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ABSTRACT: Plastic is one of the most versatile materials, but its production relies on fossil-based resources that have 

been linked to the increase in GHG emissions. In this sense, biobased plastics arise as an alternative to completely or 

partly substitute these fossil-based plastics. Nevertheless, it is still unclear if the use of biomass for the production of 

bioplastics can mitigate the environmental impact of fossil-based plastics and simultaneously provide economic 

benefits. The proper design of biomass supply chains plays an important role in the development of biobased plastics; 

however, economic criteria (e.g., maximization of revenues) is the most used parameter to optimize the supply chain, 

whereas environmental criteria are barely considered. For this purpose, we propose an optimization model that 

evaluates different supply chain configurations for the production of biobased polyethylene terephthalate (PET) using 

sugar beet and wheat. The optimization model accounts for the production costs and environmental costs through 

different methodologies, such as the Life Cycle Costing (LCC) and Life Cycle Assessment (LCA), respectively. We 

found that the production of biobased terephthalic acid (TPA) directly influences the economic profitability of 100% 

biobased PET. The selection of feedstock and carbon tax scenario play an important role in the development of biobased 

supply chains. 
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1 INTRODUCTION 

 

 In 2018, the European Commission (EC) published the 

roadmap for a sustainable bioeconomy in Europe, 

highlighting the importance of the bioeconomy for the 

future development of Europe and the transition to a low-

carbon economy. Food and nutrition remain a cornerstone 

of the EU policy, but allow for unlocking the potential of 

the bioeconomy in Europe at the same time [1]. The 

bioeconomy sector had a total turnover of € 2.3 trillion, 

where the manufacture of biobased chemicals and plastics 

accounted for € 177 billion [1]. The creation of jobs in the 

biobased chemicals and plastic sector increased in the 

same period (see Figure 3 in the report from EC [1]). 

Despite the many benefits of the European bioeconomy, 

some limitations still hinder the full implementation. If we 

take the example of the biobased chemicals and plastic 

sector, the success of this industry depends on the lobbying 

efforts of governmental agencies, looking for incentives or 

regulations for the production of biobased products. This 

is well described in the book published by Lewandowski 

et al., [2] where the authors showed the interconnections 

between actors involved in the governance of the 

bioeconomy. On the other hand, there is the discussion on 

the environmental benefits of biobased products in 

comparison to fossil-based ones. Biobased products 

perform better in terms of GHG emissions, but there are 

concerns that the use of biomass as feedstock for the 

production of these materials can generate issues related to 

water and land use, biodiversity loss, eutrophication, 

among others [3]. However, the biobased industry claims 

that the comparison between fossil and biobased products 

is not fair, since the oil industry has a high technology 

maturity and some environmental impacts are not 

considered within the boundaries of the product system 

(e.g., oil spills) [4]. Despite the bottlenecks, the EC 

encourages the creation of new value chains and greener, 

more cost-effective industrial processes to support the 

modernization and strengthening of the EU bioeconomy 

[1]. Therefore, we must provide decision-

makers/governmental entities with tools to start acting 

towards the setting of domestic value chains that promote 

the creation of local jobs and to provide incentives to 

industries promoting the shift from fossil-based to 

biobased products.  

 The design of Biomass Supply Chains (BSC) for the 

production of biobased materials requires the decision-

maker to know the possibilities, alternatives, or scenarios 

that provide processes with the best economic, 

environmental and social performance [5]. A supply chain 

(SC) is defined as a combination of processes aimed at 

fulfilling customer's requests including different entities 

from suppliers, transporters, manufacturers, distributors, 

among others [6]. However, the design of a SC is 

traditionally linked to meet the customer’s demands at the 

minimum cost, but the concept has expanded over time by 

including other criteria, such as minimizing the 

environmental and social impact. According to Barbosa-

Povoa et al., [6], the most studied criteria in the design of 

SC are economic and environmental; however, the social 

criterion is attracting attention through the Sustainable 

Development Goals (SDG). The most used metrics within 

the economic criteria are the Total Costs (TC), profits and 

Net Present Value (NPV), whereas the environmental 

criteria cover metrics such as carbon dioxide (CO2) 

emissions assessed as carbon footprint and greenhouse 

gasses (GHG) emissions.  

 The first decision-making issue we have to tackle is 

which criteria we should include in the design of BSC. The 

selection of the best criteria should consider the public 

awareness of sustainability issues, which can boost 

decision-makers to understand the life cycle impact of the 

evaluated BSC and its effect, not only on economic but 

also environmental aspects [7]. For this purpose, 

Operational research (OR) has emerged as a discipline that 

following the optimization paradigm, helps the decision-

maker to select the key criteria that will influence the 

overall quality of the decisions [8]. Among the different 

OR methods, optimization is commonly used to address 

the design of SC where the optimization problem is 

expressed as an objective function that includes decision 

variables and parameters to maximize or minimize 

according to the necessity of the problem [5]. TC seems to 

be the most adequate metric to optimize, and maybe the 
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most convenient; however, the emphasis has changed 

towards multiple criteria to establish trade-offs between 

different alternatives and their consequences [9]. The use 

of economic and environmental criteria has become very 

popular due to the possibility of generating a portfolio of 

possible solutions for decision-makers that could select the 

best option based on their needs [5], [5], [10]. However, 

decision-makers face a challenge when presented with 

multiple criteria choices for the selection of the best SC. 

On the one hand, it is not clear how to deal with trade-offs 

between the different criteria, since decisions are 

subjective to the motivations or drivers of the decision-

maker to select one configuration over the other. On the 

other hand, our society is highly driven by economic 

incentives, and thus a product with higher production costs 

and better environmental performance is not going to be 

considered due to the low economic performance [11]. As 

put forward by Tarnet et al., [11], environmental impacts 

could be addressed using monetary valuation methods 

(MVM) that translate the non-monetary impacts on the 

environmental and societal dimension into monetary terms 

[11]–[13].  

 Other approaches consider the design of BSC using 

carbon-pricing policies to account for the environmental 

impact of certain product or process, as reviewed by 

Waltho et al., [14]. Different carbon-pricing policies are 

applied to set a price or trade system to reduce GHG 

emissions from products or processes. The most popular 

ones are carbon tax, carbon cap, trade-and-cap, and carbon 

offset [14]. According to Waltho et al., the carbon tax and 

cap seem to be the most effective systems for reducing 

GHG emissions, and especially the carbon tax provides an 

extra incentive to invest in green technology [14]. In this 

sense, the purpose of our study is to use carbon-pricing 

policies, specifically the carbon tax to price emissions 

based on a tax rate, to guide decision-makers in the 

selection of the SC configuration, accounting for GHG 

emissions from the transportation network and production 

process under the life cycle assessment (LCA). 

