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GENERAL INTRODUCTION TO THE FIELD AND
OUTLINE OF THE THESIS 

CHAPTER 1: 



Cancers 

Cancer is a complex and versatile disease that originates from the
uncontrolled growth and spread of pathological cells in the body. It
stands as one of the primary causes of death globally,  affecting
individuals of all  genders (1).  The development of cancer is
influenced by a combination of genetic predispositions,
environmental factors, and lifestyle choices. These factors
contribute to genetic mutations in the cells'  DNA, which disrupts
their normal growth and division mechanisms, leading to the
formation of tumors (2,3).  
There are various cancer types, with numerous characteristics and
treatment options. Some cancers spread quickly, while others may
grow slowly or not at all .  Understanding the particular
characteristics of each cancer type is crucial for an effective
treatment planning. 
Diagnosing and treating cancer requires a comprehensive and
multidisciplinary approach that utilizes the expertise of various
medical specialists,  including oncologists,  radiologists,  and
surgeons. The treatment options for cancer are diverse and depend
on factors such as the type of cancer and its stage of progression
(4,5).  Surgery is often employed to remove localized tumors and
affected tissues. Radiation therapy utilizes high-energy radiation to
target and destroy cancer cells,  either as a standalone treatment or
in combination with other approaches. Chemotherapy involves the
use of drugs that circulate throughout the body to kill  cancer cells.
Immunotherapy leverages the body's immune system to recognize
and eliminate cancer cells.  Depending on the specifics of the case, a
combination of these treatment options may be recommended to
maximize treatment effectiveness (6).  
The thesis focuses on the research and development of Artificial
Intelligence (AI) based tools to improve the diagnostic and
streamline management routines for multiple cancers, including
Non-Small Cell  Lung Cancer (NSCLC) and Glioblastoma (GBM). 

Non-Small Cell Lung Cancer 

Non-Small Cell  Lung Cancer (NSCLC) is the most common type of
lung cancer, accounting for approximately 85% of all  lung cancer
diagnoses. In 2018, lung cancer claimed the highest number of lives
among all  cancers affecting both genders. It  was responsible for
approximately 18.4% of global cancer-related deaths, almost equal
to the combined deaths caused by breast and colon cancers (7).
Within the NSCLC category, 
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there are different subtypes, including adenocarcinoma, squamous
cell  carcinoma, and large cell  carcinoma. Adenocarcinoma is the
most prevalent subtype of NSCLC, typically originating in the
peripheral areas of the lungs. It  is more commonly diagnosed in
non-smokers and is often associated with genetic mutations, such as
mutations in the EGFR (epidermal growth factor receptor) gene.
Squamous cell  carcinoma, on the other hand, usually arises in the
central airways and is strongly linked to tobacco smoking. Large cell
carcinoma is a less common subtype and is characterized by the
presence of large, abnormal cells (8,9).  
The management of NSCLC depends on factors such as cancer stage,
molecular characteristics,  and the overall  health of the patient.
Treatment approaches for NSCLC include surgery, radiation therapy,
chemotherapy, targeted therapy, and immunotherapy. The specific
treatment plan is determined based on individual patient factors
and the presence of specific genetic mutations or biomarkers (5).  In
recent years, significant advancements have been made in the
treatment of NSCLC, particularly with the advent of targeted
therapies and immunotherapies. Targeted therapies are designed to
inhibit specific molecular pathways that drive the growth and
survival of cancer cells (10). For example, drugs targeting EGFR
mutations or ALK (anaplastic lymphoma kinase) gene
rearrangements have shown promising results in patients with
NSCLC harboring these mutations (11,12). Immunotherapy, on the
other hand, aims to enhance the body's immune response against
cancer cells.  Immune checkpoint inhibitors,  such as PD-1
(programmed cell  death protein 1) inhibitors,  have demonstrated
remarkable efficacy in a subset of NSCLC patients (13,14). Despite
these advancements, challenges remain in the treatment of NSCLC.
Resistance to targeted therapies, l imited treatment options for
advanced stages of the disease, and the heterogeneity of NSCLC
tumors pose ongoing challenges in achieving favorable outcomes
(15). Continued research efforts are focused on identifying new
molecular targets,  developing combination therapies, and improving
patient selection criteria to optimize treatment strategies for
NSCLC. 

Glioblastoma  

Glioblastoma (GBM), commonly known as a grade IV astrocytoma, is
a highly malignant brain tumor characterized by its rapid growth
and aggressive nature. This type of tumor has the ability to infiltrate
the surrounding brain tissue, leading to its classification as an
invasive cancer (16). However, GBMs 
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rarely metastasize or spread to distant organs like other forms of
cancer (17). GBMs can arise in the brain de novo, meaning they
develop without any prior indication or underlying condition, or
they can evolve from lower-grade gliomas. The transformation of a
lower-grade glioma into a glioblastoma is often associated with
genetic mutations and molecular alterations within the tumor cells
(18). These changes lead to a more aggressive phenotype,
characterized by rapid cell  division, increased blood vessel
formation, and resistance to treatment. 
Due to their location and aggressive nature, glioblastomas pose
significant challenges in terms of treatment and prognosis (19).
Standard treatment options for GBM typically involve a combination
of surgery, radiation therapy, and chemotherapy. However, complete
surgical removal of the tumor is often difficult due to its infiltrative
nature and proximity to critical brain regions (20,21). Radiation
therapy and chemotherapy are employed to target any remaining
tumor cells and slow down their growth. Despite these
interventions, glioblastomas have a high rate of recurrence, and the
prognosis for patients diagnosed with GBM remains poor (19,22).
Research efforts are underway to better understand the underlying
molecular mechanisms of glioblastoma and develop innovative
treatment approaches. These include targeted therapies that aim to
disrupt specific signaling pathways involved in tumor growth and
progression, immunotherapies that harness the immune system to
recognize and attack cancer cells,  and novel drug delivery methods
to improve the effectiveness of treatment (4,23). 

Medical Imaging 

Medical imaging is an essential tool in the diagnosis,  treatment and
tumor response to treatment evaluation of various types of cancer
(24,25). Computed tomography (CT), magnetic resonance imaging
(MRI), nuclear medicine imaging modalities such as positron
emission tomography (PET), and bone scintigraphy are among the
most commonly used modalities for cancer management. CT
combines X-ray technology with an advanced computer processing to
produce detailed cross-sectional images of the body. It  uses a
rotating X-ray beam and detectors to capture multiple X-ray images
from different angles, which are then reconstructed by the computer
to create a three-dimensional view of the internal structures. Chest
CT is an essential imaging tool for the assessment of lung cancer,
commonly utilized for both screening and staging purposes(5).  It
serves as a noninvasive method to examine and characterize lung



lesions, located within the air-fil led lung tissue. The size, location,
and characteristics of these lesions can be precisely determined
through chest CT scans (26). 
Magnetic Resonance Imaging (MRI) uses a strong magnetic field and
radio waves to generate detailed images of the body's internal
structures. It  works by aligning the hydrogen protons in the body's
tissues and then disrupting their alignment using radio waves. As
the protons realign, they emit signals that are captured by
specialized detectors and processed by a computer to create highly
detailed images. MRI is particularly useful for visualizing soft
tissues, such as the brain, spinal cord, muscles,  and joints.  MRI is
the modality of choice for diagnosis and assessment of treatment
response in patients with GBM, due to its wide availability,  and
superior soft tissue visualization over computed tomography (CT)
(27). 
Nuclear medicine imaging is a branch of medical imaging that
utilizes small amounts of radioactive substances, known as
radiopharmaceuticals,  to visualize and assess the function of organs
and tissues within the body. These radiopharmaceuticals are
typically injected, swallowed, or inhaled, and they emit gamma rays
or positrons that are detected by specialized cameras or scanners.
The cameras process the emitted signal and produce images that
show the distribution of the radiotracer in the body, highlighting
areas of high metabolic activity.  Positron Emission Tomography
(PET) and Whole Body Bone Bcintigraphy (WBBS) or bone scan are
among the ubiquitous nuclear medicine imaging modalities (28).
PET is extensively used in oncology for cancer detection, staging,
and treatment monitoring (24,25). It  helps visualize and assess
metabolic activity in tumors, determine the spread of cancer,
evaluate treatment response, and detect potential cancer recurrence.
WBBS is commonly employed to diagnose and monitor conditions
such as bone fractures, infections, tumors, and metastases(29). 
With advancements in medical imaging technology, current scanners
provide high-resolution images that allow for more accurate and
detailed visualizations of various internal body structures. The
precise representation of these structures, as well  as the high-
resolution and volumetric nature of these images, allows for the use
of advanced algorithms for quantitative analysis.  

Artificial Intelligence 

Artificial Intelligence (AI) is a multidisciplinary field of computer
science and an umbrella term for a wide range of algorithms and
techniques with the goal of enabling machines to perform tasks that 
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typically require human intelligence (30). AI aims to replicate
human-like intelligence and cognitive abilities in machines to
automate complex tasks, solve problems, and make informed
decisions. Machine learning (ML) is a subfield of AI characterized
by a specific approach that typically uses algorithms and statistical
models to learn from data and perform tasks like classification,
regression, anomaly detection and clustering (31). The unique
feature that fueled the recent growth and ubiquitous application of
ML algorithms is their ability to learn directly from complex data
without being explicitly programmed. ML algorithms can be
categorized into various types, such as supervised learning,
unsupervised learning, and reinforcement learning. In supervised
learning, the ML model learns from labeled data, where inputs and
corresponding outputs are provided. The model generalizes from
this labeled data to make predictions or classify new, unseen inputs.
Regression models can predict continuous values, while
classification models assign inputs to predefined categories (30,32). 
Unsupervised learning, on the other hand, involves analyzing
unlabeled data to identify inherent patterns, structures, or
relationships within the data. Clustering algorithms group similar
data points together, while dimensionality reduction techniques aim
to capture essential features of the data while reducing its
complexity.  Reinforcement learning involves training an agent to
make decisions based on interactions with an environment. The
agent receives feedback in the form of rewards or penalties,  allowing
it to learn through trial and error and optimize its decision-making
strategy (32). 

14

Figure 1: Visual interpretation of Artificial Intelligence algorithms
and medical imaging. 



Machine learning algorithms quickly found their application in
multiple industries and domains, including finance, transportation,
marketing and many others. Application of machine learning in
radiology has been recently manifested in Radiomics(33). 

Radiomics 

Radiomics is a rapidly growing field within medical imaging that
focuses on the extraction of Handcrafted Radiomics Features (HRFs)
from medical images, particularly tumor Region Of Interest,  to
explore the correlation between the underlying biological
characteristics and clinical outcomes (34,35). HRFs are computed
using manually designed algorithms that capture various tumor
characteristics,  including shape, texture, and complex statistical
features derived from the voxel intensity data. These features serve
as quantitative measurements that aims to characterize the tumor's
heterogeneity,  spatial patterns, and other distinct properties (36).
HRFs coupled with feature selection methods and statistical and
machine learning algorithms are used to produce prognostic and
predictive models advancing the clinical decision support.  As
reported in numerous studies HRFs based models has been showing
promising performance in developing imaging biomarkers that can
help predict patient outcomes, response to treatment and survival
time (37–39). 
However, it  is essential to note that the translation of radiomic
models into clinical practice requires rigorous validation,
standardization, and integration into existing clinical workflows
(35). As the field of radiomics continues to advance, there is a
growing need for collaborative efforts,  open source data sharing,
and robust validation studies to ensure the reliability and
generalizability of radiomic findings and their clinical applications.

Deep Learning 

Deep learning (DL) is a branch of AI that uses data-driven
techniques inspired by the functioning of neurons in the human
brain. Unlike radiomics, DL models can automatically identify
complex patterns in medical imaging without the need for manual
feature engineering (40). The success of DL in the field of computer
vision can be largely attributed to the Convolutional Neural Network
(CNN) architecture. CNNs have revolutionized image analysis and
recognition tasks due to their remarkable performance and ability to
automatically extract hierarchical and spatially localized features 
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from visual inputs. CNNs utilize convolutional layers to apply filters
to input data, allowing them to detect patterns and features at
different scales.  Through repeated application of convolutional
layers, pooling layers for downsampling, and fully connected layers
for classification, CNNs can learn complex representations and
achieve high performance in tasks like image classification, object
detection, and image segmentation. 
DL has demonstrated remarkable success in various medical imaging
tasks, including segmentation, classification, detection, and
synthetic data generation (41–43). While DL models have shown
superior performance in many medical imaging applications, one
challenge associated with their adoption is the interpretability of
their decisions. DL models often operate as "black boxes", meaning
that the learned features and decision-making processes can be
complex and difficult to interpret.  Efforts are being made to address
the interpretability issue in DL models,  including the development
of techniques to visualize learned features, identify influential
regions within images, and generate heatmaps to highlight regions
contributing to predictions (44). Various studies explore methods to
provide explanations or justifications for DL model outputs, making
them more understandable and transparent to clinicians and
patients (45–47). 

Objectives & outlines of the thesis 

This thesis explores the use of artificial intelligence in medical
imaging through application of HRF’s based ML and DL models for
development of predictive and prognostic models,  development and
implementation of automatic cancer segmentation pipeline, and
creation of open-source tools to facilitate quantitative medical
imaging. 
More specifically the objectives of this thesis were (1) to evaluate
the complementary value of HRFs to clinical features, deep learning
based features and qualitative features and investigate its potential
in improving patient outcomes by improving the patient prognosis
and prediction (Chapters 3 and 4); (2) to investigate the potential of
DL in improving current laborious radiotherapy treatment planning
routines and decision making through automatic segmentation and
better prognosis (Chapters 6 and 7); (3) develop tools to facilitate
research needs through open source code for quantitative medical
image analysis and in-silico clinical trials,  and radiotherapy
workflow through software for automatic segmentation of NSCLC
(Chapters 8, 9).  



The thesis is divided into three sections, comprising a total of ten
chapters. The chapters are colorcoded according to the part of the
thesis that they reprsent (Figure 2).  The following is a brief
summary of the content covered in each section. 
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General introduction and Outline 

Chapters 1  includes a general introduction to the field of medical
imaging, presenting the current challenges and technics used to
address them, and outline of the thesis.  

Part 1 Applications of HRFs based ML methods in medical
imaging 

Chapter 2 serves as a general introduction to the application of
handcrafted radiomics features and deep learning techniques in
medical imaging. It  encompasses a comprehensive review of the
current state of radiomics application, the challenges that it
currently confronts, and proposes a novel radiomics framework that
focuses on reproducibility of radiomics features. 

Chapter 3 investigates the possibility of using the combination of
quantitative radiomics features, extracted from magnetic resonance
imaging (MRI) with Non-invasive qualitative Visually Accessible
Rembrandt Images (VASARI), and clinical features to improve the
patient prognosis for the most malignant primary brain tumor -
Glioblastoma (GBM). It further explores the potential of
quantitative radiomics features in predicting clinically relevant
tumor markers for GBM patients that are needed to better guide the
clinicians. 

Chapter  4  investigates the application of both handcrafted
radiomics features and automatically extracted deep learning (DL)
features from Gadolinium-enhanced T1-weighted MRIs to predict
the likelihood of adverse radiation effects (ARE) in patients with
brain metastases (BM) prior to receiving stereotactic radiotherapy
(SRT). The study also examines existing techniques for harmonizing
the machine learning (ML) and DL pipelines, and proposes an
optimal pre-processing method. 

Part 2 Applications of Deep learning in medical imaging 

Chapters 5  is a comprehensive review on the spectrum of medical
image segmentation with the focus on the automatic contouring
using deep learning. The review presents the diverse directions
being pursued to improve medical image segmentation, by providing
a detailed description of various automatic and semi-automatic
methodologies for contouring cancers and organs at risk across
different medical imaging modalities.  
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Chapter  6  is a centerpiece of this thesis.  The work described in this
chapter combines a proposal and comprehensive validation of the
DL based method for automatic segmentation of the NSCLC on CT
images. Additionally,  the chapter explores the uncertainty of manual
segmentations, alternative validation through in-silico clinical trial
and survival analysis and offers an open-source software for NSCLC
segmentation and qualitative assessment. 
The work in this chapter were used for the subsequent development
of the clinical software for automatic segmentation of NSCLC on CT. 

Chapter 7  of this thesis explores the feasibility of utilizing a DL
algorithm to identify metastatic bone disease on scintigraphy scans.
This study involved multiple centers and included both cancer and
non-cancer patients.  The performance of the developed software was
evaluated against uninformed nuclear medicine physicians in an in-
silico clinical trial  setting using in-house developed software. The
Grad-CAM method was employed to provide improved elucidation of
the model's decision-making process through the visualization of the
neuron activations. 

Part 3 Open source and patented contributions to the
field 

Chapter  8  presents a precision medicine toolbox, an open-source
Python framework that aims to facilitate multiple tasks for
researchers, including data curation, image pre-processing,
handcrafted radiomics features extraction, and feature exploration.
The purpose of this work is to address challenges surrounding data
preparation and to enhance the reproducibility of quantitative
medical imaging research. 

Chapter  9  is a short summary of the patent received for the work
on the image data processing method, and method for training a
machine learning data processing model.  

Part 4 General Discussion and future perspectives 

Chapter  10  of this thesis serves as a general discussion of the work
presented in this thesis.  Furthermore, it  elaborates on the potential
benefits and limitations of AI-based methods in healthcare, with an
emphasis on the use of these methods for the automatic
segmentation of medical images, and highlights the key challenges
that must be addressed to ensure the safe and effective integration
of these methods in healthcare.  

11
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Broadly, radiomics refers to the use of computational or statistical
approaches to extract large numbers of quantitative features from a
number of medical imaging modalities,  such as computed
tomography (CT), magnetic resonance imaging (MRI), and positron
emission tomography (PET), to develop predictive models

Abstract  

The advancement of artificial intelligence concurrent with the
development of medical imaging techniques provided a unique
opportunity to turn medical imaging from mostly qualitative, to
further quantitative and mineable data that can be explored for the
development of clinical decision support systems (cDSS). Radiomics,
a method for the high throughput extraction of handcrafted features
from medical images, and deep learning the data driven modeling
techniques based on the principles of simplified brain neuron
interactions, are the most researched quantitative imaging
techniques. Many studies reported on the potential of such
techniques in the context of cDSS. Such techniques could be highly
appealing due to the reuse of existing data, automation of clinical
workflows, minimal invasiveness, three-dimensional volumetric
characterization, and the promise of high accuracy and
reproducibility of results and cost-effectiveness. Nevertheless,  there
are several challenges that quantitative imaging techniques face,
and need to be addressed before the translation to clinical use.
These challenges include, but are not limited to, the explainability
of the models,  the reproducibility of the quantitative imaging
features, and their sensitivity to variations in image acquisition and
reconstruction parameters. In this narrative review, we report on
the status of quantitative medical image analysis using radiomics
and deep learning, the challenges the field is facing, propose a
framework for robust radiomics analysis,  and discuss future
prospects.  

1. Introduction

Advances in artificial intelligence applications, combined with those
in medical imaging, have led to the gradual conversion of digital
medical images into high-dimensional data appropriate for data
mining and data science techniques (1).  Meanwhile,  computing
power and quantitative image analysis (QIA) techniques have made
enormous progress, and the application of quantitative imaging
techniques on medical imaging gained exponential momentum (2).
Currently,  radiomics and deep learning are the most researched
techniques on medical imaging. 
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Deep learning (DL) is a field of data driven modelling techniques  
that utilizes the principles of simplified neuron interactions (13).
Using artificial neurons started to draw attention decades ago (14),
but it  only became a major research focus recently (15–17). The
artificial neuron model is used as a foundation unit to create
complex chains of interactions – DL layers. These layers are used to
generate even more complex structures DL architectures (see Figure
1). The neural network (NN) training procedure is typically a cost-
function minimization process. The cost function measures the error
of predictions based on the ground truth labels (18). Due to the high
complexity of the network architectures, computational limitations
are reached when trying to solve the optimization task analytically.
Henceforth, iterative algorithms are used to overcome this issue.
Commonly, these algorithms are variations of the gradient descent
(GD). GD iteratively moves in the direction of steepest descent of
the cost function, in order to find a local minimum. During the
model training process, every image from the training dataset
contributes to the cost minimization process. Thereby, a DL network
learns how to solve a problem directly from existing data, and apply 

ultimately aiming to enable personalized clinical management (3–5).
Radiomics features are quantitative descriptions of the intensity,
shape, volume, and texture of the region of interest (ROI), with the
recent addition of more abstract features such as radial gradient and
radial deviation (6).  Radiomics features are broadly divided into
histogram-based and texture features. Different statistical methods
are used to calculate the radiomics features. The methods include
first-order statistics,  which depends on the values of single voxels
(histogram-based features for e.g.  maximum and minimum
intensity); second-order statistics,  which depends on the relation
between two voxels (for e.g.  grey-level co-occurrence matrix (GLCM)
features),  and higher-order statistics (relations among three or more
voxels,  for e.g.  neighborhood grey-tone difference matrices
(NGTDM) features) (7,8).  The main hypothesis behind radiomics
analysis is that radiomics features decode or correlate with the
molecular characteristics,  phenotype, and genotype of the region of
interest (ROI) under study. This information can be used in
combination with other patient information to improve patient
management. Moreover, as the tumours are of heterogeneous nature
(9,10), clinical approaches, such as tissue biopsies,  might fail  to
characterize the entirety of the tumour (11). In contrast,  Radiomics
takes the whole tumour region (or even the surrounding or healthy
tissue) into account, which enables a better characterization (3).
Furthermore, frequent clinical imaging can transform radiomics into
a non-invasive, easily repeatable, and cost-effective longitudinal
approach for cDSS (12). 
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Many studies have investigated and reported on the added clinical
value of radiomics features for predicting various clinical outcomes,

it  to data it  has never seen. These complex models contain the
parameters (weights) for millions of neurons, which can be trained
for the recognition of problem-related patterns in the data being
analyzed. DL has been shown to be efficient in other fields, such as
face recognition (19) and autonomous cars (20). 
Since the introduction of the field, many studies have reported on
the potential of such techniques for predicting patient outcomes
(5,21,22). The successful translation of QIA techniques into cDSS
will  have a significant impact on the clinical workflow and current
patient management protocols.  Clinicians will  be able to non-
invasively obtain a more detailed and accurate tumour
characterization, in a shorter amount of time. Patients will  have to
go through less invasive procedures, while having treatment
optimized based on their individual characteristics.  Furthermore,
patient-specific informed decisions can be made with more
confidence. However, QIA is stil l  developing in the field of medical
imaging and several challenges, including the stability and
reproducibility of imaging biomarkers, as well  as the interpretability
of the developed algorithms, need to be addressed before QIA can be
translated to clinical applications. 
In this narrative review, we focus on the current status of the
potential of radiomics and deep learning to be incorporated in
clinical decision support systems (cDSS), their challenges, as well  as
future prospects for these methods. We further propose a workflow
to guide robust radiomics analysis.  

2. Quantitative image analysis for precision medicine 

The need for personalizing the management of patients has been
widely reported (23,24). QIA represents a suitable candidate to be
incorporated into the body of personalized medicine due to the non-
invasive three-dimensional characterization of the ROIs, the
availability of vast amounts of medical images, the longitudinal
capabilities,  and the cost-effectiveness of the method.
The currently implemented imaging biomarker development
workflow is generalizable across different imaging modalities.  The
workflow can be described as consecutive steps divided into the
main categories of data collection, image segmentation, features
extraction, development of the signature, and evaluation of the
performance (Figure 2),  with the segmentation step being optional
in the case of deep learning. The workflow has been previously
extensively described (22,25). 
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QIA techniques have a great potential for involvement in developing
classification, prognostic and predictive clinical tools.  In
comparison, classification tasks (for e.g classifying tissue histology)
seem to yield a better performance than predictive tasks (for e.g
survival prediction). This is in part due to the unaccounted for
variables when trying to predict future events. In 2.1 and 2.2, we
report on some examples that highlighted the potential of radiomics
and deep learning to predict various clinical endpoints,
acknowledged or addressed the challenges of QIA techniques used,
and/or applied the techniques on a relatively large sample size
compared to other studies addressing the same clinical endpoint.  

 such as overall  survival,  tumour histology, response to therapy, and
genetic profiling, among other endpoints.  Furthermore, these
studies were performed on various imaging modalities,  including
CT, MR, and PET. 
While the handcrafted radiomics pipeline necessitates the use of
machine learning or statistical algorithms after feature extraction
for modeling, DL techniques perform feature extraction and
modelling internally without the need for further user interaction.
DL has its own advantages and drawbacks compared to traditional
radiomics. One of the key benefits of using DL is avoiding the
contouring problem, the bottleneck of a traditional radiomics
pipeline. However, due to the complexity of DL models,  it  is easier
to overfit  the model to the training data. As a result,  a larger data
set is needed for DL compared to handcrafted radiomics.
Furthermore, DL is considered a ‘black box’,  i .e the models and
features generated are not (or barely) interpretable. This is
currently one of the major challenges of the application of artificial
intelligence (AI) in medical image analysis.  Efforts are being made
towards providing explainable AI algorithms, by investigating the
correlation of the chosen features with biologic or semantic
characteristics.  Such correlations would provide an understanding
about how the algorithm makes the decision, and ease its
incorporation into cDSS. 
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Figure 1. Graphical depiction of DL architectures. * FCN: fully
connected network. 
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Figure 2. Development of imaging biomarkers using quantitative
image analysis.
* Segmentation is not a necessity in the automated radiomics
pipeline. 
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2.1. Handcrafted radiomics 

Overall survival 
Wang et al.  (26) investigated the potential of radiomics signatures
to predict overall  survival in patients with locally advanced rectal
cancer. The authors tried to address the current clinical need for a
risk stratification tool for such patients to safely forgo surgical
resection, due to the high comorbidities associated. The study
included 411 treatment planning CT-scans of patients treated with
neoadjuvant chemotherapy followed by surgery. The authors
developed a radiomics signature that could stratify patients into
low- and high-risk survival groups. The radiomics features included
in the signature were found to be independent of the clinical
features. Adding radiomics features to the clinical model resulted in
an improvement of the predictive power (c- index) of the clinical
only model from 0.67 (0.62–0.73) to 0.73 (0.66–0.80) (26). The
authors used two investigations to ensure the selection of stable
radiomics features, namely test–retest and contour- recontour
robustness analysis.  The results signifies the added value of
properly using radiomics analysis on CT scans in improving patients’
risk stratification. Yet,  the authors did not externally validate their
signature, casting doubt on the generalizability of their signature. It
is expected to be of value in cases where the scanning parameters
are identical to those used in the study. 
Another study by Bae et al.  (27) investigated the potential of MR-
based radiomics to improve the survival prediction of patients
diagnosed with glioblastoma multiforme. The study is an effort to
address the unmet clinical need for assessing the survival of the
target group following therapy. The authors extracted radiomics
features from 217 multiparametric MR scans of patients with
glioblastoma. The authors identified 18 radiomics features to build a
radiomic signature, and reported that the addition of radiomics
features to clinical and genetic profiles of the patients significantly
improves the stratification of patients (27). The authors in this
study applied a unique approach for the analysis by simultaneously
analyzing radiomics features extracted from different co-registered
MR sequences. The identified features were independent of the
clinical and genetic factors, and the improvement in the survival
prediction following their addition, supports the hypothesis of
radiomics. 
Pitfalls in the study include the lack of assessment of radiomic
feature stability before modeling, and as often seen in these studies,
a lack of an external validation of the signature. However, their
results support the hypothesis that radiomics are
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Another study by Kickingereder et al.  (30) investigated the role of
MR-based radiomics in predicting survival in patients with
glioblastoma multiforme. The authors extracted radiomics features
from 119 MR scans, and developed a radiomic signature using 11
features. The developed signature performed significantly better
than the radiologic and clinical risk models,  and its addition to

are of great use when applied on scans acquired using identical
settings. 
Oikonomou et al.  (28) reported on the potential of PET/CT-based
radiomics to improve the survival stratification of patients with lung
cancer treated with stereotactic body radiotherapy. The aim was to
identify radiomics features that can improve the prognostication of
patients following treatment. The authors extracted radiomics
features from 150 PET/CT scans, and built  radiomics signatures
using 10 radiomics features. The authors reported that the
radiomics signature was the sole predictor in the case of overall
survival,  and provided complementary information for the
prediction of regional control (28). The uniqueness in this study is
the joint use of radiomics features extracted from the CT-component
and PET-component of the PET/CT scans. The authors show how
other currently used clinical parameters fail  to predict overall
survival,  while only radiomics could. While the study highlights the
potential of radiomics to improve risk stratification, no external
validation of the signature was performed. 

Progression free survival 
Kirienko et al.  (29) investigated the role of PET/CT-based radiomics
to predict disease free survival in patients with non-small cell  lung
cancer undergoing surgery. The authors extracted radiomics features
from PET, CT, and combined PET/CT images. The authors developed
Cox regression models using only CT, only PET, and combined
PET/CT radiomics features. They reported that the radiomic
signatures they developed improve the current clinical stratification
of the targeted patients (29). The authors in this study investigated
the reproducibility of radiomics features across the different
imaging parameters in their dataset.  This ensured selecting the
comparable features before proceeding with signature building. The
authors also provide evidence of the added value of combining
radiomics features extracted from different imaging modalities.
Furthermore, the ability to predict disease free survival from the
time of diagnosis -which radiomics offer improves physicians and
patients decision making. However, the authors in this study did
also not perform an external validation of their signature. Further
validation of the signature can prompt a prospective validation trial,
before incorporation into cDSS. 
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those resulted in an overall  improvement of progression-free
survival stratification (30). The finding that the radiomics signature
performed better than the clinical and radiologic models supports
the findings reported by Bae at al.  (27), and adds more evidence that
radiomics features decode complementary biologic information.
However, the study did not address the issues of the reproducibility
and generalizability sufficiently,  leaving a room for improving the
performance of radiomics. 

Tumour histology 
Wu et al.  (31) explored the role of radiomics in differentiating
between the histologic subtypes of non-small cell  lung cancer:
adenocarcinoma and squamous cell  carcinoma. The study was an
effort to address the clinical need for less invasive and easily
repeatable methods to determine tumour histology. The authors
extracted radiomics features from 350 CT scans of NSCLC patients
for whom the tumour histology has been determined from surgical
specimens. The developed signature included 5 radiomics features,
and they reported an area under the receiver characteristics curve
(AUC) of 0.72 (31). This study reflected on the potential of non-
invasive radiomic signatures to differentiate between
adenocarcinoma and squamous cell  carcinoma. They also
investigated different machine learning methodologies for building
the radiomics signature. While this study generates evidence for the
potential of radiomics, the performance of the developed signature
is significantly lower than the current gold standard -tissue biopsy.
However, there is a great room for improving the development and
performance of the signature. The authors did not address the
acknowledged challenges in radiomics, nor did they validate their
signature on an external dataset.  Preselection of reproducible
features, external and prospective validation of the signature are
necessary steps in the development of radiomics biomarkers. 
In another study, Wu et al.  (32) investigated the added value of MR-
based radiomics features for the prediction of hepatocellular
carcinoma (HCC) grade. The authors extracted radiomics features
from 170 MRI scans of HCC patients,  whose tumour grade was
identified through pathological samples. The radiomics-only
signature (AUC of 0.74) outperformed the clinical model (AUC of
0.60), and the combination of both significantly  improved the
prediction (AUC of 0.80) (32). The authors in this study also
combined radiomics features extracted from two different MR
sequences and analyzed them simultaneously. The significant
improvement of the predictions following the combination of clinical
and radiomics features supports the independence of radiomics
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features from other clinical information. However, external
validation of the developed signature is stil l  a necessity before
confidently performing prospective validation. Valleries et al.  (33)
explored the potential of the combination of FDG-PET- and MR-
based radiomics features to classify lung nodules. The authors
extracted radiomics features from 51 PET and MR scans of
histologically confirmed lung lesions in patients with soft-tissue
sarcoma. The authors achieved a sensitivity of 0.96 and specificity
of 0.93 in diagnosing metastatic nodules using a model with
combined radiomics features from both PET and MR modalities.  The
authors used a novel interesting approach by simultaneously
analyzing the features extracted from FDG-PET and MR scans, and
were the first to show the potential of this method. The performance
of the developed signature makes it  a suitable alternative for
patients for whom tissue biopsy is contraindicated. Its possible
translation to cDSS might significantly improve patient outcomes, as
treatment is based on the histologic diagnosis.  Yet,  further external
and prospective validation of the signature is needed. 

Response to therapy 
Trebeschi et al.  (34) explored the role of radiomics in predicting
response to anti-PD1 immunotherapy in patients diagnosed with
advanced melanoma and NSCLC patients.  Immunotherapy has shown
promising results.  Yet,  there is stil l  a need for a tool to determine
which patients will  benefit  from receiving anti-PD-1 antibodies. The
authors extracted radiomics features from 1055 ROIs segmented on
203 CT scans. The authors developed a radiomic signature that
could predict the response to therapy with an AUC of 0.76; showing
the potential of radiomics to predict response to therapy in such
patients (34). Interestingly, the authors found correlations between
the radiomic biomarker and the genes associated with cell  cycle
progression and mitosis.  Radiomics can become a tool for assisting
decision making in immunotherapy, a great unmet clinical need.  
The study however did not externally validate the signature, and did
not sufficiently address the issues of feature stability and
reproducibility.  Therefore, the application of the developed
signature is also limited to the patients who are scanned with the
same scanning parameters as used in the training. 
In a study by Horvat et al.  (35), the authors investigated the role of
radiomics in assessing complete clinical response (cCR) after
neoadjuvant chemoradiotherapy (CRT) in patients with locally
advanced rectal cancer. The guidelines of treating these patients
include surgery, but evidence showed recently that a select group of
patients can be safely treated with only CRT. The authors extracted
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radiomics features from 114 MR scans, and developed a radiomics
signature with a sensitivity of 1.00, and a specificity of 0.91, which
outperformed qualitative assessment of the response performed by
two radiologists.  The current clinical standard evaluation of cCR
includes digital rectal examination and endoscopy, with an accuracy
ranging between 0.71 and 0.88 (35). The developed radiomic
signature showed the highest accuracy among the available
compared-with tools.  Nonetheless,  several steps to improve the
methodology and performance of the radiomics signature could be
made. The sound cCR evaluation following RCT can improve the
patient management by eliminating surgical risks, time and money. 

2.2. Deep learning 

The application of deep learning on medical imaging could
potentially fulfil  more complicated tasks than handcrafted
radiomics, especially when large amounts of data are available.
Furthermore, as definition of the ROIs is not a necessity in the
automated deep learning workflows, the algorithm will  learn
patterns from the whole image and possibly make connections with
the habitat of the ROIs. The applications of neural networks on
medical imaging are also not limited to classification and prediction
of clinical end points,  but can extend to include other tasks, such as
the detection and segmentation of abnormalities or target volumes,
which have been investigated for decades (36). Especially the
detection and segmentation of lesions can be easily incorporated
into the radiomics workflow, further automating the process. In the
following paragraphs, we give examples of different applications of
DL on medical imaging to perform various tasks on datasets
acquired with one of the three main medical images modalities: CT,
MRI, and PET. 

Automatic segmentation of target structures 
Jiang et al.  (37) tried to develop a DL model that is able to
accurately perform volumetric lung tumour segmentation on CT
images. The authors used two versions of multiple resolution
residual network models for the delineation of the ROIs. The
authors used 377 tumours from the open source dataset available on
The Cancer Imaging Archive (TCIA)
(https://www.cancerimagingarchive.net) to train the model,  and two
independent datasets of 304 and 529 lung tumours to validate it.
The dice similarity coefficient (DSC), which measures the spatial
overlap of the segmentations, was computed to evaluate the
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performance of the model.  The DSCs of the model on the two
validation datasets were 0.75 and 0.68, respectively.  The authors
reported that there was no significant difference between the DL-
generated mask and experts’  segmentations (37). The new approach
for segmenting medical images used in this study shows to be
superior to the traditional use of UNet. The approach generalizes
well  on external data and overcomes the multiple sizes problem. The
major pitfalls is that the authors did not use the 3D geometry of the
CTs to compute the results,  which would probably increase the
performance significantly.  The translation of such a tool to clinical
practice will  significantly reduce the time spent by the clinicians to
plan the treatment, or evaluate the response to therapy. Moreover,
from a research perspective, it  can significantly reduce the time
needed for radiomics research, and it  will  address the issue of inter-
observer sensitivity of radiomics features. In the study by Yi et al.
(38), the authors developed a DL model for the segmentation of
brain tumours based on 274 brain MRIs extracted from the Brain
Tumour Image Segmentation Benchmark (BRATS) dataset (39). 
Segmentation of brain Glioblastoma on MRI is a time-exhaustive
process, and an automated, accurate and reproducible tool for this
purpose is considered a clinical need. The model was trained using
four different MRIs sequences. The particularity of their
convolutional neural network (CNN) model is a fixed difference of
Gaussian filters as a first convolution layer, as it  was proven to be
the most efficient for 3D segmentation. The DSC for the model was
0.89 on the BRATS dataset when compared to ground truth
segmentations (38). This article shows the superiority of 3D CNN
compared to 2D CNN. The algorithm generated segmentations with a
volumetric overlap of 0.89 with the experts’  segmentations, which
shows the potential of these tools for clinical use. However, the lack
of external validation in the study limits the applicability of the
algorithm to scanning parameters in the training set.  The clinical
practice can benefit  from such tools,  as it  significantly reduces the
time the clinicians spend, and can provide more accurate evaluation
of tumour response than the current clinical routine. 
Chen et al.  (40) explored the possibility of developing a DL model
that is able to detect and segment cervical tumours on PET imaging.
The authors proposed prior information constraint CNN (PIC-CNN),
which integrates a CNN with prior information of cervical tumour.
The authors reported a DSC of 0.84, which was superior to the other
methods tin the comparison, including transfer learning based on
fully convolutional neural networks (FCN) (DSC of 0.77), automatic
thresholding (DSC of 0.59), and region growing method (DSC of
0.52) (40). The study highlights the potential of deep learning to
perform well-defined and robust segmentations on PET imaging.
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The novelty of the approach is the use of prior information as input
of the model,  with delineation of the bladder. This extra information
seems to give the traditional model an advantage compared to
models that solely segment the tumours. However, the results were
not validated on an external dataset.  The application of the
developed algorithm -after validating it  would decrease the need for
tissue biopsy, as well  as the time spent on segmenting the tumours
manually or semi-automatically.

