-
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tal Capacity (FVC), and Diffusing Capacity of Lung for Carbon Monox-
ide (DLCO). The PFT data was acquired from spirometry tests in up-
right position with expiratory measurements and converted to percent
predicted values following Global Lung Function Initiative 2012 refer-
ence equations for spirometry [91, 92].

Segmentation Procedure

A team of five board-certified radiologists (TB, NB, EKH, FL, FC)
manually segmented the pleural plaques using 3D Slicer v4.11 [49], with
the workload was split equally among them. The time per segmenta-
tion was not recorded. However, readers mentioned that segmentation
took 30-60 minutes per scan. Calcified and non-calcified portions of the
plaques were both segmented as one single segmentation. One techni-
cal physician [93] with two years of experience in thoracic CT imaging
(KGL) reviewed all CT scans and segmentations and forwarded incon-
sistent segmentations to another team of radiologists (NV, IS, RW, TB).
They adjusted the segmentations of suboptimal quality (segmentation
artifacts, missing plaques, etc.). To analyze the Al segmentation per-
formance of calcified versus non-calcified plaques, we set an empirical
threshold of 120 HU to differentiate between them as a postprocessing
step.

Design of the AI algorithm

We implemented the AT algorithm following the design of the no-new-
UNet (nnUNet) [94]. This represents the state-of-the-art in image seg-
mentation, with the algorithm leveraging several preprocessing tech-
niques and training procedures. The nnUNet system automatically de-
termines the optimal Convolutional Neural Network (CNN) architecture
and other hyperparameters based on the characteristics of the dataset
(i.e. the thoracic CT scans). During training, a ‘patch’ equal to the
input size of the model is retrieved from the CT scan, and the algorithm
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iterates over these patches until the entire CT scan is analyzed. The
configuration chosen for the architecture was 3D full resolution with
training procedure (trainer) nnUNetTrainerV2. A schematic overview
of the architecture is shown in Figure 4.1.

Data Preprocessing and Training Procedure

We split the dataset into a training (n=337, 80%) and a test set (n=85,
20%), based on a random reproducible split. All CT scans were resam-
pled to [0.71, 0.71, 1] (x, y, z) spacing with a patch size of [160, 160,
96] (x, v, z). The training procedure consisted of 1000 epochs with a
batch size of 4. The loss function was a combination of the dice loss and
cross-entropy. To test whether the ensemble five-fold cross validation
outperformed the single model trained on all data, we ran experiments
with and without internal cross-validation.

AT Model Evaluation

The segmentation performance of the trained Al model was evaluated
using the Dice Coefficient Score (DSC), which is a quantitative mea-
sure to determine the overlap between the predicted segmentation by
the AI, and the ground truth. The higher the overlap between the
two, the better the performance of the Al In addition to the DSC,
we calculated the correlation between the volume predicted by the Al
model and the ground-truth volume derived from the segmentation of
the expert readers. This allowed us to identify possible systematic er-
rors of the model, and the presence of outliers. To test whether the
AT can measure the PP volume in the CT scans correctly, we used the
different percentiles to convert the segmentation task to a classification
problem. Here, we monitor whether the Al classified the CT scans as
containing a higher or lower PP volume than the cut-off, compared to
the radiologist’s segmentation.
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Lung Volume Assessment

The lung volume was quantified using an external Al model for lung seg-
mentation [45]. The output generated by the model was then manually
reviewed and corrected, if needed, by K.G.L. using the 3D Slicer soft-
ware. This particular Al model was selected because it demonstrated
adequate accuracy and robustness during internal evaluation, general-
izing reasonably well to fibrotic tissue. This attribute made corrections
for fibrotic lungs more feasible compared to other models, establishing
it as a reliable choice for our research study.

Association between PP and decreased lung function

Due to the slow growth rate of pleural plaques [85], we do not expect
significant volume differences over distinct periods of months. As a re-
sult, we performed the analysis using PFT data from patients within
one year, measured from the date of the CT scan. To determine whether
an increase in pleural plaque volume is associated with decreased lung
function, we calculated the correlation between PP volume and lung
function parameters, and tested for significant differences in lung func-
tion for groups at different cut-offs of PP volume, namely the 25th, 50th,
and 75th percentiles. Given that the lung function parameters are nor-
malized in percent predicted values, we normalized the PP volume as
well through the total lung volume of the patient. The normalized PP
volume consisted of the PP volume divided by the lung volume of the
patient. Differences between FVC and VC may indicate air trapping or
small airway collapse. Therefore, we tested this difference versus the PP
volume. Patients with diffuse fibrosis were excluded for correlation be-
tween the lung function and the volume of pleural plaques since fibrosis
is a confounding variable [95].
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Statistical Analysis

Since the PP volumes and PFT results were not normally distributed,
the Spearman r was calculated. We applied the Mann-Whitney U test
to test the differences between the cross-validated model and the single
model on the same test set. Differences in PF'T between groups with
different PP volumes were assessed via the Wilcoxon signed-rank test.
The 95% confidence intervals (CI) were calculated via bootstrapping
with replacement. Bonferroni correction was applied when multiple
tests were conducted. Bonferroni corrections were applied to account
for the three distinct tests conducted across various quartiles of PP
volume in relation to PFT. This adjustment resulted in a significance
level (a) of p < 0.05/3 = 0.017.
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Figure 4.1: Schematic overview of the nnUNet architecture based on the char-
acteristics of the pleural plaque dataset. Top: Details of the convolutional
block used throughout the model. Bottom: Overview of the total architec-
ture. The input size (slices, y, x) is equal to the output size, referred to as the

patch size.
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Results

Study Cohort

We retrospectively collected n=>523 applications for asbestosis govern-
ment support. The median age of the applicants was 75 years (IQR 69
— 80), and applicants were almost exclusively male (2 females, 0.4%).
Applications were excluded due to the absence of CT scans (n=74) and
any PP (n=27), yielding a total dataset of n=422 CT scans (n=303
with contrast). All scans were segmented by radiologists and reviewed.
Three PFTs were collected when available: VC (n=393, median 79, IQR
64 — 96), FVC (n=398, median 78, IQR 64 — 95), DLCO (n=408, me-
dian 57, IQR 44 — 71). There was no statistically significant difference
observed between the total cohort and the cohort after exclusion in
terms of age (median: 73 years versus 74 years, p=0.39) or PFTs (VC:
74% versus 74%, p=0.47; FVC: 79% versus 79%, p=0.39; DLCO: 55%
versus 55%, p=0.43).

Interrater variability of adjusted cases

In total, n=68 segmentations were admitted for review due to inconsis-
tencies, and all of them were adjusted after inspection by the radiologist.
For these adjustments, we observed the following medians: DSC of 0.61,
sensitivity of 0.48, initial volume of 37.4 cm?, and a corrected volume of
81.8 cm3. Figure 2 shows several examples of adjusted annotations, with
reasons such as partly segmented pleural plaques, using lung window
during segmentation, and missing pleural plaques.

Cross-validation versus Single Model

The first experiment consisted of five-fold cross-validation (standard
nnUNet procedure, ensemble model) and another experiment of a single
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Figure 4.2: Several examples of adjusted segmentation after inconsistencies
were noted. The first column are the CT scans; second column the segmenta-
tion of the first radiologist; third column the revised segmentation. (Row A)
CT scans in axial plane with contrast; pleural plaque only partially segmented.
(Row B) CT scans in axial plane without contrast; pleural plaques segmented
on lung window, leading to overestimation of the volume. (Row C) CT scans
in axial plane with contrast; missed pleural plaque.

training procedure with all training data (single model). The ensemble
model reached a median DSC of 0.70 (0.66—0.73), on par with the single
model with a median DSC of 0.70 (0.69—0.74), p=0.60, evaluated on
the same independent test set.
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Single Models on Different Test Sets

We trained multiple models to study the influence of the chosen test
set, with each patient in the independent test set once. Therefore, the
nnUNet architecture was trained five times, each with a different, ran-
dom, reproducible split. We made all trained algorithms available.!

All n=5 Al models yielded similar performances over the individual
scans in the test set with a median DSC of of 0.70 (0.69—0.74), 0.72
(0.67—0.73), 0.71 (0.67—0.73), 0.72 (0.69—0.75), and 0.71 (0.68—0.75)
(Figure 4.3A, Table 4.2). No statistically significant differences existed
between the test set results (p>0.05). Combining the predictions on all
test sets, the median DSC is 0.71 (0.70—0.73). Overall median sensitiv-
ity on the combined test set is 0.78 (0.74—0.80). In terms of PP volume,
the difference between the volume segmented by experts (median: 104.0
cm?, CI: 86.9—119.9 cm?) versus the AI models (median: 121.8 cm?,
CI: 101.6—136.1 cm?®) did not reach the level of statistical significance
(p=0.09). The mean absolute error was 29.7 cm® (CI: 23.5—35.7).
Al-predicted volume and the segmented volume showed a strong cor-
relation (spearman r = 0.90, CI: 0.88—0.92, p<0.001) (Figure 4.3B).
The difference between radiologists and Al segmentation increased as
the segmented volume of the radiologists increased (Figure 4.3C).

