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Chapter 1. General Introduction

The main goal of regenerative medicine is to replace or repair impaired tis-
sues and organs. The field of tissue engineering advanced over the years,
within regenerative medicine, aiming to develop cell culture and (bio)material
systems with similar characteristics to the native tissues. All tissues of mul-
ticellular organisms consist of cells (of different types) that reside in a non-
cellular microenvironment which is called the extracellular matrix (ECM).
The essence of the multicellularity is the continuous communication of sin-
gle cells with neighboring cells and the ECM. The proteins responsible for
both cell-cell and cell-extracellular environment interactions are shown to be
highly conserved in evolutionary analyses among vertebrates and inverte-
brates (Hynes & Zhao, 2000). This evolutionary conservation credits the fun-
damental role of intercellular communication and adhesion in sustaining the
organismal well-being. This is also why the development of (bio)materials
with similar characteristics to the native tissues is successful in improving in
vitro tissue regeneration (Akhmanova et al., 2015; Dankers et al., 2011; Galván-
Chacón et al., 2022; Malheiro et al., 2022; Tassinari et al., 2023).

Although the exact composition is tissue-specific, the ECM essentially con-
tains fibrous proteins, polysaccharides and water (Frantz et al., 2010). Cells
adhere to the ECM via adaptor proteins called integrins (Figure 1.1). This cell-
ECM adhesion provides both mechanical and biochemical cues for the cells,
in order to physically support them, drive their growth, differentiation and
migration (Miller et al., 2020). ECM proteins are continuously produced and
degraded by the cells depending on the dynamic interactions between cells
and the ECM, ensuring tissue homeostasis (Frantz et al., 2010). In case of tis-
sue damage, for instance, cells receive signals from the ECM and from neigh-
boring (damaged) cells, directing them to start producing more ECM com-
ponents and/or proliferate in order to repair the damage. This is a delicate
process, so that the malfunctioning of it can be pathological. Uncontrolled
and excessive production of ECM results in fibrosis, or permanent scarring in
the tissue (Wynn & Ramalingam, 2012). Fibrosis is a currently a major chal-
lenge in regenerative medicine, since there are no therapies available to re-
verse or halt the formation of fibrotic lesions once started (Fernández-Colino
et al., 2019).

Cell-cell communication is mediated mainly by the cadherin protein family
(Figure 1.1). Cadherins, with four subfamilies, allow the cells in a tissue to
selectively adhere to one another. This cell-cell adhesion maintains the tissue
integrity and allows the cells to communicate via biochemical signals result-
ing in a multitude of cellular behavior (Yap & Kovacs, 2003). Similar to cell-
ECM interactions, malfunction of cell-cell adhesion can also result in pathol-
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Figure 1.1: An overview of the cell-cell and cell-ECM interactions. Integrins
maintain the cell-ECM communication by relaying the extracellular biochem-
ical and mechanical signals to the cell via the adaptor proteins in the adhe-
some. Cadherins facilitate the cell-cell adhesion and therefore support the
tissue integrity. They also participate in intra-cellular signaling by engaging
in crosstalk with other cell surface receptors (e.g., growth factor receptors and
integrins). All these extracellular information is processed by the cell and cell
behavior is adjusted in response to the extracellular input.
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Chapter 1. General Introduction

ogy, such as tumor growth, infiltration and metastasis (Hajra & Fearon, 2002).
Since the integrin and cadherin pathways have shown to interact at multiple
levels (Barcelona-Estaje et al., 2021; Mui et al., 2016) control over cell-cell inter-
actions via cadherins is as important as the control over cell-ECM interactions
for advancing the regenerative medicine applications (Barcelona-Estaje et al.,
2021; Passanha, 2021).

To this end, a detailed understanding of the fundamental processes of the cell-
cell and the cell-ECM interfaces is necessary. Given the variability in proteins
and cellular processes involved, an interdisciplinary approach is indispens-
able for this type of research. Tissue engineers and material scientists work-
ing hand in hand with molecular and cellular biologists are creating diverse
advanced materials and tissue culture systems. Yet there are still many open
questions which are not easily addressed by experimental methods. What
are the optimal mechanical, chemical and biological conditions for inducing
(stem) cell differentiation to different fates? How do the cells of the same ori-
gin behave differently under different in vitro conditions? How to optimize
tissue grafting for each patient? Why some implants are rejected by some pa-
tients and not others? Computational (in silico) modeling of biological data is
a powerful tool to address these open questions. Computational tools have
not only been used for product and process design in tissue engineering but
they have also helped to resolve complex interactions within biological sys-
tems (Geris, 2013).

For example, in the past, in silico models have been used to explain the behav-
ior of cells and tissues under healthy, diseased and healing conditions. Oers et
al., 2014 model proposed a mechanical explanation on the formation of blood
vessel-like structures in endothelial cell cultures. Blood vessel formation (an-
giogenesis) has also been explored specifically in bone fracture healing by
Carlier et al., 2012, highlighting the importance of the cellular signaling in cell
decision-making and bone formation. Later, Borgiani et al., 2021 used their
computational model to explain the clinically observed diverse outcome of
bone morphogenetic protein 2 treatment in critical sized bone defects. Simi-
larly, Perier-Metz et al., 2020 focused on the treatment of large bone defects,
but focused on exploring the effect of the scaffold structure on the treatment
success. At a smaller scale, the model of Adler et al., 2020 provided an ex-
planation to the limited time window in which escaping fibrosis is possible
during wound healing upon injury.

In this thesis, we suggest that a computational approach is very useful in ex-
panding our fundamental knowledge on cell decision-making affected specif-
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ically by cell-cell and cell-ECM interactions, with the long-term aim to im-
prove current regenerative medicine strategies. The thesis is composed of
one review and four research articles, each focusing on a different aspect of
cell-cell or cell-ECM communication.

In Chapter 2, we introduce the integrin protein family and their central role in
cell-ECM interactions while giving an up to date summary of the published
computational models of integrin function. The chapter divides the integrin
function (and the computational models of integrin function) into three spa-
tial categories, namely, the function outside the cell, on the cell membrane and
in the cytosol. This categorization allows us to explain the distinct strategies
applied for modeling the integrin function at different length and time scales.
Altogether, in silico models of integrin function, provide mathematical expla-
nations to the interactions between integrins and their ligands, integrins and
other cell membrane receptors and integrins among themselves. We further
explain current challenges in advancing the computational modeling efforts
as well as the challenges in the experimental methods studying integrins. We
identify one of the biggest obstacles in the field as the difficulty in obtain-
ing integrin sub-type and integrin ligand specific information by both exper-
imental and computational methods. We conclude by providing suggestions
to overcome biological and computational challenges to advance our under-
standing of cell-ECM interactions via integrins.

In Chapter 3, we take on one of the challenges stated in Chapter 2, and de-
velop a computational model of integrin activity, accounting for integrin lig-
and binding competition. We model two ECM proteins both of which have
the ability to bind the integrin sub-type in the model. Integrin activation, lig-
and binding and clustering are explicitly modeled using ordinary differential
equations (ODEs). Mass action reaction kinetics are used in this molecular
scale model (Figure 1.2). Reaction rates and initial concentrations of integrins
and their ligands have been obtained from previously published studies. Af-
ter simulating experimentally observed ligand concentrations compositions,
we conclude that the ligand with a higher binding affinity occupies more in-
tegrins at the steady state. We close the chapter by interpreting the results
from a regenerative medicine perspective.

Chapter 4 focuses on a process that was largely simplified in Chapter 3, the
integrin clustering and adhesion formation. We take a novel approach to
combine biochemical and mechanical interactions at the initial stages of adhe-
sion formation. ODEs are used to model integrin clustering, binding to adap-
tor proteins and to cytoskeleton in a force-dependent manner. We assume

5
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Figure 1.2: An overview of the four research projects concerning computa-
tional modeling of the cell-cell and cell-ECM interactions as described in this
thesis.
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mass action kinetics for the biochemical reactions and a Hookean spring sys-
tem to calculate the forces on different proteins in this molecular scale model
(Figure 1.2). With this combined biochemical-mechanical model of dynamic
adhesion assembly, we are able to predict the fraction of nascent adhesions
that have a potential to become mature focal adhesions under different sub-
strate stiffnesses.

In Chapter 5, we focus on cell-cell interactions via cadherins. We use a com-
putational model to represent the experimentally proven interactions between
cadherin-11 and two plateled-derived growth factor receptors (PDGFRs) and
we inspect whether the crosstalk also exists downstream of the signaling ini-
tiated by the two receptor families. Using ODEs we build a standardized
qualitative dynamical system of the reaction networks of cadherin-11 and
PDGFRs and we compare the effect of cadherin-11 on cell proliferation in dif-
ferent crosstalk setups. This model is able to predict cellular level outcomes
using molecular level information (Figure 1.2). We conclude that the recep-
tor level crosstalk (i.e., the physical binding between cadherin-11 and the two
PDGFRs) is not sufficient to establish a cadherin-11 mediated control over cell
proliferation. We suggest there needs to be another level of crosstalk between
downstream signaling proteins of the two receptor families for cadherin-11
to affect cell proliferation.

Finally in Chapter 6, we scale up to the tissue level (Figure 1.2) and we model
the reversible fibroblast to myofibroblast transition (FMT); which has been
experimentally shown to be initiated by ECM tension. This model couples
two powerful modeling techniques, namely an agent based model for cellu-
lar and subcellular biochemical reactions and a finite element model to cap-
ture the mechanical properties of the ECM. With this coupled approach we
are able to show the continuous and dynamic interactions between the ECM
and the cells that initiate the FMT. We propose that by mechanosensitive pro-
duction of new ECM, mechanical properties of the tissue changes over time
which then reverses the FMT process.
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Chapter 2. Towards Understanding the Messengers of Extracellular Space:
Computational Models of Outside-In Integrin Reaction Networks

Abstract
The interactions between cells and their extracellular matrix (ECM) are criti-
cally important for homeostatic control of cell growth, proliferation, differen-
tiation and apoptosis. Transmembrane integrin molecules facilitate the com-
munication between ECM and the cell. Since the characterization of inte-
grins in the late 1980s, there has been great advancement in understanding
the function of integrins at different subcellular levels. However, the versa-
tility in molecular pathways integrins are involved in, the high diversity in
their interaction partners both outside and inside the cell as well as on the
cell membrane and the short lifetime of events happening at the cell–ECM in-
terface make it difficult to elucidate all the details regarding integrin function
experimentally. To overcome the experimental challenges and advance the
understanding of integrin biology, computational modeling tools have been
used extensively. In this review, we summarize the computational models
of integrin signaling while we explain the function of integrins at three main
subcellular levels (outside the cell, cell membrane, cytosol). We also discuss
how these computational modeling efforts can be helpful in other disciplines
such as biomaterial design. As such, this review is a didactic modeling sum-
mary for biomaterial researchers interested in complementing their experi-
mental work with computational tools or for seasoned computational scien-
tists that would like to advance current in silico integrin models.
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2.1 Introduction
The evolution of cell adhesion, both to other cells and to surfaces, has been a
critical step in the emergence of multicellular organisms on earth (Hynes &
Zhao, 2000). Today, we know that cells of all multicellular metazoans, reside
in a mesh of fibrous proteins, referred to as the extracellular matrix (ECM)
(Hynes, 2004). Adhesion to the ECM is required for the homeostatic control
of cell growth, proliferation, differentiation and apoptosis (Miller et al., 2020).
Furthermore, interaction between cells of the same tissue/organ is facilitated
by the ECM, resulting in biochemical and biophysical information exchange
(Sun et al., 2016). When the natural cell–ECM interaction is perturbed, be-
cause cells cannot adhere or the ECM properties have drastically changed,
morbid or cancerous phenotypes are observed at the cell/tissue/organ level
(Butcher et al., 2009; Cox & Erler, 2011; Handorf et al., 2015). The ECM there-
fore, not only functions as a structural support for a group of cells in a tissue,
but it actively communicates with the cells to ensure homeostasis.

Experimental research on the subcellular structures that form the link be-
tween cells and their matrix started in the early 1970s (Hynes, 2004). Af-
ter nearly 20 years, a family of heterodimeric proteins, called integrins, were
characterized as cell-surface receptors for ECM proteins that mediate the com-
munication of cells and their ECM in animals (Hynes, 1987) (Figure 2.1). Each
integrin molecule consists of non-covalently associated α and β subunits. To
date, 24 unique integrins have been found in mammals, which are combi-
nations of 18 different α and eight different β subunits (Barczyk et al., 2009;
Hynes, 2002) (Figure 2.2. Each integrin molecule is able to recognize and bind
to a defined set of ECM ligands via its ectodomain (Humphries et al., 2006;
Hynes, 2002) and to cytosolic ligands via its cytoplasmic tails (Hynes, 2002).
This way, integrins create physical anchor points between the extracellular
space and the cytoplasm (Figure 2.1.1, blue).

There are different ways in which integrins orchestrate the communication
between the cells and their extracellular environment. Multiple integrins of
the same or different type, when bound to their ligands, can cluster together
(Figure 2.1.2a, green) and initiate the formation of a multi-protein complex at
the cell–ECM interface called a “focal adhesion” (FA) (Eyckmans et al., 2011).
The cytoplasmic side of the FAs contain many different molecules and pro-
tein kinases, such as focal adhesion kinase (FAK), proto-oncogene tyrosine-
protein kinase Src and small GTPase Ras, to start and maintain several sig-
naling cascades (Eyckmans et al., 2011). It is also known that integrins can
facilitate and/or enhance signaling via other cell-surface receptors (such as
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syndecans or receptor tyrosine kinases) by establishing a “ crosstalk” with
them (Eliceiri, 2001; Mahabeleshwar et al., 2007)(Figure 2.1.2b, green). In ad-
dition, on the cytosolic side, FAs harbor numerous other proteins such as talin
and vinculin. Via these proteins, FAs are bound to the actin cytoskeleton and
can affect the cell shape and motility (Critchley & Gingras, 2008; Eyckmans et
al., 2011) (Figure 2.1.3b, yellow).

Having such key functions in the cell–ECM communication and initiating cel-
lular responses to signals from the ECM, integrins have been a common target
in the biomaterial and tissue engineering fields. Biomaterials designed for re-
generative medicine and in specific tissue engineering applications are aimed
to direct specific cellular behavior (e.g., regeneration) by designing instruc-
tive biomaterials with or without the addition of growth factors (Almoue-
men et al., 2019; Karimi et al., 2018; Werner et al., 2020). Materials inspired by
tissue-specific geometric, chemical and physical properties of the ECM have
been successfully used to guide the cells to a desired behavior (Werner et al.,
2020). Recently, materials decorated with bioactive molecules have been pro-
duced to actively communicate with cells (Karimi et al., 2018). These promis-
ing strategies require thorough understanding of integrin function, as it is the
key mediator of ECM–cell interactions.

Since the characterization of integrins in the late 1980s, there has been great
advancement in understanding the function of integrins at different levels.
However, the versatility in molecular pathways integrins are involved in, the
high diversity in their interaction partners both outside and inside the cell as
well as on the cell membrane and the short lifetime of events happening at
the cell–ECM interface make it difficult to elucidate all the details regarding
integrin function experimentally (Bidone, Skeeters, et al., 2019; Cheng et al.,
2017; Huttenlocher & Horwitz, 2011; Hynes, 2004).

To overcome the experimental difficulties and to integrate knowledge on in-
tegrin function at different cellular levels that come from different in vitro
methods, in silico efforts have come into play. Computational modeling of
biological data is a powerful tool and helps to resolve complex interactions
within biological systems. A computational (or in silico) model is a mathe-
matical simplification of the actual system. It aims at replicating the behavior
of the system it represents, allowing to perform simulations and test novel
hypothesis in silico (Brodland, 2015; Scholma et al., 2014).

The level of detail and precision of a computational model, as well as the
amount of data needed to build one, depend on the research question and
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the mathematical method (Scholma et al., 2014). The most detailed mathe-
matical description of a biological system is by ordinary or partial differential
equations (ODEs/PDEs). This type of model provides information on the
changes in the amount of each component in the model over time. Although
they are precise in the information they provide, these models are parameter-
intensive, meaning that one needs the initial amounts of each species ob-
served in the model, as well as the time-dependent relationship between them
(e.g., reaction rates) to build the model. These type of models may get very
complicated very quickly because every species in the system must be repre-
sented by one equation (Scholma et al., 2014). Logic-based Boolean models are
at the other side of the spectrum in terms of precision and data intensity. They
are not based on precise measurements of biological molecules, but they work
in an ON/OFF manner, based on observations such as “when molecule A is
present in the system, B gets activated”. The simplicity in construction makes
these type of models suitable for representation of large biological networks
such as signaling cascades (Scholma et al., 2014). The criteria for deciding on
a type of model are therefore 1) the amount and the characteristics of the data
at hand and 2) the specific purposes of modeling. There can be multiple ways
to model a biological process, and all of them can be correct at the same time
(Voit et al., 2008).

Our molecule of interest in this review, integrin, has also been studied in silico
since it is at the heart of the cell–ECM communication, yet difficult to study
experimentally. As integrin function can be divided into three main spatial
categories—1) extracellular space (Figure 2.1 – blue), 2) cell membrane (Fig-
ure 2.1 – green) and 3) cytosol (Figure 2.1 – yellow)—the computational mod-
els of integrin function can also be grouped into the same three main cate-
gories. In the following sections, we explain the function of integrin at these
three spatial categories following an outside-in perspective and summarize
the computational models that belong to each category (Table 2.1).

A review of computational models that centralizes around the molecular re-
action networks of integrins does not exist to our knowledge. We aim at fill-
ing this gap and providing the scientific community with a guideline that
can be used in two ways: first, as a roadmap on how the integrin function
can be modeled computationally using different methods, and second, as a
starting point for new computational models as we also state possible exten-
sions to existing models and open questions in the field. We do not include
in this review the computational models of processes related to integrin func-
tion (e.g., mechanosensing and cell motility) that do not explicitly explain
the role of integrins. Comprehensive reviews of computational models of
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1. Outside 2. Membrane 3. Cytosol

Cell-ECM
adhesion

Integrin
clustering

Receptor
crosstalk Signaling Cytoskeletel

remodeling

Blucher et al.,
2014

Jamali et al.,
2013

Bazzazi et al.,
2018

Cirit et al.,
2010

Macdonald et
al., 2008

Hudson et al.,
2017

Yu et al., 2017 Bauer et al.,
2010

Escribano et
al., 2014

Bidone,
Skeeters, et al.,
2019

Cheng et al.,
2020

Table 2.1: In silico models describing integrin function at different sub-cellular
levels that are reviewed in the text. Models are listed under the sub-cellular
space category they address.

mechanosensing (B. Chen et al., 2015) and cell shape and motility (Holmes &
Edelstein-Keshet, 2012) can be found elsewhere.
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1. CELL - ECM ADHESION

2.a. CLUSTERING

3.a. SIGNALING

2.b. RECEPTOR 
CROSS-TALK

3.b. CYTOSKELETAL REMODELING

Integrin

Actin 
cytoskeleton

ECM 
ligand

Ligand-receptor 
pair

Signaling 
molecules

Adaptor 
proteins

Figure 2.1: Integrins are transmembrane proteins that function at multiple
cellular levels. Outside the cells (1, blue), ectodomains of integrins selectively
bind to extracellular ligands. On the cell membrane (2, green), multiple inte-
grin molecules are recruited to the focal adhesion site and physically cluster
together (2.a) and/or integrins interact with other cell surface receptors to
enhance their activity, resulting in signaling crosstalk. (2.b). In the cytosol
(3, yellow), integrins initiate signaling cascades (3.a) and are connected to the
actin cytoskeleton via adaptor proteins and can initiate cytoskeletal remodel-
ing (3.b).
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Figure 2.2: A schematic overview of the 24 unique types of integrins, that
are composed of 18 different α (dark green) and eight different β subunits
(light green). Integrins are grouped into four classes according to their ligand-
binding properties. Adapted from (Hudson et al., 2017).
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2.2 Extracellular Matrix Proteins Binding to Integrins
In its simplest form, ligand binding at the interface between the α and β sub-
units of integrins requires that there are integrins present on the portion of
the cell membrane that is exposed to the ECM and that those integrins are in
their active form. Such a system has the following reactions:

S
k +

D /k –
D

I (2.1)

L + I
k +

L /k –
L

LI (2.2)

Where S is the inactive integrin concentration that and becomes active with
the rate k+D. I is the active integrin concentration at the reaction site that
can bind to ligands, L, with the reaction rate k+L to form the ligand–integrin
complex, LI . The reverse reactions have the rates k−D and k−L , respectively.

The rate of change in concentration of each species in this simple system can
be expressed as ODEs in the following form:

d[I]

dt
= k+D[S]–k+L [L][I] + k−L [LI]− k−D[S] (2.3)

d[L]

dt
= −k+L [L][I] + k−L [LI] (2.4)

d[S]

dt
= −k+D[S] + k−D[I] (2.5)

By numerically solving these ODEs, some important questions can be an-
swered, such as “What is the equilibrium concentration of each species?”,
“How fast does the system reach the equilibrium?” and “How do the equi-
librium concentrations depend on the binding parameter values?” To nu-
merically solve a system like this, one needs to plug in the initial concen-
trations of each species and rate constants in the equations. The system of
equations can be converted to computer code and then numerically solved
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for convenience. Tellurium (Choi et al., 2018) and bioCRNpyler (Poole et al.,
2022) in Python offer ODE based modeling of biological systems for the users
who are experienced and/or interested in coding. In platforms like VCell
(https://vcell.org/) and Morpheus (Starruß et al., 2014), however, a user does
not have to actively code but can still analyze differential equation systems
(Vasilevich et al., 2017).

Blucher et al., 2014 use a similar ODE system to the equations 2.3-2.5 to model
integrin–ligand binding kinetics. They use rate constants that are consistent
with values measured for multiple types of integrins by atomic force mi-
croscopy (Lee et al., 2007), and estimate the initial values for the concentra-
tion of each species. In this sense, this model can provide only theoretical
information on the reaction kinetics. They solve the equations in MATLAB
by both deterministic and stochastic simulations. When averaged, the results
of 100 stochastic simulations matched the deterministic simulations. More-
over, they reveal that the system is most dynamic during the first quarter of
the simulation time and then reaches a steady state for each model species
(Blucher et al., 2014).

Each of the 24 different integrin molecules goes through the processes of
activation, ligand binding and clustering at different rates. In their model,
Blucher et al., 2014 do not take into account the different integrin and lig-
and types. They rather provide a general overview of the dynamics of ligand
binding to integrins. Although it is still interesting to mathematically explain
the interactions at the cell–ECM interface, adding the complexity of different
integrin–ligand pairs to such an ODE system would provide more biolog-
ically relevant estimations. This of course requires knowledge of different
reaction rates for different integrin–ligand pairs, which is not present for all
(see discussion for more details).

Besides being dependent on the types of interacting molecules, integrin–ligand
binding is a dynamic process and is greatly affected by the changes in ECM.
Proteomics studies demonstrated that ECM composition dynamically chan-
ges in response to acute stress of injury (Hudson et al., 2017; Massey et al.,
2017). The effect of changes in the ECM ligand concentration on the integrin
binding kinetics can be quantified using an ODE model similar to equations
2.3-2.5, when the ligand and integrin concentrations are known experimen-
tally. Hudson et al. addressed this question using a combined in vivo–in silico
approach, including a mouse model to induce fibrosis in the liver with CCl4
exposure and a complementary in silico model. Using liquid chromatogra-
phy with mass spectrometry (LC-MS/MS) quantification, an increase in the
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amount of multiple types of collagen, fibrillary proteins, glycoproteins and
proteoglycans in case of chronic CCl4-induced liver fibrosis was reported.
Next, an ODE model to quantify the changes in integrin–ligand binding and
integrin clustering upon changes in the ECM composition was used. The
ODE model is similar to the simple example above except that Hudson et al.,
2017 account for clustering among integrin molecules as well and assume all
the integrins are active by the time the simulation starts. This is a valid sim-
plification because this model is focused more on the integrin–ligand binding
kinetics and accounts for different binding rates of different integrin–ligand
pairs, which increases the number of equations to be solved.

The dynamics of integrin type α1β1-collagens type I–IV and integrin type
αVβ3-fibronectin and von Willebrand factor are investigated separately by
Hudson et al., 2017. For all integrin–ligand pairs in this study, when the lig-
and amount increases — as in case of fibrosis in the tissue — the steady-state
value of ligand-bound integrins is higher and is reached faster than in healthy
tissue conditions (Figure 2.3.A). When expanded to account for further be-
havioral effects of integrin signaling on the cell, which will be discussed in
the following sections, this model could provide valuable information on the
timing of events for different integrin types at the cell–ECM interface.

Although individual integrin-ligand pairs can be modeled and simulated mu-
tually exclusively, as by Hudson et al., 2017, multiple different integrin types
are found simultaneously at the cell–ECM interface. The reasons for this coex-
istence of different types of integrins at the adhesion sites have been widely
discussed. Different nanoscale properties of integrin subtypes point to dif-
ferent roles for them. β1 integrins, for instance, are found basally active
on the cell membrane whereas β3 integrins rapidly transform between ac-
tive–inactive states (Li et al., 2017). Similarly, β1 integrins have higher affinity
for fibronectin than β3 integrins do (Bidone, Skeeters, et al., 2019). Explaining
the contribution of the different integrin properties, such as activation and
ligand-binding affinity, to the adhesion formation is a challenge in vitro as
well as in silico.

Using a highly coarse-grained model, Bidone, Skeeters, et al., 2019 demon-
strated that the simultaneous presence of β1 and β3 integrins at the nascent
adhesion sites can in fact contribute to different aspect of the physics of cellu-
lar adhesion. The model space is a quasi-2D surface on which single-point
integrins can get activated/deactivated, bind to ligands and interact with
each other to form clusters. Integrins that have high affinity for a ligand and
that are also more stable in their active state — such as β1 — are responsible
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for strong individual adhesion to extracellular ligands. Conversely, integrins
with lower affinity for a ligand — such as β3 — have stronger affinity for
other integrin molecules, resulting in focal adhesions where many integrins
cluster but their binding to the ECM ligands is less consistent than for β1
integrins (Bidone, Skeeters, et al., 2019). Their work therefore suggests that
integrin–ligand binding and integrin clustering are competing processes and
that the nanoscale properties of integrins determine the dominant process
(Figure 2.3.B).

The computational models mentioned here either considered integrins as equally
active and ready-to-bind to ligands (Hudson et al., 2017) or as molecules with
a defined rate of activation (Bidone, Skeeters, et al., 2019; Blucher et al., 2014).
This was because these models were focused more on the chemical reactions
that occur during or following the integrin-ligand binding, therefore a more
detailed representation of the integrin activation was not necessary. How-
ever, there is a significant amount of computational modeling efforts around
the actual mechanisms of integrin activation. These efforts mainly include
molecular dynamics simulations, and although out of the scope of this re-
view, we refer the readers to (Bidone, Polley, et al., 2019) and (W. Chen et al.,
2011) for two of such molecular dynamics simulations.
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Figure 2.3: Graphical illustration of the main findings from computational
models about integrin function at the three sub-cellular levels.
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2.3 Integrin Function on the Cell Membrane
The second spatial level of integrin action is on the cell membrane where in-
tegrins have two main function with long range effects: 1) clustering among
each other and 2) crosstalk with other cell membrane receptors. Clustering of
ligand–bound integrins happens with the help of polyvalent extracellular lig-
ands and/or cytoplasmic linker proteins and is prominent in the maturation
of focal adhesions (van der Flier & Sonnenberg, 2001). The crosstalk between
integrins and other cell membrane receptors is important in establishing and
maintaining intercellular signaling cascades that have further impact on cell
behavior (Eliceiri, 2001). As such, it is interesting to explore the mathematics
behind the molecular biology of integrin activity on the cell membrane.

2.3.1 Integrin Clustering
Experimental observations suggest the joint effect of substrate stiffness and
spatial organization of ECM ligands to be prominent in the formation of cel-
lular adhesions. Substrate rigidity regulates the dynamics of cell adhesion by
modulating the mechanical force to promote conformational changes in in-
tegrin and ligand molecules (J. Huang et al., 2012; Ye et al., 2015). Therefore,
rigidity influences the reactions between integrin and their ligands, which
were discussed in the previous section. The spatial organization of integrin
ligands, however, is observed to affect the continuance of the cellular adhe-
sion which is related to clustering of ligand–bound integrins on the cell mem-
brane. On substrates where the ligand spacing is larger than 70 nm, the focal
adhesions stay immature (because integrins cannot cluster) whereas ligand
spacing smaller than 70 nm promotes maturation of focal adhesions (Arnold
et al., 2004; Ye et al., 2015).

The underlying mechanochemical mechanism of integrin clustering in re-
sponse to ligand spacing has been studied by Yu et al., 2017 using Monte Carlo
simulations. Their model space was a 6 × 6 µm2 square patch of cell mem-
brane with 100–1000 integrins that are free to diffuse to the non-occupied,
nearest-neighbor location. The model does not account for different types of
integrins but rather simulates the integrin function in a generalized way. At
each step of the simulation, integrins follow a set of rules based on a system
that is similar to the one introduced before (reactions 2.1-2.2), except that in-
tegrin clustering (reaction 2.6) is added to the reaction system and the ODEs
are rearranged accordingly.
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LI + LI
k +

C /k –
C

C (2.6)

According to reaction 2.6, ligand-bound integrins can form clusters (C) with
the nearest ligand-bound integrin (LI) at rate kC

+, and similarly, clusters can
dissociate at rate kC

-. The Monte Carlo method introduces stochasticity to
the system at the beginning of each simulation by randomly sampling the
integrin molecules on the membrane that will undergo reactions 2.1–2.6 and
therefore setting the initial conditions for the ODE system. Stochasticity is
inherently present in biological systems since many cellular reactions depend
on the random motion of molecules (Johnston, 2012), so it is important to
account for the randomness. The integrins that are not contributing to the
ODEs are free to diffuse on the membrane to the next nearest neighbor with a
constant rate. This way, the integrins are shuffled at each simulation step and
their spatial distribution changes (Yu et al., 2017).

In another interesting in silico experiment, Yu et al. set ligands at fixed po-
sitions in the model space, but with different spacing between them (20, 40,
60, 80 and 100 nm). At the end of the in silico experiments with ligand spac-
ing 20 to 60 nm, 60% of total integrins in the model space are found in the
clustered form. With ligand spacing exceeding 60 nm, a sharp decrease in
the amount of clustering is observed (Figure 2.3.C). At 80 nm ligand spac-
ing or greater, only about 10% of integrins are clustered. (Yu et al., 2017) The
reason behind this observation is that when ligand spacing is larger than a
threshold of 60 nm, there are less ligands available (L in reaction 2.2) in the
designated experiment space for the active integrins (I in reactions 2.1 & 2.2)
to bind while diffusing through the cell membrane, therefore reducing the
possibility of integrin clustering (C in reaction 2.6). Consequently, these in
silico results provide a mechanochemical mechanism of the experimental ob-
servations that ligand spacing is crucial in adhesion maturation (Arnold et al.,
2004; Ye et al., 2015; Yu et al., 2017).

Another in silico model has achieved a similar result. In their agent-based
model (ABM), Jamali et al., 2013 conclude that ligand spacing has a key role
in initiating integrin clustering. More specifically, in an ABM, each element
in the system is called an agent and agents interact with each other follow-
ing particular rules of interaction (i.e., biochemical reactions). Different from
ODE-based models, to account for the heterogeneous and stochastic nature of
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biochemical systems, ABM models assign a certain probability when assess-
ing each interaction between the agents, rather than assigning a particular
rate for each reaction (Jamali et al., 2013). The assigned probabilities of events
are calculated based on the observed properties of agents. For example, the
agents move to a new location within the model space with a probability that
correlates with the actual diffusion coefficient of the molecule each agent rep-
resents (Jamali et al., 2013).

The ABM model of integrin clustering also shows that increased affinity be-
tween integrin subunits promotes clustering especially when ECM ligand
concentration is low (Jamali et al., 2013). However, both of the models report
for a standardized integrin–ligand pair and do not comment on the effects
of different reaction rates when considering different integrin–ligand pairs.
Yet both models could be made integrin- and ligand-type specific, when the
binding energies required for a specific integrin–ligand and integrin–integrin
pair would be known.

An interesting remark by Yu et al., 2017 is that integrin clustering might not
only be orchestrated from the ECM side but also from cytosolic side. This is
based on the experimental findings of integrin activation being accompanied
by talin binding to the β subunit of integrins. Talin is a protein forming the
link between integrins and the cytoskeleton and it has also been shown to
aid integrin clustering via its head domain (Bouaouina et al., 2012; Critchley
& Gingras, 2008; Yu et al., 2017). Therefore, it is exciting to hypothesize that
integrin clustering on the membrane is tightly controlled by the ligand orga-
nization on the ECM side, but also affected by the events happening in the
cytosol, although further research is needed here.

After observing that integrin clustering is mediated by ECM properties and
cytosolic factors, an anticipated question is about the role of these integrin
clusters in the process of mechanotransduction. A recent spatial Monte Carlo
model by Cheng et al., 2020 suggests that large integrin clusters on the cell
membrane are spots for focal adhesion kinase (FAK) phosphorylation. As the
substrate stiffness affects the size of the clusters, it directly translates into the
level of FAK phosphorylation, hence downstream signaling. They validate
their model findings with in vitro experiments and show that stiffer substrates
result in larger integrin clusters and more phosphorylated FAK is found in
cytosol (Cheng et al., 2020). This model provides an explanation for how dif-
ferent cell types respond to different ECM stiffness and proposes different
roles for different integrin types, in accordance with Bidone et al. model from
2019 (Cheng et al., 2020).
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2.3.2 Crosstalk Between Integrins and Other Membrane
Receptors

Being on the cell membrane, integrins are known to cooperate with other
cell membrane receptors to serve their crucial role in regulating biological
events, like cell migration and proliferation. Transforming growth factor
beta (TGF-β) receptor, platelet-derived growth factor (PDGF) receptor, vas-
cular endothelial growth factor (VEGF) receptor, bone morphogenic protein
2 (BMP-2) receptor are, for example, known partners of integrins (Eliceiri,
2001; Porter & Hogg, 1998).

Experimental observations indicate the stabilization of VEGF receptor activ-
ity upon interaction with integrin αvβ3 during angiogenesis. It is also known
that a protein kinase, Src, is a mediator between the two receptors (Maha-
beleshwar et al., 2007). Yet the exact mechanism of action of this cooperation
could not be revealed by in vitro methods. A kinetic rule-based ODE model
by Bazzazi et al. investigated the mechanisms behind this crosstalk. The in
silico model of Bazzazi et al., 2018 consists of four species: integrin αvβ3 as
a single entity, VEGF receptor, VEGF and Src kinase. Integrin and VEGF re-
ceptor are assumed to be pre-associated with each other in an inactive state
in order to avoid the complication of modeling the physical proximity of the
molecules. The following set of rules defines the biological actions in the
model: 1) VEGF binding to VEGF receptor, 2) VEGF receptor activation by au-
tophosphorylation, 3) internalization and degradation of VEGF-bound VEGF
receptor, 4) activation of Src, 5) integrin activation by phosphorylation by Src,
and 6) active integrin–active VEGF receptor association at a second site. They
obtain the parameter values by fitting the model to a consistent set of experi-
mental studies and further perform a sensitivity analysis to identify the most
sensitive parameters and thereby the most essential step in the reaction set
(Bazzazi et al., 2018).

From the global sensitivity analysis, the rate of internalization and degrada-
tion of the VEGF receptor is approximately 400-fold lower when it is associ-
ated to the active integrin than when they are not associated. In other words,
the underlying mechanism of stabilization of VEGF receptor activity by inte-
grin is via slowing the degradation process of the VEGF receptor ((Bazzazi et
al., 2018), Figure 2.3.D). This model cannot be generalized to every integrin
and associated receptor, but it is one of the few attempts in explaining the
mechanism behind crosstalk between integrins and other receptors in angio-
genesis and is therefore of great value. Another in silico model deals with
receptor crosstalk but is focused on the interactive effects of the two receptors
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in downstream signaling, rather than the receptor-integrin kinetics (Bauer et
al., 2010). Therefore, it will be discussed in the appropriate section below.

2.4 Integrin Function in the Cytosol
The third level of integrin function is in the cytosol, where external cues are
translated into biochemical signals. Integrin adhesomes, complexes harbor-
ing multiple proteins, assemble at the cytoplasmic tails of integrins as the
adhesions mature. The composition of the integrin adhesome is cell type spe-
cific, however, with an attempt to identify a consensus set, 60 proteins have
been found to be crucial in the integrin adhesomes (Horton et al., 2015; Horton
et al., 2016). Components of integrin adhesome are responsible for transmit-
ting the signals received from integrins to other parts in the cell, eventually
affecting cellular decision-making. There is extensive literature on the molec-
ular biology of signaling pathways where integrins are involved as well as
their effect on cell behavior (Bouaouina et al., 2012; Harburger & Calderwood,
2009). Here, we focus on in silico methods that quantitatively explore the ac-
tion mechanism of cellular events in response to integrin function.

2.4.1 Signaling Activities
Active and ligand-bound integrins, via the multiprotein complexes at their
cytoplasmic tails, are known to activate focal adhesion kinase (FAK) and start
a signaling cascade that affects cellular behavior, such as motility or prolifer-
ation. Players of the growth factor receptor and integrin cascades interact by
inhibiting/activating one another in feedback loops. The details of these sig-
naling cascades are out of the scope of this review and can be found in other
dedicated reviews (Bouaouina et al., 2012; Harburger & Calderwood, 2009;
Miller et al., 2020). In the next paragraphs, we review the in silico models of
integrin signaling and crosstalk.

The association of integrins and growth factor receptors in angiogenesis was
mentioned earlier as we explored integrin-VEGF receptor (VEGFR) associa-
tion that stabilizes VEGFR activity by slowing the receptor degradation (Baz-
zazi et al., 2018). Growth factor binding to growth factor receptors (GFR) pro-
motes proliferation and cell survival mostly via the mitogen-activated protein
kinase (MAPK) signaling pathway. However, growth factor–initiated signal-
ing is not enough for the cell to proliferate. It is also known that cell-to-cell
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communication via cadherins is another factor that ensures proper cell pro-
liferation in presence of growth factors in angiogenesis (Zanetti et al., 2002).
These findings suggest crosstalk between the signaling pathways of three cell
membrane receptors, namely integrin, VEGFR and cadherin.

Bauer et al. explore the interplay between downstream signaling to VEGFR,
cadherin and integrin during angiogenesis, with a stochastic Boolean net-
work model. In Boolean networks, molecular species show a binary behav-
ior, i.e., they are either ON or OFF. It is a practical way of modeling when the
quantitative kinetic data of particular biochemical reactions is not enough to
support an ODE type of model. If the concentration of a molecular species in
the model at any time point is above a certain threshold, the species is ON,
while the concentrations below the threshold translates into OFF behavior. A
“probability of happening” function is added for each molecular interaction
in the Bauer et al. model, to account for the noise or randomness in signaling
cascades.

To test the dependence and additive effects of VEGFR– and integrin-induced
signaling while also taking into account the cell-to-cell communication through
cadherin signaling, they set the initial states of molecular species to randomly
chosen binary sets (ON/OFF) and report the output states that correspond to
the following cell level phenotypes: proliferating, quiescent, migratory and
apoptotic. As expected, in the absence of VEGFR or integrin signaling activ-
ity, apoptosis is induced. When VEGFR and integrin signaling are both active,
they observe one signaling molecule, namely Rac, is of particular importance.
In their model, active Rac enables the cells to migrate whereas inactive Rac re-
sults in quiescent cells. When they allow cell-to-cell contact together with ac-
tive VEGFR and integrin signaling and Rac activity, proliferation is observed
while cells migrate (Figure 2.3.E). While this is contrary to the general as-
sumption of proliferation and migration events being temporally exclusive
of each other (Gao et al., 2005; Giese et al., 1996; Hatzikirou et al., 2012), there
is evidence of both events happening simultaneously in cancer cells (Corco-
ran & Del Maestro, 2003). Wound healing is another process, that requires
both cell motility and proliferation, and the predictions from the Bauer et al.
model might be helpful in that area of biology (Grada et al., 2017).

Another in silico model explores the effect of Rac and related signaling on
protrusion velocity at the leading edge of motile cells (Cirit et al., 2010). It is
an ODE-based model with stochastic simulations that reports the protrusion
velocity in a dimensionless manner. This model incorporates the modulation
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of Rac signaling by nascent adhesions via paxillin, which is one of the pro-
teins in the complex that interacts with integrin cytosolic tails. The Cirit et
al. model also confirms the positive correlation between Rac activity and cell
protrusion in case of nascent adhesion between the cell and the ECM.

In addition to modeling the cellular response to integrin-related signaling,
the dynamic assembly-disassembly of the integrin adhesome is another area
in biology that can benefit from computational methods. Exploring the com-
position of the adhesomes at the time of assembly and disassembly via pro-
teomics analyses revealed that integrin presence is stable throughout the assembly-
disassembly (30 minutes). However, adaptor proteins between integrins and
actin cytoskeleton leave the assembly in about 15 minutes and with different
kinetics (Horton et al., 2015). The distinct binding-unbinding kinetics of adhe-
some proteins have been studied experimentally using techniques like fluo-
rescence recovery after photobleaching (FRAP) (Berkovich et al., 2011; Lavelin
et al., 2013). Computational modeling can help to interpret these experimental
findings by simulating various hypotheses on the assembly and disassembly
of the integrin adhesome, complementing the previous work on functional
network identification of the integrin adhesome (Horton et al., 2015; Horton
et al., 2016; O’Brien et al., 2019; Zaidel-Bar et al., 2007).

2.4.2 Cytoskeletal Remodeling
Integrin and downstream signaling activities directly affect cell motility as
summarized above. Yet, the physical connection of integrins to the actin cy-
toskeleton (Figure 2.1) is crucial for the cell to actively change its shape to
accommodate motility. During protrusion, the actin cytoskeleton actively
changes shape and length. Actin-linked integrins are subjected to myosin-
mediated forces while still being linked to the ECM proteins on their ectodomains.
At this point, when integrins are already bound to their ligands and to the
actin cytoskeleton, understanding the effect of push and pull forces on inte-
grins is as important as understanding the effect of ECM properties on the
cell shape and migration. For this reason, most of the computational efforts
on modeling of the cytoskeletal remodeling and cell shape changes focuses
on the mechanics of the process, and some of these efforts have been nicely
reviewed (Holmes & Edelstein-Keshet, 2012). Here, we mention two in sil-
ico models that are at the molecular level and focus more on the biochemical
reaction dynamics. Importantly, both of these in silico models do not treat
integrins as individual entities but either as a complex always bound to its
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ligand (Macdonald et al., 2008) or as an inseparable part of a bigger adhesion
complex (Escribano et al., 2014).

The ODE-based model by Macdonald et al. considers the binding-unbinding
events between three main species: actin filaments, integrin receptor bound
to a ligand on the ECM and a linker complex that theoretically contains all
the proteins linking the integrins to the actin cytoskeleton. All three species
can combine to form complexes of 2 or 3 among them. The effect of the
force exerted on the linkages between the integrin–linker complex and actin
is modeled in two ways: 1) negatively by increasing the dissociation rate
constants of all possible complexes 2) positively by reinforcing the bond be-
tween the species in the actin–linker–integrin complex. This opposing ef-
fect of force on linkages creates a biphasic scenario when steady-state levels
of each species are observed at changing levels of force (10−12 to 10−10 N).
Lower levels of force exerted on actin/integrin linkages results in a higher
number of actin–linker–integrin complexes than when under high force lev-
els. A force of 10−10 N causes the breakage of linkages, while a force of 10−12

N strengthens the linkages (Macdonald et al., 2008) (Figure 2.3.F).

A rather more sophisticated model of actin remodeling is described by Es-
cribano et al., 2014 They modelled the ECM with a discrete number of lig-
ands on it, the adhesion complex that is representative of the integrin and the
linker proteins in the cytosol, the actin filaments with changing length and
the myosin motor proteins of which the number affects the amount of the
pull force. At high levels of pull force (i.e., high number of myosin proteins
on the actin filaments), this in silico model proposes an increased velocity for
the actin filaments (Escribano et al., 2014). This is in accordance with the pre-
vious model of Macdonald et al., 2008, as increased velocity requires increased
turnover rate for the bonds between adhesion molecules and the ECM.