 
Oncologic classification tasks 
Ardila et al.  (41) tried to predict the risk of lung cancer using
screening low-dose CTs. The algorithm is trained on screening low-
dose CT scans of patients who were known to be at risk. The authors
trained their DL model on approximately 7000 scans, and validated
its performance on 1139 cases. The authors reported that the model
achieved the “state-of-the-art” performance (AUC of 0.944).
Furthermore, the model outperformed all  the radiologists (n = 6)
who were asked to give predictions. The model resulted in a
significant reduction in the false positive (11%), and false negative
rates (5%) (41). While the current low-dose CT screening protocol
has substantially improved in terms of consistency, it  stil l  faces
major limitations represented in the inter-observer variability and
incomplete characterization of image findings. The authors in (41)
developed an algorithm that achieved significantly better
performance than the current protocol,  highlighting the potential of
DL algorithms to revolutionize the field of lung cancer screening.
Other advantages of the algorithm are that it  eliminates the current
clinical practice limitations. 
Ismael et al.  (42) investigated the ability of DL algorithms to
classify different brain tumours. The algorithm predicts if  the lesion
is either a meningioma, glioma, or pituitary tumour. The authors
developed the algorithm on 3064 T1 MRI images from 233 cancer
patients.  As input to the algorithm, the 2D images were considered
independent from each other, and were split  into 80% training and
20% testing, with strictly different patient data. The classifier used
is ResNet50, a classic deep learning network, and the resultant
balanced accuracy was 0.99 on a slice level and 0.97 at a patient
level.  This study shows that deep learning can very accurately
classify brain tumours based solely on MRI data. However, the data
to be used should be acquired using the same scanning parameters,
as no external validation was performed in this study. There is a
great clinical significance from the development of such a cDSS, as
it  eliminates the need for risky brain biopsies,  while maintaining
high accuracy.
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In another study by Sibille et al.  (43), the authors used the
combination of CT, fluorine 18-fluorodeoxyglucose PET, atlas and
PET maximum intensity projection (MIP) imaging to classify lung
nodules. The study included a set of 629 patients who were
diagnosed with either lung cancer or lymphoma. The authors
developed models using each of imaging modalities separately,  as
well  as in combination. The recommended algorithm achieved an
AUC of 0.98 when both CT and PET were combined (43). This study
shows that the combination of CT and PET can achieve an
outstanding performance in terms of predictions. The current
clinical practice requires the clinician to review and classify all  of
the increased-uptake foci in a PET/CT scan. The algorithm could
help the clinicians to quickly read those images, after highlighting
the suspicious areas and their most likely classification using DL. 

Non-oncologic classification tasks 
Walsh et al.  (44) explored the potential of DL to classify fibrotic
lung diseases using high resolution CT scans. The current clinical
guidelines for classifying fibrotic lung diseases are based on high
resolution scans, and diagnoses are made based on the semantic
features identified by the radiologists.  While these guidelines are
the current gold-standard, it  suffers greatly from inter-observer
variability.  The authors tried to address this unmet clinical need
using DL approaches. The authors trained their DL model on 929 CT
scans, and tested it  on 139 scans. The authors reported a
performance with human-level accuracy (0.76) (44). Of interest,  the
algorithm developed had a better agreement with expert radiologists
than among them. The ease of application of such methods in
clinical settings could benefit  clinical practice, especially in centers
where such clinical expertise is scarce.
In the study by Ding et al.  (45), the authors tried to develop a DL
model that is able to diagnose Alzheimer’s disease (AD), using 18F-
FDG PET scans of the brain. The current clinical guidelines to
diagnose AD necessitate the interpretation of scans by an expert,
and there is no definitive biomarker. To investigate the potential of
DL, the authors collected two datasets: one used for training and
testing the model (n = 2109 scans),  which was split  into 90%
training and 10% testing; and an independent dataset (n = 40) for
the validation of the model.  The authors reported an AUC of 0.98,
sensitivity of 1.00 and specificity of 0.82, using scans acquired 75.8
months on average before establishing the diagnosis.  The model
further outperformed the readers’  performance (sensitivity of 0.57
and specificity of 0.91) (45). The significance in this study lies 
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within the novelty of developing a biomarker for AD that is currently
an unmet clinical need. In addition to the significantly better
performance compared to human experts,  the model can predict that
the patient has AD in progression significantly earlier (~6 years).
Such an application will  revolutionize the clinical management of
AD. However, prospective validation of this signature is needed
before its translation to clinical practice.  
Oh et al.  (46) applied a DL based approach in order to classify the
neuroimaging data related to AD. Authors used 694 MRI scans (T1-
weighted MP-RAGE sequence) for solving several binary
classification problems: AD vs. normal control (NC), progressive
mild cognitive impairment (pMCI) vs.  NC, stable mild cognitive
impairment (sMCI) vs.  NC and pMCI vs. sMCI. The authors utilized
convolutional autoencoder- based unsupervised learning algorithms
in order to classify the AD vs. NC. Following that,  the authors
applied a supervised transfer learning approach to classify the pMCI
vs. sMCI. The developed algorithms achieved accuracies of 0.87,
0.77, 0.63, and 0.73 for the AD, pMCI, sMCI and pMCI vs. sMCI
classifications, respectively.  In comparison to Ding et al.  (45), the
authors in this study used different DL approaches, and less
numbers of patients were available for training and testing the
algorithm. Furthermore, the difference in the imaging modality
analysed in each study could justify the variation in performance, as
AD begins with functional impairment rather than structural
changes. Although the model developed by oh et al.  (46) was
outperformed by human experts,  the authors demonstrated the
possibility of end-to-end DL algorithms, which could be translated
to clinical use after further optimization and prospective validation.
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Response to therapy 
Lou et al.  (47) reported on the potential of DL models to predict
response to radiotherapy in patients with lung cancer (primary or
metastatic) using CT scans. Currently,  all  patients are treated
similarly,  while personalizing radiotherapy remains a desired, but
unmet clinical need. The authors in this study collected a total of
849 scans for training the DL algorithm, and 95 scans to validate it.
The authors developed a deep learning model (deep profiler) that
computes and includes radiomics features in the deep-profiling
process. A model combining the deep profiler and clinical variables
is then used to calculate a risk score that is used to predict the
response to treatment. The algorithm classifies patients into high
and low risk groups, with a high performance (c-index of 0.72),
which is significantly better compared to the results obtained with
solely handcrafted radiomic models (c-index between 0.65 and 0.68)
(47). The algorithm developed in this study opens new potentials for
individualizing radiotherapy based on patients'  sensitivity.  Thereby,
avoiding over- or under-treatment, and the side-effects of
unnecessary treatment. Nevertheless,  proper prospective validation
of the developed algorithm remains a necessity.  
Ypsilantis et al.  (48) used convolutional neural networks to develop
a model that is capable of predicting response to neo-adjuvant
chemotherapy (NAC) in patients with esophageal cancer using PET
scans. NAC is considered a standard of care in some cancers. While
NAC has favourable outcomes in patients who respond, patients who
do not end up with worse outcomes. To investigate the potential of
QIA techniques, the authors collected 107 PET scans of patients
diagnosed with esophageal cancer, treated with NAC, and followed-
up to determine response. The authors compared the performance of
handcrafted radiomics with deep learning approaches. The authors
reported that the developed deep learning algorithm outperformed
the handcrafted radiomics model,  and achieved a sensitivity of 0.81
and specificity of 0.82 (48). The algorithm developed in this study
highlights the potential of using DL to predict patients’  response to
therapy at baseline, which is considered a substantial clinical added
value. 
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3. Challenges and future directions 

Biomarkers are defined as “objective indications of medical state
observed from outside the patient – which can be measured
accurately and reproducibly” (49). The core of choosing a biomarker
is the ability to measure it  objectively.  The reproducibility of
imaging quantitative features across different imaging parameters is
currently the steepest hurdle in QIA. As more research is being
performed, other challenges, such as the sensitivity of QIA features
to variations in the segmentation of the ROIs; and the lack of
feature reproducibility across different implementations of
radiomics toolboxes, are becoming increasingly clear.  

3.1. The stability and reproducibility of
quantitative features 

Since the first landmark study in radiomics by Aerts et al.  (50), the
sensitivity of radiomics features to repeated acquisitions has been
acknowledged. The authors performed a test-retest stability
investigation and used 100 out of 440 calculated radiomics features
based on the stability rank of the features. The authors also
acknowledged the sensitivity of features to differences in
segmentations, and performed a primary feature selection based on
the features’  robustness with regards to differences in both test-
retest and segmentations. More recently,  several studies reported on
the sensitivity of radiomics features to temporal changes in test-
retest studies across different modalities,  including CT, MRI, and
PET. 

Anatomical imaging
Anatomical imaging (CT and MRI) is used to explore the underlying
anatomical structures. CT imaging is standardized using the
hounsfield units (HU) (51). On the other hand, MR imaging has no
such standardized intensity measurements (52). Even though CT
imaging uses standardized measurements, CT-based radiomics are
not necessarily reproducible.  Several studies reported that a
significant number of CT- based radiomics features are not
reproducible in test-retest settings, where the scans are acquired
using the same scanning parameters (53–55). Other studies that
investigated the reproducibility of CT-based radiomics features
across different 
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imaging acquisition and reconstruction parameters reported that the
majority of radiomics features are significantly affected by such
differences (53,56,57). Unreproducible radiomics features should be
removed before starting the modeling of radiomics signatures.
Therefore, it  is always necessary to perform preselection of stable
radiomics features based on the data under study, before starting
the modeling. MR-based radiomics is even more complex and
challenging to standardize compared to CT based radiomics, as more
factors -in addition to lack of standardized intensity measurements
affect MR imaging (58). Some studies reported on the stability of
various MR-based features. Fiset et al.  (59) investigated the
reproducibility of T2- weighted MRI of cervical cancer in three
different settings: (i)  test–retest; (ii)  diagnostic MRI versus
simulation MRI; (iii)  interobserver variability.  The authors reported
that 22.6%, 6.2% and 74.4% of 1761 extracted radiomics features
were reproducible across test-retest,  diagnostic versus simulation
MRI, and different observers, respectively.  Semi-parametric maps
derived from specialized MRI sequences suffer less from the lack of
stability: Peerlings et al.  (60) reported on the stability of radiomics
features extracted from apparent diffusion coefficient (ADC) map in
test-retest and across different cancer types, centers,  and vendors.
The authors reported that out of 1322 extracted radiomics features,
122 features were stable across all  cancers, centers,  and vendors. 
On top of these challenges, using contrast agents for imaging adds
another level of complexity to the reproducibility of features, due to
the differences in the cardiac function of patients being scanned.
Changes in cardiac function can affect the time the distribution of
the contrast in the body takes (61). Another factor in contrast-
enhanced images is the difference in time between the injection of
the contrast and scan acquisition, which might be slightly different
across centers and protocols.  

Functional imaging 
Functional imaging is used to assess the metabolic activity of a
region of interest,  and includes the injection of
radiopharmaceuticals.  Some standardized measurements in PET are
already being extracted and used in clinical practice, such as the
standardized uptake value (SUV), and the metabolically active
tumour volume (MTV) (7).
The challenges of radiomics for functional imaging are similar to the
challenges of contrast-enhanced anatomical imaging radiomics,
where the variability in the injected radiopharmaceutical activity,
the time between injection and image acquisition, and acquisition
time per bed position have profound
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implications on the reproducibility of radiomics features (62). In
addition, functional imaging lacks anatomical specificity and suffers
from low resolution, which could be addressed by the use of hybrid
imaging (22). Tixier et al.  (63) investigated the reproducibility of
SUV measurements, intensity histogram features, intensity-size zone
features, and co-occurrence matrices features. The authors acquired
two 18F-FDG PET scans of 16 patients,  with a 4-days’  time interval.
In contrast to further studies, the authors reported that these
features were insensitive to the discretization range. Hatt et al.  (64)
investigated the robustness of PET based heterogeneity textural
features with respect to the delineation of functional volumes and
partial volume effects correction. The authors reported that these
features were significantly affected by the differences in the
delineation. The authors further reported that local features, e.g
entropy and heterogeneity,  were more robust when compared to
regional features, e.g intensity variability and size-zone variability.
Leijenaar et al.  (65) investigated the role of SUV discretization on
radiomics features. The authors used two different methods for SUV
discretization, and reported that differences in SUV discretization
significantly affect the reproducibility of 18F-FDG PET based
radiomics features. The authors recommended the standardization
of methodology for radiomics analysis.  Altazi et al.  (66) investigated
the reproducibility of PET based radiomics features in cervical
cancer patients.  The authors investigated the reproducibility in
three different scenarios: (i)  manual versus computer‐aided
segmentations, (ii)  gray‐ level discretization, and (iii)  reconstruction
algorithms. The authors extracted 79 PET radiomics features, and
reported that the percentage of stable features in the three scenarios
were 13%, 5%, and 1% respectively.  Shiri  et al.  (67) explored the
effects of different reconstruction on 18F-FDG PET radiomics. The
authors studied the effects of several factors including number of
sub- iterations, number of subsets,  full  width at half maximum
(FWHM) of Gaussian filter,  and scan time per bed position and
matrix size. The authors reported that 47% of the features were
found to be robust,  and these include shape, 44% of the intensity
based features, and 41% of the texture based features. However,
with changes in matrix size, the authors reported that only 6% of the
features were robust.
The discrepancies in the reported percentages of stable/reproducible
features across the reported studies are most likely linked to the
variations between the datasets used in each of the studies in the
scanners, and scans acquisition and reconstruction parameters
combinations. However, these discrepancies are expected because of
the different complexity of radiomics features, as well  as the
interaction between the different scanning parameters. All  of the
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scanning parameters. All  of the above mentioned studies reported
that a variable percentage of radiomics features are affected, which
highlights the necessity of performing feature stability/
reproducibility studies based on the data under analysis before
performing radiomics analysis.  

3.2. Sensitivity of quantitative imaging features to
variations in the segmentation of the ROIs 

In QIA, the medical images are converted to numerical arrays before
feature calculation. Consequently,  it  is intuitive that differences in
segmentations affect the quantitative imaging feature values
variably, depending on the feature definition. Many studies have
identified lists of radiomics features that are robust to variability in
segmentations (50,68,69). Furthermore, with the inclusion of deep
learning methods in image analysis,  efforts are being made to
develop reliable and reproducible automatic segmentations of
various regions of interest as described in 3.2.1. Deep learning
suffers less in this aspect,  as the provision of ROIs is not obligatory. 

3.3. The different implementations of radiomics
feature extraction toolboxes 

It is common knowledge in the radiomics community that different
radiomics toolboxes use different pre-processing techniques and/or
feature definitions, which lead(s) to variations in estimation of
radiomics feature values when different software solutions are used.
To address this issue, the radiomics community started an initiative
– Imaging Biomarkers Standardization Initiative (IBSI) – that aims
at standardizing radiomics feature extraction using different
toolboxes (70). To date, the IBSI standardized the extraction of 169
radiomics features (71). Limiting the radiomics analysis to the IBSI
standardized features can facilitate radiomics features
interchangeability across platforms. 
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3.4. Future directions 

To address the issue of radiomics features reproducibility,  some
harmonization methods have been investigated in the literature. Of
the trending methods is Combine Batches (ComBat).  ComBat is a
statistical method that was developed to remove the batch effects in
microarray expressions (72). While several studies have reported on
the application of ComBat harmonization in radiomics analysis as a
means to remove batch effects (73,74), its direct application on
radiomics data is not in concordance with the mathematical
definition of ComBat (72), or with the hypothesis that radiomics
correlate with biology. This is because ComBat assumes that the
differences between batches are attributed to two groups of factors,
the first group refers to the biological covariates, which radiomics
features are investigated for correlations with. Moreover, adding
biologic covariates for ComBat in the training of radiomics
signatures will  hinder its prospective use, because it  will  be the
outcome the radiomic signature tries to predict.  The second group
refers to the “non-biologic” factors, such as image acquisition and
reconstruction parameters. ComBat was defined to handle one batch
effect at a time. In contrast to gene expression arrays for which
ComBat was designed, radiomics features have different complexity
levels,  which are expected to be non-uniformly affected by the
variations in imaging parameters. In addition, the differences in
image acquisition and reconstruction settings in a given
retrospective imaging dataset are usually in more than one imaging
parameter. The proper use of ComBat would require the assessment
of the reproducibility of radiomics features after applying ComBat
on representative objects with no biologic variations, such as
phantoms. Then, radiomics features extracted from patients’  scans
acquired with the same imaging parameters can be transformed
based on the location/scale parameters estimated by the application
of ComBat on the phantom data. We here propose a framework for
performing robust radiomics analysis (Figure 3).  Nonetheless,  a
radiomics-specific harmonization method is stil l  needed to eliminate
the need for phantom studies, as the performance of ComBat is
expected to be dependent on the variations in scanning parameters
in the data. The workflow consists of consecutive steps, and can be
used to preselect reproducible and harmonizable radiomics features.
The first step in the workflow is the collection of retrospective
patient imaging data to be analyzed. In the second step, scan
acquisition and reconstruction parameters must be extracted from
the collected patient data. The next step includes scanning a
phantom with the parameters extracted from the patient imaging
data. This allows the assessment of the reproducibility of radiomics
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features across the different scan acquisition and reconstruction
parameters, and the selection of those features for performing
robust radiomics analysis.  
Based on our review of existing literature and our own experience,
in order to use ComBat in the context of radiomics analysis (steps
5–7), two extra steps are needed. After selecting the features that
are insensitive to the variations in the scanning parameters
extracted from the patient data, features that are reproducible in
test-retest in each of the combinations of those scanning parameters
must be identified. ComBat is then applied on the features that are
reproducible in test- retest but not across different scanning
parameters. The concordance of radiomics features is assessed
following the application of ComBat. The location/scale shift
parameters estimated by performing ComBat on the phantom data
are then applied to the radiomics features extracted from patient
data to harmonize them. The combination of the identified stable
and harmonizable features can be further used to build the
radiomics signature. 
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Figure 3. Proposed workflow for robust radiomics analysis.  
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The challenges discussed above raise questions about the future
applications of radiomics, and the development of radiomic
signatures as clinical biomarkers. To begin with, how to approach
the concept of external validation in radiomics studies. Do radiomic
signatures need to be externally validated as is the case with other
biomarkers, given all  the challenges of reproducibility across
different imaging settings? Or would the observatory prospective
validation of a given signature in a specific image setting suffice?
Does the development of radiomic signatures need to be specific for
a scanner model and imaging settings? The ultimate solution will  be
the development of specific quantitative imaging parameters, as
there is currently a clinical direction to personalize imaging settings
per patient,  which will  have its toll  on radiomics analysis.  The direct
application of radiomics analysis on data acquired heterogeneously
could lead to spurious results,  and inability of translating the
results in a meaningful manner. 

4. Conclusion 

Quantitative imaging techniques (radiomics and deep learning)
present a perfect candidate for personalizing patients’  management.
Applying these techniques in a sound manner can provide highly
accurate and reproducible tools that minimize costs and time loss.
However, to incorporate QIA in cDSS, the quantitative features
should fulfil  the definition of a biomarker, namely the stability and
reproducibility.  The future of quantitative image analysis in general
lies within harmonizing the imaging protocols across centers and
scanners, or within the development of a unique global protocol for
quantitative analysis scans. Hence, the development of radiomics-
specific tools to harmonize medical images and facilitate meaningful
quantitative image analysis of the currently available retrospective
data remains a necessity.  Our proposed framework is expected to
improve the robustness of radiomics analysis.  Nevertheless,  the
benefits of the proper application and translation of QIA on medical
imaging are undoubted. QIA techniques will  be a valuable asset for
both: the clinicians and patients.  QIA can become an efficient means
for aiding clinicians in risk stratification, early diagnosis,  and
improved management of patients.  
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Glioblastoma (GBM) is the most malignant primary brain tumor for
which no curative treatment options exist.  Non-invasive qualitative
(Visually Accessible Rembrandt Images (VASARI)) and quantitative
(radiomics) imaging features to predict prognosis and clinically
relevant markers for GBM patients are needed to guide clinicians. A
retrospective analysis of GBM patients in two neuro-oncology
centers was conducted. The multimodal Cox-regression model to
predict overall  survival (OS) was developed using clinical features
with VASARI and radiomics features in isocitrate dehydrogenase
(IDH)-wild type GBM. Predictive models for IDH-mutation, 06-
methylguanine-DNA-methyltransferase (MGMT)-methylation and
epidermal growth factor receptor (EGFR) amplification using
imaging features were developed using machine learning. The
performance of the prognostic model improved upon addition of
clinical,  VASARI and radiomics features, for which the combined
model performed best.  This could be reproduced after external
validation (C-index 0.711 95% CI 0.64–0.78) and used to stratify
Kaplan–Meijer curves in two survival groups (p-value < 0.001). The
predictive models performed significantly in the external validation
for EGFR amplification (area-under-the-curve (AUC) 0.707, 95% CI
0.582–8.25) and MGMT-methylation (AUC 0.667, 95% CI 0.522–
0.82) but not for IDH-mutation (AUC 0.695, 95% CI 0.436–0.927).
The integrated clinical and imaging prognostic model was shown to
be robust and of potential clinical relevance. The prediction of
molecular markers showed promising results in the training set but
could not be validated after external validation in a clinically
relevant manner. Overall,  these results show the potential of
combining clinical features with imaging features for prognostic

Simple Summary 

Glioblastoma (GBM) is the most malignant primary brain tumor, for
which improving patient outcome is limited by a substantial amount
of tumor heterogeneity.  Magnetic resonance imaging (MRI) in
combination with machine learning offers the possibility to collect
qualitative and quantitative imaging features which can be used to
predict patient prognosis and relevant tumor markers which can aid
in selecting the right treatment. This study showed that combining
these MRI features with clinical features has the highest prognostic
value for GBM patients; this model performed similarly in an
independent GBM 
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GBM is diagnosed using gadolinium contrast-enhanced magnetic
resonance imaging (MRI) followed by histopathological examination
of tumor tissue specimen obtained after either biopsy or resection.
Further characterization of GBM has led to the introduction of the
2016 updated world health organization (WHO) classification of
central nervous system tumors (4).  This classification integrates
histopathological and morphological examination of the tumor with
molecular markers (5).  Thus far,  the only predictive marker that has
been established into clinical practice is the 06-methylguanine-
DNA-methyltransferase (MGMT) methylation status, which is
predictive of an improved response to alkylating chemotherapy such
as TMZ (6).  However, a substantial “grey zone” between MGMT
methylated and unmethylated patients still  exists for which the
efficacy of TMZ is stil l  to be determined (7).  Additionally,  the
presence of a mutation in the isocitrate dehydrogenase (IDH) genes
—which has been identified as a positive prognostic marker—is
linked to dedifferentiated low-grade gliomas which have a distinctly
different clinical behavior compared to IDH wild-type (WT) GBM
(8). Epidermal growth factor receptor (EGFR) amplification is one
of the most common genetic alterations (±50%) in GBM (9). This
oncogenic molecular alteration poses a potential therapeutic target
but also identifies a biological different subtype of GBM which
responds differently to established treatments (10,11). However, the
role of EGFR amplification as a prognostic factor still  remains
controversial (11,12,13) and studies using targeted agents for EGFR
have so far been unsuccessful but are still  ongoing (3).  Additionally,  

and predictive models in GBM, but further optimization and larger
prospective studies are warranted.
Keywords: glioblastoma; radiomics; MRI; prognosis; prediction;
machine learning; survival

1. Introduction 

Glioblastoma (GBM) is the most malignant type of primary brain
cancer with an incidence of 2–3 cases per 100,000 (1).  Currently,  a
median survival of fifteen months is achieved with multimodal
treatment (2) with a five-year overall  relative survival of only 6.8%
(3). However, despite this intensive treatment by neurosurgical
intervention, concurrent chemoradiation and adjuvant
temozolomide (TMZ) (2),  GBM is stil l  considered incurable and
recurrence is inevitable. Although major improvements in the
treatment of cancer have been made, the current standard-of-care
for GBM has largely remained unchanged over the past decade.
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The main challenge in developing prognostic and predictive 

multiple other molecular targets (genetic mutations, amplifications
and protein fusion products) have been identified which have either
failed in previous clinical trials to improve patient survival or are
currently still  under investigation(3). All  in all ,  the integration of
molecular markers has led to an improvement in prediction of
prognosis and treatment response but a substantial variety remains
and no improvement in treatment outcome has been made, which is
thought to be due to extensive inter- and intratumor heterogeneity
(14).
Intratumor heterogeneity complicates treatment efficacy as different
regions within the same tumor may contain cells having distinct
genetic compositions, transcriptional subtypes and/or proliferation
kinetics (3).  Furthermore, temporal heterogeneity has been observed
in which changes in the expression of molecular targets occur over
time which limits efficacy of targeted approaches (15,16). In clinical
practice and currently used diagnostic techniques and available
prognostic models intratumor heterogeneity is not accounted for,
since single-cell  sequencing is not routinely used. Additionally,  it  is
not clear if  molecular GBM heterogeneity can be captured by
qualitative and/or quantitative analysis of imaging features.
Imaging techniques have the advantage over standard pathological
examination to also analyze the invasive, non-resected, components
of GBM and thus capture and analyze the tumor as a whole.
Especially temporal heterogeneity of expression of molecular targets
cannot be evaluated using routine clinical diagnostics,  as re-
resection of tumors is not always feasible,  making non-invasive
imaging an interesting alternative. In order to make a standardized
analysis of qualitative MR imaging features, the Visually Accessible
Rembrandt Images (VASARI) features were previously developed
(17). VASARI features include tumor size, location and morphology
and have previously been shown to be reproducible and of
prognostic value (17). Quantitative imaging analysis using radiomics
is an approach to extract imaging features by high-throughput data
mining on textures, shapes and intensities (18). Radiomics has
shown prognostic and predictive potential in multiple solid tumors
(19,20) including GBM (21). Furthermore, radiomics features have
the potential to analyze the entire tumor and to identify intratumor
molecular heterogeneity and underlying biological processes
(22,23). In glioma, radiomics models have been developed to predict
tumor grade (24), overall  survival (OS) (25) and in GBM trying to
predict molecular subtypes (26). Although IDH-mutation status is
established as the best prognostic marker in GBM (27), defining
different IDH wild-type GBM prognostic subgroups is stil l  warranted
due to their heterogeneous prognosis and clinical behavior.

64



In total,  142 patients were included in the training cohort and 46
patients in the validation cohort.  Median OS was 12.0 months
(range, 0–142 months) in the training cohort and 7.3 months
(range, 0–30 months) in the validation cohort (log rank p-value,
0.001). Patients in the validation cohort more frequently received no
adjuvant treatment, but these data were not available for all
patients.  Patient demographics, received treatment schedules and
tumor characteristics are listed in Table 1. Molecular data for a
subset of patients are reported as missing due to insufficient
formalin-fixed paraffin-embedded (FFPE) material or poor quality
or quantity of extracted DNA. VASARI features were available for all
patients in both cohorts.   For radiomics analysis,  T1+Gadolinium
and T2- weighted images were available for 105 patients in the
training cohort and 44 patients in the validation cohort.  MRI
characteristics such as types and manufacturers of scanners and
imaging protocols are reported in Figures S1 and S2. The numbers
of patients that were eligible in the two cohorts for the different
models are reported in Table S1.

imaging-based models is their generalizability towards all  GBM
patients treated at different centers.  Differences in diagnostic
techniques (i.e.,  scanner vendors and protocols) and treatment and
population variety can greatly influence model performances [28].
Due to these challenges, this study utilizes two multi-center datasets
to train and validate the developed models.
The objective of this study was to investigate the additive value of
qualitative and quantitative imaging heterogeneity analysis to
established prognostic clinical features. These data were used to
develop a prognostic model for OS in a real-world multi-center GBM
population for IDH1/2 wild-type (IDH-WT) GBM. Furthermore, the
value of imaging features as predictor for clinically relevant
molecular markers for GBM was explored.

2. Results 

2.1. Patient and Tumor Characteristics 
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Table 1. Overview of patient,  treatment and tumor characteristics in
the training and validation cohort.  

66

Median OS was 11.2 months (1.2–132.80 months) in the training
cohort and 7.0 months (0.4–29.4 months) in the validation cohort in
the IDH-WT GBM population. Univariate Cox-regression analysis of
VASARI features for OS in the training cohort resulted in 13
features selected for inclusion in multivariable analysis (Table S2).
The multivariable Cox-regression model consisted of five VASARI
features (Model 1).  For radiomics, five radiomics features were
selected to predict OS (Model 2) (Table 2).  In this study, none of the
radiomics features showed evidence of a significant correlation with
tumor volume (Figure S3). Additionally,  no significant correlation
were found between VASARI, radiomics and clinical features (Figure
S4). An elaborate explanation of these radiomics features can be
found on the Pyradiomics website (29) and in a previous study (30). 

2.2. Prognostic Value of Integrative MRI Imaging
Analysis in IDH-Wild Type GBM Population 



Table 2. Multivariate Cox-regression model using Visually
Accessible Rembrandt Images (VASARI), radiomics and/or clinical
features for overall  survival (OS) prediction in isocitrate
dehydrogenase wild type (IDH-WT) glioblastoma (GBM) patients in
different prognostic models based on the training cohort (n =
numbers of patients used for model development).  
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Clinical features that were selected in the clinical model were
chosen based on previous studies (31) and clinical expertise (Model
3).  Next,  VASARI features, radiomics features and clinical features
multivariable Cox-regression models were combined in different
combinations. Model 4 was developed by combining VASARI
prognostic index (PI) and Radiomics PI, Model 5 by combining
VASARI PI and Clinical PI and Model 6 by combining Radiomics PI
and Clinical PI (Model 4–6). Finally,  clinical features were
combined with the integrated VASARI and radiomics prognostic
score to develop an integrated clinical and imaging prognostic model
(Model 7) (Table 2).  The calibration slope of the PI of Model 7 on
the validation set was 0.79 (log-rank test p-value 0.27), indicating
there is no certainty for the slope in the validation set being
different from 1. The joint test of all  predictors with the offsetting
of the predicted PI results in the p-value of 0.23, indicating that
there is no evidence of a lack of fit  on the validation. 
To assess the reproducibility performance of the prognostic models,
all  models were tested on the external validation set (n = 38) and
the discriminative prognostic value in both cohorts was analyzed
using Harrell ’s C-index (Figure 1A). Model 1 achieved a C-index of
0.61 (95% CI 0.55–0.68) when tested on the whole training cohort
(n = 129). In order to make a comparison between the different
models,  the C-index for the VASARI-only model was also calculated
using only the patients available in all  other models (n = 95). In
order to visualize the prognostic potential of the integrated imaging
and clinical model (Model 7),  the data-set was split  in a low- and
high-risk group at a set cut-off value (75th percentile) of the
prognostic index in the training cohort.  This same cut-off value was
applied to the external validation cohort.  Two survival groups could
be identified (p-value < 0.0001) in both the training and validation
cohort (Figure 1B,C). 
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In order to develop the predictive models for molecular markers
(EGFR amplification, MGMT-methylation and IDH1 mutation), the
Maastricht University Medical Center+ (MUMC+) cohort was split
into a training (70%) and test (30%) cohort.  For the prediction of
EGFR amplification, in total eleven VASARI features and four
radiomics features were selected in the predictive models using the
XGBoost machine learning algorithm (Table 3).  Both VASARI and
radiomics models alone were able to significantly predict EGFR
amplification in the test dataset (Figure 2A). In the external
validation set,  both VASARI and radiomics features reached similar
results to each other; however, an increased predictive value was
observed when both models were combined (area-under-the-curve
(AUC) 0.707 (95% CI 0.582–0.825); Figure 2B,C). 

Figure 1. Performance of prognostic models: (A) visualization of C-
index for all  prognostic models (including 95% CI) in the training (n
= 95) and validation cohort (n = 38); (B) Kaplan–Meier curve of
integrated radiomics, Visually Accessible Rembrandt Images
(VASARI) and clinical model (Model 7) in the training cohort and
(C) validation cohort.  Low- and high-risk groups (blue and red lines,
respectively) cut-off values were determined by set cut-off (75th
percentile) in the training cohort.  The solid lines represent the
observed survival curves, the dashed the corresponding predicted
survival curves. 

2.3. Predictive Value of Integrative Imaging
Analysis
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The predictive models developed for MGMT-methylation status
consisted of seven VASARI features (logistic regression analysis)
and three radiomics features (XGBoost algorithm) (Table 3).
VASARI features alone reached similar predictive values in the test
and validation dataset with an AUC of 0.668 (95% CI 0.513–0.850)
and 0.622 (95% CI 0.475–0.761) respectively.  Radiomics features
alone could not predict MGMT-methylation in both datasets.  An 

Table 3. Selected VASARI and radiomics features in predictive
models for epidermal growth factor receptor (EGFR) amplification,
methylguanine methyltransferase(MGMT)-methylation and
isocitrate dehydrogenase 1(IDH1) mutation in GBM patients in the
training cohort.  

Figure 2. Performance of predictive models: (A) Area-under-the-
curve (AUC) values and corresponding 95% confidence intervals of
different predictive models in the testing cohort and (B) in the
validation cohort; (C) receiver operating characteristic (ROC)-
curves of combined VASARI and radiomics model predictive
performance in external validation set.  
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Increasing curation rates by optimizing treatment strategies is being
hampered by the highly invasive nature and GBM specific inter- and
intratumoral molecular heterogeneity.  MR imaging is currently the
preferred diagnostic imaging technique for GBM. However,
integrated standardized qualitative and quantitative analysis of
different MR sequences has not yet been introduced into prognostic
and predictive GBM models.  This study retrospectively analyzed two
multi-center GBM patient cohorts to develop integrated clinical and
imaging prognostic models and predictive models for clinically
relevant molecular markers.   

increased predictive value was observed when VASARI features and
radiomics features were combined in one predictive model,  with an
AUC of 0.843 (95% CI 0.696–0.948) in the test dataset but did not
perform as well  in the external validation dataset (AUC 0.667 (95%
CI 0.522–0.820); Figure 2B,C). 
For the prediction of the IDH1 mutation ten VASARI features were
included in the multivariate VASARI model and nine radiomics
features in the radiomics prediction model developed using the
XGBoost machine learning algorithm (Table 3).  In the test dataset,
only radiomics features reached statistical significance with an ROC
AUC of 0.816 (95% CI 0.650–0.950), which improved upon
combining with VASARI features (Figure 2A). In the external
validation set,  neither VASARI nor radiomics features or the
combination were able to predict the IDH1 status (Figure 2B,C).
ROC curves for all  predictive models in the training and validation
cohort are reported in Figures S5 and S6, respectively.  Next,
histogram heterogeneity was assessed to identify whether radiomics
features demonstrate significant differences between the outcome
groups in a univariate manner. Only for IDH1 mutation was a
significant difference found for two features that could explain the
heterogeneity in the outcome. The histograms of heterogeneity for
each predictive model and significance values for IDH1-mutation
are reported in Figures S7 and S8, respectively.  
2.4. Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) Statement and
Radiomics Quality Score
The TRIPOD statement adherences were calculated at 77% for this
study. The radiomics quality score (RQS) score calculated for this
study was 47%. An overview of point allocation towards the TRIPOD
statement and RQS score can be found in Tables S3 and S4,
respectively.  

3. Discussion 
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Radiomics features that were identified to have prognostic value
were mainly derived from T2-weighted imaging. This is in line with
the hypothesis that the T2-weighted signal corresponds with
intratumor heterogeneity and infiltrative tumor growth (39) and this
area is accountable for the majority of local recurrences (40).
Therefore, radiomics features from this area are expected to be of
importance for survival prediction as was also shown in previous
studies (41,42). The radiomics signature for OS consists of five
features, from which two features are the first order Mean (T2-
weighted) and Median (T1-weighted) describing the mean and
median intensity values after the LLH and HHH wavelet
decomposition of the original MR images. The remaining three
features quantify gray level zones in an T2-weighted image, more
precisely measuring the proportion in the image of the joint
distribution of larger size zones with lower gray-level values after
image transformation (Laplacian of Gaussian) which is

Combining clinical features with quantitative and qualitative
imaging features resulted in the most optimal prognostic model
which could be reproduced in the external validation cohort (C-
index 0.72 in training cohort and 0.73 in validation cohort).  Despite
promising results for predicting EGFR amplification and IDH1-
mutation in the test cohort,  none of the predictive models for
molecular markers were able to predict these markers in a clinically
relevant manner in the external validation set.
The prognostic model described in this study is developed for IDH-
WT GBM patients as this patient group makes up the majority of
GBM and exhibits large variation in prognosis and treatment
response. This variance is also reflected in statistically significant
differences in baseline characteristics for OS and MGMT-
methylation. However, these differences are also known to exist
between centers,  in which different treatment decisions and
strategies are being implemented. The aim of this study was to
investigate the performance of prognostic models in such
heterogeneous GBM cohorts.  To predict OS, five VASARI features
were identified to be of most prognostic relevance. Three of these
features are well  known prognostic factors and were also previously
identified to be negatively associated with OS (involvement of
eloquent cortex, multifocality and subependymal extension) and can
be attributed to a more invasive growth of the tumor (32,33). The
other selected features, proportion of edema and T1-FLAIR-ratio
showed opposite prognostic value in this study when compared to
previous studies (33,34,35,36,37). However, other studies reported
no prognostic value for these features and therefore this stil l
remains controversial(32,38). 
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As a proof-of-concept study, this study investigated the capability of
VASARI and radiomics features to link phenotype to genotype and
predict clinically relevant molecular markers, IDH1-mutation,
MGMT-methylation and EGFR amplification, by machine learning
approaches. Overall,  the predictive models had promising
performance on the test set,  especially when VASARI and radiomics
features were combined (Figure 2A). Unfortunately,  none of the
developed models were able to predict in the external validation set
in a clinically relevant manner with a wide spread in confidence
intervals of the AUC values (Figure 2B,C). In order for a model
predicting molecular markers to be clinically relevant, much higher
AUC values are desired. Since the presence of the molecular markers
has biological consequences on tumor growth and development,
specific imaging techniques that reflect biological processes have
shown more promising results in the prediction of these markers
and should therefore be used for further research. Perfusion-
weighted and/or diffusion-weighted MRI features have been used to
predict EGFR amplification (48,49,50) and MGMT-methylation (51),

useful for edge detection. These gray level zone features can
potentially be associated with the measure of intratumor
heterogeneity (43). 
In this study, VASARI features alone or radiomics features alone
were not able to predict OS in the external validation dataset in a
clinically relevant manner. Interestingly, the performance of the
prognostic model improved upon combining VASARI, radiomics and
clinical features (C-index 0.723 in training cohort and 0.730 in
validation cohort) and became clinically relevant. The robustness of
this combined model also improved as the model performed
similarly in the training- and validation cohort and the uncertainty
decreased as represented by a smaller confidence interval of the C-
index. Model 5 and 6 report similar performances when compared to
the model combining all  features. However, the final combined
model seems to remain mostly stable between both cohorts,  though
the actual additive value should be further validated in larger
patient cohorts.  
The combined model was also able to accurately split  the two
cohorts in a high- and low-risk group (p-value < 0.001) (Figure
1B,C). Previous studies also observed that combining clinical
features with imaging features improves the prognostic value of the
model (42,44,45,46,47). The model developed in this study
performed similar or better compared to previous findings, even
after external validation in a heterogeneous patient cohort.  This
highlights the clinical relevant potential of combining these features
into a multimodal prognostic model which can potentially be applied
in clinical practice. 
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Several l imitations should be taken into account when considering
the results of this study. The main limitation  of this study is the
number of patients that were included. Though for the OS models
the number of patients is in accordance with the majority of 

whereas MR spectroscopy (52) and amino acid tracer PET imaging
(FET–PET) (53) can predict IDH1 mutation status due to its effects
on tumor metabolism. 
In addition, by analyzing the heterogeneity histogram for EGFR
amplification based on the validation cohort,  we can notice that
none of the radiomics features has demonstrated significant
difference between the outcome groups in the univariate manner.
Heterogeneity histogram for MGMT-methylation also did not
demonstrate the significant difference between the outcome groups.
For IDH1 mutation, however, we can point out a significant
difference (p < 0.05) for T2_original_firstorder_10Percentile,
T1_wavelet_HLL_glcm_DifferenceAverage features, which indicates
the ability of these features to reflect the heterogeneity in the
outcome (Figure S8). These findings also highlight the value of
multivariate predictive analysis.
The overall  RQS of 47% achieved in this study is higher than
generally reported in neuro-oncology radiomics studies (54).
The main strength of this study includes the usage of two
independent multicenter datasets.  Though the performance of
previous prognostic models based on VASARI or radiomics features
is generally better,  most of these studies only use internal validation
methods and lack validation in an independent external dataset
(34,55). The same applies to the performance of predictive models
for molecular markers. However, the fact that the promising results
for the predictive models in this study in the testing cohort could
not be replicated in the external validation cohort stresses the
importance of external validation. 
Additionally,  most studies use a more homogeneous patient cohort,
for example, with regards to treatment characteristics,  whereas this
present study comprises two heterogeneous cohorts which more
reflects daily clinical practice. For example, corticosteroid usage is
known to decrease the amount of edema, therefore altering the T2-
weighted signal,  which can influence both VASARI and radiomics
features. Previous studies either do not mention corticosteroid
usage or exclude patients using corticosteroids (36,37) even though
a significant amount of GBM patients are known to use
corticosteroids. Furthermore, multiple studies only use single-
institute data in which real-life heterogeneity between MRI
acquisition is not represented (56) which is important for the
generalizability of radiomics models.  