We visualize several cases with different quality of segmentation in Fig-
ure 4.4A-C. Segmentation of the calcified pleural plaques yielded a DSC
of 0.92 (0.91—0.93), sensitivity of 0.96 (0.95 - 0.97), with a significant
difference (p<0.0001) between Al predicted volume of 27.38 cm? (21.13
- 32.40 cm?) and the expert derived volume of 23.72 cm? (19.62 - 29.75
cm?). The non-calcified part of PP yielded a DSC of 0.62 (0.60 - 0.64),
sensitivity of 0.69 (0.66 - 0.72), where the difference between Al pre-
dicted volume of 81.58 cm? (70.54 - 93.81 cm?) and the expert volume of
74.34 cm?® (61.15 - 89.31 cm?®) was not statistically significant (p=0.28).
The AT was able to classify all percentiles with excellent performance
(25th percentile: AUC=0.94 (0.92—0.97), p<0.0001, 50th percentile:

"https://github. com/nki-radiology/pleural-plaques
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AUC=0.95 (0.93—0.97), p<0.0001, 75th percentile: AUC=0.95 (0.93—
0.97) p<0.0001).

# DSC SENS R-Vol Al-Vol AE-Vol p-value

1 0.70 0.78 102.1 104.7 23.0 <0.0001
0.69-0.74 0.71-0.83 75.5-185.5  80.5-136.5  17.4-30.4

2 071 0.75 102.4 98.4 414 <0.0001
0.67-0.73 0.71-0.81 75.3-125.9  80.7-153.1  22.6-53.6

3 0.72 0.78 87.58 104.9 29.7 <0.0001
0.69-0.75 0.70-0.84 63.9-112.6  70.1-144.5  21.9-37.7

4 0.72 0.77 87.43 119.6 28.1 <0.0001
0.67-0.73 0.69-0.81 67.3-140.0  72.3-152.5  17.5-46.1

5 0.71 0.77 143.7 161.8 32.0 <0.0001
0.68-0.75 0.74-0.83 107.7-179.9 121.8-186.7 22.0-37.9

Table 4.2: Metrics of each of the individual trained models reported in median
and 95% confidence interval. # = Model number, DSC = Dice Similarity
Coefficient, SENS = Sensitivity, R-Vol = PP volume segmented by the radi-
ologists, AI-Vol = Volume segmented by the AI model, AE-vol the absolute
volume difference between radiologist and Al segmentation, p-value is calcu-
lated with Wilcoxon paired test between R-Vol and AI-Vol. Volume is in cm?.

Comparison with Pulmonary function tests

The dataset contained n=188/423 patients without diffuse fibrosis, of
which n=106 patients had a PFT within a year of the CT date. We
collected the VC (n=80), FVC (n=82), and DLCO (n=84), where
n=>50 patients had complete data for all three measurements. Figure
4.5A-C shows the relation of each parameter to the PP volume seg-
mented by the radiologists, whereas Figure 4.5D-F shows the relation
with Al segmented volume. PP volume segmented by the radiologists
was moderately negatively correlated with VC (r=-0.40, CIL: -0.54—-
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Figure 4.3: (A) Dice Similarity Coefficient (DSC) distribution over the Al
models, each with a different 20% as test set, including the ensemble method
(1E). (B) Correlation between the combined test sets of Al-predicted pleu-
ral plaque volume (PPV) and the radiologist segmented PPV. (C) The x-axis
denotes the radiologist segmented PPV, the y-axis represents the difference
between the radiologist and the AI. The higher the radiologists’ segmented
volume, the larger the difference.

0.22, p=0.0003) and FVC (r=-0.38, CI: -0.52—-0.21, p=0.0005), but
not correlated with DLCO (r=-0.09, CI: -0.25—0.08, p=0.39). All pan-
els show a non-linear relation between the PP volume and lung function,
where a high PP volume suggests an association with low lung function
values. The normalized PP volumes by lung volume were moderately
negatively correlated for VC (r=-0.45, CI: -0.60—-0.28, p<0.0001) and
FVC (r=-0.42, CI: -0.57—0.25, p<0.0001), but no statistically signif-
icantly correlation was observed for DLCO (r=-0.11, CI: -0.26—0.05,
p=0.30). No correlation was found between normalized PP volume and
the difference between VC and FVC (r=0.00, CI: -0.20—0.21, p=0.60).
By splitting the PP volume distribution on the different quartiles (45,
106 and 229 cm?), we observed a statistically significant lower VC and
FVC for the higher PP volume group (Table 4.3). DLCO did not yield
any statistically significant difference.
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Figure 4.4: CT scans in axial plane with contrast; example of the lower value of
Dice Similarity Coefficient (DSC) between AT in yellow outline, and radiologist
in green outline (DSC=0.43). (B) CT scans in axial plane without contrast;
average segmentation performance (DSC=0.75). (C) CT scans in axial plane
without contrast;well-segmented plaques on the diaphragm (DSC=0.85).
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Figure 4.5: (A) Scatterplot of the Forced Vital Capacity (FVC) versus the
Pleural Plaque Volume (PPV) by the radiologist. (B) Vital Capacity (VC)
versus PPV. (C) Diffusing Capacity for Carbon Monoxide (DLCO) versus
PPV. (D) Scatterplot of the FVC versus the PPV by the Al models. (E) VC
versus PPV by Al (F) DLCO versus PPV by Al
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PFT Perc PPV nup- n Mean Mean p

per lower upper lower
VC 25 34.7 60 20 84.6 96.3 0.016
VC 50 98.8 40 40 80.3 94.6 0.001
VC 75 2282 20 60 73.6 92.1 <0.001
DLCO 25 37.3 63 21 69.5 71.0 0.49
DLCO 50 103.5 42 42 67.4 72.4 0.19
DLCO 75 2255 21 63 66.8 70.9 0.27
FVC 25 41.3 61 21 83.2 91.4 0.055
FVC 50 104.8 41 41 81.0 89.6 0.037
FVC 75 233.3 21 61 69.0 90.6 <0.001

Table 4.3: Difference in pulmonary function test (PFT) based on several cut-
VC = Vital Capacity, FVC
= Forced Vital Capacity, DLCO = Diffusing Capacity of Lung for Carbon
Monoxide. Bonferonni correction has been applied (significance level=0.017).

offs of pleural plaque volume (PPV) in cm?.
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Discussion

In this study, we proposed an Al algorithm for fast, automatic assess-
ment of PP volume. Our goal was to design an automated segmentation
model for pleural plaques to enable further research on the impact of PP
volume on patients. The segmentation results suggested an adequate
ability of the algorithm to replicate the expert reader’s segmentation
and estimate the PP total volume. We showcased how the algorithm can
enable researchers to test the relation between PP volume and PFTs in
a dataset of former asbestos workers applying for government support.
A non-linear association between vital capacity, forced vital capacity,
and both PP volume and PP volume corrected for lung volume was
observed, exceeding the relation found in current literature [17, 18, 90,
96].

To the best of our knowledge, we are the first study providing an auto-
matic segmentation tool for future research in PP and asbestos expo-
sure. In our study, we use state-of-the-art 3D segmentation and a larger
dataset to obtain higher accuracy and precision, and share it freely on-
line for the scientific and medical community to use. We showed that
the ensemble method did not outperform a single model training pro-
cedure for this dataset. Interestingly, the other folds yielded a non-
significant higher median DSC than the first fold (both ensemble and
single model) but also produced outliers with DSC scores between [0,
0.2]. No outliers would have been reported if only the first fold results
were published. However, by running multiple experiments on different
test sets, we showed that four out of five folds yielded outliers, leading
to a moderate median DSC over all test sets. A potential reason for the
difference between Al and expert segmentation are the different acquisi-
tion and reconstruction protocols in the dataset (Table 4.1), where the
AT model does not generalize sufficiently. Having multiple radiologists
independently delineate PP without consensus could be another rea-
son, where each radiologist would segment PP differently. While the Al
outperformed the interobserver variability of the worst annotated cases
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(the revisions), the study could not analyze the overall interobserver
variability, nor the intraobserver variability.

In related work, another study investigated pleural plaque segmentation
on 5 mm slices with deep learning [20] but didn’t investigate associa-
tion with PFT. A study that investigated the association included 26
patients, who were divided into three groups of <10 mL, 10-20 mL, and
>20 mL PP volume, where no statistically significant differences were
found between the groups in terms of lung function values [90]. We de-
fined different cut-offs to determine the high and low PP volume groups.
Our lowest cut-off of the 25th percentile was 39.6 cm? (or mL) for VC,
where a similar study defined the highest volume group of plaques as
>20 cm? [11], representing a substantial shift in our understanding of
the extent of the disease. Another study measured PP volume of 75
patients on three axes and could not correlate this volume to lung func-
tion, exercise capacity, and cumulative asbestos exposure [96]. The full
volumetric measure, instead of a surrogate measure of the three longest
diameters [96], seems to be a keypoint in the understanding of the re-
lation between pleural plaques and lung function.

