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University of Rzeszów,

University of Information
Technology and Management

Rzeszów, Poland
bpekala@ur.edu.pl

Jarosław Szkoła
University of Rzeszów

Rzeszów, Poland
jszkola@ur.edu.pl

Krzysztof Dyczkowski
Adam Mickiewicz University
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Abstract—Data is crucial in the digital economy. Many busi-
nesses collect and use their data to enhance their performance.
However, limited data or low data quality can hinder model
development, particularly in dynamic environments. To overcome
this, companies collecting similar data may opt to exchange
knowledge without sharing their data, due to privacy or legal
issues. This is where federated learning comes in. In horizontal
federated learning, each client (organization) iteratively improves
its model, so that it can be regularly aggregated and shared
with all clients participating in the federation for further im-
provements. In federated averaging, the aggregation mechanism
is based on the weighted average and the weights depend on
the amount of data available to each client. In this paper, we
propose to use a more advanced aggregation mechanism, namely
the Sugeno integral. The initial results are promising.

I. INTRODUCTION

With advancements in technology, more data is being gener-
ated through business processes and IoT devices. The amount
of data generated has been growing at a rapid pace, with some
sources estimating that the amount of data generated globally
will continue to grow at an exponential rate. According to a
report by IDC, the total amount of data generated globally
is expected to reach 175 zettabytes by 2025, which is a
significant increase from the 33 zettabytes generated in 2018.
The report also states that approximately 50% of this data will
be generated by IoT devices. Another study by Markets and
Markets estimates that the IoT data analytics market will grow
from US$12.0 billion in 2018 to US$40.6 billion by 2023, at
a CAGR of 26.9% during the forecast period [1], [2], [3].

Organizations seek to utilize this data to inform their
decision-making, with one common approach being the cre-
ation of predictive models using patterns from past data
to predict future situations. However, building high-quality
predictive models requires a substantial amount of historical
data. In some cases, an organization may not have enough data
to develop an effective model on its own. Sharing data with
other organizations may not be an option due to competitive or
privacy concerns, such as those arising from the EU’s General
Data Protection Regulation (GDPR) [4]. Federated learning
offers a solution by enabling the creation of models through
data collaboration across organizations, avoiding these privacy
and security issues.

Federated learning allows multiple parties to train a machine
learning model together without sharing their local data [5].
This makes it a privacy-preserving approach. Success in feder-
ated learning is measured by the improvement of at least one
party’s model performance compared with its local model [6].
Federated learning has been successfully applied in various
domains, including cross-device federated learning on mobile
devices, such as Google Keyboard [7], and cross-silo federated
learning among organizations in industries like healthcare [8]
and in finance for transaction fraud detection [9]. The use of
federated learning for processing IoT data to support decision-
making in business processes was explored by building a
concept model [10] and a demonstrator [11].

The main idea behind federated learning is the continuous
improvement of the model by means of regular aggregation
of the models trained on the local data of each client in the
federation. In the original proposal [12], a weighted average
was used with weights depending on the amount of data
available to each client. However, this is not the only possible
choice for the aggregation function. Driven by the curiosity,
we want to test whether using a more complex aggregation
will improve the quality of the federated model. In this
work, to achieve a better understanding of the impact of
this function, we experiment with a Sugeno integral as an
aggregation mechanism. Initial results show that the use of a
more advanced aggregation method improves the quality of
the federated model.

II. BACKGROUND

A. Federated learning

Federated learning enables collaboration between multiple
parties to jointly train a machine learning model without
exchanging their local data [5]. The federated learning model
was originally proposed by Google researchers [13], [14], [12].
Their main idea was to build machine learning models based
on datasets that are distributed across multiple devices (cf.
[15], [16] or [17]).

Generally, FL can be divided into different scenarios based
on how the data is partitioned or distributed among the data
owners, i.e., horizontally or vertically. Horizontal federated
learning is used when different parties collect the same



features but from different subjects. A common example of
horizontal federated learning is a group of hospitals collab-
orating to build a model that can predict a health risk for
their patients, based on agreed data. Vertical federated learning
is used when multiple parties share not the features, but the
subjects – for example, a telecom company collaborating with
a home entertainment company (cable television provider), or
an airline collaborating with a car rental agency.