74



In order to further improve the prognostic and predictive potential
of non-invasive imaging models,  several steps need to be taken.
First of all ,  larger (big data) datasets and preferably prospective
studies are warranted to develop more accurate and generalizable
models.  This could pose a challenge, especially in less common types
of cancer such as GBM. Next,  the first studies on radiomics have
been conducted on computed tomography (CT) imaging, which can
be quantified using standardized Hounsfield units.  For MRI
radiomics, such a unit does not exist which poses problems due to
inter- and intra-scanner variability.  Multiple pre-processing
methods have been developed, though not all  radiomics features
were shown to be robust between different pre-processing
approaches (57,58,59). This calls for a generalized pre-processing
pipeline and focus on features that are shown to be robust.  Robust
features and normalization methods can be achieved by applying
phantom studies to account for differences between MRI acquisition
protocols (60). Tumor delineation poses another important aspect of
radiomics feature extraction. Manual delineation is stil l  generally
seen as the golden standard, though a substantial 

previous studies, especially the limited available molecular data in
the external validation set limits the validation capacity of the
predictive models.  Especially IDH1/2 mutations rarely occur in both
cohorts,  which is to be expected in GBM, leading to wide confidence
intervals and complications in the validation of the model.  Future
studies using a larger IDH-mutated cohort are needed to accurately
test the models developed in this study. Next,  the fact that this
study is a retrospective study poses a potential selection bias.
Additionally,  the Karnofsky Performance Score (KPS) is an
established prognostic feature which could not be included in this
study due to lack of reporting of the KPS in patient files during the
time period used for this study. Furthermore, it  could be stated that
a limitation of this study was the lack of advanced MRI sequences
such as diffusion- and perfusion-weighted imaging and PET-MRI.
However, this study specifically chose to focus on the relevance of
conventional MRI images as these are widely available in clinical
centers.  Furthermore, MRI radiomics features are known to be
dependent on differences in MRI scanners and scanning protocols.
The images used in this study were collected from more than ten
different hospitals over a ten-year time-period resulting in large
differences in technical MRI characteristics.  Again, even though this
limits the performance of radiomics, an ideal prognostic and
predictive model should not be dependent on homogeneous data.
These differences in MRI acquisition methods are present in the
real-life multicenter setting and should be accounted for in order to
provide a relevant, clinical applicable model.  
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inter-observer variability exists,  despite international guidelines on
tumor delineation (61) and it  is a time consuming process. It  has
been shown that this inter-observer variation influences the
radiomics analysis in multiple tumors (62). Automatic segmentation
methods using a deep learning neural network approach are widely
developed and can be beneficial in future radiomics studies and its
clinical applicability by decreasing workload on clinicians and inter-
observer variability (63,64). This is expected to lead to more robust
radiomics features due to standardization of the delineation method. 
Parallel  to the establishment of MR signatures that are able to
predict clinically significant expression of specific biomarkers, there
is a need for imaging signatures that capture the level of
intratumoral heterogeneity.  However, it  needs to be emphasized that
is not yet clarified how to quantify GBM MR imaging heterogeneity
and moreover how to non-invasively analyze the level of
intratumoral heterogeneous expression of predictive markers, since
the golden standard, single cell  RNA sequencing, is missing in
standard of care. By extracting radiomics features from the whole
tumor and the surrounding area of edema we identified several
features that are associated with intratumor heterogeneity.
However, different steps could be taken to include more aspects of
tumor heterogeneity.  Improved performance of radiomics has been
reported when features are extracted from distinct tumor areas
(active tumor, necrosis and edema) separately (65,66), though this
is a more labor-intensive approach which might limit its clinical
applicability.  In this aspect,  automatic segmentation algorithms
have shown to be useful for prognostic radiomics modelling (47). 
Additionally,  more biologically relevant MRI sequences such as
diffusion- or perfusion-weighted MRI have been shown to
outperform radiomics models based on conventional MRI (25).
These approaches should be taken into account in future studies as
they will  be able to encompass more features concerning intratumor
heterogeneity (67) and have shown improved performance with
regards to predicting prognosis and molecular markers. Ultimately,
studies correlation pathological and genetic examination of
multiregional biopsies towards imaging features are needed to study
the value of imaging features for tumor heterogeneity.  
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4. Materials and Methods 

4.1. Patient Population 
All patients treated by the neuro-oncology team of the Maastricht
University Medical Centre (Maastricht UMC+, Maastricht,  the
Netherlands) between January 2004 and August 2014 for a
glioblastoma (WHO grade IV) were considered for inclusion in the
retrospective training cohort.  Patients were excluded if  no
diagnostic,  pre-operative MRI-images were available (minimum
T1+Gadolinium and T2-weighed imaging), if  survival data were
unknown or no histological diagnosis was available. All  patient
records were reviewed considering patient and tumor
characteristics,  received treatments and survival data. The external
validation cohort was constructed using the same criteria on an
independent dataset of patients treated in Radboud University
Medical Center (Radboudumc, Nijmegen, The Netherlands) in the
same time period. Both Maastricht UMC+ and Radboudumc are
academic reference centers for GBM patients in the Netherlands,
implying MRI-images were also obtained in hospitals that refer their
patients to these academic centers.  Numbers of patients used for
each analysis are reported in Table S1. The requirement for
informed consent for this retrospective study was waived by the
medical ethics committee of the MUMC+ (METC 16-4-022). 

4.2. Image Acquisition and Qualitative Imaging Feature
Assessment 
Pre-operative MRI images were collected, pseudonymized and
pooled in a database combining MRI images from different types
and manufacturers of scanners using different imaging protocols to
reflect the real-life inter-center heterogeneity (Figures S1 and S2). A
quantitative and qualitative imaging analysis pipeline was set-up
(Figure 3).  All  diagnostic MRI-scans were analyzed by dedicated
neuro-radiologists (SP, AJ, AP), blinded for outcome and scored
using the VASARI Imaging Features. A previous study conducted by
the VASARI research project group showed a strong overall  inter-
observer agreement among six readers for the VASARI features (29).
When needed, multi-categorical and continuous VASARI features
were recoded into different groups based on their clinical relevance
prior to the start of analysis (Table S5).  
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Furthermore, the histogram equalization method implemented in the
scikit-image 0.15.0 package (69) was used to enhance the contrast of
MRI images (70). As the last step of the pre- processing routine,
image intensities were normalized using Z-score standardization
method (71). A pre-processing routine was applied to both cohorts,   

Figure 3. Quantitative and qualitative imaging analysis pipeline. 

4.3. Tumor Delineation, Image Pre-Processing and
Extraction of Radiomics Features 
Using Osirix Lite (Pixmeo SARL, Bernex, Switzerland) and MiM
software (version 7.0.4, MIM Software Inc.,  Cleveland, OH, USA),
regions of interests (enhancing tumor on T1+Gadolinium images and
combined tumor/edema portion on T2-weighted images) were
manually delineated on all  diagnostic MRI-images of the training
and validation cohort,  supervised by two experienced neuro-
radiation oncologists (DE, IC).  
Using Python 3.7 and the dedicated packages (cv2 version 4.1.0,
https://pypi.org/project/opencv-python/, (accessed on 23 December
2020)),  SimpleITK version 1.2.0 (https://simpleitk.org/, (accessed
on 23 December 2020)) and scikit-image version 0.14.2,
(https://scikit-image.org/, (accessed on 23 December 2020)),  an
image pre-processing routine was developed to handle the broad
variability of image acquisition and reconstruction parameters.
At first,  spatial resolution of the images was normalized with respect
to the image sequence (final pixels are: 0.449 mm2 and slice
thickness of:  5.5 mm). The mode of the pixel spacing and slice
thickness distributions from the Maastricht UMC+ cohort were used
as reference values for the resampling procedure to minimize the
number of resampled images. A bicubic interpolation over 4 × 4
pixel neighborhood was used for both upsampling and
downsampling. In order to correct the low frequency intensity non-
uniformity, which is intrinsic for MRI images, the N4 bias field
correction algorithm was used (68). 
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where parameters (mu, sigma) for the Z-score transformation were
evaluated on the training cohort and transferred to the validation
cohort.  Parameters used are T1 mu = 0.1904, T1 sigma = 0.2313, T2
mu = 0.2009 and T2 sigma = 0.2448. 
In order to obtain the quantitative imaging features, an open-source
Pyradiomics 2.2.0 python package for the radiomics features
extraction was utilized (72). Using the dedicated MRI settings,
features from following feature classes were extracted: First Order
Statistics,  Shape-based (2D and 3D), Gray Level Cooccurence Matrix
(GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size
Zone Matrix (GLSZM), Gray Level Dependence Matrix (GLDM),
Neighboring Gray Tone Difference Matrix (NGTDM). Along with the
original features Laplacian of Gaussian (LoG) (sigma:
(2.0,3.0,4.0,5.0) and Wavelet filters were activated resulting in a
total of 1197 features per patient.  A detailed mathematical feature
description as provided by Aerts et al.  2014 (30).  

4.4. Molecular Markers 
Archival formalin-fixed paraffin-embedded (FFPE) tissue samples
were analyzed for tumor percentage by an experienced neuro-
pathologist (JB). DNA was extracted from FFPE tissue using the
Cobas method (Roche, Bazel,  Switzerland) and DNA concentration
was quantified using Qubit Fluorometer (Life Technologies,
Waltham, MA, USA). Next-generation sequencing (NGS) was
performed using the Ion AmpliSeq Cancer Hotspot Panel v2 (Life
Technologies) as previously described (73). For the purpose of this
study, the data were analyzed for the presence of an IDH1 (R132H)
mutation (minimum coverage 500×) which was manually checked
using Integrative Genomics Viewer (IGV). 
EGFR amplification was assessed using SNPitty,  an open-source web
application for interactive B-allele frequency and copy number
visualization of NGS data, by comparing the number of reads in the
EGFR locus to the surrounding regions (74). MGMT methylation
status was assessed using methylation-specific multiplex ligation-
dependent probe amplification (MS-MLPA) as previously described
(75). In case NGS data was not available for a sample, MLPA was
also used to assess IDH1 mutation status and EGFR amplification. 
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Overall  model performance for discriminating survival groups was
evaluated with Harrell ’s C-index. To display the potential  

4.5. Statistical Analysis 

Statistical analysis for differences between baseline characteristics
was performed using double-sided T-test for “age at diagnosis”.
Fisher’s exact test was used for all  other binary variables (sex, type
of surgery, adjuvant treatment and molecular markers).
Overall  survival (OS) was defined as the time between the initial
surgical intervention after diagnosis and the date of death
(confirmed by the Municipal Personal Records Database).  Patients
that survived were censored at the moment of the last follow-up
measurement. To develop a prognostic model,  analysis was focused
on the IDH-WT GBM samples.
OS analysis was performed using R (version 4.0.2.,  R Studio,
Boston, MA, USA), employing the packages stats,  survival,
survminer, rms, pec and survcomp. VASARI features were tested in
univariate Cox-regression analysis to determine the hazard ratio
(HR) of each feature individually on the training cohort.  Each
feature with a p-value of ≤ 0.2 was considered for inclusion in the
multivariable analysis.  Resulting VASARI features were used for
multivariable Cox-regression analysis with fast backward
elimination (removal alpha < 0.2) on the training set.  Radiomics
features from T1- and T2-weighted images were combined and
normalized with the Z-score transformation, where coefficients
evaluated on the train set were transferred to the validation set.
Highly correlated features exceeding the Spearman’s rank
correlation of rs = 0.85 were eliminated. 
Resulting radiomics features, were used for multivariable Cox-
regression analysis with fast backward elimination for the training
set (76) (Model 1–3) All  clinical features were entered into the Cox-
regression model to develop the Clinical model on the training set.  A
prognostic Index (PI) for all  models developed on the training set
was calculated for training and validation datasets,  where the PI was
defined as ∑ 𝒊𝜷𝒊𝒙𝒊  for each individual model.  For the combined
models,  the PI of the individual models was used as a feature along
with the PI for the individual model it  was combined with in Cox-
regression analysis (77). Similarly,  for a combined
clinical/VASARI/radiomics model (Model 7),  VASARI PI was used as
a feature along the radiomics PI and clinical PI.  Next,  the models
were validated using multiple-step approach (78). Calibration slope
was assessed using the Log-rank (LR) test.  Model’s misspecification
was evaluated by performing the Cox regression on the individual
features of the signature in the validation dataset with offsetting the
validation PI (78). 
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Combined model was achieved by ensembling VASARI and radiomics
models using averaging of VASARI and radiomics predicted
probabilities.  To evaluate performance of the predictive models,  the
area under the receiver operating characteristic (ROC) curve, or
AUC, was calculated. Bootstrapping technique with 100 iterations
was utilized to estimate ROC AUC 95% confidence intervals on test
and validation datasets.  

discrimination between survival groups Kaplan–Meier (KM) curves
were used with the threshold value based on 75th percentile of
training PI’s in order to identify a high-risk group using our model.
Significance of the split  was estimated using the LR test.  In
addition, predicted survival curves for each risk group were plotted.
The PI is used to estimate the survival curve, which is then averaged
over the entire risk-group. These curves are plotted alongside the
observed KM-curves. The correlation between radiomics features
and tumor volume was assessed using Spearman’s rank correlation.
This was investigated since previous studies have shown some
radiomics features to be surrogate markers for tumor volume and
not independent prognostic features (79). Correlation between
VASARI features, radiomics features and clinical features were
assessed using the point-biserial correlation coefficient.  
Python 3.7 was used to develop and validate the predictive models.
Patients with unknown outcomes (molecular markers) were excluded
from the analysis.  At first,  highly correlated features (rs > 0.85)
were eliminated, in which the feature with the lower AUC value in
univariate ROC analysis was removed and resulting features were
normalized using Z score on the MUMC+ cohort.  Shift/scale
parameters of individual features are available upon request.  As the
second step, the MUMC+ cohort was split  randomly into train and
test sets with a 70/30 ratio and label stratification. In the third
step, to obtain the feature importance scores, a random forest model
with the random-sampled initialization of hyper parameters (each
iteration parameter was randomly sampled from the hyper
parameter ranges: number of estimators (20,300), max depth (2,6))
was fitted 1000 times resulting in the cumulative feature importance
histogram. Based on the feature importance rank, the 20 most
important features were selected for the further evaluation. In order
to find the best performing model in the fourth step, Xgboost,
Random Forest and Logistic regression algorithms were initialized
with the random-sampling of hyper parameters (Table S6), trained
and tested 1000 times. In order to overcome a “lucky split  bias”,
step 2 (the random splitting of the cohorts) followed by model
testing was repeated 10 times for the top 5 performing models from
step 4, representing the cross validation technique. 
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Additionally,  to visualize the ability of radiomics features of
capturing the outcome heterogeneity in a univariate manner and
contribute to concept of explainable radiomics, we visualized the
outcome heterogeneity through selected radiomics features by
plotting the distribution of feature values for each particular feature
of each binary outcome. The significance of the difference in the
mean values was evaluated by performing the Mann–Whitney test
with Bonferroni correction. 

4.6. TRIPOD Statement and Radiomics Quality Score (RQS) 
To assess the quality of the conducted study, a radiomics quality
score (RQS) was calculated. The RQS is a checklist consisting of 16
components to assess the validity of the radiomics workflow and
(external) validation of the models (19,80). Furthermore, the
checklist recommended in transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis (TRIPOD)
was assessed(81). 

5. Conclusions 

In the present study, the potential of non-invasive quantitative and
qualitative imaging features to predict prognosis and clinically
relevant molecular markers was investigated in a real-life
heterogeneous GBM patient cohort.  The integrated prognostic
model,  including clinical and imaging features, showed the most
promising performance which was reproducible and most robust
between both datasets.  However, further improvements and larger
prospective studies are needed before this model can be used in
daily clinical practice. Using imaging features to predict molecular
markers showed promising results in the testing set but could not be
validated on the external validation set and warrants additional
validation in larger GBM cohorts.  
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Abstract 

Introduction: There is a cumulative risk of 20–40% of developing
brain metastases (BM) in solid cancers. Stereotactic radiotherapy
(SRT) enables the application of high focal doses of radiation to a
volume and is often used for BM treatment. However, SRT can cause
adverse radiation effects (ARE), such as radiation necrosis,  which
sometimes cause irreversible damage to the brain. It  is therefore of
clinical interest to identify patients at a high risk of developing
ARE. We hypothesized that models trained with radiomics features,
deep learning (DL) features, and patient characteristics or their
combination can predict ARE risk in patients with BM before SRT.
Methods: Gadolinium-enhanced T1-weighted MRIs and
characteristics from patients treated with SRT for BM were collected
for a training and testing cohort (N = 1,404) and a validation cohort
(N = 237) from a separate institute. From each lesion in the training
set,  radiomics features were extracted and used to train an extreme
gradient boosting (XGBoost) model.  A DL model was trained on the
same cohort to make a separate prediction and to extract the last
layer of features. Different models using XGBoost were built  using
only radiomics features, DL features, and patient characteristics or a
combination of them. Evaluation was performed using the area
under the curve (AUC) of the receiver operating characteristic curve
on the external dataset.  Predictions for individual lesions and per
patient developing ARE were investigated.
 Results: The best-performing XGBoost model on a lesion level was
trained on a combination of radiomics features and DL features
(AUC of 0.71 and recall  of 0.80). On a patient level,  a combination
of radiomics features, DL features, and patient characteristics
obtained the best performance (AUC of 0.72 and recall  of 0.84). The
DL model achieved an AUC of 0.64 and recall  of 0.85 per lesion and
an AUC of 0.70 and recall  of 0.60 per patient.
Conclusion: Machine learning models built  on radiomics features
and DL features extracted from BM combined with patient
characteristics show potential to predict ARE at the patient and
lesion levels.  These models could be used in clinical decision
making, informing patients on their risk of ARE and allowing
physicians to opt for different therapies.  
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Unfortunately,  the (neurological) symptoms of ARE and TP are
usually indistinguishable. Furthermore, the appearances of ARE and
TP are very difficult to discern through qualitative radiological
imaging, requiring multiple successive magnetic resonance images 

1. Introduction
 
Brain metastases (BM) are the most common intracranial
malignancies, accounting for more than 50% of all  brain tumours
and occurring in 10 to over 40% of patients with solid malignancies
(1–3). BM occur most often in patients with lung cancer, breast
cancer, and melanoma, which have a cumulative risk ranging from
20 to 40% of developing BM (4–7). BM can be treated locally by
surgery or radiotherapy or with systemic anticancer therapy.
Treatment depends on several factors, such as patient performance
status, number and volume of metastases, presence of extracranial
metastases, symptoms, and presumed efficacy of available systemic
therapy “Systemic therapy for brain metastases” (8, 9).  The
radiotherapy of BM can be either stereotactic radiotherapy (SRT) or
whole brain radiotherapy (WBRT), with SRT being the guideline-
recommended treatment for a limited number of BM. As WBRT is
associated with neurocognitive deterioration, SRT is increasingly
used in multiple BM as well  (10–12). SRT is delivered either in a
single fraction, with stereotactic radiosurgery (SRS), or as
fractionated stereotactic radiotherapy (FSRT) and results in a high
dose within the target volume with a steep dose gradient to the
surrounding healthy tissue (13).
Even though most of the healthy brain is spared from high doses of
radiation, a major shortcoming of SRT is a chance of high toxicity in
the immediate surrounding tissues, which may lead to adverse
radiation effects (ARE) such as radiation necrosis (RN), subacute
edema, structural changes in the white matter,  and vascular lesions
(14). ARE are a relatively late reaction to irradiation of healthy
tissues where either reversible or irreversible injury has occurred
(15). The risk of ARE after SRT and SRS is found to be similar and
ranges from 5 to 10% at patient level (16–19) or approximately 3%
at lesion level (15). Known predictors of ARE are tumour volume,
isodose volume, and previous SRT to the same lesion (15). ARE of
the tumour area and tumour progression (TP) as two different post-
therapeutic events require different treatment strategies: while
steroids are often indicated for the initial  treatment of ARE, true
progression or relapse requires repeated radiotherapy, surgery, or
effective intracranial systemic therapy for tumour control.  Being
able to differentiate between ARE and TP is therefore of utmost
clinical interest.
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All data from patients with BM treated with SRT between 1997 and
2017 for which imaging, outcome data, and patient data were
available were collected retrospectively from the University of
California—San Francisco (UCSF) medical center’s picture archiving
and communication system. Available imaging data, outcome data,
and patient data of all  patients with BM treated with SRS/SRT
between 2014 and 2019 at the University Hospital Zürich (USZ) 

(MRI), specialized MRI sequences such as perfusion-weighted or MR
spectroscopy, and trained experts to evaluate the findings (19, 20).
The clinical workflow is time- and labor-intensive, and while it  is
unfeasible to perform for every lesion, a definitive confirmation of
the presence of ARE requires tissue acquisition (19).
SRT requires routine pretreatment MRI for accurate target volume
delineation. This imaging provides a source of non-invasively
acquired information about BM and brain phenotypes that could be
investigated for their potential to determine before treatment which
patient has a high risk of developing ARE. The early identification of
these patients is an unmet clinical need which may help in clinical
decision making by informing the patients of the risk of ARE, the
early risk stratification of patients that may develop ARE, and the
consideration of ARE risk mitigating strategies such as deferring
radiotherapy for central nervous system-penetrant systemic therapy. 
Advanced quantitative medical image analysis methods such as
radiomics and deep learning (DL) extract large amounts of imaging
features and associate these with biological and/or clinical outcomes
using machine learning (ML) techniques (21–26). Thus, radiological
images from routine imaging procedures could potentially be used to
non-invasively quantify the lesion phenotype, providing clinically
necessary information for patient management decisions. Several
studies have indicated that MRI radiomics analysis is able to
differentiate BM from glioblastoma (27, 28) to predict local
recurrence (29, 30), to predict the origin of metastases (31, 32), and
to predict overall  survival (33, 34). DL has also shown potential in
predicting treatment response on brain MRI (35). 
Moreover, DL and radiomics can have a complementary value,
potentially establishing a more robust classifier (36).  
We hypothesize that models trained with radiomics features, DL
features, and patient characteristics or a combination thereof can
predict the occurrence of ARE in patients with BM, both lesion
specific and patient specific.  

2. Materials and methods 

2.1. Patient Characteristics 
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were collected retrospectively.  The data included clinical and
biological information for both the patient and the lesion. The
eligibility criteria included radical treatment for metastatic brain
cancer using Gamma Knife SRS for the UCSF patients and SRS/FSRT
for the USZ patients.  The inclusion of patients was regardless of the
number of BM, but pathohistological or imaging-based confirmation
of ARE during the follow-up was required in addition to
pathohistological confirmation of the primary tumour. For the USZ
cohort,  in case of imaging-based suspicion of RN, positron emission
tomography imaging was additionally used to exclude TP. The effort
obtained ethical approval for observational research using
anonymized linked care data for supporting medical purposes that
are in the interests of individuals and the wider public.  UCSF
Institutional Review Board (https://irb. ucsf.edu) and Cantonal
Ethics Committee Zurich approval with waiver of informed consent
was obtained. 
The UCSF dataset was divided randomly into sub-cohorts for
training (70%) and testing (30%) while maintaining the ratios of
events to non-events equal in both groups. The USZ dataset was
used as an independent external validation dataset,  i .e.,  it  was
entirely unseen by the models during the training and testing
phases. The binary outcome used in training and validation was ARE
per lesion, defined as either pathologically or imaging-based
confirmation of RN occurring at any time after treatment. For both
the USCF and USZ patients,  ARE was confirmed by histopathology
when treated with open surgery. In all  other cases, ARE was
confirmed either at routine re-staging 3 months after radiotherapy
for asymptomatic patients or at the onset of new symptoms. When
patients presented new symptoms, imaging was performed usually
after awaiting the effects of cortisone administration. As the time of
BM formation is unknown, the outcome was not defined as right-
censored. As every lesion is able to independently develop ARE after
treatment, every lesion was considered to be an independent sample.
The probability of ARE occurring for any lesion within a patient as
an outcome was also investigated, whereby each patient was treated
as an independent sample instead. 
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Feature extraction was performed according to the Image Biomarker
Standardization Initiative (IBSI) guidelines (42–44) on the three
different sets of processed MRI scans using the BM segmentations.
All  images were resampled to uniform 1 × 1 × 1- mm3 voxels using
the “sitkBSpline” interpolator to correct for differences in pixel size
and slice spacing. The choice for voxel dimensions was made based
on majority ruling, as it  was found that most patients had a pixel 

2.2. MR Acquisition Parameters and Lesion Segmentation 
All images were axial gadolinium-enhanced T1-weighted MRI
acquired prior to the treatment of BM. All  included lesions were
three-dimensionally delineated for curative Gamma Knife SRS
treatment purposes for the UCSF cohort and for curative SRS/ FSRT
purposes for the USZ cohort according to local protocols by an
experienced radiation oncologist.  Figure 1 shows two T1-weighted
gadolinium-enhanced MRI with lesions delineated for SRT purposes.
To perform segmentations of the brain and the ventricles on the
entire dataset,  an atlas-based segmentation strategy was chosen. To
create the atlas in the MIM software package (MIM v. 6.9.4, MIM
Software Inc.,  Cleveland, OH, USA), 50 randomly chosen MRI were
manually segmented by an expert radiologist.  

2.3. Pre-Processing of Brain MRI Data 
Bias-field correction was performed in the MIM software package
using the N4 algorithm, which required brain segmentations (37). A
bias field is a low-frequency signal distributed over an MR image,
which is caused by inhomogeneities in the magnetic field of the MRI
scanner. This causes shifts of intensity value ranges across the
image (38). The ventricle mask was subtracted from the brain mask
to obtain a white- and gray-matter segmentation. This segmentation
was used to determine and correct the bias field present in the
image using the N4 algorithm (37) using the MIM software package. 
Following the bias correction, all  remaining pre-processing, feature
extraction, model training, and evaluation were performed in Python
(version 3.7).  The different Python packages used during this study
can be found in Supplementary Table S1. Pre-processing of MRI is
essential for ML purposes, for reducing scanner dependence, and for
ensuring reproducibility (39–41). As there is,  to date, no consensus
regarding the best way to pre-process MRI for our purposes, three
different pre-processing workflows were applied and compared:
“minimalist”,  standardization, and “harmonization”. The
descriptions of these pre-processing workflows can be found in the
Supplementary Materials (Section 1 and in Figure 2).  

Pre-processing for radiomics and feature extraction 
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spacing of ~1 mm. To achieve isotropic voxels,  the choice for
resampling in the z-direction was also chosen as 1 mm. Pixel
intensity values were resampled to a fixed number of 64 bins, as the
number of gray levels was found to affect the interchangeability of
MRI radiomics features, and a fixed bin number of 64 has been
found recommended in previous studies (42–44).
A total of 106 IBSI features were extracted from each segmentation.
The features were extracted from the BM segmentations of the pre-
processed images and can be divided into first-order intensity,
histogram statistics,  shape, and texture features. A full  l ist and a
description of the features can be found in the PyRadiomics
documentation ([Radiomics features— PyRadiomics Documentation,
(45)],  and a description of the feature groups can be found in the
Supplementary Materials (Section 2).  
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Figure 1: T1-weighted gadolinium-enhanced MRIs of the brain.
Delineated in red (A) is a lesion that developed adverse radiation
effects after stereotactic radiotherapy and (B) a lesion that did not
develop adverse radiation effects after stereotactic radiotherapy. 



Pre-processing for deep learning 
To inform the DL model on the location and extension of the lesions,
lesion masks were used to highlight the ROI. A Gaussian smoothing
filter was applied to the image, gradually decreasing the intensity
values around the lesion from a factor of 1.0 to 0.2 to still  include
information of the voxels immediately around the lesion masks.
Otsu thresholding was performed to create a mask containing the
brain and the skull.  This mask was used to determine the largest
three-dimensional bounding box containing the brain and the skull
to crop the images. Anything outside this mask was defined as the
image background, for which all  pixel values were set at 0. For the
“minimalist” and the “standardization” datasets,  the intensities were
resampled in a range between 0 and 255. Finally,  the scans were
rescaled at 256 × 256 × 64 with spline interpolation order 3. As an
example, the steps of the pre- processing workflow for the
“minimalist” normalization are il lustrated in Figure 3. 
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Figure 2: Pre-processing strategies for the “minimalist”,
“standardization”, and “harmonization” approaches. 
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The mean and SD of each feature over the entire training population
were determined. These values were used to apply z-score
normalization to the features of the training, testing, and external
validation datasets (46). Next,  features with low variance (<0.01)
were determined and excluded from the dataset.  Lastly,  the
correlation between features was determined using absolute
pairwise Spearman rank correlation. As highly correlated features
(>0.85) were assumed to contain overlapping information about the
outcome, the feature with the highest mean absolute correlation
with the rest of the features  was excluded. Lastly,  supervised

Figure 3: Example of pre-processing strategy: deep learning on the
“minimalist” approach. The different steps of preprocessing were (A)
z-score normalization, (B) shift  to positive values only, (C) pixel
attenuations with Gaussian smoothing filtering, (D) cropping around
the largest bounding box and background set to 0, (E) resizing at
256 × 256, and (F) rescaling the pixel value range to 0–255. 

2.4. Machine Learning Models 
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As the training and testing datasets contained patient
characteristics not available in the external validation dataset,  any
feature not overlapping between these datasets was dropped. The
list of the remaining features was as follows: primary tumour
location, primary tumour histology, primary tumour controlled, 

feature selection was performed through recursive feature
elimination (RFE). RFE uses a ML algorithm to build a multivariate
model and determine predictive performance using the currently
selected features. It  recursively drops and adds features,
determining the optimal number of features and the selection of
most predictive features.
An extreme gradient boosting (XGBoost) model was used for RFE
and ARE prediction. A description of the XGBoost architecture and
the methodology to determine the optimal hyperparameters for the
trained models can be found in the supplementary materials
(Section 3).  

2.5. Deep Learning Model 
An Xception three-dimensional model was trained and tested on the
same datasets as the handcrafted radiomics-based model.  Xception
is the extreme version of an Inception model (47), which uses depth-
wise separable convolutions. The architecture can be found in
Supplementary Figure S1. Adam optimization was used (48) with an
initial  learning rate of 10-5, which updated the learning rate during
training, and used for loss function binary cross-entropy. This
model produced a score ranging from 0 to 1, indicating the
estimated probability that a lesion develops ARE. The area under the
curve (AUC) of the receiver operating characteristic (ROC) was
monitored on the test dataset.  The ROC displays the discriminative
performance of a model expressed through the sensitivity and
specificity as the threshold for binary classification is shifted. The
AUC of the ROC is a metric from 0 to 1, where 1 means that the
model has perfect predictive performance and 0.5 is equivalent to
guessing. To limit the imbalance of the outcomes to affect the model
training, the model was only trained on lesions for those patients
who had at least a single ARE and tested on the scans of the patients
who had ARE in the test dataset.  To combine DL and radiomics, the
last fully connected layer consisting of 256 features obtained after
training the model was extracted. These features were then used to
train a ML model similarly to using radiomics features and used in
models combining radiomics features and patient characteristics.  

2.6. Clinical and Treatment-Related Feature Model 
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Once the best models were selected, the models were validated on
the external dataset.  The predictive performance of each model was
expressed through the ROC curve and its AUC on the training,
testing, and external data. By determining an optimal threshold
value using Youden’s J statistic (49) based on the training dataset,  a
binary classification was performed on the external dataset.  From 

extra-cranial metastases presence, patient age, patient sex, SRS to
the same location, prior external beam radiotherapy (EBRT), prior
radiosurgery (RS), neurological symptoms, headaches, seizures,
hypertension, diabetes, connective tissue disorder, Karnofsky
performance score (KPS) status, prescription dose, and isodose
lines. For XGBoost to be able to handle categorical variables, one-
hot encoding was performed on two categorical clinical features
(primary tumour location and primary tumour histology).
Missing values were imputed using MissForest.  MissForest is an
imputation algorithm that uses RandomForest to train a model on
the non-missing data for each feature with missing values to predict
the missing values. In the first iteration, all  values are set to the
mean value present for each variable (i.e.,  each column). Then, over
multiple iterations, each data column with missing values will  be
predicted using all  the data except for the rows containing the
missing values in question. This process is repeated over several
iterations. 

2.7. Metrics Used for Data Analysis 
The patient and tumour characteristics in the UCSF and USZ cohorts
were assessed through a two-proportion z-test to test for significant
differences in categorical variables between the cohorts or the
unpaired two-sample t-test to test for significant differences in
numerical variables. For the latter,  the assumptions of the data
having a normal distribution and possessing the same variance in
both cohorts were tested through Shapiro–Wilk’s test and f-test,
respectively.  The significance level was set at 5%. 
To determine which method ensured best performance for the
radiomics-based and DL models,  models were trained on the three
different pre-processed datasets,  and the best AUC of the ROC on
the testing set was used to determine the best pre- processing
methods for ML and DL separately.  The 95% confidence intervals
(CI) displayed on the ROC curves were obtained using bootstrapping
(n = 2,000). For the radiomics- based model,  the results were
reported on the full  train dataset and the entire test dataset.  For the
DL model,  the results were reported on the balanced train dataset
(which served to train the different DL models) and the full  test
dataset.  
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this binary classification, the balanced accuracy, precision, recall,
and F1-score were determined. The confusion matrices were also
derived from the binary classification. To determine model
performance and to compare between models,  the recall  was
investigated specifically,  which is the proportion of true positives of
the total number of true cases. As the number of events was
relatively low and not missing any patients at risk of ARE is crucial,
a high recall  of the models was desirable. The CI obtained for all
metrics were obtained using bootstrapping, resampling the results
2,000 times. Moreover, an analysis of the agreement prediction
between the DL model and the radiomics-based model was
performed. To give a prediction per patient,  the maximum
prediction of ARE among the different lesion predictions of the
patient was selected. The ground truth to which the prediction was
compared with was the ARE status of the patient,  meaning that the
patient had at least one ARE lesion. An overview of the models
tested can be found in Figure 4. 
We evaluated on the external dataset for which cases the DL model
and the best radiomics classifier obtained the same predictions and
reported the number of cases for which those models agreed on the
label.  The metrics based on the data for which the models agreed
was also reported. 

3. Results 

3.1 Patient Characteristics 
A total of 1,404 patients with 7,974 lesions from UCSF and 237
patients with 646 lesions from USZ were included. Table 1 shows an
overview of the patient characteristics of the UCSF and USZ data.
Significant differences between the proportion of male and female
patients between the datasets (P < 0.01), median age (P = 0.03),
KPS status (P < 0.01), and the number of lesions per patient at
treatment (P < 0.01) were found. Furthermore, the proportions of
primary tumour (lung, melanoma, and breast) were different
between the datasets,  and the data from USZ did not have kidney,
GI, sarcoma, or other types of primary locations that were present in
the UCSF dataset.  For the histology of the primary tumour, only the
melanoma histology  subtype was found to be present in a
significantly different proportion. 



107

4

3.2. Radiomics-Based Model and DL Model Results Based on
the Three Different Preprocessing Methods of the Dataset 
The best AUC on the test dataset for the radiomics-based models
was found using the “harmonization” normalization, with an AUC of
0.76 (CI of 0.70–0.81), compared with 0.75 (CI of 0.70– 0.80) and
0.73 (CI of 0.67–0.79) for the “minimalist” and “standardization”
methods, respectively.
The best AUC on the test dataset for the DL models was found using
the “standardization” normalization, with an AUC of 0.72 (CI of
0.66–0.78), compared with 0.63 (CI of 0.57–0.70) and 0.65 (CI of
0.58–0.71) for the “minimalist” and “harmonization” methods,
respectively.  Figure 5 shows the ROC curves of the training and
testing datasets for the three different pre-processing methods for
radiomics-based ML and for DL. 