As force measurements at the cellular level are better established to date than
measurements at the single molecular level (that are required to measure rates
of integrin clustering, for example), these type of models have a bigger pool
of experimental data for validation (see also discussion section). Findings
of both models described here have been validated experimentally (Chan &
Odde, 2008; Schwarz & Gardel, 2012).
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2.5 Conclusion and Outlook
As understood from the many different methods mentioned here, there is
no single truth when it comes to computational modeling of integrin func-
tion. There are multiple ways to model integrin function, each with their ad-
vantages and disadvantages, and often determined by the particular research
question. In fact, this is valid for all attempts to computational modeling of
biological systems. The level of complexity and nonlinearity in biological sys-
tems make it necessary to reduce the system to its essential components (and
thus to simplify), while the ever growing possibilities in mathematical and
computational methods create new avenues of exploration.

The computational models that address integrin function up to date, capture
—to some extend— the nature of events at the cell-ECM interface, albeit fo-
cusing on particular processes at distinct scales. In silico models of the binding
between integrins and their ECM ligands provides an understanding of the
binding kinetics and reflect how the kinetics can change with changing ECM
conditions (Hudson et al., 2017). These models, usually expressed as ODEs,
fall short on spatial aspects of ligand binding as they do not factor in the spa-
tial variations. Models of integrin clustering, provide an explanation for the
experimental observations that ligand spacing is a limiting step in the pro-
cess of integrin clustering (Jamali et al., 2013; Yu et al., 2017). Yet the model
geometry is always a rather simplified “square” or “round” area. The major-
ity of computational studies on integrins have captured integrins in general,
without specifying the particular subtypes.

Simplifications have also been made about the interaction partners of inte-
grins. Models of integrin–ligand binding assume integrin binding to one
ligand at a time whereas in reality one integrin has affinity for binding to
multiple ligands in the ECM, resulting in ligand binding competition. On the
cytosolic side, large signaling pathways have been simplified to Boolean net-
work models that account for key molecules such as Rac (Bauer et al., 2010)
whose activity can explain certain phenotypes. Yet, these types of models lack
the numerical details ODE type of models can provide, and in particular, the
kinetic rates of the underlying processes. Altogether, in silico models of inte-
grin function, provide mathematical explanations to the interactions between
integrins and their ligands, integrins and other cell membrane receptors and
integrins among themselves.

In this review, we highlighted the in silico models that focus on the chemical
reaction dynamics of integrin-related cellular events. However, as integrins
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are “physical anchor” points between the ECM and the cytoskeleton, they
are central to mechanosensitive cellular processes. These include the cellular
responses to external mechanical cues like increased proliferation and motil-
ity on stiff substrates (Handorf et al., 2015). In order to explain the roles of
integrins in mechanotransduction, computational models have been devel-
oped from a more mechanical point of view as well. For example, Chan and
Odde, 2008, introduced the “molecular clutch” model of focal adhesions and
explained the biphasic behavior of filopodia in response to mechanical stiff-
ness of the environment (Chan & Odde, 2008). Molecular clutch model rep-
resents the engagement between the ECM and the actin cytoskeleton, which
resists actin retrograde flow powered by myosins. On stiff substrate, low trac-
tion force results in high retrograde flow thus increased protrusion. On the
contrary, on soft substrate, high traction force reduces the actin retrograde
flow and the protrusion rate of the filpodia (Chan & Odde, 2008; Cheng et
al., 2017). This molecular clutch behavior has been adapted by many others
and further developed. Ligand-bound integrin molecules (i.e., clutches) have
been usually modeled as springs and as a part of a bigger architectural com-
plex in these purely mechanical models. Using the molecular clutch principle,
Oria et al. have explained the link between adhesion formation and rigidity-
dependent ligand spacing sensing of the cells (Oria et al., 2017). We refer the
reader to (Elosegui-Artola et al., 2018) for a nice overview of the molecular
clutch hypothesis.

To further the field of integrin biology, a crucial next step, in our opinion, is to
combine the computational models that focus on chemical reaction networks
with mechanical models. An example of such initiative is the work of Shuaib
et al. where they introduced the concept of a hybrid mechanical-agent-based
model for bone tissue mechanotransduction. The agent-based model predicts
the cytosolic production of ECM proteins, influenced amongst others by the
mechanical and compositional inputs of the ECM. These compositional chan-
ges of the ECM alter the properties of the mechanical model, which in turn
affects the input parameters for the agent-based model (Shuaib et al., 2019).
Such hybrid models are promising, yet can be challenging due to their multi-
scale nature. The next paragraphs detail the next steps for modeling the func-
tion of integrins computationally, both from a biological perspective as a tech-
nical point of view including the challenges of multiscale and multiphysics
modeling.
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2.5.1 Overcoming Biological Challenges
Modeling the behavior of different types of integrins is one area that is open
for exploration. Only four of the models mentioned here (namely; (Bazzazi
et al., 2018; Bidone, Skeeters, et al., 2019; Cheng et al., 2020; Hudson et al.,
2017)) account for the integrin subtype-specific ligand binding or clustering
properties. However, a deeper understanding of differences between integrin
subtypes will be helpful in understanding their distinct roles at the cell-ECM
interface and therefore cell type-specific integrin expression (Barczyk et al.,
2009). Related to this, the competition of multiple ligands with affinity for
binding to the same integrin type (Figure 2.2) represents an important model
extension as it allows to understand the reasons of various ECM composi-
tions per tissue and to reverse engineer synthetic matrices (see also below)
(Gjorevski et al., 2016). Another area of exploration that is biologically rele-
vant is the crosstalk between other cell surface receptors and integrins. For
example, it is known that integrins play a central role in activation of TGF-
β in ECM, but the interactions between the TGF-β receptors (an RTK) and
integrins have not been fully understood (Margadant & Sonnenberg, 2010;
Worthington et al., 2011). Another example of integrin crosstalk is with syn-
decan receptors. Syndecans are transmembrane proteins which often serve
as coreceptors, for example by recruiting ligands for other receptors (Couch-
man, 2003). Especially crosstalk between syndecan-4 and integrins is shown
to enhance interactions between the ECM and cytoskeleton (Elfenbein & Si-
mons, 2013). Computational modeling could help unravel the underlying
mechanism of action in this crosstalk.

In terms of extending the biological scope of the models, one major challenge
in modeling integrin subtypes is in obtaining accurate quantitative measures
(i.e., the parameters for the model) on each subtype. It is generally difficult
to isolate and quantify transmembrane proteins intact and in desired con-
formations and integrins are not an exception (Y. Chen et al., 2009; Hynes,
2004). Therefore, for ODE models that require absolute concentration of in-
active and/or active integrins on the cell membrane (e.g., Equations 2.3-2.5),
the limiting step is obtaining these dynamic quantitative measures. To tackle
this challenge, experimental scientists apply indirect ways of measuring the
density of integrins on the cell membrane. For instance a good example
is by Elosegui-Artola et al. 2014, where they measure the fluorescence in-
tensity of cells when they are bound to rhodamine-labeled fibronectin via
integrins on the cell surface. The fluorescence level is then converted into
concentration, using the level of emitted fluorescence by known concentra-
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tions of fibronectin for their experiment. Another challenge, especially on the
way to increase the specificity of the computational models in terms of in-
tegrin–ligand pairs, is measuring integrin–ligand binding/unbinding rates.
This usually requires sophisticated techniques like surface plasmon resonance
(SPR) ((Elosegui-Artola et al., 2014; Kim et al., 2005; Yan et al., 2001) or single
molecule dynamic force spectroscopy (Taubenberger et al., 2007). These tech-
niques are not available to all molecular biology labs and require operational
expertise as well as very technical equipment. There is an evident need of
collaboration between computational and experimental scientists to unravel
the unknowns of integrin function.

We propose for the case of computational models of integrin function, experi-
mental biomaterial design is a field where the complementary model–experiment
cycle can be established and maintained. In particular, by using modular, syn-
thetic materials, the influence of distinct microenvironment components (e.g.,
mechanical information, (fractions) of ligand types and ligand concentration)
on integrin binding can be assessed individually (Gjorevski et al., 2014). Also,
these precisely-defined, tunable materials allow for the measuring of bind-
ing strength of specific integrin–ligand pairs by SPR, since the ligands could
be isolated and exactly controlled in concentration. Synthetic supramolecu-
lar assemblies have great promise for this, because their monomeric building
blocks could be functionalized with bioactive cues to easily introduce func-
tion using a modular approach (Dankers et al., 2011; Mollet et al., 2014). Note-
worthy, the type of supramolecular base material that is used to present the
integrin-binding supramolecular additives (i.e., RGD or cyclic (c)RGD conju-
gated to the corresponding supramolecular motif) affects cell adhesion prop-
erties; a bisurea (BU)-based material presents the additives more effectively
over a ureido-pyrimidinone (UPy)-system (van Gaal et al., 2019). Also the
ligand concentration influences integrin-binding properties, as an increas-
ing concentration of accessible cRGD leads to more FA formation with a de-
creased size. Furthermore, ligand type effects integrin targeting, since dif-
ferent ligands contain different binding affinities for certain integrin dimers
(Kato & Mrksich, 2004); it was shown that substrates containing the higher
affinity ligand cRGD led to a two times higher cell attachment rate and had
twice the number of FAs than the cells cultured on substrates with its linear
equivalent. Another example of modular, integrin-targeting materials is syn-
thetic peptide amphiphiles (PAs) as pioneered by the research group of Stupp.
Here they for example employed bioactive PAs bearing the fibronectin-derived
RGDS-motif as scaffold for stem cell delivery (Webber et al., 2010). Next to
this, Mardilovich et al. designed PAs decorated with fibronectin-derived
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integrin-binding motifs GRGDS and its synergistic PHSRN sequence in a
spatially controlled manner that matched the natural distance found in fi-
bronectin (Mardilovich et al., 2006). They observed similar cell behavior for
the synthetic PAs as for the natural fibronectin, and even stronger FA for-
mation and reorganization of the cytoskeleton was found for the PAs. This
highlights the importance of using integrin-binding materials with match-
ing spatial organization to its natural counterpart for effective integrin bind-
ing. On this note, another class of supramolecular biomaterials in which the
spatial organization of integrin-binding motifs can be controlled precisely is
DNA origami, owing to its robustness and programmability (Seeman, 2010).
To illustrate, Huang et al. designed and synthesized a multi-ligand func-
tionalized, nanoscale particle containing spatially controlled integrin αVβ6-
binding motif (A20FMDV2), and epidermal growth factor (EGF), a protein
that binds the epidermal growth factor receptor (EGFR) which is a tyrosine
kinase that cooperates closely with integrins (D. Huang et al., 2019). They
showed that a ligand spacing of 60 nm and the presence of 3 peptides, so 3
integrins, led to maximum cell attachment. Altogether, these examples illus-
trate the suitability of tunable, modular biomaterials to isolate and judge the
effects of distinct microenvironment elements (e.g., ligand concentration and
type as well as spatial organization of ligands) on integrin-binding.

In summary, to push forward the field of integrin biology, we invite the field
of biomaterial design and in silico modeling to come together and think about
relevant biological questions and hypotheses to unravel in an iterative loop
of simulation and experimental validation (Voit et al., 2008). On one hand, in
silico models could help in predicting the performance of biomaterials which
are suitable in steering a desired cellular outcome. In this way, not the full
library of materials is required to be synthesized and assessed, but only a rel-
evant range, thereby minimizing research time, effort and costs. While on
the other hand, it is the experimental side that could complement in silico in-
tegrin models, by both providing input values (e.g., binding rates between
ligand–integrin receptor) for the computational integrin models and by serv-
ing as validation for the model outcomes. In this way, the experimental and
computational worlds on integrins should come to a closed cycle that com-
plete one another.

2.5.2 Overcoming Computational Challenges
Finally, we turn to our perspective towards what lies ahead for the compu-
tational field. In particular, there are three areas where we stand to make
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significant progress. Firstly, to fully understand and help unravel the biol-
ogy of integrin function, it is essential, in our opinion, to computationally
integrate all three layers of action spatially and temporally. In the current
computational models, we obtain separate snapshots of events happening at
the three distinct spatial layers. However, to be able to simulate and predict
all the mechanical interactions and chemical reactions happening, starting
with the binding of integrins to the ECM ligands up to the cell’s behavioral
reaction (e.g., proliferation, differentiation, apoptosis etc.), we will need com-
putational models that combine the mechanochemical integrin actions at the
three spatial levels. Modeling the biochemical processes and the mechani-
cal responses of the cytoskeleton as well as the complex mechanochemical
feedbacks that emerge from integrin signaling is challenging due to, amongst
others, the following technical challenges:

1. The biochemical reactions occurring downstream of the integrin recep-
tors are fundamentally stochastic in nature (e.g., small copy numbers),
resulting in local gradients and heterogeneities. Although various al-
gorithms exist for stochastic simulations (Simoni et al., 2019; Székely
& Burrage, 2014), they become computationally intractable for large
chemical reaction networks with many species;

2. Eukaryotic cells consist of three main kinds of cytoskeletal filaments:
microfilaments (actin, 7 nm diameter), microtubules (tubulin, 25 nm
diameter) and intermediate filaments (various proteins, 12 nm diame-
ter). Ideally, one would like to represent the exact filamentary network,
meaning that all three types of individual fibrils must be discretized
at sufficient resolution to resolve the biochemical reactions with the cy-
toskeleton as well as calculate an accurate mechanical force field (which
in turn results in remodeling of the cytoskeletal network);

3. The interesting mechanical and biochemical phenomena take place at
the nanometer scale whereas the emergent behavior occurs at the mi-
crometer scale. As such, there is a need to scale-up the simulations in a
computational efficient way while retaining the required spatial resolu-
tion;

4. Integrin–ligand binding occurs within seconds whereas adhesion matu-
ration requires minutes. Downstream events in the cytosol, from signal-
ing and actin cytoskeleton reorganization to cellular differentiation, can
take hours to days to weeks. Similarly to the spatial scale, systems with
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reactions that operate at very different time scales require advanced nu-
merical methods since otherwise every single fast reaction would need
to be simulated, requiring a huge computational effort (B. Chen et al.,
2015).

Much progress has been made, including optimized numerical algorithms to
efficiently solve sparse reaction-diffusion networks (Cao et al., 2004; Gibson &
Bruck, 2000), software packages to simulate active cytoskeleton network dy-
namics (Popov et al., 2016) and advanced hybrid and multiscale techniques to
couple various spatial and temporal scales (Herajy et al., 2017; Smith & Yates,
2018). The idea behind the hybrid and multiscale techniques is to partition
the system into different spatial or temporal scales and then apply different
simulation methods that better fit the scales (e.g., stochastic at the intracel-
lular level, deterministic reaction-diffusion at the tissue level). However, as
the partitioning and linking (after the simulation step) introduces errors, it is
necessary to develop advanced methods that allow linking different scales in
an accurate manner.

Secondly, we are in the age of parallel computing with advanced (parallelized)
numerical methods to fully leverage this power. Parallelized calculations can
be done on a multicore desktop computer, on high-performance clusters or
using cloud computing services. The new hardware developments, includ-
ing advanced graphical processing units (GPUs) are rapidly increasing the
computational power. At the same time, many software plugins are becom-
ing available for Matlab (Klingbeil et al., 2011), Python (Choi et al., 2018), etc.
to exploit the power of graphical processing units (GPUs), greatly reducing
the computational time.

Thirdly, due to the nature of computational studies — written in a computer-
readable coding language — it is possible to easily extend existing in silico
models or to combine elements of different models to create a new model
with larger spatial and temporal scope. However as in experimental stud-
ies, for a computational model to be revisited and potentially extended by
other scientists than the original authors, the model should be reproducible.
There exist many exciting initiatives such as model software repositories (e.g.,
VCell DB [https://vcell.org/], BioModels [https://ebi.ac.uk/biomodels/],
CellML repository [https://cellml.org/]) and collaborations between pub-
lishers and the Center for Reproducible Biomedical Modeling [https://repr
oduciblebiomodels.org/] to check, increase and maintain reproducibility at
the peer–review stage in publication process (Papin et al., 2020).
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All in all, we believe such practices will help the computational biology field
to become more accessible and that through in silico-in vitro collaboration we
will gain a great amount of fundamental knowledge on integrin biology.
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Chapter 3. Win, Lose or Tie: Mathematical Modeling of Ligand
Competition at the Cell–Extracellular Matrix Interface

Abstract
Integrin transmembrane proteins conduct mechanotransduction at the cell–
extracellular matrix interface. This process is central to cellular homeostasis
and therefore is particularly important when designing instructive biomate-
rials and organoid culture systems. Previous studies suggest that fine-tuning
the extracellular matrix composition and mechanical properties can improve
organoid development. Towards the bigger goal of fully functional organoid
development, we hypothesize that resolving the dynamics of extracellular
matrix–integrin interactions will be highly instructive. To this end, we de-
veloped a mathematical model that enabled us to simulate three main inter-
actions, namely integrin activation, ligand binding and integrin clustering.
Different from previously published computational models, we account for
the binding of more than one type of ligand to the integrin. This competi-
tion between ligands defines the fate of the system. We have demonstrated
that an increase in the initial concentration of ligands does not ensure an in-
crease in the steady state concentration of ligand-bound integrins. The ligand
with higher binding rate occupies more integrins at the steady state than does
the competing ligand. With cell type specific, quantitative input on integrin-
ligand binding rates, this model can be used to develop instructive cell cul-
ture systems.
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3.1 Introduction
The extracellular matrix (ECM) is a mesh of fibrous proteins that forms the
basis of the tissue architecture and structurally supports the cells. The trans-
lation of biophysical cues provided by the ECM into biochemical signals by
the cells is a process called mechanotransduction. For cells, mechanotrans-
duction is central to maintaining homeostasis in many biological processes
like proliferation, migration, differentiation and apoptosis (Miller et al., 2020).
It is known, for example, that the composition and mechanical properties of
the extracellular environment in which mesenchymal stem cells are grown
influences whether they differentiate into adipocytes, osteoblasts or chondro-
cytes (Assis-Ribas et al., 2018). When mechanotransduction is disturbed, it
results in aberrant cell behavior and thus impaired tissue function (Handorf
et al., 2015).

Focal adhesions are multiprotein complexes where this mechanotransduction
process is orchestrated. The main players in focal adhesions, responsible for
physical interactions with the ECM, are integrins. Each integrin consists of
non-covalently associated α and β subunits. To date, 24 unique integrins
have been found in humans, which are combinations of 18 different α and
eight different β subunits (Barczyk et al., 2010; Hynes, 2002). Each integrin
heterodimer is able to recognize and bind to a defined set of ECM ligands via
its ectodomain (Humphries et al., 2006; Hynes, 2002). Different ligand-bound
integrins can further form clusters amongst each other via non-covalent links
between α and β subunits. Approximately 50 integrins can cluster together
(Changede et al., 2015). This way, integrins create physical anchor points be-
tween the extracellular space and the cytoskeleton and initiate the focal adhe-
sion formation. Cytosolic ligands are recruited to cytoplasmic tails of integrin
molecules, and mechanosensitive signaling is activated in the cell via the fo-
cal adhesions (Hynes, 2002).

Due to the broad range of cellular response activated via integrin-mediated
signaling, integrins have been targets for tissue engineering applications. Re-
cent developments in methods that make use of stem cells and targeted dif-
ferentiation protocols, such as in organoid development, demonstrated the
importance of a detailed understanding of mechanotransduction and partic-
ularly integrin–ECM interactions. So called “designer matrices” that are dec-
orated with integrin-binding partners and that are adaptive in terms of their
mechanical properties have been shown to enhance intestinal organoid cul-
ture survival and proliferation (Gjorevski et al., 2016). Similarly, by mimick-
ing the physiological environment of early stages of embryonic development
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in cell culture, the formation of human pluripotent stem cell–derived kidney
organoids could be enhanced (Garreta et al., 2019).

Maintaining the appropriate ECM composition is critical for kidney organoid
development. For example, Geuens et al. reported an unwanted increase
in specific ECM proteins when cell culture times were prolonged in an at-
tempt to increase kidney organoid maturation (Geuens et al., 2021). They
performed a tandem mass spectrometry analysis to compare the ECM com-
position of kidney organoids that were cultured for 18 and 25 days. Older
kidney organoid ECM was rich in collagens (specifically COL1A1, COL2A1
and COL6A1) and fibronectin, which are hallmarks of tissue fibrosis, com-
pared to day 18 ECM. The analysis also showed an increase in αSMA — a
myofibroblast marker — in older kidney organoids, that further indicated tis-
sue fibrosis. Following this analysis, they encapsulated the kidney organoids
in a soft hydrogel system, which prevented the unwanted ECM deposition,
perhaps by better mimicking the natural environment in kidney development
(Geuens et al., 2021).

The effect of the abnormal accumulation of particular ECM proteins on cell
phenotype is worth exploring for the future of organoid culture systems. The
initial presence and the changes in the amounts of ECM proteins are sensed
first by the integrins, the direct interaction partners of these proteins. There-
fore, a detailed analysis and understanding of the effects of abnormal ligand
deposition and ligand competition on integrin–ligand dynamics can help us
understand the decision-making processes of the cells in response to the chan-
ges in ECM conditions (Garreta et al., 2019; Geuens et al., 2020; Miller et al.,
2020).

The high number of potential integrin–ligand pairs make it difficult to test
and document the effects experimentally. Therefore, computational model-
ing provides a unique opportunity for exploring the integrin–ligand binding
process and its subsequent effects. There exists a number of computational
models that explain different processes in the integrin-related pathways. In
particular, Hudson et al. studied the binding of fibronectin and von Wille-
brand Factor A (vWA) to integrin αvβ3 as well as binding of collagen to α1β1
using an ordinary differential equation (ODE) model; they reported an in-
crease in ligand-bound integrin at the steady state when there is an increase
in the concentration of ligands (Hudson et al., 2017). However, they simulate
the integrin–ligand binding exclusively for each ligand, which overlooks the
fact that the ligands of the same integrin are in a competition to bind when
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present at the same time.To fill this knowledge gap and identify potential pat-
terns in integrin–ligand binding that occur due to the competition between
multiple ligands for the same integrin, we developed an ODE model. Our
model consists of three reaction levels: 1) integrin activation, 2) ligand bind-
ing and 3) ligand-bound integrin clustering (Figure 3.1). Using this model,
we explore the changes in ligand-binding kinetics when the amount of ECM
ligands changes over time, as in the case of kidney organoid cultures.
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Figure 3.1: An overview of the ligand-competition model reactions. i is the
inactive integrin, I is activated integrin, IL1 is L1-bound integrin, IL2 is L2-
bound integrin, IL1-IL1 , IL2-IL2 and IL1-IL2 are three species of clustered
integrins with different ligand compositions. k1 – k8 are reaction rate con-
stants and their values are given in Table 3.1. Ordinary differential equations
representing the reactions are given in the Methods section.
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3.2 Methods
3.2.1 Ordinary Differential Equation Model
We used the Tellurium Python environment (Choi et al., 2018) to generate and
the libRoadRunner library (Somogyi et al., 2015) to simulate the ligand com-
petition model. The python code for the model and simulations as well as the
SBML file for the model and the simulation results in csv format can be found
in our GitHub repository (https://github.com/zeynepkaragoz/Ligand com
petition model) The mass-action kinetics scheme of the integrin–ligand com-
petition model is given in Figure 3.1; here we present the differential equa-
tions for the model (Eqn. 3.1–3.9): where [i] denotes the concentration of in-
active integrins, [I] is the concentration of active integrins, [IL1] and [IL2] are
the concentrations of L1- and L2-bound integrins, respectively. [C1], [C2] and
[C3] are the concentrations of three distinct types of integrin clusters com-
posed of IL1-IL1, IL2-IL2 and IL1-IL2, respectively. k1-k8 are the reaction rate
constants of the reversible reactions in the model (Figure 3.1) and their values
are given in Table 3.1.

d[i]

dt
= −k1[i] + k2[I] (3.1)

d[I]

dt
= k1[i]− k2[I]− k3[I][L1] + k4[IL1]− k5[I][L2] + k6[IL2] (3.2)

d[IL1]

dt
= k3[I][L1]− k4[IL1]− 2(k7[IL1]

2 − k8[C1])− k7[IL1][IL2] + k8[C3]

(3.3)

d[IL2]

dt
= k5[I][L2]− k6[IL2]− 2(k7[IL2]

2 − k8[C2])− k7[IL1][IL2] + k8[C3]

(3.4)

d[C1]

dt
= k7[IL1]

2 − k8[C1] (3.5)

d[C2]

dt
= k7[IL2]

2 − k8[C2] (3.6)
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d[C3]

dt
= k7[IL1][IL2]− k8[C3] (3.7)

d[L1]

dt
= −k3[I][L1] + k4[IL1] (3.8)

d[L2]

dt
= −k5[I][L2] + k6[IL2] (3.9)

The inspiration for this model was a prior integrin–ligand binding model pre-
sented by Hudson et al., 2017. However, their model included only one type
of ligand available at a time for one integrin type. We have modified this
model to account for the competition of multiple ligands binding to the same
integrin. We have also added an integrin activation step, before the initia-
tion of ligand binding. This was to accommodate the conformational change
(from bent to extended) of the integrin ectodomain, required for the ligand
binding site to become available (Li & Springer, 2017; Takagi & Springer,
2002; Zhu et al., 2008). The rate of the activation step was calculated by
(Yu et al., 2017) using the energy required for the bent-to-extended confor-
mation change (Huang et al., 2012; Yu et al., 2017). It should be noted that
we do not make the distinction between the next two possible conformations
(extended-closed and extended-open) after the ligand is bound to the integrin
(Li & Springer, 2017; Zhu et al., 2008), as the switch between these two states is
highly related to the integrin cytoplasmic tails binding to cytoskeleton, which
is out of the scope of this study. Since there are two types of ligand-bound
integrins in our model (IL1 and IL2), we also make the distinction of three
possible integrin clusters (C1, C2 and C3). However, we assumed the cluster
association/dissociation rate constants (k7 and k8, respectively) for distinct
cluster types are the same, simply because the molecules that are interacting,
the integrins, are of the same type for each cluster.

We used the binding rate constants of fibronectin and vWA to integrin αvβ3
as the L1 and L2 binding rate constants (Table 3.1). We chose to model in-
tegrin αvβ3 because of its relevance in kidney fibrosis (Bülow & Boor, 2019;
Conroy et al., 2016; Henderson et al., 2013). Similarly, we chose fibronectin as
the first ligand (L1) as its expression is related to fibrosis (Eddy, 1996; Gen-
ovese et al., 2014) and it is a relatively well characterized ligand of integrin
αvβ3 (Humphries et al., 2006). We used vWA as the second αvβ3-binding
ligand (L2) of which we derived the binding rate constant from a previous
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Explanation Value Reference

k1 Integrin αvβ3 activa-
tion

5× 106 (nM×s)−1 Yu et al., 2017

k2 Integrin αvβ3 inacti-
vation

1.0× 108 s−1 Yu et al., 2017

k3 Fibronectin (L1) -
αvβ3 binding

1.6× 108 (nM×s)−1 Hudson et al.,
2017

k4 Fibronectin (L1) -
αvβ3 unbinding

3.5× 10−1 s−1 Hudson et al.,
2017

k5 vWA (L2) - αvβ3 bind-
ing

1.6× 104 (nM×s)−1 Hudson et al.,
2017

k6 vWA (L2) - αvβ3 un-
binding

2.3× 10−2 s−1 Hudson et al.,
2017

k7 Integrin cluster forma-
tion

1.6× 108 (nM×s)−1 Yu et al., 2017

k8 Integrin cluster disso-
ciation

0.5× 107 s−1 Yu et al., 2017

i Integrin αvβ3 0.05 nM Hudson et al.,
2017

Table 3.1: Parameters used in the ODE model, their values and references.

model (Hudson et al., 2017). Overall, we intended to demonstrate the sim-
plest possible case of ligand competition where a low affinity and a high affin-
ity ligand compete for binding to the integrin. L1 represents a high affinity
ligand, whereas L2 represents a medium to low affinity ligand for integrin
αvβ3 (Irvine et al., 2002). This setup is relevant for natural cell-ECM inter-
actions as well as for cells on synthetic substrates as one of the most widely
used integrin-targeting peptide sequences RGD has varying affinities in dif-
ferent conformations (i.e. higher affinity when cyclic form versus lower affin-
ity when in linear form) (Sankaran et al., 2017; Verrier et al., 2002; Xiao &
Truskey, 1996). When provided with the necessary parameter set, our model
can be used to simulate the interactions of other integrin–ligand pairs or even
other receptor–ligand pairs which have similar activation-binding-clustering
chemistry.
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Figure 3.2: Schematic representation of experimental conditions that were
tested using the ODE model of ligand competition. Conditions are numbered
from 1 to 5 and this numbering is also used in the figures and results.

60



3

3.2.2 Design of In silico Experiments
Using the ODE system described above, we performed a set of in silico experi-
ments, aimed at characterizing the effects of increased ECM ligand concentra-
tion on integrin binding in a cell culture system. Initial molar concentrations
for fibronectin (0.18 nM) and vWA (0.33 nM) were taken from Hudson et al.
while we used the fold changes reported by Geuens et al. between days 18
and 25 for these two ligands (2.5-fold and 1.5-fold for fibronectin and vWA)
in kidney organoid culture (Geuens et al., 2021). This way we obtained the
test condition 1 “Different Initial Conditions, Different Fold Change” in Table
3.2 and Figure 3.2. In further in silico experiments, we set the initial concen-
trations of the two ligands equal (condition 2, Table 3.2 and Figure 3.2) and
varied the fold change values (Equal, Different or High Fold Change for L2
only) between days 18 and 25 to test their effect on the system (conditions
3 and 4, Table 3.2 and Figure 3.2). Finally, we set the binding rates of the
two ligands to be equal and used the initial concentration of test condition 1
once more to see the effect of binding rate constants independent of the effect
of initial ligand concentrations and fold changes (condition 5, Table 3.2 and
Figure 3.2). A schematic representation of all the tests is given in Figure 3.2.

Test Condition Experiment Time L1 L2

1 Different Initial Conditions, Day 18 0.18 nM 0.33 nM
Different Fold Change Day 25 0.46 nM 0.50 nM

2 Equal Initial Conditions, Day 18 0.33 nM 0.33 nM
Different Fold Change Day 25 0.84 nM 0.50 nM

3 Equal Initial Conditions, Day 18 0.33 nM 0.33 nM
Equal Fold Change Day 25 0.84 nM 0.84 nM

4 Equal Initial Conditions, Day 18 0.33 nM 0.33 nM
High Fold Change for L2 Day 25 0.84 nM 2.97 nM

5 Different Initial Conditions, Day 18 0.18 nM 0.33 nM
Equal Binding Rates Day 25 0.46 nM 0.50 nM

Table 3.2: Conditions (1–5) with initial concentration values for competing
ligands, for each experiment (different or equal initial conditions (IC); differ-
ent, equal or high fold change (FC) between experiment days; different or
equal binding rates (BR) for ligands) and for each time point (Day 18 and 25).
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3.3 Results
Using our ODE-based model (Eqn. 3.1-3.9) and interactions described above
(Figure 3.1), we performed simulations using reaction rate constants from
the literature (Table3.11) and initial conditions changing according to Table
3.2 and Figure 3.2. The binding rate constant between integrin αvβ3 and fi-
bronectin is 104 times higher than that of integrin αvβ3 and vWA (Hudson et
al., 2017). Therefore, in our model, L1 is the ligand with higher binding affin-
ity while L2 has lower binding affinity for the same integrin. Although we
use binding rate constants of fibronectin and vWA in this study, the compu-
tational model is generic and can be adapted for other integrin–ligand pairs
by changing the corresponding parameter values.

The initial conditions for the integrin and both ligands at day 18 were set from
Hudson et al., 2017. The day 25 initial conditions for the two ligands were de-
termined using the results of the kidney organoid ECM proteomics analysis
(Table 3.2). It should be noted that in all in silico tests that are described in the
following sections, the inactive integrin concentration ([i]) and active integrin
concentration ([I]) reached a steady state value of almost zero. This means
that all integrins in the system were found as either bound to a ligand and/or
clustered with other ligand-bound integrins (Figure S.3.1).

3.3.1 The ligand with a higher binding rate dominates the
integrin binding competition

First, we looked at how integrin–ligand binding dynamics change under con-
ditions similar to the kidney organoid culture experiments. The proteomics
analysis revealed that there was a 2.5– and 1.5–fold increase in the amount
of fibronectin and vWA, respectively, between days 18 and 25 in the ECM. In
our model, we simulated this scenario as condition 1, using the initial concen-
trations given in Tablee 3.2. The steady-state value was higher at day 25 than
day 18 for L1-bound integrins (increase in the 10−6th order, Figure 3.3A-1,
Figure S.3.2A). The L2-bound integrin concentration, however, decreased at
day 25 compared to day 18 (Figure 3.3B-1).

Second, to test the effect of the differences in initial conditions of the ligands
(L1 = 0.18 nM and L2 = 0.33 nM) on our observations, we ran simulations
with equal initial concentrations (0.33 nM) for L1 and L2 on day 18 and ap-
plied the same fold changes (Figure 3.2-2). Similar results were found for L1-
bound integrin, whereas L2-bound integrin had an even lower steady-state
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Figure 3.3: (Continued on the following page.)
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Figure 3.3: (A) L1-bound and (B) L2-bound integrin concentrations over time
in experiment days 18 (gray solid line) and 25 (red dotted line) for test con-
ditions 1 to 5. The test conditions are as given in Table 3.2 and Figure 3.2:
1) Different IC are 0.18 nM for L1, 0.33 nM for L2; 2) Different FC are 2.5 for
L1, 1.5 for L2; 3) Equal IC is 0.33 nM; Equal FC is 2.5; 3) High FC for L2 is
9. (C) L1-bound and (D) L2-bound integrin concentration over time for test
condition 5 (Different IC and equal binding rate constants for ligands) (k3 =
k5 = 1.6× 108 (nM×s)−1, k4 = k6 = 3.5× 10−1 s−1).

concentration (Day 18: 2.98 × 10−6 nM, Day 25: 1.77 × 10−6 nM, Figure 3.3B-
2) compared to those from Different IC simulations (Day 18: 5.46 × 10−6 nM,
Day 25: 3.24 × 10−6 nM, Figure 3.3B-1).

Third, we tested whether an equal fold change (2.5 for both L1 and L2, Figure
3.2-3) between days 18 and 25 affected the ligand competition. The steady
state for L1-bound integrin did not change compared to previous test (Fig-
ure 3.3A-3, Figure S.3.2B-C). However, we observed an increase in the steady
state of L2-bound integrins on day 25 (2.98 × 10−6 nM, Figure 3.3B-3) com-
pared to that under Different FC conditions (1.77 × 10−6 nM, Figure 3.3B-2).
This hinted that the fold change can affect the ligand competition in favor of
L2.

Next, we simulated a 9-fold change (which was the maximum fold-change
observed in kidney organoid ECM mass spectrometry experiments by Geu-
ens et al., 2021) between days 18 and 25 (Figure 3.2 condition 4) for L2. This
simulation was done to reflect the effect of a higher fold of the ligand with the
lower integrin binding rate on the system. We saw that with a 9-fold increase
in the L2 amount on day 25, the steady-state concentration of L2-bound inte-
grin was higher than on day 18 (Figure 3.3B-4) while the L1-bound integrin
concentration pattern decreased, in the range of 10−6 nM, when compared to
previous tests (Figure 3.3A-4, Figure S.3.2D). Mathematically, the decrease in
L1-bound integrin compensated for the increase in the steady-state concen-
tration of L2-bound integrin.

The main observation from simulating test conditions 1 to 4 was that the in-
tegrins bound to L1 have increased in number by increasing the ligand con-
centration at day 25 compared to day 18, but integrins bound to L2 have not
always increased at day 25 with increasing ligand concentration. Only in test
condition 4, with a 9-fold increase in the L2 amount on day 25, we saw that
steady state concentration of L2-bound integrins on day 25 was higher than
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that of day 18.

To further investigate the turning point for the fold change in L2, where the
L2-bound integrin steady-state concentration at day 25 exceeds that of day
18, we ran a parameter scan of the model. For this, we varied the IC for L2
(keeping the IC for L1 at its day 25 concentration which is 0.84 nM) and com-
pared the L2-bound integrin steady state at day 25 to that of day 18 (Figure
3.4). We ran simulations using 10 different initial concentrations for L2 that
started from 0.5 nM (1.5-fold increase) and gradually increased to 2.97 nM
(9-fold increase). Results showed that, under these parameter settings, the
L2-bound integrin concentration at day 25 exceeded that at day 18 only when
the L2 initial concentration was >0.77 nM (2.3–fold greater) (Figure 3.4).

In all tests so far, integrins were bound to L2, the ligand with a lower binding
rate constant, at a lower concentration than the integrins were bound to L1,
even when the ICs of the two ligands were equal. This observation implies
that the binding rate constants of the two competing ligands, and not the ini-
tial concentrations, are of decisive importance for the binding competition.

Thus, we next tested the effect of changing the binding rate constants for
L1 and L2 (Figure 3.2 and Table 3.2, condition 5). When we set the binding
and unbinding rate constants of the two ligands equal (k3 = k5 = 1.6 × 108

(nM×s)−1 for binding and (k4 = k6 = 3.5× 10−1 s−1 for unbinding) and used
the same initial concentrations as in condition 1 (Table 3.2, L1 = 0.18 nM, L2 =
0.33 nM at day 18 and L1 = 0.46 nM, L2 = 0.50 nM at day 25), we observed L1-
and L2-bound integrin concentrations to be similar at the steady state (Figure
3.3C and D). At day 18, the steady-state concentrations for L1 and L2 were
0.009 nM and 0.015 nM, respectively. With day 25 conditions, the steady-
state concentrations of L1- and L2-bound integrins were 0.011 and 0.012 nM,
respectively.

3.3.2 The ligand binding of integrin clusters reflects the results
of the ligand competition

Next, we looked at the changes in integrin cluster (L1-L1, L1-L2, and L2-
L2) concentrations over time. With different and equal initial conditions on
day 18 and respective increases on day 25 (L1: 2.5-fold, L2: 1.5-, 2.5- and 9-
fold), the composition of integrin clusters always reflected the effect of the
ligand competition on integrin–ligand binding (Figure 3.5). In other words,
there were always more L1-bound, integrin-containing clusters (Figure 3.5A)
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at the steady state than L2-bound, integrin-containing clusters (Figure 3.4B)
or mixed L1–L2-bound integrin clusters (Figure 3.5C). This showed that L1
with a higher binding rate is dominant over L2 in the clustering step.

When the two cluster species that contain L2-bound integrins were com-
pared, we saw that the mixed L1–L2–bound integrin clusters were higher
in concentration at the steady state than L2–L2–bound integrin clusters (Fig-
ure 3.5B and C) at all times. When day 25 results were compared to day
18, we saw the same pattern as for individual ligand-bound integrin species,
namely:

1. L1-bound clusters had slightly higher steady state at day 25 than day
18;

2. The L2-bound, integrin-containing clusters had lower steady state con-
centrations at day 25 than day 18 unless the fold change of the ligand
between two experiments exceeded 2.3-fold.

Similar to the results of ligand-bound integrins when the same binding-unbinding
rates were used for both ligands, clusters with only L2-bound integrins were
highest in concentration (0.007 nM), followed by L1–L2–bound mixed inte-
grin clusters (0.004 nM) and L1–L1–bound integrin clusters (0.002 nM) (Fig-
ure 3.5D–F) on day 18. On day 25, with the same settings, the concentrations
of the three different integrin clusters were similar: L1–L1 cluster = 0.004 nM,
L2–L2 cluster = 0.005 nM, L1–L2 cluster = 0.004 nM (Figure 3.5D–F).

3.3.3 Local Sensitivity Analysis
Finally, we studied the sensitivity of each molecular species in the ligand
competition model to changes in model parameters. We performed a local
sensitivity analysis by increasing or decreasing by 20%, one of the model pa-
rameters at a time. We tested the individual effect of each of the eight binding
rate constants (k1–k8), the initial concentrations of integrins (i) and the two
competing ligands (L1, L2) on the steady state of each molecular species in
the model. We used these steady-state values for each molecular species to
calculate a parameter sensitivity value using the following formula:

Parameter Sensitivity =
|SS (k +∆k)− SS(k)|

SS(k)
/
∆k

k
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Figure 3.4: L2-bound integrin concentration over time with varying initial
concentrations of L2 with the initial concentration of L1 kept constant at 0.84
nM. Black dotted line shows the day 18 steady-state concentration for L2-
bound integrins when the initial L1 and L2 concentrations were both 0.33 nM.
Comparing the steady-state concentrations from the line plots to the black
dotted line, initial L2 concentrations greater than 0.77 nM result in the steady
state of the L2-bound integrins exceeding that of day 18 (2.98 nM). This cor-
responds to a fold change of 2.3 between days 18 and 25.
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Figure 3.5: (A–C) Concentrations of ligand-bound integrin clusters L1–L1 (left
column, A-1 to A-4), L2–L2 (middle column, B-1 to B-4), and L1–L2 (right
column, C-1 to C-4) over time at days 18 (gray solid line) and 25 (red dotted
line) for all test conditions (1–5). (D–F) Integrin cluster concentration over
time for condition 5 (Different IC (L1 = 0.18 nM, L2 = 0.33 nM) and equal
binding rate constants (k3 = k5 = 1.6×108 (nM×s)−1, k4 = k6 = 3.5×10−1 s−1)
for ligands).
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SS(k) represents the steady-state concentration when there is no change to
the model parameter (i.e., the standard model outcome), SS (k +∆k) repre-
sents the steady-state concentration when the parameter value was increased
by 20% of the base value. Therefore, ∆k

k was 20% for our analysis. The ef-
fect of decreasing the parameter values by 20% was calculated in the same
way, replacing SS (k +∆k) with SS (k −∆k). The results of this sensitivity
analysis are given in Figure 3.6.

In general, the sensitivity pattern for a decrease in parameter values was the
same as for an increase. Similar to the previous tests, L1-bound integrins and
L1–L1–bound integrin clusters were the least affected by changes in model
parameters. In contrast to the L1-bound integrin concentration, the steady-
state, L2-bound integrin concentration was not only influenced by the L2
binding and unbinding rate constants (k5 and k6), but also by the L1 binding
and unbinding rate constants (k3 and k4) as well as the initial L1 concentra-
tion. It is noteworthy that the L2-bound integrin concentration was affected
by the changes in the initial amount of L1 and not by the L2 increase or de-
crease.

The L2–L2–bound integrin cluster was the most sensitive molecular species in
the model (Figure 3.6). We observed that parameter changes that affected L2-
bound integrins affected also the L2–L2–bound integrin clusters but in a more
dramatic way: the steady state of L2–L2–bound integrin cluster was more
than twice as sensitive to the 20% decrease in L1 initial concentration than that
of the L2-bound integrin. A similar pattern was observed for the 20% increase
in k4 (L1 unbinding) and k5 (L2 binding) as well as for the 20% decrease in k3
(L1 binding) and k6 (L2 unbinding). Interestingly, the mixed L1–L2–bound
integrin clusters showed a very similar sensitivity pattern to L2-bound inte-
grins, which is different from that of L2–L2-bound integrin clusters. These
observations can be explained by the quadratic dependency of L2–L2-bound
integrin clusters to L2-bound integrins (detailed in the discussion).

We should also note that both the steady state of inactive and active integrins
did not show significant sensitivity to the changes in the initial concentration
of inactive integrins (i) but were sensitive to the changes in L1 initial concen-
tration (L1) (Figure 3.6). This is expected given that the amount of ligands
in the system is in excess compared to integrin concentration (i = 0.05 nM,
L1 = 0.18 nm, L2 = 0.33 nM) to mimic the biology of receptor–ligand binding
(Hudson et al., 2017; Wanant & Quon, 2000). The excess ligand concentrations
ensure that with the original reaction rate constants and in all the test scenar-
ios, the unbound integrins in the system (both active and inactive) reach a
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steady-state concentration close to zero and are found as ligand-bound (Fig-
ure S.3.1). The parameter sensitivity patterns of inactive and active integrins
show that the imbalance between integrin–ligand amounts is maintained by
L1, the ligand with higher binding affinity. It is the L1 initial concentration
and its ligand binding-unbinding constants (k3, k4) that affect the steady-state
concentrations of inactive and active integrins in the parameter sensitivity
analysis, while the L2 initial concentration and its binding rates (k5, k6) are
not determinants (Figure 3.6).