 Emissions from transportation are widely included in 

the design of BSC with different carbon-pricing policies, 

whereas emissions from the product life cycle have not 

been widely considered. According to Waltho et al., [14], 

the main reason why emissions from LCA are not popular 

within the design of BSC is the high data requirements to 

perform the assessment. Furthermore, the GHG protocol 

provides guidelines for different emissions that companies 

should report. Companies are asked to report direct GHG 

emissions (scope 1), which are directly linked to 

transportation. Companies are not asked to report 

emissions from the upstream and downstream processing 

(scope 3) related to the LCA. The main concern regarding 

scope 3 emissions is double accounting, which has led to 

the absence of a requirement to report those emissions into 

their inventories. However, the importance of accounting 

for scope 3 emissions has been stressed due to the high 

contribution (up to 80%) of these emissions to the overall 

GHG inventory [15]. In summary, we acknowledge the 

importance to include scope 3 emissions into the design of 

BSC to promote the transition to a low-carbon economy, 

as biobased products can mitigate the negative 

environmental impacts from fossil-based products [3]. 

Despite the importance of biobased products to reduce our 

dependency on fossil-based products, the design of BSC 

through optimization models has focused mostly on the 

production of biofuels and electricity from renewable 

resources (e.g., agriculture products and wastes) [16]. We 

found a review paper from Dessbesell et al., [17] where 

only 5% of the reviewed papers (3 of 59 papers) evaluated 

the production of biobased materials and chemicals. After 

this review study was published in 2017, there has been an 

increasing interest in the design of SC for the production 

of biobased materials. We found that most of the papers on 

the topic “biobased supply chain (BBSC)" focus on the 

design of SC using as single criterion the production costs 

[18]–[20], whereas few publications include the 

environmental dimension, as a multiple objective 

optimization model [21], [22]. Therefore, we see the 

potential in the design of SC for the production of biobased 

materials involving economic and environmental criteria, 

specifically using carbon-pricing policies to raise public 

awareness that economic development in the production of 

these materials is possible as we account for the 

environmental benefits in its production. 

 In this sense, this paper aims to develop an 

optimization model for the design of BBSC using carbon-

pricing policies. As a study case, we selected the 

production of biobased PET (polyethylene terephthalate) 

made from sugar beet and wheat in Europe. We believe 

that the production of biobased polymers is one of the 

options to reduce our dependency on fossil-based 

polymers and thus, mitigating the climate impact of crude 

oil. We propose a single-objective optimization model that 

involves two criteria: total production costs and 

environmental costs. Our model correlates the availability 

of biomass and supply logistics with the demand for PET 

to design a cost-effective SC that accounts for the 

environmental benefits/drawbacks of the production of 

biobased PET based on our previous work [3]. The 

economic criterion involves the calculation of the 

production costs using the Life Cycle Costing (LCC) 

framework, while the environmental criterion accounts for 

GHG emissions from the Life Cycle Assessment (LCA) 

into monetary values using carbon-pricing policies (e.g., 

carbon tax).  

 

 

2 MODEL CHARACTERIZATION 

 

2.1. Problem definition 

 This paper aims to determine the supply chain network 

at a strategic-decision level for biobased PET using the 

BeWhere model. This model is a spatially-explicit mixed-

integer linear program (MILP) widely used in 

optimization studies for bioenergy production [23]–[27]. 

The model minimizes the costs of the entire supply chain, 

including feedstock production and transportation, 

processing, and product transportation. GHG emissions 

were calculated with LCA [3] and the costs for 

emitting/mitigating GHG emissions are included in the 

model using carbon-pricing policies (e.g., carbon tax).  

 The optimization model used in this study is as 

follows: 

 

Given 

• The availability of feedstock and the location of the 

suppliers 

• Feedstock cost per supplier location 

• A possible superstructure for the location of SC 

entities (e.g., processing plants) 

• Investment costs 

• Operative costs (e.g., reagents costs, utility costs, 

labor costs) 

• Transportation distances between the SC entities  
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• Transportation costs (fixed and variable) for 

different transport modes 

• Maximum and minimum flow capacities  

• Maximum and minimum acquisition and 

production capacities 

• Processing efficiency in each SC entity 

• Market prices of products from SC entities 

• GHG emissions factors from the LCA 

• GHG emissions factors for the different 

transportation modes 

• Carbon tax 

• Demand location and volume 

Determine 

• The SC network 

• The flow amounts between SC entities 

• The product cost in the SC entities 

So as to 

• Minimize the global SC costs 

• Determine the effect of GHG emissions in the SC 

cost 

 The developed model is described in detail in the next 

sections. 

 

2.2. Model formulation 

 The SC involves a two-stage structure: Feedstock 

supplier and plant A, plant A and plant B, plant B and plant 

C, plant C and plant D, Plant M and plant D, plant D and 

demand, as presented in Figure 1. 𝑆𝑟 represents the 

feedstock supplier, 𝑃𝐴 the plant A, 𝑃𝐵 the plant B, 𝑃𝑐 the 

plant C, 𝑃𝐷 the plant D, 𝑃𝑚 the plant M and 𝐷 the demand.  

 

 
 

Figure 1: Schematic representation of the SC network. 

 

 The definition of sets, variables, and parameters of the 

model are presented in the Appendix. The description of 

the constraints and objective function is presented below. 

The optimization model has as main objective the total 

costs distributed between production and environmental 

costs. The constraints are grouped into four groups: 

feedstock availability, capacity constraints (SC entities 

and feedstock suppliers), mass balance, and operational 

constraints, such as the number of available entities.  

 

2.2.1. Model constraints 

 In this section, we present the model constraints as 

characteristics that need to be guaranteed for the SC 

network design.  