Figure 4: General workflow of the model training process: first,  the
MRI data was pre-processed using 3 pre-processing methods, the
most suitable pre- processed set of images was selected according to
the radiomics-based model or the DL model performance on the
internal test dataset,  then the models were ensembled or trained
separately,  and finally the performance of each model was computed
on the external dataset.  
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Table 1: Patient characteristics of University of California—San
Francisco (UCSF) and University Hospital Zurich (USZ) datasets.  

Footnote: P value of two-proportion z-test or unpaired two-sample
t-test for significant differences between datasets was reported for
each characteristic if  applicable. SD = standard deviation;
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The combination of radiomics and DL features achieved the highest
combination of balanced accuracy and recall  of 0.67 (CI of 0.56–
0.76) and 0.80 (CI of 0.62–0.96), respectively,  of the externally
validated models for predictions per lesion. For a patient-level
prediction, the DL model achieved an AUC of 0.70 (CI of 0.56–0.80)
and that of the radiomics model an AUC of 0.72 (CI of 0.60–0.83).

KPS = Karnofsky performance score: 80-100 good performance, 50-
70 medium performance, 10-40 bad performance; ECM =
extracranial metastasis; BM = brain metastasis; CTD = connective
tissue disorder; ARE = adverse radiation effect;  Gy = gray. 

3.3. Results of the Combined Best- Performing Models 
We calculated the AUC and CI for each model combination on the
external validation dataset.  The DL model,  built  on images pre-
processed with the “standardization” method, achieved an AUC of
0.64 (CI of 0.50–0.76). The model built  on radiomics features,
extracted from the images pre-processed with the “harmonization”
method, achieved an AUC of 0.73 (CI of 0.63–0.83). The model was
built  on 20 features selected through RFE. Supplementary Figure
S2A provides an overview of the selected features and the
corresponding importance in the XGBoost model.  Supplementary
Table S2 provides an overview of the hyperparameters determined
through grid search cross-validation. The model based on the
combination of the DL features extracted from the last layer and
radiomics features achieved an AUC of 0.71 (CI of 0.60–0.82). The
model was built  on 10 features selected through RFE.
Supplementary Figure S2B provides an overview of the selected
features and the corresponding importance in the XGBoost model.
The model built  on radiomics features, extracted from images pre-
processed with the “harmonization” method, combined with patient
characteristic features achieved an AUC of 0.70 (CI of 0.57–0.80).
The model was built  on 19 features selected through RFE.
Supplementary Figure S2C provides an overview of the selected
features and the corresponding importance in the XGBoost model.
Finally,  the model built  on radiomics features, extracted from
images pre-processed with the “harmonization” method, combined
with DL features, extracted from images pre-processed with the
“standardization” method, and patient characteristics achieved an
AUC of 0.69 (CI of 0.56–0.81). The model was built  on 20 features
selected through RFE. Supplementary Figure S2D provides an
overview of the selected features and the corresponding importance
in the XGBoost model.  Figure 6 shows the ROC curves with CI of the
training datasets,  testing datasets,  and validation datasets for these
models.  
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A combination of radiomics and DL achieved an AUC 0.71 (CI of
0.57–0.83), that of a combination of radiomics and patient
characteristics an AUC of 0.71 (CI of 0.59–0.81), and that of a
combination of radiomics features, DL features, and patient
characteristics an AUC of 0.72 (CI of 0.58– 0.84). The model
combining radiomics features, DL features, and patient
characteristics achieved the highest combination of balanced
accuracy and recall  of 0.65 (CI of 0.55–0.74) and 0.84 (CI of 0.65–
1.00), respectively,  of the externally validated models for
predictions per patient.  The DL model predictions and the
radiomics-based model predictions per lesion agreed for 32% of the
external dataset.  For the per-patient classification, the DL model
predictions and the radiomics combined with clinical feature-based
model predictions agreed for 19% of the external dataset.  Because
the number of patients for which the models agreed was low (47
patients,  6 with ARE), no CI could be derived. Table 2 provides an
overview of the AUC, balanced accuracy, precision, recall,  and F1
score metrics for all  DL and ML models on both lesion and patient
levels and for the agreed labels on the external validation. The
corresponding confusion matrices are in Supplementary Figures S3,
S4, respectively.  Supplementary Tables S3, S4 contain the same
metrics as that in Table 2 for the training and testing datasets,
respectively.  

Figure 5: Comparison of predictive performance through receiver
operating characteristic curves for (A) radiomics-based machine
learning and (B) deep learning models using three different pre-
processed image datasets.  The shaded areas represent the 95%
confidence intervals of the corresponding receiver operating
characteristic curves. 



Patients with BM treated with SRT are at risk of developing ARE,
such as RN. Early identification of these patients can help in clinical
decision making. The MRIs required for SRT planning provide an
opportunity to identify these patients through quantitative imaging
methods. In this large-scale study, ML models that can successfully
predict ARE were trained on T1- weighted MR imaging features from
secondary brain tumours treated with SRT. As no consensus to
harmonize MR images within and between centers exists,  multiple
methods were tested for the DL and ML pipeline, resulting in two
optimal pre- processing methods (“harmonization” for the ML
pipeline and “standardization” for the DL pipeline).  A ML model
trained with radiomics features combined with DL features yielded
the highest predictive performance, with a combination of ROC AUC,
balanced accuracy, and recall  of 0.71, 0.67, and 0.80, respectively.
At the patient level,  the best-performing ML model was clearly a
combination of radiomics, clinical (age at treatment, 

Figure 6: Receiver operating characteristic curves of the training,
testing, and external validation datasets for the different model
combinations. The shaded areas represent the 95% confidence
intervals of the corresponding receiver operating characteristic
curves. 

4. Discussion
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To our knowledge, this is the first study that performs a pre-
treatment prediction of ARE using quantitative image analysis.
Several studies have investigated the possibility of differentiating
between tumour recurrence and RN after treatment, which is
nominally similar in purpose to identify those patients who may
have ARE. Zhang et al.  (51) used radiomics features extracted from
four different MR sequences [T1, T1 post-contrast,  T2, and fluid-
attenuated inversion recovery (FLAIR)] at two different time-points
during follow-up to differentiate RN from TP as confirmed
pathologically.  A model was built  on a dataset of 87 patients with 97
lesions using 5 delta-radiomics features from T1 and T2 sequences.
The AUC and binary prediction accuracy of the model were both
0.73. However, this result was obtained using leave-one-out cross-
validation, as no external validation was used. Similarly,  Peng et al.
created a model on radiomics features extracted from T1 and T2
FLAIR on 66 patients with 77 lesions in total (52). The model was
compared with a neuroradiologist’s performance. No external
validation was used, and instead a leave- one-out cross-validation
was performed, which gave an AUC of 0.81. The sensitivity and
specificity of the neuroradiologist were 0.97 and 0.17, compared
with 0.65 and 0.87 for the radiomics- based model.  In Park etal.
(53), the study compared the results obtained after training
radiomics-based models using different MRI sequences [T1, T2, and
apparent diffusion coefficient (ADC)]. The models were trained
using the data from 86 patients and tested on an external dataset of
41 patients.  The best AUC was found on the ADC-based data with
0.80, while the other sequences had AUCs of around 0.65. These  

prior RS, and sex),  and DL features achieving the highest predictive
performance (AUC of 0.72), a balanced accuracy of 0.65, and recall
of 0.84. 
Performing an aggregate prediction (i.e.,  using only those
predictions that agreed on the outcome) did not improve predictive
performance for the lesion-level prediction (AUC of 0.67) nor the
binary prediction (balanced accuracy of 0.65). However, using this
method, the highest recall  of 0.90 was achieved, making this method
very robust in detecting true positives. The models pave the way for
clinical decision making of patients at risk of ARE before treatment.
The information on the risk of an individual patient may be used by
clinicians to inform patients of the risk of ARE when SRT is used as
treatment. Furthermore, this information may be used to perform an
early stratification of those patients at high risk or may allow the
patient and clinician to pursue alternative therapy, such as systemic
therapy or alternate radiotherapy approaches (e.g.,  dose de-
intensified SRT or WBRT), if  the risk of ARE outweighs the possible
benefits of SRT (50). 
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results are similar or higher than the results obtained with our
model,  though within the range of the confidence intervals for the
model based on radiomics and DL, and the lack of an external
dataset on two of the studies makes the validity of these models
difficult to determine (52). Most other studies have a similar lack of
external validation and total number of included patients,  further
making the results difficult to compare with the present study (54).
These results show that the model presented in this study is able to
perform similarly to or even outperform models that perform
classification (post-treatment) instead of prediction (pre-treatment)
of ARE. 
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In the present study, only one sequence of the MRI scan was used.
Previous studies showed that a combination of radiomics computed 

One of the strengths of the present study is the large number of
included patients and subsequent lesions, with 7,974 lesions (2.7%
ARE) of 1,404 patients in training and testing and 646 lesions (3.1%
ARE) of 237 patients in the external validation. This provides a
large volume of data for our models to train on, ensuring that it
covers the wide variability found between patients.  In addition, the
inclusion of an external validation is another strength, especially
seeing the general lack of one in most other studies investigating
ARE. This ensures that the reported result is not too optimistic and
shows that our model can be generalizable to populations from a
different hospital in a different country and even with different
treatments from the training and testing sets.  While the difference
in treatment between the training (exclusively SRS) and external
validation (a mix of SRS and FSRT) may induce variability due to
small differences in treatment planning for these methods, l iterature
has shown that these methods carry the same risk of ARE and were
therefore considered interchangeable (16, 17, 19).  
The large confidence interval on the external validation is partially
due to the low number of positive findings in this dataset (n = 20).
This is because of the large imbalance in outcomes for both ARE and
tumour failure. One of the major problems that may arise from this
imbalance is a skewed view of predictive performance. However, this
was addressed in the present study through multiple measures. The
DL model was trained on a balanced subset of the data that only
included patients that suffered at least 1 ARE. For ML, the XGBoost
model was trained while scaling the weights of positive and negative
classes and the respective proportion of the labels.  Finally,  through
analysis of the confusion matrix, precision recall  curves, and recall
metric,  we ensured that the performance of the model was not
entirely driven by labeling the data as the majority class.  
While the models have been successfully validated on a dataset from
an external center,  further validation on multiple centers is required
to ensure that the models are generalizable. Future research could
therefore focus on validating the present model on other datasets,
potentially with recalibration of the model.  At a later stage, a
clinical trial  to test the efficacy of the model is needed to be able to
incorporate the model in a clinical setting. A model combining
radiomics features, DL features, and patient characteristics with a
high accuracy could help choose other treatment options such as
surgery only, systemic therapy, or palliative care (55) if  the
predicted risk of developing ARE is high. The model could also
predict if  the patient would be at a low risk of developing ARE, in
which case SRT could be preferred over other treatment options. 
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on T1 and T2 sequences performs best to differentiate ARE and TP
(51, 52), and ADC sequence seems to also show a higher
performance (53). Investigating more sequences in a future study
may therefore improve the performance of the imaging-based
models.  
Lastly,  for ARE (and, to a lesser degree, TP), treatment is one of the
primary factors. In this study, multiple-dose-treatment- related
variables have been included, such as prior treatments to the same
patients as well  as dose variables and the volumes encompassing
certain dose levels.  However, a more thorough “dosiomics” analysis
would probably improve the prediction of ARE. Liang et al.  (56)
described a method to extract the spatial and texture radiomics
features from dose maps (56). They found several radiomics features
which have a significant predictive value of radiation pneumonitis.
Using a similar method for ARE in BM may result in improved
prediction results.  Our predictions could also be combined with
models automatically classifying tumours and RN on brain MRI,
such as in Zhang et al.  (51), potentially strengthening the results of
those studies.  

5. Conclusion 

Radiomics is able to predict lesions at a high risk of ARE, especially
when combined with DL features. When predicting ARE on a patient
level,  the highest performance was found using a combination of
radiomics, DL, clinical,  and treatment-related features. These
models could potentially be used to aid clinical decision making for
patients with BM treated with either gamma knife or EBRT. 
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Segmentation can be performed using either manual,  semi-
automatic or fully automatic methods. Manual contouring gives the
clinician full  control over the process, but it  can be tedious and
time-consuming work. Additionally,  manual contouring is prone to
inter- and intra-observer variability (Sharp et al  2014). In contrast,
fully automatic segmentation methods do not require any human
input and have the potential to be very fast and highly reproducible
and ultimately, to reduce the workload for clinicians (Primakov et al
2022). Advances in machine learning (ML) have greatly improved
fully automatic approaches (Hamidian et al  2017, Bakator and 

Abstract 

Semi-automatic and fully automatic contouring tools have emerged
as an alternative to fully manual segmentation to reduce time spent
contouring and to increase contour quality and consistency.
Particularly,  fully automatic segmentation has seen exceptional
improvements through the use of deep learning in recent years.
These fully automatic methods may not require user interactions,
but the resulting contours are often not suitable to be used in
clinical practice without a review by the clinician. Furthermore, they
need large amounts of labelled data to be available for training. This
review presents alternatives to manual or fully automatic
segmentation methods along the spectrum of variable user
interactivity and data availability.  The challenge lies to determine
how much user interaction is necessary and how this user
interaction can be used most effectively.  While deep learning is
already widely used for fully automatic tools,  interactive methods
are just at the starting point to be transformed by it.  Interaction
between clinician and machine, via artificial intelligence, can go
both ways and this review will  present the avenues that are being
pursued to improve medical image segmentation. 

1. Introduction  

Image segmentation is an integral part of many medical tasks. For
instance in radiotherapy, image segmentation is essential for
treatment planning (Ramkumar et al  2016), enabling the radiation
dose delivered to different regions to be calculated and so minimise
damage to healthy tissue. More generally,  segmentation of
anatomical structures allows for detailed volumetric analysis to
facilitate various diagnostic and clinical decision-making processes
(van Timmeren et al  2020). 
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Semi-automatic or interactive segmentation methods assist
clinicians in cases for which fully automatic methods fail .  While
interactive methods still  require manual input, they can reduce the
extent of user interaction by making predictions based on
adjustments made by previous users. This gives more control over
the contour outcome than with fully automated workflows, while
still  benefiting from semi-automation in achieving satisfactory
segmentation. When compared to fully manual segmentation,
interactive techniques have been shown to improve consistency and
repeatability and reduce the time spent on contouring (Olabarriaga
and Smeulders 2001, Wang et al  2018, Wang et al  2019b, Sakinis et
al 2019). The types of user interaction can vary from a few clicks or
stylus strokes to produce a contour on a single slice,  to drawing
selected contours in 2D to produce a 3D contour on a medical image.
User interaction can be used to create contours from scratch or can
be used to refine the structures of automatic methods. Interest in
fully automatic deep learning methods has increased rapidly in
recent years, whereas interactive methods have received
comparatively little attention, as il lustrated in figure 1. 

Radosav 2018, Hosny et al  2018, Jarrett et al  2019, Renard et al
2020) and ML-based methods are now being implemented in clinical
systems (Lustberg et al  2018). Notably, contours generated using
fully automatic ML tools have been shown to be indistinguishable
from manual contours (Gooding et al  2018, Liu et al  2019, Primakov
et al 2022). 

Fully automatic methods still  face several problems, however. In
particular,  a large and well-curated labelled training set is required
for most ML approaches. Such data sets are not yet available for
many regions-of-interest/anatomical structures. Furthermore, the
variability of some structures, such as tumours, makes it  very
difficult to build a sufficiently representative dataset (Tian et al
2021). Technical differences between scanners and reconstruction
protocols that are used for image acquisition pose another problem
for fully automated ML methods, further increasing the need for
large and diverse training data sets (Zhao et al  2014, Mackin et al
2015). The complexity of ML and particularly deep neural networks
can also make it  difficult to determine the uncertainty associated
with segmentation boundaries,  so that expert review by clinicians is
still  required (Wang et al  2020a, Abdar et al  2021). While fully
automated ML-based segmentation methods are very successful for
some anatomical and pathological regions, but for others remedial
human intervention is required, increasing both clinical workload
and inter- and intra-observer variability.  

5
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Consequently,  there is considerable opportunity for progress in this
area. 

Figure 1. Google scholar search hits for keywords 'segmentation'
'deep learning' 'medical imaging' and additionally 'automatic'  (blue)
or ' interactive'  (orange).  

The aim of this review is to describe and evaluate current
segmentation methods on a spectrum from manual to fully automatic
tools,  as shown in figure 2. The review starts with a synopsis of
state-of-the-art fully automatic deep learning methods for
segmentation, corresponding to the far-right side of the spectrum.
Moving to the left,  few-shot and transfer learning approaches can be
trained with small quantities of annotated data. This distinguishes
them from fully supervised methods that require large data sets that
are difficult to obtain due to costly annotation time and data privacy
regulations. Closer to manual editing, interactive methods provide
some of the benefits of automation while retaining user control over
the contour output. The review ends with a discussion of emerging
techniques such as guiding user interaction through feedback
provided by ML to achieve full  interactivity.  



Figure 2. Medical image segmentation methods can be arranged on a
spectrum from manual to fully automatic tools.  Semi-automatic and
interactive methods can be found between the extremes. 

2. Deep learning in medical image segmentation 

Deep learning has become established as the method of choice for
fully automated contouring. The process from creation to
application of an automatic deep learning contouring tool is shown
in figure 3. This section will  give a brief overview of the
development of deep learning methods for medical imaging, and the
challenges that remain for example in interactive segmentation. A
wider introduction to deep learning applied to medical imaging can
be found in (Erickson et al  2017, Litjens et al  2017, Shen, Wu and
Suk 2017, Suzuki 2017, Anwar et al  2018, Guo et al  2019, Kim et al
2019, Willemink et al  2020, Wang et al  2020b, Seo et al  2020,
Tajbakhsh et al  2020). 
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Figure 3. Fully automatic contouring using deep learning. A large
training set is required to train the deep learning model.  This model
can then be used to predict the contours of new cases. The predicted
segmentation can then be manually corrected by a clinician. 

Deep learning, as a sub-field of ML, has led to many breakthroughs
in computer vision tasks. Fundamentally,  it  uses neural networks to
extract features from the provided input data and map these to an
output. A neural network consists of information processing units
called neurons, that are connected to each other to form the neural
network, as shown in figure 4(a).  If  many layers of neurons are
stacked, it  is called deep learning. The recent success of deep
learning has only been made possible by the availability of increased
computing power that can handle the computationally expensive
task of training deep neural networks (Schmidhuber 2015). 

Figure 4. (a).  Schematic representation of a neural network.
Neurons are connected to each other by weights WI .  Multiple layers
form a neural net.  (b).  Convolutional operation. A filter,  also called
a kernel,  is applied to the input layer. The same filter is applied
across the entire image to produce an output, called a feature map
(c).  U-Net. The U-Net is a convolutional neural network architecture
that is well  suited to medical image segmentation. It  consists of a
contracting and expanding path with neurons connected by skip
connections. The layers in the 
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Shortcomings of FCNs were addressed by U-Net architecture
(Ronneberger et al  2015), which has since been widely used in
medical image segmentation. In principle,  the U-Net architecture
consists of a contracting path to capture the spatial context and an
expanding path for localization (figure 4(c)).  Both pathways are
connected by skip connections. Skip connections provide an
alternative path for the gradient,  which helps solve the vanishing
gradient problem often faced in deep neural networks (Drozdzal et
al 2016). A vanishing gradient during backpropagation can prevent
the neural network from updating the weights successfully during
training. Furthermore, skip connections allow the U-Net to combine
high-level and low-level image information and localize these
(Drozdzal et al  2016). The U-net architecture was first applied to 2D
microscope images. Many variants of U-Net architecture have 

neural net vary in their number of feature maps F and spatial
resolution (height H and width W). 

For computer vision tasks, including medical image segmentation,
convolutional neural networks (CNN) are the most successful
network architectures. CNNs are inspired by the hierarchical
receptive field model of the visual cortex of the human brain (Hubel
and Wiesel 1959). The key features of CNNs are convolutional layers
that apply a filter to the input to extract features. The appearance of
an object is recognized independent of its location in an image.
Thus, detection can be performed using convolution across the
image. A given neuron gets a weighted input from the units in the
previous layer within a small receptive field. In deep learning,
multiple layers are stacked to achieve an increasingly wide receptive
field. By sharing the weights of the feature mapping in different
positions for each layer, the number of parameters can be decreased
compared to other types of neural networks. Illustration of a
convolutional operation is shown in figure 4(b).  

One of the first implementations of CNNs for image segmentation
was a fully convolutional network (FCN) (Long et al  2015). This
enabled the use of non-fixed input sizes, by using exclusively
convolutional layers, as well  as the output of a spatial segmentation
map. Skip connections were used to merge upsampled feature maps
from the final layers with feature maps of earlier layers. The
disadvantage of this type of FCN is that the upsampling is crude and
not sensitive to the details of the image. The resulting segmentation
is therefore of low resolution. Additionally,  in FCN, pixels are
classified without fully considering spatial consistency between
them. 
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Currently,  the majority of the research on automatic segmentation
for medical imaging utilizes fully-supervised ML models (Isensee et
al 2018, Li et al  2018, Zhou et al  2018, Wei et al  2020). There is,
however, an increasing number of articles proposing weakly-
supervised methods, including low-, few-, one- and zero-shot
learning approaches. An in-depth review of these methods can be
found in Kadam and Vaidya (2018), Wang et al  (2020d). Fully
supervised DL methods require large and representative datasets to
maximize their performance. However, in the medical imaging field,
acquiring such datasets and corresponding segmentation labels can
be problematic,  due to restrictive personal data regulations,
heterogenous clinical protocols and labelling complexity.  In cases
when there are only a few training images available, fully supervised
methods struggle to generate correct predictions. To tackle this
problem few-shot/low-shot learning methods  have been proposed.
Transfer learning and fine-tuning frameworks can also help when
dealing with small annotated datasets of medical images (Pan and 

emerged to improve performance of specific tasks. For example, for
3D volumetric images, the 3D U-Net and V-Net architectures (Ciçek
et al  2016, Milletari et al  2016) replace 2D convolutional blocks
with 3D convolutions. This enables information from neighbouring
slices to be used in generation of a contour on a particular slice,
which is often critical in medical applications. Other modified
neural networks include the Res-UNet (He et al  2016, Wang et al
2017a, Alom et al  2018) which includes so called residual layers to
mitigate the vanishing gradient problem, Attention U-Net (Oktay et
al 2018, Schlemper et al  2019) which replaces skip connections with
self-learned attention gates to determine which image regions
matter most,  or the hybrid densely connected U-Net (Li et al  2018)
which fuses features from a 2D and 3D U-Net to combine intra-slice
representations and inter-slice features, respectively.  

The above are just a few examples of how deep learning has been
applied to fully automatic segmentation in medical imaging. These
methods still  face challenges that arise from working with deep
learning, such as integrating interactivity into the workflow or
learning on small datasets.  One option to overcome the need for
large quantities of data is to use alternative deep learning
frameworks, such as few-shot learning or transfer learning. These
will  be discussed in more detail  in the next section. 

3. Few-shot learning, transfer learning and fine-
tuning 



The 'query set'  contains the images that are to be segmented. A
method that uses a support set with k labelled images and n
semantic classes would be called a n-way k-shot learning approach
(Shaban et al  2017). The term Zero-shot Learning methods refers to
methods where the target class is not present in the support set
(Bucher et al  2019). A few annotated cases are all  that are needed to
achieve the corresponding segmentation on new cases, as il lustrated
in figure 5. 

Yang 2010, Karimi et al  2020, Karimi et al  2021). 

3.1. Few-shot learning methods in medical imaging
segmentation 

The name few-shot/low-shot usually refers to methods that use a
small number of labelled images, called the 'support set' ,  to assist in
solving the segmentation task. Training the model stil l  requires a
large training set from which the support set is sampled to simulate
the few-shot problem (Shaban et al  2017). The goal of training is not
to know what a specific structure is,  as is the case in the fully
automatic approach discussed in the previous section. Instead, the
goal is to learn the similarity and difference between structures. The
training set may have a variety of structures in it,  expanding the
pool of available data for training, even if  only a few cases are
available for the specific structure to be segmented. 
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In the medical imaging field, several investigators have tried to
adopt few-shot learning, proposing various approaches. Mondal et al
(2018) pioneered few-shot medical imaging segmentation and
argued that the methods suggested by Shaban et al  have limitations,
due to the heterogeneity of medical images (Shaban et al  2017,
Mondal et al  2018, Wang et al  2019c). Therefore, a modified 3D U-
Net was proposed as a discriminator in a generative adversarial
network (GAN) setting to perform few-shot infant brain MRI
segmentation. This enabled the use of the unlabelled and synthetic 

Figure 5. Few-shot learning (n-way k-shot learning). The structures
in the training set can be different to the ones provided in the
support set,  but should be related, e.g.  the training set should also
be made up of anatomical structures. When presented with a few
cases (k) of unseen class—the support set—the corresponding labels
(n) are predicted for the new case—the query set.  Manual correction
may follow to refine segmentation. By applying transfer-learning, a
pre-trained model can be used as an initialization of the model.  

Early studies on few-shot learning were mainly focused on image
classification tasks (Fei-Fei et al  2003, 2006, Santoro et al  2016,
Snell  et al  2017). However, this approach was soon adopted in
natural image computer vision for segmentation tasks (Dong and
Xing 2018, Zhang et al  2018) due to its reduced demand for
supporting data. To perform one shot semantic segmentation,
Shaban et al  proposed using a model with two branches:
conditioning and segmentation (Shaban et al  2017). The
conditioning branch is used to extract the parameters from the
masked support set image and the segmentation branch extracts the
features from the query set image. The final segmentation mask is
then obtained by performing pixel level logistic regression on the
query set features using parameters from the conditioning branch
(Shaban et al  2017). This approach has since been improved in
several ways. Instead of using separate feature extractors for the
support and query set,  it  has been proposed to use shared network
weights to extract the features from both sets,  reducing the number
of parameters in the model (Wang et al  2019c). Following the
feature extraction, masked averaged pooling has been shown to
better extract foreground and background information from the
support set.  Additionally,  prototype alignment regularization was
introduced: When the segmentation mask was produced for the
query image, this mask was used to perform the few-shot
segmentation in reverse—from query to support—which allowed
alignment of the prototype representations between query and
support set during training (Wang et al  2019c).  
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image patches to boost the performance of the 3D U-Net (Mondal et
al 2018). As an alternative approach, the one-shot medical imaging
segmentation task can be treated as a classical atlas-based
segmentation problem. For this,  a VoxelMorph framework was used
with a GAN for additional supervision (Wang et al  2020c). The
proposed method takes the atlas and target images as input and
predicts the correspondence map which can be applied to transfer
the segmentation label (Wang et al  2020c). More recently,  Lu et al
presented a one-shot anatomical structure segmentation method
(Contour transformer network, CTN) incorporating user
intervention (Lu et al  2021). The framework takes only one labelled
image and a set of unlabelled images as input, to generate the
predicted contour. To bring this solution into clinical application
user corrections were incorporated to improve segmentation
performance (Lu et al  2021). Training the CTN model requires only
one labeled image and leverages additional unlabeled data through
loss functions that measure the global shape and appearance
consistency of contours. The CTN uses a pre-trained network trained
on ImageNet (Deng et al  2010) as the backbone of the encoding
block. Optionally,  additional labeled data or user annotation on
mislabeled outputs of the network can be used to fine-tune the
model in order to improve segmentation performance. An example
segmentation of this approach is shown in figure 6 and compared to
a fully supervised approach. The one-shot learning approach can
successfully segment the structures whereas the fully supervised
approach fails unless a sufficiently large training set is provided. 
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Transfer learning can be applied in a variety of settings that depend
on the problem domain, model selection, and available data. Pan et
al distinguish at least 3 settings based on the availability of the
labelled data: Inductive Transfer Learning, Transductive Transfer
Learning, and Unsupervised Transfer Learning (Pan and Yang 2010).
Inductive Transfer Learning characterizes the condition when both,
target and source tasks are different but related, and source and
target domains are the same. An example in medical imaging would
be segmentation of a different organ in the same image modality; or
using a model trained for lung tumour classification to initialize a
lung tumour segmentation model.  In Transductive Transfer
Learning, tasks are the same, but the source and target domains are
different,  e.g.  segmentation of the same organ on different image
modalities.  In Unsupervised Transfer Learning, both tasks and
domains are different but related and there are no labels available in
both domains during training. For example, using clustering to
identify distinguishing characteristics in lung tumour patient CTs  

Figure 6. Comparison of few-shot learning and fully supervised
methods. The few-shot learning model (Contour transformer
network, CTN) learnt to segment the anatomical structure accurately
from only one example. In contrast,  fully supervised methods such
as for example DeepLab (Chen et al  2018) fail  when training with
insufficient labeled images. © 2021 IEEE. Reprinted, with
permission, Lu et al  (2021). 

3.2. Transfer learning 

Deep learning has been used for medical image segmentation with a
specific task in mind. Consequently,  these methods are built  and
trained from scratch using a task-specific dataset.  However, the
human brain - the inspiration for modern neural networks—does not
need to be retrained in this same way. By learning how to recognize
specific shapes our brain can transfer this knowledge and reuse it
for solving more complex tasks (Parisi  et al  2019). Transfer learning
is the idea that previously learned neuron interaction coefficients,
i .e.  image features, can be used to solve new tasks instead of
starting from scratch (Pan and Yang 2010). 

Transfer learning can help in tackling the limited data problem by
transferring knowledge from models that were trained previously on
the large datasets.  This can reduce the amount of data needed to
train a model for the new task. Moreover, in some settings, it  can
drastically reduce the model training time. Compared to few-shot
learning, however, a larger training set is required. 
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Transfer learning with fine-tuning has been widely adopted in the
medical imaging field (Raghu et al  2019, Karimi et al  2020, Wang et
al 2020b, Karimi et al  2021). In many of these works, a deep
learning model that was pre-trained on a publicly available imaging
dataset such as ImageNet (Deng et al  2010) is used. This model is
then fine-tuned on the target medical imaging dataset (Rajpurkar et
al 2017, Wang et al  2017c, Gulshan et al  2019, Liu and Chan 2021).
Several studies have reported that transfer learning-based pipelines
were able to achieve performance comparable to a human reader
(Esteva et al  2017, Ding et al  2019). For example, the pretrained
architecture (InceptionV3) fine-tuned on a PET brain dataset to
predict Alzheimer's disease (Ding et al  2019) outperformed the
user's performance on the independent testing set (Ding et al  2019).
Using a similar approach, a classification of skin lesions, equivalent
to that defined by dermatologists,  was achieved on a test set
consisting of 1942 images (Esteva et al  2017). To compare transfer
learning with a fully-supervised training model with no knowledge
transfer,  Van Opbroek showed that when there are few data
available, transfer learning can  outperform common supervised

and utilize these clusters as features in a cancer classification model
(Pan and Yang 2010). 

In most cases, Deep Learning models utilize an inductive transfer
learning strategy, where previously trained weights could be used in
two ways, i .e.  without retraining as a feature extractor or being fine-
tuned for a target dataset.  When the pre-trained model is used as a
feature extractor, the pre-trained weights are used without being
updated when trained on a new task. During training on target data,
only the last layer gets trained. If  additional layers of the networks
are retrained on the new data, it  is called fine-tuning. 

Fine-tuning is frequently used together with the transfer learning
approach; it  can include several techniques such as selective layers
retraining or pruning. After transferring the weights from a pre-
trained network, users can decide to re-train some of the deep layers
together with a model's final fully-connected layer (Peng and Wang
2020). These deep layers may contain very specific features that are
irrelevant to a new domain/problem. By retraining them on the
target data these neurons will  learn features specific to the target
domain, therefore contributing to the performance of the model
(Wang et al  2017b). Pruning is another technique to deal with
irrelevant features. Network pruning methods allow redundant
neurons to be omitted during inference, resulting in reduced
computing costs (Luo et al  2017, Liu et al  2018). 
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methods and reduce classification errors by up to 60% (Van Opbroek
et al 2015). Despite the success of transfer learning in medical
imaging, some studies have drawn attention to the possibility of
overparameterization and suggested the use of more flexible hybrid
approaches to transfer learning for medical imaging tasks (Raghu et
al 2019). 

4. Interactive methods in medical image
segmentation 

In contrast to few-shot learning approaches, which move along the
spectrum shown in figure 2 by seeking to reduce the need for
training data for automated segmentation, interactive methods start
with fully manual contouring and seek to reduce the need for manual
intervention. Such interactive tools can be applied both when
contouring manually and when editing a pre-existing segmented
image. User interaction can be introduced in different ways for
semi-automatic processing: 2D contours can be generated by using
clicks (Sakinis et al  2019, Alemi Koohbanani et al  2020), scribbles
(Lin et al  2016, Wang et al  2016, Boers et al  2020) or bounding
boxes (Rajchl et al  2017, Wang et al  2018, Redekop and
Chernyavskiy 2021); a contour may also be adjusted automatically in
real-time while the clinician is drawing (Barrett and Mortensen
1997); or some 2D contours can be used to generate 3D contours of
a structure (Léger et al  2018, Michael Trimpl et al  2021). The key to
the success of these interactive methods is to try and find a balance
between the human interaction and automation. Often this results in
an iterative workflow between user interaction and processing, as
illustrated in figure 7. Interactive tools have the potential to save
the clinician time and effort when contouring, compared to manual
annotation alone or reviewing and editing the results of fully
automated segmentation. 
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Figure 7. Interactive contouring workflow. The interactive model
uses the first user interaction to make an initial  prediction. Further
user interactions are used to refine the prediction until  the clinician
is satisfied with the contour. 

This section discusses interactive methods for 2D or 3D
segmentation. For this,  approaches that do not rely on deep learning
will  be introduced and contrasted with deep learning methods. 

4.1. Interactive methods in 2D 

In this section, different methods for generating contours in 2D are
discussed. An example of how user interactions can result in a
contour is i l lustrated in figure 8. The figure shows a series of clicks
that result in the segmentation of the user indicated structure. To
achieve such interactive segmentation, a wide range of interactive
image segmentation approaches exist that do not rely on deep
learning. Here, a selection of these methods and how they affect the
development of deep learning methods will  be discussed. A fuller
description of non-deep learning methods may be found in Camilus
and Govindan (2012), Zhao and Xie (2013). 
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Another example of a framework for segmentation is Livewire, a
contouring tool that quickly updates the contour based on user
interaction. After beginning contouring, the optimal path between
the starting point and the current cursor location is 

Figure 8. Example of interactive 2D segmentation via clicks. (a)
With a first click the structure to be segmented is selected. This
resulting initial  segmentation may need further corrections which
can be edited by clicking on areas that need to be (b) included (c) or
excluded. Further clicks can be used until  arriving at the (d) final
segmentation. 

4.2. Traditional methods 

Graphical energy minimisation techniques have been a popular
method for image segmentation (Xu and Prince 1998, Boykov and
Jolly 2001, Komodakis et al  2007, Zhou et al  2016) particularly for
interactive segmentation (Boykov and Jolly 2001, Freedman and
Zhang 2005, Price, Morse and Cohen 2010, Isensee et al  2018). For
example, GrabCut sought to maximize the separation of the
foreground and background classes, as initially indicated by the
user, by modelling these classes using Gaussian mixture models.
(Rother et al  2004). The segmentation was then produced by
applying the graph cut method from the user-provided annotation.
The model and segmentation are then iteratively refined based on
additional user feedback. The strength of this method is the speed of
the graph cut segmentation allowing rapid feedback to the user such
that the segmentation could be refined easily by providing
additional annotation. On the downside, GrabCut often resulted in
shrunken structures. This was prevented by adding a topological
prior (Lempitsky et al  2009). Furthermore, the performance was
improved further by including a Conditional Random Field (CRF)
(Lempitsky et al  2009, Cheng et al  2015) to encourage segmentation
homogeneity. Instead of bounding boxes, geodesic distance
transforms have been introduced to ensure spatial regularization
and contrast-sensitivity.  This method is called GeoS (Criminisi et al
2008). 
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Open-source tool kits have been created based on these methods, for
example ITK-SNAP (Yushkevich et al  2016) and trainable WEKA
(Waikato Environment for Knowledge Analysis) (Arganda-Carreras
et al  2017). Both provide an intuitive graphical user interface and
are able to process various image modalities and formats. ITK-SNAP
uses active contour methods to produce segmentation given an
initial  user input in 2D, 3D and multi-modality medical images. The
trainable WEKA allows the user to train a model on a given
contoured image set.  The framework uses and compares any
available classifier to perform image segmentation based on pixel
classification. Such semi-automatic and interactive tool kits can
help minimize the time  and effort required for manual contouring
task. 

calculated using a lowest cost path algorithm (Dijkstra 1959). The
contour changes as the user moves the mouse. Various algorithms
may be used. For example, edge detection may be implemented using
a Sobel filter.  In that case the lowest cost path will  be that along the
edges. Livewire has been extended to the Intelligent Scissor tool
(Barrett and Mortensen 1997). On-the-fly training enables the
contour to be applied to the specific type of edge being traced rather
than just to the strongest edge in the image area. Furthermore, the
Intelligent Scissors tool automatically freezes unchanging segments
and inserts additional seed points to increase contouring efficiency
and the accuracy of the generated contours. The cost calculation can
be adjusted to fit  the specific needs of a given image modality.  For
example, ultrasound images are still  difficult to process using fully
automatic segmentation due to the presence of speckle and other
artefacts—which are inherent to this imaging modality (Rackham et
al 2013). Livewire was adapted for ultrasound images by introducing
two sets of costs: first,  feature asymmetry to improve edge
localization, and second, a weak shape constraint cost to improve
boundary selection in the presence of missing information or
artefacts (Rackham et al  2013). As a result,  the fuzzy boundaries in
ultrasound images can be detected by identifying structural
relevance rather than intensity gradients.  

