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a b s t r a c t

In this paper, we introduce and analyze resource location games. We show core non-emptiness by
providing a set of intuitive core allocations, called Resource-Profit allocations. In addition, we present
a sufficient condition for which the core and the set of Resource-Profit allocations coincide. Finally,
we provide an example showing that when the sufficient condition is not satisfied, the coincidence is
not guaranteed.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Consider a setting with several regions (e.g., villages, munici-
palities, or small districts), each inhabited by several residents. All
these residents are interested in the realization of the same type
of task (e.g., mowing the lawn, cleaning a rain gutter, or pruning
the hedge). Such a task can be executed with a single resource,
and each resident may or may not own such a single resource
(e.g., a lawn mower, a gutter ladder, or a hedge trimmer). If a
resident holds (and so has access to) such a resource, it generates
a resident-specific profit (e.g., the profit or utility realized by
mowing the lawn, cleaning the rain gutter, or pruning the hedge).

Residents amongst, but also within, regions can decide to
collaborate. In such a collaboration, the participants decide in
which regions to locate their resources. Each resource is then
shared, and used, amongst all participants in the region where
the resource is located, a so-called covered region. Such type of
situations, in which a resource is shared and used amongst all
participants in a covered region, is reasonable when, for instance,
demand per participant is low (e.g., a hedge trimmer is only
used a couple of hours, per year) or capacity of the resource is
high. The aim of the collaborating residents is to (re)allocate the
resources in such a way that total profit (i.e., the sum of the
profits of the participating residents that belong to a covered
region), is maximized. Typically, this results in additional profit
(compared to the situation without any collaboration amongst
the players) and thus the question arises about how to allocate
this additional profit in a fair and efficient way amongst the
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collaborating participants. In this paper, we investigate this joint
profit allocation aspect in a resource location (RL) situation. To
tackle this aspect, we introduce an RL game wherein residents
are represented by players that each may or may not own a single
resource and each have an associated profit, indicating the worth
of having access to a resource.

For these RL games, we study properties of the core (i.e., the
set of all possible allocations for which no group of players has
an incentive not to collaborate). We distinguish between the case
with more resources than regions (i.e., oversupply) and the case
with not more resources than regions (i.e., no oversupply). For
both cases, we show that the core is non-empty. For the oversup-
ply case, we provide a complete description of the core. For the
no oversupply case, we provide a subset of the core. We do so by
providing a set of intuitive core allocations, called Resource-Profit
(RP) allocations. These RP allocations are based on a uniform price
of owning a resource and the player-specific profit. In addition,
for the no oversupply case, we present a sufficient condition
for which the core and the set of RP allocations coincide. As
a side result, we are able to identify how these RP allocations
can be constructed via any core allocation. Finally, we provide
an example showing that when the sufficient condition is not
satisfied, the coincidence is not guaranteed, i.e., the set of RP
allocations is a proper subset of the core.

RL games belong to the class of resource pooling games, in
which resources are reallocated, or shared, amongst players to
realize additional profit. In the last couple of years, there is
an increasing interest in these games. Some examples are the
pooling of technicians in the service industry [1], pooling of
capacity in a production environment [2,8], pooling of emergency
vehicles in health care [6], reallocation of inventory in a retail
setting [13], pooling of spare parts in the capital intensive goods
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0167-6377/© 2019 Elsevier B.V. All rights reserved.
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industry [3–5], and reallocation of spare parts and repair vans in
a railway setting [10,11]. To the best of our knowledge, there are
no resource pooling games in literature that consider our specific
situation —the one in which players can share resources within
a region and reallocate them amongst the regions. The only
exception is the classical Böhm-Bawerk horse market (BBHM)
game, which has been studied extensively in literature (see, e.g.,
[7,12,14,15]). In BBHM games, there are sellers that each have one
horse for sale and buyers that each wish to buy one such horse.
These horses are all alike, while the sellers and buyers may have
different valuations for such a horse. When collaborating, horses
are sold towards those buyers that value horses most. Shapley
and Shubik [12] showed that the core of these games coincides
with a particular set of market allocations, which, per player,
depends on its valuation and a uniform market price. Clearly,
we study a generalization of BBHM games: when each region
(of an RL game) inhabits exactly one player (with or without a
resource), the players with a resource can be seen as potential
sellers and the players without a resource can be seen as potential
buyers. Hence, in the spirit of BBHM games, we contribute to
the literature by generalizing this classical game and some of its
corresponding results.

