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Abstract—In the analysis of social, medical, and business issues,
the problem of incomplete data often arises. In addition, in
situations where privacy policy makes it difficult to share data
with organizations conducting related activities, it is necessary
to exchange knowledge instead of data, that is, to use federated
learning. In this scenario there are several private data clients,
whose models are improved through the aggregation of model
components. Here, we propose a methodology for training local
models to deal well with missing data, with an algorithm using
similarity measures that take into account the uncertainty present
in many types of data, such as medical data. Therefore, this
paper describes a federated learning model capable of processing
imprecise and missing data. Federated learning is a technique
to overcome limitations resulting from data governance and
privacy by training algorithms without exchanging the data itself.
The performance of the proposed method is demonstrated using
medical data on breast cancer cases. Results for different data loss
scenarios and corresponding measures of classification quality are
presented and discussed.

I. INTRODUCTION

In the activities of many organizations, the use of infor-
mation from other analogous sources – namely, horizontal
federated learning – enables improvement of the individual
predictions made by their models, and consequently, better
business results. At present, issues related to competition or
privacy make it impossible to combine data. Federated learning
(FL) allows organizations to bypass these problems and to
train models efficiently without sharing data. The general FL
training process consists of five steps:

• Client selection: Select the clients participating in the
training;

• Broadcast: The central server initializes the global model
and makes it available to clients;

• Client calculation: Each client updates the global model
using the training protocol and makes the updates avail-
able to the central server;

• Aggregation: The central server uses the aggregation
function to update its model;

• Model update: The updated global model is made avail-
able to customers.

This protocol can be repeated many times until a convergence
criterion is met. Such a process of model training has been
successfully applied in various use cases, especially involving

data collaboration in the medical sector [1], [2]. An interna-
tional group of hospitals and medical imaging centers recently
evaluated NVIDIA Clara Federated Learning software, and
found that AI models for mammography evaluation trained
with federated learning techniques outperform neural networks
trained on data from a single institution. Other fields of
application include next-word prediction [3] (Apple is using
privacy machine learning and FL to improve its voice assis-
tant while protecting data on users’ phones), vehicle image
classification [4], IoT data analysis [5], and social research
[6]. Comprehensive surveys can be found in [7] and [8]. In
many cases of practical FL application, some data are missing,
which limits the amount of data that can be used in the model
training process. This, along with the problem of privacy, is
one of the most important challenges facing federated learning.

Therefore, the main aim of this work is to propose an
optimal learning model that performs well in FL with the
problem of missing or incomplete data. In practice, we propose
a new technique using a similarity measure that reflects the
uncertainty implied by lack of data. Here, the gradient-based
approach is replaced by a properly selected function based on
the interval similarity measure. In this paper, we concentrate
on the representation of data and operations, especially simi-
larity measures with respect to uncertainty relating to data and
decisions. Thus, we will study the result of applying interval-
valued fuzzy set theory in the federated learning process,
because the interval calculus well reflects various types of
uncertainties contained in the data, here resulting from its
incompleteness. Simulations are carried out which confirm an
improvement in effectiveness compared with the methods used
in the literature, in particular regression.

II. BACKGROUND

A. Federated learning (FL)

Federated learning enables collaboration between multiple
parties for the purpose of jointly training a machine learning
model without exchanging the local data [7]. The federated
learning model was originally proposed by Google researchers
[9], [10], [11]. Their main idea was to build machine learning
models based on datasets that are distributed across multiple
devices (cf. [12], [13] or [14]).



Federated learning is a learning paradigm seeking to address
the problem of data governance and privacy by training
algorithms collaboratively without exchanging the data itself
[12], [15]. The core challenges associated with solving the
optimization problem during federated learning make the
federated setting distinct from other classical problems, such
as distributed learning in data center settings or traditional
private data analyses. These challenges are communication,
heterogeneity, and privacy. Generally, FL can be divided into
different scenarios based on how the data is partitioned or
distributed among the data owners, that is, horizontally or
vertically. Horizontal federated learning is used when different
parties collect the same features but from different subjects. A
common example of horizontal federated learning is a group
of hospitals collaborating to build a model that can predict a
health risk for their patients, based on agreed data, as in [1],
[2]. Vertical federated learning is used when multiple parties
share not the features, but the subjects; for example, when
a telecom company collaborates with a home entertainment
company (cable television provider) or an airline collaborates
with a car rental agency.