In line with this, when we set the initial integrin concentration to be higher
(1 nM) than the total initial ligand concentration (0.51 nM), we observed a
major shift in the parameter sensitivity patterns (Figure S.3.3). When the in-
tegrins were in excess compared to ligands, the steady states of the integrin
molecules in the system were highly dependent on the initial integrin con-
centration (Figure S.3.3) instead of on the binding-unbinding constants when
the ligands were in excess. This is expected as all ligands will be bound to
the receptors in a system where there are more receptors than ligands. The
amounts of ligand-bound receptors therefore correlate with the initial ligand
concentrations.
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Figure 3.6: (Continued on the following page.)
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Figure 3.6: Local sensitivity analysis of the integrin ligand competition model.
Parameter sensitivity values on the y-axis indicate how a 20% increase (left)
or decrease (right) in each parameter [rate constants for integrin activation-
inactivation (k1–k2), L1 binding-unbinding (k3–k4), L2 binding unbinding
(k5–k6), integrin cluster formation-dissociation (k7–k8), and initial concen-
trations of integrins (i) and the two ligands (L1 and L2)] affects the steady
state of each molecular species in the model (from top to bottom: inactive
and active integrins, L1-bound integrins, L2-bound integrins, L1-L1-, L2–L2-,
and L1–L2-bound integrin clusters). Parameter sensitivity of > 1 (red hori-
zontal lines) indicates that the steady state of a molecular species is highly
dependent on changes in parameter values, and values < 1 indicates a lower
sensitivity to changes in parameter values.

3.4 Discussion
Here we present an ODE model that can be used to explore the ligand-binding
kinetics of integrins. The computational model involves three main biologi-
cal reactions: 1) integrin activation, 2) integrin–ligand binding and 3) ligand-
bound integrin clustering (Figure 3.1). At each step, the model allows us
to track the concentration of each model species over time. Different from
previously published models of integrin–ligand binding (Hudson et al., 2017;
Macdonald et al., 2008; Yu et al., 2017), we included two ligands that have the
ability to bind to the same type of integrin, which allowed us to monitor the
competition between these two ligands.

The first outcome of the different tests we performed using the ODE model
was that all integrins were activated, bound to a ligand, and that a subset of
these ligand-bound integrins were clustered (Figure S.3.1). Biologically, inte-
grin activation happens in two ways: outside-in and inside-out. Outside–in
activation is triggered by the interactions between integrins and ECM ligands
while inside-out activation is triggered by the binding of talin to cytoplasmic
tails of integrin molecule (Shams et al., 2017). Talin is a protein that harbors
multiple binding sites for other signaling molecules and the actin cytoskele-
ton (Miller et al., 2020). Both these activation processes are not very well re-
solved but it is known that they influence one another (Shams et al., 2017).
The activation step in our model is not specific to either of the above activa-
tion mechanisms.

Our parameter sensitivity results indicated that the rates of integrin activa-
tion/inactivation did not have a significant impact on the steady-state con-

72



3

centrations of molecular species involved in reactions like ligand binding or
integrin clustering (Figure 3.6). We can speculate that in a model that includes
multiple interaction partners of integrins which affect the integrin activation
or reactions of downstream signaling pathways which are dependent on the
integrin activation, the integrin activation step would play a significant role in
the model. It is known that for example, talin-mediated integrin activation is
dynamically regulated by several potential mechanisms (Calderwood, 2004)
such as talin proteolysis (Yan et al., 2001) and competition between other pro-
teins that bind to integrin from its cytosolic tails (Bouvard et al., 2003). Yet the
exact mechanisms of action and their relative significance are not resolved
(Calderwood, 2004). Exploring these mechanisms and their effects on lig-
and binding and integrin clustering could be one potential extension to our
model.

We used the results from a proteomics analysis of kidney organoid ECM
when defining the ligand concentrations in our model simulations. Under
these ”experimental conditions”, we observed that the steady-state concen-
tration of L1-bound integrins was higher than the L2-bound integrins con-
centration (0.021 nM vs 6.393 × 10−6 nM, Figure 3.3A-1 and Figure 3.3B-1),
even though the initial concentration of the L2 ligand is greater than L1 on
day 25 (0.50 nM vs 0.46 nM,Table 3.2). We observed this pattern even when
we systematically changed the initial concentrations of the two ligands and
the concentration fold changes between days 18 and 25.

In their ODE model, Hudson et al., 2017 also reported an increase in the
ligand-bound integrin amount whenever there was in increase in the lig-
and concentration. However, their model included only one type of ligand
binding to integrin at a time. When we account for ligand competition, we
observed that an increase in ligand concentration did not ensure more ligand-
bound integrins if the competing ligand has a higher binding rate (Figure 3.3).
For the standard parameter settings, only fold changes greater than 2.3 led to
an increase in L2-bound integrin amounts (for 0.84 nM L1 at day 25, Figure
3.4). However, even with high fold changes (9-fold compared to 2.5-fold), L1-
bound integrins were always more abundant than L2-bound integrins at the
steady state.

We can explain this observation, where an increase in (initial) ligand concen-
tration results in a reduction of its integrin-bound, steady-state value, using
the ODE system given in Eqn. 1–9. When at steady state, all ODE equations
should be equal to zero because there is no time-dependent change in the con-
centrations of any of the molecular species. Using the steady state solutions

73



3

Chapter 3. Win, Lose or Tie: Mathematical Modeling of Ligand
Competition at the Cell–Extracellular Matrix Interface

of Eqn. 8 and 9, we can get to the following dependencies between ligand-
bound integrin concentrations at the steady state (IL1s and IL2s) and ligand
concentrations at the steady state (L1s and L2s);

k3[Is][L1s] = k4[IL1s] (3.10)

[IL1s] =
k3[Is][L1s]

k4
(3.11)

k5[Is][L2s] = k6[IL2s] (3.12)

[IL2s] =
k5[Is][L2s]

k6
(3.13)

[IL1s]

IL2s
=

k3k6[L1s]

k4k5[L2s]
(3.14)

In our system, k3 = 1.6 × 108 1/(nM × s) and k4 = 3.5 × 10−1 1/s while k5
= 1.6 × 104 1/(nM × s) and k6 = 2.3 × 10−2 1/s. When plugged in to Eqn.
14, these rate constants provide IL1s to be 660 times IL2s. The difference
between the steady-state concentrations of the ligands, however, is not high
enough to compensate for the big difference in rate constants, resulting in a
big difference between steady-state concentrations of the two types of ligand-
bound integrins. This also explains the differences in the sensitivity patterns
of ligand-bound integrin species. The steady state of integrins bound to L1
with a higher binding rate constant (IL1) is less affected by the small pertur-
bations in model parameters compared to L2-bound integrins (IL2) (Figure
3.6), because k3

k4
is big enough to compensate for a 20% change. From these

results, we can conclude that in case of ligand competition for a receptor, the
highest ratio — either the ratio of binding rate constants or the ratio of initial
ligand concentrations — has the dominating effect on the steady-state con-
centrations of the ligand-bound receptors.

When the binding and unbinding rate constants of the two ligands are set to
be equal (i.e. k3 = k4 and k5 = k6), we can see from Eqn. 3.11 and Eqn. 3.13
that the difference between steady-state concentrations of the ligand-bound
integrins (IL1s and IL2s) solely depend on the difference between the steady-
state concentrations of the two competing ligands (L1s and L2s). Since we
assume mass conservation in the system, the following equations hold true
for the total amount of ligands in the system at the steady state:
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[L1] = [L1s] + 2[C1s] + [C3s] + [IL1s] (3.15)

[L2] = [L2s] + 2[C2s] + [C3s] + [IL2s] (3.16)

L1 and L2 represent the initial (and total) ligand concentrations in the system.
As all the rate constants for forward and reverse reactions become equal for
the scenario where the two ligands have equal binding rate constants, we can
safely assume that the ligand concentrations at the steady state correlate with
the initial ligand concentrations.

Using Eqn. 3.14, 3.15 and 3.16, we can explain what we observe in Figure
3.3C–D, i.e., for day 18 initial conditions of the two ligands with equal binding
rates, the ratio of the steady-state concentration of L1-bound integrins (IL1)
to that of L2-bound integrins (IL2) is 0.59 (0.009 nM /0.015 nM). This ratio is
very similar to the ratio of initial L1 amount to initial L2 amount, which is
0.54 (0.18 nM /0.33 nM). When we look at the day 25 steady-state concentra-
tions, we find the IL1/IL2 ratio to be 0.93 (0.011 nM /0.012 nM) and an initial
ligand concentration ratio of 0.92. Therefore, the initial ligand concentrations,
when the binding rate constants are equal, are informative for predicting the
steady-state concentrations of ligand-bound integrins. In other words, with
equal binding rates, the ligand with the highest initial condition will result
in the highest integrin-bound, steady-state concentration and “win” the lig-
and competition. This observation is also in line with the literature. In an-
other partial differential equation model of competitive receptor–ligand bind-
ing, the competing ligands both had binding affinities in the picomolar range
and the steady-state concentrations of receptors bound to either of the ligand
were directly correlated with the initial ligand concentrations (Mac Gabhann
& Popel, 2004).

These explanations of the relationship between the binding affinities of com-
peting ligands and the final amount of ligand-bound integrins can be the
mathematical explanation of the experimental finding in which RGD pep-
tides with different stereochemistry inhibit the binding of a subset of integrin
ligands, while being ineffective for inhibiting other ligands. For example, one
of the very early studies on cyclic versus linear RGD peptides reported that
the peptides could inhibit vitronectin binding effectively while falling short
on inhibiting fibronectin binding (Pierschbacher & Ruoslahti, 1987). This was
because the peptide constructs had a larger affinity for the integrins compared
to the affinity of vitronectin for the integrins while fibronectin still had the
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highest affinity for the integrins therefore the peptide constructs failed to in-
hibit the adhesion to fibronectin. Ever since, many others developed integrin
targeting peptides with various binding affinity and selectivity (Bernhagen et
al., 2017; Kimura et al., 2009; Ma et al., 2017; Mas-Moruno et al., 2011; Piras et
al., 2012; Wang et al., 2005). Although our computational results do not point
out to a solution on how to improve the affinity of a ligand towards an inte-
grin, we provide here a method for calculating the effect of having a higher
affinity ligand on the binding of other competing ligands. This can be used to
estimate the affinity that needs to be reached to prevent the binding of a spe-
cific competitive ligand, without having to run a series of experiments with a
large set of ligands, different concentrations and/or timing.

As expected, due the same clustering rates k7–k8 for all cluster-types, the
steady-state composition of ligand-bound integrin clusters (IL1–IL1, IL2-IL2
and IL1-IL2, Figure 3.1) was in correlation with the steady-state concentra-
tions of single, ligand-bound integrins (Figure 3.3 and Figure 3.5). L1-bound,
integrin-containing clusters were in abundance when compared to L2-bound,
integrin-containing clusters, except when the binding rate constants were set
to be equal for both ligands (Figure 3.5C–D). We can also explain this obser-
vation analytically by setting Eqn. 3.11–3.13 to zero to calculate the steady
state of the three integrin cluster species. Then we obtain the following equa-
tions:

[C1s] =
k7[IL1

2
s]

k8
(3.17)

[C2s] =
k7[IL3

2
s]

k8
(3.18)

[C3s] =
k7[IL1s][IL2s]

k8
(3.19)

where C1s, C2s and C3s denote the steady-state concentrations of the three
integrin cluster species composed of IL1–IL1, IL2–IL2 and IL1–IL2, respec-
tively. Eqn. 3.17–3.19 reveal that the steady-state concentrations of all integrin
clusters correlate with the steady-state concentrations of the ligand-bound
integrin concentrations that they contain. Because of the quadratic term in
Eqn. 3.18, the steady state of IL2–IL2 clusters (C2) is much more sensitive to
small perturbations in model parameters than the steady state of L2-bound
integrins (Figure 3.6). In contrast, the relatively high steady state value of
L1-bound integrins balances the steady state of IL1-containing clusters (C1
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and C3), therefore their sensitivity patterns are similar that of IL1 and IL2,
respectively (Figure 3.6).

We should note that the integrin clusters in our model were composed only
of two ligand-bound integrins, whereas in reality this number can be much
higher. Previous models of integrin clustering suggest that as the ligand-
binding rates increase, the size of integrin clusters decrease, possibly due to
the decreased diffusion rate of ligand-bound integrins (Cheng et al., 2020).
Neither the exact number of possible integrins in a cluster nor the effect of
the composition of integrin clusters is known. Since it is known that at focal
adhesion points, more than one type of integrin can cluster together and they
have different roles in the cluster (Roca-Cusachs et al., 2009), it would be in-
teresting to explore the downstream effects of having different ligand-bound
integrins clustered together.

For the sake of simplicity and interpretability of the ligand competition, we
assumed the spatial distribution of molecules to be homogenous in this model.
Therefore, we used an ODE model and assumed the free ligands are always
available to active integrins, independent of their spatial location. However,
previous models with a focus on integrin clustering have suggested a limit to
the distance between ECM ligands for the integrin clustering to occur (Jamali
et al., 2013; Yu et al., 2017). Therefore, future models should focus on includ-
ing the space dimension to integrin–ligand binding and clustering models,
considering ligand spacing.

In natural tissues, there can be more than two ligands competing to bind
to the same integrin. Therefore, our model is a simplified version of the
real scenario. Nevertheless, we have shown that even with this simplified
ligand-competition model, we can acquire more fundamental understand-
ing of integrin–ligand binding. For example, we have shown that the vWA-
bound integrins (IL2) are much lower in concentration than fibronectin-bound
integrins (IL1) when the two ligands are allowed to bind simultaneously, in
contrast to the model results of Hudson et al., 2017.In addition, our model
suggests that with an increasing number of ligands competing for the same
integrin, the final distribution of ligand-bound integrins will correlate with
the distribution of their binding affinities. When we added a third ligand to
our system (L3), with a binding affinity even higher than L1, we observed
that the number of L3-bound integrins were higher than both L1- and L2-
bound integrins (Figure S.3.4). Whereas L1-bound integrins were still more
abundant than L2-bound integrins (Figure S.3.4).
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It would be interesting to expand the current model with different integrin
types, to reflect the level of complexity of interactions at the cell–ECM inter-
face. However, this would increase the number of parameters in the model
and to date, binding rates for all integrin–ligand pairs are not known. Such
future work should focus on obtaining binding rate constants specific to dif-
ferent integrin–ligand pairs. Surface plasmon resonance (Elosegui-Artola et
al., 2014; Kim et al., 2005; Yan et al., 2001) or single molecule dynamic force
spectroscopy (Taubenberger et al., 2007) are suitable techniques for this pur-
pose. The current model focuses on the short-term behavior, neglecting lig-
and production and downstream signaling. As such, another interesting av-
enue to expand the ligand-competition model could be to include down-
stream cytosolic events from the ligand-bound integrins that alters the cell
behavior. In the end, this would lead to the prediction of cell behavior using
the information on the ECM composition.

In summary, with our model, we conclude that the control over the concentra-
tions of ECM ligands would not be enough to have control over their integrin
binding in case there is a significant difference between the binding rates of
different ECM ligands. More specifically, our results show that, for the low-
affinity ligand, not only its ligand binding-unbinding rates are important, but
also the ligand binding-unbinding rates and initial concentration of the com-
peting ligand with a faster binding rate (Figure 3.6). In light of this informa-
tion, the increased production of ligands with higher binding affinity would
disable lower-affinity ligands from binding to integrins. In cases where bio-
chemical cues from slower binding ligands are needed for the healthy devel-
opment of cells in culture, their development would be disrupted. This could
be the root cause, for example, of persistent challenges in functional kidney
organoid development field such as off-target cell populations, lack of vascu-
larization and insufficient maturation introduced in prior sections (Geuens et
al., 2020; Nishinakamura, 2019).

To overcome such effect, either the binding of faster binding ligands needs to
be impaired by blocking agents, or the cellular production of faster binding
ligands needs to be prevented using molecular biology techniques. Alter-
natively, synthetic integrin ligands with controlled affinity could be used to
selectively prevent binding of naturally produced ECM proteins. Of course,
these preventive strategies require a thorough understanding of the integrin
function, cellular signaling and decision-making affected by ligand-integrin
interactions. Experimental biology going hand-in-hand with computational
biology can answer many unknowns in the understanding of integrins (Karagöz,
Rijns, et al., 2021).
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As such, this study shows that computational models can be informative to
get a better understanding of the effects of ECM composition on the cell be-
havior and to develop cell culture conditions that would favor desired cell
phenotypes. Moreover, since our model fundamentally explains a reaction
system, in which there are two ligands available to bind to their receptor, the
obtained relations and influential factors describing ligand competition are
generic and applicable to other receptor–ligand interactions.

3.5 Supplementary Material
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Figure S.3.1 (A) Inactive and (B) active integrin concentrations
over time in experiment days 18 (gray solid line) and 25 (red dot-
ted line) for test conditions 1 to 4. (C) Inactive and (D) active in-
tegrin concentrations over time for test condition 5. The experi-
mental conditions 1 to 5 are as given in Table 3.2 in the main text.
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Figure S.3.2 Zoom into the Figure 3.3 in the main text. An increase was ob-
served in L1-bound integrin steady state concentrations on day 25 compared
to day 18 in test cases 1 (A), 2 (B) and 3 (C). (Continued on the following page)
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Figure S.3.2 In test condition 4 however, L2-bound integrin concentration in-
creases on day 25 compared to day 18. This increase is compensated by a
decrease in L1-bound integrin concentration (D). Note that in all four test
conditions, the L1-bound integrin steady state concentration is higher than
the L2-bound integrin steady state concentration.
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Figure S.3.3 Parameter sensitivity analysis results for the model when the
integrin initial concentration was set to be greater (1 nM) than the total initial
concentration of the competing ligands (0.51 nM). Compared to the param-
eter sensitivity of model with original settings, the binding/unbinding rates
are not as determinant. The inactive and active integrin steady state is highly
dependent on the initial integrin concentration in this model, whereas in the
original model, initial integrin concentration was not a determinant factor.
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Figure S.3.4 Comparison of steady state concentrations of three ligand-
bound integrin species in a theoretical 3-ligand model. We have created
a ligand competition model with three ligands, L1 and L2 being the same
ligands as in the ligand competition model explained in the main text.
L3 was introduced as being the ligand with the highest affinity (kon =
1.6 × 1010 (nM×s)−1, koff = 2.3 × 10−1 s−1). We ran the simulations
for equal initial ligand concentrations for all three ligands (L1 = L2 = L3
= 0.33 nM). The figure shows that the steady state concentrations of the
ligand bound integrins depend on the affinity of each ligand towards
the integrin. As such, L3-bound integrins were highest in concentration,
followed by the L1-bound integrin concentration. The L2-bound integrins
were lowest in concentration. Note that L3 in this model is not based on
any actual ligand but was only added to the system to demonstrate the
case of multiple high affinity ligands present in the binding competition.
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Chapter 4. Force-dependent focal adhesion assembly and disassembly: a
computational study

Abstract
Cells interact with the extracellular matrix (ECM) via cell–ECM adhesions.
These physical interactions are transduced into biochemical signals inside the
cell and influence cell behavior. Although cell–ECM interactions have been
studied extensively, it is not completely understood how immature (nascent)
adhesions develop into mature (focal) adhesions and how this process is in-
fluenced by mechanical forces. Given the small size, dynamic nature and
short lifetimes of nascent adhesions, studying them using conventional mi-
croscopic and experimental techniques is challenging. Computational mod-
elling provides a valuable resource for simulating and exploring various “what
if?” scenarios in silico and identifying key molecular components and mecha-
nisms for further investigation. Here, we present a simplified mechanochemi-
cal model based on ordinary differential equations with three major proteins
involved in adhesions: integrins, talin and vinculin. Additionally, we incor-
porate a hypothetical signal molecule that influences adhesion (dis)assembly
rates. We find that assembly and disassembly rates need to vary dynami-
cally to limit maturation of nascent adhesions. The model predicts biphasic
variation of actin retrograde velocity and maturation fraction with substrate
stiffness, with maturation fractions between 18–35%, optimal stiffness of ∼1
pN/nm, and a mechanosensitive range of 1-100 pN/nm, all corresponding
to key experimental findings. Sensitivity analyses show robustness of out-
comes to small changes in parameter values, allowing model tuning to re-
flect specific cell types and signaling cascades. The model proposes that
signal-dependent disassembly rate variations play an underappreciated role
in maturation fraction regulation, which should be investigated further. We
also provide predictions on the changes in traction force generation under
increased/decreased vinculin concentrations, complementing previous vin-
culin overexpression/knockout experiments in different cell types. In sum-
mary, this work proposes a model framework to robustly simulate the mec-
hanochemical processes underlying adhesion maturation and maintenance,
thereby enhancing our fundamental knowledge of cell–ECM interactions.

4.1 Introduction
Direct contact between cells and the extracellular matrix (ECM) through ad-
hesions is a crucial component of multicellular organisms (Thomas et al.,
1999). Integrins are transmembrane ECM receptor proteins that assemble as
non-covalently bonded heterodimers with α and β subunits (Hynes, 1987).
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The integrin ectodomain binds ECM ligands while the cytoplasmic tail is indi-
rectly linked to the actomyosin cytoskeleton of the cell forming a supramolec-
ular assembly or ‘clutch’ (Berrier & Yamada, 2007; Campbell & Humphries,
2011; Chan & Odde, 2008; Jiang et al., 2003). This indirect link consists of a
dynamic network of over 200 proteins, collectively termed the ‘integrin ad-
hesome’ (Horton et al., 2015; Winograd-Katz et al., 2014). Central to integrin
function are the dynamics and balance of extra- and intracellular forces (For-
tunato & Sunyer, 2022) which drive the force-dependent evolution of the in-
tegrin adhesion complexes (IACs) (Horton et al., 2015) leading to changes in
their size and composition. In vitro studies have shown that adhesion as-
sembly is a multi-step process where integrins are first activated by binding
to intracellular adaptor protein molecules such as talin (Cluzel et al., 2005;
Humphries et al., 2007; Pinon et al., 2014) and/or to an ECM ligand (Hynes,
2002). Once activated, integrins cluster at the site of adhesion, independent
of force and substrate rigidity, to form nascent adhesions (NAs) (Askari et al.,
2010; Bachir et al., 2014; Changede et al., 2015). Then, NAs either undergo dis-
assembly or force-dependent maturation by the recruitment of other adaptor
proteins such as vinculin, to form focal adhesions (FA) (Figure 4.1A) (C. K.
Choi et al., 2008; Han et al., 2021). These three major steps of adhesion assem-
bly also overlap in time and are not strictly sequential. Understanding inter-
actions between key proteins of the integrin adhesome and force generation
will provide valuable insight about cell-ECM interactions with consequences
for developmental biology as it can potentially highlight therapeutic targets,
contributing to advancements in regenerative medicine.

In addition to questions pertaining to adhesion (dis)assembly, adhesion mat-
uration is also a complex process influenced by the mechanical properties of
the substrate (Pelham & Wang, 1997; Schoenwaelder & Burridge, 1999), force-
dependent conformational changes (Goult et al., 2018; Rothenberg et al., 2018;
Z. Sun et al., 2019; Yao et al., 2016; Zhou et al., 2021), different catch and slip
bond strengths (Aratyn-Schaus & Gardel, 2010; Jiang et al., 2003; Novikova &
Storm, 2013) and intracellular forces (Giannone et al., 2007; Goult et al., 2022;
Schoenwaelder & Burridge, 1999). How changes in these mechanical factors
affect the biochemical composition of adhesions, and which factors determine
the decision to mature a particular NA remains unclear.

Given the constraints and challenges of experimental studies, computational
modeling can be a valuable resource. Many computational models of cell–ECM
interactions have been developed since the first molecular-clutch model by
Chan and Odde (2008) (Chan & Odde, 2008) that explained filopodial traction
dynamics on compliant substrates (Cheng et al., 2016; Cirit et al., 2010; Lai &
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Chiam, 2011; Macdonald et al., 2008; Sonn-Segev et al., 2015). Elosegui-Artola
and colleagues have extended the Chan and Odde model to include adhe-
sion reinforcement through increases in integrin density (Elosegui-Artola et
al., 2016) and multiple integrin types (Elosegui-Artola et al., 2014). Integrin-
based Rho signaling (Cheng et al., 2016) and reversible cross-links in the actin
filament network (Tan et al., 2020) have also been included in previous studies
by other groups. More recently, Venturini and Sáez, 2023 have developed an
extensive multi-scale model of molecular clutch-driven adhesion mechanics.
All these models explore adhesion formation, growth, and the influence of
substrate stiffness and actomyosin forces on traction forces, but they are dis-
crete models that simulate a relatively small number of individual particles.
They also do not account for the increase in clutch stiffness after recruitment
of vinculin and do not consider the disassembly processes to be dynamic and
active. In addition, these models give little information about the changes to
the overall biochemical composition of adhesions in the cell during the pro-
cess of maturation of NAs to FAs.

In this study, we developed a new model using ordinary differential equa-
tions (ODEs) to describe the biochemical composition of cell–ECM adhesions
over time based on mechanical properties like substrate stiffness, adaptor
protein stiffness, actomyosin-generated forces, and bond characteristics. Us-
ing our model, we studied the fraction of NAs that have the potential to
become mature FAs under different mechanical circumstances. Overall, the
results from this study shed light on the mechanotransduction mechanisms
underlying adhesion maturation and disassembly. This model also provides
a reliable starting point to model the larger focal adhesome with over 200
identified proteins (Horton et al., 2015).

4.2 Methods
4.2.1 Differential equation model
We developed an ODE-based model that captures changes in the biochem-
ical composition of cell–ECM adhesions based on mechanical properties of
the environment and of intracellular proteins. Below we shortly describe the
particular phases of the adhesion maturation process and how they are mod-
elled (Figure 4.1B provides an overview of all the species in the system and
their interactions). The reactions and parameters are explained in detail in
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supplementary methods and Table S.4.1. Table 4.1 provides an overview of
the terminology used throughout the manuscript.

Table 4.1: Terminology used in this manuscript.

Term Description
Integrin-
Adaptor Pro-
tein Complex
(IAPC)

Assembly of integrin, talin and vinculin. Three possible IAPCs
with talin bound to one, two, or three vinculin molecules are
considered.

Pcomp A pre-complex - an individual IAPC with talin bound to a sin-
gle vinculin molecule.

Seed (Sx) A cluster of 25 IAPCs bound parallelly (Fig 4.1C). Seeds are
denoted by Sx, where x is the number of vinculin molecules
bound to talin in each IAPC that makes up the seed, (x ∈
{1, 2, 3}).

Clust (Cx) A cluster of 50 IAPCs bound parallelly (cluster size taken from
(Changede et al., 2015)) (Fig 4.1C). Clusts are denoted by Cx,
where x∈ {1, 2, 3}) is the number of vinculin molecules bound
to talin in each IAPC that makes up the clust.

Order (x
∈ {1, 2, 3})

The order of a seed/clust is indicative of the number of vin-
culin molecules bound to talin in each IAPC that makes up
the seed/clust – Low, mid and high order seeds/clusts refer
to seeds/clusts that are made of IAPCs containing one, two or
three vinculin molecules respectively.

Clutch An umbrella term that refers to a supramolecular assem-
bly of integrins and adaptor proteins that can function as a
molecular-clutch between the substrate and the cell (Fig 4.1C).
In this model both seeds and clusts are capable of this function.

Actin Bound
(AB) (Sxa, Cxa)

Talin and vinculin have actin-binding sites allowing clutches
to bind to actin, experience a force and, consequently, an ex-
tension. Seeds and clusts that are bound to actin are said to be
actin bound (AB) and are denoted by Sxa and Cxa respectively
(x ∈ {1, 2, 3}).

Actin Unbound
(AUB)

The talin–actin and vinculin–actin bonds break at certain force
thresholds resulting in the clutches being unbound from actin.
These are said to be actin unbound (AUB) clutches and are de-
noted by Sx and Cx (x ∈ {1, 2, 3}). AUB clutches do not experi-
ence any force or extension.
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Figure 4.1: Overview of the processes modeled in this study. Contd. on the
following page.
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Figure 4.1: (A) - Integrins bind to talin and vinculin in a precomplexation step,
then form a small cluster, termed ‘seed’. Seeds can dimerise to form larger
clusters, termed ‘clusts’. Actin filaments pull on talin and vinculin causing
cryptic vinculin-binding sites on talin to be exposed, promoting more vin-
culin recruitment. This chain can then break at the integrin–ligand catch-slip
bond or the talin–actin slip bond (black boxes). See Table 4.1 for a detailed
description of the terminology. (B) - Overview of reactions in the model. Int,
tal, and vinc refer to concentrations of integrins, talin and vinculin respec-
tively. Black rectangle encloses the reinforcement reactions (expanded fur-
ther in Fig 1C). Grey arrows represent clust formation reactions. Red arrows
represent actin binding reactions. Dotted arrows represent force-dependent
reactions - blue dotted: reinforcement, black dotted: actin unbinding. Dashed
arrows represent adhesion disassembly reactions, black dashed: talin refold-
ing, purple dashed: cluster breakdown. Yellow lightning bolts indicate rates
that undergo signal-dependent rate modification (SDRM), dark green solid
hourglasses represent rates that undergo time-dependent rate modification
(TDRM). The rate constants undergoing signal-dependent modifications are
driven to zero after ∼158 s leaving active only the lower part of the model,
enclosed in the blue box, representing adhesions that will undergo further
maturation. (C) – Talin and vinculin are modelled as Hookean springs (also
see Fig A in S1 Appendix). In this model, to capture the process of reinforce-
ment, a maximum of three vinculin binding events occur sequentially (blue
arrows) at different points along the talin rod, thereby increasing the stiffness
of individual integrin–talin–vinculin spring systems. Clustering is modelled
as an increase in the number of integrin–talin–vinculin spring systems in par-
allel (grey arrows).
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Adhesion assembly starts with integrin activation. In this study, we model
α5β1 integrins and assume they are activated. We also assume that the lig-
and spacing on the substrate is sufficiently close for integrin clusters to form.
Next, the activated integrins bind to talin and vinculin forming a single low-
order integrin-adaptor protein complex (IAPC), also termed pre-complex (Pcomp)
(Supplementary section Integrin activation), a necessary step for adhesion
maturation (Han et al., 2021). Up to 50 IAPCs cluster independent of sub-
strate rigidity and tension to form NAs (Changede et al., 2015). Here, as a
simplification, the growth of clusters to the maximal size (50 IAPCs) occurs
in two stages - first a small cluster of 25 IAPCs, termed ‘seed’ (denoted by ‘Sx’
(Figure 4.1C, Table 4.1) is formed, and a second stage where seeds dimerize,
forming a large cluster with 50 IAPCs, termed ‘clust’ (denoted by ‘Cx’ (Figure
4.1C, Table 4.1, supplementary section Integrin activation)). Here, x ∈ {1,2,3}
denotes the number of vinculin molecules in the individual IAPCs.

Actin-unbound (AUB) seeds and clusts can bind to actin through the actin-
binding sites on talin and vinculin, giving actin-bound (AB) seeds and clusts
(denoted by ‘Sxa’ and ‘Cxa’ respectively, (supplementary section Adhesion
reinforcement)) that can stretch to different extents (based on the value of
x) and hence transmit varying magnitudes of force (Figure 4.1C). When a
clutch is AUB, the stretched talin is likely to refold (Yao et al., 2014; Yao et
al., 2016). In this model, we assume this makes it very unlikely for AUB seeds
of mid- and high- order (S2, S3) to dimerize, and that AB seeds of all order
(S1a, S2a, S3a) can dimerize to form AB clusts (C1a, C2a, and C3a) (Figure
4.1B). While the baseline actin-binding rate is kact for all actin-binding reac-
tions, signalling molecules such as focal adhesion kinase (FAK), Src and ERK
kinases play a role in adhesion turnover, and their inhibition leads to more
maturation (Webb et al., 2004). To implement a similar mechanism to stop
indefinite adhesion formation and maturation, we introduce in the model a
signal dependent rate modification (SDRM) (see ‘Signal dependent rate mod-
ification (SDRM)’ for details).

Depending on the force on the integrin-ligand (catch-slip) bonds (Kong et
al., 2009) and the talin-actin (slip) bonds (Jiang et al., 2003), the force-chain
between the cell and the substrate can break at either of these bonds. We
capture these phenomena through force-dependent (which in turn depends
on substrate rigidity) actin unbinding rates (see supplementary section Slip
and catch bonds for details). These bonds may also rupture due to random
thermodynamic fluctuations before the clutches can reach their maximum
force carrying capacity, resulting in a reduction of the total force exerted by
the clutches. To account for the spontaneous clutch unbinding in a contin-
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uous framework, we introduce a time dependent rate modification (TDRM)
(see ‘Force-dependent actin-unbinding and time-dependent rate modification
(TDRM)’ for details).

Up to eleven cryptic vinculin-binding sites (VBS) are uncovered when talin
is stretched and unfolded (Gingras et al., 2005; Rio et al., 2009), leading to re-
inforcement by vinculin recruitment. In this simplified model, two vinculin-
reinforcement events are considered (Supplementary section Adhesion rein-
forcement). Note that low order clutches (S1, C1) already contain one vin-
culin molecule per IAPC due to pre-complexation (Rxn 1.1 in Table S.4.2, Fig-
ure 4.1). Thus, in this model, the talin rod can be bound to at least 1 and
at most 3 vinculin molecules. With this framework, we show that we can
classify low order clutches (S1, S1a, C1, C1a (Figure 4.1C)) to represent NAs,
and mid- and high-order clutches (S2, S2a, C2, C2a, S3, S3a, C3, C3a, (Figure
4.1C)) to represent more mature stages of adhesions, indicative of the fraction
of NAs that mature into FAs (Section ‘NA formation is rigidity- and force-
independent’).

The rate of talin unfolding and reinforcement occurring depends on the force
experienced by the AB clutch, and increases with increasing force, similar to
the Bell model (Bell, 1978; Wang et al., 2019; Yao et al., 2016) (for more details
see section ‘Adhesion reinforcement rates’). In the absence of sufficient force
however, adhesions disassemble because of mechanical and chemical signals
(Stumpf et al., 2020). Here, we model two parallel processes of disassem-
bly, namely 1) talin refolding leading to removal of vinculin and weakening
clutches, and 2) AUB clusters’ breakdown into seeds leading to reduced force
carrying capacity of the adhesions (supplementary section Adhesion disas-
sembly).

The substrate–integrin–adaptor protein system was formulated as a system
of Hookean springs. When clutches bind to the actin filaments, they provide
resistance to the motion of actin filaments until bond rupture, caused either
randomly or because the catch/slip bond force threshold is reached. We as-
sume that the force exerted by myosin II motors on actin filaments is bal-
anced by the drag force arising due to the viscosity of the cytoplasm. Thus,
in the absence of integrin-mediated forces on actin filaments, they move with
a constant retrograde velocity (see supplementary section Actin retrograde
velocity). As a continuous ODE framework is used, we consider the same
actin retrograde velocity for all clutches. The force on a clutch depends on
its stiffness and extension. The stiffness of a clutch depends on the number
of constituent IAPCs and the number of vinculin molecules in each IAPC
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(see supplemenbtary sections Reactions in the model and Force quantifica-
tion). The total force exerted on the actin filament network thus depends
on the number of AB clutches of each type and their stiffnesses. Since we
use a continuum approach to account for the abundance of each species, we
discretize the concentrations to calculate the total force (see supplementary
section Force quantification).

Together, the above described processes result in the following set of differ-
ential equations (See supplementary section Reactions in the model for more
detailed descriptions):

d[int]

dt
= −(k1f · [int] · [tal] · [vinc]︸ ︷︷ ︸

Pcomp formation

− k1r · [Pcomp]︸ ︷︷ ︸
Pcomp dissociation

) (4.1)

d[tal]

dt
= −(k1f · [int] · [tal] · [vinc]︸ ︷︷ ︸

Pcomp formation

− k1r · [Pcomp]︸ ︷︷ ︸
Pcomp dissociation

) (4.2)

d[vinc]

dt
= −(k1f · [int] · [tal] · [vinc]︸ ︷︷ ︸

Pcomp formation

− k1r · [Pcomp]︸ ︷︷ ︸
Pcomp dissociation

) (4.3)

+ 25 ·
(
−(k7f · [S1a] · [vinc]2 − k7r · [S2a])︸ ︷︷ ︸

S1a reinforce
←−−−−−→

S2a

− (k8f · [S2a] · [vinc]2 − k8r · [S3a]︸ ︷︷ ︸
S2a reinforce
←−−−−−→

S3a

) + k17f · [S3]︸ ︷︷ ︸
S3

refold−−−→S2

+ k18f · [S2]︸ ︷︷ ︸
S2

refold−−−→S1

)

+ 50 ·
(
−(k12f · [C1a] · [vinc]2 − k12r · [C2a])︸ ︷︷ ︸

C1a reinforce
←−−−−−→

C2a

− (k13f · [C2a] · [vinc]2 − k13r · [C3a]︸ ︷︷ ︸
C2a reinforce
←−−−−−→

C3a

) + k19f · [C3]︸ ︷︷ ︸
C3

refold−−−→C2

+ k20f · [C2]︸ ︷︷ ︸
C2

refold−−−→C1

)
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d[Pcomp]

dt
= (k1f · [int] · [tal] · [vinc]︸ ︷︷ ︸

Pcomp formation

− k1r · [Pcomp]︸ ︷︷ ︸
Pcomp dissociation

) (4.4)

− 25 · (k2f · [Pcomp]
2 − k2r · [S1])︸ ︷︷ ︸

Seed formation

d[S1]

dt
= (k2f · [Pcomp]

2 − k2r · [S1])︸ ︷︷ ︸
Seed formation

− 2 · (k3f · [S1]2 − k3r · [C1])︸ ︷︷ ︸
S1 dimerize←−−−−→C1

(4.5)

− (k4f · [S1]− k4r · [S1a]︸ ︷︷ ︸
Actin binding

) + k18f · [S2]︸ ︷︷ ︸
S2

refold−−−→S1

d[S2]

dt
= −(k5f · [S2]− k5r · [S2a]︸ ︷︷ ︸

Actin binding

) + k17f · [S3]︸ ︷︷ ︸
S3

refold−−−→S2

− k18f · [S2]︸ ︷︷ ︸
S2

refold−−−→S1

+2 · k22f · [C2]︸ ︷︷ ︸
C2

breakdown−−−−−−→S2

(4.6)
d[S3]

dt
= −(k6f · [S3]− k6r · [S3a]︸ ︷︷ ︸

Actin binding

)− k17f · [S3]︸ ︷︷ ︸
S3

refold−−−→S2

+2 · k21f · [C2]︸ ︷︷ ︸
C3

breakdown−−−−−−→S3

(4.7)

d[S1a]

dt
= (k4f · [S1]− k4r · [S1a]︸ ︷︷ ︸

Actin binding

)− (k7f · [S1a] · [vinc]2 − k7r · [S2a])︸ ︷︷ ︸
S1a reinforce
←−−−−−→

S2a

(4.8)

− 2 · (k14f · [S1a]2 − k14r · [C1a]︸ ︷︷ ︸
S1a dimerize←−−−−→C1a

)

d[S2a]

dt
= (k5f · [S2]− k5r · [S2a]︸ ︷︷ ︸

Actin binding

) + (k7f · [S1a] · [vinc]2 − k7r · [S2a])︸ ︷︷ ︸
S1a reinforce
←−−−−−→

S2a

(4.9)

− (k8f · [S2a] · [vinc]2 − k8r · [S3a])︸ ︷︷ ︸
S2a reinforce
←−−−−−→

S3a

−2 · (k15f · [S2a]2 − k15r · [C2a]︸ ︷︷ ︸
S2a dimerize←−−−−→C2a

)

d[S3a]

dt
= (k6f · [S3]− k6r · [S3a]︸ ︷︷ ︸

Actin binding

) + (k8f · [S2a] · [vinc]2 − k8r · [S3a])︸ ︷︷ ︸
S2a reinforce
←−−−−−→

S3a

− 2 · (k16f · [S3a]2 − k16r · [C3a]︸ ︷︷ ︸
S3a dimerize←−−−−→C3a

) (4.10)
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d[C1]

dt
= (2 · k3f · [S1]2 − k3r · [C1]︸ ︷︷ ︸

S1 dimerize←−−−−→C1

)− (k9f · [C1]− k9r · [C1a]︸ ︷︷ ︸
Actin binding

) + k20f · [C2]︸ ︷︷ ︸
C2

refold−−−−→C1

(4.11)
d[C2]

dt
= −(k10f · [C2]− k10r · [C2a]︸ ︷︷ ︸

Actin binding

) + k19f · [C3]︸ ︷︷ ︸
C3

refold−−−→C2

− k20f · [C2]︸ ︷︷ ︸
C2

refold−−−→C1

− k22f · [C2]︸ ︷︷ ︸
C2

breakdown−−−−−−→S2

(4.12)

d[C3]

dt
= −(k11f · [C3]− k11r · [C3a]︸ ︷︷ ︸

Actin binding

)− k19f · [C3]︸ ︷︷ ︸
C3

refold−−−→C2

− k21f · [C3]︸ ︷︷ ︸
C3

breakdown−−−−−−→S3

(4.13)
d[C1a]

dt
= (k9f · [C1]− k9r · [C1a]︸ ︷︷ ︸

Actin binding

)− (k12f · [C1a] · [vinc]2 − k12r · [C2a])︸ ︷︷ ︸
C1a reinforce
←−−−−−→

C2a

(4.14)

+ (k14f · [S1a]2 − k14r · [C1a]︸ ︷︷ ︸
S1a dimerize←−−−−→C1a

)

d[C2a]

dt
= (k10f · [C2]− k10r · [C2a]︸ ︷︷ ︸

Actin binding

) + (k12f · [C1a] · [vinc]2 − k12r · [C2a])︸ ︷︷ ︸
C1a reinforce
←−−−−−→

C2a

(4.15)

− (k13f · [C2a] · [vinc]2 − k13r · [C3a])︸ ︷︷ ︸
C2a reinforce
←−−−−−→

C3a

+(k15f · [S2a]2 − k15r · [C2a]︸ ︷︷ ︸
S2a dimerize←−−−−→C2a

)

d[C3a]

dt
= (k11f · [C3]− k11r · [C3a]︸ ︷︷ ︸

Actin binding

) + (k13f · [C2a] · [vinc]2 − k13r · [C3a])︸ ︷︷ ︸
C2a reinforce
←−−−−−→

C3a

(4.16)

+ (k16f · [S3a]2 − k16r · [C3a]︸ ︷︷ ︸
S3a dimerize←−−−−→C3a

)

d[signal]

dt
=

−k23vmax · [signal]
k23KM

+ [signal]
(4.17)
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Reactions in our model are, by default, considered to be reversible and follow
mass-action kinetics, unless mentioned otherwise. Concentrations are writ-
ten between square brackets (e.g., [int]) when mentioned in the text. Baseline
parameter values and rate constants can be found in Table S.4.1. We refer
the reader to supplementary section Reactions in the model for detailed de-
scriptions of all reactions in the model and the underlying reasoning. Be-
low, we highlight the novel methodological approaches (signal- and time-
dependent rate modification (SDRM and TDRM)), and provide brief expla-
nations of a few mathematical formulations and assumptions that are used in
this model.