The outline of this paper is as follows. In Section 2, we intro-
duce RL situations and describe the associated RL games. Then,
in Section 3, we formally define the set of RP allocations and
we analyze its relation with the core of RL games. We conclude
this paper with a final remark about this relation. We want to
emphasize that proofs of lemmas and theorems are relegated to
Appendix A. For the main results, which are presented in the form
of theorems, we also give a sketch of proof in the main text.

2. RL situations and associated RL games

2.1. RL situation

An RL situation can be summarized by a tuple
θ = (N, r, w, D,D), where N ⊆ N is a finite set of players
(e.g., residents). The parameter ri ∈ {0, 1} indicates whether
player i ∈ N owns a resource (ri = 1) or not (ri = 0). The vector
r ∈ {0, 1}N summarizes these parameters. It is assumed that there
is at least one player who owns a resource, i.e.,

∑
i∈N ri ≥ 1. The

player-specific profit wi ≥ 0 specifies the profit player i ∈ N
realizes in case he has access to a resource. A player has access to
a resource if he owns a resource. When players collaborate, there
is also another way of having access to a resource, which will be
discussed later on in this section. The vector w ∈ RN

+
summarizes

the player-specific profits. The set D ⊆ N is a finite set of regions.
Furthermore, Dj ⊆ N represents the set of players that belong to
region j ∈ D . Every player belongs to exactly one region and thus
the family of sets of players D = {Dj | j ∈ D} is a partition of N .
The set of all RL situations is denoted by Θ .

It is assumed that the nature of the resources is such that the
players within the same region can share resources with each
other, i.e., all players within the same region can benefit from a
single resource. As a consequence, if a region contains at least
one player who owns a resource and all players in this region
decide to cooperate, then this resource can be donated to this
region and so every player in this region has access to a resource
and thus receives its player-specific profit. Note that, due to the
nature of the resources, it does not make a difference for a region
whether it has one, or multiple players with a resource. Indeed,
the remaining resources (if any) could be allocated to other
regions —and this calls for collaboration amongst the regions as
well. Doing this in an optimal way boils down to allocating the∑

i∈N ri resources to the regions for which the regional profit,
i.e., the sum of its player-specific profits, is the highest. These

regions are called the covered regions and the remaining ones
are called non-covered regions. We denote Dc

N ⊆ D as the set
of covered regions. Then, by assuming that initially there is no
reallocation of resources and moreover resources are not shared
amongst players in the same region (i.e., no collaboration within
and amongst the regions), the maximal joint profit increase due
to cooperation equals∑
j∈Dc

N

∑
i∈Dj

wi −
∑
i∈N

riwi.

Here, the first part equals the sum of the regional profits
of the covered regions, i.e., the total profit when there is full
collaboration. The second part equals the sum of the player-
specific profits of the players who initially own a resource, i.e., the
total profit when there is no collaboration at all.

2.2. RL games

A cooperative game is a pair (N, v) where N denotes a non-
empty, finite set of players and v : 2N

→ R assigns a monetary
payoff to each coalition S ⊆ N , where 2N denotes the collection
of all subsets of N . The coalitional value v(S) denotes the highest
payoff the coalition S can jointly generate by means of optimal
cooperation without help of players in N\S. Coalition N is called
the grand coalition. Furthermore, by convention, v(∅) = 0.

In order to define a cooperative game associated with RL situa-
tions, we first need to introduce some notions and definitions. For
each coalition S ⊆ N , R(S) indicates the total number of resources
in coalition S, i.e., R(S) =

∑
i∈S ri. Additionally, for each region

j ∈ D , Dj(S) identifies the players of coalition S that belong to
region j, i.e., Dj(S) = Dj ∩ S. The set DS ⊆ D contains the regions
for which there exists a player of coalition S that belongs to this
region, i.e., DS = {j ∈ D | Dj(S) ̸= ∅}. Moreover, we denote the
sum of the player-specific profits of all players in coalition S that
belong to region j by Wj(S) and thus Wj(S) =

∑
i∈Dj(S)

wi. We call
Wj(S) the regional profit of region j for coalition S.

To tackle the allocation problem of the maximal joint profit
increase in an RL situation θ = (N, r, w, D,D), one can analyze
an associated cooperative game (N, vθ ). Here, for a coalition S ⊆

N\{∅}, vθ (S) reflects the maximal joint profit this coalition can
make. For this, we assume that the players in S can only reallocate
their own resources. Moreover, a player in coalition S cannot
benefit from the resource of a player in the same region if he
does not belong to coalition S. As a consequence, it is optimal
for coalition S to allocate his R(S) resources to the R(S) regions in
DS for which the regional profits for coalition S are the highest.
In order to define vθ (S) formally, we first introduce the bijection
σS : {1, 2, . . . , |DS |} → DS . This bijection is uniquely defined
and orders the regions in DS in such a way that they are in non-
increasing order with respect to regional profits for coalition S.
Moreover, if there is a tie, then the region with the smallest index
is chosen first. Formally,