In this paper, we consider a horizontal federated learning
scenario. Figure 1 shows the general architecture of the
federated model. The assumption is that all clients have the
same local data structure and use a common machine learn-
ing model. They exchange with the server only coefficients
describing the learned local models and parameters describing
the classification quality, which are used only to determine
the stopping point of the iteration process. The server per-
forms model aggregation, that is, suitable aggregation of the
coefficients. The server then returns the new coefficients to the
clients.

Fig. 1. Proposed federated model

In the original federated averaging method [12], the aggre-
gation uses weighted averaging, where the weights depend on
the amount of data available to each client. However, this is
not the only solution. For instance, FedMA [18] combines
the weights of neurons with similar characteristics based on
the permutation invariant of the neural network, and makes
efficient use of the communication rounds to improve the con-
vergence speed. Another approach, inspired by active learning,
assumes that the central server can evaluate every client’s data
and indicate the potential utility of training before aggregation,
and select only the most useful clients to participate in the
training [19]. Zhao [20] proposed that the central server should
collect a small amount of data from each client for macro-
distribution, resulting in more homogeneous data. There have
also been experiments with different weighting schemes, such
as [21], where the authors assigned weights to the clients
according to a fairness measure, or [22], where the weights
depended on the quality of the local models.

B. Interval-valued fuzzy set theory

Since 1965, when Zadeh [23] proposed fuzzy sets, and
later since 1975 (Sambuc and Zadeh, [24], [25]) when the
study of extensions of fuzzy sets began, we have been able
to effectively model the uncertainty and imprecision of data

or decisions. Here, we use the terminology of interval cal-
culus to describe the data; in particular, we will denote by
LI = {[p, p] : p, p ∈ [0, 1], p ≤ p} the family of
intervals belonging to the unit interval. In many areas, data
aggregation is required, to summarize information based on
data. An aggregate function takes as its input a set, a multiset
(bag) from some input domain, and creates outputs as elements
of an output domain. For input data in the form of interval-
valued fuzzy sets, thus incorporating the uncertainty aspect,
we can find the definition of aggregations in [26], [27], [28].
Aggregation functions on LI are a significant concept in
numerous applications (e.g. [29], [30], [27]). Often applied in
practice are Ordered Weighted Averaging (OWA) operators,
introduced by Yager in 1988. OWA operators are a particular
case of the more general aggregation functions called Choquet
integrals. In [31], the class of linear orders on LI is used to
extend the definition of OWA operators for the interval-valued
fuzzy setting in the following way.

Definition 1 ([31]). Let ≤ be an admissible order on LI , and
w = (w1, . . . , wn) ∈ [0, 1]n, with w1 + · · · + wn = 1.
The interval-valued ordered weighted averaging (OWA) op-
erator (IVOWA) associated with ≤ and w is a mapping
IV OWA≤,w : (LI)n → LI , given by

IV OWA≤,w([x1, x1], . . . , [xn, xn]) =

n∑
i=1

wi · [x(i), x(i)],

where [x(i), x(i)], i = 1, . . . , n, denotes the i-th greatest of the
inputs with respect to the order ≤ and w · [x, x] = [wx,wx],
[x1, x1] + [x2, x2] = [x1 + x2, x1 + x2].

A special case of IVOWA is the interval arithmetic mean
for weights of 0.5 (denoted here by Amean). Different interval
arithmetics have also proved important in the development of
the theory of uncertainty. The most common and most fre-
quently used interval arithmetic is Moore arithmetic [32], [33].
In Moore arithmetic, basic operations on intervals X = [x, x]
and Y = [y, y] are realized by formulae for sum, difference,
and product:
[x, x] + [y, y] = [x+ y, x+ y];
[x, x]− [y, y] = [x− y, x− y];
a ∗ [x, x] = [ax, ax], a ∈ R+;
a ∗ [x, x] = [ax, ax], a ∈ R−; [x, x] ∗ [y, y] =
[min(x ∗ y, x ∗ y, x ∗ y, x ∗ y),max(x ∗ y, x ∗ y, x ∗ y, x ∗ y)]
for x, x, y, y ∈ R and x ≤ x, y ≤ y.