4.2.2 Signal dependent rate modification (SDRM)
Nascent adhesions (NAs) form in large numbers and most are disassembled
within a time scale of a few minutes (Changede & Sheetz, 2017; C. K. Choi et
al., 2008). As the cell protrudes, the distance between the cell membrane and
the NAs increases, and actin depolymerization rates are higher away from
the cell membrane (Oser & Condeelis, 2009). Thus, numerous NAs may be
supported near the cell membrane but in the absence of this scaffold, many
NAs disassemble. Various signal cascades also regulate adhesion disassem-
bly. Signalling molecules such as focal adhesion kinase (FAK), Src and ERK
kinases play a role in adhesion turnover, and their inhibition leads to more
maturation (Webb et al., 2004). However, most studies have investigated the
effects of signalling molecules on the turnover of FAs and not NAs (Hamadi
et al., 2005; Vicente-Manzanares & Horwitz, 2011), and the exact mechanical
or chemical triggers for NA disassembly remain elusive (Lin & Asaro, 2022).
NA assembly at the cell front, maturation, and disassembly away from the
leading edge occur constantly due to above mentioned mechanisms. In this
study, we focus on one cycle of NA formation and investigated the differ-
ences in NA maturation on different substrate stiffnesses. To implement a
mechanism to stop indefinite adhesion formation and maturation, it is hy-
pothesized that there exists a signal molecule of which a minimum concen-
tration, signalthresh, is required for new NA formation and low-order AUB
clutches (S1,C1) to bind actin (for maturation). The concentration [signal]
of this molecule is initially high and decreases at an arbitrary rate following
Michaelis-Menten kinetics given by Eq.4.17

Since we model the signal decay with Michaelis-Menten kinetics, initial esti-
mates for values of the maximum velocity k23vmax and the Michaelis constant
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k23KM were based on those reported in literature for FAK Tyr-397 phospho-
rylation in the presence of ATP (Rashmi et al., 2021) but were adjusted such
that the concentration of [signal] reaches the signalthresh in 58 seconds, which
is the approximate duration of the NA assembly phase as measured in ex-
periments (Chan & Odde, 2008). When the [signal] falls below signalthresh,
it is analogous to a signalling pathway being activated, and some reactions
rates are modified as detailed in section Signal-dependent rate modifica-
tion (SDRM). Thus, the rate of decay of [signal] determines the amount of
time available before NA disassembly starts in which adhesion maturation
can occur. Note that the model behaviour does not change if we assume the
opposite i.e., [signal] increases over time and there is an upper limit for its
concentration beyond which actin binding does not occur (Figure S.4.3B).

4.2.3 Force-dependent actin-unbinding and time-dependent
rate modification (TDRM)

A cell–ECM force chain is broken if either the integrin–ligand (catch-slip)
bond (Kong et al., 2009) or the talin–actin (slip) bond (Jiang et al., 2003) rup-
tures as a result of reaching the respective force thresolds or due to random
thermodynamic fluctuations. This is described in detail under the supple-
mentary methods sections Slip and catch bonds and Time-dependent rate
modification (TDRM). To capture the combined dynamics of the catch-slip
and slip bonds, as well as the effect of random bond ruptures, the actin un-
binding rates (k4r, k5r, k6r, k9r, k10r, k11r) are defined as follows:

koffCS
= A · e−b·Fclutch + C · ed·Fclutch + kTDRM · kslipUL

· e
Fclutch
Fthi (4.18)

where Fclutch is the force on an individual IAPC in the clutch (see supplemen-
tary section Force quantification where Fclutch is described in detail). The first
and second terms describe the integrin–ligand catch-slip bond, and the third
term describes the talin-actin slip bond where Fthi is bond rupture thresh-
old for a given clutch type (i ∈ {1, 2, 3}, refer Table S.4.1) and kslipUL is the
unloaded dissociation rate. kTDRM is the time-dependent rate modification
(TDRM) factor that is required to qualitatively account for the reduction in the
total force caused by spontaneous clutch unbinding events. kTDRM is given
by:

kTDRM = 1 + ksens · tclutch · dt (4.19)
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where tclutch is the number of simulated time-steps that a clutch remains actin-
bound, dt is the time-step and ksens is a parameter that determines the mag-
nitude of the influence. In short, this definition captures the decreasing like-
lihood of an AB clutch remaining AB for long periods of time. It has been
shown that integrin-ligand bonds undergo cyclic mechanical reinforcement
(CMR) leading to longer lifetimes (Kong et al., 2013). This implies that on soft
substrates where the force-loading rate is low, integrin-ligand bonds expe-
rience fewer force cycles in a given time period compared to stiff substrates
and consequently are more likely to break on soft substrates. Previous studies
model CMR with an increased bond-dissociation rate at low forces (Elosegui-
Artola et al., 2016; Venturini & Sáez, 2023). Here, TDRM can also capture these
effects as its effects are larger on softer substrates where clutches take longer
to reach their force thresholds.

When an AB clutch experiences a force equal to its force threshold, it unbinds
from actin and becomes an AUB clutch. Thus, the concentration of the AB
clutch is set to 0, and the concentration of its AUB counterpart is increased by
the same amount.

4.2.4 Adhesion reinforcement rates
The rate at which the talin rod unfolds increases with applied force and has
been described in previous studies by the Bell model (Bell, 1978; Wang et
al., 2019; Yao et al., 2016). Here, the Bell formulation was adapted such that
the rate increases exponentially with force until the vinculin binding force
threshold Fvb is reached, beyond which it remains constant. The rate is given
by:

kunfold =

{
kunfoldUL

· e
kUF ·

Fclutch
Fvbi if F ≤ Fvbi

kunfoldUL
· ekUF if F > Fvbi

(4.20)

where kunfoldUL is the rate of unloaded talin unfolding, kUF is a parameter con-
trolling force-dependence, Fclutch is the force experienced by an individual
IAPC in the clutch, and Fvbi is the vinculin binding force threshold, with i
∈ {1, 2} corresponding to the first and second vinculin binding steps. Here,
Fvb1 = 5 pN and Fvb1 = 12 pN (Rio et al., 2009; Yao et al., 2016). Vinculin bind-
ing is assumed to occur instantaneously once the VBS is uncovered (Wang et
al., 2019; Wang et al., 2021), and hence the rates of reinforcement were deter-
mined based on the force-dependent unfolding kinetics of talin as observed in
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single-molecule experiments using magnetic tweezers (Rio et al., 2009). De-
tailed description of the method used for curve-fitting can be found in the
supplementary section Curve-fitting for parameter values.

4.2.5 Local sensitivity analysis
As the model included many parameters whose values were either estimated
or adapted to fit experimental data, a local sensitivity analysis was performed.
The range of values tested for each parameter was the baseline value (Table
S.4.1) ±10% and ±20%. To quantify the influence, two different metrics were
used as outcomes, namely 1) the concentration of integrins in mid- and high-
order AB and AUB clutches ([S2]+[S2a]+[S3]+[S3a]+[C2]+[C2a]+[C3]+[C3a])
at equilibrium (the last time point), and 2) the optimal stiffness. Outcome 1
represents the total fraction of integrins in the system that made it beyond the
initial force-independent stage of adhesion formation, indicative of the frac-
tion of NAs that mature into FAs. Outcome 2 represents an overall influence
on the system as it quantifies the mean force exerted during the length of the
simulation for a variety of substrate stiffnesses. In addition, cells are known
to be able to tune their mechanosensitive ranges to adapt to their environ-
ments, an aspect on which outcome 2 can shed light. As different parameters
may have different levels of influence based on the substrate stiffness, the
sensitivity of outcome 1 to each parameter was evaluated for four substrate
stiffnesses (ksub = 0.1, 1, 10, 100 pN/nm).

Parameter sensitivity analysis was performed on 22 parameters (supplemen-
tary section Sensitivity analysis results, Figure S.4.9 and Figure S.4.10), and
the ones with the highest influence are presented in the main text. The param-
eter sensitivity for a parameter p for an outcome i was calculated as follows:

Sensitivityp,i =
|Outcomei(p+∆p)−Outcomei(p)|

Outcomei(p)
/
∆p

p
(4.21)

where Outcomei(p+∆p) represents the value of the outcome metric with the
changed parameter value, Outcomei(p) is the value of the outcome metric with
the baseline parameter value, and ∆p and p are the change in the parameter
and the baseline parameter value respectively.
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4.2.6 Initial conditions
The initial concentrations of integrins, talin and vinculin were assumed to be
equal and set to 1 µM, and that of all other species set at 0. Vinculin was
assumed to be abundantly available within the cytoplasm and thus modelled
at a constant concentration of 1 µM throughout the simulation.

4.2.7 Simulation Steps
All simulations were run for 600 seconds. Euler’s forward integration method
was used to solve the ODEs with a time step dt of 5 ms as used in previ-
ous computational studies (Chan & Odde, 2008; Elosegui-Artola et al., 2016).
For mass conservation steps, see supplementary methods section ”Signal-
dependent rate modification (SDRM)”. The steps of integration and the order
of updates (Figure 4.2) of the different aspects of the model are as follows:

1. Force-dependent rate constants are calculated In particular, the follow-
ing rates are evaluated at the current force:

a) First reinforcement rates: (k7f,k12f) using eq. 4.20

b) Second reinforcement rates: (k8f, k13f) using eq. 4.20

c) Signal-dependent rate modification: (k1r, k2r, k3r, k4f, k9f, k18f, k20f,
k21f, k22f) are updated by multiplying their baseline values by sigdep
(eq. S.56)

d) Catch-slip bond rates with time-dependent rate modification: (k4r,
k5r, k6r, k9r, k10r, k11r) using eq. 4.18 and eq. 4.19

2. Concentrations are updated based on current rate constants by solving
the differential equations listed above

3. The slip bond threshold is checked for each clutch type

a) If the slip bond threshold is reached, the force on the clutch is reset
to 0

b) The concentration of the actin-bound form of the clutch is con-
verted to the actin-unbound form

4. The total force exerted by actin-bound clutches is calculated based on
discretized concentrations using eq. S.54
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5. Retrograde velocity is updated based on the current total force in the
system using eq. S.50

6. All substrate-clutch spring systems are extended by an amount vretro ·dt

7. Force on each clutch is updated using eq. S.52.
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Figure 4.2: Schematic showing the flowchart for simulation and force quan-
tification.
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4.3 Results
To explore the influence of mechanical properties like substrate stiffness, adap-
tor protein stiffness, actomyosin-generated forces and bond characteristics on
NA/FA maturation, we developed a computational model that captures the
overall changes to the IAC compositions as adhesions form and mature. The
model, based on ODEs, consists of a single compartment that represents a
patch of the cell where adhesions form, and considers three core components:
integrins, talin and vinculin, from which 14 other species are made. The dy-
namic NA/FA maturation is modelled by a total of 22 reactions (explained
in Methods and supplementary section Reactions in the model, Table S.4.1
and Table S.4.2) that largely represent three distinct processes (Figure 4.1): (i)
adhesion formation, (ii) reinforcement and growth, and (iii) adhesion disas-
sembly.

Using our mechanochemical computational model, we find that dynamic
rates of assembly and disassembly, which are likely regulated by biochemical
signalling events, are essential to determine the subset of NAs that mature.
The model was found to satisfy mass conservation (supplementary results
section The model satisfies mass conservation, Figure S.4.2).

4.3.1 NA formation is rigidity- and force-independent
When only pre-complex, initial seed and clust formation reactions (Rx1, Rx2
and Rx3) were active (see supplementary section Integrin activation, Table
S.4.2) the concentration of seeds and clusts for all substrate stiffnesses tested
were equal, in line with previous experimental evidence showing that NA
formation is substrate rigidity-independent (Changede et al., 2015) (Figure
4.3A). This is the result of the rigidity- and force-independent rate constants
(k1f, k1r, k2f, k2r, k3f, k3r) for reactions Rx1, Rx2 and Rx3. Thus, the concen-
tration of seeds and clusts formed only depends on the initial concentrations
of int, tal, and vinc, which were all set to 1 µM, with vinc being constant
throughout the simulation (see Methods).

The baseline signal decay parameters (Table S.4.1) were set to match experi-
mentally measured time periods for the assembly phase of NAs (C. K. Choi et
al., 2008), leading to the concentration of signal crossing the signalthresh at tsig
= 58.04 s (Figure 4.3A, Figure S.4.3 and supplementary section Signal decay
(or growth) rate matches nascent adhesion assembly phase). Additionally,
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when maturation (actin-binding) reactions were disabled, the predicted con-
centration of integrins in seeds and clusts was ≥ 0.1 µM (Figure 4.3A) for
approximately 158 s, a duration indicative of the lifetime of nascent adhe-
sions and is in line with experimentally measured average lifetimes of NAs
of 135–180 s (Changede & Sheetz, 2017; Changede et al., 2015; C. K. Choi et
al., 2008). Additionally, the concentrations of S1 and C1 also matched experi-
mentally observed trends in abundance of early NAs (C. K. Choi et al., 2008)
(Figure 4.3A)

When actin-binding reactions were allowed however, the concentration of
S1a and C1a reached a peak at 58 s (Figure 4.3B), followed by a sharp fall to
0. This decrease is because the signal-dependent reduction in actin-binding
rates reduced the formation of these species, but the rate constants (k7f and
k12f) of reinforcement reactions, Rx7 and Rx12, that transform S1a and C1a
to S2a and C2a, respectively, remained unchanged. Thus, S1a and C1a were
almost completely consumed after approximately 158 s. The model also pre-
dicts highest [S1a] and [S3a] to be on the 100 pN/nm and 1 pN/nm sub-
strates respectively (Figure 4.3B), whereas [C1a] and [C3a] are always higher
on 1 pN/nm. Given that in the absence of maturation reactions [S1] and
[C1] are rigidity-independent, this highlights the difference in reinforcement
rates between stiffnesses. The rate of consumption of S1a is lowest on the
100 pN/nm substrate as the clutches reach the talin-actin slip bond thresh-
old rapidly, leaving little time for vinculin-binding reinforcement reactions,
and hence clutches accumulate in this state. This explains the lower [S2a]
and [S3a] on stiff substrates. Additionally, the maximum concentrations of
AB clutches is limited only by the time taken for the clutch to reach its force
threshold. For ksub = 100 pN/nm the increase in mean periods of S1a to C1a
is 0.02 seconds, which is negligible compared to 1.5-2 fold increases for other
stiffnesses (Table 4.2). Thus clutches remain AB for a relatively much shorter
time, leading to lower concentrations of [C1a] for ksub = 100 pN/nm. As such,
the model accounts for one cycle of NA assembly, followed by either matu-
ration or disassembly. When maturation was enabled, the concentrations of
S2a, C2a, S3a and C3a nearly reached an equilibrium after 600 s (Figure 4.3B).
These results imply that in our model, low order species (S1, C1, S1a, C1a)
represent NAs while mid- and high-order species (S2, C2, S2a, C2a S3, C3,S3a,
C3a) represent the stable adhesions that may further mature to become FAs.

113



4

Chapter 4. Force-dependent focal adhesion assembly and disassembly: a
computational study

Figure 4.3: While NA formation is substrate stiffness independent, matura-
tion is influenced considerably by stiffness. (A) – Concentration over time of
species in the model that represent NAs (S1 and C1). The curves for all tested
substrate rigidities overlap and hence appear as a single (blue) line. The ver-
tical dotted line marks the time point when the signal threshold is crossed
and hence new NA formation reduces. (B) – Concentrations over time of all
the actin-bound species. Species representing NAs (S1a, C1a) increase ini-
tially before being driven to 0 after the signal concentration drops below the
threshold. The highest levels of maturation occur on substrate of moderate
stiffness (ksub = 1 pN/nm).
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4.3.2 Adhesion maturation is highest on moderate substrate
stiffness

The concentrations of S3a, C2a and C3a are highest on a moderate substrate
stiffness (1 pN/nm), and lower on stiffer or softer substrates (Figure 4.3B) in
accordance with experimental findings (Bangasser et al., 2017; Chan & Odde,
2008; Cheng et al., 2016; Zhou et al., 2017). In addition, in the early periods of
the simulations (0 to 70 s, Figure S.4.4), the concentrations [C3a], [C2a] and
[S3a] increase most rapidly on ksub=1 pN/nm. While these results are for
simulations with a constant vinculin concentration, similar results were ob-
tained for limited vinculin conditions (supplementary results section Limited
vinculin results, Figure S.4.5).

Although the concentration plots in Figure 4.3B are oscillatory due to the
repeated bond-rupture events that transform AB clutches to AUB clutches,
pushing the concentration of AB clutches to 0 and causing a spike in the con-
centration of AUB clutches, the peaks approach a steady state. We observed
generally shorter periods of oscillations for AB clutches on stiffer substrates
(Table 4.2), which is also reported by Venturini and Saez (2023) (Venturini &
Sáez, 2023). The periods predicted in our simulations were in good agree-
ment with previous studies (Table 4.2) (Bangasser et al., 2013; Chan & Odde,
2008; Gong et al., 2018; Venturini & Sáez, 2023). Note that the periods for C2a
and C3a on ksub=0.1 pN/nm, are of the order of the lifetime of NAs (∼60 s)
or higher. Thus, these results suggest that C2a and C3a can represent (par-
tially) mature adhesions and not nascent adhesions, and that adhesions are
likely to disassemble before sufficient reinforcement can occur on very soft
substrates.

Table 4.2: Mean periods in seconds of different actin-bound clutches for dif-
ferent substrate stiffnesses.

Substrate stiffness (pN/nm) S1a S2a S3a C1a C2a C3a
0.1 15.37 32.72 55.74 30.43 64.83 110.48
1 2.01 4.22 7.15 3.67 7.76 13.18
10 0.47 0.94 1.58 0.62 1.26 2.13
100 0.31 0.61 1.02 0.33 0.64 1.07
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4.3.3 Traction force is highest on substrates of moderate
stiffness

An optimal substrate stiffness is one at which the highest traction force is gen-
erated at the adhesions (Bangasser et al., 2013). At this stiffness, the time taken
for the force on a clutch to reach the bond-rupture threshold is roughly equal
to the lifetime of an unloaded AB-clutch that spontaneously dissociates from
actin (or the substrate) due to thermodynamic fluctuations, maximizing the
lifetime of a complete ECM-integrin-adaptor protein-actin chain (Bangasser
& Odde, 2013; Chan & Odde, 2008). In our simulations, the highest traction
force was reached at ksub = 1 pN/nm, which also corresponded to the point
where the lowest retrograde velocity was recorded (Figure 4.4A). The fre-
quency of oscillations was higher for high stiffness substrates (Table 4.2) and
the actin unbinding rate was higher for soft substrates (Figure S.4.6), suggest-
ing that ksub = 1 pN/nm gives rise to a ‘load-and-fail’ regime where clutches
are loaded at a moderate rate, and ‘frictional slippage’ occurs on stiffer sub-
strates where rapid loading causes clutches to disengage too quickly, result-
ing in lower average AB-clutch concentration (Bangasser et al., 2013; Chan &
Odde, 2008). Altogether, these observations show that the optimal stiffness
for NA maturation in our model is at ksub = 1 pN/nm.

Figure 4.4A shows the agreement between the mean retrograde velocity in
our simulations and other computational (Elosegui-Artola et al., 2014; Ven-
turini & Sáez, 2023) and experimental (Chan & Odde, 2008) studies. A recent
computational study also reports a similar biphasic behavior with an optimal
stiffness around 10 pN/nm (Venturini & Sáez, 2023). However, this is only
observed when the weakest link in the force chain in their model is simu-
lated as a catch bond. Additionally, our model predicts a linear increase in
the mean velocity between 100 pN/nm and 102 pN/nm (Figure 4.4B), which
is the stiffness range where the cell is mechanosensitive – a change in stiffness
translates linearly into a change in actin retrograde velocity. This is in good
agreement with previous studies which report ranges of 100–101 to 100–102

pN/nm (Bangasser et al., 2017; Chan & Odde, 2008; Selig et al., 2020). The
decrease in the predicted retrograde velocity for stiffnesses > 101 pN/nm
in the computational study of Elosegui-Artola et al. (Elosegui-Artola et al.,
2014)(Figure 4.4A) arises because of reinforcement which they model as an in-
crease in integrin density beyond a certain threshold force on a clutch. While
the range of velocities reported varies, in our model, the lowest velocity de-
pends on the concentration of myosin motors concmyo, which is a free param-
eter that was adjusted such that the lowest velocity was within 10% of that
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reported by Chan and Odde, 2008.

It is also important to note that the optimal stiffness of 1 pN/nm is reached
only when the TDRM of actin-unbinding rates was applied (see subsection
‘Force-dependent actin-unbinding and time-dependent rate modification (TDRM)’
in Methods and supplementary section Time-dependent rate modification
(TDRM)). In absence of TDRM, the equilibrium concentrations of mid- and
high-order AB clutches ([S2a], [S3a], [C2a], [C3a]) are highest on ksub = 0.1
pN/nm and decrease monotonically with increasing substrate stiffness (Fig-
ure S.4.7). Note that the decrease in equilibrium concentrations of mid- and
high-order AB clutches caused by TDRM is the largest on ksub = 0.1 pN/nm
and least on ksub = 100 pN/nm. In summary, these results show that TDRM
of disassembly rates is essential for obtaining an optimal stiffness through
mechanosensing. As adhesion assembly and disassembly are tightly regu-
lated processes, altering factors that affect adhesion disassembly allows for
more robustness and resilience in the mechanosensing and adhesion matura-
tion processes.

Figure 4.4: Model predictions of mean actin retrograde velocity and matu-
ration fraction for the baseline model. (A) shows the predicted velocity vs
substrate stiffness compared to previous studies, (B) shows the predicted ve-
locity (blue) and mean force exerted by all adhesions (red) in this model, and
(C) shows the NA maturation fraction vs substrate stiffness.
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4.3.4 18% and 35% of NAs mature on soft and stiff substrates
respectively

After identifying species in the model that represent NAs (S1, C1, S1a, C1a)
and adhesions that mature to FAs (S2, C2, S2a, C2a, S3, C3, S3a, C3a) based
on comparisons of their concentrations, bond formation and rupture times
to values reported in literature, we used our model to predict the fraction
of NAs that may mature into FAs on a range of substrate stiffnesses. No-
tably, our model also predicts a biphasic trend in maturation fraction (MF)
(Figure 4.4C). More specifically, the MF ranges from approximately 18% on
very soft substrates (10−2 pN/nm) to around 35% on substrates of moderate
stiffnesses (100 pN/nm), which lies within experimentally determined ranges
of MFs under different conditions (Han et al., 2021; Swaminathan et al., 2016).
The talin refolding factor talrffactor controls the rate of vinculin-dissociation and
hence relative stability of higher order species in our model (see supplemen-
tary section Adhesion disassembly) and its baseline value is set to 0.5 in our
simulations. As vinculin is known to ‘lock’ talin in the unfolded conforma-
tion (Yao et al., 2014), reducing the value of talrffactor to 0.2 maintained the same
trends but resulted in a slightly higher maturation fraction, ranging from 20%
to 50% (Figure S.4.8).

4.3.5 Predicted NA maturation fraction is most sensitive to talin
stiffness and vinculin availability

Our model predicted an optimal substrate stiffness of approximately 1 pN/nm
at which 34.3% of NAs mature. To ensure both the optimal stiffness and MF
predictions were not heavily influenced by the choice of parameter values,
we performed a local sensitivity analysis on 22 parameters (supplementary
section Sensitivity analysis results, Figure S.4.9, Figure S.4.10), and address
the most important and representative ones here.

Increases in initial vinculin concentration Initialvinc leads to large increases in
MF (Figure 4.5A) and small increases in the optimal stiffness (Figure 4.5B). A
higher vinculin concentration increases the likelihood of maturation leading
to increased force carrying capacity and consequently a shift of the optimal
stiffness to stiffer regimes. In contrast, a lower vinculin availability leads to
decreased maturation fractions and traction force and a higher mean retro-
grade velocity.
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The optimal substrate stiffness, the stiffness at which the lowest mean ret-
rograde velocity is observed (Figure 4.5B), was most sensitive to changes
in ktal, the stiffness of talin. Increasing ktal shifts the optimum stiffness to
softer substrates and reduces the MF (Figure 4.5B). Talin is the most abundant
mechanosensitive component in the model and majorly contributes to deter-
mining the stiffness of clutches, which effectively determines the optimum
substrate stiffness. Increasing the stiffness of talin results in stiffer clutches
that reach the bond force-thresholds sooner, leaving less time for maturation
reactions and consequently lower MF.

A higher (lower) initial integrin concentration Initialint only leads to a small
decrease (increase) in the mean retrograde velocity, and has negligible effects
on optimum stiffness (Figure 4.5 and Figure S.4.10). The increase (decrease)
in the mean retrograde velocity is because there are more (fewer) clutches
available to bind to actin and slow it down. However, the optimum stiff-
ness is unaffected as this higher (lower) availability of integrins is true and of
the same magnitude on all stiffnesses. Similarly, changes in the talin refold-
ing rate, talrf, affect the mean retrograde velocities more than the optimum
stiffness. This is explained with similar reasoning - changes in talrf affect the
outcome on all substrate stiffnesses in the same way and do not cause any
changes in the relative proportions of concentrations of different clutches or
vinculin consumption.

An increase in vu, the unloaded actin retrograde velocity, pushed the optimal
substrate stiffness to softer substrates in line with previous computational
studies (Bangasser et al., 2013; Bangasser et al., 2017) and leads to lower MF
(Figure 4.5). A higher retrograde velocity causes faster force build-up result-
ing in frictional slippage on softer substrates. Similar to ktal, it also results
in lower MF. On the contrary, increases in kact pushed the optimal substrate
stiffness towards stiffer substrates and increases MF (Figure 4.5), which is
due to the ‘strengthening’ of clutches as they are more likely to bind actin, get
stretched and recruit vinculin, and on average there are more AB clutches re-
sulting in higher forces on softer substrates (Bangasser et al., 2013; Bangasser
et al., 2017).

Out of all the parameters, the stiffness of talin ktal, initial vinculin concen-
tration initialvinc, talin refolding rate talrf, and the actin-binding rate kact had
the greatest influence on MF, similar for both an increase and decrease in the
parameter values (Figure S.4.9). Importantly, the TDRM factor ksens, and the
cluster formation (k14f, k15f, k16f) and disassembly (k21f, k22f) rates had negli-
gible influences on the MF and optimal stiffness (Figure S.4.9, Figure S.4.10)
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for the tested range of values (±20%).

Figure 4.5: Sensitivity analysis results (A) – Maturation fraction vs stiffness
and (B) – Mean retrograde velocity vs stiffness for a local variation in param-
eter values of different parameters. Black arrows in B point in the direction of
increasing parameter value and track the optimal stiffness.
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Figure 4.6: Vinculin concentration can influence maturation fraction. (A)
and (B) are cell types or biological contexts where vinculin availability is low
and high respectively. In A, the likelihood of vinculin binding to the exposed
vinculin-binding sites on talin is low leading to a low maturation fraction.
However, in B, due to a relatively higher vinculin availability, the integrin-
actin link is highly likely to be reinforced by vinculin, increasing the matura-
tion fraction.
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4.4 Discussion
Although cell-ECM adhesions are extensively studied, the effects of mechan-
ical properties of the ECM and intracellular proteins on the early processes of
adhesion assembly, maturation and traction force generation remain unclear.
Here, we present a computational model that innovatively bridges the dis-
crete mechanical and continuous biochemical aspects of adhesion formation.
Our model captures key trends in the maturation fraction (MF) of NAs, actin
retrograde velocity, and the periods of bond formation-rupture cycles, all in
agreement with experimental evidence (Chan & Odde, 2008; Gong et al., 2018;
Han et al., 2021; Swaminathan et al., 2016). The predicted optimal substrate
stiffness (Chan & Odde, 2008) and stiffness sensitivity range (Bangasser et al.,
2017; Selig et al., 2020) also lie within experimentally determined ranges.

While the predicted mean actin retrograde velocity across the stiffness range
tested is in agreement with an experimental study using embryonic chick
forebrain neurons (Chan & Odde, 2008), the agreement with the study of
Elosegui-Artola and colleagues (Elosegui-Artola et al., 2014) is limited to the
softer regimes where the biphasic trend is also seen (compare yellow and
blue line in Figure 4.4A). This discrepancy arises from the way reinforcement
of adhesions is modelled. In particular, reinforcement in that study is mod-
elled as an increase in the integrin density that occurs if a clutch experiences
a force ≥87 pN, leading to an increase in integrin–ECM binding events and
a larger number of bound clutches. In a recent computational study where
reinforcement is also modelled similarly, a biphasic behavior is observed just
as in our model but with the optimal stiffness being around 10 pN/nm (Ven-
turini & Sáez, 2023). In our model, while there is an increase in the cluster
size of clutches and additional vinculin recruitment leading to larger force
carrying capacities, there is no change in the number of available integrins or
the adhesion formation rates.

In this study, we assume relatively fast kinetics for the signal molecule to
keep the NA assembly and disassembly phases in line with experimental
data (C. K. Choi et al., 2008). It is important to note that there may be con-
siderable differences in experimental results based on the cell types used, re-
sulting in different time scales. However, since the model is relatively insen-
sitive to changes in signalthresh (Figure S.4.9, Figure S.4.10), and consequently
changes in tsig, the overall behavior of the model is unlikely to change drasti-
cally when these parameters are tuned to represent specific cell types or, for
instance, signal molecule kinetics. Thus, the generic signal molecule in the
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model can potentially represent the level of unphosphorylated FAK or sim-
ilar molecules whose change in (phosphorylation) state can set off signaling
cascades leading to adhesion disassembly. Future work should aim to deter-
mine the underlying factors that induce and influence adhesion disassembly
so that the generic signal molecule can be replaced with more accurate for-
mulations and interactions. In particular, the identification of such concrete
factors could help in determining the settings of signalthresh.

Based on our results, the factors affecting the NA disassembly dynamics play
a more important role than those affecting assembly dynamics. We applied
TDRM, an innovative method to account for spontaneous bond-rupture events
in NA formation in an ODE framework. TDRM was necessary to establish
the optimal stiffness because in its absence, maturation is highest on soft sub-
strates as forces on the clutches build up slowly, giving long durations for
maturation reactions to occur. TDRM counters this by increasing the rate of
clutch-actin bond-rupture and hence prevents maturation. With the baseline
value of the TDRM factor ksens, the effect of TDRM on bond-rupture rate is
highest on soft substrates and negligible on stiffer substrates due to the short
clutch lifetimes. Walcott et al., 2011 predicted and experimentally verified
that disassembly processes begin earlier for soft substrates, and this arises
from force- and strain-dependent bond formation and rupture probabilities.
In addition, cyclic mechanical reinforcement (CMR) of integrin-ligand bonds
strengthens them, increasing the lifetimes, implying that on soft substrates
where force-loading is relatively slow and force remains low for longer dura-
tions, these bonds are less reinforced and are more likely to break (Kong et al.,
2013). In previous studies, CMR has been modelled as an increase in bond-
dissociation rates at low forces (Elosegui-Artola et al., 2016; Venturini & Sáez,
2023). TDRM can be considered as a method to coarsely account for these
processes. However, while the outcomes of TDRM are similar to the effects of
CMR as modelled in (Elosegui-Artola et al., 2016; Venturini & Sáez, 2023), the
differences between the two methods need to be investigated further. Sur-
prisingly, the optimal stiffness was insensitive to changes in the parameter
that controls the magnitude of TDRM (ksens, Figure 4.5B) . This was unex-
pected since TDRM was essential for establishing an optimal stiffness im-
plying a major role of this parameter in determining model behavior (Figure
S.4.6, Figure S.4.7). It is likely that the explored sensitivity range (±20%) was
too narrow to considerably change the behavior of the model, which should
be investigated more in depth in the future. Note as well that in this study we
performed a local sensitivity analysis focusing on those parameters that can
directly be traced to a biological phenomenon (for instance kact, Initialvinc) we
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introduced as part of SDRM and TDRM (for instance ksens, signalthresh), or as-
sumed (for instance, talrffactor ). Considering the non-linear nature of the model,
it would be interesting to conduct a more rigorous, global sensitivity analysis
(i.e. using Bayesian Optimization) in the future to further identify the most
significant parameters of the model.

Another benefit of our model is that it allows the prediction of the matura-
tion fraction of adhesions for a range of substrate stiffnesses. While there are
no studies to the best of our knowledge that explicitly investigate the MFs
for different substrate stiffnesses, the predicted range of MFs for the stiffness
range tested in this study was within the range of experimentally determined
fractions (Han et al., 2021; Swaminathan et al., 2016).

Our sensitivity analysis results show that the MF is highly influenced by the
amount of integrins and vinculin available, actin-binding rate, and the talin-
refolding rate (Figure 4.5A). These factors can possibly be experimentally con-
trolled, through introducing mutations in the proteins, allowing the predic-
tions to be tested. Additionally, the MF and optimal stiffness were found to
be insensitive to variations in the TDRM factor ksens and the cluster formation
and disassembly rates, suggesting that the model is locally robust to these fac-
tors and the parameters can be tuned to be specific to experimental conditions
or cell lines. This suggests that the model can be used to predict the MFs for a
variety of conditions by varying molecular stiffnesses, initial concentrations
of talin, integrin, and vinculin, different clustering, maturation, and disas-
sembly rates among many other parameters. This can potentially shed light
on how traction force exerted by the cell is affected by biochemical alterations
within the cell.

For instance, vinculin plays an important role in both cell-ECM adhesions and
cell-cell adhesions through cadherins. Numerous studies indicate interde-
pendence and cooperativity of these two processes, mediated through signal
cascades or proteins that are essential in both types of adhesions, to varying
degrees in different cell types (Bays & DeMali, 2017; X. Chen & Gumbiner,
2006; McCain et al., 2012; Mertz et al., 2013; Rooij et al., 2005; Tsai & Kam,
2009). While vinculin knockout studies have shown that traction force gen-
eration is impaired, with some studies reporting a decrease of nearly 50%
in the absence of vinculin, overexpression of vinculin results in extremely
strong adhesions that suppresses cell motility (Dumbauld et al., 2013; Fernan-
dez et al., 1993; Fernández et al., 1992; Mierke et al., 2008; Rahman et al., 2016;
Thievessen et al., 2013). However, this leaves unanswered questions about
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how relatively less drastic changes in vinculin availability arising from cross-
talk between integrins and cadherins adhesion complexes affect traction force
generation and adhesion maturation. Our model predicts that a 20% decrease
in the vinculin concentration results in a ∼ 9% increase in the actin retrograde
velocity (or equivalently a 9% decrease in the traction force exerted due to
lower MFs) at the optimal substrate stiffness (Figure 4.5). Thus, our model
can be especially valuable to make predictions and generate hypotheses of
how (local) adhesion protein concentrations influence the early processes of
adhesion assembly, maturation and traction force generation.

Overall, our model improves on previous studies in several aspects. Firstly,
the process of maturation is more accurately captured by accounting for mul-
tiple vinculin recruitment events that progressively increase the clutch stiff-
ness in a continuous ODE framework. Previous studies either did not account
for this or at most accounted for recruitment of one vinculin (Chan & Odde,
2008; Cheng et al., 2016; Cirit et al., 2010; Elosegui-Artola et al., 2016; Lai &
Chiam, 2011; Macdonald et al., 2008; Sonn-Segev et al., 2015). Secondly, this
model couples changes in discrete mechanical factors of adhesion maturation
such as clutch stiffness with the continuous framework of biochemical reac-
tions underlying adhesion maturation. This is particularly important because
the continuous biochemical models do not explicitly account for force on the
clutches, and discrete mechanical models of adhesion formation do not cap-
ture the resulting experimentally measurable biochemical changes that oc-
cur.

While it is clear from our results that the adhesion assembly and disassembly
rates must be dynamic and dependent on a signal to achieve the matura-
tion of only a fraction of the NAs that are initially formed, we acknowledge
several limitations to this study. First, we do not model numerous proteins
involved in the process of maturation or the continuous increase in the area
of the adhesion (Geiger & Yamada, 2011). Second, we simplified vinculin re-
cruitment and growth of cluster size to occur in two discrete steps, and no
spatial effects (e.g. proximity to an actin fiber, distance of adhesion from the
cell membrane) are accounted for. And third, we assume that integrins, talin
and vinculin are available in roughly equal proportions near the adhesions
(initial concentrations are the same), which may not necessarily be true. How-
ever, the sensitivity analysis clearly highlight the robustness and reliability of
the model behaviour for a range of ±20% in these ratios (Figure 4.5). Despite
these limitations, our model reproduced experimentally observed trends with
respect to force, substrate stiffness, time periods of oscillation in concentra-
tions of the different seeds and clusts (Bangasser et al., 2013; Chan & Odde,
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2008; Gong et al., 2018). Furthermore, our results are reasonably close to dis-
crete, stochastic computational studies as mentioned earlier even though our
model bridges discrete and continuous aspects. The model thus provides a
reliable foundation for further investigations.

What remains to be explored, perhaps by building on our model, is the in-
teraction between the various signal cascades that regulate NA maturation.
The ubiquitous signaling molecule FAK is also force-activated adding a fur-
ther layer of interactions and complexity (Domingos et al., 2002; Tomar &
Schlaepfer, 2009). In addition, the KANK family of proteins are known to im-
pair the actin binding capacity of talin, thereby weakening the integrin-actin
linkage, and affecting the catch and slip bond dynamics (L. Sun et al., 2016).
They also play a role in targeting microtubules to focal adhesions which aids
in their disassembly through multiple signal cascades (Bouchet et al., 2016).
By expanding the current model framework to include these interactions, it
has the potential to robustly simulate the mechanochemical processes under-
lying mechanotransduction and provide valuable insight into cell signaling,
communication and organization, hence contributing to advances in devel-
opmental biology and regenerative medicine.

4.5 Supplementary Material
4.5.1 Implementation
The model and the simulations were implemented using MATLAB R2020a
(Inc, 2022). All code and scripts used in this study are publicly available via
GitHub at https://github.com/CarlierComputationalLab/force-dependent
-adhesion-composition.git.

4.5.2 Supplementary methods

4.5.3 Hookean spring system
The substrate–integrin–adaptor protein system was formulated as a system
of Hookean springs. As seeds and clusts contain 25 and 50 integrin–adaptor
protein complexes connected in parallel (Figure 4.1C, main text), their stiff-
nesses are 25 and 50 times the stiffness of a single integrin–adaptor protein
complex. This is derived in the following section.
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4.5.4 Stiffness of a integrin-adaptor protein complex
Talin has multiple hidden vinculin binding sites that are uncovered as the
talin rod unfolds due to the application of force in the process of reinforcing
the link between the ECM and the actomyosin network of the cell. Talin was
found to form a pre-complex with one vinculin molecule before entering ad-
hesions (Han et al., 2021). Thus, the fundamental building block of this model
is an integrin–talin–vinculin complex as seen in Figure S.4.1. On application
of force and experiencing a stretch, up to two more vinculin molecules are
allowed to bind to represent two reinforcement steps. The vinculin binding
sites are assumed to be evenly spaced on the talin rod. Thus, the stiffness of
a complex containing one talin rod and nvinc vinculin molecules is described
in the following way.

Generally, the combined stiffness kcombined of two springs with stiffnesses of
kspring1 and kspring2 connected in series is given by

kcombined =

(
1

kspring1
+

1

kspring2

)−1
(S.1)

If connected in parallel, the combined stiffness is

kcombined = kspring1 + kspring2 (S.2)

Let ktal be the stiffness of talin, kvinc be the stiffness of vinculin, and ksub be
the stiffness of the substrate (ECM). Figure S.4.1 shows a generalised integrin–
adaptor protein complex bound to the substrate. The talin rod can be repre-
sented as four sub-springs of equal stiffness such that the stiffness when they
are all connected in series is equal to ktal. Namely springs A, B, C, and D
represent the four sub-segments such that ktal = 4·k4tal, where k4tal is the
stiffness of a sub-segment.

ktal =

(
4· 1

k4tal

)−1
→ k4tal = 4·ktal (S.3)

Vinculin molecules are represented by springs E, F, and G. Using Eq. S.1
and Eq. S.2, the effective stiffness of the system of springs containing springs
A−G is given by:
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kcomplex =

 1

A
+

1

E +

(
1

F+( 1
D+G+ 1

C )
−1 + 1

B

)−1

−1

(S.4)

The stiffness of springs A,B,C, and D is k4tal (Eq. S.3). The stiffness of springs
E, F, and G is kvinc (0.25 pN/nm (Huang et al., 2017)). Note that for com-
plexes with one vinculin, G and F is 0, and similarly for complexes with two
vinculins, G is set to 0.

4.5.5 Fractional extension of clutches
When talin binds to actin, the chain of links between the cell and the substrate
is complete. Due to actin retrograde velocity of vu, this system of springs con-
taining the spring representing the substrate connected in series to a spring
that represents the clutch (seed or clust) experiences a total extension of vu·dt,
where dt is the time step. This extension is thus shared between the substrate
and the clutch based on their relative stiffnesses. The fraction of this exten-
sion that is experienced by the clutch is given by aclutch is calculated in the
following way.

Let kclutch be the stiffness of the clutch (25·kcomplex for a seed, 50·kcomplex for
a clust) and ksub be the stiffness of the substrate. The integrin is considered
to be a massless rigid body that does not undergo any physical change on
the application of force. Thus, the system of springs is then reduced to two
springs of stiffnesses kclutch and ksub connected in series, which can be rep-
resented by a ‘combined’ spring comb with an effective stiffness kcomb given
by

kcomb =

(
1

kclutch
+

1

ksub

)−1
=

kclutch·ksub
kclutch + ksub

(S.5)

Thus, this spring experiences an extension of vu·dt in every time step. The
force on this spring is then,

Fcomb = kcomb· (xcomb) (S.6)
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where xcomb = vu·dt.

Since the extension xc is the sum of extensions of the springs representing the
substrate and the clutch,

xcomb = xsub + xclutch (S.7)

where xsub and xc are extensions of the substrate and clutch springs respec-
tively.

Therefore,

xclutch = xcomb − xsub (S.8)

Since springs in series experience the same force, the force on the substrate
spring is equal to the force on the comb spring. Therefore

xclutch = xcomb −
Fsub

ksub
= xcomb −

Fcomb

ksub
= xcomb −

kcomb·xcomb

ksub
(S.9)

This implies

xclutch = xcomb·
(
1− kcomb

ksub

)
= xcomb·

(
1− kclutch

kclutch + ksub

)
(S.10)

→ xclutch = xcomb·
(
1− kclutch

kclutch + ksub

)
= xcomb·aclutch (S.11)

where aclutch =
(
1− kclutch

kclutch+ksub

)
is the fractional extension of a clutch of

stiffness kclutch is connected to a substrate of stiffness ksub.
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4.5.6 Force on the fourth talin sub-spring
The talin–actin bond is a 2 pN slip bond (Jiang et al., 2003). However, inte-
grins bound to talin that is further bound to multiple vinculins can carry a
force much higher than 2 pN (Roca-Cusachs et al., 2012). For both of these to
be true, the different domains of the talin rod must experience different forces,
and the talin–actin slip bond is likely dependent on the force experienced by
the talin rod domain that binds actin. Here, the fourth talin sub-spring binds
actin and hence the slip bond rupture occurs when this particular spring ex-
periences a force of 2 pN.

The force experienced by spring D in Figure S.4.1 is given by FD = kD·xD

where kD = k4tal, and xD is the extension of spring D. xD in terms of the
extension of the entire system xcomb (i.e. the extension of the comb spring) is
derived as follows. Note that xijk is the general representation of the exten-
sion of the spring system containing springs i, j, and k.

The total force on the system:

Fcomb = kcomb· xcomb (S.12)

Since springs in series experience the same force,

Fcomb=Fsub=Fclutch=FA (S.13)

Extension of clutch:

xclutch= xcomb − xsub (S.14)

Extension of spring A:

xA=
FA

kA
=

Fclutch

kA
=

kclutch·xclutch

kA
(S.15)

Extension of spring system containing springs B− C−D− F−G:

xBCDFG= xclutch− xA (S.16)

Since springs in series experience the same force, force on spring B:
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FB = FBCDGF (S.17)

Extension of spring B:

xB=
FB

kB
=
FBCDFG

kB
=
kBCDFG·xBCDFG

kB
(S.18)

Extension of spring system containing springs C−D−G:

xCDG= xBCDFG − xB (S.19)

Since springs in series experience the same force, force on spring C:

FC = FCDG (S.20)

Extension of spring C:

xC=
FC

kC
=
FCDG

kC
=
(kCDG·xCDG)

kC
(S.21)

Extension of spring D:

xD = xCDG − xC (S.22)

On simply resubstituting for xc and xCDG in Eq. S.22 using Eq. S.12 to S.21,
we obtain:

xD = (xclutch − xA) ·
(
1− kBCDFG

kB

)
·
(
1− kCDG

kC

)
(S.23)

Since xclutch = xcomb · aclutch, we get

xD = (xcomb·aclutch − xA) ·
(
1− kBCDFG

kB

)
·
(
1− kCDG

kC

)
(S.24)

From Eq. S.13 we have FA = Fclutch. Hence,
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xA =
FA

kA
=

Fclutch

kA
=

kclutch·xclutch

kA
=

kclutch· (xcomb·aclutch)
kA

(S.25)

Therefore, the extension of spring D is given by

xD = (xcomb·aclutch) ·
(
1− kclutch

kA

)
·
(
1− kBCDFG

kB

)
·
(
1− kCDG

kC

)
(S.26)

4.5.7 Reactions in the model

4.5.8 Integrin activation
Integrins transition from a low-affinity to a high-affinity state when they bind
to ECM ligands or cytosolic adaptor proteins such as talin (Calderwood, 2004;
Li & Springer, 2018). Once ligand-bound, the integrin is anchored to the ECM,
enabling bi-directional transmission of force. In this study, we model α5β1

integrins and assume they are activated.