 

Feedstock availability 

 

∑ ∑ ∑ 𝑥𝑚,𝑟,𝑖
𝑏

𝑖∈𝑃𝑎𝑟∈𝑆𝑟𝑚∈𝑅𝑚

≤ ∑ ∑ 𝐵𝑚,𝑟
𝑎𝑣𝑎𝑖𝑙

𝑟∈𝑆𝑟𝑚∈𝑅𝑚

 (1) 

 

Constraint (1) assures that the amount of feedstock 𝑚 from 

region 𝑟 to plant A is not higher than the amount of 

feedstock 𝑚 available in region 𝑟. 𝐵𝑚,𝑟
𝑎𝑣𝑎𝑖𝑙 is defined as the 

remaining amount of feedstock that can be potentially used 

for the production of biobased materials (see, Equation 

(2)), when the demand for food and feed has been 

supplied. We also included the feedstock trade (exports 

and imports) as an important factor that could increase or 

decrease the availability of biomass.  

 

𝐵𝑚,𝑟
𝑎𝑣𝑎𝑖𝑙 = 𝐵𝑚,𝑟

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
+ 𝐵𝑚,𝑟

𝑖𝑚𝑝𝑜𝑟𝑡
− 𝐵𝑚,𝑟

𝑓𝑜𝑜𝑑

− 𝐵𝑚,𝑟
𝑓𝑒𝑒𝑑

− 𝐵𝑚,𝑟
𝑒𝑥𝑝𝑜𝑟𝑡

 
(2) 

 

Where,  

 

𝐵𝑚,𝑟
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

 is the amount of feedstock 𝑚 produced in 

region 𝑟 

𝐵𝑚,𝑟
𝑖𝑚𝑝𝑜𝑟𝑡

 is the imported feedstock 𝑚 in region 𝑟 

𝐵𝑚,𝑟
𝑓𝑜𝑜𝑑

 is the amount of feedstock 𝑚 for food supply in 

region 𝑟 

𝐵𝑚,𝑟
𝑓𝑒𝑒𝑑

 is the amount of feedstock 𝑚 for feed supply in 

region 𝑟 

𝐵𝑚,𝑟
𝑒𝑥𝑝𝑜𝑟𝑡

 is the exported feedstock 𝑚 in region 𝑟. 

 

Capacity constraints 

 

∑ ∑ ∑ 𝑥𝑚,𝑟,𝑖
𝑏

𝑖∈𝑃𝑎𝑟∈𝑆𝑟𝑚∈𝑅𝑚

≤ ∑ ∑ 𝑐𝑖 ∗ 𝑈𝑃𝑖,𝑛

𝑛∈𝑃𝑎𝑆𝑧𝑖∈𝑃𝑎 

 (3) 

 

∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑃

𝑗∈𝐼𝑖∈𝐼𝑘∈𝑃

≤ ∑ ∑ 𝑐𝑖 ∗ 𝑈𝑃𝑖,𝑛

𝑛∈𝑁𝑖∈𝐼 

 (4) 

 

∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑃

𝑗∈𝑃𝑑𝑖∈𝑃𝑐𝑘∈𝑃

∗ 𝑤𝐸𝐺  + ∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑃

𝑗∈𝑃𝑑𝑖∈𝑃𝑚𝑘∈𝑃

∗ 𝑤𝑇𝑃𝐴

≤ ∑ ∑ 𝑐𝑖 ∗ 𝑈𝑃𝑖,𝑛

𝑛∈𝑃𝑑𝑖∈𝑃𝑑 

 

(5) 

 

∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑃

𝑗∈𝐷𝑖∈𝑃𝑑𝑘∈𝑃

≤ ∑ 𝑐𝑖  

𝑖∈𝐷

 (6) 

 

Constraints (3 – 6) describe the maximum amount of 

feedstock 𝑚 or product 𝑘 from one supplier/plant to 

another. Constraint (3) describes the amount of feedstock 

𝑚 that can be processed by plant A. Constraint (4) 

describes the amount of product 𝑘 that can be processed 

by plants B, C and M. Constraint (5) describes the flow 

restriction from plant C and Plant M to plant D. Finally, 

constraint (6) describes the amount of product 𝑘 in plant D 

to Demand. We also included a minimum capacity 

constraint to force the model to use the capacity of each 

plant above 80%, as shown in constraint (7). 

 

∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑃

𝑗∈𝐼𝑖∈𝐼𝑘∈𝑃

≥ ∑ ∑ 𝑐𝑖 ∗ 𝑈𝑃𝑖,𝑛

𝑛∈𝑁𝑖∈𝐼 

∗ 0.8 (7) 

 

Mass balance 

∑ ∑ ∑ ∑ 𝑥𝑚,𝑟,𝑖
𝑏

𝑘∈𝑃𝑖∈𝑃𝑎𝑟∈𝑆𝑟𝑚∈𝑅𝑚

∗ 𝑒𝑓𝑓𝑚,𝑖,𝑘
𝑃𝑎

= ∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑃

𝑗∈𝑃𝑏𝑖∈𝑃𝑎𝑘∈𝑃

 
(8) 

∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑃

𝑗∈𝐼𝑖∈𝐼𝑘∈𝑃

∗ 𝑒𝑓𝑓𝑖,𝑘
𝑃  = ∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗

𝑃

𝑗∈𝐽𝑖∈𝐼𝑘∈𝑃

 (9) 
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∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑃

𝑗∈𝑃𝑑𝑖∈𝑃𝑐𝑘∈𝑃

∗ 𝑤𝐸𝐺  + ∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑃

𝑗∈𝑃𝑑𝑖∈𝑃𝑚𝑘∈𝑃

∗ 𝑤𝑇𝑃𝐴 = ∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑃

𝑗∈𝐷𝑖∈𝑃𝑑𝑘∈𝑃

 
(10) 

 

Equations (8 – 10) represent the mass balance of each 

supplier 𝑟 and entity 𝑖, 𝑗 in the SC network. Equation (8) 

describes the conversion of feedstock 𝑚 to product 𝑘 in 

plant A. Similarly, equation (9) describe the conversion of 

intermediate products in plant B and plant C Equation (10) 

represents the mass balance to produce product 𝑘 in Plant 

D to supply demand D. 

 

Operational constraints 

 

∑ ∑ 𝑈𝑃𝑖,𝑛

𝑛∈𝑁𝑖∈𝐼

≤ 𝑁𝑝 (11) 

 

Constraint (11) assures that the number of selected plants 

should be lower than the number of available plants (𝑁𝑝). 