To demonstrate the usability of the algorithm to study lung function,
we presented an example with FVC, VC, and DLCO. In our showcase,
significant differences were observed in PP volume in relation to both
FVC and VC. The difference between FVC and VC is the forcefulness
of exhalation. When discrepancies occur, it could indicate airway resis-
tance, for example. The results suggest that PP volume does not lead to
differences between FVC and VC, since we observed no correlation. The
total lung capacity (TLC) is the volume of gas in the lung at the end of
full inspiration. A decreased TLC reflects a restrictive lung disorder. It
is the sum of the inspiratory reserve volume (IRV), tidal volume (Vt),
expiratory reserve volume (ERV), and residual volume (RV). The (F)VC
is the volume of exhaled air after maximal inspiration, consisting of the
Vt, ERV, and IRV. A reduction in (F)VC can indicate restrictive lung
disease, which can be categorized as an intrapulmonary (parenchymal)
disease, such as lung fibrosis. Therefore, a possible cause of the observed
decreased (F)VC in our patient group is that PP volume reduced the
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expansion of the lungs, which decreases the inspiratory reserve volume.
DLCO (gas exchange) is less affected by total air inhalation [97], which
may explain the non-significant relation.

If, by means of our algorithm, further studies are able to unveil the rela-
tion between quality of life and extent of PP, and to confirm a decrease
in quality of life, financial compensation programs for patients with
pleural plaques in more countries might arise. For example, the United
Kingdom canceled its compensation for PP in 2007 due to the absence
of evidence that pleural plaques impeded lung function [98]. Moreover,
if, in the future, governments might decide that from a certain PP vol-
ume lung function loss endorsed for compensation, our model might
be used to detect whether that PP volume threshold is reached. This
avoids the labor-intensive and time-consuming work of the radiologists
that would otherwise have to segment the plaques. In such a workflow,
a radiologist should evaluate the segmentation of the AI model and ap-
prove or adjust it for finalization. An intuitive graphical user interface
to interact with the Al segmentation should therefore be developed.

From a clinical perspective, a completely automated and precise model
has the potential to monitor alterations in PP volume over time. No-
tably, if specific areas of PP demonstrate accelerated growth, it may
be suggestive of pleural mesothelioma [99]. Given the typical late-stage
detection of mesothelioma [100], this method might provide an active
surveillance approach for patients with PP who have been exposed to
asbestos.

There are limitations to this study. First, a substantial portion of the
PP segmentations was revised, which indicates a high interobserver vari-
ability among the radiologists, unlike the findings of another study that
found minimal interobserver variability [89]. Radiologists reported that
in CT scans with suboptimal quality, it was hard to distinguish pleural
plaques from other structures, leading to interobserver variance. CT
scans at mid-respiratory and inspiratory volume were included, which
may bias the lung volume measurement, and therefore subsequently
the PP volume versus lung volume ratio. The suboptimal DSC of the
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otherwise excellent performing nnUNet architecture could have several
reasons: poor generalizability over different reconstruction kernels, ven-
dors, or resolutions; high interrater variability among readers, leading
to inconsistent segmentations as ground truth; or suboptimal segmen-
tation guidelines (e.g., window selection, decision-making in uncertain
cases regarding whether to segment or not). Furthermore, in our show-
case, we could not correct for confounders in the correlation between
the lung function parameters and the volume. Moreover, lung function
parameters were already in percentage of predicted value, resulting in
a complex comparison with an absolute measure such as PP volume.
Therefore, an additional analysis was performed where the PP volume
was corrected for lung volume. While we did exclude patients with
substantial pulmonary fibrosis, lung function parameters for other con-
founders (e.g. asbestos exposure, BMI, and smoking [17]) could not be
corrected since that information was unknown. An extensive analysis
of the correlation between lung function and PP extension is beyond
the scope of this study. The algorithm is available online, for other
researchers to use, replicate our results, and study the influence of con-
founders.

Conclusion

In this study, we trained an Al model for the automatic segmentation of
the pleural plaques in CT scans to estimate the volume. The segmenta-
tions were quantitatively and qualitatively adequate and showed a high
correlation to the segmentation of expert readers. Moreover, we showed
that higher pleural plaque volumes are significantly associated with a
decreased FVC and VC, but not with DLCO. The AI model is publicly
available and can be used to decrease or eliminate the workload for the
expert readers, and to study the relation between pleural plaques and
lung function more extensively.
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Chapter 5. Generalizability of AI for COVID-19 on chest CT

Abstract

Objectives

Only few published artificial intelligence (AI) studies for COVID-19
imaging have been externally validated. Assessing the generalizabil-
ity of developed models is essential, especially when considering clin-
ical implementation. We report the development of the International
Consortium for COVID-19 Imaging AT (ICOVAI) model and perform
independent external validation.

Methods

The ICOVAI model was developed using multicenter data (n=1286 CT
scans) to quantify disease extent and assess COVID-19 likelihood us-
ing the COVID-19 Reporting and Data System (CO-RADS). A Re-
sUNet model was modified to automatically delineate lung contours
and infectious lung opacities on CT scans, after which a random forest
predicted the CO-RADS score. After internal testing, the model was
externally validated on a multicenter dataset (n=400) by independent
researchers. CO-RADS classification performance was calculated using
linearly weighted Cohen’s kappa and segmentation performance using
Dice Similarity Coefficient (DSC).

Results

Regarding internal versus external testing, segmentation performance
of lung contours was equally excellent (DSC=0.97 vs. DSC=0.97,
p=0.97). Lung opacities segmentation performance was adequate
internally (DSC=0.76), but significantly worse on external validation
(DSC=0.59, p<0.0001). For CO-RADS classification, agreement with
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radiologists on the internal set was substantial (kappa=0.78), but
significantly lower on the external set (kappa=0.62, p<0.0001).

Conclusion

In this multicenter study, a model developed for CO-RADS score pre-
diction and quantification of COVID-19 disease extent was found to
have a significant reduction in performance on independent external
validation versus internal testing. The limited reproducibility of the
model restricted its potential for clinical use. The study demonstrates
the importance of independent external validation of AI models.

Key words

Artificial Intelligence, COVID-19, Tomography, X-Ray Computed, Re-
producibility of Results, Validation Study

Key Points

e The ICOVAI model for prediction of CO-RADS and quantification
of disease extent on chest CT of COVID-19 patients was developed
using a large sample of multicenter data.

e There was substantial performance on internal testing, however,
performance was significantly reduced on external validation, per-
formed by independent researchers. The limited generalizability
of the model restricts its potential for clinical use.

¢ Results of Al models for COVID-19 imaging on internal tests may
not generalise well to external data, demonstrating the importance
of independent external validation.
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Introduction

Artificial intelligence (AI)-based analysis of imaging performed for coro-
navirus disease 2019 (COVID-19) evaluation has been extensively re-
searched [101]. During the pandemic, several deep learning models have
been developed, aiming to assist radiologists in interpreting and report-
ing chest CT scans in COVID-19 patients.

Volume quantification of affected lung tissue on chest CT scans has been
shown to correlate with disease severity in COVID-19 [102, 103, 104,
105, 106]. Manual delineation of lung abnormalities by radiologists is
labour-intensive and time-consuming, and therefore not routinely con-
ducted in clinical practice. Automated segmentation of affected lung
tissue can be made readily available, thereby allowing clinical adoption
of quantitative analysis.

To standardise reporting of chest CT scans, the COVID-19 Reporting
and Data System (CO-RADS) was introduced [107]. The grading sys-
tem includes five categories of increasing disease probability, ranging
from negative (CO-RADS 1) to typical imaging findings of COVID-19
(CO-RADS 5). CO-RADS has shown reasonable to very good diag-
nostic performance and interobserver agreement [107, 108, 109, 110].
Applying machine learning techniques to automate CO-RADS classifi-
cation could potentially improve the interobserver agreement, especially
for less experienced readers. Moreover, such an automated analysis can
be performed before clinicians have the opportunity to read the CT
scan, ensuring the CO-RADS classification and volume quantification
are present at the time of interpretation. This could potentially re-
sult in a more efficient clinical workflow if the automated assessment is
sufficiently accurate.

Before any Al application is considered for widespread clinical use, ex-
ternal validation of the model should be performed [111]. In the system-
atic review by Roberts et al., only 8 of 37 (22%) deep learning papers on
COVID-19 imaging analysis that passed their quality check, had com-
pleted external validation [112]. This might especially be worrisome
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for AI applications in COVID-19 imaging since several methodologi-
cal flaws and biases in these studies were reported [112]. The authors
stressed the importance of performing an external validation on a well-
curated dataset of appropriate size to evaluate the generalizability of
an Al model, ensuring it translates well to unseen, independent data.

This study aimed to develop and independently validate an Al model
consisting of COVID-19 segmentation and likelihood estimation (CO-
RADS) on chest CT using multicenter data.

Material and Methods

International Consortium for COVID-19 Imaging AT (ICOVAI) During
the initial phase of the COVID-19 pandemic, there was a need for ac-
curate and efficient analysis of chest CT scans. ICOVAI was formed
to address this need. The collaboration consisted of multiple hospitals
and industry partners across Europe. The consortium aimed to develop
an Al-based quantification and CO-RADS classification tool for clini-
cal use, following good-practice guidelines. These principles included
high-quality diverse data and multiple expert readers to perform data
annotation.