σS(1) = min{j ∈ DS | Wj(S) ≥ Wk(S) for all k ∈ DS},

σS(i) = min {j ∈ DS\{σS(1), . . . , σS(i − 1)} |

Wj(S) ≥ Wk(S) for all k ∈ DS\{σS(1), . . . , σS(i − 1)}
}
,

for every i ∈ {2, 3, . . . , |DS |}. As a result, coalition S allocates
a resource to every region j ∈ DS with σ−1

S (j) ≤ R(S). We
denote the set of covered regions for coalition S by Dc

S =

{j ∈ DS | σ−1
S (j) ≤ R(S)} and the set of non-covered regions by

Dnc
S = {j ∈ DS | σ−1

S (j) > R(S)}. The following definition provides
the formal definition of an RL game.
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Definition 1. For every RL situation θ ∈ Θ , the associated RL
game (N, vθ ) is defined by

vθ (S) =

∑
j∈Dc

S

Wj(S),

for all S ⊆ N\{∅} and vθ (∅) = 0.

We conclude this section with an illustrative example.

Example 1. Let θ ∈ Θ with N = {1, 2, 3}, r = (0, 0, 1),
w = (4, 6, 2), D = {4, 5}, D4 = {1}, and D5 = {2, 3}. In Table 1,
we present the coalitional values of (N, vθ ).

Table 1
The RL game (N, vθ ) of Example 1.

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

vθ (S) 0 0 0 2 0 4 8 8

Player 3 is the only player with a resource. When he coop-
erates with others, he can either keep it in his own region, or
give it to another region. Since w1 > w3, player 3 donates his
resource to region 4 when cooperating with player 1, but keeps it
in region 5 when cooperating with player 2. When all the players
cooperate, it is best to allocate the resource to region 5. Then,
both player 2 and player 3 use it, which results in a profit of
w2 + w3 = 6 + 2 = 8. ⋄

3. The core of RL games

The core C (N, v) of a cooperative game (N, v) is formally
defined as the set of all allocations x ∈ RN that are efficient(∑

i∈N xi = v(N)
)
and stable (

∑
i∈S xi ≥ v(S) for all S ⊂ N).

Convexity (see [9]) is a desirable property for cooperative games,
since the core of a convex game is always non-empty and its
structure is known (namely, the core of a convex game is the
convex hull of the marginal vectors). RL games are in general not
convex (see for instance Example 1). So, for studying the core of
RL games, we have to investigate those games in more detail.

In Lemma 1 we present a result for core allocations that is
frequently used throughout this paper. This lemma resembles
that a coalition cannot claim too much from the value of the
grand coalition, because this would not leave enough for the
players outside the coalition. Recall that all proofs are relegated
to Appendix A.

Lemma 1. Let (N, v) be a cooperative game and let S ⊂ N. For
every x ∈ C (N, v) it holds that∑
i∈S

xi ≤ v(N) − v(N\S).

In Lemma 2 we show that any coalition in an RL game can
realize a coalitional value at most equal to the sum of the player-
specific profits of all the players in that coalition. Moreover, in
case there are enough resources for all regions of this coalition
(i.e., no undersupply of resources for coalition S), all player-
specific profits can be realized.

Lemma 2. Let θ ∈ Θ be an RL situation and let (N, vθ ) be the
associated RL game. For any coalition S ⊆ N, the following holds:

(i) vθ (S) ≤
∑

i∈S wi if R(S) < |DS |,

(ii) vθ (S) =
∑

i∈S wi if R(S) ≥ |DS |.

Note that in case of oversupply of resources for the grand
coalition, it is also possible that there is no oversupply of re-
sources for some coalitions. In other words, even though we
consider in Section 3.1 the case R(N) > |D|, it is still possible
that there exists a coalition S ⊂ N with R(S) ≤ |DS |.

3.1. Oversupply of resources: R(N) > |D|

The following theorem shows that in case of oversupply of
resources, the core coincides with the vector of player-specific
profits, which implies that the value of a resource reduces to zero.

Theorem 1. Let θ ∈ Θ be an RL situation with R(N) > |D| and let
(N, vθ ) be the associated RL game. It holds that

C (N, vθ ) = {w}.

We now give a sketch of proof for this result. The proof starts
with showing that each player cannot claim more than its own
profit, which follows by exploiting the results of Lemma 1 and
Lemma 2. Subsequently, by exploiting the efficiency property, it
follows that each player exactly claims its own profit. Finally, we
prove that the vector of player-specific profits is a core element,
which follows by exploiting the results of Lemma 2.