Some limitations and drawbacks have been found in Moore
interval arithmetic, such as the excess width effect problem. As
an alternative to Moore arithmetic, we may use multidimen-
sional interval arithmetic. as developed by Piegat [34]. Here, a
given value x from the interval X = [x, x] is described using
the variable γx, with γx ∈ [0, 1], as shown:

Repγ(x) = x+ γx(x− x). (1)

In this notation the interval X = [x, x] is described in the form
X = {Repγ(x) : Repγ(x) = x+ γx(x−x), γx ∈ [0, 1]}. The
variable γx makes it possible to obtain any value between the
left boundary x and right boundary x of the interval X .



C. Fuzzy measure and Sugeno integral

There are several important fuzzy integrals, such as the
Choquet or Sugeno integrals proposed in 1974 for fuzzy sets.

Let us recall the definition of fuzzy measure.

Definition 2. Let X be a finite set. A function m : 2X → [0, 1]
is a fuzzy measure (or monotone measure) if it satisfies the
following properties:
1. m(∅) = 0.
2. m(X) = 1
3. If A,B ⊆ X and A ⊆ B then m(A) ≤ m(B).

In particular, a fuzzy measure is called a Sugeno measure
(λ-measure) if it satisfies for all A,B ⊆ X and A ∩B ̸= ∅

m(A ∪B) = m(A) +m(B) + λ(g(A)g(B)), (2)

where λ > −1.
For a discrete set X , X = {x1, ..., xn} and gj = g{xj} for

j = 1, ..., n, then λ can be solved from:

1 + λ =

n∏
j=1

(1 + λgj). (3)

Sugeno measures are among the most extensively used and
most successful fuzzy measures (e.g. [35]).

Based on a fuzzy measure we can define a very important
measure: the integral fuzzy measure. In particular, we propose
the Sugeno integral measure. We will use the Sugeno integral
to aggregate the parameters of local models in the federated
learning model.

Definition 3. Let g be a fuzzy measure and h be a function
h : X → [0, 1]. Assume that the (xi) are ordered so that
h(x1) ≥ h(x2) ≥ ... ≥ h(xn). A discrete Sugeno integral
(cf. [36]) of a function h with respect to g is a function Sg :
[0, 1]n → [0, 1] such that

Sg(x) = max
i=1,...,n

(min(h(xi),m(Ai))), (4)

where Ai = {xi}, h(xi) is ordered antitonically.

III. PROPOSED METHOD

We consider a horizontal federated learning scenario, where
each client has its own independent data set {Yi, xi1, ...xip}
and xip ∈ LI , Yi ∈ {0, 1} for i = 1, ..., n, n is the number
of instances, and p is the number of attributes. Each client
trains a set model on its data (nk observations) in a specified
number of internal iterations, and provides the training result
in the form of a result vector according to the selected machine
learning model of the trained parameters, β and ϵ,

yi = β0 + β1xi1 + ...+ βpxip + ϵi

for i = 1, ...nk and βk ∈ R for k = 1, ...p.
In our proposal, we follow the original algorithm as shown

in Figure 1, but with a different aggregation step. Therefore,
federated learning is initialized by the server, by sending the
model to a subset of the clients. Next, the model is trained by
executing the following four steps:

1) Each contacted client performs a few training steps of its
own model on its local data and passes it to the server
(parameters of models and their efficiency, e.g., Accuracy
(ACC), Sensitivity (SENS), Specificity (SPEC), Precision
(PREC), the Area Under the ROC Curve (AUC)) (line 1);

2) The server aggregates the models using the Sugeno mea-
sure based on the model’s effectiveness for each client
(line 2);

3) The server returns the new model to the clients (line 3);
4) Local models are updated (line 4).

Below we explain how to use the Sugeno integral to
aggregate the model parameters.

First, we need to calculate the densities and λ. The densities
depend on the model quality, denoted as Qi. In this paper, we
use ACC and AUC. The densities are calculated as:

1) If
∑k

i=1 Qi ≤ 1, then g(xi) =
Qi∑k
i=1 Qi

and λ = 0;

2) If
∑k

i=1 Qi > 1, then g(xi) = Qi and we calculate λ
from (3) and g({xi}) from (2).

