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LETTER TO THE EDITOR 

Prediction models: stepwise development and 

simultaneous validation is a step back 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have read the article ’Using a stepwise approach
to simultaneously develop and validate Machine Learning
based prediction models’ as recently published by the Jour-
nal of Clinical Epidemiology [1] . While we agree with the
paper’s premise that ’clinical prediction models based on
machine learning techniques are often not properly vali-
dated’, the authors’ stepwise approach is not a step for-
ward but a step back in the proper validation of prediction
models. We noted several inconsistencies and questionable
claims in the paper, and highlight some of the most im-
portant issues for this commentary. 

First, in step 7 of their stepwise development scheme
the authors propose to “externally validate” the final model
with all the available data, which includes both the train-
ing cohort and the test cohort. In this way, no unbiased
assessment of model performance can be obtained as the
model has been optimized on the training cohort. Such a
procedure is misleading and does not deserve to be called
“validation,” let alone “external validation” [2] . External
validation examines the generalisability of a model us-
ing data collected in different but plausibly related settings
than development [3-4] , and is ideally performed by dif-
ferent investigators [5] . Hence, any split-sample validation,
including the variant proposed in [1] , is no external valida-
tion. While the authors admit this fact in the discussion, the
paper still uses the notion “external validation” for split-
sample validation throughout the manuscript. More impor-
tantly, the authors state that their faulty external validation
procedure is interesting because real external validation is
time-consuming and can be done after implementing the
model in clinical practice. We stress that truly independent,
and preferably local, validation remains a prerequisite be-
fore introduction of a model into clinical practice. The
suggested approach favours speed over patient safety and
clinical utility, and cannot be recommended. 

Second, the proposed repeated validation approach may
easily lead to selection of an overfitted model and overop-
timistic estimates of this model’s performance. This point
becomes most obvious when when the authors state: ’if
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after already a few steps a very high AUC is achieved,
larger than a prespecified threshold, one can decide to re-
duce the number of steps, resulting in a larger test set to
validate the final model on.’ Clearly this approach is set
up to select models that are on a random high in their
performance in the test set. Model development will stop
prematurely with overoptimistic estimates of performance.
Moreover, the test set is used twice: once to decide to stop,
and once in a final validation. Hence the final validation is
no longer unbiased. In addition, we point to the extensive
literature on the necessity of separating model validation
from model selection [3-6] . This principle is violated by
the set-up of the suggested stepwise approach. Note also
that the authors are inconsistent on a fundamental aspect:
whereas the text states that every step involves the evalu-
ation of many models on the test set, Table 1 states that
every step involves the evaluation of the best model (using
cross-validation on the training cohort) on the test set. 

Third, the suggested approach lacks theoretical under-
pinning and is not supported by empirical evidence from
the literature. It was also not evaluated by means of a sim-
ulation study and/or case study to illustrate that overopti-
mism in the assessment of model performance is avoided
or at least minimized. Such evaluations might have shown
that the suggested sample size numbers are too low when
many candidate predictors are available relative to sam-
ple size. Recent research provided recommendations on
the necessary sample size for prediction model develop-
ment and validation [7-9] . There is evidence that the more
flexible a prediction algorithm is, the more data it needs
[10] . 

Fourth, the suggested approach promises to “evaluate
the stability of the final ’best’ model over increasing sam-
ple size by predicting the subjects in the training sets and
determine the AUC of the final model for each training
set” (step 8). This proposal only evaluates the cumulative
apparent model performance, not the model’s stability. It is
quite predictable that AUC will converge with the growing
training set. Random sampling variability in the case-mix
may explain some variation in the AUC [11] . Other per-
formance measures such as calibration were ignored while
such measures may take longer to stabilize [11] . 

Fifth, the claim is not substantiated that “if the amount
of available data per patient increases drastically, modern
and more flexible modelling techniques such as machine
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learning techniques might be preferred.” Machine learning
methods use cross-validation or bootstrapping to tune reg-
ularization parameters. These should guard against over-
fit, but recent research suggested that the estimation of
the regularization parameter can easily fail in small data
sets [12-14] . This failure with only few candidate predic-
tor variables will become even more problematic “if the
amount of available data per patient increases drastically.”
However, the authors do not discuss tuning of regulariza-
tion parameters at all. 

Considering our objections, we strongly advise against
the use of the proposed stepwise validation. Instead, we
encourage authors to invest more time in thorough vali-
dation of existing prediction models in various locations,
and search for updating of the model to provide better
predictions for future patients. Performance should include
aspects such as discrimination, calibration and utility, as-
sessed in appropriately sized datasets. We therefore encour-
age initiatives to improve thorough and timely validation
of prediction models without lowering the bar of thorough-
ness. 
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