4.5.9 Pre-complexation of integrin, talin and vinculin
Rx1 = k1f ·[int]·[tal]·[vinc]− k1r·[Pcomp] (S.27)

Pre-complexation of talin and vinculin is necessary for NA maturation (Han
et al., 2021). The first reaction is the combined reaction involving talin (tal)
and vinculin (vinc) binding to integrin (int) to form an integrin-adaptor pro-
tein complex termed Pcomp. This species does not bind to actin and hence
does not experience force. The reaction is reversible and has a forward rate
constant of k1f and a reverse rate constant of k1r.

4.5.10 Integrin clustering
Integrin clustering to form NAs is critical for cellular mechanosensitivity (Miller
et al., 2020). Clustering is initiated by integrin binding to talin (Ellis et al.,
2014), vinculin recruitment to the adhesion (Humphries et al., 2007) and force
application (Changede et al., 2015; C. K. Choi et al., 2008; Roca-Cusachs et al.,
2009). Ligand type and density on the ECM also influence clustering, with
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an upper limit for ligand spacing of around 60 nm (Jiang et al., 2003; Roca-
Cusachs et al., 2009; Schvartzman et al., 2011). Integrin clustering is a contin-
uous process and clusters can grow to contain up to 50 integrins (Changede
et al., 2015).

As a simplification, here the growth of clusters to the maximal considered
size (50 integrin–adaptor protein complexes) is split into two stages with the
initial clustering resulting in a small cluster of 25 integrin–adaptor protein
complexes, termed ‘seed’ and denoted by ‘Sx’, and a second clustering re-
action where seeds dimerize to give a large cluster with 50 integrin-adaptor
protein complexes, termed ‘clust’ and denoted by ‘Cx’ (Figure 4.1C). Here,
x = (1, 2, 3) and denotes the number of vinculin molecules in the individual
integrin-adaptor protein complexes. Actin-bound seeds and clusts are denoted
by ‘Sxa’ and ‘Cxa’ respectively. We assume that the ligand spacing is suffi-
ciently close for integrin clusters to form.

4.5.11 Seed formation
Rx2 = k2f ·[Pcomp]2 − k2r·[S1] (S.28)

To form a seed, 25 Pcomps come together at a constant rate of k2f and are
assumed to bind simultaneously and parallelly to form the lowest order AUB
seed, S1. S1 seeds breakdown to give 25 Pcomps at a constant rate of k2r. The
order of the reaction with respect to Pcomp is set to two to account for any
intermediate steps that might be present in the process of clustering (setting
the order to one gives similar results, see Figure S.4.12.

4.5.12 Clust formation through seed dimerization

Rx3 = k3f · [S1]2 − k3r · [C1] (S.29)

Rx14 = k14f · [S1a]2 − k14r · [C1a] (S.30)

Rx15 = k15f · [S2a]2 − k15r · [C2a] (S.31)

Rx16 = k16f · [S3a]2 − k16r · [C3a] (S.32)

S1 seeds reversibly dimerize with constant forward and reverse rates (k3f and
k3r), forming lowest order AUB clusts, C1, containing 50 Pcomps. Higher-
order AUB seeds (S2, S3) are not allowed to dimerize as they experience talin

133



4

Chapter 4. Force-dependent focal adhesion assembly and disassembly: a
computational study

refolding (Yao et al., 2014; Yao et al., 2016) and hence should be more likely to
break down than to form clusts. However, AB seeds of all orders (S1a, S2a,
and S3a) can dimerize to form AB clusts (C1a, C2a, and C3a).

4.5.13 Actin binding/unbinding

Rx4 = k4f · [S1]− k4r · [S1a] (S.33)
Rx5 = k5f · [S2]− k5r · [S2a] (S.34)
Rx6 = k6f · [S3]− k6r · [S3a] (S.35)
Rx9 = k9f · [C1]− k9r · [C1a] (S.36)

Rx10 = k10f · [C2]− k10r · [C2a] (S.37)
Rx11 = k11f · [C3]− k11r · [C3a] (S.38)

Actin-unbound (AUB) clutches (S1, S2, S3, C1, C2, C3) can bind to actin
filaments through the actin-binding sites on talin and vinculin. This results in
actin-bound (AB) clutch (S1a, S2a, S3a, C1a, C2a, C3a) (Figure 4.1C) that
can experience and transmit force. The baseline actin-binding rate is kact for
all actin-binding reactions.

4.5.14 Force-dependent actin-unbinding and time-dependent
rate modification (TDRM)

As explained in the main text (Section ‘Force-dependent actin unbinding and
time-dependent rate modification’) and supplementary sections Slip and catch
bonds and Time-dependent rate modification (TDRM), the combined bond-
rupture rate of the catch-slip and slip bonds depend on the force on the
clutches and are given by :

koffCS
= A · e−b·F clutch + C · ed·Fclutch + kTDRM · kslipUL

· e
Fclutch
Fthi (S.39)

where Fclutch is the force on an individual complex in the clutch, Fthi
is

the talin–actin slip bond rupture threshold i ∈ {1, 2, 3}, kslipUL
is the un-

loaded dissociation rate of talin from actin, and kTDRM is the TDRM fac-
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tor (explained in supplementary section Time-dependent rate modification
(TDRM)).

4.5.15 Adhesion reinforcement
When talin is subject to extensions, a maximum of eleven vinculin-binding
sites (VBS) that are otherwise cryptic are uncovered (Gingras et al., 2005;
Rio et al., 2009). This allows for more vinculin to be recruited to reinforce
the bond with the actin network. In this model, we consider two vinculin-
reinforcement events.

Since we assume vinculin binds instantaneously once the vinculin binding
site is uncovered, the rates of the reinforcement reactions are equal to the rate
at which talin unfolds, which depends on the force experienced by the clutch
as explained in the main text in section Force quantification.

4.5.16 First vinculin reinforcement

Rx7 = k7f · [S1a] · [vinc]2 − k7r · [S2a] (S.40)

Rx12 = k12f · [C1a] · [vinc]2 − k12r · [C2a] (S.41)

A low order AB clutch (S1a, C1a) is stretched when it is pulled by actin. The
first VBS is uncovered when each complex within the AB clutch experiences
a force of 5 pN leading to additional vinculin binding (Yao et al., 2016). The
forward rates (k7f , k12f ) of these reactions are dependent on the force experi-
enced by the AB clutches undergoing reinforcement and are given by eq. 4.20
(main text).

4.5.17 Second vinculin reinforcement

Rx8 = k8f · [S2a] · [vinc]2 − k8r · [S3a] (S.42)

Rx13 = k13f · [C2a] · [vinc]2 − k13r · [C3a] (S.43)

A mid-order (S2a, C2a) AB clutch is stretched further on application of force
resulting in a second VBS being uncovered when the force reaches 12 pN(Rio
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et al., 2009), allowing further vinculin binding. The forward rates of these
reactions (k8f , k13f ) depend on the force experienced by the AB clutches un-
dergoing second reinforcement and are given by eq. 4.20 (main text).

Reinforcement of seedsand clustsis modelled as a single-step reaction where
simultaneous recruitment of 25 and 50 vinculin molecules respectively oc-
curs. However, the orders of the reinforcement reactions (Rx7, Rx8, Rx12,
Rx13, Table S.4.2) with respect to vinc were chosen to be 2 to approximately
account for the influence of possible intermediate stages in the reactions.

4.5.18 Adhesion disassembly
In the absence of sufficient force, adhesions disassemble because of mechan-
ical and chemical signals (Stumpf et al., 2020). Here, we model two parallel
processes of disassembly, namely talin refolding and cluster breakdown.

4.5.19 Talin refolding

Rx17 = k17f · [S3] (S.44)
Rx18 = k18f · [S2] (S.45)
Rx19 = k19f · [C3] (S.46)
Rx20 = k20f · [C2] (S.47)

Once a seed or a clust unbinds from actin due to bond rupture (Section Actin
binding/unbinding), the clutch is no longer held under force. This increases
the likelihood of stretched talin refolding and the recruited vinculin molecules
dissociating. However, vinculin binding stabilizes stretched talin and reduces
refolding rates(Yao et al., 2014). Additionally, the vinculin exchange rate is
nearly 60% higher in NAs than in stable adhesions (Möhl et al., 2009). There-
fore, the first talin-refolding event that results in a high to mid order tran-
sition (S3 to S2 and C3 to C2, rate constants k17f , k19f ) occurs at a slower
rate than the second talin-refolding event that results in a mid to low order
transition (S2 to S1 and C2 to C1, rate constants k18f , k20f ). In particular, the
rates of the first talin-refolding and second talin-refolding reactions are given
by k17f = k19f = talrffactor

· talrf s−1 and k18f = k20f = talrf · sigdep s−1 re-
spectively, where talrffactor

is the factor by which the first talin-refolding rate
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is slower than the second, and talrf is the baseline talin refolding rate (Ta-
ble S.4.1). The talin-refolding events are irreversible reactions (Rx17, Rx18,
Rx19, Rx20, Table S.4.2) since the VBS on talin is assumed to be covered for
AUB seeds and clusts.

4.5.20 Clust breakdown to seed

Rx21 = k21f · [C3] (S.48)
Rx22 = k22f · [C2] (S.49)

AUB clusts can break down to give two AUB seeds through an irreversible
reaction (Figure 4.1B). Since a high order clust (C3) is more robust to talin-
refolding, we also assume it is more stable than a mid-order clust (C2). Hence,
the high-order AUB clust to high-order AUB seed (C3 to S3) transition was as-
sumed to be slower than mid-order AUB clust to mid-order AUB seed (C2 to S2).
The baseline rates for these breakdown reactions were set at k21f = 0.005 s−1

and k22f = 0.008 s−1, respectively. While these values were arbitrarily cho-
sen, they were of the same order of magnitude as reverse rates of seed dimer-
ization reactions (Rx14, Rx15, and Rx16, Table S.4.2).

4.5.21 Actin retrograde velocity
The cell membrane at the leading-edge pushes back on actin filaments under-
going actin-polymerization. Additionally, myosin II motors that are present
away from the cell edge pull on the actin filaments with a force of 2 pN per
motor (Cooper, 2000; Kee & Robinson, 2008; Molloy et al., 1995). These two
forces cause an overall flow of actin filaments away from the cell membrane,
known as the actin retrograde flow. Coupling the retrograde flow to the ECM
through the adaptor protein–integrin–ligand chain effectively establishes a
connection between the cell and its environment.

We assume that the force exerted by myosin II motors on actin filaments is
balanced by the drag force arising due to the viscosity of the cytoplasm. Thus,
in the absence of integrin-mediated forces on actin filaments, they move with
a constant retrograde velocity. When clutches bind to the actin filaments,
they provide resistance to the motion of actin filaments until they unbind, ei-
ther spontaneously or because the catch/slip bond threshold is reached. This
resistance decelerates the actin filaments. When the resistance provided by
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clutches is equal to the force exerted by myosin II motors, the actin filaments
stop moving and the retrograde velocity is reduced to 0. Since all forces act
along a single axis in the model, applying force balance gives a linear rela-
tionship between force and velocity:

vretro = vu ·
(
1− Ftotal

Fmyo

)
(S.50)

where vu is the unloaded velocity of the actin filaments, Ftotal is the total force
exerted by all AB clutches (see section Force quantification), and Fmyo is the
total force exerted by myosin II motors.

Fmyo is given by:

Fmyo = n · concmyo · Fmyosingle
(S.51)

where n is a conversion factor to convert concentrations to number of molecules
(see Table S.4.1), concmyo is the concentration of active myosin II motors, and
Fmyosingle

is the force produced by a single myosin II motor. concmyo was ad-
justed such that the lowest value of velocity achieved for the baseline model
was within 10% of that observed in experiments (Chan & Odde, 2008). As a
continuous ODE framework is used, we consider the same actin retrograde
velocity for all clutches.

4.5.22 Force quantification
The force on a clutch depends on its stiffness which depends on the number of
constituent IAPCs and the number of vinculin molecules in each IAPC (see
supplementary methods section 1.1). As clutches are connected in series to
the substrate spring, when actin filaments pull the system of springs by unit
distance, the extension is shared between the clutch and the substrate (Figure
4.1C). The fractional extension aclutch (for calculation, see section Fractional
extension of clutches) experienced by the clutch when the entire system ex-
periences unit extension, depends on the ratio of the stiffness of the clutch to
the stiffness of the entire substrate–clutch system.

The total force on the network of actin filaments depends on the number of
AB clutches of each type and the extensions of the respective clutches. Since
we use a continuum approach to account for the abundance of each species,
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the concentrations need to be discretized. The need to discretize arises as
the model treats the different clutches and force-exerting species as springs
of certain stiffnesses. Thus, the force generated depends on the number of
springs of a certain stiffness that experience an extension.

Concentrations are discretized by assuming a volume of 1 µm3 which is ap-
proximately the volume of large focal adhesions and their immediate sur-
roundings (Franz & Müller, 2005). The concentrations were multiplied by the
volume and the Avogadro number, NA, accounting for the different units to
obtain a discrete number of clutches. As mentioned earlier, all members of a
certain species experience the same extension and force. The force exerted by
one clutch of a particular species is

Fclutch = kclutch · (aclutch · vretro · dt) (S.52)

Where kclutch is the stiffness of the clutch, aclutch is the fractional extension
of the clutch (derivation in section Fractional extension of clutches), vretro is
the retrograde velocity in the current time step and dt is the duration of the
time step. Then, the total force exerted by all clutches of this type is

Ftotalclutch
= mclutch · Fclutch (S.53)

where m is the number of clutches of a particular type i.e., the discretized
concentration.

Therefore, the total force exerted by all AB clutches in the system is given
by:

Ftotal =
∑

clutch

mclutch · Fclutch (S.54)

4.5.23 Substrate rigidity range
A range of substrate rigidities based on previous computational studies, be-
tween 0.1 pN/nm and 100 pN/nm, was used for simulations in this model
(Chan & Odde, 2008). For all investigations except parameter sensitivity,
analysis four stiffnesses, namely ksub =[0.1,1,10,100] pN/nm were used. For
parameter analysis and to plot figures 3, 4, S6, S7, 519 values of ksub spaced
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approximately logarithmically between 0.1 pN/nm and 1000 pN/nm were
used to obtain a more continuous distribution of stiffnesses.

To compare our simulated results with experimental results, substrate stiff-
ness when expressed in terms of a Young’s modulus was converted to a
Hookean spring constant according to

ksubstrate =
4πr

E
(S.55)

where E is the Young’s modulus, and r is the radius of a circular adhesion
site (r = 550nm) as described in Cheng et al., 2016 and Elosegui-Artola et al.,
2014.

4.5.24 Signal-dependent rate modification (SDRM)
Numerous nascent adhesions (NAs) form at the moving edge but only a few
remain after a few minutes (Changede & Sheetz, 2017; C. K. Choi et al., 2008).
The assembly of NAs correlates with cell protrusion speed and actin polymer-
ization is necessary for the nucleation of NAs (C. K. Choi et al., 2008; Vicente-
Manzanares et al., 2007). Actin network branching reduces away from the cell
edge (Okeyo et al., 2009; Oser & Condeelis, 2009). Since actin is depolymer-
ized more rapidly away from the cell membrane (Oser & Condeelis, 2009)
not all the NAs that were formed can be supported without an extensive
actin filament network, and hence disassemble. Many signalling molecules
such as focal adhesion kinase (FAK), Src and ERK kinases are known to in-
fluence adhesion disassembly. FAK phosphorylated at Tyr-397 was found
to be positively correlated to adhesion disassembly rates (Webb et al., 2004).
FAK is also inhibited closer to the leading edge of the cell due to its inter-
actions with Arp2/3, a protein involved in actin branching (Swaminathan et
al., 2016). Actin branching reduces away from the leading edge (Okeyo et al.,
2009; Oser & Condeelis, 2009), implying that FAK is less inhibited in regions
further from the leading edge. Since NA disassembly occurs as they move
away from the leading edge, FAK may be implicated in NA disassembly. Ad-
ditionally, calpain is known to be involved in regulating adhesion disassem-
bly through proteolysis of talin(Franco et al., 2004), and its inhibition leads to
disruption of adhesions containing zyxin (Bhatt et al., 2002).

Here, we model a hypothetical signal molecule which is essential for new NA
formation (Rx1, Rx2, Rx3, Table S.4.2) and low-order AUB clutches (S1, C1)
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to bind actin (for maturation) (Rx4, Rx9, Table S.4.2 ). We impose that a
minimum concentration, signalthresh, of the signal molecule is required for
these reactions to occur. The concentration [signal] of this molecule is initially
high and decreases according to eq.4.17 (main text). Thus, the rate of decay
of [signal] determines the amount of time available before NA disassembly
starts in which adhesion maturation can occur. The model behaviour does
not change by assuming the opposite i.e., [signal] increases over time and
there is an upper limit for its concentration beyond which actin binding does
not occur (Figure S.4.3B).

The modifications to the rates were made by multiplying the baseline rate
constant by a signal-dependent rate modification (SDRM) factor given by the
function:

sigdep =

{
1 [signal] > [signalthresh](

1
[signalthresh]

)
· [signal] [signal] ≤ [signalthresh]

(S.56)

This results in sigdep having a value of 1 before signalthresh is crossed but
would then decrease at the same rate as [signal] (Figure S.4.3A).

Thus, if the [signal] falls below signalthresh, the rates of the following reac-
tions were modified as described:

Pre− complexformation(Rx1) : k1f = k1fbase
· sigdep (S.57)

S1formationfromPcomp(Rx2) : k2f = k2fbase
· sigdep (S.58)

C1formationfromS1(Rx3) : k3f = k3fbase
· sigdep (S.59)

Actin− bindingrate(Rx4, Rx9) : k4f = k9f = kact · sigdep (S.60)

where kact is the baseline actin-binding rate.

The breakdown rates of mid-order clutches (S2, C2) to low-order clutches
(S1, C1) also decrease after [signal] falls below the threshold to reflect the
fact that the adhesions that are chosen to be matured are not broken down,
and may progress to form FAs. As FAs are much larger in size compared to
NAs, it implies that the large clusters (C3, C2) are less likely to break down to
smaller clusters (S3, S2) if they are undergoing maturation to FAs. Thus, the
rates of breakdown of high and mid-order clusts to seeds (C3 to S3, C2 to S2)

141



4

Chapter 4. Force-dependent focal adhesion assembly and disassembly: a
computational study

were also made [signal]-dependent. These rates were modified in the follow-
ing way:

S2, C2toS1, C1breakdownrate(Rx18, Rx20) : k18f = k20f = talrf · sigdep
(S.61)

C3breakdowntoS3(Rx21) : k21f = k21fbase
· sigdep (S.62)

C2breakdowntoS2(Rx22) : k22f = k22fbase
· sigdep (S.63)

where talrf is the baseline talin-refolding rate.

Once the signal concentration goes below signalthresh, mechanisms to dis-
assemble the initially formed clusters must become more active. Without
an increase in activity, integrins will accumulate in low order AUB clutches
(S1, C1) since the rate of breakdown of S1 to Pcomp is a very small value
at baseline. To ensure these species are broken down once signalthresh is
crossed, the reverse rates of Pcomp formation (Rx1), seed formation (Rx2),
and seed dimerization (Rx3) need to be increased. These rates are modified
in the following way:

C1breakdown(Rx3) : k3r =

{
0.0001 [signal] > [signalthresh]

kdis · (1− sigdep) [signal] ≤ [signalthresh]

(S.64)

S1breakdown(Rx2) : k2r =

{
0.0001 [signal] > signalthresh

kdis · (1− sigdep) [signal] ≤ [signalthresh]

(S.65)

Pcompbreakdown(Rx1) : k1r =

{
k1rbase

[signal] > [signalthresh]

2 · k1rbase
· (1− sigdep) [signal] ≤ [signalthresh]

(S.66)

The value of kdis was obtained by multiplying the experimentally measured
disassembly rate (C. K. Choi et al., 2008) by a factor such that the simulations
closely matched the experimentally determined NA assembly-disassembly
curves (C. K. Choi et al., 2008) (Figure 4.4, main text).
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4.5.25 Slip and catch bonds
The talin–actin bond is a slip bond whose stability decreases with increas-
ing force (Jiang et al., 2003), implying a monotonically increasing unbinding
rate with force. Here, we assume the unbinding rate increases exponentially
with force according to the Bell model (Bell, 1978). The stability of catch
bonds increases with the application of force (Dembo et al., 1988). With in-
tegrins, both catch and slip bond characteristics were observed in different
force regimes, leading to the concept of a catch-slip bond. Particularly, the
catch-slip behaviour was observed for α5β1, α4β1 and αLβ2 integrins under
different force regimes (W. Chen et al., 2010; Y. I. Choi et al., 2014; Kong et al.,
2009). In a catch-slip bond, the lifetime of the bond increases up to a force
threshold beyond which the lifetime starts to decrease. A fully connected
force chain (ligand–integrin–adaptor protein–actin filament) can be broken at
two points, namely at the talin–actin slip bond or the integrin–ligand catch-
slip bond. In this model, integrins are assumed to be ligand-bound when
they are actin-bound. Thus, an actin-bound clutch is considered to become
actin-unbound when either the integrin-ligand bond or the talin-actin bond
is broken. The effective rate of actin-unbinding of a particular clutch depends
on the force experienced by individual complexes in the clutch and is given
by a sum of the catch-slip and slip bond rates:

koffCS
= A · e−b·F clutch + C · ed·Fclutch + kslipUL

· e
Fclutch
Fthx (S.67)

where Fclutch is the force on an individual complex in the clutch, Fthx
is the

talin–actin slip bond rupture threshold (x ∈ {1, 2, 3} (Table S.4.1), kslipUL
is

the unloaded dissociation rate of talin from actin. The first and second terms
define the integrin-ligand catch-slip bond - A·e−b·Fclutch captures the decrease
in unbinding rate characteristic of a catch bond and C · ed·Fclutch captures the
increase in unbinding rate characteristic of a slip bond , b and d are parameters
that control the force-dependency of the unbinding rate.

Since vinculin also binds actin, reinforcement increases the force-carrying
capacity of a clutch. The vinculin–actin bond is a catch-slip bond that is
maximally stable at 8 pN of force (Huang et al., 2017). The talin–actin slip
bond is the weaker link of these two, with a rupture force of 2 pN (Jiang
et al., 2003). Therefore, for any increase in force up to 8 pN, the vinculin–
actin unbinding rate reduces, effectively maintaining the actin-bound state
of a clutch for longer. To maintain simplicity, instead of explicitly modelling
the vinculin–actin catch bond, reinforcement was modelled as an increase in
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the force thresholds for the talin-actin slip bond. The force thresholds were
increased by 0.5 pN for each reinforcement event, effectively increasing the
force thresholds for mid (S2a, C2a) and high (S3a, C3a) order AB clutches,
Fth2 and Fth3, to 2.5 and 3 pN respectively (Table S.4.1). Once the force on AB
clutches reaches the corresponding force threshold, they are assumed to im-
mediately unbind from actin to give their AUB counterparts, resulting in the
concentration of AB clutches going to 0, and that of AUB clutches increasing
by the same amount.

4.5.26 Time-dependent rate modification (TDRM)
Although integrins cluster on substrates of all stiffnesses, the traction force
generated and consequently the maturation of adhesions depends on the sub-
strate stiffness (Chan & Odde, 2008; Cheng et al., 2016; Zhou et al., 2017). Once
unbound, the talin in the clutch returns to its folded state and the unfolding
process needs to start again. While this can result in an equilibrium being es-
tablished with a large number of simultaneously bound clutches, the force on
each clutch remains low and only increases slowly. Therefore, even though
the number of bound clutches (or concentration) is high, the average force
per clutch (total force divided by the number of bound clutches) remains low
as the clutches are likely to unbind spontaneously before reaching their max-
imum force carrying capacity.

The model in this study is a continuous model that aims to captures the over-
all ‘average’ behaviour of all clutches. As such, all clutches of a particular
kind are said to experience the same force and this increases with every time-
step until the respective thresholds are reached. Thus, the total force exerted
by a certain clutch type is the product of the concentration and the force on
one such clutch. This makes it challenging to account for the reduction in
the total force that is caused by spontaneous clutch unbinding events as it
is impossible to keep track of force on individual clutches. To account for
this we introduce a method of time dependent rate modification (TDRM) to
capture the (individual, discrete) spontaneous clutch unbinding events in a
continuous framework. Since the total force exerted by a particular family of
clutches is the product of the concentration of the clutch and the force on one
such clutch, by introducing a time-dependent increase in the unbinding rate,
it is possible to ensure that the total force does not monotonically increase.

More specifically, as derived and described by Novikova et al. (Novikova &
Storm, 2013), the probability pclosed that a bond that is closed at time t remains
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closed at time t+∆t reduces exponentially and is approximately equal to:

pclosed (t+∆t) ∼ e−kLT · ∆t (S.68)

where 1
kLT

is the expectation value of the lifetime (Novikova & Storm, 2013)
(this theoretical formulation is only used to support our formulation of TDRM,
and we do not use the expectation value kLT in our model). Thus, the prob-
ability of bond-rupture increases with time spent in the bonded state, ∆t,
asymptotically reaching the value of 1. Hypothetically, as the probability of
bond-rupture popen approaches 1 (pclosed approaches 0), the bond-rupture rate
approaches infinity causing all bound clutches to unbind. Clearly, the bond-
rupture rate grows exponentially with decreasing pclosed. In this model, the
time step dt is fixed (Table S.4.1). Because we use Euler’s forward integration
method, the concentrations at time t + ∆t is given by rate · dt. Thus allow-
ing an unlimited, exponential growth in reaction rates can lead to numerical
errors such as negative concentrations. As such, to limit the unbinding rates
and prevent numerical integration errors, we approximate the first part of the
exponential curve with a linear function. But consider a linear function of the
type f(x) = ax and an exponential function of the form g(x) = eax. It can
be observed that f (x) ≤ g (x) ∀x. Therefore, if the increase in unbinding rate
is approximated by a linear function instead of an exponential one, the max-
imum value of rate · dt for the time-scales of this model will not be too large
and will avoid numerical integration errors. With this approach, the model
still captures the qualitative effects of an increasing unbinding rate, but the
effect will not be as pronounced as it would be if an exponential function is
used.

Thus, TDRM was incorporated by modifying the rate constants for actin-
unbinding reactions (k4r, k5r, k6r, k9r, k10r, k11r) by multiplying the un-
loaded dissociation rate of the slip bond, kslipUL

with a TDRM factor given
by:

kTDRMFactor = 1 + ksens · tclutch · dt (S.69)

where ksens determines the sensitivity to the time tclutch that AB seeds or
AB clusts spend in the force-loading phase. tclutch increases by 1 in each
time step until the force Fclutch on each complex in the clutch equals Fthclutch

,
the threshold force, when it is reset to 0. The value of ksens can be taken
to represent the reciprocal of the lifetime of the bond just as kLT in eq. S.68.
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The lifetime of the talin-actin bond under physiological conditions is between
10–100 seconds (Owen et al., 2022). Here, a baseline value of ksens = 0.05 is
used (implying a lifetime of 20 seconds), but it is important to note that the
qualitative trends in the model outcomes remained the same for values of
ksens ≥ 0.02 (lifetime ≤ 50 seconds).

Since the chain of links between the ECM and the actin cytoskeleton can
break at the integrin–ECM or the talin–actin linkages, an increase in either the
integrin–ECM catch-bond rupture or talin–actin slip bond rupture in essence
has the same effect on the results of the model – both lead to an incomplete
chain and subsequent loss of force transmission. As TDRM was devised to
qualitatively capture bond-rupture dynamics, we limited the effect of TDRM
to the unloaded slip bond dissociation rate kslipUL

. However, increasing both
the unloaded slip and catch-bond dissociation rates (kslipUL

, A and B in Eq
S.39) also results in the same trends but with a larger difference between con-
centrations of species on soft and stiff substrates, and consequently the mat-
uration fraction (Figure S.4.13)

4.5.27 Curve-fitting for parameter values
The values of parameters of the integrin–ligand catch bond and the rate of
talin unfolding due to force were determined by fitting double and single
exponential equations respectively to experimental data (Kong et al., 2009;
Rio et al., 2009) using the in-built MATLAB function ‘fminsearch’. Specifically,
for the catch bond, force-bond lifetime data of the Mn2+ activated α5β1- Fn
(fibronectin) from Kong et al., 2009 was obtained by digitizing Figure 3C in the
publication. For the rate of talin unfolding, data from experiments involving
stretching of full-length talin by Rio et al. (2009) (Rio et al., 2009) was used
(Figure 4.4F in the main text).

The stiffness of talin used in this study (0.1 pN/nm) was obtained by cal-
culating the gradient of force-extension curves in the linear regime at low
extensions of full length talin rod as reported by Yao et al., 2016.

4.5.28 Mass conservation
Mass conservation was checked by calculating the sum of concentrations
of integrins and talin across all integrin and talin containing species in the
model. The equations for mass conservation are below:
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Integrins : [int] + [Pcomp] + 25 · ([S1] + [S2] + [S3] + [S1a] + [S2a] + [S3a])
(S.70)

+ 50 · ([C1] + [C2] + [C3] + [C1a] + [C2a] + [C3a])

Talin : [tal] + [Pcomp] + 25 · ([S1] + [S2] + [S3] + [S1a] + [S2a] + [S3a])
(S.71)

+ 50 · ([C1] + [C2] + [C3] + [C1a] + [C2a] + [C3a])

Vinculin : [vinc] + [Pcomp] + 25 · ([S1] + [C1] + [S1a] + [C1a]) (S.72)
+ 50 · ([S2] + [S2a] + [C2] + [C2a])

+ 75 · ([S3] + [S3a] + [C3] + [C3a])

4.5.29 Fitting a line through force peaks
For Figure S.4.11, to quantify the peak force exerted by each species and the
total force exerted by all species over time, the peaks of the force-time data
were identified using a built-in MATLAB function ‘findpeaks’. A smooth-
ing spline was then fit through the identified peaks using the ‘fit’ function in
MATLAB.

4.5.30 Supplementary results

4.5.31 The model satisfies mass conservation
Testing for mass conservation showed that the total concentration of integrins
and talin during the simulation remained at the initial concentrations of 1 µM
(Figure S.4.2). This was also true for vinculin when the simulation was run
with a limited amount of vinculin (not shown). This shows that there are no
runaway variables or leaks in the system of differential equations used.

4.5.32 Signal decay (or growth) rate matches nascent adhesion
assembly phase

Figure S.4.3A shows the concentration of signal over time. The rate of de-
cay of the signal molecule was adjusted such that it crosses the concentration
threshold signalthresh (of 0.1 µM ) after around 58 seconds. tsig is the time at

147



4

Chapter 4. Force-dependent focal adhesion assembly and disassembly: a
computational study

which this threshold is crossed. NA formation reactions are allowed to un-
dergo for this duration as it is the length of the experimentally determined
NA assembly phase (C. K. Choi et al., 2008).

The behaviour of the model does not change if the converse is assumed – i.e.
the signal grows with time and above a certain concentration of signal (here
the threshold is set to 0.9 µM ) the signal-dependent reactions start to slow
down. The growth rates can be adjusted to result in the same time dynamics
(Figure S.4.3B).

4.5.33 Limited vinculin results
As the simulations by default assume a constant concentration of vinculin, to
investigate whether the optimal substrate stiffness is obtained even in limited
vinculin environments, the initial concentration of vinculin was set to 1 uM ,
equal to that of integrin and talin, and was not replenished during the sim-
ulation. The rest of the parameters were maintained at baseline values. The
general trends for concentrations of mid and high order clutches remained
the same with limited vinculin concentration (Figure S.4.5). A key difference
was that the concentration of high-order clutches was lower by almost an or-
der of magnitude (Figure S.4.5(iii) vs Figure S.4.7A(iii)) and the concentration
of low-order clutches was nearly twice as high compared to constant vinculin
conditions (Figure S.4.5(i) vs Figure S.4.7A(i)). This coupled decrease and
increase in concentrations show that the seed and clust (S1, C1, S1a, C1a)
formation occurred to the same extent, but maturation was lower when vin-
culin was limited. While the maturation fraction varied biphasically with
substrate stiffness when the vinculin concentration was kept constant (Figure
S.4.7A(iv)), there was a monotonic decrease when the vinculin concentration
was limited (Figure S.4.5(iv)). Increasing ksens increased this difference (not
shown).

4.5.34 Investigating the biphasic relation between traction force
and substrate stiffness

To ensure that the biphasic relationship between force and substrate stiff-
ness indeed arises from a combination of low force and low concentrations
of clutches, we can look at the total force exerted by each clutch on substrates
of different stiffnesses. The total force exerted by a species, which we term
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‘force-concentration’ for simplicity, is the product of the discretized concen-
tration of the species and the force on one clutch of the species (S.58). To
capture the general trend, a curve can be fitted on the peaks of the force-
concentration plots. Figure S.4.11 shows these fitted curves for each species
on four substrate stiffnesses. Notably, the force-concentration of C3a and S3a
are the highest on all stiffnesses as they are the most reinforced clutches and
have the highest force-carrying capacities. The force-concentration of S3a is
higher than that of C3a initially even though the force-capacity of C3a is twice
that of S3a (as C3a is a dimer of S3a). But there is a gradual reduction of this
difference over time due to continued dimerization of S3a into C3a.

4.5.35 Sensitivity analysis results
Figures Figure S.4.9 and Figure S.4.10 show the results of sensitivity analysis
conducted on 22 different parameters on the two outcomes detailed in the
main text. Of these, 7 parameters were chosen to be shown in Fig4.5 (main
text), either because the outcomes were highly sensitive to these parameters
or because they were of particular interest and had a relatively low influ-
ence.

4.5.36 Supplementary tables
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Table S.4.1 Parameter values used for the baseline model

Parameter Definition Value Ref. Remark Ref. type
k1fbase

Pre-complex formation 0.12 s−1 Bachir et
al., 2014;
Lavelin et
al., 2013

Experimental

k1rbase Pre-complex dissociation 0.095 s−1 Bachir et al.,
2014

Experimental

k2fbase
S1 formation from Pcomp 0.021 s−1 C. K. Choi et

al., 2008
Experimental

k3fbase
C1 formation from S1 0.021 s−1 C. K. Choi et

al., 2008
Experimental

k7r Vinculin dissociation from AB
seed

0.0001 s−1 Estimate

k8r Vinculin dissociation from AB
seed

0.0001 s−1 Estimate

k12r Vinculin dissociation from AB
clust

0.0001 s−1 Estimate

k13r Vinculin dissociation from AB
clust

0.0001 s−1 Estimate

k14f S1a dimerization 1 s−1 Cheng et al.,
2020

Computational

k14r C1a dissociation to S1a 0.001 s−1 Estimate
k15f S2a dimerization 1 s−1 Cheng et al.,

2020
Computational
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k15r C2a dissociation to S2a 0.001 s−1 Estimate
k16f S3a dimerization 1 s−1 Cheng et al.,

2020
Computational

k16r C3a dissociation to S3a 0.001 s−1 Estimate
k21fbase

C3 dissociation to S3 0.005 s−1 Estimate
k22fbase

C2 dissociation to S2 0.008 s−1 Estimate
k23KM

Michaelis-Menten constant for
signal decay

2.13 µM Estimate

k23vmax
Maximum velocity for signal de-
cay reaction

0.1 µMs−1 Estimate

kunfoldUL
Rate of unloaded talin unfolding 1.54 s−1 Rio et al.,

2009
Experimental

koffUL
Unloaded talin-actin unbinding
rate

0.35 s−1 Chan and
Odde, 2008

Estimate
based on
literature

Computational

kuf Talin-unfolding exponent factor 0.05 Rio et al.,
2009

Experimental

A Catch bond parameter 2.52 s−1 Kong et al.,
2009

Experimental

b Catch bond parameter -0.107 s−1 Kong et al.,
2009

Experimental

C Catch bond parameter 0.000123
s−1

Kong et al.,
2009

Experimental

d Catch bond parameter 0.1897 s−1 Kong et al.,
2009

Experimental
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Fth1 Force threshold for talin-actin
slip bond for low order clutch

2 pN Jiang et al.,
2003

Experimental

Fth2 Force threshold for talin-actin
slip bond for mid order clutch

2.5 pN Jiang et al.,
2003

The in-
crease is
estimated
to ac-
count for
vinculin-
actin
bond

Experimental

Fth3 Force threshold for talin-actin
slip bond for high order clutch

3 pN Jiang et al.,
2003

The in-
crease is
estimated
to ac-
count for
vinculin-
actin
bond

Experimental

Fvb1 Force threshold for 1st vinculin
binding event

5 pN Yao et al.,
2016

Experimental

Fvb2 Force threshold for 2nd vinculin
binding event

12 pN Rio et al.,
2009

Experimental

n Conversion factor from concen-
tration to molecules

Local
volume*NA

concmyo Concentration of active myosin
motors

4 µM Adjusted
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Fmyosingle
Force exerted by a single myosin
motor

2 pN Molloy et al.,
1995

Experimental

vu Unloaded actin retrograde ve-
locity

110 nm/s Chan and
Odde, 2008;
Elosegui-
Artola et al.,
2016

Computational,
Experimental

dt Time step 0.005 s Used in
this study

Local vol-
ume

Volume of focal adhesions and
their immediate surroundings

1 um3 Franz and
Müller, 2005

Estimate Experimental

ktal Stiffness of talin molecule 0.1 pN/nm Yao et al.,
2016

Estimate
from
force-
extension
curves

Experimental

kvinc Stiffness of vinculin molecule 0.25
pN/nm

Huang et al.,
2017

Experimental

ksub Substrate stiffness 0.1-100
pN/nm

Tested

talrf Talin refolding rate 1 s−1 Yao et al.,
2016

Estimate
based on
experi-
mental
data (Fig
4.5e)

Experimental
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talrffactor
Talin refolding rate factor for 1st

refolding event
0.5 Estimate

ksens Time-dependency factor 0.05 Estimate
kdis Disassembly rate of nascent ad-

hesions
0.02434 s−1 C. K. Choi et

al., 2008
Adjusted
– exper-
imental
rate was
multiplied
by 2

Experimental

signalthresh Threshold concentration of sig-
nal

0.1 µM Arbitrary

NA Avogadro’s constant 6.023 · 1023
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Table S.4.2 Reactions in the model

Rx number Reaction
Rx1 k1f · [int] · [tal] · [vinc]− k1r · [Pcomp]
Rx2 k2f · [Pcomp]2 − k2r · [S1]
Rx3 k3f · [S1]2 − k3r · [C1]
Rx4 k4f · [S1]− k4r · [S1a]
Rx5 k5f · [S2]− k5r · [S2a]
Rx6 k6f · [S3]− k6r · [S3a]
Rx7 k7f · [S1a] · [vinc]2 − k7r · [S2a]
Rx8 k8f · [S2a] · [vinc]2 − k8r · [S3a]
Rx9 k9f · [C1]− k9r · [C1a]
Rx10 k10f · [C2]− k10r · [C2a]
Rx11 k11f · [C3]− k11r · [C3a]

Rx12 k12f · [C1a] · [vinc]2 − k12r · [C2a]

Rx13 k13f · [C2a] · [vinc]2 − k13r · [C3a]

Rx14 k14f · [S1a]2 − k14r · [C1a]

Rx15 k15f · [S2a]2 − k15r · [C2a]

Rx16 k16f · [S3a]2 − k16r · [C3a]
Rx17 k17f · [S3]
Rx18 k18f · [S2]
Rx19 k19f · [C3]
Rx20 k20f · [C2]
Rx21 k21f · [C3]
Rx22 k22f · [C2]

Rx23 −k23vmax ·[signal]
k23KM

+[signal]

4.5.37 Supplementary figures
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Figure S.4.1 The Hookean spring system of an individual complex used
in this model. Complexes bind in groups of 25 and 50 to form seeds and
clusts respectively. A, B, C, D together represent the talin rod, here modelled
as having 4 sub-domains. Springs E,G, and F represent vinculin molecules.
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Figure S.4.2 Mass conservation of integrins (A) and talin (B) is satisfied.
The concentration remains at 1 µM for the entire duration of the simulation.
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Figure S.4.3 Concentration of signal (blue) over time. The yellow line
represents the value of the SDRM factor. The orange vertical line marks
the time at which [signal] goes (A) below (or above (B)) signalthresh which
is shown by the orange dashed line. tsig is the time when [signal] crosses
the threshold signalthresh. A and B show signal decay and signal growth,
respectively. The time tsig and the SDRM factor are also identical in both.
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Figure S.4.4 Concentrations of actin-bound species (i-vi) in the first 70
seconds of the simulation. The growth of mid and higher order seeds and
clusts is most rapid on a substrate of moderate stiffness (ksub =1 pN/nm).
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Figure S.4.5 Limited vinculin test. Concentrations of integrins in (i) low-,
(ii) mid-, and (iii) high-order species when vinculin concentration is limited
to 1 µM . (iv) shows the maturation fraction (or the concentration of inte-
grins in mature adhesions) increases monotonically with increasing stiffness.
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Figure S.4.6 The effect of TDRM. Value of the actin-unbinding rates
for the largest clusts C3a, k11r (bottom) and the smallest seeds S1a, k4r
(top) over time for soft (A, C, E, G) and stiff (B, D, F, H) substrates
for simulations with (A-D) and without (E-H) TDRM. The effect of
TDRM is highly pronounced for ksub = 0.1 pN/nm seen as a jump in
the maximum value from ∼ 2.7 s−1 to ∼ 6.8 s−1 but negligible for
ksub = 100 pN/nm as the time period in actin-binding phase is very short.

Figure S.4.7 Concentrations of integrins in (i) low-, (ii) mid-, and (iii)
high-order species in simulations with (A) and without (B) TDRM. (iv)
shows the maturation fraction (or the concentration of integrins in mature
adhesions). In A(iv), a biphasic trend is seen – the highest maturation
fraction is on an optimal substrate stiffness of ksub = 1 pN/nm (orange
curves) whereas in B(iv), a monotonic decrease in maturation fraction is seen.
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Figure S.4.8 Concentrations of integrins in A(i) low-, A(ii) mid-, and
A(iii) high-order species when the talin refolding factor talrffactor

was
set to 0.2/s. A(i–v) shows the maturation fraction (or the con-
centration of integrins in mature adhesions). B(i – vi) show the
concentrations of actin-bound species under the same conditions.
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Figure S.4.9 Sensitivity analysis for outcome 1: Maturation frac-
tion. Panels A, B, C, and D represent the sensitivities of the out-
come for changes of +20%, +10%, -10%, and -20% to the parameter
values respectively. Refer to Table S.4.1 for parameter descriptions.
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Figure S.4.10 Sensitivity analysis for outcome 2: Optimum stiff-
ness. Panels A, B, C, and D represent the sensitivities of the out-
come for changes of +20%, +10%, -10%, and -20% to the parameter
values respectively. Refer to Table S.4.1 for parameter descriptions.

Figure S.4.11 Curve fitting. Plots of the curve fitted over
peaks of the force exerted by each species on substrates of
varying stiffness (A-D). The total force exerted by all clutches
on a particular substrate is shown by the black dotted line.
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Figure S.4.12 Concentrations of integrins in A(i) low-, A(ii) mid-
, and A(iii) high-order species when the order of reinforcement re-
actions were set to 1. A(iv) shows the maturation fraction (or the
concentration of integrins in mature adhesions). B(i – vi) show the
concentrations of actin-bound species under the same conditions.