Other examples for non-deep learning based methods include, level-
set segmentation (Qiu et al  2013), random walks and random forest
(Grady et al  2005). For example, SlicSeg uses online random forests
to segment fetal MRI images (Wang et al  2016). Additionally,
SlicSeg allows for contour estimation in the remaining image volume
and interactivity for refinement following an adapted GraphCut
method. 
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Open-source tool kits,  similar to ITK-SNAP and trainable WEKA,
also exist for deep learning approaches. For example, RIL-Contour 

4.3. Deep learning methods 

More recently,  user interactions have been incorporated into CNNs.
Unlike standard networks as discussed in section 2, extra input is
provided to the model through user interaction. Rajchl et al
introduced DeepCut, which uses a CRF to update the parameters of a
CNN model to favour segmentation homogeneity—as has been done
with GrabCut before. DeepIGeoS combines CNNs, CRFs and geodesic
distance transforms (G Wang et al  2019b), bringing deep learning to
the GeoS method. This approach uses two models.  The first model is
used to obtain an initial  segmentation. The user can then interact
with the result to identify misclassification. A second network is
used to refine the result given the user interaction. When applied to
placenta and brain tumour segmentation of fetal MRI images,
DeepIGeoS reduced user time by 66% compared with segmentation
using GeoS. DeepCut performs segmentation using a bounding box
input by users (Rajchl et al  2017). To improve performance, Deep
Extreme Cut uses extreme points (edges) of the structure as an input
to the CNN (Maninis et al  2017). The CNN learns to match the
segmentation to the extreme points of the object resulting in
improved performance compared to bounding boxes. To further
improve performance of this method, other deep neural network
frameworks, such as recurrent neural networks, have been proposed
(Zheng et al  2015). 

Most deep learning based methods that allow for user interaction
build on the popular U-Net architecture. For example, Amrhen et al
proposed UI-Net for interactive segmentation (Amrehn et al  2017).
In addition to allowing each image slice to be contoured, as in the
standard U-Net, it  also allows for user 'scribbles'  to be included in
the model as an input. These scribbles indicate which areas should
and should not be included in the segmentation. During the
segmentation process, the user can continue to provide input to
achieve a precise segmentation result.  This system has shown
superior results compared to networks without the user input
channel component when applied to liver lesion segmentation. This
is attributed to consistent improvement in segmentation with each
user interaction. To make better use of the provided scribbles, Lin et
al proposed ScribbleSup (Lin et al  2016). Instead of using the
scribbles directly or applying a geodesic distance transform, a
graphical model propagates the information from the scribbles to
the unmarked pixels,  based on spatial constraints and appearance.
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(Philbrick et al  2019) (Radiology Informatics Laboratory) supports
medical image annotation using fully automated deep-learning,
semi-automated methods, and manual methods. It  also enables
workflows for continual learning on newly annotated data provided
by multiple annotators.  

4.4. Interactive methods in 3D 

Clinicians frequently need to contour multiple slices,  for example in
3D image sets.  Manual segmentation of 3D images on a slice-by-slice
basis can be very time consuming. A workflow for segmentation of
3D images is i l lustrated in figure 9. Some of the methods discussed
in the section above have been extended into 3D. For example,
Livewire in 2D uses two points to define a curve. In 3D, a user needs
to indicate one or more closed curves (contours) and the algorithm
finds the corresponding minimum cost surface (Grady et al  2005).
Bounding box based approaches have been extended by either using
individual bounding boxes on various 2D slices or by using a
bounding cuboid (Redekop and Chernyavskiy 2021). 
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Figure 9. 3D interactive segmentation. 2D segmentation methods
can be easily extended to 3D by, for example, propagating the
contour through the image. The predicted contours can be reviewed
and individual slices edited until  a satisfactory segmentation is
achieved. 



4.5. Contour propagation 

If direct extension of a 2D to 3D contouring method is not possible,
then there are a number of alternative approaches. These include
automatically initializing the segmentation on the adjacent slice via
a seed input and performing a segmentation on this slice.
Alternatively,  the contour can be iteratively propagated throughout
consecutive images of a scan. China et al  introduced a volumetric
segmentation approach that relies on subsequent initialization of
the segmentation on adjacent image slices in ultrasound volumes. A
gradient vector flow based propagation technique was used to
provide an initial  segmentation for the next image slice, whereas
iterative random walks were used to correct the contours in
subsequent steps of the algorithm (China et al  2019). Contour
propagation and interpolation has also been achieved by using slice-
to-slice registration of contours (Penney et al  2004). For this the
deformation between two image slices is calculated and that
transformation is then applied to the contour. These propagation
approaches can be applied in addition to any of the 2D methods
mentioned before to produce 3D segmentation based on 2D input.
Alternatively,  if  a few slices in a 3D image have been contoured,
interpolation (for example linear interpolation) between these
contours, can provide an estimate for the full  3D volume of a
structure. 

Using CNNs, contour propagation has been applied to bladder
segmentation using a single contoured image slice as the input
(Léger et al  2018). A similar propagation approach has been used for
multi-class image segmentation of the cardiac system (Zheng et al
2018). These methods have been shown to offer better segmentation
performance than fully automatic methods. However, they are only
able to segment structures included in the training set and require
retraining if  used for other structures. This problem is often faced in
supervised deep learning, as it  is highly dependent on the training
set provided. One solution to this is to train CNNs on a large variety
of structures simultaneously. In this way the model does not learn
structure-specific features, but rather learns to predict the adjacent
slice based on the context between input image and contoured slice
(Michael Trimpl et al  2021). 
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The interactive 2D and 3D segmentation methods discussed in this
section can synergize well  with fully automatic segmentation
methods. Fully automatic methods can produce a quick first
estimate for a contour. Subsequently,  interactive methods can be
used to get the final increment in accuracy that is needed for
medical image segmentation. Thus, interactive methods are an
excellent tool during the contour review stage. 

4.6. Other deep learning methods in 3D 

Sparse user annotations, by providing selected 2D contours, can be
used to predict the remaining slices of a 3D structure. A 3D U-Net
(Ciçek et al  2016) has been proposed, that uses multiple sparse
annotations in a 3D volume. This method can learn from just a few
contoured slices of a 3D scan and complete the segmentation by
using on-the-fly elastic deformations for efficient data
augmentation. The image slices with a user-defined contour are used
to fine-tune a deep learning model to segment the remaining non-
contoured image slices of the specific scan. This approach in effect
applies transfer learning on a case-by-case basis (as discussed in
section 3) to enable an interactive contouring approach. 

Again, as for 2D methods, user control on the segmentation output
through image specific fine-tuning can be increased by providing
scribbles to the network. These scribbles are used to create a
weighted loss function. User-provided scribbles are associated with
higher confidence than the other pixels and are therefore assigned
heavier weighting. Additionally,  during fine-tuning pixels with low
confidence in the test image are given lower weighting. Model based
uncertainty has been associated with the softmax output, where low
confidence corresponds to a value close to 0.5 (Wang et al  2018).
This is discussed further in the next section. Using scribble-based
and model uncertainty-based loss function for fine-tuning has been
shown to improve interactive segmentation performance in medical
imaging for several structures, including placenta, brain, fetal lungs
and maternal kidneys (Wang et al  2018). As an alternative to
scribbles, seed points have been used to indicate the structure to be
segmented into a 2D or 3D U-Net structure (Sakinis et al  2019, Pepe
et al  2020). 
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4.7. Guiding user interaction using ML feedback 

Up to this point the review has covered how user interaction can be
interpreted by a computer to assist segmentation. In this section,
the possibility of a computer giving feedback to the clinician is
discussed. As the performance of computer aided segmentation
methods improves, the human role moves from one of active agent to
a more supervisory role.  In this capacity,  the user's role is to check
and edit the segmentation where required. Even when using
interactive segmentation methods, this checking process can still  be
time-consuming since the image and segmentation must still  be
loaded and displayed, and reviewing requires the user's attention
and interaction (Michael J Trimpl et al  2021). If  a model could
estimate on its own where it  is certain and uncertain about a
prediction, or better yet where it  is accurate or likely to be
inaccurate, a clinician might not have to review a full  image scan but
could focus on the few critical regions of the scan (Wang et al
2020a). 

To effectively design a feedback system, the measure of uncertainty
obtained from the model must correlate with the accuracy of the
model.  More generally,  transparency in how the model came to make
a prediction could help clinicians in their decision-making process.
It has been suggested that model uncertainty could be used to
estimate areas to edit for interactive segmentation (Zheng et al
2021). For example, an Uncertainty-Guided Refinement Framework
has been applied to segmentation in motion-corrupted fetal MRI
(Wang et al  2020a). In this framework, the clinician is asked to edit
slices with the highest segmentation uncertainty following the
automatic processing step. This uncertainty estimation was shown to
correlate well  with mis-segmentations. By guiding the clinician's
attention, contouring time was reduced by 30% when compared to
using the DeepIGeoS method, while achieving similar final accuracy
(Wang et al  2020a). An example of this is shown in figure 10, where
model uncertainty is determined for different image slices (figure
10(a)).  Based on the model uncertainty selected image slice or image
regions may be prompted to the clinician for review (figure 10(b)).
Here, a brief overview of different approaches for determining
uncertainty in deep learning prediction is given. It  should be noted
that determining the uncertainty of deep learning, is stil l  a subject
of ongoing research and a more extensive discussion may be found
in (Abdar et al  2021). 
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To estimate the uncertainty of a model,  Gal et al  introduced dropout
in their neural networks as a Bayesian approximation to uncertainty
(Gal and Ghahramani 2015). Using dropout means that different
connections within the neural network are randomly dropped. This
results in a slightly different model each time. Originally,  dropout
was used during model training to 

Figure 10. Guiding user interaction based on model uncertainty. (a)
Obtaining uncertainty from multiple outcomes via MC dropout or
ensembling. The predictions are summarized by contours that
surround the area which a certain fraction of the model includes.
For example, the 10% contour (yellow) indicates that 10% of
outcomes included this area. 50% corresponds to the average
contour. (b) Illustration of how model uncertainty could be
visualized to the clinician. Image slices with little uncertainty (left
image) may not need to be prompted to the clinician for review. 

The most straightforward way to estimate uncertainty is to use the
final activation layer of a deep learning model as a proxy for
confidence in a prediction. The activation layer (e.g.  softmax) may
output a value between 0 and 1 to predict if  a pixel belongs to the
background or foreground respectively.  If  the output is close to 0.5,
the model is not sure to which class to assign the pixel.  An
uncertainty can then be attributed to the prediction using least
confidence, marginal confidence or entropy (Shannon 1948, Settles
2009). However, these estimates on model uncertainty suffer from a
tendency, common across deep learning methods, to be
overconfident in the accuracy of the model predictions. 
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Fully automatic methods are excellent when presented with a clearly
defined task and where a large, labelled training data set is
available. In such a scenario, these methods can potentially
eliminate the need for editing by clinicians. However, while the task
of segmentation might appear to be clearly defined, in reality it  is
difficult to find a gold standard contour for many structures.
Clinicians may disagree on what should and shouldn't be included in
a contour; indeed if  an individual clinician is asked to outline the
same case twice, they will  l ikely produce two different sets of

reduce overfitting and increase the robustness of the model
(Srivastava et al  2014). Applying dropout at test time can be used to
calculate the outcome of the resulting slightly different models.  The
resulting distribution of outcomes can then be used as a measure of
uncertainty of the model predictions (Gal and Ghahramani 2015, Gal
et al  2017, Wang et al  2019a). 

Similarly,  the uncertainty of a prediction can be estimated if  an
ensemble of deep learning models is used. Ensembling describes the
method of using various models to make a prediction by consensus.
Additionally,  disagreement between the individual predictions can
indicate a region of uncertainty (Settles 2009), i l lustrated in figure
10. A way to create an ensemble of models is by using convolutions
in multiple groups (Wang et al  2020a). Thereby, multiple models
following the same architecture can be trained in parallel.  The
disagreement in the prediction can then be used to obtain an
uncertainty measure, which has been shown to be superior to Monte-
Carlo dropout when estimating uncertainty (Wang et al  2020a). As
above, determining uncertainty in a deep learning model remains a
matter of ongoing research. However, focusing a clinician's
attention on the most crucial areas and so guiding their user
interaction can help make contouring more efficient and accurate (G
Wang et al  2020a). 

5. Discussion 

Deep learning has become the state-of the-art approach to medical
image processing and the resulting tools are being adopted into the
clinical workflow. However, the clinically implemented approaches
have largely been restricted to fully automatic segmentation models.
Yet,  as outlined in this review, there are many approaches beyond
fully automatic tools that could aid clinicians in performing their
work. 
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Despite the promising results of the k-shot learning application  in
the medical imaging domain reported in several studies (Fei-Fei et
al 2003, 2006, Santoro et al  2016, Snell,  Swersky and Zemel 2017,
Shaban et al  2017, Dong and Xing 2018, Zhang et al  2018, Mondal,

contours (Sharp et al  2014). A deep learning model trained by a
single user or set of users will  be biased towards the style of the
clinician or centre providing the cases for the training set.
Conversely,  if  the cases in the training set are representative of a
wide range of institutions and clinicians, the model may average the
different opinions in a way that satisfies no one's requirements.
Furthermore, common deep learning methods require large amounts
of data to be able to create robust models.  The confidential nature of
medical imaging data makes sharing and creating large datasets
difficult.  While there are more and more open access image datasets
available (Yang et al  2017, Aerts et al  2019, Simpson et al  2019, Wee
and Dekker 2019), they are restricted often to datasets that were
acquired under certain conditions for a specific study. Consequently,
fully automatic methods are very rigid and not always suitable for
application to a general problem. 

This review set out to explore possible alternatives to give users
greater control over deep learning model output, whilst retaining
efficiency. The first step to changing to a more user-controlled
model is to provide a minimal training set for a deep learning
model.  The question: 'How little data can we get away with?'  is
essential here and this in itself  is a large area of ongoing research in
computer vision, covered by k-shot learning, transfer-learning and
model fine tuning. These methods can produce segmentations
requiring only a small number of annotated images of the target
class.  The performance of these methods strongly depends on the
problem domain and annotations in the training/support set and the
performance is typically lower than the performance of the fully
supervised state of the art methods. Yet,  this could give the clinician
the option to—for example—define a completely new structure that a
model should learn to segment. All  that is needed for this is a few
prior annotated cases—the support set.  From these few cases an
automatic contouring pipeline can be established that can then be
applied on other cases. Overall,  these methods take  conventional
deep learning and lower the barrier for model training by allowing
for small data set sizes.  By doing so, a support set can easily be
defined by a single person that can than determine what (and how)
they want a certain structure to be contoured, given them a greater
amount of control on the output. 
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Model interpretability is an ongoing research topic.  A lack of
understanding of how user interaction affects a model presents a
challenge to its usability.  If  the clinician does not know what to
expect as an output from any interaction, they cannot easily control 

Dolz and Desrosiers 2018, Bucher et al  2019, Wang et al  2019c,
Wang et al  2020c, Lu et al  2021), challenges remain. As these
methods use one or few annotated images to learn how to produce
the segmentation, they are more sensitive to the variation in the
medical images than fully supervised methods. To overcome this
problem, some methods use unlabelled images or/and GAN's to
produce more training samples artificially.  Another challenge for
using the k-shot learning methods for medical imaging segmentation
arises from the segmentation task itself.  For example, segmentation
of tumours is an arduous task even for fully supervised methods as
tumours are very heterogeneous. Thus, tumour segmentation is very
challenging for k-shot learning methods as they cannot capture
tumour heterogeneity from a small number of samples. 

Interactive methods for many applications can provide a good
middle ground in terms of the trade-off between automation and
user control.  They are designed to interpret what the user wants to
segment and suggest a segmentation based on that.  The interactive
methods discussed in this paper highlight the diverse ways that this
can be done, ranging from bounding boxes and scribbles to clicks
and individual contours. Regardless of the specific interaction type,
these methods try to interpret the user interaction and complete the
segmentation that the clinician requires. In the case of energy
minimization techniques, user interaction is transformed into
something the computer understands by including the user
interaction as a constraint to the minimization problem. This
problem is generally well  understood and therefore it  is possible to
introduce the user interaction directly into the equation. For deep
learning this becomes more complicated. The loss function, by which
the model is optimized is not directly constrained by the user
interaction. The loss function compares how well  the prediction
matches the ground truth of the training set.  The parameters in the
neural network are updated based on the discrepancy. With deep
learning, the loss function is effectively optimized at training time,
when the user interaction on a specific patient cannot be known. It
remains a challenge to express the user interaction at interaction
time as a clearly defined constraint,  similarly as it  is done in energy
optimization. To make a more effective constraint when training a
model,  it  is necessary to better understand deep learning models
themselves. 
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Research to date has focused on fully automatic segmentation
methods. In practice, clinician review and editing of these outputs is
needed. Interactive methods can support clinicians in these tasks.
This review has outlined various methods that incorporate user
interaction to make contouring for clinicians easier.  In particular,
the recent advances in integrating user interaction into deep
learning have been highlighted. While this is often challenging, due
to the often poor interpretability of deep learning models,  these  

the output. This review has briefly addressed how a model can
communicate with clinician to guide its attention to the regions,
user input is l ikely to be most needed. Such regions are where
confidence in the prediction is low and consequently,  the prediction
is most likely to be incorrect.  

While,  to date, it  remains challenging to determine uncertainty,
there are other ways to improve understanding of a model and guide
the clinician when contouring. Given the large number of
parameters in a deep learning model it  is hard to intuitively
understand what is going on throughout a neural network and
therefore, it  is intrinsically difficult to interpret deep learning
models (Reyes et al  2020). This understanding can be beneficial to
be able to effectively use deep learning in a feedback loop, through
which certain regions of a scan are brought to the attention of the
clinician for review. What goes on in the model can be visualized by
highlighting image-specific saliency maps - image regions that drive
a model to its prediction (Selvaraju et al  2017). 

Another way of making deep learning more accessible to human
interpretation is by using 'attention' in neural networks (Oktay et al
2018, Schlemper et al  2019). Attention in a network with image
input, refers to the regions in the image that receive a larger
weighting due to their importance in making a prediction. They also
give a more intuitive insight into what is going on inside the neural
network. While convolutional filters and the resulting feature maps
are very abstract,  the deeper the network attention maps are easily
interpreted as they simply highlight which regions of the body are
weighted highly to make a prediction. While model uncertainty and
interpretability are just beginning to be understood, they can be an
avenue to a more fully interactive contouring system, where the
model not only interprets user inputs but can guide future user
interaction where it  is most needed. 

6. Concluding remarks 
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2018Medicalimageanalysisusingconvolutionalneuralnetworks:

models can already leverage a clinician's expert input and provide
support during the contouring workflow. Moving forward, it  would
be desirable to create interactive deep learning tools that can learn
from previous user interactions. Future research should also focus
on new methods to combine artificial intelligence and clinical
expertise, instead of focusing on one or the other. A clinician can
point out segmentation errors to the model,  but the model may also
communicate areas of high and low uncertainty to the clinician. By
combining the strength of artificial intelligence and clinical
expertise, patient care can be improved - by elevating contour
consistency and quality,  and by reducing the time taken on
segmentation thus freeing up clinicians to focus on direct patient
care. 
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CHAPTER 6: 



Lung cancer is the deadliest of all  cancers afflicting both sexes,
accounting for 18.4% of the total cancer deaths worldwide in 2018,
almost equal to breast and colon cancers combined (1).  Recent
advances in treatment (immune checkpoint inhibitors,  tyrosine
kinase inhibitors) has significantly improved survival times for
subgroups of patients.  However, much work is stil l  to be done in the
field of lung cancer, especially in screening and early detection.
Automated detection and segmentation would immediately impact
the clinical workflow in radiotherapy, one of the most common
treatment modalities for lung cancer (2).  Radiotherapy uses medical
imaging, especially computed tomography (CT), to obtain accurate
tumor localization and electron densities for the purpose of
treatment planning dose calculations(3). Accurate segmentation of
the tumor and organs at risk are also essential as errors might lead
to over- or under-irradiation of both the tumor and/or healthy
tissue. It  has been estimated that a 1 mm shift of the tumor
segmentation could affect the radiotherapeutic dose calculations by
up to 15% (4,5).  Therefore, automated accurate segmentation can
significantly reduce the time needed by clinicians to carryout
treatment planning, and adaptive re-planning of treatment
depending on the changes in the tumor. 

Abstract  

Detection and segmentation of abnormalities on medical images is
highly important for patient management including diagnosis,
radiotherapy, response evaluation, as well  as for quantitative image
research. We present a fully automated pipeline for the detection
and volumetric segmentation of non-small cell  lung cancer (NSCLC)
developed and validated on 1328 thoracic CT scans from 8
institutions. Along with quantitative performance detailed by image
slice thickness, tumor size, image interpretation difficulty,  and
tumor location, we report an in-silico prospective clinical trial,
where we show that the proposed method is faster and more
reproducible compared to the experts.  Moreover, we demonstrate
that on average, radiologists & radiation oncologists preferred
automatic segmentations in 56% of the cases. Additionally,  we
evaluate the prognostic power of the automatic contours by applying
RECIST criteria and measuring the tumor volumes. Segmentations
by our method stratified patients into low and high survival groups
with higher significance compared to those methods based on
manual contours. 

Introduction 
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Taking into consideration these clinical and research needs for lung
tumor segmentation, the implementation of automated detection
software that is capable of fast and accurate delineation of NSCLC
on thoracic CT scans is desirable, bordering on necessity.  The
applications and benefits include, but are not limited to: (1) CT-
based automated screening of lung cancer; (2) Retrospective 

Equally important are the lesion and organ at risk segmentation
process for radiation oncologists for radiotherapy planning, and the
measurement of lesions within the Response Evaluation Criteria in
Solid Tumors (RECIST) 1.1 framework for radiologists,  both
laborious manual routines which impose an avoidable workload (6).
Currently,  such segmentations and appropriate RECIST
measurements are performed manually or semi-automatically,
consuming valuable time and resources, as well  as being prone to
inter- and intra-observer variability (7).
 
Another field to profit  directly from automated detection and
delineation of lesions is radiomics, the high-throughput mining of
quantitative features from medical images and their subsequent
correlation with clinical and/or biological endpoints (8,9).
Radiomics has the potential to facilitate personalized medicine via
diagnostic and predictive models based on phenotypic properties of
the region of interest (ROI) being analyzed (10). ROI segmentation
is currently considered to be one of the most time-intensive and
laborious steps within the entire radiomics workflow (11). 

The recent advancement of machine learning techniques, combined
with improvements in the quality and archiving of medical images,
have fueled intensive research in the field of artificial intelligence
(AI) for medical imaging analysis (12,13). Deep learning, a branch
of AI-based artificial neural networks, has been successfully applied
on images to solve problems such as classification or segmentation
(14,15). Several attempts have been made to adapt these methods
for medical imaging problems, including tumor detection and
segmentation on CT images (16,17,18,19). A major hurdle in
developing fully automated software that can be applied to any CT is
the heterogeneity of the datasets,  especially when acquired from
multiple centers (20). CT scans with different acquisition- or
reconstruction parameters present lung structures differently.  The
methods described in the current literature usually lack a CT
preprocessing module in the pipeline, and the problem of data
harmonization is left  to be solved by a data-driven approach,
requiring large datasets representing all  aspects of this
inhomogeneity.  
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analysis of entire databases of patients who underwent thoracic CT
in daily care for research purposes; (3) Consistent and reproducible
segmentations, which are important in planning and monitoring
(radio)therapy, and in research; (4) Follow-up of treated primary
lung cancer; (5) Automation and acceleration of certain aspects of
the clinical radiotherapy workflow, making adaptive re-planning
more feasible.  

Automated segmentation of NSCLC tumors requires prior
identification of the lesion as NSCLC. Invasive tissue biopsy is
currently the clinical gold standard in identifying NSCLC. However,
an accurate automated segmentation tool requires high detection
accuracy. Therefore, software that can automatically segment NSCLC
tumors could also be used as a detection method, decreasing the
need for invasive biopsies.  

In this work, we present a fully automated lung tumor detection and
3D volumetric segmentation pipeline that is capable of handling a
large variety of CT acquisition and reconstruction parameters.
Furthermore, we externally validate our method on three datasets,
compare the volumetric prognostic factor to an existing clinical
standard, compare the quantitative performance to a similar
published method, and compare the preference score, speed, and
reproducibility of our method to those of experts in a prospective
clinical trial  setting. 
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A three-step workflow was developed and successfully implemented
(Fig. 1): (i)  image preprocessing, a crucial step as datasets collected
for this work were obtained from different  scanners with various
image acquisition and reconstruction protocols (Fig. 1 suppl.).  The 

*CT slices without a segmentation were considered as not containing tumor

Tumor detection and segmentation 

Table 1. Description of the datasets used in this study 

Results
 
Overall,  1328 thoracic volumetric CT scans with corresponding 3-
dimensional tumor segmentations were used in order to train, test,
and externally validate a fully automated method for detection and
segmentation of NSCLC in standard-of-care images. Datasets 1–7
were combined and randomly divided into training and testing
datasets with 999 patients and 93 patients,  respectively (see Table
1). Datasets 8–10, comprising 236 patients were used for external
validation of the method. A summary of the data is provided in
Table 1, description of  patient characteristics is provided in
Supplementary Table 2.



data inhomogeneity necessitated the harmonization of CT data in
order to achieve comparable representations of the tumor region,
reduce computational power requirements and image noise, and to
optimize contrast; (ii)  lung isolation, which allows the model to
focus on the ROI and the input of the entire CT scans; (iii)
automated tumor detection and segmentation, employing the
convolutional neural network. 
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The ability of the system to detect tumors was assessed lung-wise
and yielded a sensitivity of 0.97 and specificity of 0.99 in the
external validation dataset and an area under the receiver operating
characteristic curve (AUC) of 0.98. Confusion matrices for the
detection performance can be found in supplementary materials
(Fig. 2 Suppl.).  The median contouring performance in the external
validation dataset as assessed by the volumetric Dice similarity
coefficient (DSC) was 0.82, while the 95th percentile of the
Hausdorff distance (H95th) was 9.43 mm. Further metrics,
associated uncertainties,  as well  as test 

Fig. 1: Graphic representation of the major steps in the proposed
workflow. 



dataset results are reported in Table 2. Using dataset 8 we have
established the tolerance level τ for NSCLC manual segmentation
variability (τ = 1.18 mm), allowing the application of the Surface
DSC for the NSCLC segmentation task. 

Table 2. Overview of quantitative model performance. IQR =
Interquartile range, DSC = Dice similarity coefficient,  Ji  = Jaccard
index, H95th = 95th percentile,  Hausdorff distance. 
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Model performance was also separately assessed in regard to
groupings of image slice-thickness, tumor size, expert-reported
tumor complexity,  and tumor location. The sub-cohorts were
analyzed for significant differences in model performance, with the
results reported in Table 3. As some of the tumors had two or more
unconnected components (satellite lesions, or edges of the tumor),
the Hausdorff metric can yield unreliable distances when the
distance between different volume fragments are calculated.
Therefore, the interquartile range (IQR) for H95th was not
provided. Histograms showing the distributions of detection and
segmentation results are provided in the supplementary materials
(Fig. 2 suppl.  and Fig. 3 supply.).  

Table 3. Overview of quantitative model performance with regard to
various factors. Statistical significance were calculated within the
factor groups using a two-sided Mann-Whitney-Wilcoxon test with
Bonferroni correction wand referred as follows: “ns” refers to the p-
value in the range: 5.00e-02 < p <= 1.00e+00; * refers to the p-value
in the range: 1.00e-02 < p <= 5.00e-02; ** refers to the p-value in
the range: 1.00e-03 < p <= 1.00e-02; *** refers to the p-value in the
range: 1.00e-04 < p <= 1.00e-03; **** refers to the p-value in the
range: p <= 1.00e-04. 



172

Box plots showing DSC distributions in the sub cohort's tumor size
and tumor complexity for both test and validation datasets are
shown in Fig. 2.  There is a clear trend toward better performance
and less variability for larger and less complex tumors. More
comparisons for differing slice-thickness groups, complexity classes,
tumor location, and tumor sizes performed on the test and external
validation dataset are provided in the supplementary materials
(Figs. 4–7 suppl.).



Examples of the automatically generated segmentations (from the
validation set) in comparison to contours segmented by 

Fig. 2: Quantitative performance with regards to tumor size and
complexity.  Quantitative performance is measured in volumetric
dice similarity coefficient (DSC). Tumor complexity is defined
through the necessity of using PET to produce segmentation. Data
were presented as box plots with overlaid swarm plots,  where boxes
are representing the interquartile range (IQR), extending from Q1 to
Q3 and centered on the median value. Upper whiskers represent the
highest data point that is less than Q3 + 1.5 × IQR. Lower whiskers
represent the smallest data point that is greater than Q1 − 1.5 ×
IQR. Data points outside whiskers are considered as outliers.  P
values were calculated using a two-sided Mann–Whitney–Wilcoxon
test with Bonferroni correction and referred as follows: “ns” on the
plot refers to the p value in the range: 5.00e-02 < p ≤ 1.00e+00;
*refers to the p value in the range: 1.00e-02 < p ≤ 5.00e-02; **refers
to the p value in the range: 1.00e-03 < p ≤ 1.00e-02; ***refers to the
p value in the range: 1.00e-04 < p ≤ 1.00e-03; ****refers to the p
value in the range: p ≤ 1.00e-04. The exact p values are reported in
the order from left to right and from the top to the bottom as they
are displayed on the figures. Calculations provided for: a the test
dataset of 93 independent NSCLC CT scans, corresponding p values
are: 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, and
1.000e+00; b the external validation dataset of 236 independent
NSCLC CT scans, corresponding p values are: 4.120e-04, 4.022e-02,
8.471e-03, 2.259e-03, 1.662e-05, and 1.117e-01. 
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Datasets 1 and 6 were used to compare the prognostic power of
measurements extracted from automatically generated and manual
contours, as they had available survival data. We calculated the
RECIST largest diameter and the tumor volume for both the expert
and the automatic segmentation and found that for both metrics the
automatically generated segmentations have more prognostic power.
Statistical differences in the probability of survival for two groups
separated by the median values of these measurements for
automated and manual segmentations are reported in Table 4.
Kaplan–Meier curves for survival split  based on the tumor volume
are shown in Fig. 4.  KM curves for survival split  based on RECIST
score can be found in the supplementary materials (Fig. 9 suppl.).
Additionally,  we have also evaluated the difference using univariate
cox analysis to report the cut-off independent results and looked at
the scatter plot for tumor volumes. C-index, hazard ratio, and p
values for a univariate Cox regression are reported in Table 3 in the
supplementary materials.  Scatter plots for tumor volume based on
manual vs automated segmentations can be found in the
supplementary materials (Fig. 10 supply.).

Fig. 3: Visualization of segmentations. Automatically generated
tumor segmentations are shown as red lines while manual
segmentations are shown in blue, the green dashed box shows the
area to be magnified for better visuals.  d–i display magnified area
for the (a–c, j–l) respectively.  Corresponding 2D dice similarity
coefficient is provided in the bottom left corner on the (d–i).  

Comparison to a published method 

A previously published external segmentation model (19) was
evaluated on dataset 8 and compared to our model.  The performance
of the published model was evaluated using two different inputs: (i)
as described in the original article (using patches of 256 × 256
pixels centered on the tumor); (ii)  using the whole slice.  For that
dataset,  our method achieved a DSC of 0.87 (IQR = 0.12), whereas
the published method achieved a DSC of 0.83 (IQR = 0.16) when the
cropped tumor regions were used and a DSC of 0.09 (IQR = 0.19) in
the fully automated configuration (no pre-cropping). Figures for
DSC, Ji,  and H95th are provided in the supplementary materials
(Fig. 8 suppl.).  

Prognostic power of automatic segmentation 
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Table 4. Statistical difference between survival groups separated by
the median values of RECIST and tumor volume. Statistical
comparison were performed using log rank test.  

Fig. 4: Prognostic power of NSCLC segmentations measured with
tumor volume. 



Comparison of prognostic power of non-small cell  lung cancer
(NSCLC) segmentation is measured through tumor volume. Tumor
volume is calculated based on the manual (a,  c) and automatically
generated contours (b, d).  Kaplan–Meyer curves for survival groups
based on tumor volume are displayed with 95% pointwise confidence
intervals.  P values are calculated using the log-rank test.  Vertical
hash marks indicate censored data. a,  b KM curves for Maastro-CT-
Lung-1 cohort of 419 NSCLC patients.  c,  d KM curves for Stanford
Lung cohort of 137 NSCLC patients.  

In silico clinical trial 

A registered in silico clinical trial  was performed to assess the
following endpoints: (1) the time needed for the processes of manual
and automated segmentation; (2) inter and intra-observer
variability; (3) the preference of experts for manual or automatically
generated segmentations. 

For the first and second endpoints,  seven medical imaging
specialists experienced in NSCLC contouring were asked to contour
the tumors of 25 patients from dataset 3 while being timed. Our
automated method was significantly faster than the fastest
participant (p < 0.0001). The mean time for the automated method
was 2.78 s/patient (SD = 0.44), whereas the mean time for manual
segmentation was 172.19 s/patient (SD = 158.99) (Fig. 5a).  
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Fig. 5: Contouring time and intra-observer variability.  Data were
presented as box plots with overlaid swarm plots,  where boxes are
representing the interquartile range (IQR), extending from Q1 to Q3
and centered on the median value. Upper whiskers represent the
highest data point that is less than Q3 + 1.5 × IQR. Lower whiskers
represent the smallest data point that is greater than Q1 − 1.5 ×
IQR. Data points outside whiskers are considered outliers.  P values
were calculated using a two-sided Mann–Whitney–Wilcoxon test
with Bonferroni correction and referred as follows: ****refers to the
p value in the range: p ≤ 1.00e-04. The exact p values are reported
in the order from the top to the bottom as they are displayed on the
figures. Dr1, Dr2, Dr3, Dr4, Dr5, Dr6, and Dr7—represent contours
made by the medical doctors, DL—represents automatically
generated contours. a Distribution of contouring time was obtained
on the 25 NSCLC patients by seven participants and the automated
method, corresponding p values are 2.816e-09 and 2.824e-09. b
Volumetric dice similarity coefficient (DSC) representing intra-
observer variability,  across participants and the automated method,
obtained on the 25 NSCLC patients,  corresponding p values are:
1.946e-10 and 1.946e-10. 

The median DSC for intra-observer variability among all  experts was
0.88 (IQR = 0.12) whereas automated segmentations were 100%
reproducible.  Individual intra-observer variability scores are
reported in Fig. 5b and the JI and H95th are reported in the
supplementary materials (Fig. 11a, b suppl.).  The median DSC for
interobserver variability was 0.81 (IQR = 0.24) (see Fig. 12 suppl.).

The results for assessment of the variability between expert
clinicians and the proposed automatic segmentation method
achieved on the validation dataset 8 are presented in Fig. 6.  Our
method achieved an average DSC of 0.82 (IQR = 0.14), whereas the
average DSC of experts inter-variability was 0.84 (IQR = 0.12).  
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On average, the participants preferred the automatic segmentation
above the expert’s contour in 55% (IQR = 12%) of the cases (Fig. 13a
suppl.).  Among the groups the qualitative preference scores were as
follows: students = 51% (IQR = 4%) computer scientists = 52% (IQR 
= 14%), medical doctors = 56% (IQR = 12%) and radiologists and
radiation oncologists = 59% (IQR = 13%) (Fig. 13b suppl.).

Fig. 6: Method performance vs interobserver variability.
Quantitative segmentation performance and interobserver
variability is measured using volumetric DSC across comparison
pairs obtained on 20 NSCLC patients.  DR1, DR2, DR3, DR4, and
DR5—represent contours made by the doctors (expert clinicians),  DL
—represents automatically generated contours. Orange box plots
correspond to manual segmentation vs manual segmentation
comparison and display interobserver variability.  Blue box plots
correspond to the proposed method vs manual segmentations
comparisons and display the proposed method performance. Data
were presented as box plots with overlaid swarm plots,  where boxes
are representing the interquartile range (IQR), extending from Q1 to
Q3 and centered on the median value. Upper whiskers represent the
highest data point that is less than Q3 + 1.5 × IQR. Lower whiskers
represent the smallest data point that is greater than Q1 − 1.5 ×
IQR. Data points outside whiskers are considered outliers.  

For the third endpoint,  we had 40 participants from four different
backgrounds: four health/medicine master students, 17 computer
scientists,  12 medical doctors working in the field of medical
imaging, and seven medical specialists (radiologists or radiation
oncologists).  In order to quantitatively evaluate the qualitative
preferences of experts regarding automated vs manual contours, we
developed a software tool which allowed experts to visually compare
the segmentation and choose their preferences.
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To set our model in the context of similar published work, Kamal et
al.  (2018) (17) used a Recurrent 3D-DenseUNet architecture to
segment lung cancers which allowed them to obtain a DSC of 0.74 on
a validation dataset of 40 patients.  Jue et al.  (2019) (19) evaluated
several 2D convolutional neural network (CNN) architectures such
as U-net,  Segnet,  full-resolution residual neural network (FRRN),
and incremental multiple resolution residual network (MRRN) to
segment patches of 160 × 160 pixels centered around the tumor,
achieving DSC of 0.68 on the external validation dataset.  Zhang et
al.  (2020) (25) used a modified version of ResNet to automatically
segment GTV and achieved an averaged dice similarity coefficient
(DSC) of 0.73 on the test set,  lacking however external validation

Discussion
 
We presented a deep learning-based approach that is able to achieve
state-of-the-art detection and 3D volumetric segmentation of NSCLC
on CT scans. Although several attempts to develop lung cancer CT
detection and segmentation methods have been previously made, we
believe our work is standing out,  especially in its external validation
and ability to work on full  thoracic CT scans without further input
needed by a human operator. To improve detection and
segmentation performance, we introduced several complementary
steps to the automatic segmentation pipeline: (1) a harmonization
routine for the preprocessing of CT scans in order to more
comprehensively unify patterns on the images for the models to
learn from; (2) a robust computer vision-based method to isolate the
lung area, allowing the subsequent deep learning step to focus on
the region of interest; (3) a dynamically changing loss function for
the training procedure, allowing us to control and modify the quality
of produced segmentation; (4) CTs of lung abnormalities other than
NSCLC were included in the training dataset as negative examples,
allowing our method to exclude them from the detection and
segmentation process; (5) lung CT slices without contours were also
used in the training process as negative samples, thereby increasing
the number of unique training samples and decreasing the false-
positive rate of the model; (6) although a 2D DL architecture was
employed, a 3D post-processing routine produced volumetric
segmentation. A prospective, registered in silico clinical trial
showed that the performance of the automatic segmentation model
is acceptable by modern clinical standards and that participants
preferred automatic segmentations more often than the manual
contours. Furthermore, RECIST and tumor volume based on the
automatic contours were able to generate a more significant split  of
survival groups than manual contours. 
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In future work we will  utilize the evaluated image factors (slice-
thickness, complexity class,  predicted tumor size, and tumor

of the model.  Ardila et al.  (2019) (16) developed a deep learning-
based software, which can detect lung cancer on low dose CTs with
an AUC of 94.4%. In our study we were not able to evaluate a patient
based AUC for lung cancer detection since all  patients had cancer,
instead, we have demonstrated that our model was able to detect
lungs containing cancer on low dose CTs with a robust AUC of 0.96
in the test and 0.98 in the external validation datasets.  Additionally,
we evaluated the performance of a published 3D U-net-based
approach on our validation dataset,  where our model outperformed
the published method.