 

2.2.2. Cost assessment 

 We divided the objective function that describes the 

economic costs of the SC in six terms, as shown in 

equation (12). The first term (1) concerns the feedstock 

supply costs including feedstock production costs (at farm 

level) and the transportation costs from region 𝑟 to plant 

A. The second term (2) expresses the capital and operative 

costs of the plant A controlled by the binary variable 𝑈𝑃𝑖,𝑛 

which equals 1 when entity 𝑖 and plant size 𝑛 are open. 

The third term (3) describes the transportation costs of 

product 𝑘 from plant A to plant B depending on the 

feedstock 𝑚. The fourth term (4) discounts the profits for 

selling the co-products 𝑔 of plant A in the market. The fifth 

and sixth terms (5 − 6) represent the capital and operative 

costs, and the transportation costs of the intermediate 

products 𝑘 in the intermediate entities (𝑃𝑏, 𝑃𝑐 , 𝑃𝑚), 

respectively. 

 

𝑃𝑟𝑜𝑑. 𝐶𝑜𝑠𝑡𝑠 = ∑ ∑ ∑ 𝑥𝑚,𝑟,𝑖
𝑏

𝑖∈𝑃𝑎𝑟∈𝑆𝑟𝑚∈𝑅𝑚
∗

[𝐵𝑚,𝑟
𝑐𝑜𝑠𝑡 + ∑ (𝑇𝑓𝑖𝑥𝑚,𝑟,𝑠

𝐵 + 𝑇𝑣𝑎𝑟𝑚,𝑟,𝑠
𝐵 ) ∗𝑠∈𝑇𝑠

𝑇𝑑𝑚,𝑟,𝑖,𝑠
𝐵  ](𝟏)  

 

+ ∑ ∑ ∑ (𝐶𝐴𝑃𝑚,𝑖,𝑛 + 𝑂𝑃𝑚,𝑖,𝑛
𝑓𝑖𝑥

+𝑛∈𝑃𝑎𝑆𝑧𝑖∈𝑃𝑎𝑚∈𝑅𝑚

𝑂𝑃𝑚,𝑖,𝑛
𝑣𝑎𝑟 ) ∗ 𝑈𝑃𝑖,𝑛 (𝟐)  

 

+ ∑ ∑ ∑ (𝑥𝑘,𝑖,𝑗
𝑃 ∗ ∑ (𝑇𝑖,𝑠

𝑓𝑖𝑥
+𝑠∈𝑇𝑠𝑗∈𝑃𝑏𝑖∈𝑃𝑎𝑘∈𝑃

𝑇𝑖,𝑠
𝑣𝑎𝑟) ∗ 𝑇𝑑𝑖,𝑗,𝑠 ) (𝟑)  

 

− ∑ ∑ ∑ 𝑥𝑔,𝑖
𝐶𝑃 ∗ 𝐶𝑃𝑃𝑚,𝑖,𝑔𝑖∈𝑃𝑎𝑔∈𝐶𝑃𝑚∈𝑅𝑚

 (𝟒)  

 

+ ∑ ∑ (𝐶𝐴𝑃𝑖,𝑛 + 𝑂𝑃𝑖,𝑛
𝑓𝑖𝑥

+ 𝑂𝑃𝑖,𝑛
𝑣𝑎𝑟) ∗𝑛∈𝑁𝑖∈𝐼

𝑈𝑃𝑖,𝑛  (𝟓)  
 

+ ∑ ∑ ∑ (𝑥𝑘,𝑖,𝑗
𝑃 ∗ ∑ (𝑇𝑖,𝑠

𝑓𝑖𝑥
+ 𝑇𝑖,𝑠

𝑣𝑎𝑟) ∗𝑠∈𝑇𝑠𝑗∈𝐼𝑖∈𝐼𝑘∈𝑃

𝑇𝑑𝑖,𝑗,𝑠 ) (𝟔)  

(12) 

 

2.2.3. Environmental Assessment 

 The objective function that describes the 

environmental costs (Equation (15)) of the SC includes the 

emissions from the transportation (𝑇𝑒𝑚𝑖) and GHG 

emissions from LCA (𝑃𝑒𝑚𝑖) converted to monetary values 

using carbon-pricing policies. The transportation 

emissions were calculated as the product of the mass flow 

exchanges and the transportation distances between 

different entities, and emission factors as a function of the 

transportation mode (e.g., truck and train) (see, Equation 

(13)). The process emissions were calculated as the 

product between the mass flow of the final product and the 

process emissions from the Life Cycle Assessment (LCA) 

methodology (see, Equation (14)). We used data of a 

previous study for the process emissions of the SC [3]. We 

used carbon tax as the carbon-pricing policy to add a 

monetary value to the GHG emissions.  

 

𝑇𝑒𝑚𝑖 = ∑ ∑ ∑ ∑ 𝑥𝑚,𝑟,𝑖
𝑏 ∗ 𝑇𝑑𝑚,𝑟,𝑖,𝑠

𝐵

𝑖∈𝑃𝑎𝑟∈𝑆𝑟𝑚∈𝑅𝑚𝑠∈𝑇𝑠 

∗ 𝑒𝑠

+ ∑ ∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑃

𝑗∈𝐼𝑖∈𝐼𝑘∈𝑃𝑠∈𝑇𝑠 

∗ 𝑇𝑑𝑖,𝑗,𝑠 ∗ 𝑒𝑠

+ ∑ ∑ ∑ 𝑥𝑔,𝑖
𝐶𝑃 ∗ 𝑇𝑑𝐶𝑃

𝑖∈𝐼𝑔∈𝑃𝑠∈𝑇𝑠 

∗ 𝑒𝑠 

(13) 

 

𝑃𝑒𝑚𝑖 = ∑ ∑ ∑ ∑ 𝑥𝑘,𝑖,𝑗
𝑃

𝑗∈𝐷𝑖∈𝑃𝑑𝑘∈𝑃

∗ 𝑒𝑚,𝑖

𝑚∈𝑅𝑚 

 (14) 

 

𝐸𝑛𝑣. 𝐶𝑜𝑠𝑡𝑠 = [𝑇𝑒𝑚𝑖 + 𝑃𝑒𝑚𝑖] ∗ $𝑐𝑎𝑟𝑏𝑜𝑛 𝑡𝑎𝑥 (15) 

 

2.2.4. Single-objective approach 

 Since the goal is to account for the environmental 

impacts in the economic costs of the SC, we decided to use 

a single objective approach where the main objective is to 

minimize the total costs, accounting for GHG emissions 

(in monetary values), as shown in Equation (16). The 

BeWhere model comprises interfaces between different 

software modalities such as Excel, Python, and GAMS 

(General Algebraic Modeling System). We used Excel to 

collect the information on the different parameters (see, 

appendix) and GAMS to perform the optimization of the 

objective function. We used Python as interface between 

Excel and GAMS, meaning that data from Excel files were 

converted into text files that are inputs to the optimization 

model in GAMS.  