Data collection

The ICOVAI consortium included a multicenter, international cohort
of patients suspected of COVID-19 pneumonia undergoing chest CT.
The dataset for model creation consisted of n=1092 CT scans of pa-
tients with available reverse transcriptase-polymerase chain reaction
(RT-PCR) test results for COVID-19 (n=580 positive, n=512 nega-
tive), shown in Figure 5.1. The data was collected between December
2019 and May 2020 through ten participating institutions (Table 5.1).
The male (n=>545) to female (n=547) ratio was 1:1. To balance the
dataset, n=194 CT scans from the National Lung Screening Trial were
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added as negative control samples. Combined, the total dataset yielded
n=1286 CT scans from n=1266 unique patients.

ICOVAI data collection
1286 CT scans (n=1266 unique patients) External validation
- ten participating institutions (n=1092) 400 CT scans (n=400 unique patients) from five
- National Lung Screening Trial (n=194) different institutions
Excluded Excluded
- Discordant CORADS between - Insufficient image quality
— all three readers (n=409) — (n=20)
- Incomplete segmentation - Missing DICOM or clinical
(n=226) data (n=5)
\ \
Classification Segmentation gl;g?g?:::n:izzﬂ':::m"o"
n=877 CT scans included n=1060 CT scans included

Figure 5.1: Data flowchart for the ICOVAI model development and external
validation.

An independent test dataset for external validation was retrospectively
collected from five different hospitals in Europe (Table 5.2). The co-
hort included n=400 adult patients undergoing chest CT for suspected
COVID-19 pneumonia or triage between February 2020 and May 2020.
Twenty-five patients were excluded due to severe breathing or motion
artefacts (n=9), insufficient inspiration (n=9), low resolution (n=2), or
missing DICOM data or clinical information (n=>5). After exclusion,
n=375 CT scans of unique patients remained, with a mean age of 61.1
years (SD 16.8), and male-to-female ratio of 1.1:1. The majority of
patients showed symptoms of respiratory infection at the time of imag-
ing (n=332, 88.5%). RT-PCR tests performed within seven days of
imaging were used as a reference standard and available for n=363 pa-
tients (96.8%). Available RT-PCR test results were positive for n=181
patients and negative for n=182 patients.
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Data annotation

ICOVAI model

Multiple radiologists independently classified all CT scans (n=1286)
using the CO-RADS scheme (n=1058 by three readers, n=228 by two
readers). A total of 409 cases were excluded due to discordance, i.e. all
readers yielded different CO-RADS scores, resulting in 877 CT scans.
The distribution of classification labels for both the training (n==805)
and internal test set (n=72) is shown in Table 5.3. The total lung vol-
ume and lung opacities were manually segmented by medical students
in n=1060 CT scans and reviewed by a team of n=15 radiologists (2-23
years of experience). For n=905, more than two readers segmented
each CT scan, after which both segmentation masks were averaged

and rounded. Segmentations were performed using Veye Annotator
(Aidence BV).

External validation

The external test dataset (n=400) was classified by two readers using
CO-RADS. Each case was read twice; first by a radiology resident (F.G.,
fourth year of training) or radiologist (L.T., 5 years of experience), and
thereafter by a certified thoracic radiologist (A.B., 8 years of experience
or R.W., 6 years of experience). In cases of discordance or uncertainty,
a consensus reading was performed by a third radiologist (A.B., R.W.
or L.T.). The distribution of CO-RADS scores for the external test
dataset is shown in Table 5.3. Segmentations of total lung volumes
were performed by a technical physician (K.G.L.) and reviewed by a
radiologist (L.T.). In addition, manual segmentations of infectious lung
opacities were performed by a radiology resident or radiologist (F.G.,
L.T.), and reviewed by a certified thoracic radiologist (A.B., R.W.).
Segmentations were performed using RVAI (Robovision BV).
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Data preprocessing

To prepare the pixel data from the DICOM series as input for the Al
model, quintic interpolation was performed on all slices, yielding a voxel
spacing of 1.25 mm x 0.5 mm x 0.5 mm. Subsequently, voxel values
were scaled such that the “lung window”, i.e. -1000 HU to 300 HU,
corresponded to the range of -1.0 to 1.0, for numeric stability. Axial
slices were extracted from the generated volume and scaled to a fixed
size of 256 x 256 pixels.

Design of the artificial intelligence system

The Al system was designed to delineate COVID-19 infected areas and
yield a CO-RADS score through two separate Al models that function in
synchrony. First, a convolutional neural network (CNN) with ResUNet-
a architecture [113] takes the CT as input and returns two segmentation
masks, labelling every voxel in the CT scan as infectious/non-infectious
and lung/no-lung. The ResUNet-a architecture for segmentation con-
tained several adjustments (see Supplements). Subsequently, a tree-
based ensemble model was used to predict the CO-RADS score. The
input features were constructed based on the segmentation masks of
the CNN and the corresponding CT image voxel values. The tree-
based ensemble model was constructed through a random forest clas-
sifier (RandomForestClassifier, scikit-learn v.0.24.1), with the follow-
ing settings: n-estimators=300, max-depth=48, min-samples-split=12,
max-features=32, and random oversampling with ‘no majority’ strategy
(RandomOverSampler, imblearn v0.8.1). All other parameters were at
default.

Statistical analysis

The performance of the Al model’s CO-RADS predictions was evalu-
ated through the weighted Cohen’s kappa score (Equation 5.1) since it
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considers how far the prediction is off.

o] — Die1 D=1 WijTij
D1 Do WijMij

(5.1)

Equ 5.1: With w the confusion matrix weights (Supplementary Table 5.7 for
linear), x the observed confusion matrix values, m the expected confusion
matrix values based on chance agreement, and n the number of categories.

We implemented the Dice Similarity Coefficient (DSC) to quantify the
overlap between the ground-truth label and the Al segmentation in two
ways. First, we calculated the DSC (Equation 5.2) based on the true
positives (TP), false positives (FP), and false negatives (FN) on each in-
dividual CT scan. Here, we reported the median DSC and its 95% con-
fidence interval (CI). However, since the negative RT-PCR cases in the
test set have no segmented volume, the DSC is not defined (dividing by
zero). Therefore, the DSC was only calculated on CT scans of patients
with a positive RT-PCR. Secondly, to include false-positive segmenta-
tions returned by the Al model for RT-PCR negative CT scans, we
included the ‘micro Dice Similarity Coefficient’ (mDSC) as well. Here,
the TP, FP, and FN are multiplied by the voxel size (mm?) of the re-
spective CT scan. The resulting values over the CT scans are summed,
and the mDSC is calculated via Equation 5.2. This method yields one
value, where larger segmented volumes will have an increased impact on
the total score. To analyse the correlation between segmented volumes,
we implemented Spearman’s correlation. For statistical tests, p<0.05
was considered significant. See supplemental material for p-value cal-
culation.

_ oTP
- 2TP+FP+FN

DSC (5.2)

Equ 5.2: The Dice Similarity Coefficient (DSC) equation, where TP, F'P, and
F'N are the numbers of true positive, false positive, and false negative obser-
vations, respectively.
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Model training & deployment

The resulting dataset was divided into a training (n=971) and an in-
ternal test (n=89) set, based on a randomly stratified split. Therefore,
the ratios of the different CO-RADS classifications were approximately
equal in the two sets. The segmentation model was trained with ran-
domly sampled slices from the training set CT scans. Scaling, rotation,
translation, mirroring, and addition of noise were applied to the slices
to augment the training data. Stochastic Gradient Descent was used as
the optimizer with a learning rate of 0.1 and Nesterov Momentum of
0.9. DSC was implemented as the loss function. The AI model was de-
veloped and trained with Tensorflow (v2.3.2). The classification model
was trained on 805 CT scans with 10-fold cross-validation. To account
for class imbalance, random over-sampling of minority CO-RADS clas-
sification scores was performed. To perform external validation, the Al
model was deployed within the hospital environment and inference was
executed on two NVIDIA Quadro RTX 8000.
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Institution

Classification Segmentation
Training Internal Training Internal

test test
Albert Schweitzer 15 1 20 1
Hospital, NL
AZ Turnhout, BE 82 4 102 7
Catharina Hospital, NL 19 3 26 3
Imapole 108 17 136 19
Lyon-Villeurbanne, FR
Laurentius Hospital, NL. 145 9 179 17
Lifetrack, SG 1 0 2 0
NHSX, UK 50 7 59 9
Rijnstate, NL 14 3 22 3
Tergooi MC, NL 13 0 13 0
Franciscus Gasthuis & 216 14 252 16

Vlietland, NL

Table 5.1: Dataset of the ICOVAI consortium. Number of CT scans per par-
ticipating institution for both the classification and segmentation task. The
data is split into a training and internal test set for both tasks. NL is the
Netherlands, BE is Belgium, FR is France, SG is Singapore, and UK is the

United Kingdom.
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Institution External test
Amphia Hospital, NL 56

Antwerp University Hospital, BE 171

Campus Bio-Medico University of Rome, IT 15

University Hospital of Liege, BE 87

OLV Hospital, BE 46

Total 375

Table 5.2: Dataset for external validation. Number of CT scans per partici-
pating institution. NL is the Netherlands, BE is Belgium, and IT is Italy.