The state-of-the-art detection accuracy and the fact that it  accepts
any CT containing the lungs as input means the software can be used
as a method for screening and detection of lung cancer. This is
further corroborated by the fact that CT scans acquired using
different parameters can be directly put in, making our method
multi-vendor and multi-reconstruction compliant to a certain
degree. The inclusion of cases that were hard to segment without a
co-registered PET scan allows the deep learning networks to learn
how to differentiate tumors from other lung abnormalities such as
atelectasis and tumors with mediastinal involvement, which in
conjunction with the accurate segmentation of the 3D tumor volume
means it  can be used clinically in radiotherapy settings or for big
data radiomics (and potentially other) research. The robust
automatic volumetric and RECIST measurements will  subsequently
have a positive impact on sample size calculations for clinical trials
(26). 

Although we attempted to address the flaws and limitations of
previous research while developing our software, there were
limitations to our work. The ground truth segmentations were
originally made on primary NSCLC. Therefore, although the software
has a high detection accuracy, it  is hypothetically limited to the
detection and segmentation of primary NSCLC tumors. Moreover, by
considering medical expert contours as the ground truth and taking
into account the high interobserver variability of the contouring
process (27), the deep learning network was also learning
inaccuracies,  such as contoured air (that certainly is not cancerous).
However, this effect can be alleviated by increasing the training
dataset size.  
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In this study, which followed the Standards for Reporting of
Diagnostic Accuracy Studies statement (28), the requirement for
written informed consent was waived. The institutional review board
of Maastricht University Medical Center has waived the need for
informed consent since the data were anonymized and
retrospectively collected with no intervention planned for 

 location) in order to give a confidence score to each segmentation
produced, providing added information to the user about which
segmentations might need more attention. Additionally,  we think it
would be interesting to evaluate our method in a prospective clinical
trial setting for tumor response to treatment evaluation utilizing the
automatic volumetric RECIST measurement. Since our method was
trained only on the planning/pretreatment CT scans, post-treatment
changes in the tumor and lung structures may impose extra
challenges on our automated segmentation approach.

Further tuning of the model on NSCLC CT scans, and other
independent NSCLC datasets can improve the performance of the
software, and advance it  towards clinical implementation. 

The ability of the software developed in this study to handle full
thoracic CT scans with different acquisition and reconstruction
parameters and without further human intervention represents the
pillar for its clinical transition. Clinical application of this software
following prospective validation can have a positive impact on the
management of lung cancer patients,  as it  will  improve the detection
accuracy, and provide a fast,  consistent,  and reliable volumetric
segmentation for treatment (evaluation) purposes. Furthermore, the
use of the software in large radiomics studies will  allow automation
and will  reduce the time needed to complete the studies in a robust
manner, as it  will  significantly decrease the time needed for the
rate-limiting part of the workflow—tumor segmentation. 

Methods
 
Description of data 

The pretreatment CT scans of 1414 NSCLC patients were
retrospectively collected and anonymized by each center and
approved by the respective institutional review boards. A
description of the data were provided in Table 1, and a description
of patient characteristics is provided in Supplementary Table 2. 
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Data inhomogeneity necessitated the harmonization of CT data in
order to achieve comparable representations of the tumor region.
Furthermore, several steps were introduced to reduce computational
power requirements and image noise and to optimize the contrast.
The first step is the extraction of a 3D array with voxel intensity
values represented as Hounsfield Units (HU) from Digital Imaging
and Communications in Medicine (DICOM) data. Next,  the image
contrast is enhanced using a lung window setting (window width
(WW) of 1500 HU and window level (WL) of −600 HU) to highlight
lung structures. All  voxel intensities outside of the upper and lower
limits are assigned the value of the closest limit.  Following this,
nearest-neighbor interpolation is applied to obtain isotropic spatial
resolution in the axial plane so that each pixel has a size of 1 × 1
mm2. After spatial normalization, an image with standard bone
window settings (WW: 1800, WL: 400) is saved, as it  is used as an
input in the lung isolation step of the workflow. In order to smooth
the effect of different reconstruction methods on the image and to
reduce the computational burden, intensity values are aggregated
into bins of equal width. This also allows optimization of storage
and image processing by packing the images into a much shorter 8-
bit integer range and by filtering high-frequency noise. Hereafter,
the image is cropped or padded with air intensity values to arrive at
a resolution of 512 × 512 pixels,  which is chosen as input for the
selected deep learning architecture. All  image processing and deep
learning modeling steps were performed in Python 3.7 with the
libraries and respective versions detailed in supplementary
materials Table suppl.  1.  

participants based on the study, and no compensations were
provided. The images in dataset 8 were segmented by five radiation
oncologists,  which allowed us to compare the performance of the
deep learning segmentation model to multiple manual delineations.
All  other segmentations were performed by a radiologist or
radiation-oncologist at the center where the diagnosis was made and
checked by at least one segmentation expert at our site.  The expert
segmentations were considered the ground truth for training and
further evaluations. Eighty-six patients from various datasets were
excluded due to missing tumor contours and the lack of a PET scan
to perform the segmentations according to a clinical protocol.
Survival data and CT scans for datasets 1 and 6 were collected from
the open sources. 

Image preprocessing 
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A robust algorithm for the isolation of the lung region was
developed in order to focus on the ROI and allow for the use of
whole body CT scans as input. First,  the CT couch is detected and
removed from the image volume. Air-fil led connected volumes are
detected and region growing and morphological operations are
applied in order to remove small vessels and to connect adjacent
regions, resulting in a 3D binary lung mask. The spine axis is
identified and the lung mask is halved and symmetrically flipped
about the sagittal plane, keeping the union of the flipped and the
original lung masks. By doing so, the algorithm is optimized for
handling lung abnormalities such as atelectasis,  pulmonary
infiltration, consolidation, and fibrosis.  To accurately identify the
spine axis,  a further algorithm was developed which identifies the
center of the spine using the stored preprocessed image with bone
window settings as described in the previous section (Fig. 14 a
suppl.).  A “bone image” slice containing the lung is projected onto
the coronal plane and filtered with a seventh order moving average
filter (Fig. 14 b-c suppl.).  This is repeated for the first five slices in
which the lung mask is present in order to find a starting point for
the center spine position 𝑆  .  The axis of the spine is positioned
normally to this point (Fig. 14 d suppl.).  

Lung region isolation 

0

Where P is a central spine point for the current axial slice,  n is the
number of slices (= 5).
Due to irregularities of patient positioning and anatomy, the central
spine position St is recalculated slice-wise by using exponential
smoothing: 



In order to increase robustness of the system to a wide range of
imaging parameters, the training dataset was expanded using
augmentation techniques with the following parameters: random
rotation around the image center pixel in a range of 0-25 degrees
with a probability of 60%, random horizontal and vertical shifts of 

Where x is a central spine point based on the filtered signal for the
current axial slice,  and ⍺  is  the weighting coefficient (= 0.3).
This method of flipping the lung mask allows for the inclusion of
regions that contain large-sized abnormalities,  such as lung
collapse, which obscure parts of the lung, whereas commonly used
methods exclude those regions (Fig. 14 f-g suppl.).  
A morphological dilation with the circle kernel (r=5) is applied to
the resulting lung mask in order to have a margin around the lung
area. The final binary lung mask is used to isolate the lung region
within the original image by setting all  the voxel values outside the
mask to the normalized air value. 

Tumor detection and segmentation 

The widely used 2D U-net convolutional neural network (CNN) was
employed for slice-wise tumor segmentation (30–33). The axial
projection was used to train the network due to the higher
resolution of image representation in this plane. To improve
segmentation performance, several changes were made to the
original CNN architecture. First,  rectified linear unit (ReLU)
activations were replaced with Exponential Linear Unit (ELU) in
order to alleviate the gradient vanishing problem and kick-start the
training process (34). Second, dropout layers with the dropout rate
(p = 0.5) were introduced prior to the 2 last layers of U-net encoder
to prevent overfitting (35). 
A 2D CNN architecture was chosen for several reasons: 1) by using a
2D input the training dataset can be increased by more than a factor
of 60, as overall  more than 60000 unique slices were available in the
training set; 2) due to calculation costs,  most present deep 3D
architectures could analyze only a sub volume of the medical image
(36,37), or they require a dimensionality reduction using
interpolation or other image processing methods. 2D architectures
do not have this problem and can process CT scans in the original
resolution; 3) our main goal was to develop a pipeline that can be
used in a clinical setting, and a 2D architecture allows for
significantly lower requirements for executing PC. Our software does
not require GPUs and can run on a regular laptop (Intel Core i5,
2.5GHz, 8GB RAM). 
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In order to evaluate tumor detection performance we generated
lung-based labels,  where lungs containing a tumor segmentation
were assigned a positive label and lungs without were labeled
negative. For cases where a tumor was present in both lungs of a
patient,  both were labeled positive. The ability of the system to
detect tumors was assessed by calculating the area under receiver
operating characteristic curve (ROC AUC) and generating a
confusion matrix. Automatically generated binary masks were
resampled to the original image resolution using cv2.INTER_BITS
interpolation before comparing with manual segmentations. The
contouring performance of the proposed pipeline, as well  as the
doctors variability,  were assessed by using the volumetric Dice
similarity coefficient (DSC), Jaccard index (Ji) and 95th percentile
Hausdorff distance (H95th). Additionally,  we have evaluated
quantitative contouring performance using Surface DSC and Added
Path Length (APL). 

the image in the range of 12% of image shape with  a probability of
25%, random zooming of the image with a maximum of 3% of the
image shape with a probability of 10%.
The loss function was calculated by combining the Dice similarity
coefficient (DSC) loss and the binary cross-entropy, and privilege
was given to the DSC loss during the first 50 epochs. The privilege
was defined by the coefficients before the DSC and cross-entropy
terms in the loss function. By adding the binary cross-entropy
component to the loss function, negative samples (slices without
contour) could also contribute to the training.
The model was trained for 300 epochs using eight NVIDIA GTX 1080
Ti GPUs. The Adam algorithm was used for the stochastic
optimization of the loss function (38). The cosine annealing
scheduler was used to adjust the learning rate during the training
process. A checkpoint function tracking the DSC on the test dataset
was used to keep the best weights.
Predicted 2D binary masks are stacked into a 3D volume and
connected component extraction is applied as a post-processing
step, whereby only spatially connected mask regions are extracted
(39). The connected region containing the most voxels is defined as
the primary gross tumor target volume (GTV-1) for quantitative
assessment. The final mask is resampled to the original image shape
using cv2.INTER_BITS interpolation. 

Evaluation metrics 
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The DSC is a measure of overlap between two volumes and was
computed as: 
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where A and B are the sets of voxels corresponding to the ground
truth and the automatic segmentation, respectively.  TP is the
number of true positive voxels,  FP is the number of false positive
voxels and FN is the number of false negative voxels.  
To evaluate the maximum deviation between the automatic
segmented surface boundary and the ground truth surface boundary,
the 95 percentile of Hausdorff distance (H95th) was used. Hausdorff
distance (H) is defined as: 

th

Jaccard index, used for gauging the similarity between two volumes,
was computed as: 

where a and b are the points on the voxel sets A and B, which
represent the ground truth and the automatic segmentation,
respectively.  Sa and Sb are the surfaces of A and B.
 Surface DSC at tolerance τ was computed as: 

Where A and B are the voxel sets of automatic and manual
segmentation respectively and PS  is the pixel spacing in the axial
plane in mm (41).  

xy

Where Sa and Sb are the surfaces of A and B, β  and β   are the
border regions of A and B at a given tolerance τ,  where τ is a
maximum deviation from the ground truth contour which would not
be penalized (40). Tolerance τ for the NSCLC segmentation task
have been evaluated on the dataset 8 using segmentations of 5
experts.
APL was defined as follows: 

τ

a b

τ
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In addition to the model performance evaluation on the test and
validation datasets,  the variability between expert clinicians was
assessed and displayed against the performance of our method by
comparing the volumetric DSC among all  possible comparison pairs,
i .e.  experts were compared with each other as well  as with the
proposed method. 
To better gauge the performance of our model under varying
circumstances, it  was evaluated with regard to slice-thickness,
tumor complexity,  tumor size, and tumor location. Tumor size sub
groups were chosen based on the overall  tumor size distribution in
the training set.  Furthermore, expert subjective tumor complexity
labels were defined. To describe the complexity of the tumor, two
medical doctors were asked to label the test and validation dataset
as follows: for tumors where segmentation cannot be performed
without a corresponding PET scan the labels were set to “1”, and “0”
otherwise. In case of disagreement, the label “1” was chosen.
Additionaly, one medical doctor have also labeled the tumor
locations on the test and validation datasets,  where tumor locations
were defined as follows: lung parenchyma, mediastinum and chest-
wall  involvement. Tumor locations were selected based on the
discussion with clinical experts and existing published research
(42). 

Statistical analysis 

For all  non-normally distributed scores the median and interquartile
range (IQR) were reported, as well  as the frequency histograms (29).
Statistical significance was assessed using a two-sided Mann-
Whitney-Wilcoxon test with Bonferroni correction. Survival
evaluation was done in R (version 4.0.2) using survival (version 3.1-
12) and survminer (version 0.4.7) packages. To estimate the
difference between survival groups a log-rank test was applied. High
and low survival groups were separated by the median tumor volume
or median RECIST measurement respectively.  A random sampling
with replacement bootstrapping strategy was used to compute
confidence intervals for AUC values. 



An in-silico clinical trial 

This trial was registered at clinicaltrials.gov (NCT04164186). For
the first and second endpoints (the time needed for the 
processes of manual and automated segmentation, and inter and
intra-observer variability),  participants used a state of the art
commercial software (MIM version 7.0.4) to produce the
segmentations. In order to make the conditions of the trial close to
the real clinical practice, experts had CT and PET scans available for
each patient and they were able to use a semi-automated
segmentation solution provided by MIM, while the proposed method
generated the segmentation using only CT scans. 

For the third endpoint (preference of experts for manual or
automatically generated segmentations),  a software tool was
developed in-house. The tool has two interactive screens with the
first screen showing the description of the experiment and a small
questionnaire. In order to analyze preferences at different levels of
expertise, the participants were asked to specify their training (e.g.
radiologist,  radiation-oncologist,  medical doctor).  The second
screen displays comparisons between pairs of segmented axial CT
slices (automatic vs.  expert) with randomized screen positions,
blinded to the participant. For each comparison pair,  the
participants were asked to select the more accurate contour. Finally,
a table was generated containing the choices made. Screenshots of
this tool are provided in supplementary materials (Fig. 15-16
suppl.).  
The software tool presents scans and contours from the external
validation datasets 8. It  randomly selects 100 pairs of contoured CT
slices, where the DSC between the contours was higher than 0.7.
During the assessment, participants were able to adjust the image
contrast by changing window settings (WW and WL), and to leave
comments. 

The preference of the experts was evaluated using the qualitative
preference score, defined as: 
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where n  is a number of times where preference was given to the
proposed method, n  is a number of cases in total.  
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Data availability 

The datasets 1,6,7,8 used in this study are available open source and
can be acessed through the corresponding sources: dataset 1 -
https://wiki.cancerimagingarchive.net/display/Public/NSCLC-
Radiomics; dataset 6 -
https://wiki.cancerimagingarchive.net/display/Public/NSCLC+
Radiogenomics#28672347a99a795ff4454409862a398ffc076b98;
dataset 7 -
https://wiki.cancerimagingarchive.net/display/Public/NSCLC-
Radiomics-Genomic s#16056856db10d39adf704eefa
53e41edcf5ef41c; dataset 8 -
https://wiki.cancerimagingarchive.net/display/Public/NSCLC-
Radiomics-Interobs
erver1#52756590171ba531fc374829b21d3647e95f532c. 
The processed datasets 2,3,4,5,9,10 are available under restricted
access as they were provided under Data Transfer Agreements from
corresponding centers,  and are not yet public due to data privacy
laws, access can be obtained through the corresponding author upon
request subject to ethical review. Approximate time for processing
the data request is one month. The raw datasets 2,3,4,5,9,10 are
protected and are not available due to data privacy laws. The
minimum dataset is available on the GitHub repository of this
project: https://github.com/primakov/DuneAI-Automated-
detection-and-segmentation-of -non-small-cell-lung-cancer-
computed-tomography-images/tree/main/Software
%20for%20qualitative%20assesment/test_data. Philippe Lambin
should be addressed for correspondence and material requests
(email:  philippe.lambin@maastrichtuniversity.nl) 

Code availability 

Code, model files,  extra software used in this manuscript and
derived data to reproduce the results are available on the GitHub
page: https://github.com/primakov/DuneAI-Automated-detection-
and-segmentation-of -non-small-cell-lung-cancer-computed-
tomography-images. Code for the conversion of DICOM to NRRD
format is available through Precision medicine toolbox43 GitHub
page: https://github.com/primakov/precision-medicine-toolbox 
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DEEP LEARNING BASED
IDENTIFICATION OF BONE

SCINTIGRAPHIES CONTAINING
METASTATIC BONE DISEASE

FOCI
 

CHAPTER 7: 



Metastatic bone disease (MBD) is the most common form of
metastatic lesions (1,2).  The incidence of bone metastasis varies
depending on the cancer type (3),  yet around 80% of MBD arise from
breast and prostate cancers (4).  MBD, as the name implies,  is due to
the propensity of these tumours to metastasize to bones, and it
results in eventually difficulty treating painful lesions. Henceforth,
early diagnosis is necessary for individualized management that
could significantly improve a patient’s quality of l ife (5).  

Abstract 

Purpose 
Metastatic bone disease (MBD) is the most common form of
metastases, most frequently deriving from prostate cancer. MBD is
screened with bone scintigraphy (BS), which have high sensitivity
but low specificity for the diagnosis of MBD, often requiring further
investigations. Deep learning (DL) - a machine learning technique
designed to mimic human neuronal interactions- has shown promise
in the field of medical imaging analysis for different purposes,
including segmentation and classification of lesions. In this study,
we aim to develop a DL algorithm that can classify areas of
increased uptake on bone scintigraphy scans. 

 
Methods  
We collected 2365 BS from three European medical centres. The
model was trained and validated on 1203 and 164 BS scans
respectively.  Furthermore we evaluated its performance on an
external testing set composed of 998 BS scans. We further aimed to
enhance the explainability of our developed algorithm, using
activation maps. We compared the performance of our algorithm to
that of 6 nuclear medicine physicians. 

Results 
The developed DL based algorithm is able to detect MBD on BSs,
with high specificity and sensitivity (0.80 and 0.82 respectively on
the external test set),  in a shorter time compared to the nuclear
medicine physicians (2.5 min for AI and 30 min for nuclear
medicine physicians to classify 134 BSs).  Further prospective
validation is required before the algorithm can be used in the clinic.  

Background 
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In this study, we hypothesize that DL-based algorithms can learn

MBD is usually detected using radionuclide bone scintigraphy (or
bone scans, BS). BS are nuclear medicine images, which are used
frequently to evaluate the distribution of active bone formation,
related to benign or malignant processes, in addition to
physiological processes. BS scans are indicated in a spectrum of
clinical scenarios including exploring unexplained symptoms,
diagnosing a specific bone disease or trauma, and the metabolic
assessment of patients prior to and during the treatment (6,7).  BS
combining whole-body planar images and tomographic acquisition
(SPECT – single photon emission computed tomography) on selected
body parts are highly sensitive, as they detect metabolic changes
earlier than conventional radiologic images, with lower sensitivity to
lytic lesions. However, depending on the pattern it  may lack the
specificity to identify the underlying causes. Therefore, a SPECT/CT
that correlates the findings of bone scintigraphy anatomically is
often useful and leads to a more specific diagnosis of the changes
noted (8),  although MRI scans may also be additionally requested to
clarify the diagnosis.  Hence, a tool to improve the specificity of
decisions based on BS, and reduce the need for further imaging is a
relevant unmet clinical need. 

Deep learning (DL) is a branch of machine learning (ML), and refers
to data driven modelling techniques, which applies the principles of
simplified neuron interactions (9).  The application of imaging
analysis techniques using artificial neurons on medical imaging
started to draw attention decades ago [10], but it  only became a
major research focus recently due to the advancement in
computational capacities and imaging techniques (11, 12). The
artificial neuron model is used as a foundation unit to create
complex chains of interactions - DL layers. These layers are used to
generate even more complex structures - DL architectures. The
neural network (NN) training procedure is typically a cost-function
minimization process. The cost function measures the error of
predictions based on the ground truth labels (13), and the DL
network learns how to solve a problem directly from existing data,
and apply it  to data it  has never seen. These complex models contain
the parameters (weights) for millions of neurons, which can be
trained for the recognition of problem-related patterns in the data
being analysed. Several studies investigated the potential of DL-
based algorithms for analysing bone scintigraphy scans (14,15,16).
The majority of these studies applied DL-algorithms on BS scans of
diagnosed (specific) cancer patients,  which could limit the learning
ability of the DL-algorithm to differentiate MBD from other bone
diseases. 
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The imaging data were retrospectively collected from different
European centres: Aachen RWTH University Clinic (Aachen,
Germany), Aalborg University Hospital (Aalborg, Denmark), and
Namur University Hospital (Namur, Belgium). The scans were
acquired at each center,  following local protocols and with different
scanner and acquisition parameters. The electronic medical records
of these hospitals were searched for patients who underwent BS
between 2010 and 2018. Patients for whom a definitive
classification of the foci was available, mostly through further
investigations, were further included. All  images were acquired with
anteroposterior (AP) and posteroanterior (PA) whole-body views.
The imaging analysis was approved by the Aachen RWTH
institutional review board (No. EK 260/19). According to Danish
National Legislation, the Danish Patient Safety Authority can waive
informed consent for retrospective studies (approval 31-1521-110).
All  methods were carried out in accordance with the relevant
guidelines and regulations (20). The study protocol for the in silico
trial was published on clinicaltrials.gov (NCT: NCT05110430).
Manual segmentation of the metastatic spots was performed on 25
BS scans coming from Namur University Hospital by the treating
radiation oncologists.  

the pattern of metastatic bone disease on bone scintigraphy scans,
and differentiate it  from other non-metastatic bone diseases. We
investigate the potential of a DL-based algorithm to detect MBD on
BS, not limited to those of cancer patients,  based on activation maps
obtained using the gradient weighted class activation mapping
(Grad-CAM) method (17, 18). By doing so, we aim to develop a
generalizable tool that can classify scans containing metastases and
detect MBD on BS. Moreover, extracting activation maps with the
Grad-CAM method (19) and superimposing these maps to the
original BD scans, we explored the explainability of the deep
learning model’s predictions. This is very important to promote the
application of these methods in the clinic and avoid the common
misconception that sees DL models as “black boxes” without any real
connection to clinical and imaging characteristics.  

Methods 

Imaging data 
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Every datapoint containing acquisition at two views (AP and PA) was
resized to size (length = 256, height = 512) and the intensities were
normalized to range [0–1] using the minimum and maximum
intensity of each image. For all  the data points,  image acquisitions
at both views are appended besides each other as shown in Fig. 1.  

Image pre-processing 
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Fig.1 Example of pre-processed BS scans used as input for model
training



Table 1 Division of the patients cohort between training, validation
and external test 

Model architecture, training and testing 
The training and validation datasets are composed of 1203 and 164
images respectively,  coming from Centre A (Aachen) and B
(Aalborg).  The external test cohort is composed of 998 images
collected at centre C (Namur). A full  overview of the patients cohort
division between the different datasets is reported in Table 1. 
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The last Max Pooling layer in the VGG16 model was followed by a
Global Average pooling layer, followed by a fully connected layer
with 512 units and ReLu activation, which is followed by a
classification layer containing 2 units with Softmax activation (23)
as shown in Fig. 2.  The network weights are updated by using the
Adam optimizer at learning rate of 1e− 4 (24). The model’s
performance was evaluated on an external test dataset (n = 998). 

The model was trained on 329 images containing metastasis from
Centre B (94) and A (235). At each epoch, the 874 images without
any metastasis were shuffled and 329 images were randomly
selected to train the model with balanced labels.  VGG16 architecture
with ImageNet pretrained weights (21) was trained with categorical
cross entropy loss for 6 epochs with 200 steps per epoch. The model
was trained with 3 channel input. The pre-processed input was
duplicated in all  the channels,  concatenating the inputs along the
whole channels dimension to match the size of the pretrained
ImageNet. During the training, the images were augmented (22) by
flipping along the vertical axis so that the views at AP and PA were
randomly represented in the left or right in the images. 
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Fig. 2 The architecture used in the study. Pre-processed BS scans
resized to 512 * 512 dimensions were provided as input to the
network. The network outputs a probability score for presence and
absence of metastasis on BS images. X = block repetitions, Conv =
Convolution kernel,  ReLU = rectified linear unit,  3 × 3 = the size of
the 2D CNN kernels 

The following software packages were used: Python v3.6, Keras
v2.0.6 for modelling, training and validation and Sklearn v1.1.1 for
metrics calculation and results visualization. The model was trained
and validated on a 11GB NVidia GeForce GPU. 

Quantitative metrics 
The quantitative model performance in this study was assessed
using ROC AUC, sensitivity and specificity of the classifier and
confusion matrix (true positive rate (TPR), true negative rate (TNR),
false negative rate (FNR) and false positive rate (FPR)). The model
was evaluated according to the Checklist for AI in Medical Imaging
(CLAIM) (25) and Standards for Reporting Diagnostic accuracy
studies (STARD) (26). 



To better gauge the proposed DL model performance, we developed
an application allowing the creation of a reference performance
point by collecting nuclear medicine physician’s feedback based on
the visual assessment of BS scans. We have enrolled 6 nuclear
medicine physicians (from one to ten years’  experience) to measure
their performance on the evaluation dataset of 134 BS images. This
dataset was sampled from the Centre C images with an equal number
of negative and positive cases. In order to collect participant’s
feedback, the application was displaying BS image, comment window
and window filtering settings (Fig. 3).  In the end of the feedback
assessment an excel fi le was generated. For better visual comparison
we have evaluated DL based AUC on the same dataset that has been
used for visual assessment (134 BS images).  Bootstrapping
technique, involving 100 resamples obtained via random sampling
with replacement from the same dataset,  was utilized to estimate
ROC AUC 95% confidence interval.  Also F1 scores have been
calculated and reported for the performance of both the model and
the reader study. 

In silico clinical trial 
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Fig. 3 Screenshot of the application feedback window used in the in
silico trial 



The classification performances of the DL model were evaluated on
the external test set coming from Centre C, in terms of Area under
the Curve (AUC). The AUC gives the diagnostic ability of a binary
classifier to discriminate between true and false values, in this case
metastatic and non-metastatic bone disease. Figure 4 (left)
represents the ROC curve of the DL classification model,  while Fig.
4 (right) is the confusion matrix, which reports the percentages of
correct and incorrect classification for each class (metastatic and
non-metastatic).  

Results 

Model performance 
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During the testing phase of the trained model,  for the scans that
were predicted positive (i.e.  metastatic disease),  activation maps
were extracted using the Grad-CAM method. The method uses the
gradients extracted corresponding to the class with highest
predicted probability,  flowing through the last convolutional layer,
to produce the activation map. The map was then resized to the size
of the input image and 

Fig. 4 ROC curve for the classification DL model (left) and
Confusion matrix (right) 

The model achieved an AUC of 0.897, TPR of 82.2%, TNR of 80.45%,
FPR of 19.55% and FNR of 17.79% on the external test set (n = 998).
The model achieved a CLAIM score of 64% (27 out of 42 items) and
STARD of 50% (15 out of 30 items). 

Explainability of trained model based on activation maps 



superimposed on the original BS scan, allowing visual inspection of
activated zones on the image as shown in Figs. 5 and 6. 
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Fig.5 BS images which are correctly classified along with their
corresponding activation maps extracted using the GRAD-CAM
method. Left) original BD scan, Right) Grad-CAM activation maps
obtained from the DL model.  Scan correctly classified with a
probability of 0.78 (top) and 0.99 (bottom) 



Fig. 6 BS images which are wrongly classified along with their
corresponding activation maps extracted using the GRAD-CAM
method. Left) original BD scan, Right) Grad-CAM activation maps
obtained from the DL model.  Scan incorrectly classified with a
probability of 0.79 (top) and 0.63 (bottom) 

In silico clinical trial 
The performance of nuclear medicine physicians based on the BS
images was evaluated using AUC (Fig. 7,  left),  where median
performance of the nuclear medicine physician was 0.895 (IQR =
0.087) with F1 score of 0.865 and median performance of DL based
method was 0.95 (IQR = 0.024) with F1 score of 0.866. 
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In this study, we investigated the potential of DL-based algorithms
to detect MBD on BSs collected from different centres without
limiting the study population to cancer patients.  All  BS scans were
acquired at each center, following the standard of care, with
different scanners brands and acquisition protocols,  assuring the
robustness and generalizability of the resulting DL model.  Our
results show that DL-based algorithms have a great potential to be
applied as clinical decision aid tools,  which could minimize the time
needed by a nuclear physician to assess BSs, and increase the
diagnostic specificity of BSs. The application of the state-of-the-art
classification techniques has yielded a performance similar to
nuclear physicians with no background about the patients’  history,

Fig. 7 Violin plots showing the distributions of AUC scores for DL
based and manual (across physicians) metastases detection on BS
(left);  boxplots of the log of the time needed by DL algorithm and
nuclear medicine physicians (right) 

On average, nuclear medicine physicians spent 30 min to classify all
the 134 scans (Fig. 7,  right).  Given that the physicians had no access
to clinical information about the patients,  it  takes on average 15 s to
review one scan. In comparison, the developed algorithm takes 2
and half minutes to classify all  the 134 scans, which is around 2 s
per patient/ scan. 

Discussion 
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However, the authors did not report on the comparison with the
performance of nuclear medicine physicians. Another study
investigated the performance of two DL architectures for classifying
BS of prostate cancer patients (28). The study included a large
number of scans, and the authors reported that the best model
achieved an overall  accuracy of 0.9. Anand et al.  reported on the
performance of EXINI bone software, a classification tool for
classifying BS of prostate cancer patients based on bone scan index,
on simulated and patient scans (29). The authors reported that the
software was more consistent in classifying BS compared to visual
assessment. Uniquely, we trained our model on patients with and
without a history of cancer. The use of our developed algorithm
resulted in better classification results on the external test set
compared to the median nuclear medicine physician performance, in
a significantly shorter time. These results highlight the potential of
such algorithms to become reliable clinical decision support tools
that minimize the time a clinician needs to review bone scintigraphy
scans. Furthermore, Grad-CAM maps allow the nuclear physicians to
rapidly check the spots based on which the classification was made.
The activated regions are compared with radiologists’  segmentation
of metastatic spots for qualitative assessment of the explainability
of the model’s predictions on 25 BS scans (centre C) manually
segmented by clinicians (Figs. 5 and 6).  The activated regions
superimposed on the image can be used in a clinical setting for
qualitative assessment by radiologist which further impacts precise
diagnosis.  In the case of misclassification, Grad-CAM activation
maps can help to quicky identify the area of the scan on which the
model based its decision. In the reported case in Fig. 6,  the image
clearly evidence the injection spot located in the hand of the
patients and other hyper  intense regions in the pelvic bone as
reasons for misclassification. This suggests the model

which was further endorsed by the results of the in silico clinical
trial.  

Some studies previously investigated the potential of DL algorithms
to classify lesions on BSs (27). A study investigated the potential of
a DL algorithm trained on 139 patients to detect MBD on BSs of
prostate cancer patients (16). The authors reported that the nuclear
medicine physicians participating in the study achieved a higher
sensitivity and specificity compared to the DL algorithm, though the
differences were not statistically significant,  and highlighted the
possibility of involving DL in this clinical aspect.  Another study also
investigated the ability of DL algorithms to detect MBD in BS of
prostate cancer patients (15).  
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The data that support the findings of this study are not publicly
available. 

which shows model’s overfitting (30) on features that are not
relevant to the metastatic spot to classify presence or absence of
metastasis in images. 

While our study included a relatively large number of scans for
training and externally testing the algorithm, several l imitations of
this study should be noted. Although explainability of model’s
predictions were explored with qualitative assessment, this study
lacks quantitative assessment of the activations due to the limited
number of manual segmentations of metastasis (25) on the external
test dataset.  This could represent a strong point in the future
development of the tool,  with the availability of larger annotated
datasets.  Secondly, a prospective validation is required to properly
assess the possible impact of the algorithm on the current standard
of care, and considering other clinical characteristics of the patients
(for example age, sex or primary tumour) that could influence
classification performances. This is especially important given the
current retrospective nature of the study, to prove beyond
reasonable doubts that the classification performances are due to
imaging features and not based on clinical/demographic data
instead. Lastly,  the physicians performances in the in silico trial are
only indicative, as they were provided only with planar images,
without corresponding SPECT and CT images, and without any
clinical covariates available. Obviously, this approximates the actual
routine in clinical settings, but it  provides a fair indication of the
potential added value of the proposed DL model.  

Conclusion

We developed a DL based algorithm that is able to detect MBD on
BSs, with high specificity and sensitivity.  This tool can be used also
as a didactic support for radiologists in training. Further
prospective validation is required before the algorithm can be used
in the clinic 

Availability of data and materials 
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Abbreviations 

AP:
Anteroposterior 

BS:
Bone scintigraphy 

DL:
Deep learning 

FNR:
False negative rate 

FPR:
False positive rate 

IQR:
Interquartile range 

MBD:
Metastatic bone disease 

PA: 
Posteroanterior 

ROC:
Receiver operating curve 

TNR:
True negative rate 

TPR:
True positive rate 
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Highlights 

•Medical imaging demands automation but is lacking methodology
standardization. 

•Medical imaging data curation and exploration are performed in an
in-house manner. 

•Our toolbox is aimed to fil l  these gaps and enable automated
pipelines in radiomics. 

•The toolbox will  increase reproducibility in quantitative medical
imaging research. 

•The community is encouraged to contribute to develop a powerful
tool for radiomics. 

Abstract  

Medical image analysis plays a key role in precision medicine. Data
curation and pre-processing are critical steps in quantitative
medical image analysis that can have a significant impact on the
resulting performance of machine learning models.  In this work, we
introduce the Precision-medicine-toolbox, allowing clinical and
junior researchers to perform data curation, image pre-processing,
radiomics extraction, and feature exploration tasks with a
customizable Python package. With this open-source tool,  we aim to
facilitate the crucial data preparation and exploration steps, bridge
the gap between the currently existing packages, and improve the
reproducibility of quantitative medical imaging research. 

Keywords  

Medical imaging research, DICOM, Radiomics, Statistical analysis,
Features, Image pre-processing 
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Medical imaging allows the visualisation of anatomical structures
and metabolic processes of the human body and plays an integral
part in clinical decision-making for diagnostic,  prognostic,  and
treatment purposes (Beheshti and Mottaghy [2021], Wei et al.
[2019]).  Medical imaging is becoming increasingly popular in
clinical practice due to increasing accessibility of hardware, rising
population and growing confidence in the utility of multiple imaging
modalities (Smith-Bindman et al.  [2008]).  Precision medicine aims
to enhance individual patient care by identifying subgroups of
patients within a disease group using genotypic and phenotypic data
for better understanding of the disease characteristics and
consequently targeting the disease with more precise treatment (Niu
et al.  [2019], Carrier-Vallières [2018]).  Medical image analysis plays
a key role in precision medicine as it  allows the clinicians to identify
anatomical abnormalities and it  is routinely used in clinical
assessment (Acharya et al.  [2018]).  The amount of healthcare
imaging data from disparate imaging sources is exploding and it  is
not possible for radiologists to cope up with the increasing demand.
Multiple studies have shown that there is a significant inter-
observer variability for various clinical tasks (Kinkel et al.  [2000], 

1. Introduction 
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Luijnenburg et al.  [2010]).  Hence, there is a need for quantitative
image analysis tools to aid the clinicians in meeting the challenges
of rising demand and better clinical performance. Radiomics is the
extraction of quantitative image features and correlating them with
biological and clinical outcomes (Lambin et al.  [2017]).  The field of
radiomics is gaining traction each year due to increase in
computational power and increasing amount of multimodal data
(Oren et al.  [2020], Aggarwal et al.  [2021], Zhou et al.  [2021]) as
illustrated by Figure 1. The field of radiomics has demonstrated
promising results in various clinical applications including
diagnostics,  prognosis and decision support systems (Tagliafico et
al.  [2020], Zhang et al.  [2017], Wang et al.  [2021], Mu et al.
[2020]).  Radiomics can broadly be classified into two different
categories: handcrafted radiomics and deep learning. Handcrafted
radiomics utilises machine learning techniques and image biomarker
standardisation initiative (IBSI)-compliant handcrafted features
(such as shape, intensity,  and texture features) extracted from a
specific region of interest (Rogers et al.  [2020]).  Pyradiomics is one
of the available open source tools that allows the extraction of IBSI-
compliant handcrafted radiomics features (van Griethuysen et al.
[2017]).
Deep learning automatically learns representative image features
from the high dimensional image data without the need of feature
engineering by using non-linear modules that constitute a neural
network (Schmidhuber [2015]).  Convolutional neural networks are
deep neural networks that became popular in 2012 after the AlexNet
architecture demonstrated state-of-the-art performance for image
recognition (Krizhevsky et al.  [2017]).  Since then, convolutional
neural networks have demonstrated state-of-the-art performance for
many clinical tasks (Murtaza et al.  [2020], Bhatt et al.  [2021],
Mazurowski et al.  [2019]).  Tensorflow (Abadi et al.  [2016]) with
Keras interface (Gulli  and Pal [2017]) and Pytorch (Paszke et al.
[2019]) are popular deep learning frameworks for the
implementation of deep neural networks. 
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Moreover, it  is also important to perform an exploratory analysis on
the handcrafted radiomics features and visualise discriminatory
statistics.  While there are available tools for the implementation of
entire radiomics pipeline such as Nipype (Gorgolewski et al.
[2016]),  Pymia (Jungo et al.  [2021]),  and MONAI (MONAI 

Figure 1 - Number of publications, by year, containing the keyword
‘radiomics’  in PubMed database. 