In this paper, we consider a horizontal federated learning
scenario. Figure 1 shows the general architecture of the
federated model. The assumption is that all clients have the
same local data structure and use a common machine learning
model. They exchange with the server only coefficients de-
scribing the learned local models and parameters describing
the classification quality, which is used only to determine
when to stop the iteration process. The server performs model
aggregation, that is, the appropriate aggregation of coefficients.
The server then returns the new coefficients to the clients.

In federated settings, optimization methods that allow flexi-
ble local updating and low client participation play a key role.
The most commonly used method for federated learning is a
method based on averaging local stochastic gradient descent
(SGD) updates for the primal problem ([11], [16], [17] or
more in [15]). Our approach presents a different concept in
this respect, namely, the use in local updating of a function
based on similarity measures, in particular using the calculus
of interval-valued fuzzy sets, i.e. interval similarity measures.

B. Interval-valued fuzzy set theory

Since Zadeh proposed the fuzzy set in 1965 [18], and
particularly since 1975, when research on extensions of fuzzy
sets began [19], [20], the effective modeling of uncertainty
and imprecision in data has been possible. Thus, we may
describe the data in terms of interval calculations. Specifically,
LI = {[p, p] : p, p ∈ [0, 1], p ≤ p} denotes a family of
intervals belonging to the unit interval.

1) Interval operations: Many applications of AI require
data aggregation to summarize information from data. Aggre-
gate functions take, as input sets, multisets (bags) from an
input range, and produce outputs as members of an output
range. A definition of aggregation for input data in the form
of interval-valued fuzzy values – that is, with uncertainty –
can be found in [21], [22], [23]. Certain aggregate functions

in LI , namely interval-valued fuzzy aggregation functions, are
important concepts in many applications (e.g. [24], [25] or
[22]).

Moreover, interval arithmetic came to be considered neces-
sary with the development of the theory of uncertainty. It was
realized that the use of uncertain parameters and uncertain data
is very important for the description of reality in the form of a
mathematical model. The most common and most frequently
used interval arithmetic is Moore arithmetic [26], [27]. In
Moore arithmetic, basic operations on intervals X = [x, x]
and Y = [y, y] are realized by formulae for sum, difference,
and product:

[x, x] + [y, y] = [x+ y, x+ y]

[x, x]− [y, y] = [x− y, x− y]

a ∗ [x, x] = [ax, ax], a ∈ R+

a ∗ [x, x] = [ax, ax], a ∈ R−

[x, x] ∗ [y, y] =

[min(x ∗ y, x ∗ y, x ∗ y, x ∗ y),max(x ∗ y, x ∗ y, x ∗ y, x ∗ y)]

for x, x, y, y ∈ R and x ≤ x, y ≤ y.
Some limitations and drawbacks have been found in the

Moore interval arithmetic scheme, such as the excess width
effect problem. Hence, as an alternative to Moore arithmetic
we may use multidimensional interval arithmetic. The idea of
multidimensional arithmetic was developed by A. Piegat [28],
where a given value x from the interval X = [x, x] is described
using the variable γx, where γx ∈ [0, 1], as follows:

Repγ(x) = x+ γx(x− x). (1)

In this notation the interval X = [x, x] is described in the
form:

X = {Repγ(x) : Repγ(x) = x+ γx(x− x), γx ∈ [0, 1]}.

The variable γx provides the possibility of obtaining any value
between the left boundary x and the right boundary x of the
interval X .

2) Interval measures: Crucial to our methodology is the
similarity measure for interval-valued fuzzy sets (IVFS). We
define an interval-valued fuzzy set (IVFS) S in X [20], [19]
as a mapping S : X → LI such that for each x ∈ X

S(x) = [S(x), S(x)]

means the degree of membership of an element x in S. The
family of all IVFSs in X is denoted by IVFS(X). We assume
that this reflects the aspect of applications on a finite non-
empty set X = {x1, . . . , xn}.

Definition 1 ([29], cf. [30]). Let A1 : [0, 1]n → [0, 1] be an
aggregation function. Then a function SIM : IV FS(X) ×
IV FS(X) → LI which meets the conditions: leftmargin=.4in
(S1) SIM(S, T ) = SIM(T, S) for S, T ∈ IV FS(X);
(S2) SIM(S, S) = [1−A1(wS(x1), ..., wS(xn)), 1];



(S3) SIM(S, T ) = [0, 0], if
{S(xi), T (xi)} = {[0, 0], [1, 1]};

(S4) if S ⪯ T ⪯ U , then SIM(S,U) ≤ SIM(S, T ) and
SIM(S,U) ≤ SIM(T,U)

is called a similarity measure for i = 1, ..., n..