Next, we can aggregate the model parameters. The new
parameters are the values of the Sugeno integral Sg(x) of
model parameters x = (β1

i , ..., β
k
i ) for each i = 1, ..., p and

h(xi) ∈ {β1
i , ..., β

k
i } for k models and the i-th parameters

(all parameters are first normalized). To calculate the Sugeno
integral Sg(x), we use equation (4).

For the local learning process, we chose logistic regression
with stochastic gradient descent, but modified for interval data.
Calculation of the model response for each training sample is
done according to the sigmoid function:

f(yi) =
1

1 + e−Repγ(β0+β1·xi1+...+βp·xip+ϵi)

for γ ∈ [0, 1] and f : LI → R.
We update the learning coefficients in the steps:

βj = βj + α · ▽βj
L(yi) · xij ,

β0 = β0 + α · ▽β0
L(yi),

where α is the learning coefficient and ▽ is the gradient, for
i = 1, .., nk, j = 1, .., p, and where Yi is the current output
value and

L(yi) = − log(f(yi)) · Yi − log(1− f(yi)) · (1− Yi).

IV. EXPERIMENTS AND RESULTS

In this section, we describe our initial evaluation of the
proposed method. For evaluation purposes, we use the publicly
available Wisconsin (diagnostic) breast cancer dataset. We
compare the results of the proposed method with a centralized
model, a local model, and other federated learning solutions. In
subsection IV-A we describe the Wisconsin (diagnostic) breast
cancer dataset, subsection IV-B contains the methodology for
building the different models, and in subsection IV-C we
present the results that we obtained.



A. Dataset used in the experiments

The dataset used is the Wisconsin (diagnostic) breast cancer
dataset. This is one of the popular datasets from the UCI
Machine Learning Repository [37]. It contains information on
569 medical cases. Features are calculated from a digitized
image of a fine needle aspirate (FNA) of a breast mass. They
describe the characteristics of the cell nuclei present in the
image as the pair of the mean and standard deviation. Those
features are:

• radius (mean of distances from the center to points on
the perimeter),

• texture (standard deviation of gray-scale values),
• perimeter,
• area,
• smoothness (local variation in radius lengths),
• compactness,
• concavity (severity of concave portions of the contour),
• concave points (number of concave portions of the con-

tour),
• symmetry,
• fractal dimension (coastline approximation− 1).
The pair mean and standard deviation is not most useful

representation to be used in a model, therefore we transform
it to an interval representation. We construct it in the following
way:

[mean − standard deviation, mean + standard deviation]

after prior fuzzification of both values, “mean–standard devi-
ation” and “mean+standard deviation”, by normalization.

The decision attribute stores information about the diagno-
sis: malignant (0) or benign (1). The dataset consists of 212
malignant objects and 357 benign objects. Since the dependent
variable, the explained variable, takes two dichotomous values
of 0 and 1, the optimal model choice for decision prediction
turned out to be the logistic regression model, which deter-
mines the probability of a given event occurring for the values
of the predictors entered into the model.

Creating local models for the federated model. To
simulate the data sets of a group of clients (three in this
case), the data were randomly divided into three groups with
decision-balanced and unbalanced behavior. The data of each
client were then randomly split into a training set and a test
set in a ratio of 90% to 10%.

B. Models built in the experiments

We built the five sets of models:
1) centralized model
2) local models
3) federated averaging model
4) federated learning – aggregation via weighted average
5) federated learning – aggregation via Sugeno integral
In all models, we used the logistic regression model, where

we assumed ϵi = 0.001, α = 0.01, and γ = 0.5.
Model 1: centralized model. The first benchmark is a

centralized model with no missing data (no uncertainty). The

model is trained by 10-fold cross-validation with stratification
using a standard logistic regression model.

Model 2: local models. The second benchmark consists
of local models. The standard logistic regression models were
trained on the training set containing 90% of the data by 5-fold
cross-validation with stratification.