CO-RADS Training Internal test External test
1 362 (45%) 30 (42%) 137 (37%)

2 121 (15%) 12 (17%) 69 (18%)

3 66 (8%) 6 (8%) 48 (13%)

4 60 (7%) 6 (8%) 13 (3%)

5 196 (24%) 18 (25%) 108 (29%)
Total 805 72 375

Table 5.3: CO-RADS COVID-19 Reporting and Data System. Number of CT
scans per CO-RADS category in the training, internal test, and external test
datasets.
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Results
Imaging data

For the ICOVAI dataset, the CT manufacturers were GE (n=424,
33.0%), Siemens (n=499, 38.9%), Philips (n=323, 25.1%), Toshiba
(n=37, 2.9%), and unknown (n=3, 0.2%). More detailed acquisition
parameters are listed in Supplementary Table 5.8. For the external
validation dataset, chest CT scans were acquired without intravenous
contrast in 74.1% patients (n=278), and with intravenous contrast in
25.9% patients (n=97). Distribution of CT manufacturers was GE
in 55.7% cases (n=209), and Siemens in 44.3% cases (n=166). Slice
thickness ranged from 1.0 to 3.0 mm (average 1.5 mm).

Internal test
Inter-reader agreement

To report on inter-reader agreement with respect to classification using
CO-RADS, all scans with a score of at least two readers were analysed.
This analysis also included scans for which no majority consensus could
be found, yielding a total of 1058 CT scans. Between all reader pairs
(n=4895 combinations), Cohen’s kappa scores were 0.48 (unweighted),
0.72 (linear weighted), and 0.85 (quadratic weighted).

Al performance

The AI model achieved a COVID-19 segmentation DSC of 0.76 and
sensitivity of 0.79. The mean true positive, false positive, and false
negative volume of COVID were 228.9 mL, 88.3 mL, and 59.1 mL,
respectively. The mean absolute error was 117.1 mL. For total lung
segmentation, the AI model achieved a DSC of 0.97 and sensitivity of
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Prediction
CO-RADS i35 3 4 &
1129 1 0 0 O
213 5 3 1 0
Ground Truth | 3 | 4 1 1 0 O
410 2 0 1 3
5/0 0 1 2 15

Table 5.4: Confusion matrix of CO-RADS classification on internal test set.

0.97. The mean true positive, false positive, and false negative volume
of COVID were 4433.9 mL, 97.0 mL, and 137.1 mL, respectively. The
mean absolute error was 147.9 mL. For CO-RADS classification, the
AT model achieved Cohen’s kappa scores of 0.58 (not weighted), 0.78
(linearly weighted), and 0.89 (quadratically weighted). The confusion
matrix is shown in Table 5.4.

External test

Al performance

The ICOVAI model pipeline excluded n=1 case, leaving n=374 for final
analysis. For COVID-19 segmentation, the AT model achieved a perfor-
mance of 0.59 mDSC and 0.63 sensitivity on the external test dataset,
significantly lower than on the internal test set (p<0.0001). The mean
true positive, false positive, and false negative volumes of COVID were
237 mL, 197 mL, and 138 mL, respectively. The mean absolute error
was 142mL (CI: 81— 246 mL). The median DSC over all COVID-19
positive CT scans was 0.48. The distribution of DSC scores is shown
in Figure 5.2A. The correlation between the segmented volume by the
AT model and the segmentation by the expert reader was strong (spear-
man r=0.83, p<0.001), see Figure 5.2B. The total lung segmentation
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achieved 0.97 mDSC and 0.98 sensitivity on the external test dataset.
The mean true positive, false positive, and false negative volumes of
COVID were 4.1 L, 178 mL, and 80 mL, respectively. The mean ab-
solute error was 148 mL (CI: 135- 156 mL). The median DSC over all
COVID-19 positive CT scans was 0.97. Figure 5.2 shows total lung
segmentation in two patients with extensive opacities. The CO-RADS
classification achieved Cohen’s kappa scores of 0.41 (not weighted), 0.62
(linearly weighted), and 0.75 (quadratically weighted). See Table 5.5 for
the confusion matrix. Figure 5.3 shows two examples of misclassifica-
tion.

Prediction
CO-RADS 15 3 4 &
1194 29 9 3 2
2117 3, 5 8 3
Ground Truth | 3 |12 9 2 3 22
410 1 4 2 6
54 6 5 15 78

Table 5.5: Confusion matrix of CO-RADS classification on external test set.

Visual interpretation

A radiologist (L.T., 5 years of experience) performed a qualitative vi-
sual inspection of the segmentation results on the external test set. The
AT delineation of infectious lung opacities was determined adequate to
excellent for the majority of cases. When compared to the ground
truth labels generated by the radiologists, the ICOVAI model was less
sensitive to discrete ground-glass opacities. In several cases, the ICO-
VAI model generated false-positive segmentations of non-infectious lung
opacities such as atelectasis or fibrosis.
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Figure 5.2: Segmentation of infectious lung opacities by the ICOVAI model on
external validation. (A) Distribution of DSC in the external test set of patients
with RT-PCR confirmed COVID-19. (B) There is a strong correlation between
the volume of infectious lung opacities segmented by the experts (ground truth)
and the ICOVAI model. (C) Ground truth segmentations (green contours) in-
cluded a larger area of discrete ground-glass opacity, versus ICOVAI segmen-
tation (yellow contours) which included only marked ground-glass opacities.
(D) False-positive segmentation by the ICOVAI model of normal increased at-
tenuation in the posterior lung bases.
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Figure 5.3: CO-RADS misclassification by the ICOVAI model on the exter-
nal test dataset. (A) A 55-year-old patient with small subpleural ground-
glass opacities in both lungs (arrows), consisted with a typical appearance of
COVID-19 (CO-RADS 5), later confirmed with RT-PCR. The case was mis-
classified as negative (CO-RADS 1) by the ICOVAI model. (B) A 70-year-old
patient was admitted to the intensive care unit with lobar pneumonia, atypical
appearance for COVID-19 (CO-RADS 2). CT showed infectious consolidation
in the right upper lobe (arrows), and increased attenuation due to hypoventi-
lation in the other pulmonary lobes. The case was misclassified as CO-RADS
5 by the ICOVAI model.
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Discussion

In this multicenter study, we described the development of the ICOVAI
model and performed an independent external validation using data
from five institutions. We observed a significant reduction in perfor-
mance on the external test as compared to the internal test for lung
opacity segmentation and CO-RADS prediction, but not for lung con-
tour segmentation.

To the best of our knowledge, we have performed the first pre-market
external validation study that independently assessed the segmentation
performance of a COVID-19 imaging Al solution using large volume
multicenter data. Our work shows that published results of COVID-19
segmentation on internal test sets may not generalise well to patient
data from other institutions.

External validation can highlight the shortcomings of a predictive
model, which were not apparent during internal testing on CT
scans sampled out of the same cohort. The importance of external
validation is illustrated by the increasing number of high-impact
journals requesting it for all predictive models before publication [114].
Moreover, repetitive test set use by slightly different experiments can
lead to ‘test set overfitting’ [115], where the model fits the test data
well by chance in one of the experiments. We solved these problems
with external validation, where the model is tested once at an external
location with an unrelated dataset.

The reported differences in segmentation performance of COVID-19
pneumonia on the internal versus external datasets may partially be
explained by interreader variation. The lung areas labelled as abnormal
by annotators of the development dataset versus independent annota-
tors of the external dataset may vary because of variations in default
window-level settings on the different annotation platforms used to per-
form the ground truth segmentations, leading to distinct cut-off values
to label lung densities (Figure 5.2C).
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Variation in CO-RADS scoring between the internal and the external
test set could, to some extent, be explained by selection bias. For the
internal dataset, CO-RADS scores were excluded when there was no
majority consensus between readers, eliminating the ‘hardest to evalu-
ate’ cases. This is most likely also the cause for the Al model’s kappa
score being higher than the inter-reader kappa score. When results on
the internal test set are better than the ground truth, test set overfitting
may be occurring [115]. In this case, external validation can reflect the
true, tempered performance of the Al model more accurately.

A prior study by Lessmann et al. trained an Al system with single-
centre data to score the likelihood of COVID-19 using CO-RADS [116].
They found a moderate to substantial agreement between observers,
reporting a linearly weighted kappa of 0.60 on their internal test set,
and 0.69 on their external test set. In our multicenter study, we found
a similar level of agreement (kappa values of 0.78 and 0.62, respec-
tively). Previous multicenter studies that included external validation
have focused on a binary or ternary classification of COVID-19 versus
other types of pneumonia and normal lungs [117, 118, 119, 120, 121,
122]. These studies reported a high to outstanding area under the re-
ceiver operating curve (AUC) (0.87-0.98) for identifying COVID-19 on
CT. However, the results are difficult to compare with our study that
focused on predicting CO-RADS, a more complex multicategorical as-
sessment scheme. Additionally, our external validation was executed
by independent researchers. Similarly, Jungmann et al. performed an
independent external validation on four commercial Al solutions to dif-
ferentiate COVID-19 pneumonia from other lung conditions [123]. They
found high negative predictive values (82-99%) for the tested models,
however, deemed only one solution to have an acceptable sensitivity.
The specificity of the four solutions was highly variable (31-80%) and
positive predictive values were low (19-25%). Their study was limited to
evaluating binary classification and did not assess the segmentation ac-
curacy. Regarding lung opacities segmentation performance on COVID-
19 patients, the multicenter study of Zhang et al. reached an mDSC
of 0.55-0.58 on internal testing, comparable with our findings on exter-
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nal validation [120]. Other published studies have reported higher DSC
values for segmentation of lung opacities. However, most studies used

single-centre data, datasets of limited size, or did not perform external
validation [124, 125, 126, 127].