 

min 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑠 = 𝑃𝑟𝑜𝑑. 𝐶𝑜𝑠𝑡𝑠
+ 𝐸𝑛𝑣. 𝐶𝑜𝑠𝑡𝑠 

(16) 

 

 

3 CASE STUDY 

 

 Polyethylene Terephthalate (PET) is one of the most 

consumed thermoplastic polymers worldwide. The 

European demand for PET was approximately 4 million 

tons in 2018 and it is expected to increase due to the need 

of plastic bottles for soft drinks [28]. Most PET is 

produced from fossil-based sources, which makes the 

process highly profitable (due to the current low oil 

prices). The production of PET polymer involves two 

monomers at different ratios: mono ethylene glycol 

(MEG) that comprises 30% by weight of the final PET 

polymer and terephthalic acid (TPA) that contributes to 

70% by weight. These monomers are produced from the 

cracking of naphtha (MEG) and steam reforming of 

natural gas (TPA). However, the increasing awareness of 

the negative environmental impacts of fossil-based 

resources has boosted the development of alternative 
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solutions for the production of PET using renewable 

resources. The first approach was launched by the Coca-

Cola company in 2009 when the first partially biobased 

PET bottle under the label “PlantBottle” was introduced 

[29]. “PlantBottle” has a 30% biobased content due to the 

use of MEG from sugarcane ethanol as a substitute for the 

naphtha MEG, while the TPA is still fossil-based. There 

are two main concerns with the 30% biobased PET bottle: 

first, it still depends on crude oil for the production of TPA 

and secondly, the SC of MEG depends on the production 

of ethanol from sugarcane in Brazil and India [30]. The 

technology to produce biobased TPA is at different 

development stages from demonstration to lab-scale; 

however, most of these technologies have been developed 

using corn as feedstock, adding to  the food security debate 

[31]. In this sense, we propose the use of sugar beet for the 

production of biobased TPA, as an agricultural product 

that has been strongly hit by the low sugar prices in Europe 

and to promote policies that provide incentives to farmers 

for its production. 

 Global SCs have exposed their vulnerability amidst 

the COVID-19 pandemic, and thus local SC could provide 

supply security. We mean by local SC the complete 

network from the acquisition of feedstock until the final 

product to supply the internal demand for PET polymer 

within Europe. Therefore, we propose the design of local 

SC networks for the production of biobased PET using 

locally available biomass, such as sugar beet and wheat. A 

schematic description of the SC network for the 

production of biobased PET is presented in Figure 2. The 

biobased MEG production involves different entities from 

the feedstock supplier 𝑆𝑟, ethanol production 𝑃𝐴, ethylene 

production 𝑃𝐵 and ethylene oxide/ethylene glycol 

(EO/EG) production 𝑃𝐶. The production of TPA comprises 

two pathways: fossil-based and bio-based using sugar beet 

as feedstock. We assume that the production of both fossil-

based and biobased TPA takes place in the same location 

𝑃𝑀 since there are no available production plants of 

biobased TPA in Europe. Both biobased MEG and 

fossil/biobased TPA are transported to the PET production 

𝑃𝐷 and then, the PET polymer is transferred to the demand 

𝐷 where pre-form PET bottles are produced.  

 

 
 

Figure 2: Schematic description of the production of 

both 30% and 100% biobased PET using sugar beet and 

wheat as raw materials.  

 

3.1. Spatial Distribution of Sugar beet and Wheat in 

Europe 

 One of the main constrains for the development of a 

BBSC is the availability of feedstock, as introduced in 

Equation (2). We collected data for the calculation of 

𝐵𝑚,𝑟
𝑎𝑣𝑎𝑖𝑙 from the Global Biosphere Management Model 

(GLOBIOM) developed in the International Institute of 

Applied Science Analysis (IIASA) [32]. The database 

contains information about the total production, 

distribution among different uses (e.g., feed, food, others), 

imports, and exports for several feedstocks (including 

sugar beet and wheat) in EU countries, using a business-

as-usual reference model for the year 2020. The data are 

categorized among EU countries using the Nomenclature 

of Units for Territorial Statistics (NUTS-2). We used the 

software Arc-GIS to determine the location of the 

feedstock supply in EU using a NUTS-2 distribution, as 

presented in Figure 3. 

 

 
 

Figure 3: Spatial location of the available biomass (sugar 

beet and wheat) in Europe [32]. 

 

3.2.  Entities Location 

 We collected information on the geographical location 

and capacity of the different entities involved in the BBSC 

using different sources, such as NGO (non-governmental 

organizations), industrial parks’, and companies’ websites. 

Information about the ethanol plants was obtained from 

the European Renewable Ethanol (ePURE) website [33]. 

Information regarding ethylene, EO/EG, TPA, and PET 

plants was directly collected from companies’ websites. 

This information was collected and displayed as a Google 

map - https://bit.ly/2U7B7W1.  

 

3.3. Life Cycle Assessment (LCA)  

 In this study, we took the LCA results from the paper 

by García-Velásquez and van der Meer [3], assessing the 

environmental impact of the production of 1 kilogram of 

bottle-grade biobased PET (bottle-grade) at factory-gate 

using different feedstocks. The methodology and the 

model assumptions are not includede here, but all 

avaialabe in reference [3]. Table I presents the results of 

the LCA of the production of biobased PET at the different 

entities and the comparison with the fossil-based 

counterpart. We assume that the production of biobased 

products can mitigate the negative impact of the use of 

fossil resources, and therefore we introduce an additional 

column “Abatement” in Table 1 that shows the difference 

between the GHG emissions of the biobased and fossil-

based intermediates. Negative values mean a GHG credit 

(biobased is better than fossil) and positive values are 

GHG debits (fossil is better than biobased). Additionally, 

our optimization model considers different transportation 

modes and distances, and therefore we separately included 

the GHG emissions from the transportation between the 

different entities. For this purpose, we used the emission 

factors reported by Ecoinvent V3.4 as shown in Table II. 
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Table I: Comparison of fossil and biobased intermediate 

products for accounting GHG emissions into the BeWhere 

model. 