Model 3: federated averaging model. This model was
trained with federated averaging as proposed in [12]. The
learning rate was set to 0.01, there were 50 local learning
epochs, and the stopping criterion was set to 100 aggregation
cycles.

Model 4: federated learning – aggregation via weighted
average. This model was trained with federated learning as
proposed in [22]. In this model, in the aggregation step, we
use a weighted average, based on the quality of the model,
namely accuracy and AUC. The learning rate was set to 0.01,
there were 50 local learning epochs, and the stopping criterion
was set to 100 aggregation cycles.

Model 5: federated learning – aggregation via Sugeno
integral. This model was trained with federated learning as
proposed in this paper.

Balanced and unbalanced datasets – a method of build-
ing unbalanced datasets. When splitting the data across
clients, we consider two scenarios: data divided in a stratified
manner (“iid data”) and data divided in a biased manner (“non-
iid data”). In the case when data are divided in a stratified
manner, each client has the same number of samples of each
class as other clients. This means that the proportions between
malignant and benign classes are preserved. In the case where
the data were divided in a biased manner, Client 1 had a 50–
50% division, while Clients 2 and 3 had 70% of the classes
malignant and benign, respectively.

C. Results

Here, we present the results of different federated models
that we obtained in case of stratified and biased data division.
However, we first give the results of the centralized model,
which can be considered a good benchmark.

Model 1: centralized model

TABLE I
PERFORMANCE OF BENCHMARK MODEL

ACC SENS SPEC PREC
Complete data 0.965 0.972 0.935 0.965

The results of Model 1 are shown in Table I. The per-
formance of the centralized model is good; however, some
improvement is still possible.

As mentioned before, we consider two data partitions across
the federation. Below are the results for the scenario with iid
data.

Model 2: local models
The results of Model 2 are shown in Table II. We can see

that the performance of the models trained only on the local
data is inferior to that of the centralized model. This creates
an opportunity for federated learning to show its value.



TABLE II
PERFORMANCE OF LOCAL MODELS WITH IID DATA

Dataset ACC SENS SPEC PREC AUC
Client 1 0.94 0.96 0.89 0.94 0.938
Client 2 0.92 0.95 0.86 0.92 0.831
Client 3 0.92 0.92 0.94 0.96 0.867

TABLE III
PERFORMANCE OF FEDERATED AVERAGING MODEL WITH IID DATA

Dataset ACC SENS SPEC PREC AUC
Client 1 0.94 0.96 0.89 0.94 0.938
Client 2 0.921 0.95 0.86 0.92 0.832
Client 3 0.92 0.922 0.94 0.96 0.868

Model 3: federated averaging model
The results of Model 3 are shown in Table III. When

using federated averaging, we observe only a very small
improvement compared with the local models.

Model 4: federated learning – aggregation via weighted
average

TABLE IV
PERFORMANCE OF MODEL 4 WITH IID DATA

weights defined by the accuracy
Dataset ACC SENS SPEC PREC AUC
Client 1 0.94 0.96 0.89 0.94 0.938
Client 2 0.92 0.95 0.86 0.92 0.932
Client 3 0.92 0.92 0.94 0.96 0.957

weights defined by the AUC
Dataset ACC SENS SPEC PREC AUC
Client 1 0.94 0.96 0.89 0.94 0.919
Client 2 0.93 0.95 0.86 0.92 0.933
Client 3 0.92 0.922 0.94 0.96 0.949

The results of Model 4 are shown in Table IV, with
weights defined by the accuracy and AUC. In this case, the
improvement is larger, especially in terms of AUC and ACC
for Client 2.

Model 5: federated learning – aggregation via Sugeno
integral

TABLE V
PERFORMANCE OF MODEL 5 WITH IID DATA (SUGENO)

Dataset ACC SENS SPEC PREC AUC
Client 1 0.96 0.94 0.99 0.99 0.96
Client 2 0.94 0.96 0.99 0.99 0.96
Client 3 0.95 0.98 0.9 0.95 0.95

The results of Model 5 are shown in Table V. In this case,
we observe the greatest improvement. Model 5 outperforms
even the central model in terms of precision. Moreover,
during FL we improve the remaining efficiency parameters
of the local models.