Remark 1. If the condition of Theorem 1 is not satisfied, the co-
incidence is not guaranteed. To see this, consider for instance an
adjusted version of Example 1 with r = (1, 1, 0) and thus R(N) =

2 ̸> 2 = |D|. Then, {w} = {(4, 6, 2)} ⊂ Conv ({(4, 6, 2), (4, 8, 0)})
= C (N, vθ ) and thus the coincidence does not hold. Moreover,
note that the condition of Theorem 1 is only a sufficient condition
and not a necessary condition. To see this, consider for instance
another adjusted version of Example 1 with r = (1, 1, 1) and
D = {4, 5, 6}, where D4 = {1}, D5 = {2} and D6 = {3}.
Then, the core coincides with the vector of player-specific profits,
i.e., C (N, vθ ) = {(4, 6, 2)} = {w}, but R(N) = 3 ̸> 3 = |D|.

3.2. No oversupply of resources: R(N) ≤ |D|

We start with introducing the intuitive core allocations, which
per player i ∈ N , consists of two components. The first component
is the resource component γ · ri that compensates for owning a
resource. The second component is the profit component αi that
compensates for the profit realized by a player. The allocation,
which we call a Resource-Profit (RP) allocation, is then formulated
as

γ · ri + αi for all i ∈ N.

We continue by formally defining these two components. First,
we introduce the resource component, which depends on γ . This
parameter is defined as follows:

γ ∈

{[
WσN (R(N)+1)(N),WσN (R(N))(N)

]
if R(N) < |D|,[

0,WσN (R(N))(N)
]

if R(N) = |D|.
(1)

The parameter γ resembles the principle of a market price.
Firstly, because γ is at least equal to the regional profit of a region
that has highest regional profit amongst all non-covered regions.
Secondly, because γ is at most equal to the regional profit of a
region that has lowest regional profit amongst all covered regions.
Hence, any other price (than γ ) would always give (some) players
incentives to sell (or buy) a resource for a lower (or higher) price.
The profit component is defined as follows:

αi ∈

{
[0, wi] for all i ∈ Dj(N) with j ∈ Dc

N ,

{0} for all i ∈ Dj(N) with j ∈ Dnc
N ,

(2)

with the additional condition that∑
i∈Dj(N)

αi = Wj(N) − γ for all j ∈ Dc
N . (3)

So, players that belong to a covered region can divide the
regional profit, minus the price of the resource (that covers the
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region), freely, with the restriction that no one can demand more
than their player-specific profit.

Next, for every RL situation θ ∈ Θ , we denote the set of RP
allocations by

Ωθ
=

{
x ∈ RN

⏐⏐⏐⏐xi = γ · ri + αi for all i ∈ N, (1), (2), (3)
}

.

We are now ready to give a partial description of the core of RL
games, i.e., ready to show that RP allocations are core allocations.

Theorem 2. Let θ ∈ Θ be an RL situation for which R(N) ≤ |D|

and let (N, vθ ) be the associated RL game. It holds that

Ωθ
⊆ C (N, vθ ).

We now give a sketch of proof for this second main result.
Efficiency of RP allocations follows by the construction of the
resource and profit components in combination with the fact that
there is no oversupply of resources. For stability, we use that the
sum of resource and profit components of the players in a region
exceeds the regional profit.

An interesting follow-up question is under which conditions
(if any) every core allocation can be described in terms of an RP
allocation. In Theorem 3, we present a sufficient condition under
which this is true, i.e., a sufficient condition under which the core
coincides with the set of RP allocations. First, we introduce three
relevant lemmas that illustrate properties of core allocations in
RL games.

The following lemma shows that players who do not own a
resource themselves, can claim only a limited share of the total
profit.

Lemma 3. Let θ ∈ Θ be an RL situation and let (N, vθ ) be the
associated RL game. Let i ∈ N with ri = 0. For any x ∈ C (N, vθ ) it
holds that

xi ∈

{
{0} if i ∈ Dj(N) for some j ∈ Dnc

N ,

[0, wi] if i ∈ Dj(N) for some j ∈ Dc
N .

For a cooperative game (N, v), we define a coalition S ⊆ N to
be self-dual valued if

v(N) = v(S) + v(N\S).

By Lemma 1, self-dual valued coalitions cannot claim more
than their own coalitional value. Thus, by stability, they re-
ceive exactly their own coalitional value in every core allocation,
i.e.,

∑
i∈S xi = v(S) for every x ∈ C (N, v) and every self-dual

valued coalition S ⊆ N . In the following two lemmas we provide
two examples of self-dual valued coalitions in RL games.