Figure S.4.13 Concentrations of integrins in A(i) low-, A(ii) mid-,
and A(iii) high-order species when both slip and catch bond disso-
ciation rates are modified with TDRM. A(iv) shows the maturation
fraction (integrins in mature adhesions). B(i–vi) show the concentra-
tions of actin-bound species under the same conditions in Table S.4.1.
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Chapter 5. Computational Evidence for Multi-Layer Crosstalk Between the
Cadherin-11 and PDGFR Pathways

Abstract
Various cell surface receptors play an important role in the differentiation
and self-renewal of human mesenchymal stem cells (hMSCs). One example
of such receptors are the cadherins, which maintain cell–cell adhesion and
mechanically couple cells together. Recently, cadherin-11, which is a member
of the type II classical cadherin family, has been shown to be involved in the
fate commitment of hMSCs. Interestingly, cadherin-11 has no known intrinsic
signaling activity and is thought to affect cell behavior via interactions with
other cell surface receptors. Members of the platelet-derived growth factor
receptor (PDGFR) family are hypothesized to be one of the interaction part-
ners of cadherin-11. Experiments confirmed that PDGFR-α binding to ex-
tracellular cadherin-11 regions increases the PDGFR-α activity, whereas the
interaction between PDGFR-β and cadherin-11 suppresses the activity of the
growth factor receptor. Cadherin-11 knockdown experiments also decreased
cell proliferation. These interactions between cadherin-11 and PDGFRs in-
dicate a crosstalk between these receptors and their downstream signaling
activities but the nature of this crosstalk is not entirely known. In this study,
we used a computational model to represent the experimentally proven inter-
actions between cadherin-11 and the two PDGFRs and we inspected whether
the crosstalk also exists downstream of the signaling initiated by the two re-
ceptor families. The computational framework allowed us to monitor the
relative activity levels of each protein in the network. We performed model
simulations to mimic the conditions of previous cadherin-11 knockdown ex-
periments and to predict the effect of crosstalk on cell proliferation. Overall,
our predictions suggest the existence of another layer of crosstalk, namely
between β-catenin (downstream to cadherin-11) and an ERK inhibitor pro-
tein (e.g. DUSP1), different than the crosstalk at the receptor level between
cadherin-11 and PDGFR-α and -β. By investigating the multi-level crosstalk
between cadherin and PDGFRs computationally, this study contributes to an
improved understanding of the effect of cell surface receptors on hMSCs pro-
liferation.
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5.1 Introduction
For decades we have known that signaling does not occur linearly, but through
a complex network of interacting signals and pathways made up of signaling
molecules (Barabási & Oltvai, 2004). Using wet laboratory experiments, a
myriad of these signaling molecules have been identified and scientists have
also tried to understand the crosstalk between them. However, these exper-
iments have their limitations when it comes to studying the relationship be-
tween large networks of signaling pathways, as they can only isolate parts of
the pathways and cannot look at the whole network. Computational models
are better equipped to predict and analyze pathway crosstalk, as they offer
a systematic way to conduct multivariate experiments that are impossible to
perform in vitro, and they can also generate experimentally testable predic-
tions. In our study, we have taken a wet laboratory experiment that studied
the interaction between receptor tyrosine kinase, a cell surface receptor, and
a specific cadherin, a cell adhesion protein (Takeichi, 2018) and we used com-
putational modeling to add to the evidence and better understand the extent
of the crosstalk.

There has been recent interest in the physical interaction between cadherin-11
and the two receptor tyrosine kinases (RTKs), PDGFR-α (Madarampalli et al.,
2019) and PGDGFR-β (Liu et al., 2020; Passanha et al., 2022) in fibroblasts and
human mesenchymal stem cells (hMSCs) respectively. Passanha et al., 2022
reported that by using gene knockdown to temporarily decrease the expres-
sion of cadherin-11, the cadherin-11 knockdown cells have a more prolonged
expression of phosphorylated ERK in the nuclei and these cells also show de-
creased proliferation. Similarly, Liu et al., 2019 showed that knocking down
cadherin-11 also results in a decrease in proliferation. ERK is known to be
downstream of the various RTKs including PGDGFR-β and so the current hy-
pothesis is that the physical interactions between PGDGFR-β and cadherin-11
point towards a crosstalk between these two pathways. Although the recep-
tor level interactions between RTKs and cadherins have been confirmed by
wet laboratory experiments, we still know very little about the extent of this
crosstalk as we lack experimental tools to investigate it. Here we want to use
computational modeling to explore potential downstream interactions on top
of the known receptor level interactions and expand the knowledge of this in-
teresting crosstalk.

The ERK pathway is central to the progression of the cell cycle, proliferation,
and growth of eukaryotic cells. It is known to be regulated by many growth
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factor receptors and thus part of many different signaling pathways, includ-
ing the RTK and the cadherin pathways (Ramos, 2008). Using computational
modeling, we isolated the RTK and cadherin-11 pathways and looked at how
the crosstalk between these two pathways affects the ERK nuclear translo-
cation leading to changes in cell proliferation. We observed that the down-
stream signaling in our model did not reflect the experimental evidence with-
out a player between β-catenin (a subunit of the cadherin protein complex)
and ERK that can influence proliferation. We, therefore, concluded that cross-
talk at the receptor level between the RTK and cadherin-11 pathways alone is
insufficient for cadherin-11 to influence hMSC proliferation through the ERK
pathway, and that an additional level of crosstalk could be in place. By be-
ing able to study this interconnectedness between pathways, we have shown
that our model can be used to describe the nature of the crosstalk between
signaling molecules which is not always possible experimentally.

5.2 Methods
5.2.1 Model Development
We built the signaling network in Figure 5.1 to include the PDGFR-α and
PDGFR-β–induced ERK pathway as well as the cell–cell contact signaling
via cadherin-11. The network represents the interactions of two adjacent
cells and focuses on the intracellular response of one of these cells in con-
tact. The receptor level interactions capture the experimentally established
activation of PDGFR-α by cadherin-11 of the neighboring cell and the inhi-
bition of PDGFR-β by cadherin-11 on the cell membrane. PDGFR-α and -β
are activated by their ligands PDGF-α (a in Figure 5.1) and PDGF-β (b in
Figure 5.1). The ERK pathway is activated downstream to the growth fac-
tor receptors, and follows the classical RAS-RAF-MEK-ERK cascade. ERK
then activates its own inhibitor, DUSP1, which activates the cell cycle protein
cyclin-D1. Downstream to cadherin-11, we included β-catenin that is inhib-
ited by cadherin-11. B-catenin has shown to inhibit DUSP family proteins
(Zeller et al., 2012), to interfere with the RAS-RAF-MEK-ERK cascade. Within
this network, we also propose the inhibition of DUSP1 by β-catenin to be
a key crosstalk mechanism, besides the experimentally established receptor-
level interactions described earlier.

We developed an ordinary differential equation (ODE) model to represent the
known and suggested crosstalk between PDGFR and cadherin-11 as well as
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their downstream effectors. All the ODEs in the model (Table 5.1) have the
form suggested by Mendoza and Xenarios, 2006, given in Eq.5.1, to capture
the qualitative behavior of cadherin-11 and PDGFR and their effect down-
stream, observed in the experiments by both Madarampalli et al., 2019 and
Passanha et al., 2022. We chose this type of equation as it allows a signaling
network to be translated into a continuous dynamical system and study its
stable steady state and qualitative behavior without the need for precise data
on the signaling stoichiometry and kinetics.

dXi

dt
=

− e0.5 × h + e−h × (ωi−0.5)

(1− e0.5 × h)× (1 + e−h × (ωi−0.5))
− (ki × Xi) (5.1)

The model equations (Table 5.1) represent the rate of change in the activity
level of each protein in the network. Here the ”activity level” indicates the
net effect of a protein in its active form (either in the phosphorylated form or
otherwise functional). For example, when we mention ”activity of ERK” in
relation to this model, we mean ”phosphorylated ERK in the nucleus, where
it is active”. The activity level of proteins varies between 0 and 1 (1 being
maximum activity) and it is unitless, due to the nature of the ODEs described
in Mendoza and Xenarios, 2006. It is important to note that, by using this type
of ODEs, we were able to investigate the activation/inactivation of signalling
proteins in the network, without explicitely modelling the biochemical reac-
tions among the proteins or the molar concentrations of the proteins in the
network. Therefore, if the activity of a protein is above zero, it indicates the
presence and activity of that protein in the system, without implying any re-
lation to its molar concentration.

Each ODE has an activation term and a decay term. The decay term mimics
the autoinhibition or the inactivation of proteins in the cell over time. The
general decay parameter, ki, was set to 1 for all proteins for simplicity. Only
for the β-catenin decay parameter, we used kiB = 2 to compensate for its
high initial activity and to account for the involvement of β-catenin in other
intracellular pathways (Valenta et al., 2012). The activation term in the ODEs
includes a parameter omega (ω) which is specific to each protein and the val-
ues of ω can be calculated using the generalized equation Eq.5.2 and the pa-
rameters in Table 5.2.
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ωi =

(
1.0 +

∑
an∑

an

)
×
( ∑

xa
n × an

1.0 +
∑

xa
n × an

)
×(

1−
(
1 +

∑
βn∑

βn

)
×

( ∑
βn × xi

n

1 +
∑

βn × xi
n

))
(5.2)

ωi represents the total input to the activity of each protein at a particular time.
xa
n is a set of activators and xi

n is a set of inhibitors of the protein Xi. The
alpha (αn) parameters represent activation and the beta (βn) parameters rep-
resent inhibition between proteins. For example, PDGFR-β is activated by
its own ligand PDGF-β while it is also inhibited by cadherin-11 therefore we
use αpdgfrBbyb

to represent the activation and βpdgfrBbycdh11
to represent the

inhibition in ωpdgfrB . As such, using the parameters in Table 5.2, we mathe-
matically built the network given in Figure 5.1.

The parameters a and b and the initial activity levels of PDGF-A and PDGF-
B were adjusted to meet the quantitative measurements of PDGFR-α and
PDGFR-β activity levels in cadherin-11 knockdown experiments by Madaram-
palli et al., 2019 and Passanha et al., 2022, respectively. The remaining parame-
ters were set to a default value of 1, as suggested by Mendoza and Xenarios,
2006 in case of insufficient experimental data. It is important to note that by
using this type of ODEs, we were able to capture the qualitative behavior of
the whole network and the changes in the activity levels of each protein at
the steady state, while the time, and consequently also the dynamics, were
arbitrary, as described in detail in Mendoza and Xenarios, 2006.
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Figure 5.1: The schematic representation of receptor level crosstalk between
growth factor receptors (PDGFR-α and PDGFR-β) and cadherin-11, and the
proposed crosstalk between β-catenin and ERK via the ERK inhibitor DUSP1.
Arrows represent activation and blunt arrows represent inhibition. The net-
work represents the interactions of two adjacent cells (top left corner) and
focuses on the intracellular response of one of these cells in contact.
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Table 5.1: Ordinary differential equations governing the activity levels of each
protein in the model network.

Nr. Equation
3 dcdh11

dt = − e0.5 × h + e−h × (ωcdh11−0.5)

(1−e0.5 × h)×(1+ e−h × (ωcdh11−0.5))
− (ki × cdh11))

4 dpdgfrA
dt = − e0.5 × h + e−h × (ωpdgfrA−0.5)

(1−e0.5 × h)×(1+ e−h × (ωpdgfrA−0.5))
− (ki × pdgfrA))

5 dpdgfrB
dt = − e0.5 × h + e−h × (ωpdgfrB−0.5)

(1−e0.5 × h)×(1+ e−h × (ωpdgfrB−0.5))
− (ki × pdgfrB))

6 dras
dt = − e0.5 × h + e−h × (ωras−0.5)

(1−e0.5 × h)×(1+ e−h × (ωras−0.5))
− (ki × ras))

7 draf
dt = − e0.5 × h + e−h × (ωraf−0.5)

(1−e0.5 × h)×(1+ e−h × (ωraf−0.5))
− (ki × raf))

8 dmek
dt = − e0.5 × h + e−h × (ωmek−0.5)

(1−e0.5 × h)×(1+ e−h × (ωmek−0.5))
− (ki × mek))

9 derk
dt = − e0.5 × h + e−h × (ωerk−0.5)

(1−e0.5 × h)×(1+ e−h × (ωerk−0.5))
− (ki × erk))

10 ddusp1
dt = − e0.5 × h + e

−h × (ωdusp1−0.5)

(1−e0.5 × h)×
(
1+ e

−h × (ωdusp1−0.5)
) − (ki × dusp1))

11 dBcat
dt = − e0.5 × h + e−h × (ωBcat−0.5)

(1−e0.5 × h)×(1+ e−h × (ωBcat−0.5))
− (kiB × Bcat))

12 dcyclinD1
dt = − e0.5 × h + e−h × (ωcyclinD1−0.5)

(1−e0.5 × h)×(1+ e−h × (ωcyclinD1−0.5))
− (ki × cyclinD1))
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Table 5.2: Parameter values used in the baseline simulation.
Parameter Value Explanation
c 0.1 Initial cell–cell adhesion

via the cadherin-11 on the
adjacent cell. Value ad-
justed using Madarampalli
et al., 2019

a 0.1 Initial PDGF-A ligand ac-
tivity. Value adjusted using
Madarampalli et al., 2019
and Passanha et al., 2022

b 0.4 Initial PDGF-B ligand ac-
tivity. Value adjusted using
Madarampalli et al., 2019
and Passanha et al., 2022

Bcat 1 Initial β-catenin activity
ωcdh11 (

1.0 + αcdh11byc

αcdh11byc

)
×

(
c × αcdh11byc

1.0 + (c × αcdh11byc
)

) Total input to the activity
of cadherin-11

ωpdgfrA (
1.0 + αpdgfrAbya

+αpdgfrAbyc

αpdgfrAbya
+αpdgfrAbyc

)
×(

a×αpdgfrAbya
+c × αpdgfrAbyc

1.0 +
(

a×αpdgfrAbya
+ c× αpdgfrAbyc

) )
Total input to the activity
of PDGFR-α
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ωpdgfrB (
1.0 + αpdgfrBbyb

αpdgfrBbyb

)
×

(
b×αpdgfrBbyb

1.0 + b×αpdgfrBbyb

)
×(

1−
(

1+ βpdgfrBbycdh11

βpdgfrBbycdh11

)
×

(
βpdgfrBbycdh11

×cdh11
1+(βpdgfrBbycdh11

×cdh11)

))
Total input to the activity
of PDGFR-β

ωras (
1.0 + αrasbypdgfrA

+ αrasbypdgfrB

αrasbypdgfr
+ αrasbypdgfrB

)
× pdgfrA × αrasbypdgfrA

+pdgfrB × αrasbypdgfrB

1.0 +

(
pdgfrA × αrasbypdgfrA

)
+

(
pdgfrB × αrasbypdgfrB

)


Total input to the activity
of RAS

ωraf (
1.0 + αrafbyras

αrafbyras

)
×

(
ras × αrafbyras

1.0 + (ras × αrafbyras
)

) Total input to the activity
of RAF

ωmek (
1.0 + αmekbyraf

αmekbyraf

)
×

(
raf × αmekbyraf

1.0 + (raf × αmekbyraf
)

) Total input to the activity
of MEK

ωerk (
1.0 + αerkbymek

αerkbymek

)
×

(
mek × αerkbymek

1.0 + (mek × αerkbymek
)

)
×(

1−
(

1+ βerkbydusp1

βerkbycdusp1

)
×

(
βerkbydusp1

×dusp1

1+(βerkbydusp1
×dusp1)

))
Total input to the activity
of ERK
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ωdusp1 (
1.0 + αdusp1byerk

αdusp1byerk

)
×

(
erk× αdusp1byerk

1.0 +
(
erk ×αdusp1byerk

))×(
1−

(
1+ βdusp1byBcat

βdusp1byBcat

)
×

(
Bcat×βdusp1byBcat

1+
(
Bcat× βdusp1byBcat

)))
Total input to the activity
of DUSP1

ωBcat 1−
(

1+ βBcatbycdh11

βBcatbycdh11

)
×

(
cdh11×βBcatbycdh11

1+
(
cdh11× βBcatbycdh11

)) Total input to the activity
of β-catenin

ωcyclinD1 (
1.0 + αcyclinD1bydusp1

αcyclinD1bydusp1

)
×

(
dusp1 × αcyclinD1bydusp1

1.0 + (dusp1 × αcyclinD1bydusp1
)

) Total input to the activity
of Cyclin-D1

h 1 Gain value of all ω func-
tions

ki 1 General decay parameter
kiB 2 Decay parameter for β-

catenin activity
αcdh11byc

1 Activation of cadherin-11
by cell–cell adhesion (c)

αpdgfrAbya
0.5 Activation of PDGFR-α by

PDGF-α ligand. Value ad-
justed using Madarampalli
et al., 2019 and Passanha et
al., 2022
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αpdgfrAbyc
0.5 Activation of PDGFR-α by

extracellular cadherin-11
binding. Value adjusted
using Madarampalli et al.,
2019 and Passanha et al.,
2022

αpdgfrBbyb
0.5 Activation of PDGFR-β by

PDGF-β ligand. Value ad-
justed using Madarampalli
et al., 2019 and Passanha et
al., 2022

βpdgfrBbycdh11
1 Inhibition of PDGFR-β by

same-cell cadherin-11
αrasbypdgfrA

1 Activation of RAS by
PDGFR-α

αrasbypdgfrB
1 Activation of RAS by

PDGFR-β
αrafbyras

1 Activation of RAF by RAS
αmekbyraf

1 Activation of MEK by RAF
αerkbymek

1 Activation of ERK by MEK
βerkbydusp1

1 Inhibition of ERK by
DUSP1

αdusp1byerk
1 Activation of DUSP by

ERK
βdusp1byBcat

1 Inhibition of DUSP by β-
catenin
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βBcatbycdh11
1 Inhibition of β-catenin by

cadherin-11
αcyclinD1bydusp1

1 Activation of Cyclin-D1 by
DUSP1
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5.2.2 Simulations
We used the Virtual Cell software (VCell) version 7.4.0 (Cowan et al., 2012;
Schaff et al., 1997) to simulate the network. The baseline model, all different
simulation setups, and the results can be accessed within the VCell software
(available at https://vcell.org, model name: ”cdh11-pdgfr-erk-feedback-v2”
by user ”zeynepkaragoz”).

We first performed a simulation of the baseline model (Table 5.3: Baseline
model) using the parameters in Table 5.2. This simulation provided a baseline
steady state activity for each protein in the network. In the next simulation
(Table 5.3: Cadherin-11 knockdown) we set the initial cadherin-11 activity to
zero on both the cell for which the intracellular signaling is modeled and on
the adjacent cell, mimicking the experimental cadherin-11 knockdown. We
then compared the steady state activity levels of the cadherin-11 knockdown
simulation to the baseline activity levels. Other simulations have been per-
formed to test the effect of different crosstalk modes in the network, namely
the crosstalk only at the receptor level, crosstalk only downstream to the re-
ceptors or both at the same time. These simulations have been explained in
the text where relevant, and the corresponding parameter changes are given
in Table 5.3.

5.2.3 Parameter Scan
To ensure our choice of parameters around the proposed crosstalk between
DUSP1 and β-catenin did not force the system to behave in a biased way, we
performed a parameter scan in groups of two at a time. First, different val-
ues (0.1, 0.5, 1.0, 5.0, 7.0, 10.0) of the parameter determining the inhibition of
DUSP1 in the network (βdusp1byBcat

) were scanned against different values of
Bcat (0.1, 0.3, 0.5, 0.7, 1.0) and αdusp1byerk

(0.1, 0.5, 1.0, 5.0, 7.0, 10.0), which are
the two parameters that contribute to the activation of DUSP1 in the network.
Second, the parameter that contributes to the inhibition of ERK by DUSP1
(βerkbydusp1

) was scanned against the parameter that contributes to the activa-
tion of ERK (αerkbymek

). Last, βerkbydusp1
was scanned against the parameter

that contributes to the activation of cyclin-D1 by DUSP1 (αcyclinD1bydusp1
). For

the last two scans, we used the same parameter space for all parameters (0.1,
0.5, 1.0, 5.0, 7.0, 10.0). For all four parameter scans, parameters were varied
simultaneously to cover all 25 combinations of the parameter sets.
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As the output of the parameter scan, we reported the difference in steady
state activity levels of cyclin-D1 and ERK as a measure of the change in cell
proliferation compared to the baseline. Simulation with the baseline model
parameters (all equal to 1) resulted in equal activity levels for cyclin-D1 and
ERK. If for a parameter set, the cyclin-D1 activity was higher than ERK ac-
tivity we classified this as ”increased proliferation” compared to the baseline.
If the cyclin-D1 activity was lower than ERK activity, we classified this as
”decreased proliferation” compared to the baseline. For the cyclin-D1 activ-
ity matching the ERK activity we classified this as no change in proliferation
compared to the baseline model parameter set. The results of this analysis
are summarized in Figure 5.3 and the numerical results are given in Table
S.5.1-4.

5.3 Results
First, in order to ensure that the baseline model captured the experimentally
established activation of PDGFR-α by cadherin-11 on an adjacent cell and
the inhibition of PDGFR-β by cadherin-11 in the cell membrane, we ran the
baseline model simulation as is (Table 5.3: Baseline model), the cadherin-
11 knockdown simulation (Table 5.3: Cadherin-11 knockdown), a simulation
where the receptor interaction was disrupted via blocking the cadherin-11
binding to PDGFR-α (Table 5.3: Cell–cell contact off and cadherin–PDGFR-α
binding off), and a simulation where the receptor interaction was disrupted
by blocking the cadherin-11 binding to PDGFR-β (Table 5.3: Cell–cell contact
off and cadherin–PDGFR-β binding off). In line with Passanha et al., 2022,
the cadherin-11 knockdown resulted in a 50% decrease in PDGFR-α and a
30% increase in PDGFR-β activity compared to the baseline simulation (Fig-
ure S.5.1, Cadherin-11 knockdown). Also in line with Madarampalli et al.,
2019, the absence of cadherin-11 binding to PDGFR-α resulted in 50% lower
PDGFR-α activity while PDGFR-β activity did not change compared to the
baseline simulation (Figure S.5.1, Cell–cell contact off and cadherin–PDGFR-
α binding off). Lastly, the absence of the cadherin-11 binding to PDGFR-β
only increased the PDGFR-β activity by 30% but did not affect the PDGFR-α
activity compared to the baseline simulation (Figure S.5.1, Cell–cell contact
off and cadherin–PDGFR-β binding off). It is important to note that these
simulations were done only to confirm that the parameters of the model had
been adjusted correctly for the part of the model network for which we have
experimental evidence. As such, these results are not providing proof for the
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whole network, but they are important in linking the model to prior experi-
ments.

Next, we explored the remaining parts of the model in a cadherin-11 knock-
down simulation (Table 5.3: Cadherin-11 knockdown). Figure 5.2 summa-
rizes the changes in activity levels of the proteins in the network in a cadherin-
11 knockdown simulation compared to their baseline activity levels. The two
proteins whose activities were inhibited by cadherin-11 in the model, namely
β-catenin and PDGFR-β, showed an overall increase in activity, as expected
(Figure 5.2A, Figure 5.2B Cadherin-11 knockdown). PDGFR-α, on the other
hand, had lower activity in the cadherin-11 knockdown, as it is normally ac-
tivated by cadherin-11, alongside its own ligand (Figure 5.2A, Figure 5.2B
Cadherin-11 knockdown). The net effect of the cadherin-11 knockdown on
ERK was an increase in activity, while both DUSP1 and cyclin-D1 showed de-
creased activities (Figure 5.2A, Figure 5.2B, Cadherin-11 knockdown). In the
context of our computational model, we interpreted the decreased cyclin-D1
activity compared to the baseline in the cadherin-11 knockdown as a decrease
in cell proliferation.
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Table 5.3: Setups of the four main simulations referred to in the
main figures.

Name Explanation Parameters changed
Baseline model All interactions are active in the network. We use

the parameters in Table 5.2 without alterations.

Cadherin-11
knockdown

We mimic the cadherin-11 knockdown by setting
the initial cell–cell contact to 0. This way cadherin-
11 can never be present during the simulation, sim-
ilar to an experimental knockdown of the protein
(Passanha et al., 2022).

c = 0

Cell–cell contact
off and cadherin–
PDGFR-α binding
off

Mimicking the Madarampalli et al., 2019 experi-
ments, cadherin-11 is not able to bind to another
cadherin-11 or PDGFR-α. Since it cannot dimer-
ize with another cadherin-11, it cannot inhibit β-
catenin, but it can bind to PDGFR-β via intermem-
brane domains and inhibit its activity, suggesting
that this binding is not via an extracellular site but
via intermembrane sites of the two receptors.

c = 0
βBcatbycdh11

= 0
cdh11 = 0.18

Cell–cell contact
off and cadherin–
PDGFR-β binding
off

Mimicking the Madarampalli et al., 2019 experi-
ments, interaction of cadherin-11 and PDGFR-β on
the cell membrane is blocked, cadherin-11 binding
to PDGFR-α is still possible.

αcdh11byc
= 0

Crosstalk disabled We disable the activation of PDGFR-α by cadherin-
11, inhibition of PDGFR-β by cadherin-11, and inhi-
bition of DUSP1 by β-catenin.

αpdgfrAbyc
= 0

βpdgfrBbycdh11
= 0

βdusp1byBcat
=0
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Crosstalk disabled
and cadherin-11
knockdown

In addition to the changes in the ”crosstalk dis-
abled” simulation, we set cell–cell contact to 0.

αpdgfrAbyc
= 0

βpdgfrBbycdh11
= 0

βdusp1byBcat
= 0

c = 0

Receptor interac-
tion disabled

Crosstalk disabled only at the receptor level by
blocking the activation and inhibition of PDGFR-α
and PDGFR-β by cadherin-11.

αpdgfrAbyc
= 0

βpdgfrBbycdh11
= 0

Receptor inter-
action disabled
and cadherin-11
knockdown

In addition to the changes in the ”receptor interac-
tion disabled” simulation, we set the cell–cell con-
tact to 0.

αpdgfrAbyc
= 0

βpdgfrBbycdh11
= 0

c = 0

Downstream inter-
action disabled

Crosstalk disabled only at the level of β-catenin in-
hibiting DUSP1, while receptor level crosstalk is ac-
tive.

βdusp1byBcat
= 0

Downstream inter-
action disabled and
cadherin-11 knock-
down

Crosstalk disabled at the level of β-catenin inhibit-
ing DUSP1 and cell–cell contact set to 0.

βdusp1byBcat
= 0

c = 0
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Having observed that the cadherin-11 knockdown simulation of the base-
line model setup reflected the experimental observations of increased ERK
activity and decreased proliferation in hMSCs, we moved to testing the con-
tribution of different modes of crosstalk to these results. When the cross-
talk at the receptor level (i.e. activation of PDGFR-α by cadherin-11 on an
adjacent cell membrane and inhibition of PDGFR-β by cadherin-11 on the
cell’s own membrane) was disabled and the cadherin-11 knockdown simula-
tion was repeated (Table 5.3: Receptor interaction disabled and cadherin-11
knockdown), the same ERK and cyclin-D1 activities were reached as in the
cadherin-11 knockdown simulation using the baseline model (Figure 5.2B,
Receptor interaction disabled and cadherin-11 knockdown). In other words,
the removal of receptor level interactions did not affect the cadherin-11 influ-
ence on proliferation. This implies the receptor level crosstalk is not the pri-
mary mode of crosstalk that maintains the cadherin-11–dependent cell prolif-
eration.

In order to test the effect of the crosstalk at the level of β-catenin and DUSP1,
we modified the model to remove both the inhibition of DUSP1 by β-catenin
and the receptor crosstalk (Table 5.3: Crosstalk disabled). In this case, β-
catenin activity remained the same as in the baseline simulation, while PDGFR-
α had a lower activity due to the lack of activation by cadherin-11 (Figure
5.2B, Crosstalk disabled versus Baseline). On the contrary, PDGFR-β activ-
ity increased in the absence of crosstalk, as it was no longer inhibited by
cadherin-11. The net effect of not having the proposed multi-layered cross-
talk between the two pathways resulted in decreased ERK activity and in-
creased DUSP1 and cyclin-D1 activity (i.e., proliferation) compared to the
baseline simulation (Figure 5.2B, Crosstalk disabled versus Baseline). When
we simulated a cadherin-11 knockdown case for this version of the model
(Table 5.3: Crosstalk disabled and cadherin-11 knockdown), we observed
that the cadherin-11–mediated cell proliferation was disrupted. Unlike in the
cadherin-11 knockdown, where the inhibition of DUSP1 by β-catenin was
still active (Figure 5.2A, Figure 5.2B Cadherin-11 knockdown versus Base-
line), we did not observe any change in the activities of PDGFR-α, PDGFR-β,
Cyclin-D1, DUSP1 and ERK (Figure 5.2B, Crosstalk disabled and cadherin-
11 knockdown versus Crosstalk disabled, and Figure S.5.2). Only the activ-
ity of β-catenin was increased, which was due to the absence of inhibition
by cadherin-11 (Figure 5.2B, Crosstalk disabled and cadherin-11 knockdown
versus Crosstalk disabled, and Figure S.5.2).

Next, we explored whether the crosstalk at the level of DUSP1 and β-catenin
could maintain the cadherin-11–mediated cell proliferation on its own. To
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do this, we kept the receptor level crosstalk active (cadherin-11 activating
PDGFR-α and inhibiting PDGFR-β), disabled the inhibition of DUSP1 by
β-catenin (Table 5.3: Downstream interaction disabled), and performed a
cadherin-11 knockdown simulation with this setup (Table 5.3: Downstream
interaction disabled and cadherin-11 knockdown). We observed the same
changes in protein activity levels with this setup as in the ”crosstalk disabled”
simulation (Figure 5.2B crosstalk disabled versus downstream interaction dis-
abled). These results indicated that cadherin-11 could mediate cell prolifer-
ation via its downstream effector β-catenin by inhibiting DUSP1 which is an
ERK inhibitor. According to our model predictions, receptor level interac-
tions between cadherin-11 and PGDFR-α and PDGFR-β, on the other hand,
were insufficient to orchestrate the cadherin-11–mediated cell proliferation.

We also explored the parameters related to the proposed crosstalk at the level
of β-catenin and DUSP1 with a parameter scan (Figure 5.3). This enabled
us to ensure our choice of parameters in the baseline model was not forcing
the network to behave in a biased way and to decide which protein–protein
interactions had more weight in controlling the proliferative state of the net-
work.

When using the baseline model parameters, ERK and cyclin-D1 activities
were equal at the steady state. In addition, for all parameter sets and in each
parameter scan, there were multiple other parameter combinations that re-
sulted in equal ERK and cyclin-D1 activity (Figure 5.3, green areas). This
ensured the baseline model results were not unique and were therefore not
resulting from any particular parameter settings.

The first scan investigated the parameters influencing the inhibition of DUSP1
by β-catenin. It revealed that the initial β-catenin activity level was not de-
cisive on the proliferation status of the network when compared to the in-
hibition of DUSP1 by β-catenin (βdusp1byBcat

) (Figure 5.3A). In other words,
the activity of β-catenin itself did not affect the steady state of Cyclin-D1 and
ERK, whereas they were affected by the strength at which β-catenin inhibited
DUSP. For values of βdusp1byBcat

greater than 1, the ERK activity was higher
than the cyclin-D1 activity (i.e., the proliferation was lower than in the base-
line model). For values less than 1 of βdusp1byBcat

, the Cyclin-D1 activity was
higher than the ERK activity (Figure 5.3A).

The second scan was performed between βdusp1byBcat
and αdusp1byerk

, which
are parameters that affect the strength of inhibition and activation of DUSP1,
respectively. The results suggested that for the strong inhibition of DUSP1 by
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β-catenin (βdusp1byBcat
= (5.0, 10.0)), the network exhibited decreased prolifer-

ation (Figure 5.3B, Cyclin-D1 < ERK), irrespective of the value of DUSP1 acti-
vation by ERK (αdusp1byerk

). For the weaker inhibition of DUSP1 (βdusp1byBcat
=

(0.1, 0.5, 1.0)), on the other hand, the increased value of DUSP1 activation
by ERK (αdusp1byerk

= (5.0, 10.0)) resulted in increased proliferation (Fig-
ure 5.3B, Cyclin-D1 > ERK). There exists a trade-off for values lower than or
equal to 1 for both parameters, when the inhibition of DUSP1 by β-catenin
exceeded the value of the activation of DUSP1 by ERK, the network exhib-
ited decreased proliferation (Figure 5.3B, Cyclin-D1 < ERK). Whereas when
βdusp1byBcat

was smaller than αdusp1byerk
, the proliferation increased (Figure

5.3B, Cyclin-D1 < ERK).

The third parameter set explored the activation and inhibition of ERK by the
downstream effectors of the PDGFRs and DUSP1, respectively. The results
suggested that, apart from the combination of the weakest possible inhibition
of ERK by DUSP1 (βerkbydusp1

= (0.1, 0,5)) and the strongest possible activation
of ERK by MEK (αerkbymek

= (10.0, 5.0, 1.0)), the network exhibited normal
or increased proliferation (Figure 5.3C). In general, the stronger inhibition
of ERK by DUSP1 resulted in increased proliferation, suggesting the control
over ERK inhibition to be an important mechanism in controlling the prolif-
erative status of the network.

In the final parameter scan, we further explored the interplay between the in-
hibition of ERK by DUSP1 and the activation of cyclin-D1 by DUSP1. For the
stronger activation of cyclin-D1 (αcyclinD1bydusp1

=(5.0, 10.0)), the proliferation
was always higher than baseline, regardless of the strength of ERK inhibition
by DUSP1 (Figure 5.3D). However, for weaker activation of cyclin-D1, the
degree of ERK inhibition by DUSP1 could compensate and sustain the same
level of proliferation or even increase it. For αcyclinD1bydusp1

between 0.1 and
1.0, increasing βerkbydusp1

increased the proliferation (Figure 5.3D).
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Figure 5.2: (Continued on the following page.)
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Figure 5.2: A) Cadherin 11 knockdown simulation results compared to the
baseline model simulation: The dashed lines indicate where the model com-
ponents were modified in the simulation setup. The steady state activity lev-
els of PDGFR-α, cyclin-D1 and DUSP1 decreased, while the activity levels of
PDGFR-β, ERK and β-catenin increased in the cadherin-11 knockdown com-
pared to the baseline simulation. The decrease in PDGFR-α activity and the
increase in PDGFR-β activity agree with the experimental results (Madaram-
palli et al., 2019; Passanha et al., 2022). The proposed crosstalk protein,
DUSP1, had decreased activity which resulted in increased ERK activity and
decreased cyclin-D1 activity, which we interpreted as decreased proliferation.
B) Summary of steady state activity levels of proteins in the network under
different simulation setups. We compared the steady state activity levels in
the cadherin-11 knockdown for each different setup (baseline, crosstalk dis-
abled, receptor interaction disabled, and downstream interaction disabled).
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A) B)

C) D)

Figure 5.3: Change in proliferation status for varying parameters influencing
the proposed crosstalk. The scan was performed using the numerical values
on the axes for the respective parameters. Baseline parameter sets have been
marked with an x in each plot. For each parameter set, the difference be-
tween the steady state activity level of cyclin D1 and ERK were compared. A)
β-catenin initial activity and the inhibition of DUSP1 by β-catenin, B) activa-
tion of DUSP1 by ERK and inhibition of DUSP1 by β-catenin C) activation of
ERK by MEK and inhibition of ERK by DUSP1 and D) activation of cyclin-D1
by DUSP1 and inhibition of ERK by DUSP1. Cyclin-D1 activity > ERK activ-
ity indicates increased proliferation compared to the baseline parameter set,
cyclin-D1 activity = ERK activity indicates sustained proliferation as in the
baseline parameter set, cyclin-D1 activity < ERK activity indicates decreased
proliferation compared to the baseline parameter set.
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5.4 Discussion
There has been a recent increase in exploring the different (signaling) roles
cadherins play in various cell types other than establishing cell to cell con-
tact (Halbleib & Nelson, 2006; Maı̂tre & Heisenberg, 2013; Niessen et al.,
2011). One of the many ways in which cadherins participate in various sig-
naling roles is through their crosstalk with RTKs (Chiasson-Mackenzie & Mc-
Clatchey, 2018). For example, there is mounting evidence of the crosstalk
between cadherin-2 and the fibroblast growth factor receptors, as well as
cadherin-1 and epidermal growth factor receptor (Andl & Rustgi, 2004; Nguyen
& Mège, 2016). Likewise, recent studies have shown that cadherin-11 specifi-
cally interacts with the RTKs PDGFR-α (Madarampalli et al., 2019) and PDGFR-
β (Liu et al., 2020; Passanha et al., 2022). Passanha et al., 2022 also reported that
cadherin-11–knockdown hMSCs have more phosphorylated ERK-positive nu-
clei and show decreased proliferation. Similarly, Liu et al., 2020 have shown
that knocking down cadherin-11 also results in decreased proliferation. Al-
though these experimental observations point to crosstalk between PDGFR-
α, PDGFR-β and cadherin-11 at the receptor level in hMSCs, crosstalk be-
tween the signaling proteins that function downstream to these receptors re-
mains to be explored. This knowledge could improve our understanding of
hMSC proliferation and fate commitment, both of which are central to regen-
erative medicine research.

Downstream to the PDGFRs is the MAPK/ERK pathway which contains mul-
tifunctional proteins. Downstream to cadherin-11 is β-catenin which is known
to be involved in other cellular activities. The complexity and multifunc-
tionality of the downstream signaling make it experimentally challenging to
study the possible ways by which PDGFRs and cadherin-11 engage in cross-
talk, other than at the receptor level. To address this challenge, we created a
computational model of the cadherin-11 and PDGFR signaling network that
qualitatively matches the experimental observations at the level of receptor
interactions. With our model, we were able to provide in silico evidence for an
additional layer of crosstalk (i.e., at the downstream level between β-catenin
and an ERK inhibitor DUSP1), beyond the known crosstalk happening at the
receptor level between PDGFRs and cadherin-11.

Computational modeling enabled us to isolate the RTK and cadherin-11 path-
ways from other cellular signaling pathways they interact with (e.g., inte-
grins, G-protein coupled receptors (GPCRs), TGFβ, etc.) and explore the role
of each mode of crosstalk (receptor level, downstream signaling and a com-
bination of both) in the network in a way that is not possible experimen-
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tally. Disabling all possible crosstalk in the network, resulted in complete
isolation of the ERK pathway from the cadherin-11, therefore the cadherin-11
knockdown did not affect cyclin-D1 or ERK activity (Figure 5.2B, crosstalk
disabled and cadherin-11 knockdown compared to crosstalk disabled). Dis-
abling the crosstalk only at the receptor level (i.e., between PDGFR-α and
cadherin-11, and PDGFR-β and cadherin-11) and allowing the downstream
interaction (i.e. β-catenin inhibiting DUSP1) rescued the activity level pat-
terns and we observed that in case of a cadherin-11 knockdown while the
receptor interaction was disabled, the ERK activity increased and cyclin-D1
activity decreased (Figure 5.2B, Receptor interaction disabled and cadherin-
11 knockdown) matching the baseline simulation (Figure 5.2B, baseline and
cadherin-11 knockdown). This suggests, the downstream interaction alone,
can sustain the crosstalk between the cadherin-11 and PDGFR pathways and
explain the observed decrease in proliferation in the cadherin-11 knockdown
experiments. The observation that disabling the downstream crosstalk via β-
catenin and the ERK inhibitor DUSP1 alone resulted in the same pattern as
disabling all crosstalk (Figure 5.2B, Downstream interaction disabled versus
crosstalk disabled) strengthens this hypothesis.

According to our simulations, the control over ERK inhibition in the network
is very important. To ensure that our observations are not heavily influenced
by our choice of parameters for the proposed crosstalk, we performed a sensi-
tivity analysis. The results implied that for the strong inhibition of ERK (high
βerkbydusp1

) by DUSP1, regardless of the degree of activation of ERK by MEK
(αerkbymek

), the system will have increased or at least sustained proliferation.
Conversely, for strong ERK activation by MEK and weak inhibition of ERK
by DUSP1, the proliferation was decreased (Figure 5.3).

Overall, the control over the inhibition of ERK seems to be critical in terms of
changing the proliferative state of the system. This can be due to the fact that
during cell proliferation, ERK is rapidly inactivated at the transition of the G1
to S phase (Mebratu & Tesfaigzi, 2009; Meloche, 1995). Prolonged ERK activa-
tion in the nucleus arrests the cell cycle at the G1 phase and therefore the cell
does not undergo mitosis (Yamamoto et al., 2006). Therefore, the tight reg-
ulation of ERK (inhibiting its activity) is necessary for cell proliferation. We
suggest cadherin-11 and its downstream effector β-catenin play a part in the
control over ERK inhibition, explaining why the cadherin-11 knockdown re-
sults in decreased hMSC proliferation (as shown experimentally by Passanha
et al., 2022).

In our model, we propose the ERK inhibitor in this network to be DUSP1 be-
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cause the DUSP family of proteins dephosphorylate various members of the
MAPK family including ERK (Chen et al., 2019; Huang & Tan, 2012). DUSP1
is a nuclear phosphatase that binds to ERK which leads to its dephospho-
rylation or inactivation, and reciprocally, ERK also promotes the activity of
DUSP1 (Ferguson et al., 2016). This is not to say that other members of the
DUSP family are not involved, but we chose to only highlight DUSP1 in our
model for simplicity. We note that other signaling molecules can also regu-
late the activity of DUSPs, representing an additional signaling component
that could be added to the model in the future. The DUSP family of proteins
has also been shown to interact with β-catenin to interfere with the MAPK
signaling cascade in murine liver cells (Zeller et al., 2012). Therefore, we sug-
gest that in the scope of the RTK and cadherin-11 pathways, the receptor level
crosstalk is insufficient for cadherin-11 to influence hMSC proliferation and
an additional level of crosstalk is required between β-catenin and DUSP1.
This has important implications for experiments concerning the control over
hMSC proliferation.

Computational models are valid and useful in the range of biological systems
they represent and for the biological data that is available to support them.
In this study, we used an ODE model of the form described by Mendoza and
Xenarios, 2006 to obtain a network that represents the qualitative character-
istics of the RTK and cadherin-11 pathways and the crosstalk between them.
This choice was made because we had a multitude of experimental data in the
form of the relative abundance of active and inactive forms (i.e., phosphory-
lated and unphosphorylated forms) of proteins in the network and no kinetic
information (i.e., binding–unbinding rates). Thus, a more classical mass ac-
tion (or similar) type of model would have been difficult to construct and also
to interpret, as the experiments were comparing relative protein abundances
instead of absolute quantification. Nevertheless, with a network that focused
on relative activities of proteins at the steady state, such as ours, we were able
to conclude that a multi-level crosstalk between the two modeled pathways is
needed to support the experimental observations. With the sensitivity analy-
sis, we were able to show that the set of parameters we used was not unique
to produce the results we obtained. This also indicated that more detailed
information on the relative amounts of active/inactive proteins other than
the RTKs, cadherin-11, and ERK could improve our choice of parameters and
make the model more accurate in the future.

Similar to the cadherin-11–RTK interaction, other receptor couples are known
to engage in crosstalk in other cell types (Andl & Rustgi, 2004; Chiasson-
Mackenzie & McClatchey, 2018). For example, E-cadherin and epidermal
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growth factor receptor (EGFR) have been shown to interact (Ramı́rez Moreno
& Bulgakova, 2022). Similarly, N-cadherin interacts with fibroblast growth
factor receptor (FGFR) (Kon et al., 2019; Nguyen et al., 2019; Nguyen & Mège,
2016). We suggest a computational reconstruction of the signaling pathways
of these receptor pairs, using a similar approach as we presented here, will
help to isolate the pathways from other cellular signaling and to discover
new interactions between the receptor pairs, other than what could be tested
experimentally.

In summary, we have shown that a crosstalk between β-catenin (downstream
to cadherin-11) and an ERK inhibitor protein (e.g. DUSP1) is needed for the
experimentally shown effect of cadherin-11 on hMSC proliferation. By inves-
tigating the multi-level crosstalk between cadherin and PDGFRs computa-
tionally, this study contributes to an improved understanding of the effect of
cell surface receptors on hMSC proliferation. A detailed description of how
hMSC proliferation is controlled by a multitude of cell surface receptors will
provide new avenues for cell fate control and regenerative medicine thera-
pies.