To construct interval-valued similarity, we need interval ag-
gregation functions ([21], [22], [23]) and an inclusion measure
(precedence indicator) ([29], cf. [31]) that take into account
the width of the intervals, that is, the uncertainty.

Proposition 1 ([29]). Let Prec be a precedence indicator.
If A = [A1, A2], B = [B1, B2] are representable interval-
valued fuzzy aggregation functions for which A1 is self-
dual, B is symmetric with the neutral element [1, 1] and
B1 is an idempotent aggregation function, then the function
SIM : IV FS(X)× IV FS(X) → LI :

SIM(S, T ) = An
i=1(B(Prec(S(xi), T (xi)),Prec(T (xi), S(xi))))

is a similarity measure.

The following example presents direct conclusions from the
above theorem.

Example 1. The function SIM : IV FS(X)× IV FS(X) →
LI :

SIM(S, T ) = An
i=1(PrecA(S(xi), T (xi)∧PrecA(T (xi), S(xi))))

is a similarity measure, where
A ∈ {Amean,Ameanpow,Ameanmax} with respective
precedence indicators PrecAmean

, PrecAmeanpow
and

PrecAmeanmax , where

PrecAmean
(x, y) =


[1− w(x), 1], x = y,
[1, 1], x <2 y,

[
1−x+y

2 , 1−x+y
2 ], otherwise,

PrecAmeanpow
(x, y) =


[1− w(x), 1], x = y,
[1, 1], x <2 y,

[
1−x+y

2 ,
√

(1−x)2+y2

2 ], otherwise,

PrecAmeanmax(x, y) =


[1− w(x), 1], x = y,
[1, 1], x <2 y,

[
1−x+y

2 ,max(1− x, y)], otherwise,

and
Amean([x, x], [y, y]) = [

x+y

2 , x+y
2 ],

Ameanpow([x, x], [y, y]) = [
x+y

2 ,
√

x2+y2

2 ],

Ameanmax([x, x], [y, y]) = [
x+y

2 ,max(x, y)] and where
≤2 is a partial order in LI :

x ≤2 y iff x ≤ y, x ≤ y.

III. PROPOSED METHOD

We consider a horizontal federated learning scenario,
where each client has its own independent data set zi ∈
{Yi, xi1, ...xip} and xip ∈ LI , Yi ∈ {0, 1} for i = 1, ..., n, n
is the number of instances, and p is the number of attributes.

Each client trains a set model on its data (nk observations)
in a specified number of internal iterations, and provides the

training result in the form of a result vector of the trained
parameters β and ϵ,

yi = β0 + β1xi1 + ...+ βpxip + ϵi

for i = 1, ...nk and βk ∈ R for k = 1, ...p.
In our earlier paper [32], we proposed a federated learning

approach that could deal with missing data (Figure 1).

Fig. 1. Proposed federated model

There we used the arithmetic average in the aggregation
process, and the process of training models was based on the
gradient method.

However, in this paper, we investigate another method in the
process of training models, based on the similarity measure.
The new learning model, after the server initializes the model
sent to local models, consists of iterative executions (following
initialization) of the following steps:

1) Each client performs a few steps of training of its own
model on its local data and passes it to the server. The
training mechanism makes use of the similarity measure
with respect to uncertainty;

2) The server aggregates the models;
3) The server returns the new model to the clients;
4) Local models are updated if the new one is better.
The process continues until the acquired quality of local

models is high enough and it is impossible to improve them,
that is to say, subsequent iterations do not reduce the error
of the model. In other words, we propose that the federated
learning scheme be extended to include the sensitivity thresh-
old Q as a stop function in the validation process for the error
difference for the also fixed multiplicity correction of model
parameters β.

As mentioned above, the federated learning scheme thus
constructed is independent of the choice of a particular ma-
chine learning model. We chose logistic regression with the
use of similarity measures in the process of updating the
parameters of the model, in contrast to the classically used
stochastic gradient descent. Moreover, for the experiment, we
modify it to operate on interval data, as in [32].

Then one iteration of the local learning process follows the
scheme:

1) calculation of the model response for each training
sample according to the sigmoid function:

f(yi) =
1

1 + e−Repγ(β0+β1·xi1+...+βp·xip+ϵi)



for γ ∈ [0, 1] and f : LI → R.
From this step, in every single iteration, we switch from
the interval calculus to the real model using the Rep
function defined in (1). This allows us to operate on data
in the form of interval-valued fuzzy sets while obtaining
the model in the form of a vector of real numbers.