 

Intermediate 

Product 
Biobased*  Fossil*  Abatement* 

Ethylene 
0.72a 

1.42 
- 0.7a 

5.7b 4.28b 

EG 0.81 0.95 - 0.14 

TPA 2.63c 1.74 0.89 
* Units - kg CO2-eq/kg PET 
a Using sugar beet ethanol 

b Using wheat ethanol 
c Sugar beet was used in the production of TPA. 

 

Table II: Emission factors of different transportation 

modes. 

 

Transportation 

Mode 
Description 

Emission 

Factors*  

Truck 

Lorry 16 – 32 tons 

with EURO 6 engine 

and Diesel as fuel 

0.166 

Train 

Train using Diesel 

and/or Electricity 

(Average EU 

countries) 

0.026 

* Units - kg CO2/tkm 

 

3.4. Life Cycle Costing (LCC) 

 LCC is the analysis of the costs (direct and indirect, 

variables, and fixed) that can be assigned to a 

product/service starting from the contextualization of the 

idea until the end-of-life. To keep the same system 

boundaries as in the LCA, the costs related to the 

production of biobased PET included the biomass costs 

(production and transportation), production costs (plant 

production costs), and transportation costs between the 

different entities. The transportation logistic between the 

biomass supplier and entities was carried out using two 

different transportation modes: truck and train. The 

detailed information of the transportation modes was taken 

from Ecoinvent V3.4 and is presented in Table III. 

 

Table III: Information on the transportation modes of 

biomass and intermediate products. 

 

Transp.  

Mode 
Description 

Fuel 

Consumption1 

Freight 

Price2 

Truck 

Lorry 16 – 32 

tons with 

EURO 6 

engine and 

Diesel as fuel 

0.037 0.028 

Train 

Train using 

Diesel and/or 

Electricity 

(Average EU 

countries) 

0.011 0.026 

1 Units - kg Fuel/tkm 
2 Units - €/tkm 

 

 Biomass production costs were collected from the 

GLOBIOM database [32] under a business-as-usual 

scenario in the year 2020 for the different EU countries. 

Biomass transportation costs were divided into two types 

of costs: fixed and variable costs. Fixed biomass 

transportation costs were taken from Ecoinvent v3.4 

depending on the transportation mode (truck and train) and 

the functional unit was ton-kilometer (tkm). On the other 

hand, the variable biomass transportation costs were 

estimated based on the fuel consumption per type of 

transportation (taken from Ecoinvent v3.4) and the 

diesel/electricity market price [34] in each EU country.  

 The production costs of the different entities for the 

production of biobased PET were categorized as capital 

and operating expenditures. Capital expenditures 

(CAPEX) are fixed expenses incurred on the purchase of 

land, buildings, construction, and equipment used in the 

production of goods. In our study, CAPEX are named as 

Total Investment Costs (TIC) and we used secondary data 

(published papers, reports) to collect information on the 

different entities TIC’s costs.  TIC were adapted to 2020 

using the Chemical Engineering Plant Cost Indexes 

(CEPCI) that are published in the Chemical Engineering 

Magazine monthly [35]. The investment costs were 

annualized based on the economic lifetime (20 years) and 

the interest rate of each country using Equation (17). 

 

 

(17) 

 Where, 

AC – Annualized Cost (€/year) 

TIC – Total Investment Cost (€) 

IR – Interest Rate (%) 

t – Economic life 

 

 On the other hand, the operating expenditures (OPEX) 

are those needed for the operation of the facility or 

equipment such as raw material/reagents, utility, 

maintenance, and labor costs. Reagents and utility costs 

were calculated from the mass balance of the process and 

the market price reported in different databases (i.e. ICIS 

Pricing) or using the data published by Straathof et al., [36] 

and Ulrich and Vasideva [37]. Extra costs such as labor, 

maintenance, general and administrative costs were 

estimated using factors reported in different reports and 

publications [38]–[40]. A detailed description of the 

market price/assumptions used in the LCC are presented 

in Table IV. 

 

Table IV: Market price/assumptions of the LCC model for 

bioPET production. 

 

Parameter Value Unit Reference 

Sugar beet 61.24 €/ton 
Average price 

(GLOBIOM) 

Wheat 199.76 €/ton 
Average price 

(GLOBIOM) 

Sodium 

Hydroxide 

(50%) 

391.3 €/ton Market Price 

Sulfuric Acid 41.9 €/ton Market Price 

Ammonia 

(27%) 
323.6 €/ton Market Price 

Coke 100 €/ton Market Price 

Limestone 50.3 €/ton Market Price 

Process Water 0.326 €/cum Market Price 

Ethanol 464 €/ton Market Price 

Sugar beet 

pulp 
23.3 €/ton Market Price 
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Distiller's dried 

grains with 

solubles 

(DDGS) 

46.4 €/ton Market Price 

Ethylene 1,174.6 €/ton 
Average Price 

[36] 

Ethylene 

Glycol 
1,211.9 €/ton 

Average Price 

[36] 

Terephthalic 

Acid (TPA) 
764.4 €/ton 

Average Price 

[36] 

PET 1,142 €/ton 
Average Price 

[36] 

Assumptions 

Parameter Value Reference 

Maintenance 

Costs 
6% AC Khatiwada et al., [24] 

General and 

Administration 

Costs 

5% AC Khatiwada et al., [24] 

Labor Costs  Remark Ref. 

Number 

Operators per 

Shifta 

 
Turton et 

al., [41] 

a Where 𝑁𝑂𝐿 is the # of operators per shift, P is the # of 

processing stages involving particulate solids and 𝑁𝑛𝑝 is the # of 

other processing stages. 

 

3.5. Carbon-pricing policy 

 The value attributed as a carbon tax varies from one 

country to another. Some countries do not even use carbon 

tax as carbon policy, but other systems, such as the EU 

emission trading scheme and carbon caps [42]. Due to the 

variability in the carbon tax value, we assessed different 

carbon tax values to analyze the influence of the 

environmental costs in the production costs of the 

intermediate products (ethylene, EG, TPA) and the final 

product (PET). We used five different values – 0, 25, 50, 

100, and 150 €/ ton CO2. The first value considers no 

carbon tax. The second value (€25/ ton CO2) is consistent 

with the average carbon tax reported for several EU 

countries [42]. The third and fourth values considered a 

carbon tax of €50 and €100 per ton CO2 that follows the 

required carbon price to fulfill the Paris Agreement 

minimum temperature targets in 2020 and 2035, 

respectively [42]. Finally, a carbon tax of €150/ton CO2 

was included to consider a prospective scenario where the 

social carbon cost for GHG emissions is accounted for 

[43].  