Lemma 4. Let θ ∈ Θ be an RL situation and let (N, vθ ) be the
associated RL game. Let J ⊆ Dc

N with
∑

j∈J R(Dj(N)) = |J|. Then,
coalition ∪j∈JDj(N) is a self-dual valued coalition. As a consequence,
for any x ∈ C (N, vθ ), it holds that∑
j∈J

∑
i∈Dj(N)

xi =

∑
j∈J

Wj(N).

Lemma 5. Let θ ∈ Θ be an RL situation and let (N, vθ ) be the
associated RL game. Let j ∈ Dc

N with R(Dj(N)) = 0. Moreover, let
i ∈ Dl(N) for some l ∈ Dnc

N with ri = 1. Then, coalition Dj(N)∪ {i} is
a self-dual valued coalition. As a consequence, for any x ∈ C (N, vθ ),
it holds that

xi +
∑

k∈Dj(N)

xk = Wj(N).

We are now ready to present a sufficient condition for which
the core and the set of RP allocations coincide, namely the condi-
tion that each covered region has no more than two players who
initially have a resource.

Theorem 3. Let θ ∈ Θ be an RL situation with R(N) ≤ |D|,
R(Dj(N)) ≤ 2 for all j ∈ Dc

N and let (N, vθ ) be the associated RL
game. It holds that

Ωθ
= C (N, vθ ).

We now provide a sketch of proof for this last main result.
We start the proof of this theorem by observing that, based on
Theorem 2, it suffices to show that the core is a subset of the
set of RP allocations. In particular, we do so by showing that
every core allocation can be written as an RP allocation. For that,
we distinguish between two cases: the situation in which each
covered region has exactly one resource and the situation in
which this is not the case. Then, per case, we construct a resource
component (γ ) and a vector of profit components ((αi)i∈N ) such
that they form a core allocation. Finally, we show that these
components do satisfy the properties of an RP allocation, i.e., the
conditions in (1)–(3).

Remark 2. The condition of Theorem 3 resembles the idea that
a covered region should have limited bargaining power. If this
condition is not satisfied, the coincidence is not guaranteed (see
Example 2). Moreover, note that the condition of Theorem 3 is
only a sufficient condition and not a necessary condition. To see
this, consider for instance an adjusted version of Example 2 with
w = (0, 0, 0, 1, 1), then Ωθ

= {(0, 0, 0, 1, 1)} = C (N, vθ ), but
R(D6(N)) = 3 ≰ 2.

Example 2. Let θ ∈ Θ be an RL situation with N = {1, 2, 3, 4, 5},
w = (1, 2, 3, 4, 5), r = (1, 1, 1, 0, 0), D = {6, 7, 8}, D6 =

{1, 2, 3},D7 = {4}, and D8 = {5}. In Table 2, we present the
coalitional values of RL game (N, vθ ).

Table 2
The RL game (N, vθ ) of Example 2.

S vθ (S) S vθ (S) S vθ (S) S vθ (S)

∅ 0 {1, 4} 4 {1, 2, 3} 6 {2, 4, 5} 5
{1} 1 {1, 5} 5 {1, 2, 4} 7 {3, 4, 5} 5
{2} 2 {2, 3} 5 {1, 2, 5} 8 {1, 2, 3, 4} 10
{3} 3 {2, 4} 4 {1, 3, 4} 8 {1, 2, 3, 5} 11
{4} 0 {2, 5} 5 {1, 3, 5} 9 {1, 2, 4, 5} 9
{5} 0 {3, 4} 4 {1, 4, 5} 5 {1, 3, 4, 5} 9

{1, 2} 3 {3, 5} 5 {2, 3, 4} 9 {2, 3, 4, 5} 10
{1, 3} 4 {4, 5} 0 {2, 3, 5} 10 {1, 2, 3, 4, 5} 15

It can be checked that x = (5, 5, 5, 0, 0) ∈ C (N, vθ ). Now,
suppose that x ∈ Ωθ . So, for each i ∈ N , we can write xi =

γ · ri + αi. For i ∈ {4, 5} this boils down to α4 = x4 = 0 and
α5 = x5 = 0, because r4 = r5 = 0. Moreover, since x ∈ Ωθ , it
holds that γ +

∑
i∈Dj(N) αi = Wj(N) for all j ∈ Dc

N . So, for j = 7,
this boils down to γ + α4 = W7(N) = 4 and thus γ = 4. Now,
observe that γ + α5 = 4 ̸= 5 = W8(N), which is a contradiction.
Hence, x ̸∈ Ωθ . ⋄
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