2) For the computation of an error (loss function) between
the computed value and the actual value, we take

L(yi) = − log(f(yi)) · Yi − log(1− f(yi)) · (1− Yi),

where Yi is the actual output value for a given object
zi.

3) Finally, we update the learning coefficients in the steps:

βl(k + 1) = βl(k) + α · L(yi) ·
1

t−1

∑t−1
j=1 S(zi, zj)

1
n

∑n
j=1 S(zi, zj)

·

t−1
max
j=1

{S(xil, xjl)},

β0(k + 1) = β0(k) + α · L(yi) ·
1

t−1

∑t−1
j=1 S(zi, zj)

1
n

∑n
j=1 S(zi, zj)

,

where α is the learning coefficient, t is the number of
objects with the same decision for zi, i = 1, .., nk, the
number of a given attribute is l ∈ {1, .., p}, and S is the
similarity measure.

IV. EXPERIMENT AND RESULTS

In this section, we describe our initial evaluation of the
proposed method.

A. Structure of dataset

The dataset used is a Wisconsin (diagnostic) breast cancer
dataset. This is one of the popular datasets from the UCI Ma-
chine Learning Repository [33]. The data contain information
on 569 medical cases. Features are calculated from a digitized
image of a fine needle aspirate (FNA) of a breast mass. They
describe the characteristics of the cell nuclei present in the
image.

Ten real-valued features are computed for each cell nucleus:
• radius (mean of distances from center to points on the

perimeter),
• texture (standard deviation of gray-scale values),
• perimeter,
• area,
• smoothness (local variation in radius lengths),
• compactness,
• concavity (severity of concave portions of the contour),
• concave points (number of concave portions of the con-

tour),
• symmetry,
• fractal dimension (coastline approximation− 1).

For each value of an attribute, the standard deviation and mean
value of the trait measurements for the patient are given. On

the basis of both of these values, the value of the interval is
constructed:

[mean − standard deviation, mean + standard deviation]

Later we fuzzified both values ”mean–standard deviation” and
”mean+standard deviation”, separately, by normalization.

The decision attribute stores information about the diag-
nosis: malignant (0) or benign (1). The dataset consists of
212 malignant objects and 357 benign objects. Since the
dependent variable (explained variable) takes two dichotomous
values of 0 and 1, the optimal model choice for decision
prediction turned out to be the logistic regression model, which
determines the probability of a given event occurring for the
values of the predictors entered into the model.

To simulate the datasets of a group of clients (three in this
case), the data were randomly divided into three groups, with
decision-balanced and unbalanced behavior. The data for each
client were then randomly split into a training set and a test
set in a ratio of 90% to 10%.

In our model, we allow the data to be in interval form.
First, for gaps in the data, we create suitable intervals to reflect
uncertainty. We simulate data gaps using the loss method. We
assume that the data are normalized, and the missing data are
presented in the form of intervals [0, 1].

B. Experimental results for different real problem scenarios

We checked our model in various real-life scenarios in-
volving uncertain and missing data, and compared it with the
crisp model (benchmark). We assumed, for each iteration of
the algorithm described in section III, ϵi = 0, α = 0.01,
and γ = 0.5 (the optimal results). Moreover, we simulated a
number of cases of the number of epochs in local learning
and the number of aggregations, respectively: (100, 5), (5,
100), (10, 10), and others. We obtained very similar results
(indicating the stability of the similarity-based method), and
therefore we present only the results for the efficiency of
the model for 100 learning epochs and 5 aggregations in
FL. We assess the effectiveness of the tested models using
the following measures: accuracy (ACC), sensitivity (SENS),
specificity (SPEC), and precision (PREC).

Validation. In a federated model, we wish to achieve the
best possible global model, that is, one that achieves high
decision performance across all clients. Therefore, models
should be analyzed not only on the local data of a given
client, but also using the data of other clients (although without
direct access to them). Our proposed federated learning model
enables this exchange of model quality information. Validation
is carried out in two stages: during each local learning phase
and also after model aggregation, so that we check that the
new parameters do not make the model worse. Finally, the
client decides whether to update its model and strive for the
highest quality global model. Moreover, the use of a new
error sensitivity threshold is a new approach in the validation
process.