Data Curation and pre-processing of medical images are time-taking
and critical steps in the radiomics workflow that can have a
significant impact on the resulting model performance (Fave et al.
[2016], Hosseini et al.  [2021], Zhang et al.  [2019]).  The data
curation step usually comprises several steps such as image format
conversion, out-of-distribution detection and checks for redundant
modalities,  unacceptable convolution kernel,  and missing or
overlapping slices.  These steps may be performed manually or using
low level python libraries such as Pydicom (Mason [2011]),  Nibabel
(Brett et al.  [2020]),  SimpleITK (Yaniv et al.  [2018]),  Numpy (van
der Walt et al.  [2011]),  Pandas (McKinney and Others [2011]),  Scipy
(Virtanen et al.  [2020]),  Scikit-image (van der Walt et al.  [2014]),
and Scikit-learn (Kramer [2016]).  The re-implementation of the
above-mentioned data curation steps by the researchers makes it
error-prone and results in increased difficulty for reproducibility.  It
is also important to investigate the potential of image processing
during the development of a radiomics workflow. Image biomarker
standardisation initiative (IBSI) also emphasises on the need of
image processing before the extraction of radiomics features
(Zwanenburg et al.  [2020]).  
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Consortium [2020]),  there is stil l  a need of a toolbox that allows
researchers to perform critical tasks such as data curation, image
pre-processing and handcrafted radiomics feature exploration
during the development of the radiomics study.
In this paper, we introduce the precision-medicine-toolbox that
allows researchers to perform data curation, image preprocessing
and handcrafted radiomics feature exploration tasks. This toolbox
will  also benefit  the researchers without a strong programming
background to implement these critical steps and increase the
reproducibility of quantitative medical imaging research. In this
paper, we discuss the functionality of the first release of this open
source project.  In future, more functionality will  be added to the
toolbox. 

2. Methods 

2.1 Example data 
The functionality of the toolbox is demonstrated on the Lung1 open-
source dataset.  The Lung1 dataset (Jungo et al.  [2021], MONAI
Consortium [2020], Aerts et al.  [2014]) contains pretreatment CT
scans of 422 non-small cell  lung cancer (NSCLC) patients,  as well  as
manually delineated gross tumor volume (GTV) for each patient,  and
clinical outcomes. The imaging data is presented in Digital Imaging
and Communications in Medicine (DICOM) format. The delineations
are available in Radiotherapy Structure (RT Structure) format. The
clinical data is present in Comma-Separated Values (CSV) format. 

2.2 Design and implementation 

2.2.1 Organisation of the toolbox 
The toolbox allows for the preparation of the imaging datasets and
exploration of the feature datasets.  As il lustrated in Figure 2,
dedicated base classes have been implemented for each dataset type
(imaging or features) to extract the corresponding data, as well  as
the associated metadata. The functionality classes inherit from the
base classes. This approach allows for the separation of reading and
processing tasks and makes it  readily available for new data formats
or functions. 
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Figure 2 - Organisation of the precision-medicine-toolbox: The
DataSet class takes an imaging dataset as in input and is inherited
by the ToolBox class; the FeaturesSet class takes a features dataset
as an input and is inherited by 
the AnalysisBox class.  

2.2.2 Imaging module 
This module allows for pre-processing and exploration of the
imaging datasets.  It  consists of the base DataSet class and the
inheriting ToolBox class.  The DataSet class reads the imaging data
and the corresponding metadata and initializes a dataset object.  The
ToolBox class allows for high-level functionality while working with
the raw computed tomography (CT) or magnetic resonance (MR)
imaging data. Currently,  the following functions are implemented:
• dataset parameters exploration by parsing of the imaging
metadata, 
•  dataset basic quality examination, including check of imaging
modality,  slice thickness, number of slices,  in-plane resolution and
pixel spacing, and reconstruction kernel,
• conversion of DICOM dataset into volumetric Nearly Raw Rusted
Data (NRRD) dataset,  
•  image basic pre-processing, including bias field correction,
intensity rescaling and normalization, histogram matching,
intensities resampling, histogram equalization, image reshaping,
• unrolling NRRD images and ROI masks into Joint Photographic
experts Group (JPEG) slices for a quick check of the converted
images or any existing NRRD or MetaImage Medical Format (MHA)
dataset,  
•  radiomics features extraction from NRRD/MHA data using
PyRadiomics package (van Griethuysen et al.[2017]).  
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2.2.3 Features module 
This module allows for the exploration of the feature datasets.  It
consists of the base FeaturesSet class and the inheriting AnalysisBox
class. The FeaturesSet class reads the features data and the
corresponding metadata, and initializes a FeaturesSet object.  The
AnalysisBox class allows for the basic analysis of the features.
Currently,  the following functions are implemented: 
• visualization of feature values distributions in classes,
• visualization of features mutual Spearman correlation matrix,
• calculation of corrected p-values for Mann-Whitney test for
features mean values in groups,
• visualization of univariate receiver operating characteristic (ROC)
curves for each feature and calculation of the area under the curve
(AUC),
• volumetric analysis,  including visualization of volume-based
precision-recall  curve and calculation of Spearman correlation
coefficient between every feature and volume,
• calculation of basic statistics (number of missing values, mean,
std, min, max, Mann-Whitney test p-values for binary classes,
univariate ROC AUC for binary classes, Spearman’s correlation with
volume if  volumetric feature name is sent to function) for every
feature. 

2.3 Online documentation and tutorials 

The online documentation for the precision-medicine-toolbox
contains information about the source code, third-party packages,
package installation, quick start,  instructions for contribution,
information about the authors, code licence, and acknowledgments.
The examples of the toolbox functionality implementation are
presented in tutorials.  The full  description of the classes and
methods is presented in Application Programming Interface (API)
specifications. 
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– Features_module.ipynb: tutorial i l lustrating functionality for the
features datasets,  

3 Results 

3.1 Design and implementation 

3.1.1 Organisation of the toolbox 
The precision-medicine-toolbox is implemented in Python (Python
Software Foundation, Wilmington, DA, U.S.) and requires version
3.6 or higher. The source code is hosted on 
GitHub (https://github.com/primakov/precision-medicinetoolbox)
and Zenodo platform (DOI 10.5281/zenodo.6126913). It  depends on
the following packages: NumPy (Harris et al.  [2020]),  SimpleITK
(Lowekamp et al.  [2013]),  Tqdm (Lowekamp et al.  [2013], da Costa-
Luis [2019]),  Pydicom (Mason [2011]),  Pandas (Mason [2011],
McKinney [2010]),  PyRadiomics (van Griethuysen et al.  [2017]),
Scikit-image (van der Walt et al.  [2014]),  Ipywidgets (jupyter-
widgets),  Matplotlib (Hunter [2007]),  Pillow (Clark [2015]),
Scikitlearn (Buitinck et al.  [2013]),  Scipy (Buitinck et al.  [2013],
Virtanen et al.  [2020]),  Plotly (noa), Statmodels (Seabold and
Perktold [2010]).  The precision-medicine-toolbox package has been
released under the BSD-3-Clause License and is available from the
Python Package Index (PyPI) repository
(https://pypi.org/project/precision-medicine-toolbox/).  An easy
installation of the latest version is possible with “pip install
precision-medicine-toolbox” command. At the time of submission of
this work, precision-medicine-toolbox is at 0.0 release. The project
has the following structure:
• README.MD: file with the project overview,
• Requirements.txt:  fi le with the list of the packages to be installed,
• LICENSE: statement of the license applicable to the project’s
software and manuscripts,
• .gitignore: specification of the files,  intentionally untracked by Git,
• .readthedocs.yaml: Read the Docs configuration file,
• Mkdocs.yml: Mkdocs configuration file,
• Setup.cfg and setup.py: configuration files for PyPi package,
• Data: folder with the raw data for the examples as well  as
generated files,
• Docs: folder with the documentation files,
• Examples: folder with the examples: 

– Imaging_module.ipynb: tutorial i l lustrating functionality for the
imaging datasets,
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Pmtool: folder with the toolbox scripts: 
 – __init__.py: initialization file,
 – data_set.py: script defining the base class for imaging datasets,
 – tool_box.py: script defining the inheriting class for imaging
datasets methods,
 – features_set.py: script defining the base class for features
datasets,
 – analysis_box.py: script defining the inheriting class for features
datasets methods. 

The next sections shortly summarize the examples that cover the
current functionalities of the precision-medicinetoolbox. 

3.1.2 Imaging module 
The example ‘Imaging module’  i l lustrates how to explore the
imaging parameters retrieved from the DICOM tags, perform data
quality check, convert DICOM slices to volume format, perform
image basic pre-processing, check ROI segmentation, and extract the
radiomic features. At first,  the ToolBox class needs to be initialized
with the user-defined parameters, such as the path to the dataset,
data format, mask availability,  mask file names, and image file 
names. After the ToolBox object is created, the corresponding
methods can be called. In the example, to speed up the process, we
read only one mask per patient.  To get an insight of the data and
plan the following pre-processing routines, we perform the
exploration of the dataset by collecting its imaging metadata. After
the initialization of the ToolBox object,  the get_dataset_description
method is implemented. The outcome is stored in the
dataset_description DataFrame. If  we call  this method with the
default parameters, we get modality,  slice thickness, pixel spacing,
date, and manufacturer for every DICOM file.  After calling this
method with the indication of the imaging modality (CT), the
collected information contains patient name, CT convolution kernel,
slice thickness, pixel spacing, kilovoltage peak, exposure, X-Ray
tube current, and series date. For a better understanding of the data
we are dealing with, we are using Python Matplotlib functionality to
plot the distributions of these parameters. The results are presented
in Figure 3. 
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Figure 3 - Distributions of some of the CT imaging parameters in
Lung1 data set.  

The get_quality_checks method allows to perform a simple quality
check of the data and possibly detect irrelevant scans. These might
be scans of wrong imaging modality,  with wrong imaging
projections, with non-consistent (missing/overlapping) slices,  with
insufficient amount of slices,  with slice thickness inconsistent or out
of the defined range, with pixel spacing out of range, with unknown
or unacceptable convolution kernel,  with wrong axial plane
resolution, with missing slope/intercept tags. To perform this check,
the target scanning parameters are to be passed to the function.
While removing some of the input parameters, the corresponding
checks are disabled. For each patient,  the output DataFrame
contains the following flags: ’1’  -  check passed, ’0’  -  check failed.
The convert_to_nrrd method is converting the DICOM data into
volumetric NRRD format and saves it  into the created folder
(‘ . . ./data/converted_nrrd/’).  Currently supported modalities are:
CT, MRI, PET, RTSTRUCT. In the example, we performed conversion
of the DICOM dataset with CT and corresponding RTSTRUCTs
containing GTV contours. Image basic pre-processing is performed
by the pre_process method. According to IBSI recommendations,
radiomic analysis should be performed for the raw images, except
for the modalities,  represented in arbitrary units (e.g.,  MRI,
ultrasound). For these modalities,  Z-scoring is recommended.
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Nevertheless,  some image pre-processing can be performed to keep
the same data shape within the dataset,  decrease diversity of the
data, or harmonize the images from different datasets.  The following
functionality is available in the pre_process method: N4 bias field
correction (Tustison et al.  [2010]),  intensity rescaling and
normalization, histogram matching and histogram equalization,
intensity resampling, image reshaping. The pre-processing step is
not executed, if  the corresponding parameter is not passed to the
method. It  is possible to visualise every pre-processing step for
every patient and print out the processing parameters and basic
intensity statistics for input and output scans. To perform a sanity
check of the converted images and masks and their co-alignment, we
initialize a ToolBox class for the newly converted NRRD dataset.
Then we call  the get_jpegs method, which saves the converted JPEG
slices into the . . ./data/‘images_quick_check/’ folder. The example
of the output is presented in Figure 4. 

To extract the PyRadiomics features, a ToolBox class for the newly
converted NRRD dataset needs to be initialized. Then the features
are extracted with the extract_features method. The extraction
parameters are imported from the example_ct_parameters.yaml file.
The parameter file is required by the PyRadiomics package and
contains information about the preferred image types, features to
extract,  resampling and discretization settings. In the example we
use the parameters suggested for the CT features extraction
provided by the PyRadiomics repository. The extract_features
method returns a 

Figure 4 - Example of the quick segmentation check.
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The example ‘Features module’  i l lustrates how to visualize features
distribution in classes, plot the feature correlation matrix,  check
Mann-Whitney U-test p-values, plot univariate ROC and calculate
AUC for each feature, perform volumetric analysis,  and save all  the
scores. The tutorial is using the radiomics features, extracted from
the Lung1 dataset,  and the clinical data file,  provided with the
dataset.  Using the clinical data, we generated three binary outcomes
of 1-,  1.5-,  and 2-years survival.  In the tutorial,  we present two
cases: binary class dataset and multi-class dataset.  The AnalysisBox
class is calling a FeaturesSet initialization with the user-defined
parameters, such as paths to the tabular data with the features and
outcomes, a list of the features to be included or excluded, names of
the patient and outcome columns, and a list of the patients to be
excluded. The dataset estimated parameters are the available class
labels and dataset balance in terms of the outcome values. For the
binary class dataset,  we declared 1yearsurvival as an outcome
column. After AnalysisBox object initialization, we get the class
labels ( ‘0’  and ‘1’) and class balance (0.42 and 0.58). After using the
handle_nan method for the patients,  there were no changes in the
dataset,  which means we did not have any missing values. After
calling the plot_distribution method, for each feature, the value
distributions were plotted as bin histograms. The result is presented
in Figure 5A. The class affiliation is highlighted with a color. The
class label is presented on the plot.  After calling the
plot_correlation_matrix method, the mutual feature correlation
coefficient (Spearman’s) matrix is visualized. The result is presented
in Figure 5B. The values are the absolute values. Colorbar is
presented on the right side of the matrix.  After calling the
plot_MW_p method, Mann-Whitney (with Bonferroni correction) p-
values for binary classes test are visualized as a barplot.  The result
is presented in Figure 5C. The p-value scale is logarithmic. If  the p-
value for some feature is below the set significance level
(alpha=0.05), the corresponding bar is highlighted with a yellow
color, whereas the other bars are purple. After calling the
plot_univariate_roc method, the univariate ROC curves are
visualized for all  the features. The ROC AUC scores are reported as
well.  The result is presented in in Figure 5D. If  the ROC AUC score
is exceeding the set threshold (auc_threshold=0.70), the curve is
highlighted with the purple color.  

Pandas DataFrame with radiomics features which can be further
exported into the Excel fi le,  CSV or any other format supported by
Pandas. 
 

3.1.3 Features module 



Otherwise, it  is yellow. After calling the volume_analysis method
with sending there a volumetric feature name
(’original_shape_VoxelVolume’),  a volume precision-recall  curve is
visualized (with AUC calculated) as well  as a barplot with volume
Spearmen’s correlation coefficient absolute values with all  the
features. The resulting plots are presented in Figures 5E and 5F. If
the correlation coefficient exceeds a threshold value
(corr_threshold=0.75), the bar is highlighted with the purple color.
Otherwise, it  is yellow. After calling the calculate_basic_stats
method, the basic statistics are calculated for all  the features. As the
dataset has two classes, Mann-Whitney test p-values and univariate
ROC AUC scores are calculated. We also define the feature, which is
representing the volume (’original_shape_VoxelVolume’),  thus
Spearman’s correlation coefficient with volume is calculated. The
results are saved into the ‘extracted_features_full_basic_stats.xlsx’
file,  which belongs to the same directory as the features file.  
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Figure 5 - Feature analysis plots for binary outcomes for eight
features:
A - feature value distributions in binary classes, B - Spearman’s
correlation matrix between features, C - Mann-Whitney test
(Bonferroni corrected) p-values, 
D - univariate ROC curves for binary classification, E - volume based
precision-recall  curve, F - features Spearman’s correlation with
volume. 

The next part of the tutorial is devoted to multi-class analysis.  The
AnalysisBox is initialized in the same way, but the outcome column
is changed to ‘Overall.Stage’.  The available class labels are ‘I ’ ,  ‘II ’ ,
‘IIIa’,  ‘IIIb’,  and the empty value. The class balance is 0.24, 0.09,
0.23, 0.42, and 0.01, respectively.  While implementing the
handle_nan method at the patient’s level,  one patient with an
unknown outcome is dropped. 
Therefore, after the re-initialization of the class object,  we have 148
patients with ‘I ’ ,  ‘II ’ ,  ‘IIIa’,  and ‘IIIb’  labels.  The class proportions
are 0.24, 0.09, 0.23, and 0.43, respectively.  The plot_distribution
method works for all  the presented classes as well  as for the selected
classes. The result is presented in Figure 6. 
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Figure 6 - Feature value distributions in multiple classes: A - for all
the presented classes, B - for the selected classes I and IIIb.

The plot_MW_p and plot_univariate_roc methods are not supported
for the multi-class data, but they can still  be implemented for the
observations from any of the selected two classes. The other
methods are working in the same way, as for binary classes. The
calculate_basic_stats method does not calculate Mann-Whitney test
p-values and univariate ROC AUC scores. 

3.2 Online documentation and tutorials 

The documentation (http://precision-medicine-
toolbox.readthedocs.io/) is built  with Mkdocs
(https://www.mkdocs.org/) and hosted on the Read the Docs
platform (http://readthedocs.io).  Code quality is reviewed with
CodeFactor (http://codefactor.io).  The API specifications for all  the
classes and methods are generated automatically from the source
code annotations with Mkdocstrings
(https://mkdocstrings.github.io/).  This enables keeping
documentation up to date with the latest developments of the
package. The documentation also contains links to tutorials with
examples generated from Jupyter notebooks. These notebooks are
included in the precision-medicine-toolbox package
(https://github.com/primakov/precision-medicine-
toolbox/tree/master/examples ) and are available for any user.
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4 Discussion 

This paper introduced the open-source precision-medicine-toolbox
for imaging data preparation and exploratory analysis.  It  aims to
address the data preparation and exploration problem, bridge the
gap between the currently existing packages and improve the
reproducibility of quantitative medical imaging research. 
The functionality of the toolbox aims to meet some challenges that
are specific to the radiomics field. One of these challenges is the
lack of data and pipelines standardisation (van Timmeren et al.
[2020], Ibrahim et al.  [2021], Zwanenburg et al.  [2020]).  Therefore,
reproducibility is one of the key criterias for the radiomics studies.
The precision-medicine-toolbox has the functionality for the
preliminary data check, including both investigation of the imaging
parameters and features properties.  This enables a rapid evaluation
of the existing data, models,  and studies. The other challenge is
related to the large amount of the volume surrogate features. This
means that many features are highly correlated with volume and do
not add any value. In order to identify such features, volumetric
analysis functions have been implemented in the precision-
medicine-toolbox. 
The toolbox is mostly dedicated for the radiomics analysis,  as it
allows for handling of both raw imaging data and derivative
features. Nevertheless,  its modules can be used separately for other
medical imaging research applications. Imaging module is
applicable for the deep learning tasks to prepare the imaging data
and get the information about its inhomogeneity. Features module
can be used for any tabular data analysis,  such as health records
variables, or histology-derived features.
The precision-medicine-toolbox was successfully utilised and tested
during the development of multiple projects including DUNE.AI,
automatic NSCLC segmentation on the CT (Primakov et al.  [2021]),
repeatability of breast MRI radiomic features (Granzier et al.
[2021]),  prognostic and predictive analysis of Glioblastoma MRI
(Verduin et al.  [2021]),  quantitative MRI biomarkers discovery in
multiple sclerosis (Lavrova et al.  [2021]).The development of
precision-medicine-toolbox not only aims for democratisation of the
machine learning and deep learning pipelines for the researchers
without strong programming skills but also drives a programming
community effort to improve this package and add its own variables
and methods. Therefore, user contributions are very welcome. 
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5 Conclusions 

The development of precision-medicine-toolbox aims to lower the
entry barrier for researchers who are starting to work in medical
imaging and provide an open source solution for the researchers
who already have their inhouse workflowof managing data to
increase the reproducibility of the quantitative medical imaging
research. We would also like to encourage the community to improve
this open-source toolbox by contributing to it.  
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With respect to the diagnosing and treating of life-threatening
medical conditions, such as cancer or pre-malignant lesions and
other il lnesses such as non-malignant infectious or inflammatory
disease – benign tumours, that may result in the appearance of
lesions in a human or animal body, an important role is played by
the technological field of medical imaging. In the past decade, the
importance of imaging has grown substantially from being primarily
a diagnosis and monitoring tool to becoming a tool that supports the
treatment of a condition in multiple areas. Furthermore, medical
imaging may be applied instead of,  or in addition to, autopsy in
order to gain more insight in a deceased patient’s medical condition
at the moment of dying, or for medical studies.

Abstract 

The present document relates to an image data processing method
for processing imaging data from different imaging systems,
providing a harmonized three-dimensional data set for enabling
analysis independent of the image system. The method comprises:
obtaining the imaging data which comprises a array of input voxels,
and segmenting the data to provide at least one two-dimensional
data slice.  The method also comprises reconstructing a three-
dimensional data set from the data slices.  Prior to segmenting, a
step of preprocessing is performed, which includes image
normalization of the imaging data. This includes at least a
transforming or processing of the imaging data for mapping the
imaging data onto an image data standard. The document also
descries a method of training a machine learning data processing
model and an image processing system. The methods and system
may be applied to perform harmonized classification and/or
radiomics for a plurality of systems. 

Field of the invention 

The present invention is directed at an image data processing
method for processing, by a controller of an analysis system,
imaging data obtained from an imaging system. The invention is
further directed at a method of training a machine learning data
processing model as well  as an image processing system for
processing medical image data. 

Background 
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Apart from identification and delineation, analysis of the imaging
data by means of data mining and statistical methods is another
technological area that is increasingly applied prior and during
treatment, e.g.  to make the right diagnosis on a pathological slide or
to benefit  precision medicine or to estimate potential effectiveness
of various treatment plans for certain patient or to evaluate
response or to replace an autopsy on a dead body.  One of these 

Typically,  imaging data needs to be processed as fast and efficient as
possible,  such that the images are available to medical staff
promptly for evaluation. Naturally,  above anything else, accuracy is
very important during this process. One of the tasks presently being
performed by a medical specialist,  e.g.  the radiologist or radiation
oncologist,  is the identification of a tumor or a non-malignant
pathological lesion and the delineation in two or three dimensions
of a region that contains the tumor, neoplasm or non-malignant
pathological lesion. Accuracy during such an evaluation is important
for several reasons:
 -  to facilitate the right diagnosis on a radiological image or a
pathological image;
 -  to prevent focusing of the treatment on an area or volume that is
too small or too large - an area that is too small may result in the
tumor not being treated sufficiently and an area that is too large
may result in the treatment of healthy tissue;
 -  to follow the response after a treatment more specifically to
calculate the regression of the target lesion or, in other words, the
response; and
 - to enable more accurately investigating a cause of death on a dead
body in order to prevent the need for an invasive and costly autopsy.
With the trained eye of the medical specialist (typically radiologist,
nuclear medicine specialist,  radiation oncologist,  pathologist and
others),  this process can normally be performed rather well.
However, this process is typically time consuming and not
reproducible: there is a large inter and intra doctor heterogeneity.
Furthermore, although the medical specialist is typically used to
recognize the relevant image features even in the presence of noise
and visual artefacts in imaging data, incorrect characterization of
the image due to such noise or artefacts as well  as human error in
general cannot fully be excluded and the implications thereof can be
critical.  Furthermore there are key image features that are not
visible,  and/or not quantifiable by the human eye. In particular in
case imaging data is obtained using different imaging systems, each
system being of a certain type and with it ’s own system settings, the
chance on error increases. Apart from the above, for a three
dimensional data set the process has to be conducted for each layer
of the image, which is time consuming and expensive.
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The method of the present invention, prior to the step of segmenting 

areas, for example, is the area of radiomics or histomics (a synonym
for quantitative imaging of rrespectively radiological images or
histological images) – a statistical data analysis method using
handcrafted imaging features or deep learning that has grown
popularity over the past years. Radiomics is based on extracting and
qualifying descriptive features from image data, and comparing
these with data (clinical or biological endpoints) from a database to
recognize a certain radiomics signature (a set of distinctive imaging
features which is of prognostic relevance).  Ideally,  such analyses are
performed according to certain standards, giving a similar result in
similar cases. This may be complicated in case imaging data is
obtained from different imaging systems and/or human/semi-
automatic segmentation of the tumour or the lesion is not
reproducible.  

Summary of the invention 

It is an object of the present invention to provide an image data
processing method that overcomes these disadvantages and enables
automated processing of image data from a plurality of different
imaging systems with reliable and standardized results.
To this end, there is provided herewith an image data processing
method for processing, by a controller of an analysis system,
imaging data obtained from an imaging system of a plurality of
different imaging systems, for providing a harmonized three-
dimensional data set of the image data which data set is harmonized
for enabling analysis thereof independent of the respective image
system of the plurality of image systems, the method comprising the
steps of:  obtaining, from the imaging system, the imaging data,
wherein the imaging data comprises data for visualizing at least a
part of the human or animal body, wherein the imaging data
comprises a array of input voxels; segmenting the image data to
provide at least one two¬-dimensional data slice,  wherein the data
slice comprises an array of pixels; and reconstructing a three-
dimensional data set from the at least one data slice,  wherein the
data set is reconstructed by providing a plurality of output voxels,
each output voxel being based on an associated pixel of the at least
one data slice; wherein the method, prior to the step of segmenting,
further comprises a step of preprocessing of the imaging data,
wherein the preprocessing at least includes: image normalization of
the imaging data, including at least one step of transforming or
processing of the imaging data for mapping the imaging data onto an
image data standard for enabling said analysis.
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first part of the image data associated with the solid tumour volume.
This allows to analyze one or more of the solid tumour volume
(STV), the ground glass tumour volume (GGTV) and the gross

that is typically performed, provides a preprocessing step including
a step of image normalization of the imaging data. The image
normalization may include one or more data preprocessing steps
that enable the imaging data coming from different imaging systems
to be processed by a single and same processing method performed
by the same processing system. Such steps, for example, may simply
include the normalization of parameter values associated with each
voxel or pixel of an image, but may also or otherwise include the
transformation of data in order to conform it to a certain standard.
As a result,  the data coming from different imaging systems may
easily be processed by single image processing system for example in
order to perform identification, delineation or analysis as described
hereinabove, and providing a standardized result independent of the
imaging system used. In contrast,  the conventional methods based
on manual or semi-automatic processes do not enable such
standardization due to the fact that the process is not reproducible
and insufficiently accurate.
For example, in some embodiments, the method further comprises a
step of:  recognizing, in the harmonized three dimensional data set,
using a trained machine learning data processing model,  at least one
contour of an organ or a neoplasm or another pathological lesion.
Due to the image normalization, the standardized evaluation of
imaging data by an analysis system in order to perform contour
recognition of an organ or a neoplasm or another pathological
lesions becomes possible.  For example, after normalization, from
any differences in color or intensity a difference in tissue density
may be calculated or a difference in type of tissue may be
established. This enables accurate recognition of such contours in
an automated fashion. In addition to increased accuracy, a large
amount of data may also be processed much faster.  
In some of these embodiments, the at least one contour comprises a
contour of the neoplasm, and the method includes: associating a
subset of the image data with the neoplasm and defining a gross
tumour volume to include the subset of the image data; determining
that at least a first part of the image data of the subset has an
intensity or textural difference with at least a second part of the
image data of the subset,  wherein the intensity or textural difference
exceeds a predetermined threshold; and identifying a solid tumour
volume as including the first part of the image data which is
associated with the largest intensity values or homogeneous
textures, and identifying a ground glass tumour volume by including
the subset of image data and subtracting or excluding therefrom the 
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In cases wherein voxel sizes need to be adapted only slightly (e.g.
from an original size between 0.7 and 1.2 mm to a new size of 1 

tumour volume (GTV) separately,  for example by applying radiomics
separately to these parts of the subset of imaging data. It  has been
found that analyzing these parts separately improves the
performance of the method in terms of prognostic value and/or
classification of the lesion or neoplasm.
In some of these embodiments, the method further comprises
extracting, from the harmonized three dimensional data set,  a subset
of voxels associated with the organ or the neoplasm. Hence, the
system will  deliver the subset of data containing the relevant
information for the area of interest (e.g.  only the data for one or
both lungs, a liver,  an intestine or a part of a blood vessel,  or only
the subset of data for a tumor). Other data from parts lying outside
the area of interest may then be discarded from further analysis.
This not only increases data processing and storage efficiencies,  but
also enables to perform more sophisticated and time consuming data
analysis algorithms to be performed in a smaller amount of time.
In accordance with some embodiments, the step of image
normalization includes a step of spatial resolution normalization
wherein the image data is transformed for increasing or reducing an
input voxel size of the input voxels such as to correspond to a
standard input voxel size. In fact,  in these embodiments the step of
normalization includes the harmonization of voxel sizes across
various images obtained from different imaging systems. In order to
enable correct interpretation of imaging data from different imaging
systems, harmonizing the voxel size enables harmonized
interpretation of image information, such as voxel values or
parameter values associated with voxels.  Although the same may be
achieved in absence of the step of increasing or reducing the input
voxel size, the present embodiments prevent the need for applying
different algorithms to each image to interpret the information from
the image. 
In some particular of these embodiments, the method further
includes a step of receiving from the respective imaging system,
image metadata indicating at least one of a spatial voxel size or a
spatial voxel spacing, wherein the step of spatial resolution
normalization includes adapting the at least one of the spatial voxel
size or the spatial voxel spacing to a standard spatial voxel size or a
standard spatial voxel spacing. For example, in order to determine
the size of a tumor or neoplasm, it  is important to know the voxel
size and voxel spacing. Such adaptation may include resampling of
the image, an interpolation of image parameters, and/or a
reduction/increase of voxels by enhancement, discarding, averaging
or other algorithms.
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In accordance with some embodiments, the method further includes
a contrast enhancement step prior to the image normalization,
wherein the contrast enhancement step includes at least one of:
windowing, a gray-level mapping, contrast stretching, histogram
modification, or de-noising. Performing contrast enhancement
during preprocessing reduces the general noise level in each of the
images to be analyzed, and enables the comparison of grey levels
between different images. 

mm), resampling the pixels to e.g.  1mm (e.g. in two or three
dimensions) is a good option in terms of accuracy. However, for
large sized voxels or pixels,  using interpolation will  not be a
solution. Interpolation only fil ls in a gap by assuming a gradual
change between two data points,  but it  does not add information
that is not available from the measurements during imaging. In
some cases this may be particularly troublesome. For example, slice
thickness values may be in a range from 1 to 7 mm, and resampling
from 7mm to 1mm is not possible.  In these cases, use may possibly
be made of a generative adversarial network (GAN) to generate new
data with the same statistics as a training set in order to estimate
samples in between measured data points for resampling. Naturally,
this stil l  suffers from the disadvantage that the estimated data is not
obtained by measurement and thus cannot be considered real data.
However, it  allows to stretch the range over which resampling may
be applied.
In accordance with some embodiments, the image normalization
includes a step of voxel parameter value normalization, wherein for
each input voxel of the plurality of input voxels at least one input
voxel parameter value is normalized relative to a reference range for
said voxel parameter value, for harmonizing the three-dimensional
data set.  One exemplaric manner of normalizing an arbitrary voxel
parameter value includes determining a standard range of parameter
values by determining a minimum and maximum value from the
available images (or a subset thereof) in the database, and
thereafter normalizing the parameter values from the respective
image to be analyzed by mapping these values onto the standard
range. This enables a direct comparison between the measured
parameter values in the image to be analyzed with other values of
images in the database. In one particular example, the image
normalization includes normalizing a voxel intensity value of each
respective input voxel relative to a standard voxel intensity range.
In some further embodiments, the image data comprises a plurality
of image frequencies in a frequency domain, the image frequencies
spanning a frequency range, and wherein the image normalization
includes normalizing each image frequency of the plurality of image
frequency relative to the frequency range.
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In order to perform a method of automatic contour recognition in
accordance with some of the abovementioned embodiments, use may
be made by a machine learning data processing model to implement
the step of contour recognition. Such a machine learning data
processing model,  in that case, must be trained to perform this
method, and the training method for enabling automatic contour
recognition greatly benefits from implementing the method of the
present invention as described above, i .e.  from performing the
preprocessing steps of the invention or any of the particular
described embodiments thereof.  Therefore, in accordance with an
embodiment of the present invention there is provided a method of
training a machine learning data processing model for performing a
step of automatic contour recognition on image data visualizing at
least a part of the human or animal body and obtained from at least 

In some embodiments, the method further includes an artefact
recognition step performed after the step of preprocessing, wherein
the artefact recognition step includes a step of pattern recognition
performed on the image data such as to identify one or more image
features having a non-biological origin. Non-limiting examples of
these are foreign objects (e.g.  a wallet) or artefacts stemming from
hardware or software restrictions upstream in the image creation
pipeline. This additional step enables to correct or compensate for
the existence of artefacts in the imaging data, or to enable the
system to take corrective action, e.g.  modify the imaging data such
as to exclude the artefact data therefrom or remove/filter the
artefact from the image.

In some embodiments, the method further includes analyzing the
output voxels and classifying at least one of an organ or a neoplasm
based on said step of analyzing. The harmonized data enables to
perform automatic classification using, for example, a trained
machine learning data model such as a convolutional neural
network, a generative adversarial network or a random forest model.

In some embodiments, the method further includes a radiomics
analysis step wherein a set of distinctive imaging features may be
determined from the image data such as to form a radiomics
signature. The advantages of enabling automatic radiomics analysis
on a large number of images coming from a plurality of imaging
systems are enormous. This enables to improve the exact definitions
of radiomics signatures by being based on a larger number of images
from different systems in order to provide greater prognostic value.
It also enables to perform such analysis in a reproducible and
harmonized manner, independent of the imaging system used. This
benefits the public by enabling more uniform diagnosis.
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As may be appreciated, using a machine learning data processing
model for performing the automatic contour recognition of organs or
neoplasms, enables to perform this task very accurately for a large
number of images coming from different imaging systems, in
relatively short time. Moreover, by doing so for plurality of different
imaging systems, a large database of imaging data can be build that
enables to perform reliable statistical analysis such as radiomics on
the basis of a large amount of data. For example, it  allows the
building of a centralizing database wherein imaging data from a
large number of different imaging system is required, and radiomics
analysis or other statistical analysis is performed on the images to
provide a harmonized an reliable outcome. This greatly benefits
treatment of such neoplasms in a large number of medical facilities
that make use of such a centralized system.  It  also benefits research
activities to, for example, treatment methods of certain neoplasms.
In view of the above, in accordance with some embodiments, a 

one of a plurality of different imaging systems, for recognizing a
contour of an organ or a neoplasm, wherein the method includes: a.
receiving at least one three-dimensional data set,  wherein the data
set is based on processed imaging data, wherein the imaging data is
obtained from at least one imaging system of the plurality of
different imaging systems; b. receiving contour data for the at least
one three-dimensional data set,  wherein the contour data is
indicative of a contour that delineates a spatial region that contains
the organ or the neoplasm or other non-malignant pathological
lesions; c.  training of the machine learning data processing model
based on the contour data received in step b. and the at least one
three-dimensional data set received in step a.,  for enabling, after
completion of the training method, the step of automatic contour
recognition for producing contour data of the contour delineating
the spatial region that contains the organ or the neoplasm; wherein
prior to step a. the method further includes a method as described
above for providing the at least one three-dimensional data set.
The above training method includes the method steps of the
invention described above, and therefore forms an embodiment of
the above described method of the present invention. However, at
the same time, once the machine learning data processing model has
been trained in accordance with this training method, it  may be
applied to the above mentioned embodiments wherein automatic
contour recognition is performed on the imaging data. Therefore,
the application of a machine learning data processing model for
performing automatic contour recognition, where machine learning
data processing model is trained in accordance with the
abovementioned training method, forms a further embodiment of
the present invention. 
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Similarly,  a method of the present invention may also benefit  from
focusing the training from specific times of neoplasm or non-
malignant lesions. In accordance therewith, in some embodiments
the method is performed for a plurality of different three-
dimensional datasets,  and wherein each three-dimensional dataset
of the three dimensional data sets is based on imaging data of a
same specific type of neoplasm, such that the method of training is
performed for enabling automatic contour recognition for
delineating a neoplasm of said specific type. In accordance with
some of these embodiment the specific type of neoplasm or lesion is
an element of a group comprising: malignant lesions such as any of:
glioblastoma multiforma; glioma grade i-iii;  meningioma; head and
neck cancer such as squamous cell  carcinoma; esophageal cancer;
lung cancer such as non-small cell  lung carcinoma, small cell  lung
carcinoma, or lung neuroendocrine tumours; breast cancer; stomach
cancer; pancreas cancer; primary liver cancer; colon cancer; rectal
cancer; ovarian cancer; endometrium cancer; cervical cancer; soft
tissue sarcoma; melanoma; paediatric cancers such as
neuroblastoma, Wilms’ tumor; brain cancers such as gliomas and
medulloblastomas; osteosarcoma; Ewing’s sarcoma; squamous cell
carcinoma skin cancer; Merkel cell  cancer; mesothelioma; pancreatic
ductal adenocarcinoma; benign tumours such as any of:  polyps in
the colon; fibroadenomas; hepatic adenomas; fibroadenomas of the
breast; uterine fibroids; angiofibromas; fibromas dermatofibroma;
hemangioma; lipomas; benign parotid tumours such as pleomorphic
adenomas or Warthin's tumours; premalingnant lesions or
intraepithelial neoplasia such as any of:  actinic keratosis; cervical
dysplasia; metaplasia of the lung; leukoplakia; premalignant lesion
of the pancreas such as pancreatic lesions into: intraductal papillary
mucinous neoplasms (IPMN), mucinous cystic neoplasms (MCN)
with varying prevalence of invasive carcinoma, or pancreatic
intraepithelial neoplasia (PanIN); middle ear lesions such as
Meniere disease, grey/white matter or hippocampus or brain lesions
such as any of multiple sclerosis,  Alzheimer disease, Parkinson
diseases, cerebrovascular accident (CVA); infectious lesions such as
any of: abscess, tuberculosis lesions, expansive lobar consolidation
causing fissural bulging or displacement by copious amounts of
inflammatory exudate within the affected organ, inhomogeneous
enhancement with or without cavitation, halo sign, the air crescent
sign, finger-in-glove sign ,  crazy-paving sign, grape-skin sign,
miliary pattern, reverse halo sign, the meniscus, Cumbo sign, water
lily sign, Burrow sign of paragonimiasis; lesion of idiopathic lung

method is performed for a plurality of different three dimensional
datasets based on imaging data from two or more of the plurality of
different imaging systems.
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fibrosis or chronic obstructive pulmonary disease (COPD),
emphysema, sarcoidosis,  auto-immune lung disease, pneumonia,
pulmonary embolism, pleural effusion; lesions of any non infectious
inflammatory diseases such as sarcoidosis including a wide
spectrum of pulmonary parenchymal changes: perilymphatic
micronodules, airspace opacities/consolidation (e.g.  alveolar
sarcoidosis),  lung masses, pulmonary fibrosis,  pleural effusion;
rheumatological diseases such as any of:  osteoarthritis,  rheumatoid
arthritis (RA), lupus, spondyloarthropathies, ankylosing spondylitis
(AS), psoriatic arthritis (PsA), Sjogren’s syndrome, gout,
scleroderma, infectious arthritis,  juvenile idiopathic arthritis,
polymyalgia rheumatic.  
The abovementioned list is not exclusive, but includes at least the
most relevant and common types of neoplasms and neoplasm or non-
malignant lesions pathological lesions that may be analyzed using
radiological or pathological or any medical imaging and for which
the present invention may therefore be applied.
In accordance with a second aspect of the present invention there is
provided an imaging processing system for processing medical image
data, the system comprising data communication unit for receiving
image data from at least one imaging system, including microscopes,
wherein the imaging data comprises data for visualizing at least a
part of a human or animal body, wherein the system further
comprises a controller and a memory, the memory storing
instruction which, when executed by the controller,  enable the
controller to perform a method according to any one or more of
claims 1-8, the method comprising the steps of:  obtaining, by the
communication unit from the at least one imaging system, the
imaging data, wherein the imaging data comprises a array of input
voxels; segmenting, by the controller,  the image data to provide at
least one two¬-dimensional data slice,  wherein the data slice
comprises an array of pixels; and reconstructing, by the controller,  a
three-dimensional data set from the at least one data slice,  wherein
the data set is reconstructed by the controller by providing a
plurality of output voxels,  each output voxel being based on an
associated pixel of the at least one data slice; wherein the method,
prior to the step of segmenting, further comprises a step of
preprocessing of the imaging data by the controller,  wherein the
preprocessing at least includes: image normalization of the imaging
data, including at least one step of transforming or processing of the
imaging data for mapping the imaging data.
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and identifying a solid tumour volume as including the first part of
the image data which is associated with the largest intensity values,
and identifying a ground glass tumour volume by including the
subset of image data and subtracting or excluding therefrom the
first part of the image data associated with the solid tumour volume. 