5.5 Supplementary Material
Table S.5.1 Parameter sensitivity analysis for β-catenin initial activity (Bcat)
versus the inhibition of DUSP1 by β-catenin (βdusp1byBcat

). Steady state activ-
ity levels of CyclinD1 and Erk are given for each parameter set in the search
space.

Set A Bcat fidusp1byBcat
cyclinD1 erk

0 0.1 0.1 0.5 0.4
1 0.1 0.5 0.5 0.4
2 0.1 1 0.5 0.5
3 0.1 5 0.3 0.6
4 0.1 7 0.2 0.7
5 0.1 10 0.2 0.7
6 0.3 0.1 0.5 0.4
7 0.3 0.5 0.5 0.4
8 0.3 1 0.5 0.5
9 0.3 5 0.3 0.6
10 0.3 7 0.2 0.7
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11 0.3 10 0.2 0.7
12 0.5 0.1 0.5 0.4
13 0.5 0.5 0.5 0.4
14 0.5 1 0.5 0.5
15 0.5 5 0.3 0.6
16 0.5 7 0.2 0.7
17 0.5 10 0.2 0.7
18 0.7 0.1 0.5 0.4
19 0.7 0.5 0.5 0.4
20 0.7 1 0.5 0.5
21 0.7 5 0.3 0.6
22 0.7 7 0.2 0.7
23 0.7 10 0.2 0.7
24 1 0.1 0.5 0.4
25 1 0.5 0.5 0.4
26 1 1 0.5 0.5
27 1 5 0.3 0.6
28 1 7 0.2 0.7
29 1 10 0.2 0.7

Table S.5.2 Parameter sensitivity analysis for activation of DUSP1 by ERK
versus inhibition of DUSP1 by β-catenin (adusp1byerk and βdusp1byBcat

). Steady
state activity levels of cyclinD1 and Erk are given for each parameter set in
the search space.

Set adusp1byerk
fidusp1byBcat

cyclinD1 erk

0 0.1 0.1 0.5 0.5
1 0.1 0.5 0.4 0.5
2 0.1 1 0.4 0.5
3 0.1 5 0.3 0.6
4 0.1 10 0.2 0.7
5 0.5 0.1 0.5 0.4
6 0.5 0.5 0.5 0.5
7 0.5 1 0.4 0.5
8 0.5 5 0.3 0.6
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9 0.5 10 0.2 0.7
10 1 0.1 0.5 0.4
11 1 0.5 0.5 0.4
12 1 1 0.5 0.5
13 1 5 0.3 0.6
14 1 10 0.2 0.7
15 5 0.1 0.6 0.3
16 5 0.5 0.6 0.4
17 5 1 0.6 0.4
18 5 5 0.3 0.6
19 5 10 0.2 0.7
20 10 0.1 0.7 0.3
21 10 0.5 0.6 0.3
22 10 1 0.6 0.4
23 10 5 0.4 0.6
24 10 10 0.2 0.7

Table S.5.3 Parameter sensitivity analysis for activation of ERK by MEK
versus inhibition of ERK by DUSP1 (aerkbymek

and βerkbydusp1
). Steady state

activity levels of cyclinD1 and ERK are given for each parameter set in the
search space.

Set aerkbymek
fierkbydusp1

cyclinD1 erk

0 0.1 0.1 0.5 0.5
1 0.1 0.5 0.5 0.5
2 0.1 1 0.4 0.4
3 0.1 5 0.4 0.3
4 0.1 10 0.3 0.2
5 0.5 0.1 0.5 0.5
6 0.5 0.5 0.5 0.5
7 0.5 1 0.5 0.5
8 0.5 5 0.4 0.3
9 0.5 10 0.3 0.2
10 1 0.1 0.5 0.6
11 1 0.5 0.5 0.5
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12 1 1 0.5 0.5
13 1 5 0.4 0.3
14 1 10 0.3 0.2
15 5 0.1 0.5 0.6
16 5 0.5 0.5 0.5
17 5 1 0.5 0.5
18 5 5 0.4 0.3
19 5 10 0.3 0.3
20 10 0.1 0.5 0.6
21 10 0.5 0.5 0.6
22 10 1 0.5 0.5
23 10 5 0.4 0.3
24 10 10 0.3 0.3

Table S.5.4 Parameter sensitivity analysis for activation of cyclin-D1 by DUSP1
versus inhibition of ERK by DUSP1 (acyclind1bymek

and βerkbydusp1
). Steady

state activity levels of cyclinD1 and ERK are given for each parameter set in
the search space.

Set acyclinD1bydusp1
fierkbydusp1

cyclinD1 erk

0 0.1 0.1 0.4 0.6
1 0.1 0.5 0.3 0.5
2 0.1 1 0.3 0.5
3 0.1 5 0.2 0.3
4 0.1 10 0.2 0.2
5 0.5 0.1 0.4 0.6
6 0.5 0.5 0.4 0.5
7 0.5 1 0.4 0.5
8 0.5 5 0.3 0.3
9 0.5 10 0.3 0.2
10 1 0.1 0.5 0.6
11 1 0.5 0.5 0.5
12 1 1 0.5 0.5
13 1 5 0.4 0.3
14 1 10 0.3 0.2
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15 5 0.1 0.8 0.6
16 5 0.5 0.7 0.5
17 5 1 0.7 0.5
18 5 5 0.6 0.3
19 5 10 0.6 0.2
20 10 0.1 0.9 0.6
21 10 0.5 0.8 0.5
22 10 1 0.8 0.5
23 10 5 0.8 0.3
24 10 10 0.7 0.2
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Figure S.5.1 Model parameters concerning the activity levels of PDGFR-
α and PDGFR-β were adjusted to match the previous experimental studies
Madarampalli et al., 2019 and Passanha et al., 2022. In the baseline model,
PDGFR-β activity at the steady state is higher than PDGFR-α activity, in ac-
cordance with Passanha et al., 2022. Cadherin-11 knockdown simulation re-
sulted in lower than normal PDGFR-α and greater than normal PDGFR-β
activity, in accordance with Passanha et al., 2022. When cell–cell contact and
cadherin-11 binding to PDGFR-α were disabled, lower than normal PDGFR-
α activity but no change in the PDGFR-β activity were observed compared
to the baseline model. When cell–cell contact and cadherin-11 binding to
PDGFR-β were disabled, no change in the PDGFR-α activity level but an in-
crease in PDGFR-β activity were observed compared to the baseline model.
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Figure S.5.2 Cadherin 11 knockdown simulation results when the proposed
crosstalk is disabled: The dashed lines indicate where the model compo-
nents were modified in the simulation setup. No change was observed in the
activity levels of growth factor receptors and proliferation-related signaling
molecules in case of a cadherin-11 knockdown when the proposed crosstalk
mechanisms were disabled.
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Dazzi, C., Vogel, V., Checa, S. and Carlier, A..

205



6

Chapter 6. A Mechanobiological Model of the Reversible Fibroblast to
Myofibroblast Transition

Abstract
Fibroblasts are connective tissue cells responsible for producing and main-
taining the extracellular matrix (ECM). During tissue growth, but also in re-
sponse to injury or inflammation, fibroblasts undergo a phenotypic change
known as fibroblast to myofibroblast transition (FMT), acquiring a more con-
tractile phenotype. Myofibroblasts, characterized by the expression of alpha-
smooth muscle actin (αSMA) filaments, thus play a crucial role in tissue de-
velopment, remodeling, and wound healing. They produce ECM, generate
mechanical forces for wound contraction, and contribute to tissue structure
rebuilding. However, prolonged myofibroblast activation can lead to fibrosis,
where excessive ECM accumulation causes scarring and loss of tissue func-
tion. Previous studies with de novo grown fibroblast microtissues demon-
strated the complexity of the FMT and its reversal. These studies identi-
fied distinct zones within the microtissues, with the growth front contain-
ing predominantly myofibroblasts and the tissue core housing fibroblasts.
The growth front exhibited higher myofibroblast activity and stretched fi-
bronectin (FN) fibers. Researchers proposed the existence of reciprocal feed-
back loops between cellular pathways, ECM production, fiber tension, and
cell decision-making during FMT. To gain more quantitative insights into the
multifactorial dynamic interplay between ECM composition and mechanics
and cell phenotype, we developed an in silico model comprising two mod-
ules: a biological module representing observed changes during the reversible
FMT, and a mechanically-tuned ECM module which considers compositional
and tensional changes into tissue mechanical properties and strains. The two
modules were coupled to simulate the intricate feedback loops observed ex-
perimentally. Overall, simulation of the cellular events linked to the mechan-
ical response of the in silico microtissue suggests that the local and gradual
production of ECM proteins can instruct the tissue material properties in a
way to constrain the myofibroblast activity to the growth front. The differ-
ence in timing of fibronectin and collagen fibrillogenesis eventually creates
the difference between the mechanical and biological properties of the high
strain growth front and low strain tissue core, with a sharp transition zone be-
tween them. Understanding the spatiotemporally controlled cell-ECM feed-
back further will help explain experimental observations and the role of ECM
compositional changes in reverting FMT in mature tissue by altering mechan-
ical properties, which is important for the development of strategies against
scarring.
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6.1 Introduction
Fibroblasts are cells of the connective tissue, which are, amongst others, re-
sponsible for producing and maintaining the extracellular matrix (ECM). Fi-
broblasts have a spindle-shaped morphology and they are normally quies-
cent under homeostatic conditions (Plikus et al., 2021). Upon injury or in-
flammation, fibroblasts undergo phenotypic changes acquiring a more con-
tractile phenotype which is called myofibroblast (Schuster et al., 2023). This
process is called fibroblast to myofibroblast transition (FMT) and is essential
for tissue development, remodeling and wound healing (D’Urso & Kurni-
awan, 2020).

Myofibroblasts have enhanced ability of ECM production and they are char-
acterized by the expression of alpha-smooth muscle actin (αSMA) filaments,
which provide the contractile property to the cells. Myofibroblasts generate
mechanical forces that aid in wound contraction, leading to the reduction
in wound size (Schuster et al., 2023). They also deposit and remodel ECM
proteins, helping to rebuild the tissue structure. However, once the healing
is complete, myofibroblast activity needs to diminish. Prolonged activation
of myofibroblasts leads to fibrosis, which is a pathological condition charac-
terized by excess accumulation of ECM, resulting in scarring and eventually
loss of tissue or organ function (D’Urso & Kurniawan, 2020; Schuster et al.,
2023).

Previous experimental studies with fibroblast microtissues have demonstrated
the intricate nature of FMT and its reversal. Initially, Kollmannsberger et al.,
2018 used microfabricated clefts to mimic wound architecture and grew fibro-
blast microtissues in these clefts. Results indicated a clear distinction between
the growth front and the tissue core in terms of myofibroblast activity, sug-
gesting the myofibroblasts revert back to fibroblast phenotype in the interior
of the growing microtissue. The growth front contained mostly myofibrob-
lasts which express αSMA and which have more YAP/TAZ (a transcriptional
co-activator for mechanosensitive gene expression). In the growth front, the
fibronectin (FN) fibers have also been found to be more stretched.

Later, in a follow-up study, Benn et al., 2023 used a similar but narrower cleft
architecture to investigate how spatiotemporal changes of ECM composition
and ECM fiber tension correlate with reversible FMT. Their results confirmed
the distinct mechanical and biological properties of the growth front com-
pared to the tissue core. The growth front, rich in tensed FN fibers, spatially
correlated with αSMA expressing myofibroblasts and contained high levels
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of tenascin-C (TNC) and issue transglutaminase (TG2). The cells and the FN
fibers were aligned parallel to the growth front. The tissue core on the other
hand was rich in collagen fibers and lacked αSMA expressing myofibrob-
lasts, but contained rather more circular fibroblasts. They also identified a
narrow transition zone between the growth front and the tissue core, where
the reversal of FMT happened quickly. This reversal was initiated by TNC in-
hibiting FN-binding integrin adhesions in myofibroblasts, eventually reduc-
ing FN fiber tension. Following a sharp decrease in FN and TNC content in
the ECM, as well as the breakdown of αSMA, the reversal of FMT, or myofib-
roblast to fibroblast transition (MFT) was completed. From the growth front
(rich in FN) to tissue core (rich in collagen), there was also a shift in high
FN-binding integrin (α5β1) activity to high collagen-binding integrin (α2β1)
activity, showing an altered cell-ECM communication. When just one of the
biological processes that contribute to spatiotemporal control of ECM matu-
ration was disrupted, including the fiber cross-linking via TG2, degradation
of TNC by matrix metalloproteinase (MMP), α2β1 integrin-collagen binding
and TGF-β receptor signaling, the MFT could not be completed and the tissue
core still contained some myofibroblasts. Taken together, their results pro-
posed the existence of reciprocal feedback loops between cellular pathways
of ECM production, ECM fiber tension and cell decision-making, which all
together seem to play a critical role in the FMT.

The simplicity of this microtissue platform is ideal to mathematically model
the processes involved in order to distill more quantitative relationships be-
tween the parameters that tune the reversible FMT and to address various
questions. How does this sharp change in ECM composition along the mi-
crotissue influence the mechanical environment surrounding the cells? How
does the cell respond to mechanical signals that influence ECM production
and alignment, and finally closing the sequential reciprocal feedback loops?
Answering these questions will help explain the mechanisms of action that
underlie the experimental observations of overlapping high ECM fiber stretch
and myofibroblast phenotype. They may also provide evidence that the com-
positional changes in ECM can indeed revert the FMT in more mature tissue
via changing the mechanical properties. In order to complement the micro-
tissue experiments and address these questions, which have both biological
and mechanical aspects, occurring at various scales, we built a multiscale,
coupled mechobiological in silico model based on the previous knowledge on
the intricate details of the biological processes in the reversible FMT. This in
silico model, which has two modules that interact with one another, could be
later used to conduct in silico experiments, that will inform experimentalists
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before they can build combined biological and mechanical mictotissue plat-
forms. A biological module was built in our in silico model to represent the
experimentally observed biological and compositional changes during the re-
versible FMT. A mechanical module was built to translate the ECM composi-
tional changes into mechanical properties of the tissue and to calculate tissue
response to these compositional changes in terms of strains. The two modules
were coupled to inform one another iteratively, similar to the intricate feed-
back loops observed experimentally in FMT. By keeping the in silico model
geometry similar to the in vitro experiments, we were able to compare our
results to previous observations. Our results show the dynamic interplay be-
tween the tissue mechanics and biology, agreeing to the previous literature on
the reversible FMT. The results of this study provide critical insights into the
relative importance of parameter sets that tune the FMT and with this, the re-
ciprocal feedback loops between tissue mechanical environment and the cell
decision-making.

6.2 Methods
Experiments on the development of fibroblast microtissues have indicated
that the reversible FMT requires a dynamic interplay between biology and
mechanics to tightly and spatiotemporally control the ECM composition and
alignment. In the microtissue growth experiments, it was shown that the re-
gions of high FN fiber strain spatially overlap with the regions of high myo-
fibroblast activity. In order to link these observations with their mechanisms
of action, including the underlying mechanical and biological processes that
govern the reversible FMT (FMT-MFT), we created a computational model
with biological and mechanical modules (Figure 6.1). For computational effi-
ciency, we modeled one quarter (upper left corner, 250 µm by 250 µm) of the
microfabricated cleft in Kollmannsberger et al., 2018 (500 µm by 500 µm). Our
2D model represents one Z stack of their 3D microtissue in vitro model. The
computational model accounts for four main categories of biological events
1) mechanosensitive activation of cellular signaling, 2) contractility-induced
YAP/TAZ nuclear translocation, 3) ECM protein production and assembly of
ECM and 4) altering of the ECM mechanical properties through the transient
expression of TNC and TG2. The numbers (1-4) corresponding to the arrows
in Figure 6.1c, represent these different categories. The exact biological pro-
cesses that are necessary for the FMT to proceed were explained in Benn et al.,
2023, here we lump some of these processes together in our mechanobiologi-
cal computational model. The arrows, corresponding equations and biologi-
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cal processes that are implicitly considered by each equation are explained in
detail in the following sections and also summarized in Table S.6.1.

6.2.1 Biological Module
The biological module represents the dynamic changes in protein produc-
tion and degradation in response to the mechanical changes in the tissue. We
included the production of αSMA, nuclear YAP/TAZ ratio and the produc-
tion of FN and collagen as ECM proteins in our biological module. For com-
putational simplicity, we did not explicitly model all the biological players
unraveled by Benn et al., 2023, such as tenascin-C (TNC) and tissue transg-
lutaminase (TG2) activity. However, these processes were implicitly repre-
sented via nonlinear relationships between the components of the biological
module, as explained below. The abundances of each of these variables are
calculated with discrete equations explained below. The values are always
between 0 and 1, corresponding to a relative abundance, allowing us to com-
pare the abundances of different proteins in the biological module with one
another.

The biological module has the nature of an agent-based model, where agents
represent micro-scale regions in the developing tissue. We used Python 3.9
and specifically the numpy package (Harris et al., 2020) to build the biological
module. The location of the tissue agents, the abundance of extracellular and
intracellular proteins and the cell type dominant at each agent are recorded in
separate 3D numpy arrays. An array in numpy is a grid of values. The main
array (agent array[t, y, x]) records a value of 1 where there is a tissue agent
and 0 where there is empty space. Each 3D array has 101 grid positions in x
and y directions (Figure 6.1b)and the third dimension (t) records the current
iteration (time) in simulation. Every iteration (one time step) corresponds to
hours in real time.
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Figure 6.1: a) Using the in vitro setup (Benn et al., 2023; Kollmannsberger et
al., 2018) to establish an in silico model used in this theoretical study. b) The
dependencies of the biological and mechanical modules. Each tissue agent
in the biological model corresponds to a node in the mechanical module. 4
nodes make up one finite element in the mechanical module mesh. c) The
flow of information during one iteration of the simulation between the bi-
ological and mechanical modules of the integrated FMT model. Numbers
1-4 on the arrows between module components correspond to different bi-
ological processes that are necessary for the reversible FMT (FMT-MFT) to
proceed (details in the method section or visit Figure 6.7 and Table S.6.1 for
a summary). At each iteration the flow of information is repeated, iteratively
updating both biological and mechanical module enabling various transient
biological process that make the FMT-MFT possible.
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All other variables of the biological module, namely αSMA, nuclear YAP/
TAZ ratio, FN and collagen, are recorded in their own 3D arrays. The agent array[t, y, x]
informs other arrays iteratively where the new tissue is forming. The ar-
ray that records the tissue tensile strains (strain array[t, j, i]) reads the tissue
strains calculated by the Abaqus software (Abaqus 3DEXPERIENCE R2019x,
see mechanical module below). The tissue level strains are then used to calcu-
late the relative abundance of αSMA at each tissue agent following the equa-
tion below:

αSMA[t, y, x] =
strain array[t, y, x]

n

Kn + strain array[t, y, x]
n (6.1)

The Hill type dependence of αSMA on tissue strains has been deduced from
the experimental study of Kollmannsberger and colleagues (Kollmannsberger
et al., 2018) where they showed that higher FN strain in the ECM overlapped
with high αSMA expression. Often used in systems biology, the Hill type
equations are efficient for lumping multi-step biological processes (e.g., tran-
scription, translation) into one step (Ang et al., 2013). In our model the strain-
dependent αSMA expression includes also the following mechanosensitive
intermediate steps (Figure 6.1c, arrow 1): 1) Myofibroblasts assemble highly
strained Fn fibers, which requires α5β1 integrin activation and 2) via in-
creased FAK and RhoA (downstream to α5β1 integrin activation), cytoskele-
tal remodeling occurs via the build-up of a more contractile actomyosin cy-
toskeleton enriched with αSMA.

The cells that have αSMA assembled into their cytoskeleton are characterized
as myofibroblasts experimentally. In our model, we also classify the domi-
nant cell type in the tissue agents based on their αSMA content. Tissue agents
which have αSMA ≥ 0.2 are classified as tissue regions with myofibroblast ac-
tivity, tissue agents which have more than zero but less than 0.1 αSMA were
classified as transition tissue regions where either FMT or MFT is happen-
ing. Tissue agents with zero αSMA were classified as regions with fibroblast
activity.

Following the assembly of αSMA, the contractility of the cells increase and al-
low the opening of nuclear pores, resulting in the entry of more YAP/TAZ in
the cell nucleus (Figure 6.1c, arrow 2) (Elosegui-Artola et al., 2017; Heng et al.,
2021; Talele et al., 2015). From the same experimental study (Kollmannsberger
et al., 2018), we obtained a dependency between the YAP/TAZ in the nucleus
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and αSMA expression as a third degree polynomial. The nuclear YAP/TAZ
at each tissue agent is calculated as below:

Y APnuc[t, y, x] = kyt0× αSMA[t, y, x]
3
+ kyt1× αSMA[t, y, x]

2

(6.2)

+ kyt2× αSMA[t, y, x] + kyt3

kyt0, kyt1 and kyt2 describe the mechanically regulated YAP/TAZ nuclear
translocation while kyt3 describes the contractility-independent nuclear translo-
cation of YAP/TAZ (Figure 6.1c, arrow 2, Table S.6.1).

Next, YAP/TAZ translocation to the nucleus is known to increase the pro-
duction of ECM proteins indirectly (Cai et al., 2021). In our biological model,
the production, fibrillogenesis and degradation of the ECM proteins FN and
collagen are maintained by the following equations:

FN [t, y, x] =
Y APnuc[t, y, x]

3

kfy + Y APnuc[t, y, x]
3 + kfibFN × FN [t− 1, y, x]

(6.3)

Col[t, y, x] =
kc

1 + e(kcs×strain array[t, y, x] − kcy×Y APnuc[t, y, x])
(6.4)

+ kfibCol × Col[t− 1, y, x]

The FN equation (Eq.6.3) has two parts, first is the Hill type dependence to
nuclear YAP/TAZ which lumps together two intermediary processes 1) tran-
scriptional regulation of FN gene expression and assembly and 2) YAP/TAZ-
dependent profibrotic gene expression, including TNC. In the second part of
the equation, kfibFN describes both the fibrillogenesis, alignment and stretch-
ing of FN by highly contractile myofibroblasts and degradation of FN that ac-
cumulates from the previous time step of the simulation (FN [t− 1, y, x]).

The collagen equation (Eq. 6.4) has a similar structure to the FN equation. In
the first part, kc describes the total possible procollagen production per time
step. The total amount changes based on the availability of relaxed FN fibers
(low tissue strain in our model) and nuclear YAP/TAZ. kcs is the parame-
ter that controls the strain dependency of collagen fibrillogenesis. Collagen
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production has been shown to decrease with strain (Sun et al., 2016) and col-
lagen assembly into the ECM is instructed by the relaxed FN fibers (Benn et
al., 2023; Kubow et al., 2015). Therefore, this equation also implies the tran-
siently upregulated TNC binding to FN, causing the disassembly of integrin
α5β1 adhesions, resulting in FN relaxation and allowing collagen assembly.
kcy, on the other hand, describes the nuclear YAP/TAZ assisted production
of (pro)collagen. kfibCol in the second part of the equation describes the fib-
rillogenesis and degradation of collagen that accumulates from the previous
time point (Col[t − 1, y, x]), similar to the FN equation. Note that kfibCol

is set to be larger than kfibFN to reflect the fact that collagen fibrillogenesis
occurs in more steps, thus takes longer time than that of FN, and that the FN
degradation occurs faster (Kadler et al., 2008).

The biological module also keeps track of the FN fiber angles (with respect
to the x-axis, Figure 6.1b) at each tissue agent. FN fibers have been shown
experimentally to be parallelly aligned at the growth front in the direction of
the highly contractile myofibroblasts (Benn et al., 2023). In our computational
model, tissue age directly influences FN fiber alignment (Figure 1c, arrow 3)
however biologically the process of ECM remodeling is more complicated.
The ECM fibers get more enmeshed over time in the mature tissue, this hap-
pens gradually following the collagen assembly guided by the relaxation of
FN fiber, as TNC blocks FN-Syndecan 4 binding thereby destabilizing the in-
tegrin α5β1 adhesions (Benn et al., 2023). The FN fiber angle (θ) for the tissue
agents close to the growth front is calculated using the following equation:

θ[t, y, x] = 90◦ − arctan

(
(ymax − y)

(xmax − x)

)
(6.5)

Where ymax and xmax are the y and x dimensions of the biological model
array and y and x correspond to the coordinates of each tissue agent (e.g.,
in Figure 6.2a). The arctan function calculates the angle between x-axis and
the straight line from the right bottom corner of the array to the position of
the agent [x,y] (β in Figure 6.2a) . Right angle minus this value gives the
fiber angle parallel to the growth front (θ in Figure 6.2a). The fiber angles of
agents that are older than two days (8 iterations) were assigned randomly,
corresponding to the mature tissue in Benn et al., 2023.

At each iteration in the simulation, tissue agents in the biological module
also search for available space to grow. The rule is, for each agent, the empty
neighboring locations (out of eight possible neighbors) are collected in a list
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and the agent is allowed to generate a copy of itself (divide) into one of the
empty neighboring locations. If there is no empty neighboring location in the
array, the agent is not allowed to divide. This rule implies the cell division
only happens at the growth front, where there is available space. It is a simpli-
fication from the in vitromicrotissue experiments, where cell proliferation was
only observed at the growth front, which is occupied by highly proliferative
myofibroblasts.

6.2.2 Mechanical Module
The mechanical module was used to calculate the tissue level strains in re-
sponse to the contractile forces applied by the cells and the ECM material
properties changing over time. Abaqus software was used to perform the fi-
nite element method (FEM) to obtain the resulting strains at each iteration.
Essentially, each tissue agent in the biological module represents one node in
the mechanical model geometry. Four nodes make up one square element for
the FEM calculations. Each node was set to be 2.5 µm apart. Therefore, one
edge of the mechanical model, which contained 101 nodes (corresponding to
the 101 tissue agents in the biological module), represents 250 µm. Since we
simulated the tissue growth, we updated the Abaqus input files with the new
tissue geometry at every iteration.

We set different boundary conditions to every edge of the model. The nodes
on the top edge of the cleft were constrained in displacement along the y-
axis while the nodes on the left edge of the cleft were constrained along the
x-axis. These boundary conditions ensured the tissue remains attached to
the cleft external boundaries but can expand or contract over them. Our
model focused on the upper left corner of the 500 µm by 500 µm cleft in
the in vitroexperiments. This suggests that the tissue at the bottom and left
edges of our 250 µm by 250 µm model continues for another 250 µm in the
in vitrosetup. Therefore, we set symmetry boundary conditions along the x-
axis and y-axis for the nodes on the right and bottom edges of the growing
tissue respectively. The tissue growth (via the division of tissue agents at the
growth front as described in the biological module) suggests the addition of
new nodes and elements to the mechanical module at each iteration. This
required us to iteratively update the model geometry at each iteration in the
input file for the Abaqus software.

We assumed linear elasticity for the ECM in the mechanical model due to
the small strains (< 10%). Material properties (Young’s modulus and Pois-
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son’s ratio) were assigned to the elements based on their collagen abundance.
To calculate the collagen abundance per element, we averaged the collagen
abundance in the four nodes (tissue agents) that make up an element. Ele-
ments with a collagen abundance between 0 and 0.1 were classified as ”pro-
visional matrix” and assigned a Young’s modulus of 4 × 10−4 MPa (Achter-
berg et al., 2014; Schuster et al., 2023) and a Poisson’s ratio of 0.3 (Szymanski
et al., 2017). Provisional matrix represents the newly produced FN rich ECM
prior to collagen getting assembled (Schuster et al., 2023). The collagen as-
sembly into the ECM requires relaxed FN templating and once the collagen
assembled into the ECM, it partially shields FN from being stretched by the
cells (Kubow et al., 2015). To reflect this effect of increased collagen content
decreasing the FN fiber stretching in the ECM, elements with more collagen
than 0.1 units have been assigned increasing Young’s moduli with increasing
collagen content (Roeder et al., 2002). ECM materials were named “provi-
sional matrix”, “soft”, “medium stiff”, “stiff”and “maximum stiff” to reflect
the decreasing stretchability of FN with increasing collagen content. All ECM
material properties used in the model and their references can be found in
Table 6.1 below.

ECM material
name

Collagen con-
tent

Young’s modulus, Poisson’s ratio

Provisional
ECM

Col < 0.1 4 × 10−4 MPa (Achterberg et al.,
2014), 0.3 (Szymanski et al., 2017)

Soft ECM 0.1 ≤ Col < 0.4 1.54 × 10−3 MPa (Roeder et al.,
2002), 0.167 (Checa et al., 2011)

Medium stiff
ECM

0.4 ≤ Col < 0.7 10.7 × 10−3 MPa (Roeder et al.,
2002), 0.167 (Checa et al., 2011)

Stiff ECM 0.7 ≤ Col < 1 16.6 × 10−3 MPa (Roeder et al.,
2002), 0.167 (Checa et al., 2011)

Maximum stiff
ECM

Col = 1 24.3 × 10−3 MPa (Roeder et al.,
2002), 0.167 (Checa et al., 2011))

Table 6.1: Different materials used in the mechanical model based on the
element-wise collagen abundance calculated in the biological model.

At each iteration, we randomly picked the force-applying nodes among all
the nodes in the mechanical model to represent the traction force-applying
cells embedded in the microtissue. Specifically, the force-applying cells were
modeled as active force dipoles. For each force dipole, one core node (in
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the middle, Figure 6.2b yellow node) and two force-applying nodes (15 µm
apart, Figure 6.2b green nodes) were selected randomly from the agent ar-
ray to represent approximately the size of a fibroblast (Freitas Jr., 1999). Each
force-applying cell exerts a pulling force of 0.2 × 10−6 N in total magnitude
(Rosowski et al., 2018). Therefore, two concentrated forces (each being half
of the total magnitude) pointing towards the core node were applied from
the two force-applying nodes (Figure 6.2b). The direction of the forces were
determined at each iteration by retrieving the FN fiber angle (θ) of the agent
at the same location in the biological model that corresponded to the core
node in the mechanical model. Fiber angles below 22.5◦ were assigned as
force vectors along the x-axis, angles between 22.5◦ and 67.5◦ were assigned
as force vectors diagonal to the x-axis, and angles above 67.5◦ up to 90◦ were
assigned as force vectors perpendicular to the x-axis. The random selection
of the force applying nodes allowed us to consider the small displacement of
cells within the tissue and introduced some stochasticity to the model. Bio-
logically this represents the dynamic nature of the tissue. Cells are not static
and actively pull, changing their exact location. So the cell core that pulls can
slightly shift. To represent this, we assigned the pulling locations randomly
at each iteration.
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Figure 6.2: a) Geometrical explanation on fiber angle calculations for the tis-
sue agents younger than 2 days at the growth front in the biological module.
b) The schematic explanation of how fiber angles define the force vector di-
rection in the mechanical module. The force applying node (yellow) and the
nodes where the pulling forces are applied (green) are not true to size. The
nodes and the distance between them are drawn larger for visualization pur-
poses. c) Fiber angles of the younger tissue agents (yellow, red) versus older
tissue agents (blue) at day 7 of the simulation. Fiber angle is measured with
respect to the x-axis (bottom edge of the model space) and reported in de-
grees.

218



6

6.2.3 Coupling the two modules
In order to see the effects of the sharp change in ECM composition along the
microtissue on the mechanical environment surrounding the cells and read
out the cellular response to mechanical signals we coupled the two modules
explained above. Arrows marked with number 4 in Figure 6.1c correspond to
the points where biological module feeds into the mechanical module. These
points of contacts have different biological meaning at different microtissue
locations as described by Benn et al., 2023. Namely, in the growth front, where
there are highly contractile cells and highly stretched FN, the mechanical
model gets this input and reports back “high strains”. Entering the transi-
tion zone, the relaxation of FN starts (due to the increase in TNC) leading
to FN fibers-templating the nucleation of collagen fibrillogenesis. This is as-
sociated with a transient reduction of strain considered by the mechanical
module. In the tissue core, the shift to collagen binding integrins occurs, re-
sulting in reduced FAK, RhoA activity and contractility. The result is lowered
strains which allow the assembly of ECM rich in collagen. In our computa-
tional model, these biological processes are implicit in the intermediary steps
explained below.
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Figure 6.3: Coupled mechanobiological model steps, scripts used in the sim-
ulation process and input/output files. All the scripts and data are available
on the project GitHub repository (https://github.com/carliercomputationall
ab/rFMT-Coupled-Mechanobiological-Model).

In order to bring the biological and mechanical modules of the model to-
gether we wrote intermediary scripts in Python 3.9 (Figure 6.3). The in-
termediate steps ensured the correct flow of information between the two
modules. The model initiation (t = 0, Figure 6.3) step creates the initial tis-
sue agent placement on the biological module grid and writes in the ini-
tial conditions of the model (fiber angles and protein abundances). These
initial settings are written in a text file, which is read by the intermediary
scripts ”build FEM.py” and ”find loads.py” to initiate the input file for the

220

https://github.com/carliercomputationallab/rFMT-Coupled-Mechanobiological-Model
https://github.com/carliercomputationallab/rFMT-Coupled-Mechanobiological-Model


6

mechanical model. Using the location of active agents, abundance of colla-
gen and the fiber angles, the elements, material properties of elements and
force directions are determined respectively. These are written in the input
file for Abaqus ”FMT FEmodel (t − 1).py”. Once the FEM calculations are
done, results are saved in a text file (”FMT FEmodel (t − 1).dat”), which
is read by another intermediate script (”calculate strains.py”). Strain values
per node are extracted from the Abaqus results file and used as input for each
tissue agent in the biological module in the next iteration (”ABM rules.py”).
This cycle is repeated until the end of simulation time and all the results
files are stored with appropriate naming per iteration (”results abm t.txt”).
All the scripts (main and intermediary), Abaqus input files and results files
are stored in this project’s GitHub repository and can be accessed openly
(https://github.com/carliercomputationallab/rFMT-Coupled-Mechano
biological-Model). The baseline model parameters are given in Table 6.2.

Table 6.2: Parameter values used in the baseline simulation. Val-
ues marked with an asterisk were estimated using the experimen-
tal data of Kollmannsberger et al., 2018

Parameter Value (unit-
less unless it
is specified)

Explanation of the processes that are considered
in the equations where the parameters are used

K 0.03* Myofibroblasts assemble highly strained Fn
fibers, which requires α5β1 integrin activation
and signaling.
Via increased FAK and RhoA, cytoskeletal re-
modeling a more contractile actomyosin cy-
toskeleton enriched with αSMA is built.

n 4*
kyt0 0.65* Contractility-dependent nuclear transport of

YAP/TAZ
kyt1 -1.2*
kyt2 0.85*
kyt3 0.3* Contractility-independent nuclear transport of

YAP/TAZ
kfy 0.1 YAP/TAZ-dependent FN secretion also implies:

YAP-dependent profibrotic gene expression, in-
cluding TNC.

kfibFN 0.1 FN fibrillogenesis, alignment and stretching.
kc 0.050 Total possible procollagen secreted
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kc′ 0.025 (Cui et
al., 2020)

Total possible procollagen secreted in the case of
collagen inhibitor simulation

kcy 5 YAP/TAZ-dependent procollagen secretion
kcs 4 Collagen assembly that is dependent on relaxed

FN fiber availability (implying transiently upreg-
ulated TNC binding to FN, causing the disas-
sembly of integrin α5β1 adhesions, relaxing FN
fibers)

kfibCol 0.95 Collagen fibrillogenesis
Initial FN
abundance

0.1* Initially ECM only has low FN levels

Initial
nuclear
YAP/TAZ

0.2* Initially there is only contractility-independent
(background) nuclear YAP/TAZ

Initial
αSMA

0 Initially αSMA is not incorporated into the cy-
toskeleton

Initial
collagen
abundance

0 Initially tissue does not contain collagen in the
ECM

Force ap-
plied by
one node

0.2 × 10−6 N
(Rosowski et
al., 2018)

Force applied by one cell

Modified
force ap-
plied by
one node
for bleb-
bistatin
simulation

0.1 × 10−6 N
(Doss et al.,
2020)

Modified force applied by one cell for blebbistatin
simulation

6.2.4 Biological and mechanical perturbations to the model
In order to test the mechanobiological model under different conditions and
compare its validity with respect to the experimental conditions, we per-
formed two perturbations. First one is the biological inhibitor, which reduces
the total procollagen secretion per iteration by half, done here by introduc-
ing the modified parameter kc′, instead of the original parameter kc (Table
6.2). kc′ was set to 0.025, the half of the original parameter kc. This biological
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in silico perturbation is similar to the effect of 1 mg/mL pirfernidone, which
has been shown to reduce the collagen type 1 production by half in primary
human intestinal fibroblasts (Cui et al., 2020).

Second perturbation was a mechanical inhibitor, mimicking the effect of 10
µM blebbistatin addition to the culture medium, which reduces the total trac-
tion force applied by cells by half (Doss et al., 2020). Thus, for the mechanical
inhibitor, we reduced the total applied force by a node to 0.1 × 10−6 N (Ta-
ble 6.2). All other parameters were kept the same as the baseline set up and
the simulations were run for 19 days. The results were compared to the in
vitro microtissue experiments of Benn et al., 2023 and Kollmannsberger et al.,
2018.

6.3 Results
In order to investigate the integrated mechanical and biological processes that
govern the reversible FMT, we performed a 19 day simulation using the para-
meters in Table 6.2 and compared our simulation results to the experimental
results where available. At the end of 19 days (or 74 iterations in simulation
time), the tissue size reaches 340 µm when measured diagonally from the
growth front until the top left corner of the cleft.

Throughout the simulation, the fiber angle per tissue agent changes as the
tissue agent matures. The FN fibers of tissue agents younger than three days
are aligned with the growth front, while the fibers become more randomly
aligned as tissue ages past three days. A comparison of fiber angles of the
young tissue agents versus that of older tissue agents is shown in Figure 6.2c
for day 7 of the simulation. We chose day 7 to illustrate this aspect simply for
visualization purposes. The three histograms in Figure 6.2c show the number
of tissue agents with the respective fiber angles. Inner tissue agents (blue)
have a more balanced distribution of fiber angles (Figure 6.2c). Tissue agents
localized towards the right hand side of the growth front (Figure 6.2c red
box) have more fibers aligned between 0◦ to 45◦ to the x-axis of the cleft, rep-
resenting a parallel alignment with the circular growth front. Tissue agents
that are on the left hand side of the growth front (Figure 6.2c yellow box) on
the other hand, have more fibers between 45◦ to 90◦ to the x-axis of the cleft,
which again represents a parallel alignment with the growth front. In other
words, at the growth front, the majority of fibers are parallel to the growth
front, which corresponds to the experimental findings of Benn et al., 2023.
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Initially, at day 0, the in silico microtissue consists of fibroblasts and FN fibers
(and no collagen). This corresponds to the softest ECM material in our sim-
ulations, with an elastic modulus of 4 × 10−4 MPa. At this point there is not
yet αSMA produced and a baseline level of nuclear YAP/TAZ (0.2) is homo-
geneously present in all tissue agents. When cell traction forces are applied
and tissue strains are calculated by the mechanical module of the model, the
resulting strains are high (∼10%) throughout the microtissue, except in the
top left corner where the tissue is the most constrained by the solid cleft (Fig-
ure 6.5, Day 0). We let the simulation run for 4 iterations and calibrate. By the
end of this period, which corresponds to 1 day in real time, the biological and
mechanical environment in the in silico microtissue gains properties similar
to the in vitromicrotissues described in Benn et al., 2023 and Kollmannsberger
et al., 2018. At the growth front, there are high tensile strains, high αSMA
and nuclear YAP/TAZ, high FN and no collagen (Figure 6.5, Day 1). This
spatial distinction with particular mechanical and biological properties at the
growth front in comparison to the tissue center, holds true for the rest of the
simulation time.

6.3.1 ECM with little collagen overlaps with regions of high
strain and myofibroblast activity

The progression of tissue growth, ECM protein composition, tensile strains
in the microtissue and cellular proteins αSMA and nuclear YAP/TAZ are re-
ported over time in Figure 6.4. Overall, at the growth front, which corre-
sponds to the provisional matrix regions, the strains are higher than in the
tissue core. This high strain region of the in silico microtissue also overlaps
with high αSMA abundance and high nuclear YAP/TAZ ratio in the tissue
agents. This results in the higher abundance of FN in the younger tissue
agents and the accumulation of collagen in the older tissue agents (Figure 6.4,
ECM proteins).

We observe the myofibroblast phenotype constrained to the high strain region
mainly at the growth front until the end of simulation (Figure 6.4). Note that
we did not model cell migration, thus the tissue agents that were once at the
growth front become embedded in the tissue core as new tissue forms. As
such, the tissue agents that have a myofibroblast phenotype when they are
at the growth front return back to fibroblast phenotype once they fall in the
tissue core region. This shows that spatiotemporal change in tissue mechanics
allows for the reversal of the FMT.
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At day 19, there are four different tissue materials present in the in silico mi-
crotissue, namely the provisional, soft, medium stiff, and stiff matrices (Fig-
ure 6.5). These materials are defined in the mechanical module by the amount
of collagen they contain and the elastic modulus of the material increases as
the collagen abundance increases (Table 6.1). Taken together, simulation of
the cellular events linked to the mechanical response of the in silico microtis-
sue suggests that the local and gradual assembly of ECM proteins can instruct
the tissue material properties in a way to constrain the myofibroblast activ-
ity to the growth front. The interplay between the biological and mechanical
processes, tightly controlled in space and time, results in a transition zone in
which the strains decrease, reversing the myofibroblast phenotype back to a
fibroblast phenotype. As such, in the interior of the in silico microtissue only
a fibroblast phenotype is found. It should be noted that, the sharp decrease in
tissue strains, which we capture in the transition zone in our in silico model,
is only possible naturally via the transient upregulation of ECM modulators
that reduce the stability of cell-ECM contacts, i.e., TNC, as detailed more in
discussion and modeled here implicitly.
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Figure 6.4: in silico microtissue growth monitored over time. Each row
demonstrates one of the following tissue characteristics: tissue strains, abun-
dances of αSMA, nuclear YAP/TAZ, ECM proteins collagen and FN, and
the dominant cell type (fibroblast, transition or myofibroblast) at each tissue
agent. Columns represent different timepoints in the simulation (days 3, 7,
11, 15, 19).
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6.3.2 Spatiotemporal control over ECM production creates the
biological and mechanical differences observed between
the growth front, transition zone and the tissue core at
day 19 in the in silico microtissue

Next, we look at a snapshot of the in silico microtissue at day 19 (Figure 6.5).
We plot the mechanical and biological variables of the microtissue with re-
spect to the distance to the growth front (direction shown in Figure 6.5a) and
compare our simulation results to the experimental data where available.

At day 19, according to our simulation, we observe three distinct regions
in the microtissue similar to the in vitromicrotissue experiments (Benn et al.,
2023). First the growth front, where the tissue level strains are highest and
vary between 1 to 4% in the initial 10 µm (Figure 6.5b). In this region, the
αSMA abundance is also higher, changing between 0.12 and 0.75. Similarly,
nuclear YAP/TAZ and FN abundance are highest in the growth front, reach-
ing their peak at 0.55 and 0.65 respectively (Figure 6.5c). Collagen abundance
in the growth front is low, ranging between 0 and 0.16, and should be care-
fully interpreted (Figure 6.5c). As collagen abundances lower than 0.1 in the
biological module are considered to be too low to make a difference in the
material definition in the mechanical module (Table 6.1), the collagen in the
growth front region effectively represents procollagen, which is only secreted
by the cells and not yet assembled into mature ECM.

Second region is the transition zone, where the tissue tensile strains decrease
from 2% to almost zero, between 10 µm and 30 µm (Figure 6.5b). In the tran-
sition zone, αSMA sharply decreases close to zero, nuclear YAP/TAZ and FN
gradually decrease from 0.38 to 0.30 and from 0.42 to 0.23 respectively (Figure
6.5c). In this region we also observe the collagen content in the ECM increas-
ing from 0.16 to 0.31 (Figure 6.5c). The end of this transition zone is marked
by the collagen abundance exceeding the FN abundance.