Our study has several limitations. First, patients were selected by con-
venience sampling, which may have introduced selection bias. The in-
ternal dataset included controls from the National Lung Screening Trial
that did not correspond to the target population. This was mitigated by
performing an independent validation with a balanced external dataset.
Second, CO-RADS is prone to interobserver variability and is therefore
an imperfect reference standard. Cases in the internal dataset were ex-
cluded when there was a disagreement between all readers on CO-RADS
classification, arguably inducing a bias towards less complicated cases.
For the external dataset, disagreements were resolved using consensus.
Third, interobserver variability of COVID-19 segmentations was not
evaluated. Therefore, we cannot determine whether the ICOVAI model
was reasonably close to the agreement between radiologists. Future
AT developers might benefit from a centralised, high-quality reference
image repository to perform external validation of their model, which
would also be helpful in setting benchmarks of model performance.

Conclusion

This study evaluated the ICOVAI model performance independently
using an external, multicenter test dataset. Segmentation of total lung
volumes in both internal and external dataset was excellent, even in
patients with severe COVID-19 pneumonia. The performance of the
ICOVAI model on segmentation of infectious lung opacities and classi-
fication of CO-RADS was significantly worse on the external test dataset
compared to the internal test dataset. The results showed limitations
in the generalizability of the ICOVAI model, therefore restricting the
potential for clinical use. Our study demonstrates the importance of
independent external validation of Al models.
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Supplemental Materials

ResU-Net-a architecture changes

Adjustments of ResU-Net-a architecture: 1) The PSP pooling layers
were omitted, 2) five stages were implemented instead of six, 3) sixteen
filters were used in all five stages instead of exponentially increasing the
filters, 4) the dilations per stage in the ResNets were adjusted (Supple-
mentary Table 5.6), 5) Instance Normalization [128] was implemented
instead of Batch Normalization, and 6) transpose convolutions were
used to upsample.

Calculation of p-values

Significant  differences were calculated through bootstrapping,
since both the kappa scores and de mDSC are a single value for
the entire dataset. The external dataset was bootstrapped 10000
times with replacement, yielding mean and standard deviation of
the returned kappa and mDSC scores. Subsequently, the z score
from this distribution was calculated by Equation 5.3. The scipy
package (v.1.2.3, stats.norm.sf) was used to convert the z-score to the
corresponding p-value (two-tailed).

(5.3)

Equ 5.3: With z the z-score, x the performance measure on the internal test set
(kappa/mDSC), u the mean and o the standard deviation of the bootstrapped
distribution of external test set’s performance measures.
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Chapter 5. Generalizability of Al for COVID-19 on chest CT

Table 5.6: Adjustments to the original Res-Unet architecture.

Dilation

1,9,17)
1,5,9)
1, 3, 5)
1,2, 3)

(
(
(
(1,
(1)

the ‘field of view’ over which the upsampling is performed.

Table 5.7: The linear weights used to calculate the Cohen’s kappa for the
CORADS classification task. The larger the difference between the CO-RADS
score of the radiologist and the Al prediction, the higher the penalty. Al: Artifi-
cial Intelligence; CO-RADS: COVID-19 Reporting and Data System; ICOVAL

ICOVAI model
CO-RADS 1 2 3 4 &
170 1 2 3 4
2|11 0 1 2 3
Radiologists | 3|2 1 0 1 2
413 2 1 0 1
5/4 3 2 1 0

International Consortium for COVID-19 Imaging Al

114

Dilations are



Classification | Segmentation
Train Int. Train Int.
Test Test
Min 0.5 0.625 0.5 0.625
Median 1.0 1.0 1.0 1.0
Max 3.2 32 5.0 3.2
Slice Thickness Mean 1.2 1.2 1.2 1.2
<2 mm 657 57 800 74
>=2mm | 148 15 171 15
Total 805 72 971 89
Min 0.45 0.45 0.45 0.45
Median 1.0 1.0 1.0 1.0
Slice Spacing Max 3.0 3.0 3.0 3.0
Mean 1.1 1.1 1.1 1.0
Total 805 72 971 89
Min 40 50 40 50
Median 100 90 100 85
X-ray tube current | Max 499 160 499 160
Mean 135.2 98.6 132.3 90.7
Total 160 14 179 14
Min 80 80 80 80
Median 120 120 120 120
Kilo voltage peak Max 140 140 140 140
Mean 115.3 116.7 114.1 115.9
Total 805 72 971 89

Table 5.8: Descriptive statistics of the CT scans for the classification and seg-

mentation tasks.
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Chapter 7. General Discussion

Optimizing AI Models for Clinical Application: Insights
and Lessons from Various Strategies

Fundamental versus applied Al research in medical imaging

When developing Al models for medical imaging, the approaches can
be broadly divided into two categories: fundamental/technical devel-
opment and applied/clinical development. Neither category surpasses
the other in importance; rather, they serve different end goals. This
doctoral thesis is focused on applied/clinical models: identifying the
most appropriate Al solution for the given clinical problem, applying
it to a representative and curated dataset, and investigating its utiliza-
tion, results, and implications for the clinics [165]. In other words, the
objective of this thesis is to study and optimize the orchestration of
the components that will enable Al-powered tools to have a meaning-
ful impact on the methods and guidelines of the future in the field of
respiratory diseases.

Due to the complexity of the components involved [166], the resulting
challenges are difficult to anticipate. For example, in the asbestosis
studies, presented in Chapters 2 and 3, the Al model was trained end-
to-end using the experts’ panel’s verdict - a noisy output label, when
considering the high disagreement between experts. This approach, al-
though coherent and in line with the current deep learning literature
[167], revealed less so from an applied clinical perspective: while it was
possible to demonstrate that the panel’s variability could be replicated,
by establishing a relationship between model uncertainty and panel dis-
agreement, the model did not enhance the current clinical procedure,
possibly due to the lack of reproducibility of the current criteria [14].

Reflecting on the approach, it might have been more effective to de-
velop new criteria, that would critically analyze current ones, and use
AT models to standardize their application [168]. For instance, creat-
ing an accurate lung segmentation model with a separate module for
fibrosis segmentation to accurately determine the percentage of fibrosis
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present in the lungs. Such a solution would enable pulmonologists, after
having confirmed the accuracy of the segmentation, to use the percent-
age of lung volume affected by fibrosis, thereby increasing agreement
on the 5% fibrosis rule set for financial compensation [14]. Further-
more, the precise quantification of lung parenchyma and fibrosis could
have helped in studying the disease further, possibly establishing new,
more informed cut-offs. With the current end-to-end method, the Al
model seems to be learning to reproduce the inconsistent and somewhat
imprecise assessment of the panel, rather than adding to the clinical
knowledge.

Another approach, although invasive for participants in the training set,
could have been the count of asbestos bodies from multiple biopsies, a
more objective assessment of the disease [169]. By training on this
endpoint, an Al model could potentially enhance the eligibility classifi-
cation based on a more biologically accurate label, possibly surpassing
the accuracy of the panel’s verdict. In the absence of this, it may have
been more beneficial to visualize the fibrosis and lung segmentation,
enabling pulmonologists to quickly verify and trust the calculated per-
centage score. In conclusion, while the chosen approach was in line with
the current technical and deep learning literature, it was less effective
from a clinical standpoint.

External validations

The current literature often expresses the merits of external validations
[32, 170], and while the author aligns with this perspective, external
validations should also be approached with care. Simply utilizing any
external dataset available for validation of AI performance may prove
erroneous, particularly if the Al model is assessed outside its intended
use. For example, in the validation of the asbestosis model, an external
validation on a general external population would likely lead the model
to misclassify CT scans displaying substantial fibrosis, such as silicosis
or any other interstitial lung disease, as ’asbestosis’ It is imperative
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that the model is trained against a similar population, respecting all the
assumptions and requirements formulated during training. Given the
absence of a comparable cohort and the model’s training to differentiate
eligible Dutch patients from non-eligible ones, we opted for prospective
validation over external validation for the asbestosis model.

An exemplary case of sub-optimal external validation is shown in Chap-
ter 5 of this thesis. Here, the Al segmentation model’s differentiation
threshold was based on the Hounsfield units (HU) representing COVID-
affected lung tissue. A challenge arises because the HU scale in CT
cannot be visualized in its entirety, as it would exceed the spectrum of
shades of grey perceptible by the human eye, thus necessitating win-
dowing [171]. Windowing restricts the focus on a sub-section of the HU
spectrum, making it easier to visualize small differences in density [171].
As a consequence, there is a non-linear relationship between what we
observe, visually, to the actual HU [172]. In the context of a CT tho-
rax slice, without knowledge of the window width and center, extracting
the HU based on visual interpretation of the grey-level appearance alone
results in erroneous associations.