 

 

4 RESULTS  

 

4.1. Accounting for scope 3 GHG emissions in the 

BeWhere model 

 The shift from fossil-based to biobased resources to 

produce PET should provide economic benefits for 

stakeholders, and therefore we explored the production 

costs of both 30% and 100% biobased PET using sugar 

beet and wheat under different carbon tax values, as shown 

in Figure 4. The production costs of 30% biobased PET 

are lower than the 100% biobased PET and the PET 

market price. The production of 100% biobased PET using 

both feedstocks gives higher production costs than the 

market average price (€1,142/ton PET) for all carbon tax 

values. We found out that the high production costs of 

100% biobased PET originates from the high costs to 

produce biobased TPA, as shown in Figure 5. Since the 

production of PET requires 70% by weight of TPA, the 

production of this monomer is a key element in the 

profitability of the biobased PET. The production costs of 

biobased TPA from sugar beet are far higher than the 

current market price (€764.4/ton TPA) with an increment 

ranging between 35% and 55% of the market price, 

depending on the carbon tax (see, Figure 5). The difference 

in the TPA production cost is related to the higher 

environmental impact of producing biobased TPA (see, 

Table 1).  

 The selection of feedstock makes a big difference in 

the production costs of both 30% and 100% biobased PET. 

Figures 6 and 7 present the production costs of the 

ethylene and MEG using wheat and sugar beet. The use of 

wheat for the production of both products increases the 

costs above the market price, while the use of sugar beet 

reduces the production costs due to the GHG credits from 

the production of ethylene and MEG using biomass 

sources (see, Table I). 

 

 
 

Figure 4: Production costs of 30% and 100% biobased 

PET using sugar beet (SugB) and wheat as feedstock. 

 

 
 

Figure 5: Production costs of biobased TPA using sugar 

beet (SugB). 

 

 
 

Figure 6: Production costs of ethylene using sugar beet 

(SugB) and wheat. 
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Figure 7: Production costs of MEG using sugar beet and 

wheat. 

 

 We calculated the profitability of the different entities 

at different locations to produce 30% biobased PET using 

both feedstocks, as summarized in Figure 8. We did not 

include the profitability assessment of the 100% biobased 

PET, since the production costs are higher than the market 

price, and therefore the profitability is negative throughout 

the 20 years of the project life. For both feedstocks, the 

production of 30% biobased PET in The Netherlands 

evidenced the highest profitability, but the payback period 

is also higher in comparison to other locations, like 

Greece. The difference lies in economic indicators per 

country, such as interest rate and inflation rates, where 

Greece has one of the lowest inflation rates (0.5%) in 

comparison to other locations, such as The Netherlands 

(2.7%).  

 

 
 

Figure 8: Net profitability and payback period of the 

production of 30% biobased PET. Bars represent the net 

profits (left) and points represent the payback period 

(right).  

 

 In the specific case of The Netherlands, the influence 

of carbon tax on the economic profitability of 30% 

biobased PET is strong when wheat is used as feedstock, 

as shown in Figure 9. Higher carbon tax values (up to 150 

€/ton) can reduce the profitability to almost zero, while the 

payback period increases due to the low profits of the 

process. On the other hand, the net profits of the 

production of 30% biobased PET using sugar beet slightly 

increase, while the payback period remains almost 

unchanged.  

 
 

Figure 9: Effect of the carbon tax on the economic 

profitability of 30% biobased PET production using sugar 

beet and wheat. 

 

 

5 CONCLUSION 
 

 The results from our optimization model highlight the 

importance of accounting for environmental impacts 

(GHG emissions) in the economic profitability of the 

production of biobased materials in view of the Paris 

Agreement and climate policies. The production of 100% 

biobased PET is not profitable due to the high economic 

and environmental contribution of the biobased TPA 

production. The use of biomass to produce biobased TPA 

increases the production costs of biobased PET but 

improves the environmental benefits of the biobased MEG 

production, depending on the feedstock. The use of 

biomass to produce biobased chemicals has also negative 

impacts to the environment. However, the environmental 

performance of the production of biobased TPA can be 

improved through (i) higher shares of renewable energy 

sources for heating, which was spotted as hotspot of the 

production of biobased TPA [3] and (ii) the development 

of  different technologies for biobased TPA production, 

such as the biobased BTX (benzene-toluene-xylene) 

process. On the other hand, the production of 30% 

biobased PET showed good economic performance; the 

benefits are influenced by the feedstock selection and 

carbon tax values. The use of sugar beet to produce 

biobased MEG introduced a GHG credit when compared 

to the fossil-based pathway and thus, it provided economic 

benefits if a significant carbon tax is included.  
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9 APPENDIX: Model nomenclature 

 

Indices 

 

Consider the indices: 

𝑟 as feedstock supplier 

𝑚 as feedstock 

𝑠 as means of transport 

𝑖, 𝑗 as entities 

𝑛 as capacity of entities 

𝑘 as products  

𝑔 as co-products  

 

Sets 

 

𝑆𝑟 as regions, 𝑟 ∈ 𝑆𝑟   
𝑅𝑚 as type of feedstock, 𝑚 ∈ 𝑅𝑚  
𝑇𝑠 as transportation mode, 𝑠 ∈ 𝑇𝑠  
 

Each level of the SC is defined by one kind of entity (Plant 

A, Plant B, Plant C and Plant D), and therefore we have 

the following sets: 

 

𝑃𝑎 as location plant A, 𝑖 ∈ 𝑃𝑎  
𝑃𝑏 as location plant B, 𝑖 ∈ 𝑃𝑏 

𝑃𝑐 as location plant C, 𝑖 ∈ 𝑃𝑐  
𝑃𝑑 as location plant D, 𝑖 ∈ 𝑃𝑑  
𝑃𝑚 as location plant M, 𝑖 ∈ 𝑃𝑚  
𝐷 as location demand, 𝑖 ∈ 𝐷  
Set:  𝐼 = 𝑃𝑎 ∪ 𝑃𝑏 ∪ 𝑃𝑐 ∪ 𝑃𝑑 ∪ 𝑃𝑚 ∪ 𝐷  contains all 

entities 

 