Claims 

1. Image data processing method for processing, by a controller of
an analysis system, imaging data obtained from an imaging system
of a plurality of different imaging systems, for providing a
harmonized three-dimensional data set of the image data which data
set is harmonized for enabling analysis thereof independent of the
respective image system of the plurality of image systems, the
method comprising the steps of:  obtaining, from the imaging system,
the imaging data, wherein the imaging data comprises data for
visualizing at least a part of the human or animal body, wherein the
imaging data comprises a array of input voxels; segmenting the
image data to provide at least one two¬-dimensional data slice,
wherein the data slice comprises an array of pixels; and
reconstructing a three-dimensional data set from the at least one
data slice, wherein the data set is reconstructed by providing a
plurality of output voxels,  each output voxel being based on an
associated pixel of the at least one data slice;
wherein the method, prior to the step of segmenting, further
comprises a step of preprocessing of the imaging data, wherein the
preprocessing at least includes: image normalization of the imaging
data, including at least one step of transforming or processing of the
imaging data for mapping the imaging data onto an image data
standard for enabling said analysis.  

2.  Image data processing method according to claim 1, wherein the
method further comprises a step of:  recognizing, in the harmonized
three dimensional data set,  using a trained machine learning data
processing model,  at least one contour of an organ or a neoplasm. 

3. Image data processing method according to claim 2, wherein the
at least one contour comprises a contour of the neoplasm, and
wherein the method includes: 
associating a subset of the image data with the neoplasm and
defining a gross tumour volume to include the subset of the image
data; determining that at least a first part of the image data of the
subset has an intensity difference with at least a second part of the
image data of the subset,  wherein the intensity difference exceeds a
predetermined threshold;
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12. Image data processing method according to any of the preceding
claims, further including analyzing the output voxels and 

4. Image data processing method according to claim 2 or 3, wherein
the method further comprises a step of:  
extracting, from the harmonized three dimensional data set,  a subset
of voxels associated with the organ or the neoplasm. 

5. Image data processing method according to any of the preceding
claims, wherein the step of image normalization includes a step of:
spatial resolution normalization wherein the image data is
transformed for increasing or reducing an input voxel size of the
input voxels such as to correspond to a standard input voxel size.  

7.  Image data processing method according to any of the preceding
claims, wherein the image normalization includes a step of voxel
parameter value normalization, wherein for each input voxel of the
plurality of input voxels at least one input voxel parameter value is
normalized relative to a reference range for said voxel parameter
value, for harmonizing the three-dimensional data set.  

8.  Image data processing method according to claim 7, wherein the
image normalization includes normalizing a voxel intensity value of
each respective input voxel relative to a standard voxel intensity
range. 

9. Image data processing method according to claim 7 or 8, wherein
the image data comprises a plurality of image frequencies in a
frequency domain, the image frequencies spanning a frequency
range, and wherein the image normalization includes normalizing
each image frequency of the plurality of image frequency relative to
the frequency range. 

10. Image data processing method according to any of the preceding
claims, further including a contrast enhancement step prior to the
image normalization, wherein the contrast enhancement step
includes at least one of:  windowing, a gray-level mapping, contrast
stretching, histogram modification, or de-noising. 

11. Image data processing method according to any of the preceding
claims, further including an artefact recognition step performed
after the step of preprocessing, wherein the artefact recognition step
includes a step of pattern recognition performed on the image data
such as to identify one or more image features having a non-
biological origin. 
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17. Method according to claim 16, wherein the specific type of

classifying at least one of an organ or a neoplasm based on said step
of analyzing. 

13. Image data processing method according to any of the preceding
claims, further including a radiomics analysis step wherein a set of
distinctive imaging features may be determined from the image data
such as to form a radiomics signature. 

14. Method of training a machine learning data processing model for
performing a step of automatic contour recognition on image data
visualizing at least a part of the human or animal body and obtained
from at least one of a plurality of different imaging systems, for
recognizing a contour of an organ or a neoplasm, wherein the
method includes: 
a.  receiving at least one three-dimensional data set,  wherein the
data set is based on processed imaging data, wherein the imaging
data is obtained from at least one imaging system of the plurality of
different imaging systems;
b. receiving contour data for the at least one three-dimensional data
set,  wherein the contour data is indicative of a contour that
delineates a spatial region that contains the organ or the neoplasm;
c. training of the machine learning data processing model based on
the contour data received in step b. and the at least one three-
dimensional data set received in step a.,  
for enabling, after completion of the training method, the step of
automatic contour recognition for producing contour data of the
contour delineating the spatial region that contains the organ or the
neoplasm; wherein prior to step a. the method further includes a
method according to any of the claims 1-10 for providing the at least
one three-dimensional data set.  

15. Method according to claim 14, wherein the method is performed
for a plurality of different three-dimensional data sets based on
imaging data from two or more of the plurality of different imaging
systems. 

16. Method according to claim 14 or 15, wherein the method is
performed for a plurality of different three-dimensional data sets,
and wherein each three dimensional data set of the three
dimensional data sets is based on imaging data of a same specific
type of neoplasm, such that the method of training is performed for
enabling automatic contour recognition for delineating a neoplasm
of said specific type.
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soft tissue sarcoma; melanoma; paediatric cancers such as
neuroblastoma, Wilms’ tumor; brain cancers such as gliomas and
medulloblastomas; osteosarcoma; Ewing’s sarcoma; squamous cell
carcinoma skin cancer; Merkel cell  cancer; mesothelioma; pancreatic
ductal adenocarcinoma; benign tumours such as any of:  polyps in
the colon; fibroadenomas; hepatic adenomas; fibroadenomas of the
breast; uterine fibroids; angiofibromas; fibromas dermatofibroma;
hemangioma; lipomas; benign parotid tumours such as pleomorphic
adenomas or Warthin's tumours; premalingnant lesions or
intraepithelial neoplasia such as any of:  actinic keratosis; cervical
dysplasia; metaplasia of the lung; leukoplakia; premalignant lesion
of the pancreas such as pancreatic lesions into: intraductal papillary
mucinous neoplasms (IPMN), mucinous cystic neoplasms (MCN)
with varying prevalence of invasive carcinoma, or pancreatic
intraepithelial neoplasia (PanIN); middle ear lesions such as
Meniere disease, grey/white matter or hippocampus or brain lesions
such as any of multiple sclerosis,  Alzheimer disease, Parkinson
diseases, cerebrovascular accident (CVA); infectious lesions such as
any of: abscess, tuberculosis lesions, expansive lobar consolidation
causing fissural bulging or displacement by copious amounts of
inflammatory exudate within the affected organ, inhomogeneous
enhancement with or without cavitation, halo sign, the air crescent
sign, finger-in-glove sign ,  crazy-paving sign, grape-skin sign,
miliary pattern, reverse halo sign, the meniscus, Cumbo sign, water
lily sign, Burrow sign of paragonimiasis; lesion of idiopathic lung
fibrosis or chronic obstructive pulmonary disease (COPD),
emphysema, sarcoidosis,  auto-immune lung disease, pneumonia,
pulmonary embolism, pleural effusion; lesions of any non infectious
inflammatory diseases such as sarcoidosis including a wide
spectrum of pulmonary parenchymal changes: perilymphatic
micronodules, airspace opacities/consolidation (e.g.  alveolar
sarcoidosis),  lung masses, pulmonary fibrosis,  pleural effusion;
rheumatological diseases such as any of:  osteoarthritis,  rheumatoid
arthritis (RA), lupus, spondyloarthropathies, ankylosing spondylitis
(AS), psoriatic arthritis (PsA), Sjogren’s syndrome, gout,
scleroderma, infectious arthritis,  juvenile idiopathic arthritis,
polymyalgia rheumatic.  

neoplasm is an element of a group comprising: :  malignant lesions
such as any of:  glioblastoma multiforma; glioma grade i-iii;
meningioma; head and neck cancer such as squamous cell
carcinoma; esophageal cancer; lung cancer such as non-small cell
lung carcinoma, small cell  lung carcinoma, or lung neuroendocrine
tumours; breast cancer; stomach cancer; pancreas cancer; primary
liver cancer; colon cancer; rectal cancer; ovarian cancer;
endometrium cancer; cervical cancer; 
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18. Image processing system for processing medical image data, the
system comprising data communication unit for receiving image
data from at least one imaging system, wherein the imaging data
comprises data for visualizing at least a part of a human or animal
body, wherein the system further comprises a controller and a
memory, the memory storing instruction which, when executed by
the controller,  enable the controller to perform a method according
to any one or more of claims 1-13, the method comprising the steps
of: 
obtaining, by the communication unit from the at least one imaging
system, the imaging data, wherein the imaging data comprises a
array of input voxels; 
segmenting, by the controller,  the image data to provide at least one
two-dimensional data slice,  wherein the data slice comprises an
array of pixels; and reconstructing, by the controller,  a three-
dimensional data set from the at least one data slice,  wherein the
data set is reconstructed by the controller by providing a plurality of
output voxels,  each output voxel being based on an associated pixel
of the at least one data slice;
wherein the method, prior to the step of segmenting, further
comprises a step of preprocessing of the imaging data by the
controller,  wherein the preprocessing at least includes: image
normalization of the imaging data, including at least one step of
transforming or processing of the imaging data for mapping the
imaging data onto an image data standard for enabling said analysis.  

Supplementary information 

Drawings and detailed description of the figures are available
through the
patentscope:https://patentscope.wipo.int/search/en/detail.jsf?
docId=WO202112 5950&_cid=P22-LIW6Q8-48170-1, or via the QR
code: 
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In Chapter 2 of the thesis we conducted a literature review on the
application of quantitative AI methods in medical imaging and
identified several obstacles that need to be overcome for their
translation into clinical practice. Numerous studies have
demonstrated promising results of HRFs based ML models in areas
such as lesion classification, disease progression prediction and 

This final chapter provides a summary and discussion of the
individual studies presented in the thesis as well  as the obstacles
that need to be overcome for the widespread use of Artificial
Intelligence (AI) tools in the clinical setting and future prospective. 
After a short introduction, this thesis,  addresses the use of Machine
Learning (ML) models based on Handcrafted Radiomics Features
(HRFs). It  aims to investigate the complementary value of HRFs to
clinical features, deep learning based features and qualitative
features for the task of prognosis and prediction. The second part
addresses the use of Deep Learning (DL) in medical imaging, with
the objective of exploring its potential to enhance clinical routines
through detection and automatic segmentation. The third section
highlights open-source and patented contributions to the field,
resulting from the research work combined in this thesis.  Finally,  we
examine the future prospects and outline the existing challenges
that need to be addressed to facilitate the adoption of AI tools in
clinical settings. 

To briefly summarize, medical imaging has played a pivotal role in
cancer management for several decades. It  has remained a crucial
aspect of cancer diagnosis and treatment, enabling healthcare
professionals to detect abnormalities,  determine the best available
treatment and monitor disease progression (1,2).  Recent
advancements in imaging hardware have significantly enhanced the
capabilities of medical imaging technologies. Improved image
sensitivity and resolution have enabled the identification of even
subtle differences in tissue densities,  aiding in the early detection
and accurate characterization of various medical conditions (3).  
AI has emerged as a transformative force in the field of medical
imaging, offering new avenues for optimizing clinical routines and
providing efficient and minimally invasive clinical decision support.
The integration of AI techniques into clinical medical imaging
workflows has the potential to streamline processes, enhance
diagnostic accuracy, and optimize treatment planning (4,5).  
 

Applications of HRFs based ML methods in
medical imaging 
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In Chapter 4, we conducted a comprehensive study comparing and
integrating a HRFs-based ML model with a DL model to predict
adverse radiation effects (ARE) in patients with brain metastasis
who underwent radiotherapy using pre-treatment brain magnetic
resonance imaging (MRI) data. To address the variability in MRI
data we employed multiple pre-processing strategies with various
methods including white-stripe, z-score, and CLAHE. We found that
the combined approach of utilizing radiomics and DL models

prognosis prediction (6-8).  Nevertheless,  the application of HRF-
based approaches comes with its own set of challenges that can have
a profound impact on the reproducibility of HRF-based models.
These challenges primarily revolve around the variability
encountered in MI data acquisition and reconstruction, stability,
and reproducibility of HRFs (9,10). 
Aiming to address these issues, we proposed a framework to improve
the robustness of radiomics analysis.  Furthermore, we suggested
that development of standardized protocols are imperative to ensure
the robustness and reliability of HRF-based methods in clinical
practice. Addressing these challenges remains a critical area of
ongoing research that is essential for the successful integration and
advancement of HRF-based models.  

In Chapter 3 we aimed to explore the potential of non-invasive
quantitative and qualitative medical imaging features in a
heterogeneous Glioblastoma (GBM) patient cohort to predict
prognosis and clinically relevant molecular markers. We used a
cohort of 188 GBM patients for the analysis.  The data included T1 +
Gadolinium and T2- weighted Magnetic Resonance Imaging (MRI)
from different centers,  molecular features (isocitrate
dehydrogenase-mutation; 06-methylguanine-DNA-
methyltransferase-methylation; epidermal growth factor receptor
amplification), clinical features, and qualitative Visually Accessible
Rembrandt Images features. A pre-processing routine was suggested
and applied to the imaging data to address the variation in MRI data
across different centers.  To our knowledge, this study is the first to
combine both quantitative and qualitative MRI features with clinical
features to assess their combined effect on prognosis and prediction.
The results of this study showed that the addition of quantitative
HRFs features complemented the model based on the clinical and
qualitative features for prognosis.  It  had the most promising
performance and was robust across both GBM cohorts.  However, no
complementary value of the HRFs for predicting molecular features
was identified. Which we have also observed in other published
research (11,12). 
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To overcome the challenges posed by the diversity of imaging
acquisition and reconstruction protocols in CT data, we proposed
and implemented a multi-step pre-processing routine, which
included lung extraction, spatial normalization, and image intensity
normalization. By incorporating these measures, we aimed to
address the inherent heterogeneity present in CT data, thereby 

outperformed individual models in predicting ARE. To the best of
our knowledge it  was the first study to utilize pre-treatment brain
MRI images for predicting the risk of ARE, integrating radiomics
with DL predictions to achieve more robust and accurate results.
However, despite these encouraging results,  the prediction score
obtained in our study is not yet sufficiently high to be confidently
used for treatment planning. Further investigation is necessary,
particularly with a dataset containing a higher proportion of the
scans representing patients with ARE. 

Applications of Deep learning in medical imaging 

In Chapter 5 we presented an extensive literature review that
explored various clinical segmentation approaches, ranging from
manual to fully automatic methods. These approaches encompassed
diverse techniques from the spectrum of present clinical
segmentation approaches, including fully automatic deep learning
models,  few-shot learning models capable of learning from limited
data, transfer learning and fine-tuning, and interactive methods. In
this chapter, we provided an explanation of the underlying
principles behind each approach and discussed their respective
advantages and limitations. Additionally,  we proposed the optimal
utilization scenarios for each method, taking into consideration the
clinical context and data availability.  

Chapter 6 is a centerpiece of this thesis.  This chapter incorporates a
range of research objectives and serves as foundation for the
development of clinical software designed for the automatic
segmentation of non-small cell  lung cancer (NSCLC) on CT images,
which subsequently obtained CE marking. 
Within this chapter, we present a fully automated pipeline designed
for the detection and volumetric segmentation of NSCLC on CT
images. To ensure the robustness and effectiveness of our approach,
we collected a large multi-centric dataset,  consisting of 1328 pre-
treatment thoracic CT scans from patients diagnosed with NSCLC.
This dataset served for developing and externally validating our
approach. 
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Chapter 7 presents a deep learning (DL) algorithm designed for the

enhancing the reliability of produced segmentations. 
In order to provide a more detailed overview of the method's
performance, we conducted a comprehensive quantitative analysis
that considered multiple factors associated with the CT scans and
the cancers. These factors included variables such as image slice
thickness, tumor size, image interpretation difficulty,  and the
location of the tumor. Additionally,  to facilitate comparisons with
other published studies, we expanded our set of quantitative metrics
to include recently published measures, such as Added Path Length
and Surface DICE. 
However, given the significant intra-/inter-observer variability
observed in the ground truth segmentations, which was also
confirmed during the prospective in-silico clinical trial  conducted as
part of this study, we felt  it  necessary to go beyond reporting solely
quantitative metrics.  To gain insights into the qualitative
performance of our method, we recruited 40 participants, including
radiologists and radiation oncologists,  and developed a specialized
software tool.  This tool enabled the participants to visually assess
the segmentations side by side, without indicating which
segmentations were manually created and which ones were
generated automatically.  
Remarkably, results of the qualitative assessment revealed that,  on
average, even among the group of radiologists and radiation
oncologists,  the automatic segmentations were preferred in 56% of
the cases.
Additionally,  we assessed the prognostic capability of the automatic
contours by applying the RECIST criteria and measuring tumor
volumes. Notably, our method's segmentations stratified patients
into low and high survival groups with a higher level of significance
compared to methods relying on manual contours. The results of the
qualitative evaluation, along with the promising quantitative
performance that aligned with the observed inter/intra-contouring
variability,  emphasized the potential clinical significance of our
automated approach. These results served as a catalyst for the
software development process for a clinically usable version of this
approach. 
The work conducted in this chapter received numerous recognitions,
including the best research presentation in 2019 at the MUMC+
research day (Maastricht,  Netherlaands) and receiving the ESTRO
Jack Fowler award in 2021 (Madrid, Spain).
The entire code associated with this study has been openly published
and is available for access through GitHub (13). 
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In Chapter 8 of this thesis,  we introduce an open-source initiative
aimed at enhancing reproducibility in Quantitative Medical Imaging
(QMI) research. This initiative seeks to address two present
challenges prevalent in the QMI research: the lack of methodology
standardization and the diversity of in-house data curation and
exploration methods. Data curation and pre-processing of medical
images are crucial and time-consuming steps in the QMI workflow.
The quality of these steps significantly impacts the resulting model
performance and reproducibility (15,16). The data curation process
incorporate multiple tasks, including image format conversion,
outlier detection, verification of different image DICOM tags, and
handling of missing or overlapping slices.  Currently,  these steps are
often carried out using in-house developed software or individually

identification of metastatic bone lesions on bone scintigraphy
images. The data used in this study was collected from three medical
centers,  providing a diverse and representative sample. A total of
1367 images from two different centers were combined and used to
train and validate the model.  Another 998 images from a different
medical center was used as external test to assess the algorithm's
generalizability.  Our model achieved a promising quantitative
performance comparable to that of nuclear physicians, even in the
absence of background knowledge about the patients'  medical
history. Additionally,  we have performed an in-silico clinical trial
where we developed an application allowing for collecting nuclear
medicine physician’s feedback based on the visual assessment of
bone scintigraphy scans. We have recorder the feedback and the
time spent per each scan. We used this data to compare the
quantitative performance along with the time spent to the
performance of our method. We have shown that our model solely
based on the image has outperformed the nuclear medicine
physicians in the similar setting (without the access to clinical
information about the patient),  at the same time being significantly
faster.  
To enhance the explainability of the DL algorithm we have utilized
the Grad-CAM (14) method that allowed us to highlight the regions
within the image that contributed to the positive decision. By
providing visual cues, we make the algorithm's decision-making
process more transparent and interpretable, enabling clinicians to
gain insights into the underlying features influencing the
classification. 

Open source and patented contributions to the
field 
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Chapter 9 is a summary of the patent issued to Maastricht
University for the work on Image data processing method, method of
training a machine learning data processing model and image
processing system. The patent claims were made as a part of the
clinical software development process for the automatic
segmentation of NSCLC on CT. The work described in the chapter 6
served as a foundation for the prototype of the clinical software
(DUNE.AI/ DUNE.BIO). By following the clinical needs and
regulations, the resulted web based prototype was developed for
both local and server deployment so that the data would not leave
the clinic side. Moreover, user privacy and anonymization
functionality was implemented for the processed DICOM images
(Figure 1).  Extra functionality including quick check of the
generated segmentations in 3D and range of editing tools in 2D was
implemented alongside, so that the clinicians could quickly adjust
the results (Figure 2).  The software has automatically calculated
multiple features derived from the tumor segmentation, such as
RECIST and volumetric RECIST measurements that could be used
for the tumor response to treatment evaluation (Figure 2).  

implemented by researchers, without undergoing community
scrutiny and may introduce errors. Furthermore, the
implementation of these steps can vary methodologically.  To address
these issues we proposed an open-source standardized
implementation of these data curation methods, which can be
accessed and validated by the medical imaging community.
Furthermore, the toolbox offers functionality for conducting
exploratory analysis,  which is vital in the development of a
radiomics workflow. It is important to explore the potential of image
processing techniques to enhance the extraction of radiomics
features. The Image Biomarker Standardization Initiative (IBSI)
underscores the significance of image processing in this context
(17). Additionally,  performing an exploratory analysis on
handcrafted radiomics features and visualizing discriminatory
statistics is critical for gaining insights and understanding the data
better.  By adopting the use of open-source tools,  reviewed by
community we aim to increase the transparency and reliability of the
data curation process, ultimately contributing to improved
reproducibility in QMI studies. We also believe that proposed
toolbox will  benefit  researchers without strong programming
backgrounds and lower the entry barrier for the students who want
to start their journey in QMI research. 
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Figure 1 Login screen of the developed automatic NSCLC detection
and segmentation software (DUNE.BIO) 
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10Second challenge in bringing medical imaging research to clinical
implementation is the variability in data. Medical images 

Figure 2 a) Patient view and b) quick editing screens of the
automatic NSCLC detection and segmentation software (DUNE.BIO) 

Current challenges in translating the research
into clinical practice 

Bringing medical imaging research to clinical implementation poses
several challenges that need to be addressed for successful
integration into healthcare practice. These challenges arise from
various aspects,  including technical,  regulatory, and data. 

One of the primary challenges, as also outlined in Chapter 2 is the
need for robust and reliable validation of the imaging algorithms
and methodologies. While research studies often demonstrate
promising results in controlled environments, the translation of
these findings to real-world clinical settings requires rigorous
validation. Clinical implementation necessitates the evaluation of
algorithms on diverse patient populations, with variations in
imaging equipment, protocols,  and disease presentations. This
validation process involves addressing issues related to data
heterogeneity,  generalizability,  and the establishment of clinically
relevant performance metrics.  
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are originally intended for human interpretation and are
reconstructed with specific parameters that can vary a lot across
different scanner manufacturers. To address this challenge, the
development of an open-source reconstruction protocol specifically
designed for the AI applications in medical imaging research could
be a significant step forward. Such protocol would aim to establish a
unified and standardized approach to image reconstruction,
independent of the manufacturer. Such an initiative would make a
significant stride in fighting the variability issues and promote
consistency in image data, facilitating the development and
deployment of AI algorithms in clinics.   

Another significant challenge is the integration of AI algorithms into
existing clinical workflows. Most of the radiotherapy departments
typically operate within complex systems such as Picture Archiving
and Communications System (PACS) and electronic medical records
(EMR), and incorporating new AI tools in a seamless way with
existing infrastructure could be a real issue. The unified format
adopted by major PACS that would allow the integration of AI
research applications that qualify pre-defined security requirements
in a clinical trial  setting would be highly desired. Otherwise
researchers need to take a long route by developing standalone
software applications including GUI efforts,  and a lot of platform
work e.g.  security and communication with databases to support the
AI algorithm. 

Additionally,  the regulatory landscape surrounding medical imaging
technologies is a challenging and location sensitive topic that could
exclude the possibility of using some of the available tools and
services e.g.  cloud based services. The development and deployment
of AI-based algorithms for medical imaging are subject to regulatory
approval,  which involves demonstrating safety, efficacy, and
adherence to relevant standards. Meeting these regulatory
requirements can be a time-consuming and resource-intensive
process, involving extensive documentation, clinical trials,  and
collaboration with regulatory bodies. 

Privacy and data security also present challenges in the
implementation of medical imaging research applications. Ensuring
data anonymization, secure storage, and compliance with ethical
guidelines is crucial to protect patient privacy while enabling robust
research and development. 
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Future prospects 

In the coming years, AI is expected to be a major player in
advancing medical imaging technologies, revolutionizing healthcare
practices, and improving patient outcomes. Here are just some of
the prospectives for the AI in the medical imaging field: 

Continuous improvement of the AI technology 
One of the emerging directions currently is the vision transformers
for object detection, image classification, and image segmentation.
Vision transformers, also known as ViTs, are a groundbreaking
development in the field of computer vision18. Unlike traditional
convolutional neural networks (CNNs), which is stil l  the go-to
architecture for most of the MI tasks, vision transformers offer a
novel approach by utilizing the power of self-attention. These ViTs,
inspired by their success in natural language processing, bring the
benefits of sequential modeling to the visual domain. The self-
attention mechanism allows the model to capture global
dependencies between different regions of the input image, enabling
it to extract contextual relationships and long-range dependencies.
This is in contrast to CNNs, which rely on local receptive fields and
convolutional filters.  Numerous studies, including the recent Meta
paper on SAM, have demonstrated impressive performance,
challenging the current benchmark set by CNNs (18–21,22). 

More affordable and improved diagnosis and decision-
making 
AI algorithms can analyze medical images with remarkable speed
and accuracy, aiding radiologists and other healthcare professionals
in diagnosing diseases at an early stage (23,24). AI systems can also
assist radiologists in a range of other tasks including the detection,
classification and segmentation of various conditions, including
cancers, diabetes, cardiovascular diseases and more (25). The
widespread use of AI powered diagnostics can help to improve early
detection and lead to timely interventions and better treatment
outcomes. It  can also increase the quality and make such diagnostic
tools available for the people who cannot afford it  due to financial
or location-based barriers.  
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In this thesis,  we conducted multiple studies to explore various AI
applications using different medical imaging modalities and clinical
problems. We placed particular emphasis on ensuring the robustness
of our models and the reproducibility of our results.  To achieve this,
we utilized harmonization and pre-processing procedures for the
imaging data and shared our code and results open source.
Regarding the application of ML models based on Handcrafted
Radiomics Features (HRFs), we demonstrated their potential as
complementary approach to interdisciplinary methods. However,
challenges persist in this area. In the context of DL applied to
medical imaging, we demonstrated its ability to perform at a level
comparable to that of clinicians for multiple applications. This was
supported by quantitative and qualitative metrics obtained during
in-silico clinical trials.  We also highlighted the potential of DL to
assist medical professionals and enhance clinical routines.
Additionally,  we have outlined the challenges encountered during
the implementation of the clinical AI based software. Some of these
challenges remain, preventing the sustainable implementation of the
AI applications in clinical settings. While ongoing research is
steadily pushing the barriers on the AI side, the change should also 

Radiology Workflow Optimization 
As we demonstrated in Chapter 6, 7 AI can streamline radiology
workflows by automating time-consuming tasks, such as image
curation, lesions and OAR segmentation, and automatic
measurements. By automating these processes, AI algorithms can
reduce the radiologist 's workload, allowing them to focus more on
interpreting results,  communicating with patients,  and making
crucial clinical decisions. This can enhance efficiency, speed up
diagnosis,  and reduce the chances of human error.  

Personalized medicine 
Once there is enough structured data, AI can enable personalized
medicine by analyzing medical images along with other clinical and
patient data, such as genetic information, electronic health records,
and lifestyle factors. By considering the cross-disciplinary data, AI
algorithms can predict individual patient responses to specific
treatments and help find better-tailored therapies, which has the
potential to optimize treatment plans, minimize side effects,  and
enhance patient care (26).  

Conclusion
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3. Zaidi,  H. & Alavi,  A. Recent Advances in Imaging with PET, CT,
and MR Techniques, An Issue of PET Clinics EBook. (Elsevier Health
Sciences, 2020). 

7.  Keek, S. A. et al.  A Prospectively Validated Prognostic Model for
Patients with Locally Advanced Squamous Cell  Carcinoma of the
Head and Neck Based on Radiomics of Computed Tomography
Images. Cancers 13, (2021). 

9.  Zhao, B. et al.  Reproducibility of radiomics for deciphering tumor
phenotype with imaging. Sci.  Rep. 6, 23428 (2016). 
10. Midya, A.,  Chakraborty, J.,  Gönen, M., Do, R. K. G. & Simpson,
A. L. Influence of CT acquisition and reconstruction parameters on
radiomic feature reproducibility.  J Med Imaging (Bellingham) 5,
011020 (2018). 

12. Gupta, A. et al.  Pretreatment Dynamic Susceptibility Contrast
MRI Perfusion in Glioblastoma: Prediction of EGFR Gene 

happen on the clinical infrastructure side. Much effort should be
done to support the integration of AI tools and make them available
in the current clinical workflows. By collaboratively addressing this
challenges, we can bring AI-based personalized medicine closer to
becoming a reality.  
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Summary 

This thesis explored applications of AI in medical imaging for
enhancing and streamlining cancer management. It  comprises a
composition of comprehensive review articles as well  as research
studies using various medical imaging data. Additionaly, it  outlines
the current challenges encountered when implementing AI in
clinical settings and explores future prospects in the field. 

Part 1: Applications of HRFs based ML methods in
medical imaging 

Part 1  starts with an introduction through Chapter 2  where
application of HRFs based models were explained and discussed,
along with the challenges, l imitations, and future prospects.
Chapter  3  utilizes the HRF in conjunction with clinical,  molecular,
and qualitative imaging data to explore the integrated performance
of these features for prediction and prognosis in patients with
Gliablostoma. Chapter  4 continues the investigation of
complimentary value of HRFs extracted from the MRI, it  compares
and combines handcrafted feature based models with models based
on the automatically extracted deep features for predicting the ARE. 

Part 2: Applications of Deep learning in medical imaging 

Part 2 also starts with an introduction,  Chapter 5  explores existing
methods for the medical imaging segmentation, ranging from fully
manual to fully automatic.  It  provides an in depth explanation for
the methods behind each solution and suggests the best suitable
option based on the clinical scenario. Chapter 6  continues the
research of automatic medical imaging segmentation methods using
AI. It  incorporates multiple research objectives for enhancing the
NSCLC management. It  demonstrates that AI can be used for
automatic NSCLC detection and segmentation on CT with the
performance comparable to the manual annotators. It  also serves as
the evidence that AI could be used to streamline and enchance the
radiotherapy workflows .  Chapter 7  shifts application of AI in
medical imaging from automatic segmentation to classification. It
explores the use of DL for detection of bone metastases on the bone
scintigraphy images. It  demonstrated the potential of AI to be used
as clinical decision aid tool that could minimize the time needed by
a nuclear physician to assess bone scans. 
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Part 3: Open source and patented contributions to
the field 

Part 3 shifts the focus from the research to the development of AI
based and auxiliary applications. Chapter 8  describes an open
source initiative to improve the reproducibility of quantitative
medical imaging research through standardisation of data curation
and pre-processing. The developed python package provides various
functionality for handling medical and clinical data including data
exploration, curation, outlier detection and verification. Chapter  9
presents the summary of the patent for the work on image data
processing method, method of training a machine learning data
processing model and image processing system. The patent claims
were made as a part of the clinical software development process for
the automatic segmentation of NSCLC on CT. 

Part 4: General discussion and future
perspectives 

Part 4 and  Chapter 10  addresses the present challenges in the
integration of the AI based applications in the clinic and concludes
the thesis by discussing the future prospects.  





IMPACT PARAGRAPH 



292

Impact paragraph 

This thesis explored various applications of AI in medical imaging
for enhancing and streamlining cancer management through
detection, localization, prognosis,  outcome prediction, and
automatic cancer segmentation. The comprehensive review articles
included in the thesis provide insights into the current state of AI
applications in medical imaging field, along with the existing
challenges and future prospects.  The methods, findings and results
provided in these thesis have been externally validated, peer
reviewed, and openly shared with the community to insure their
reproducibility and robustness .  

Scientific impacts 
In  Chapter 2  we proposed a new framework that guides
development of robust HRFs pipelines. In the  Chapter 3  and  4  we
have demonstrated that HRFs extracted from the MRI images have
complimentary value to the ML models based on the clinical,
molecular,  qualitative or deep features for prognosis and predicting.
In  Chapter 5  we reported extensively on the different segmentation
methods currently used in the medical imaging field. In  Chapters
6, 9  we provided multiple research endpoints.  Firstly,  we
demonstrated that AI based NSCLC automatic segmentation could
reach the quantitative performance comparable to clinicians.
Secondly, we performed an insilico clinical trial  where we estimated
the variance of manual contouring of NSCLC and showed that
segmentations produced by our method were preferred by the group
of radiologists/radiation oncologists more often than manual
segmentations. We have also estimated the tolerance parameter for
the manual segmentation task of NSCLC allowing for computation of
variance avare Surface DICE metric in further research. The work in
chapter 6, 9 was used as a foundation for the development of the
clinical application taht had received a CE marking. Lastly we have
shared all  the model data open source allowing the possible transfer
learning applications. In  Chapter 7  we shown the potential of AI
based applications to improve clinical decision aid tools,  increase
diagnostic specificity and minimize the time needed by a nuclear
physician to assess bone scintigraphy scans. In  Chapter 8  we
developed a precision medicine toolbox that aims to increase the
reproducibility of quantitative medical imaging research through
standartisation of data curation and pre-processing. 
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Societal impacts 

Cancer has a major impact on society. Although the overall  mortality
rate has declined, it  remains a leading cause of death worldwide.
Advancements in cancer managment are crucial to maintain the
decrease in mortality rates. Currently clinical decisions are still
subjective and prone to variability (1,2).  They depend on multiple
factors including the level of expertise and experience of the
clinicians, geographical location and clinical infrastructure. AI can
help optimize the current cancer management workflows, assist
clinicians with the objective decision support and make the
advanced cancer management tools available for the regions with
poor clinical infrastructure. 

The research outcomes, findings, and tools that are presented and
implemented in the  Chapter 3,4  have the potential to guide
researchers and clinicians in leveraging AI technology for more
efficient and effective cancer management.  Chapter  6  presents an
open source AI based solution for automatic detection and
segmentation of NSCLC, it  can be used to assist the clinicians in
detecting and segmenting the NSCLC on CT, decreasing the time and
effort needed for this laborious process. It  could also assist in
evaluating the tumor response to treatment through automatic
calculation of RECIST and volumetric RECIST. Chapter 7 proposes a
method that could benefit  nuclear medicine clinicians in detecting
the metastatic spots on the bone scintigraphy scans. Once
implemented it  could help in reducing the time needed for the initial
assessment and also be used as a radiologist training support tool.
Chapter 8 and 9  highlighted some of the contribution to the open
science and a real clinical application for NSCLC segmentation, that
subsequently received a CE marking. 

The publications presented in this thesis along with the analyses and
code, were peer reviewed and published in reputable open acess
journals,  including Nature communications, Cancers, Physics in
Medicine & Biology, etc.  This should increase the transparency and
transmitabillity of our research. The research conducted in this
thesis has been extensively shared and discussed with medical
imaging and radiology community at various national and
international conferences, including Big Data For Imaging
conference (2018), GROW science day of Maastricht University
(2018, 2020), Maastricht University Medical Center MUMC+ science
day (2019), Dutch Week wan de longen (2019), the European
Congress of Radiology ECR (2020) and the European SocieTy for
Radiotherapy and Oncology ESTRO (2021). Additionaly the 
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1. Berry, S.  L.,  Boczkowski,  A.,  Ma, R.,  Mechalakos, J.  & Hunt, M.
Interobserver variability in radiation therapy plan output: Results of
a single-institution study. Pract.  Radiat.  Oncol.  6,  442–449 (2016). 

work presented in this thesis has received recognition through
multiple awards, including the best research presentation in 2019 at
the MUMC+ research day (Maastricht,  Netherlaands) and receiving
the ESTRO Jack Fowler award in 2021 (Madrid, Spain) (3).  
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