Non-balanced cases
Now, we simulate cases with non-iid data (where Client 1 had
a 50–50% division, and Clients 2 and 3 had 70% of the classes
malignant and benign, respectively).

TABLE VI
PERFORMANCE OF LOCAL MODELS WITH NON-BALANCED DATA

Dataset ACC SENS SPEC PREC AUC
Client 1 0.94 0.96 0.89 0.94 0.938
Client 2 0.81 0.86 0.89 0.89 0.802
Client 3 0.70 0.89 0.78 0.88 0.826

Model 2: local models with non-balanced data
The results of Model 2 in the case where Clients 2 and

3 have non-balanced local data are shown in Table VI. We
observe that the performance achieved with models trained
only on the local data is inferior to that of the centralized
model, and is very significantly lower in the case of the non-
balanced data of Clients 2 and 3. This creates an opportunity
and need for the implementation of federated learning.

Model 3: federated averaging model with non-balanced
data

TABLE VII
PERFORMANCE OF FEDERATED AVERAGING MODEL WITH

NON-BALANCED DATA

Dataset ACC SENS SPEC PREC AUC
Client 1 0.94 0.96 0.94 0.96 0.954
Client 2 0.916 0.89 0.98 0.98 0.943
Client 3 0.890 0.89 0.78 0.88 0.912

The results of Model 3 for the case where Clients 2 and 3
have non-balanced local data are shown in Table VII. When
using federated averaging, we can see some improvement
compared with the local models, especially for non-balanced
data.

Model 4: federated learning – aggregation via weighted
average with non-balanced data

TABLE VIII
PERFORMANCE OF MODEL 4 WITH NON-BALANCED DATA AND

AVERAGING WEIGHTED BY ACC

weights defined by accuracy
Dataset ACC SENS SPEC PREC AUC
Client 1 0.94 0.96 0.94 0.96 0.954
Client 2 0.922 0.89 0.99 0.97 0.988
Client 3 0.801 0.97 0.48 0.76 0.943

weights defined by AUC
Dataset ACC SENS SPEC PREC AUC
Client 1 0.94 0.96 0.94 0.96 0.954
Client 2 0.93 0.89 0.99 0.99 0.991
Client 3 0.92 0.99 0.72 0.88 0.953

The results of Model 4 for the case where Clients 2 and
3 have non-balanced local data are shown in Table VIII,
with weights defined by the accuracy and AUC. In this case,
improvement is achieved in terms of ACC and AUC, especially
for non-balanced Clients 2 and 3.

Model 5: federated learning – aggregation via Sugeno
integral with non-balanced data

The results of Model 5 (with the Sugeno integral as the
averaging method) for the case where Clients 2 and 3 have
non-balanced local data are shown in Table IX. In this case,



TABLE IX
PERFORMANCE OF MODEL 5 WITH NON-BALANCED DATA

Dataset ACC SENS SPEC PREC AUC
Client 1 0.955 0.94 0.99 0.99 0.953
Client 2 0.93 0.89 0.99 0.99 0.88
Client 3 0.95 0.97 0.91 0.95 0.951

improvement is achieved in terms of accuracy, sensitivity,
and precision for the non-balanced local clients, but the
improvement also concerns an increase in efficiency in the
model with decision-balanced data. The improvement with the
use of the Sugeno integral is observed not only in relation to
other aggregation methods used in FL, but also in relation to
the central model.

V. CONCLUDING REMARKS

We have examined the impact of various aggregations in
improving the prediction performance of models included in
the federation. In the case of decision-balanced data, we obtain
a very small improvement in the efficiency of local models for
individual aggregations, but in the case of unbalanced data, the
Sugeno integral significantly outperforms other aggregation
methods, because not only does FL then improve models
with unbalanced data, it also improves even the model with
balanced data (cf. values of ACC), which indicates the high
compatibility of the Sugeno integral with FL. In addition, we
observed the high stability of the Sugeno integral in the context
of various combinations of the number of epochs in local
model training and the number of aggregations in the federated
model. In future research, a more extensive examination of
this issue will be made in relation to various types of models,
including deep neural networks and data, including problems
arising in industry or finance.
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