Discrepancy may arise when radiologists involved in the internal vali-
dation employ e.g. different window levels than the independent radi-
ologists who segment the external validation set. The Al segmentation
model could demonstrate remarkable performance in the internal test
set and appear visually satisfactory in the external validation set, yet
achieve minimal overlap with the radiologists’ segmentation in that ex-
ternal validation, as we observed in Chapter 5. Complications may
also emerge on a more technical level, for example when datasets are
converted to JPEG/PNG formats, where the window’s minimum and
maximum values are set, eliminating potentially important values out-
side the set window [172]. For this reason, popular frameworks like
nnUNet [94] have adopted a strategy of clipping the HU based on HU
percentiles in the segmented dataset. This illustrates the need for a nu-
anced approach to external validations, awareness of the characteristics
of each dataset, and the inherent limitations of certain labeling (and/or
clinical) methodologies.

164



Reconstruction kernels

In the context of the projects in this dissertation, the reconstruction
kernel in thoracic imaging was shown to be a significant parameter.
CT thorax scans usually undergo both lung reconstruction and soft re-
construction, utilizing the same acquired attenuation data from the CT
scanner [173]. Despite imaging identical anatomical structures, the lung
reconstructed CT scan offers greater resolution or detail compared to
the soft reconstruction, at the cost of increased noise in the image [174].
Radiologists leverage this difference, examining the lung reconstruction
for finer details such as small nodules or interstitial lung diseases, while
the soft reconstruction is utilized for analyzing lymph nodes and other
soft tissue components [175].

This dissertation illustrates that the selection between lung and soft
reconstructed CT scans requires careful consideration from researchers
working on respiratory diseases. In the projects related to asbestosis
and pleural plaques detailed in Chapters 2, 8 and 4, a blend of both re-
constructions was used, aiming to enhance the generalizability of the Al
model through training on both types [176]. However, upon the observa-
tions made throughout different studies, it would potentially have been
better to utilize the lung reconstruction specifically for the asbestosis
model and the soft reconstruction for the pleural plaque segmentation
project.

This choice would have likely not resulted in a lower inclusion rate, as
CT thorax scans are typically subject to both lung and soft reconstruc-
tion in their PACS (Picture Archiving and Communication System).
The experience underscores the need for selecting the correct recon-
struction types for a specific anatomical structure of interest, acknowl-
edging the properties and applications of lung and soft reconstructions
[175]. By aligning the choice of reconstruction with the specific require-
ments of each project, the efficacy and accuracy of the resulting models
can be optimized [176, 177].
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Psychological Factors

A final, yet often under-emphasized aspect of the projects detailed in
this thesis concerns the psychological factors at play in AI model devel-
opment [178]. Acknowledging and nurturing the morale of annotators
is crucial, as it can influence the accuracy of segmentations, given that
the human element remains a part of the process [178, 179]. We empiri-
cally observed in chapter 4 that the same radiologist, regardless of their
years of experience, is more likely to produce lower quality segmen-
tations when working on a noisy 450-slice, 1 mm, lung reconstruction
filter, as opposed to a smoother 150-slice, 3 mm soft reconstruction in
a fraction of the time.

Another approach is to challenge the radiologists in the segmentation
procedure. Radiologists are engaged in an exercise where they are
tasked with identifying errors in the Al-proposed segmentation and
making corrections. This method, although introducing a certain bias
associated with modifying existing segmentation [180], offers efficiency
and consistency across all segmented cases. The knowledge that the Al
model is being retrained based on their segmentations creates an ad-
ditional incentive for radiologists to deliver high-quality adjustments.
This, in turn, contributes to a vicious cycle where successive iterations
of the Al model continually reduce the annotators’ workload. The radi-
ologists are able to create better quality segmentations in less and less
time, translating to a faster reward loop mechanism [181].

The final consideration relates to the optimization of workflow. Anno-
tators should be focused solely on their areas of expertise: interpreting
images and translating their expert opinions into labels [178]. Thus,
the responsibility falls onto researchers to create a streamlined work-
flow where annotators can seamlessly move from one case to the next
with minimal administrative burden. Concerns such as saving files with
the correct extension or ensuring the dimensions of segmentation and
CT align should be automated by the researcher and feel seamless to
the radiologist.
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In conclusion, the success of these projects is rooted in a multidis-
ciplinary approach where each team member’s expertise is leveraged.
Whether it’s the nuanced understanding of image reconstruction or the
human-centered considerations of annotator engagement and workflow
design, each aspect plays a vital role in the overall performance of the
AT models developed [178, 181].

Determinants of Success in medical AI (Segmentation)
Projects

The Lessons Learned stem primarily from various projects in Part 1 of
this thesis, which were applied in the ARTIMES project of Part 2. By
not opting for an end-to-end approach in predicting pleural mesothe-
lioma progression, and focusing instead on segmenting tumor volume,
our research yielded valuable AT output that gained trust and verifica-
tion from clinicians. The implementation of a blinded study in external
validation provided a nuanced comparison, not merely considering the
manual segmentation as presumed ground truth, but assessing radiol-
ogists’ preferences regarding clinical utility. Standardized segmenta-
tion guidelines for target structures, windowing, and threshold masking
were applied to ensure consistency. A detailed scan selection criterion
focused on soft reconstructions with a 3 mm slice increment and thick-
ness, and active learning was utilized to identify uncertain CT scan
segmentations, thereby promoting model convergence with fewer exam-
ples. Knowing the limitations of the current clinical standards in re-
sponse evaluation [143, 182, 183], and in-depth knowledge of the clinical
presentation of the disease allowed us to craft new response evaluation
criteria. Additionally, the project benefited from optimized segmen-
tation pipelines with custom interfaces in 3D Slicer [49, 160], easing
radiologists’ interactions with essential tools.
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Current and Future Perspectives

Similar approaches will also be investigated to expand the study of
asbestosis: quantifying fibrosis, and further investigating the role of
pleural plaques. The ARTIMES project’s success is evidenced by its in-
corporation into the radiology department workflow of the Netherlands
Cancer Institute. An automated process ensures that CT scans of pa-
tients with known pleural mesothelioma are forwarded to the cloud,
where the ARTIMES AI model segments the CT scan. The resulting
segmentations are accessible for inspection in a web-based viewer. Cur-
rent deployment at the first external site signals the model’s broader
applicability, and preparations are underway to assess the ARTIMES
model and criteria as exploratory endpoints in upcoming clinical tri-
als. Pending the approval of MDR for in-house developed models, the
Al-segmented tumor volumes may soon become available for clinical
decision-making, enhancing the role of Al in medical practice.
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Impact

The contributions of this thesis promise transformative effects in health-
care. While Part I provides essential foundational insights, it’s primar-
ily Part IT’s findings that present a potential paradigm shift in treating
pleural mesothelioma, which holds societal ramifications.

This research illustrates AI models’ potential to disseminate expert
knowledge from specialized centers to regional hospitals, extending even
to countries with high mesothelioma prevalence but limited expertise.
This distribution of medical expertise not only narrows the disparity in
diagnostic and therapeutic capabilities across healthcare facilities but
also enables a more standardized evaluation in clinical trials on a global
scale. Such standardization ensures high-quality care for patients world-
wide, regardless of their geographical locations.

Furthermore, by adopting Al-driven volumetric assessments,
uncertainties surrounding tumor growth are reduced, which is one
of the stress factors for patients. Accurate tumor evaluations allow
treating physicians to provide clearer feedback, enabling patients to
make well-informed decisions about their treatment trajectories. This
clarity can potentially lead to better quality of life by helping patients
transition away from ineffective treatments causing detrimental side
effects.

In essence, the arrival of Al-powered standardized methodologies for
patient disease assessment holds the potential to improve clinical trial
evaluations and patient care. By improving the precision, consistency,
and reliability of disease evaluations, this research enhances informed
clinical decisions and offers a brighter, more equitable future for patients
and society alike.
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Summary

This PhD thesis investigates the application of artificial intelligence
(AI) in quantifying disease status and response to therapy for patients
with asbestosis, pleural plaques, COVID-19, and pleural mesothelioma.
The thesis is divided into two parts: Enhancing Disease Quantification
at Baseline and Evaluating Therapeutic Response in Pleural Mesothe-
lioma.

In Part I, our first study in Chapter 2 explores using Al to assist in
deciding which asbestosis patients (a lung disease caused by asbestos
exposure) should receive government support. We analyzed 523 cases in
the Netherlands, using Al to review chest CT scans and lung function
tests. The AI’s decisions were compared with those of a panel of lung
doctors. Results showed the Al system was quite accurate, even more
so when combined with lung function test data. This research suggests
AT could be a valuable tool in streamlining and improving the fairness
of the support application process for asbestosis patients.

Chapter 3 tested the Al model developed in Chapter 2 in a real-life
setting without having an impact on the decision. We included all ap-
plicants seeking asbestosis compensation in a Dutch nationwide cohort
from September 2020 to July 2022. The Al’s assessments were com-
pared with the evaluations of the three pulmonologists. If the Al was
unsure, two more reviewers joined the assessment. The results showed
that the AI was quite accurate, but it didn’t hit our target for sensi-
tivity — the ability to correctly identify those with asbestosis. The Al
did well in terms of specificity — correctly identifying those without the
disease — and overall accuracy. However, because it didn’t meet our
sensitivity goal, we believe more work is needed.