1) Model 1 – benchmark model: As a benchmark model,
we chose a centralized model in which the data are complete
and lack uncertainty. The model was trained on a 90% training
set (sum of customer sets) and tested on a 10% test set. To
ensure the correctness of the learning process, we conducted
a 10-fold cross-validation. That is, the modifying logistic
regression model was used without a federated learning model.

The reference performance of the benchmark model is
presented in Table I.

TABLE I
PERFORMANCE OF BENCHMARK MODEL

ACC SENS SPEC PREC
Complete data 0.955 0.972 0.901 0.935

2) Model 2 – baseline model (local models): As a
baseline, we decided to consider a situation in which both
clients have uncertain interval data with no missing values
(complete uncertain data) and without FL – that is, a complete
interval-valued dataset without data gaps (performance based
on 10-fold cross-validation); see Table II.

TABLE II
PERFORMANCE OF BASELINE MODEL

Dataset ACC SENS SPEC PREC
Client 1 0.901 0.954 0.816 0.893
Client 2 0.960 0.978 0.903 0.947

3) Model 3 – federated model on full data: This model
was based on full data and was trained with federated aver-
aging as proposed in section III. The learning rate was set to
0.01, there were 100 local learning epochs, and the stopping
criterion was set to 5 aggregation cycles. The results are given
in Table III.

TABLE III
PERFORMANCE OF BASE FEDERATED MODEL

Dataset ACC SENS SPEC PREC
Client 1 0.914 0.964 0.845 0.899
Client 2 0.964 0.978 0.913 0.951

4) Model 4 – with missing random values in different
attributes: This model reflects two situations when random
data are missing to some degree, potentially in all attributes:
without and with federated averaging. In real-world conditions,
this may result from measurement equipment malfunctions,
improper testing, or human error. In our experiment, we simu-
lated situations where we had random missing data distributed
one per record and different levels of missing data: from 10%
to 50% of values (records). Also, in this case, data from only
one client were deleted; the other had full data.

In this scenario, the first client has a prepared dataset
with different percentages of missing data (10–50%), and the
second client has full data. Table IV gives the results for the
first client’s local model.

Results for the federated learning model (using the standard
mean for aggregation) are presented in Table V. Calculations
were performed on Client 1’s test data.

TABLE IV
PERFORMANCE OF CLIENT 1’S LOCAL MODEL

% of missing data ACC SENS SPEC PREC
10 0.894 0.949 0.807 0.888
20 0.880 0.944 0.794 0.847
30 0.867 0.904 0.776 0.809
40 0.848 0.899 0.744 0.788
50 0.795 0.874 0.732 0.756

TABLE V
PERFORMANCE OF FL AGGREGATED MODEL FOR CLIENT 1

% of missing data ACC SENS SPEC PREC
10 0.898 0.954 0.882 0.889
20 0.883 0.947 0.877 0.870
30 0.877 0.939 0.845 0.861
40 0.872 0.923 0.831 0.847
50 0.854 0.883 0.826 0.839

C. Discussion

In this paper, we have extended our earlier approach to
federated learning that could handle missing data using the
classical logistic regression method [16]. In [16], using the
classical logistic regression model and the method of learning
model parameters with the use of a gradient, the decrease in
efficiency (e.g. ACC) at only 10% missing data in one local
model was 0.056, and when FL was used it was 0.033. How-
ever, using the new method of updating parameters proposed
here, we observe a decrease of only 0.007 (without FL) and
0.003 (with FL). In addition, the decrease in efficiency as the
amount of missing data increases from 10% to 50% is slower
by about 0.03 in the case of the new method, as illustrated in
Fig. 2.

Fig. 2. Comparison of previous (green) and new (red) models for ACC and
different percentages of missing values

This indicates a much more stable classification method and
thus a more effective FL model.

V. CONCLUDING REMARKS

This paper describes a federated learning model able to pro-
cess imprecise data with the problem of missed data. Medical
data on breast cancer cases demonstrate the performance of the



proposed method. Results for different data loss scenarios and
corresponding measures of classification quality are presented
and discussed. We observed that the proposed method used
to learn the parameters of the federated models was more
stable with respect to missing data. In future research, we
plan to concentrate on two aspects: determination of the stop
condition for local learning and model aggregation in the case
of different data types and problem specifics, and selection of
the parameter for the level of similarity of objects used in the
algorithm.
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optimization: Distributed machine learning for on-device intelligence,”
ArXiv, vol. 1610.02527, 2016.
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