Third, the tissue core, which we plot only to 60 µm from the growth front, is
the region where the collagen abundance continues to increase and reaches a
maximum of 0.80. In this region, the tensile strains (Figure 6.5b) and αSMA
abundance are zero, and nuclear YAP/TAZ and FN are present only at their
background levels of 0.3 and 0.2 respectively (Figure 6.5c).

227



6

Chapter 6. A Mechanobiological Model of the Reversible Fibroblast to
Myofibroblast Transition

Figure 6.5: a) Snapshot of the in silico cleft at day 19, almost full with tissue.
The red arrow indicates the direction along which b) the tissue tensile strains
and c) αSMA abundance, nuclear YAP/TAZ ratio and ECM protein abun-
dances are plotted at day 19 of the simulation.

Taken together, the peak in αSMA and FN and the low abundance of collagen
in the growth front region qualitatively match the growth front definition in
Benn et al., 2023. Since the geometry is different in their experiments, and the
geometry of the cleft is likely to change the contractile properties of the tis-
sue, we cannot numerically compare our in silico results to the in vitroresults
by Benn et al., 2023. However, simulated αSMA and nuclear YAP/TAZ abun-
dances can be compared to the experimental measurements from Kollmanns-
berger et al., 2018, as the cleft geometry is the same (Figure S.6.3). In order
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to compare the fluorescence intensity measures from the experiments to our
results, we scaled the αSMA fluorescence intensity measures to vary between
0 and 1, by matching the highest αSMA fluorescence intensity in the exper-
iments to 1. This way the highest αSMA fluorescence intensity measured at
the growth front in the experiments corresponds to 0.4 in our scale. Although
our simulation overestimates the maximum αSMA abundance, the simula-
tion and experimental results both indicate that the highest αSMA abundance
occurs within the initial 10 µm of the microtissue (growth front), after which
the αSMA abundance sharply decreases within the transition zone to reach
zero in the tissue core (Figure S.6.3). The nuclear YAP/TAZ abundance in our
simulation matches the experimental observations of Kollmannsberger et al.,
2018 (Figure S.6.3), with a peak in the transition zone and a constant baseline
level in the tissue interior.

What is the underlying mechanism in the in silico model that drives the above
described behavior of distinct zones with biologically distinct properties?
Our simulation allowed us to clearly demonstrate that the fast assembly of
highly stretchable FN fibers at the growth front, their relaxation in the tran-
sition zone, leading to a gradual accumulation of collagen in the tissue core,
creates the mechanical environment needed for a high strain region at the
growth front (of the in silico microtissue). It is important here to highlight
that the (local) ECM composition in the biological module of our model in-
structs the (local) material properties of the tissue in the mechanical module.
Therefore the ECM protein assembly into the ECM is both the response to
the mechanical environment (in the form of tensile strains that lead to inte-
grin activation, downstream YAP/TAZ translocation and protein production)
and the factor that creates the mechanical environment of the in silico micro-
tissue.

6.3.3 Biological and mechanical perturbations
After we established that the interplay between biological and mechanical
properties of the microtissue is the key controller of the reversible FMT pro-
cess, we applied perturbations to both biological and mechanical modules
of our in silico model, to explore their interconnected nature. As biological
inhibitor, we chose to mimic the addition of collagen production inhibitors
to the culture medium, which are used for antifibrotic agents in the clinic
(Knüppel et al., 2017). For the mechanical inhibition, we mimicked the addi-
tion of blebbistatin to the culture medium, which inhibits cell contractility.
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The biological inhibition of collagen production resulted in an overall in-
crease in tissue strains calculated by the mechanical module (day 19 shown
in Figure 6.6a). The higher strains (via biological processes explained in the
previous section) result in less collagen and more FN abundance in the ECM
compared to the baseline (Figure 6.6b). The overall effect of the collagen in-
hibitor was an increased myofibroblast activity (Figure 6.6c). In other words,
the reversal of the FMT process was hampered with the biological inhibitor,
whereas the reversal of the FMT was clearly observed in the baseline simula-
tion behind the growth front (Figure 6.6c).

In the case of blebbistatin, the mechanical inhibitor of cell contractility, the
tensile strains were zero throughout the tissue, except at the growth front.
The strains in the growth front were lower than in the baseline simulation
(day 19 shown in Figure 6.6a). Different from the biological inhibitor, with
blebbistatin, the cell contractility was reduced by half. Hence in this case, the
change in strains are not due to a change in the composition of the ECM (Fig-
ure 6.6b) but due to the reduced total force applied by contractile cells on the
ECM. The overall myofibroblast activity (including at the growth front) was
reduced with blebbistatin, compared to the baseline (Figure 6.6c). Note that
the myofibroblast phenotype is directly linked to the abundance of αSMA in
our model.

Both our simulation results from the biological and mechanical perturbations
are in line with the observations from the in vitro microtissue experiments
by Benn et al., 2023 and Kollmannsberger et al., 2018 respectively. With the
addition of blebbistatin to the culture medium, Kollmannsberger et al., 2018
reported a decrease in the αSMA expression at the growth front compared
to the control, similar to what we observed in our perturbation simulation
(Figure 6.6d). With a biological inhibitor, Benn et al., 2023, described a less
defined growth front with αSMA being expressed even further away from
the growth front, in contrast to the control experiments without the addition
of a biological inhibitor. This disturbance to the growth front can also be
seen in our in silico microtissue experiment with biological inhibitor (Figure
6.6c).

Interestingly, the mechanical inhibitor blebbistatin, caused a decrease in the
amount of FN at the growth front compared to the baseline (Figure 6.6f). The
biological inhibitor on the other hand caused the growth front characteris-
tics with high FN to expand, similar to its effect on αSMA (Figure 6.6f) and
to the experimental observations (Benn et al., 2023). Unlike in the experi-
ments, we observe that there is a constant FN abundance, leveling off around
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0.2 throughout the tissue. This is due to the background YAP/TAZ nuclear
translocation, irrespective of the amount of αSMA in the microtissue.

Figure 6.6: Continued on the following page
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Figure 6.6: The effects of biological and mechanical perturbations on a) tissue
principal tensile strains, b) ECM composition and c) cell phenotypes observed
at day 19 of the simulation. The abundances of d) αSMA, e) collagen and f)
FN at day 19, reported with respect to the distance to growth front under
perturbation compared to the baseline.

6.4 Discussion
By coupling biological and mechanical processes in an integrated in silico
model, we have shown that the spatiotemporal control over the ECM is guid-
ing the tissue mechanical properties for a successful reversible FMT. This spa-
tiotemporally controlled production of de novo ECM includes many tightly
controlled biological processes. Among many, we modeled the strain-dependent
αSMA expression, YAP/TAZ nuclear translocation and the FN and collagen
production and degradation as ECM proteins in our biological module. Al-
though we did not explicitly model some biological processes identified by
in vitro microtissue experiments to be drivers of the reversible FMT, such as
the integrin-mediated FAK and RhoA activity, TNC and TG2 expression and
degradation, MMP activity (Benn et al., 2023), we still could capture similar
features at the growth front, transition zone and tissue core as in in vitro ex-
periments. As such, selected biologically relevant processes lumped together
in a reduced set of parameters were captured by our mathematical equations
governing the biological module.

In the growth front, where the tensile strains are predicted to be high by the
mechanical module, our biological module resulted in the preesence of high
levels of αSMA. Normally, activation of integrin α5β1 and the resulting FAK
and RhoA activity helps the assembly of αSMA into the cytoskeleton, thus
increasing the cellular contractility (Figure 6.7). In our model, this is cap-
tured by the Hill type equation between αSMA and tensile strains (Eq.6.1).
Similarly, YAP/TAZ nuclear translocation increases in highly contractile cells
due to the cells becoming flatter and nuclear pores opening more (Figure
6.7). This process we implicitly captured by Eq.6.2, as a third degree poly-
nomial fit between α SMA and YAP/TAZ nuclear translocation. Finally, the
fast production of tensed FN fibers at the growth front, which we could cap-
ture mathematically in the model by the Eq.6.3 implies the physical (via TNC
tethering) and chemical (via TG2 crosslinking) stabilization of the provisional
matrix (Figure 6.7). Since the mathematical relationship between strain and
collagen works in a way to inhibit collagen assembly when strain is high, we
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observed very low collagen assembly into the ECM in the growth front (Fig-
ure 6.7), corresponding to the experimental observations (Benn et al., 2023).
Note that the high strains at the tissue level also imply high fibronectin fiber
strain in our model, since we do not explicitly model individual fibronectin
fibers.

The transition zone is where the transition from highly contractile myofibro-
blast phenotype to quiescent fibroblast phenotype starts (Figure 6.7). Biolog-
ically, it was hypothesized that the FN relaxation (due to the TNC-mediated
disassembly of integrin α5β1 adhesions) initiates this transition (Benn et al.,
2023). FAK and RhoA signaling decreases as integrin α5β1 adhesion is desta-
bilized because TNC competes with Syndecan 4 (which normally stabilizes
integrin α5β1 adhesions) for binding the FN fibers (Benn et al., 2023; Morgan
et al., 2013). Relaxed FN can then template the collagen assembly, thus col-
lagen content also start increasing in the transition zone (Figure 6.7). In our
computational model, this behavior of FN relaxation was captured by the
reduced tissue strain, which directly increases collagen assembly. The low-
ered cell contractility is represented by αSMA disassembly, resulting in less
nuclear YAP/TAZ (Figure 6.7). In the tissue core, all above described pro-
cesses in the growth front are reversed (Figure 6.7). For the reversal of these
mechanobiological processes, the cells need to establish the right mechanical
environment through tightly controlled ECM production and degradation.
With our 2-module model, we have shown that, indeed, as the microtissue
grows and more collagen is assembled into the ECM towards the tissue core,
the tensile strains get lower, so as to reverse the myofibroblast-related activi-
ties.
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Figure 6.7: Summary of biological processes that are dominant in the a)
growth front and b) tissue core. The processes that are captured explicitly
in the coupled mechanobiological FMT model are in solid boxes (green for
biological module, blue for mechanical module). The processes written in
italics represent the biological processes that we implicitly represent in the
model equations (explained in the Methods section in detail). Continued on
the following page.

234



6

Figure 6.7: The numbers on the arrows indicate to which category the
process belongs to 1) mechanosensitive activation of cellular signaling, 2)
contractility-induced YAP/TAZ nuclear transport, 3) ECM protein produc-
tion, assembly and ECM remodeling via tethering/crosslinking and 4) alter-
ing of the ECM mechanical properties. See Table S.6.1 for a textual summary
of all the biological processes explained here, as well as the equations in the
model that correspond to the processes.

The perturbations we performed both on the biological and also mechanical
sides, showed that disturbing the tightly controlled ECM assembly dynamics
results in disturbances to the FMT. In case the collagen production was inhib-
ited, the tissue core was richer in highly strained FN fibers and low in colla-
gen which resulted in more active myofibroblasts in the tissue core, meaning
the reversibility of the FMT was disrupted. This implies, by inhibiting colla-
gen production, the shift from FN-binding integrins to collagen-binding inte-
grins does not occur, leaving FAK and RhoA activity high, resulting in higher
contractility deeper in the tissue. In the case of cell contractility inhibition, the
tissue level strains are lowered and the FN production is decreased. In turn,
the myofibroblast activity is much less than in the baseline. This implies, with
reduced cell contractility, YAP/TAZ entry to the nucleus is reduced, resulting
in less FN production. Without the tensed FN FAK and RhoA activation is
less than in the baseline, resulting in an overall decrease in myofibroblast
activity. In both biological and mechanical inhibition, the growth front dy-
namics changed (Figure 6.6). This shows, once again, that the production of
de novo ECM links the biological and mechanical processes enabling the re-
versal of FMT. In our simplified in silico model, one observation we could not
capture is the major reduction in growth rate in case of contractility inhibition
with blebbistatin, as observed by Kollmannsberger et al 2018. In our in silico
model, microtissue is allowed to grow as long as there is available space in
the model grid. Therefore inhibiting cell contractility did not affect the tis-
sue growth, although it affected the other biological processes that are linked
to contractility (e.g., YAP/TAZ nuclear translocation, FN production). In the
future, the tissue growth mechanism in our model needs to be updated to
accommodate this discrepancy with the biology.

Note that the mechanical module of our model was iteratively updated for
the model geometry which was growing as tissue grows, and for the amount
of collagen present in each tissue agent. In our in silico model, as the tissue
grew and the collagen content in the ECM increased from the growth front
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to the tissue core, the stiffness of the tissue material definition of the mechan-
ical module increased (Figure S.6.2). The tensile strains were the response
of the tissue to the cell contractile forces, under the continuously changing
mechanical properties (geometry and collagen content). Since we were mod-
eling the biological processes observed in a 3D microtissue, the stiffness def-
inition should not be interpreted as the ”substrate stiffness” concept in 2D
tissue growth experiments. Here the definition of a stiffer ECM with increas-
ing collagen content refers to the increased ”stress-bearability” of the tissue
(Castro et al., 2018; Roeder et al., 2002) and the decreased stretching of the FN
fibers with increasing collagen fiber content (Kubow et al., 2015), as shown by
experiments before.

We have made two main assumptions while building the mechanical mod-
ule. First, we assumed a linearly elastic material description for the whole
microtissue while individual collagen (Gachon & Mesquida, 2020) and FN
fibers (Klotzsch et al., 2009; Peleg et al., 2012) are known to be not linear elas-
tic. However, it is safe to assume linear elasticity in case the strains are low,
at least for the collagenous tissues (Marqueti et al., 2019; Roeder et al., 2002)
Throughout the simulation, the mean strains were lower than 2.5% for col-
lagen containing tissue materials (Figure S.6.4a) and only for the provisional
matrix, which did not contain collagen, the strains were higher (mean < 10%,
Figure S.6.4a). Note that we did not explicitly model individual FN fibers.
From this and our test with an orthotropic elastic material definition giving
similar results in terms of tissue strains (Figure S.6.4b), we assumed that lin-
ear elasticity was acceptable for our application. In the future, if material
properties of early fibroblast tissue are explored more in detail experimen-
tally, a more refined material description could be used instead of linear elas-
ticity. Although there are no experimental material tests available, to our
knowledge, for the early fibroblast tissue we modeled, the closest biologi-
cal tissue, skin, has been tested for its mechanical properties before. In vivo
tests of the forearm skin tissue has shown hyperelastic properties (Flynn et
al., 2011) and also has found to behave anisotropically (Gahagnon et al., 2012).
To account for these observations, the fibroblast microtissue could be repre-
sented by a hyperelastic anisotropic material, by modifying the parameters
of the model described by Gasser et al., 2005. This model was initially de-
veloped for arterial walls, which have very different mechanical properties
compared to the early fibroblast microtissue we have in our model. There-
fore the adaptation of a hyperelastic anisotropic material requires detailed
mechanical testing of the fibroblast microtissue for the required material pa-
rameters. Valero et al., 2015, for example, in their skin wound healing model,
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used an anisotropic material model. Parameters of this model were previ-
ously defined by the experimental tests done by Nı́ Annaidh et al., 2012 on
the anisotropic behavior of human skin. We believe it will be valuable to
also do mechanical tests with the early fibroblast microtissues, in order to
parametrize our in silico model, to further advance the knowledge on the re-
versible FMT.

Second, the magnitude of traction force was kept constant for every force-
applying node although there is evidence that αSMA-positive myofibroblasts
exert higher traction forces than fibroblasts (Hinz et al., 2001; Shinde et al.,
2017) and that cells exert higher traction forces on stiff versus soft substrates
(Provenzano & Keely, 2011). The main reason we kept the magnitude of trac-
tion force constant is the fact that myofibroblasts with αSMA are found in
the mechanically most stretchable part of the tissue (growth front). Thus the
soft environment in the growth front, requiring the cell not to exert as much
force as in a stiffer environment, balances the increased force exertion due to
αSMA. So, we assumed, the decreased force exertion due to softer ECM is
evened out by the increase in force exertion due to high αSMA in the model,
and the applied force is equal throughout the tissue. Similarly, in the high col-
lagen (stiffer ECM) regions of the model, αSMA expression is low, which de-
creases the force exertion. For finer scale applications where individual cells
or even sub-cellular components like actin cytoskeleton are explicitly mod-
eled, the applied traction forces by individual cells could change. However,
this requires single cell level experimental measurement of applied forces un-
der matching experimental conditions.

Finally, in order to gain more insights into the effect of different parameters in
the observed results, a parameter sensitivity analysis needs to be conducted.
Such an analysis will also indicate which parameters are more influential on
the control over the in silico FMT-MFT process. These potentially more influ-
ential parameters will then need to be experimentally determined before we
can further develop this in silico platform.

In conclusion, with our coupled mechanobiological model of the reversible
FMT, we have identified novel ECM production and degradation as key pro-
cesses in the interplay between the biology and mechanics of microtissue
growth. The difference in timing of FN and collagen fibrillogenesis even-
tually creates the difference between the mechanical and biological proper-
ties of the high strain growth front and low strain tissue core, with a sharp
transition zone between them. The development of the integrated frame-
work, which lumped together various processes, enabled us to identify the
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key players in the dynamic interplay between the mechanics and the biology
of the reversible FMT, important for controlling the process. Moreover, the
integrated in silico platform represents an important building block to model
other fibrotic processes, in addition to the FMT-MFT, and conduct prelimi-
nary in silico experiments to understand the influence of ECM (dis)assembly
and mechanosensation thereon, preceding the establishment of more compli-
cated experimental setups. Considering that FMT-MFT is a central process in
wound healing and aberrations to it result in fibrosis, it is crucial to know for
example, when and how to interrupt the process to prevent fibrosis. We be-
lieve our model provides fundamental knowledge for applications like active
implants, where microtissues are combined with implants to improve tissue
regeneration.

6.5 Supplementary Material
Table S.6.1 Summary of in silico model equations and the biological pro-
cesses they represent, accompanying the Figures 6.1C and 6.7

Arrow num-
ber in Figure
6.1c and Fig-
ure 6.7

Equation correspond-
ing to the arrow

Explanation of the processes that are
considered in the equations

1 Eq.6.1 The Hill type dependence of αSMA
on tissue strains has been deduced
from Kollmannsberger et al., 2018.
We lump in this equation the follow-
ing processes described in Benn et al.
2023:
Myofibroblasts assemble highly
strained Fn fibers, which requires
α5β1 integrin activation and signal-
ing,
via increased FAK and RhoA, cy-
toskeletal remodeling and build-up
of a more contractile actomyosin
cytoskeleton enriched with αSMA.
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2 Eq.6.2 The 3rd degree polynomial de-
pendence of nuclear YAP/TAZ on
assembled αSMA has been deduced
from Kollmannsberger et al., 2018.
We lump in this equation the follow-
ing processes described in Benn et al.
2023:
High cell contractility promotes the
translocation of YAP/TAZ from the
cytoplasm to the nucleus,
kyt0, kyt1, kyt2 represent
contractility-dependent nuclear
transport of YAP/TAZ
kyt3 represents baseline
(contractility-independent) nuclear
transport of YAP/TAZ

3-FN Eq. 6.3 This equation describes the FN secre-
tion (first term) and FN fibrillogenesis
(second term).
The first term (YAP-dependent FN se-
cretion) also implies: YAP-dependent
profibrotic gene expression, including
TNC.
The second term with the parameter
kfibFN describes the FN fibrillogen-
esis, alignment and stretching. FN
fibers are crosslinked by TG2, which
enhances their mechanical stability.
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3-collagen Eq.6.4 This equation describes the procolla-
gen secretion and collagen fibrilloge-
nesis.
The parameter kcy in the first term
describes YAP-dependent procolla-
gen secretion
Collagen assembly depends on the
structural relaxation of FN fibers,
this is described by the parameter
kcs in this equation. (lower strain
higher collagen assembly), therefore
this equation also implies: Tran-
siently upregulated TNC binding to
FN, causing the disassembly of inte-
grin α5β1 adhesions. This results in
FN relaxation
TNC inhibiting its own expression
and sharp decrease in TNC described
in Benn et al. 2023.
The second term with the parameter
kfibCol describes the collagen fibrillo-
genesis which takes longer time than
FN fibrillogenesis.
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4 biological module to
mechanical module
transition

This step links the biological module
and the mechanical module through
the transient secretion of ECM asso-
ciated molecules. These mechano-
regulated processes described above
and in the figure responds and tunes
mechanical properties of the tissue
material model. In the growth front,
where there are highly contractile
cells and highly stretched FN, the me-
chanical model gets this input and re-
ports back ”high strains”.
Entering the transition zone, the re-
laxation of FN starts (due to the
increase in TNC) leading to Fn-
templating the nucleation of collagen
fibrillogenesis. This is associated with
a transient reduction of strain consid-
ered by the mechanical module.
In the tissue core, the shift to collagen
binding integrins occurrs, resulting in
reduced FAK, RhoA activity and con-
tractility the result is the ECM rich in
collagen.
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Figure S.6.1 Distribution of the abundances of biological model variables
throughout the microtissue at model initialization (Day 0) and after calibra-
tion of four iterations, or one day of simulation (Day1).
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Figure S.6.2 Material stiffness properties of the microtissue over time. De-
fined material stiffness in the mechanical module is based on the collagen
content of the tissue at each tissue agent location in the biological module.
See Table 6.1 for collagen to material property conversion.

Figure S.6.3 Comparison of simulation results (solid lines) for a) αSMA
abundance and b) nuclear YAP/TAZ ratio to experiments by Kollmanns-
berger et al., 2018 (gray data points).
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Figure S.6.4 Tissue strains calculated per different material properties (pro-
visional, soft, medium stiff and stiff) with a) linear elastic material assump-
tion and b) orthotropic elastic material assumption. Orthotropic materials
have a different elastic modulus in each principal direction (E1 and E2). The
principal material direction at each node is assumed to follow the fiber an-
gle at each tissue agent, as calculated by Eq.6.5 in the main text. The elastic
modulus in the direction of the fiber (E1) is assumed to be the same as in the
linear elastic definition (depending on the collagen content of the tissue) and
the elastic modulus on the direction orthogonal to the fiber direction (E2) is
assumed to be 1/5 of the elastic modulus along the fiber.
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Regenerative medicine strives to restore damaged tissues and organs. Over
time, both regenerative medicine and the discipline of tissue engineering
have progressed, aiming to create cell culture and biomaterial systems and
combinations thereof that closely resemble natural tissues. In order for tis-
sue engineering to be successful, it is essential that the cells used to create
the tissue are able to communicate and interact with each other and with the
(bio)materials in a way that mimics the natural functioning of the tissue. This
requires a deep understanding of the mechanisms of cell-cell and cell-ECM
communication, as well as the ability to manipulate these processes in the
lab. Computational modeling is a powerful tool for investigating the cell-cell
and cell-ECM interactions. It allows us to study the complex processes in a
more controlled and systematic way. By using computational models, we can
study the effects of different variables, such as changes in the concentration
of different proteins in the system, or the mechanical forces that cells experi-
ence. Having a thorough understanding of these fundamental processes will
help us then to identify potential therapeutic targets for diseases that involve
abnormal cell-cell or cell-ECM interactions such as fibrosis.

7.0.1 Contribution to research
Throughout this thesis, we introduced different dynamic computational mod-
els, all tackling various aspects of cell-cell and cell-ECM interactions with a
focus on improving the tissue engineering and regenerative medicine field. In
Chapter 2 we reviewed the existing computational models of integrin signal-
ing in the context of cell-ECM interactions, and identified the open questions
in the area. We highlighted different modeling approaches that are suitable
for different research questions. The remaining parts of this thesis were also
inspired by this concept: there is no single true method when it comes to
computational modeling of cell-cell and cell-ECM interactions and the valid-
ity of the computational models are defined within the scope of the research
question. For example, in Chapter 4 we explicitly modeled the concentration
of proteins in the integrin adhesome to predict the fraction of nascent adhe-
sion that has the potential to mature. On the other hand, in Chapter 5, we
only modeled the activity levels of proteins, not absolute concentrations, to
predict the cell proliferation status as a result of the (in)activity of proteins
in the signaling cascades, as a multitude of experimental data in the form of
the relative abundance of active and inactive forms (i.e., phosphorylated and
unphosphorylated forms) of proteins in the network were available. Both
models in these chapters use ordinary differential equations (ODEs) but the
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mathematical expressions are adjusted to represent different aspects of the
biological systems, because they tackle different challenges.

We focused on the previously uncharted competition between ECM proteins
when binding to the same integrin sub-type in Chapter 3. We used an ODE
model, building on a previously published model (Hudson et al., 2017) and
extending the knowledge by allowing the binding of two different integrin
ligands to the same integrin. The ODE model enabled us to track the concen-
trations of free and integrin-bound ligands over time. The results showed that
the ligands with high integrin binding affinity occupy more integrins than
their low affinity competitors because the ratio of binding rates of ligands
was much higher than the ratio of initial ligand concentrations. We showed
mathematically, that when two ligands compete to bind to the same receptor,
the highest ratio — either the ratio of binding rate constants or the ratio of
initial ligand concentrations — has the dominating effect on the steady-state
concentrations of the ligand-bound receptors. This conclusion implies that
when designing (bio)materials with integrin targeting peptides for instance,
the affinity between the peptides and the collection of integrin sub-types ex-
pressed by the cells should be carefully assessed alongside the concentrations
of peptides used to functionalize the material.

The computational model described in Chapter 4 expanded the knowledge
on the integrin-ligand level to the integrin adhesome level. In this study we
explored the biochemical reactions that take place at the cell-ECM interface
at the adhesome scale using an ODE system similar to the previous chapter
but explored the effect of cellular forces on the binding and unbinding reac-
tions as well. By including the cellular forces in the equation, we showed that
the focal adhesion maturation was dependent on the substrate stiffness in a
biphasic manner. We have also shown the indispensable contribution of cell
signaling to the adhesome assembly/disassembly dynamics. Time depen-
dent rate modification (TDRM) of the nascent adhesion (dis)assembly rates,
which biologically represented the spontaneous bond-rupture events in the
nascent adhesion proved to be necessary to establish the experimentally ob-
served ”optimal stiffness” concept for adhesion maturation. This model was
an extension to the molecular clutch model of Chan and Odde, 2008 and pro-
vided a potential explanation for the different optimal stiffness preference of
different cell types.

In addition to cell-ECM interactions, cell-cell interactions are also critical de-
terminants of cell decision-making. In Chapter 5 we explored the combina-
torial effect of cadherin-11, a cell-cell adhesion protein, and PDGFRs, growth
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factor receptors, on cell proliferation in hMSCs. This model was different than
the previous models in nature, as the ODEs modelled here the standardized
activity level of proteins in the network, rather than the exact concentrations
of proteins. This allowed us to use the protein activity quantification data
provided by our collaborators for calibrating and validating the model. In the
end, with this model we were able to provide computational evidence for the
existence of a new level of interaction between the growth factor and cadherin
pathways. This model helped in the interpretation of the experimental obser-
vations and provided a possible mechanism of action for cadherin-mediated
cell proliferation control in hMSCs.

Then in Chapter 6, we incorporated both cell-ECM and cell-cell interactions
in a multiscale model of the reversible fibroblast to myofibroblast transition
(FMT). Although integrins and cadherins were not explicitly modeled in this
study, we represented the cell-ECM interactions as the effect of ECM protein
composition and alignment on the activation of mechanotransductive cellu-
lar processes while the cell-cell interactions were represented via the traction
forces that were applied by neighboring cells to the ECM. Using a coupled
biological and mechanical model we showed that the mechanical properties
of the ECM can direct the subcellular processes such as αSMA production,
YAP/TAZ nuclear translocation and ECM protein production thus changing
the cell behavior via myofibroblast activation. We also showed that the re-
versal of phenotyope, from myofibroblast to fibroblast, is possible with the
maturation of collagen-rich ECM. These conclusions have important impli-
cations for wound healing models that are used in tissue engineering. First,
we suggest that the reversibility of the FMT is an emerging property of the
mechanosensitive de novo ECM protein production by the fibroblasts and
myofibroblasts. Second, we provide mechanistic explanations to the results
of biological and mechanical perturbations to the system. Any biological in-
hibitor that acts via slowing down the collagen production will disturb the
reversibility of the FMT and any mechanical inhibitor that decreases cell con-
tractility will disturb the activation of FMT.

All together, the research presented in this thesis highlights the importance of
cell-cell and cell-ECM interactions in cell decision-making at different scales.
We have shown that from single protein level to tissue level, all steps of cell-
cell and cell-ECM interactions can influence the outcome of cell behavior (ad-
hesion, proliferation, differentiation). Computational modeling allowed us
to demonstrate the delicate control needed over not only biological, but also
chemical and physical/mechanical aspects of the cell-cell and cell-ECM in-
teractions for the normal functioning of cells and tissues. For example, the

252



7

integrin ligand competition is highly influenced by the physical affinity of
proteins for one another. The adhesion (dis)assembly dynamics depend on
the presence of other signaling proteins, on more stochastic bond rupture
events and also on the mechanical reinforcement through force-dependent
unfolding of proteins. Cadherin-11 and PDGFR signaling pathways crosstalk
at different levels and each level of crosstalk has a different effect on the cell
proliferation. The production of new ECM proteins influence cellular biology
via changing the ECM mechanical properties as well as composition and rel-
ative abundance of integrin ligands. All of the biological, chemical, physical/
mechanical control mechanisms (e.g., feedback loops, crosstalks, thresholds)
are equally important. Yet they act on the different levels of cell-cell and cell-
ECM interactions, therefore they need to be acknowledged while addressing
complex biological challenges like mimicking the natural tissue environments
using biomaterials.

7.0.2 Outstanding questions and future work
Regenerative medicine

In different chapters of this thesis, we addressed challenges of a different
biological scale (i.e., protein, cell, tissue scales) of cell-cell and cell-ECM in-
teractions. As often repeated throughout this thesis, biological systems are
complex and multiscale. For example, the FMT process is influenced by
both protein scale changes (e.g., YAP/TAZ nuclear translocation) and tissue
scale changes (e.g., ECM straining), as highlighted in the multiscale model of
Chapter 6. Therefore when developing (bio)material systems targeting cells
(of the desired tissue) this multiscale effect of cell-cell and cell-ECM interac-
tions should be carefully considered. In Chapter 6, we lay the building blocks
of the FMT process which is key in healthy wound healing and fibrosis. How-
ever, to address challenges like fibrosis prevention in regenerative medicine,
a more thorough approach in modeling is needed. Fibrosis is a highly mul-
tiscale problem, involving multiple cell types and physiological systems and
difficult to tackle from a single point of view. That is why fibrosis is still an
unresolved issue in regenerative medicine (Fernández-Colino et al., 2019).

Along this line, a possible further extension to this thesis, could be to bring
all the knowledge obtained from the four research projects at different scales
together in a multiscale model of fibrosis, to test the effect of known and de-
veloping anti-fibrosis drugs (Figure 7.1). Such a novel multiscale model could
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account for the three main receptors; integrins, cadherins and growth factor
receptors on fibroblast cells which are represented in an agent based model
setup. To accurately represent the cellular environment in fibrosis, this model
could also include cells of the immune system (i.e., macrophages and lym-
phocytes) which are activated in fibrosis development. At the subcellular
scale, we could use the information from Chapters 3, 4 and 5 to form an ODE
network of integrin adhesome, cadherin and growth factor receptor path-
ways, including known crosstalks between the three (Barcelona-Estaje et al.,
2021; Margadant & Sonnenberg, 2010). This would result in an agent based
model, in which the subcellular processes are tracked with ODEs. When this
is coupled to a FEM, similar to the one in Chapter 6, we could also see how
the mechanical properties of the ECM and the tension generating capacity of
the cells can change the adhesome formation (as implied in Chapter 4) and
further mechanosensitive and mechanotransductive processes. Finally, using
our knowledge from the Chapter 2, we could test the effect, dose dependency
and interdependence of different anti-fibrosis drugs that are known to target
integrins, cadherins and growth factors or their receptors (Blaschuk, 2022;
Slack et al., 2022; Zhao et al., 2022). This model would also enable the dis-
covery of new anti-fibrotic drugs or drug combinations by complementing
in vitro fibrosis models (Alsharabasy & Pandit, 2021; Doryab et al., 2022; van
Grunsven, 2017; Vazquez-Armendariz et al., 2022), allowing in silico testing of
many different configurations otherwise too costly to do experimentally.
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Figure 7.1: A summary of the proposed multiscale model of fibrosis, using
information from all the research presented in different chapters of this thesis.
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Computational biology

Multiscale computational models have the power to represent complex bio-
logical systems from the molecular level up to the level of whole tissues or or-
gans. As understanding the effect of cell-cell and cell-ECM interactions on cell
decision-making requires us to understand changes at the (macro)molecular
level (e.g., interactions between proteins), at the cellular level (e.g., cell sur-
vival/death) and at the tissue/organ level (e.g., fibrosis/healthy tissue for-
mation), multiscale models have a great potential to advance the tissue en-
gineering and regenerative medicine field. Therefore the future of computa-
tional modeling efforts need to focus on building multiscale models to help
improve tissue engineering and regenerative medicine. This also implies bi-
ological data produced at multiple scales will be needed. More and more
quantitative methods are being developed and used at the molecule, cell and
tissue/organ level in the regenerative medicine field. Multiscale models will
also enable the incorporation of data from different sources and thus has the
potential to unravel new relationships between different parts of the biologi-
cal systems (Fletcher & Osborne, 2022).

A current challenge in the production, storage and sharing of the biologi-
cal data, which is highly valuable for computational biology, is ensuring its
quality. There are four principles, called the FAIR principles, to ensure the
good quality of data in scientific research. The FAIR principles are a set of
guidelines for making data Findable, Accessible, Interoperable, and Reusable
(FAIR) (Wilkinson et al., 2016). These principles were developed to promote
the use of open data and to improve the interoperability and reuse of data in
scientific research. The FAIR principles are particularly relevant for compu-
tational modeling of biological systems, as they can help to ensure that the
data used to build models is of high quality and is easily accessible to other
researchers. I believe the improvements in the field of (biological) data man-
agement will aid both the computational biology and the fields of biology
that benefit from computational methods immensely in the years to come.

Besides the management of biological data that needs to improve and fit to
standards, the resulting computational models that make use of the biologi-
cal data need to be stored in properly managed databases and openly shared
with the scientific community. It is important to share computational models
openly as most of the time (also as mentioned in different chapters of this
thesis) computational models build on one another. Therefore having access
to past attempts in modeling a particular system is extremely valuable. There
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are different ways to share published computational models with the scien-
tific community. One is publishing the code used to generate the model and
the simulations in an open-source software development platform such as
GitHub (https://github.com/), which also allows version control for the
modeller. Second is using a database offered by the modeling software to
store all the code to the model and simulations. The VCell model database
(https://vcell.org/) is an example to this option. It allows the user to view,
load, run simulations and extract results from the open access models in the
database. The third option is to use a more general database like BioMod-
els (https://www.ebi.ac.uk/biomodels/), which allows the modeler to
store their computational models in standardized formats that are globally
accepted. As a strong advocate of open source coding and open science, I
have shared all the computational models in this thesis with the scientific
community, using at least one of the methods described here. The individual
chapters can be visited to read about access options for each of the models.
With this, I hope to have set a good example for the future generation of com-
putational modelers.

Certainly, there is still a considerable amount of work to do, in order to achieve
the goal of full, functional regeneration of damaged organs. However, regen-
erative medicine is improving with the help of tissue engineering. With this
thesis, I believe I have also shown some examples regarding how computa-
tional modeling can be a great companion to regenerative medicine. Address-
ing the above-mentioned outstanding questions in regenerative medicine and
computational biology will ultimately assist the development of novel treat-
ment strategies.
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The shift towards functionalized materials in tissue engineering began to gain
prominence since the beginning of this century. Researchers realized that
mimicking the dynamic and interactive nature of the native tissue microen-
vironment was crucial for successful tissue regeneration. This involved con-
sidering the biochemical, mechanical, and topographical cues that cells ex-
perience in their native environments. The goal was to create materials that
could recapitulate the complex cell-matrix and cell-cell interactions observed
in natural tissues, thus improving the regenerative capacity of cells, tissues
and organs.

The ambitious aim of mimicking native tissue environment requires thorough
understanding of cellular biology with all the reciprocal feedback between
cells and their environment. Computational biology has been a crucial tool
for tissue engineering and regenerative medicine by providing valuable in-
sights, predictions, and guidance throughout the process. The computational
models presented in this thesis contribute towards understanding the funda-
mental biological processes and predicting cell behavior. They can simulate
and analyze the interactions between cells and between cells and their sur-
rounding extracellular matrix (ECM). By integrating experimental data and
existing knowledge, these models provide a deeper understanding of cellu-
lar adhesion (Chapters 3, 4), signaling pathways (Chapter 5, 6), and tissue
development (Chapter 6). This information will help tissue engineering and
regenerative medicine fields in designing optimized scaffold materials cul-
ture conditions with optimum stiffness, ECM mechanical properties and in-
tegrin/growth factor receptor targeting peptides predicted using the models
in this thesis. Eventually, the aim to guide cell behavior towards desired out-
comes will be one step closer.

The area that encompasses the utilization of personalized physiological com-
puter simulations in every aspect of disease prevention, diagnosis, prognos-
tic evaluation, treatment, and biomedical product development is termed
”in silico medicine”. In the future, the computational models in this the-
sis could be incorporated into bigger frameworks of in silico medicine as
they have the capacity to be used for virtual testing and optimization of
tissue engineering methods. in silico medicine is gaining more and more
attention as global healthcare systems face the challenge of increasing de-
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mand and costs. The need for scaling up the personalized treatment op-
tions as well as making them more accessible is also increasing (Lesage et
al., 2023). Computational biology and experts in this field are highly valu-
able in making in silico medicine applicable in the clinic. A report by the Vir-
tual Physiological Human Institute (VPHi, http://www.vph-institute.org/)
demonstrated the increasing confidence of clinicians on in silico tools for med-
ical planning and prediction. Yet they have also indicated the difficulties
in accessing up-to-date computational applications and proper technical ex-
pertise in the field of in silico medicine (Lesage et al., 2023). These difficul-
ties can be overcome by initiatives like VPHi with the support of national
and global support. Recently, European Medicines Agency (EMA, https:
//www.ema.europa.eu/en) announced a work plan for increasing the util-
ity of big data in regulation, to empower data-driven medicines regulation in
the European Union. Similarly, The United States Food and Drug Adminis-
tration (FDA, https://www.fda.gov/) agency has formed a Modeling and
Simulation Working Group to focus on improving the use of computational
models in addition to traditional methods for in vitro testing and in vivo stud-
ies. In summary, in the future, computational models like in this thesis will be
used (with modifications) in predicting cell behavior, scaffold design and op-
timization and virtual testing and optimization of in silico medicine tools.
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Summary

This thesis explores cell-cell and cell-extracellular matrix (ECM) interactions
in regenerative medicine. Tissue engineering and regenerative medicine field
aims to develop cell culture systems and biomaterials that mimic native tis-
sues. The extracellular matrix facilitates communication between cells and is
vital for organismal well-being. As such, imbalances in cell-ECM and cell-cell
interactions can lead to impaired regeneration, such as fibrosis, resulting in
reduced tissue function.

The thesis utilizes a computational approach to understand cell decision-
making affected by these interactions and comprises a review and four orig-
inal research articles, each focusing on a different aspect of cell-cell or cell-
ECM communication.

Chapter 2 provides an overview of integrins’ role in cell-ECM interactions
and existing computational models thereof. Challenges in studying integrins
are discussed, emphasizing the need for more specific experimental data.
Chapter 3 presents a computational model of integrin activity, considering
ligand binding competition. The model results suggest that both the bind-
ing affinity as well as relative ligand abundance need to be considered for
successful biomaterial design.

Chapter 4 combines the biochemical and mechanical interactions occurring
during the formation of integrin clusters and adhesions. The model predicts
the fraction of nascent adhesions that can become mature focal adhesions un-
der different substrate stiffnesses. Chapter 5 explores the crosstalk between
cadherin-11 and platelet-derived growth factor receptors (PDGFRs) using a
computational model. The model reveals the need for additional crosstalk
between signaling pathways for cadherin-11 to influence cell proliferation, as
was shown experimentally.

Chapter 6 models the reversible fibroblast to myofibroblast transition (FMT)
initiated by ECM tension at the tissue level. The model highlights the dy-
namic interactions between cells and the ECM, proposing that the tightly reg-
ulated production of new ECM can reverse the FMT process.

Overall, this thesis emphasizes the significance of understanding the exquisite
regulation of cell-cell and cell-ECM interactions for regenerative medicine,
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Summary

using computational modeling. By unraveling these complexities, the re-
search presented in this thesis has established important building blocks to
improve regenerative medicine strategies with computational modeling ap-
proaches.
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Samenvatting

Dit proefschrift onderzoekt cel-cel en cel-extracellulaire matrix (ECM) inter-
acties in de regeneratieve geneeskunde. Binnen de regeneratieve geneeskunde
tracht men geavanceerde celkweeksystemen en biomaterialen te ontwikke-
len die natuurlijke weefsels nabootsen en het regeneratieve proces kunnen
stimuleren. Belangrijk hiervoor is de extracellulaire omgeving. De extracel-
lulaire matrix faciliteert namelijk de communicatie tussen cellen en is van
vitaal belang voor het welzijn en correct functioneren van het weefsel. On-
evenwichtigheden in cel-ECM of cel-cel interacties kunnen bijgevolg leiden
tot verstoorde weefselregeneratie, de vorming van littekenweefsel (fibrose)
en beperkte weefselfunctie.

Dit proefschrift gebruikt een computationele benadering om de besluitvorm-
ing van cellen te begrijpen en hoe die beı̈nvloed wordt door deze cel-cel en
cel-ECM interacties. Het proefschrift bestaat uit een overzicht en vier orig-
inele onderzoeksartikelen, elk gericht op een ander aspect van cel-cel of cel-
ECM communicatie.

Hoofdstuk 2 geeft een overzicht van de bestaande computationele modellen
die de rol van integrines in cel-ECM interacties capteren en simuleren. Uitdagin-
gen in het bestuderen van integrines worden besproken, waarbij de behoefte
aan meer specifieke experimentele data wordt benadrukt. Hoofdstuk 3 pre-
senteert een computationeel model van integrine activiteit, waarbij meerdere
liganden kunnen binden aan dezelfde integrines en dus met elkaar in com-
petitie gaan. Het model laat zien dat zowel de affiniteit als de relatieve ligand
concentratie belangrijk is voor het ontwerp en de ontwikkeling van nieuwe
biomaterialen.

Hoofdstuk 4 combineert de biochemische en mechanische interacties, die plaatsvin-
den tijdens de vorming van integrine clusters en adhesies. Het model voor-
spelt welke fractie van adhesies in wording uitgroeien tot volgroeide, fo-
cale adhesies, en dit voor verschillende substraatstijfheden. Hoofdstuk 5
onderzoekt de wisselwerking tussen cadherin-11 en platelet-derived growth
factor receptors (PDGFRs) met behulp van een computationeel model. Het
model onthult de noodzaak voor extra wisselwerking tussen cadherin-11 and
PDGFR signaalwegen om celgroei te beı̈nvloeden, zoals ook experimenteel
aangetoond
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Samenvatting

Hoofdstuk 6 modelleert de omkeerbare overgang van fibroblast naar myofib-
roblast (FMT) geı̈nitieerd door de mechanische spanning op weefselniveau.
Het model benadrukt de dynamische interacties tussen cellen en de ECM en
stelt voor dat de gecontroleerde productie van nieuwe extracellulaire matrix
het FMT-proces kan omkeren.

Samenvattend benadrukt dit proefschrift het belang van cel-cel en cel-ECM
interacties voor regeneratieve geneeskunde, welke door computationele mod-
ellering verkregen is. Door de ontwikkeling van belangrijke computationele
bouwstenen alsook biologisch inzicht in de complexiteit van deze interacties
draagt het onderzoek in dit proefschrift bij tot de verbetering van regener-
atieve strategieën.
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Tezcan Gönüllü, Duygu Özçelik, Sercan Sofracı, Kubilay Temurhan and
Arca Yılmaz, thank you all for the constant support in long runs, longer
evenings, and on the dance floor.

Emre Ilgaz, thank you for allowing us to always pick up where we have left
off and giving me the comfort of unconditionally trusting someone without
the need to explain.
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Oğuz Demet, Emrecan Demir, Melih Demirören, Utku Halıcı, Elias Her-
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