In this study of Chapter 4, we focused on pleural plaques (PP), which
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are signs of long-term asbestos exposure, and their impact on lung func-
tion. We also aimed to speed up the process of measuring PP by using
Al We trained an Al model to identify PP in CT scans of patients
who had been exposed to asbestos. This model was compared with the
work of radiologists. We also looked at how the volume of PP related
to different lung function tests. The AI was trained on 422 CT scans
and tested its accuracy in predicting PP volume. The results showed
a strong correlation between the Al’s predictions and the actual mea-
surements. We also found that larger PP volumes are associated with
a decrease in some lung function measures, giving us new insights into
the effects of asbestos exposure on lung health.

Chapter 5 evaluates an Al model for analyzing COVID-19 in CT scans.
The model was trained to identify lung infections and estimate COVID-
19 likelihood. To test the performance in real-world situations, we used
a different set of 400 CT scans from various centers. The results showed
that while the model was excellent at identifying lung contours both in
our tests and the external ones, it struggled with detecting lung infec-
tions when used outside the initial testing environment. Additionally,
its effectiveness in determining the likelihood of COVID-19 also dropped
in these external tests. The takeaway from this study is that while the
AT model showed promise, its performance varied significantly in dif-
ferent settings. This highlights the importance of testing Al models in
various real-world conditions, especially for clinical tools, to ensure they
are reliable and effective in all potential environments.

In Part II of this thesis, we developed in Chapter 6 a new way to
measure how well treatments work for pleural mesothelioma (PM), a
type of cancer linked to asbestos exposure. We created an Al algorithm
that can automatically measure the volume of PM tumors in CT scans.
This Al tool was designed to make it easier and more accurate to track
changes in tumor size over time, which is important for understanding
how well treatments are working. The AI’s performance was impres-
sive in our tests. It matched the expert-segmented tumor volumes with
89% accuracy in an internal test set. When we used it in a large Eu-
ropean dataset, the AI showed 98% overlap with expert corrections,
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demonstrating its high reliability. In a side-by-side comparison of CT
scans of a smaller phase II trial, radiologists often preferred the Al’s
segmentation over the manual volume extraction of a radiologist.

We also used the Al to see if the size of the tumor at the beginning
of treatment could predict how patients would fare. We divided the
tumors into four size groups and found that the initial tumor size was
significantly linked to the patient’s overall survival.

Furthermore, we introduced new criteria called ARTIMES to evaluate
how PM tumors respond to treatment. These criteria use both a fixed
size change and a percentage increase to determine if the cancer is
getting worse. In our studies, ARTIMES spotted tumor growth about
7 weeks earlier than traditional methods. It also proved to be more
effective in predicting patients’ overall survival.
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Samenvatting

Dit proefschrift onderzoekt de toepassing van kunstmatige intelligentie
(AI) bij het kwantificeren van ziektestatus voor patiénten met asbestose,
pleurale plaques, en COVID-19. Verder stellen we een nieuwe methode
voor om respons op therapie bij pleuraal mesothelioom te bepalen. Het
proefschrift is verdeeld in twee delen: verbetering van ziektekwantifi-
cering op de eerste scan en evaluatie van de respons op de behandeling
bij pleuraal mesothelioom.

In deel T onderzoeken we in Hoofdstuk 2 het gebruik van Al om
te helpen bepalen welke patiénten asbestose hebben (een longziekte
veroorzaakt door asbestblootstelling), en daardoor in aanmerking
komen voor overheidssteun. We analyseerden 523 casussen in
Nederland, waarbij Al werd gebruikt om CT-scans en longfunctietests
te beoordelen. De beslissingen van de Al werden vergeleken met
die van een panel van longartsen. De resultaten toonden aan dat
het Al-systeem vrij nauwkeurig was, en zelfs verbeterde toen het
gecombineerd werd met longfunctietestgegevens. Dit onderzoek
suggereert dat Al een waardevol hulpmiddel kan zijn bij het
stroomlijnen en verbeteren van de consistentie van het aanvraagproces
voor overheidssteun aan asbestosepatiénten.

Hoofdstuk 3 testte het Al-model ontwikkeld in Hoofdstuk 2 in de
echte beoordelingopzet zonder invloed op de uiteindelijke beslissing.
We hebben alle aanvragers voor asbestosecompensatie in een landeli-
jke Nederlandse cohort van september 2020 tot juli 2022 opgenomen.
De beoordelingen van de Al werden vergeleken met de evaluaties van de
drie longartsen. Als de Al onzeker was, sloten twee extra beoordelaars
zich aan bij de beoordeling. De resultaten toonden aan dat de AI vrij
nauwkeurig was, maar ons doel voor gevoeligheid — het correct identi-
ficeren van mensen met asbestose — niet haalde. De AI deed het goed
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qua specificiteit — het correct identificeren van mensen zonder de ziekte
— en algehele nauwkeurigheid. Omdat het echter ons gevoeligheidsdoel
niet bereikte, is er meer werk nodig.

In de studie van Hoofdstuk 4 hebben we ons gericht op pleurale plaques
(PP), die kunnen voorkomen na langdurige blootstelling aan asbest.
Mensen met PP komen niet in aanmerking voor overheidssteun, om-
dat er niet duidelijk is aangetoond dat PP een negatieve impact op de
kwaliteit van leven heeft. Om dit te onderzoeken, beoogden we het
proces van het meten van PP versnellen door het gebruik van AI. We
trainden een Al-model om PP te identificeren in CT-scans van patién-
ten die blootgesteld waren aan asbest. Dit model werd vergeleken met
het werk van radiologen. We keken ook naar hoe het volume van PP
gerelateerd was aan verschillende longfunctietests. De Al werd getraind
op 422 CT-scans en testte de nauwkeurigheid bij het voorspellen van
PP-volume. De resultaten toonden een sterke correlatie tussen de voor-
spellingen van de Al en de werkelijke metingen van de radiologen. We
vonden ook dat grotere PP-volumes geassocieerd zijn met een afname
van sommige longfunctiemetingen, waardoor we nieuwe inzichten kre-
gen in de effecten van pleurale plaques op de longgezondheid.

Hoofdstuk 5 evalueert een Al-model voor het analyseren van COVID-
19 in CT-scans. Het model werd getraind om longinfecties te iden-
tificeren en de waarschijnlijkheid van COVID-19 te schatten. Om de
prestaties in een realistische situatie te testen, gebruikten we een andere
set van 400 CT-scans uit verschillende centra. De resultaten toonden
aan dat het model uitstekend was in het identificeren van longcontouren,
maar het moeite had met het detecteren van longinfecties wanneer deze
in een nieuw ziekenhuis werd gebruikt. Bovendien daalde de effectiviteit
in het bepalen van de waarschijnlijkheid van COVID-19 ook. De con-
clusie van deze studie is dat hoewel het Al-model belovend was, de
prestaties aanzienlijk varieerden in nieuwe omgevingen. Dit benadrukt
het belang van het testen van Al-modellen in verschillende omstandighe-
den om ervoor te zorgen dat ze betrouwbaar en effectief zijn in meerdere
ziekenhuizen.
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In deel II van dit proefschrift hebben we in Hoofdstuk 6 een nieuwe
manier ontwikkeld om te meten hoe goed behandelingen werken voor
pleuraal mesothelioom (PM), een soort kanker veroorzaakt door as-
bestblootstelling. We creéerden een Al-algoritme dat automatisch het
volume van PM-tumoren in CT-scans kan meten. Dit Al-hulpmiddel
is ontworpen om het gemakkelijker en nauwkeuriger te maken om ve-
randeringen in tumorgrootte over tijd bij te houden, wat belangrijk is
om te begrijpen hoe goed behandelingen werken. De prestaties van de
AT waren indrukwekkend in onze test. Het kwam overeen met de door
experts bepaalde tumorvolumes met 89% nauwkeurigheid in een on-
afhankelijke interne testset. Toen we de Al inzette in een grote Europese
dataset, toonde het 98% overlap na correcties van medische experts, wat
een hoge betrouwbaarheid aantoont. In een vergelijking van CT-scans
van een kleinere fase Il-studie gaven radiologen vaak de voorkeur aan
de volume-bepaling van de Al ten opzichte van de handmatige volume-
bepaling van een radioloog.

We gebruikten ook de Al om te zien of de grootte van de tumor aan het
begin van de behandeling kon voorspellen hoe het met patiénten zou
gaan. We verdeelden de tumoren in vier groepen van tumorvolumes en
ontdekten dat de aanvangsgrootte van de tumor significant gekoppeld
was aan de algehele overleving van de patiént.

Verder introduceerden we nieuwe criteria genaamd ARTIMES om te
evalueren hoe PM-tumoren reageren op behandeling. Deze criteria ge-
bruiken zowel een absolute verandering in volume als een percentage
toename om te bepalen of de kanker erger wordt. In onze studies ont-
dekte ARTIMES tumorgroei ongeveer 7 weken eerder dan traditionele
methoden. Het bleek ook effectiever te zijn in het voorspellen van de
algehele overleving van patiénten.
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