For each entity, there is also a size category set: 

 

𝑃𝑎𝑆𝑧 as size of plant A,  𝑛 ∈ 𝑃𝑎𝑆𝑧  
𝑃𝑏𝑆𝑧 as size of plant B, 𝑛 ∈ 𝑃𝑏𝑆𝑧  
𝑃𝑐𝑆𝑧 as size of plant C,  𝑛 ∈ 𝑃𝑐𝑆𝑧  
𝑃𝑑𝑆𝑧 as size of plant D,  𝑛 ∈ 𝑃𝑑𝑆𝑧 

𝑃𝑚𝑆𝑧 as size of plant M,  𝑛 ∈ 𝑃𝑚𝑆𝑧 

Set:  N= 𝑃𝑎𝑆𝑧 ∪ 𝑃𝑏𝑆𝑧 ∪ 𝑃𝑐𝑆𝑧 ∪ 𝑃𝑑𝑆𝑧 ∪ 𝑃𝑚𝑆𝑧  contains 

all entities sizes 

 

Products and co-products 

 

𝑃 as products in entities, 𝑘 ∈ 𝑃 

𝐶𝑃 as co-products in entities, 𝑔 ∈ 𝐶𝑃 

 

Parameters 

 

Feedstock Supply 
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𝐵𝑚,𝑟
𝑐𝑜𝑠𝑡 unit cost of feedstock 𝑚 in region 𝑟,  𝑚 ∈ 𝑅𝑚 and 

𝑟 ∈ 𝑆𝑟 

𝐵𝑚,𝑟
𝑎𝑣𝑎𝑖𝑙 availability of feedstock 𝑚 in region 𝑟,  𝑚 ∈ 𝑅𝑚 

and 𝑟 ∈ 𝑆𝑟 

𝑇𝑓𝑖𝑥𝑚,𝑟,𝑠
𝐵  fixed transportation costs of feedstock 𝑚 in 

region 𝑟 with transportation mode 𝑠, 𝑚 ∈ 𝑅𝑚, 𝑟 ∈ 𝑆𝑟 and 

𝑠 ∈ 𝑇𝑠 

𝑇𝑣𝑎𝑟𝑚,𝑟,𝑠
𝐵  variable transportation costs of feedstock 𝑚 in 

region 𝑟 with transportation mode 𝑠, 𝑚 ∈ 𝑅𝑚, 𝑟 ∈ 𝑆𝑟 and 

𝑠 ∈ 𝑇𝑠 

𝑇𝑑𝑚,𝑟,𝑖,𝑠
𝐵  transportation distance of feedstock 𝑚 in region 

𝑟 to plant 𝑖 with transportation mode 𝑠, 𝑚 ∈ 𝑅𝑚, 𝑟 ∈ 𝑆𝑟, 

𝑖 ∈ 𝑃𝑎  and 𝑠 ∈ 𝑇𝑠 

 

Plants 

 

𝑃𝑃𝑚,𝑖,𝑘  product 𝑘 price in plant 𝑖 of feedstock 𝑚 ,  𝑖 ∈ 𝐼, 

𝑚 ∈ 𝑅𝑚 and 𝑘 ∈ 𝑃 

𝐶𝑃𝑃𝑚,𝑖,𝑔  co-product 𝑔 price in plant 𝑖 of feedstock 𝑚,  𝑖 ∈

𝐼,  𝑚 ∈ 𝑅𝑚 and 𝑔 ∈ 𝐶𝑃 

𝑒𝑓𝑓𝑚,𝑖,𝑘
𝑃𝑎   yield of product 𝑘 in plant 𝑖 of feedstock 𝑚,  𝑖 ∈

𝑃𝑎,  𝑚 ∈ 𝑅𝑚 and 𝑘 ∈ 𝑃 

𝑒𝑓𝑓𝑚,𝑖,𝑘
𝐶𝑃𝑎   yield of co-product 𝑔 in plant 𝑖 of feedstock 𝑚,  

𝑖 ∈ 𝑃𝑎,  𝑚 ∈ 𝑅𝑚 and 𝑔 ∈ 𝐶𝑃 

𝑒𝑓𝑓𝑖,𝑘
𝑃   yield of product 𝑘 in plant 𝑖,  𝑖 ∈ 𝐼 and 𝑘 ∈ 𝑃 

𝑐𝑖   capacity plant 𝑖,  𝑖 ∈ 𝐼 

𝐶𝐴𝑃𝑚,𝑖,𝑛  capital costs of plant 𝑖 and size 𝑛 using feedstock 

𝑚,  𝑖 ∈ 𝑃𝑎,  𝑚 ∈ 𝑅𝑚 and 𝑛 ∈ 𝑃𝑎𝑆𝑧 

𝐶𝐴𝑃𝑖,𝑛  capital costs of plant 𝑖 and size 𝑛, 𝑖 ∈ 𝐼 and 𝑛 ∈ 𝑁 

𝑂𝑃𝑚,𝑖,𝑛
𝑓𝑖𝑥

  fixed operative costs of plant 𝑖 and size 𝑛 using 

feedstock 𝑚,  𝑖 ∈ 𝑃𝑎,  𝑚 ∈ 𝑅𝑚 and 𝑛 ∈ 𝑃𝑎𝑆𝑧 

𝑂𝑃𝑖,𝑛
𝑓𝑖𝑥

  fixed operative costs of plant 𝑖 and size 𝑛, 𝑖 ∈ 𝐼 and 

𝑛 ∈ 𝑁 

𝑂𝑃𝑚,𝑖,𝑛
𝑣𝑎𝑟   variable operative costs of plant 𝑖 and size 𝑛 using 

feedstock 𝑚,  𝑖 ∈ 𝑃𝑎,  𝑚 ∈ 𝑅𝑚 and 𝑛 ∈ 𝑃𝑎𝑆𝑧 

𝑂𝑃𝑖,𝑛
𝑣𝑎𝑟  variable operative costs of plant 𝑖 and size 𝑛, 𝑖 ∈ 𝐼 

and 𝑛 ∈ 𝑁 

𝑇𝑖,𝑠
𝑓𝑖𝑥

 fixed transportation costs from plant 𝑖 with 

transportation mode 𝑠, 𝑖 ∈ 𝐼 and 𝑠 ∈ 𝑇𝑠 

𝑇𝑖,𝑠
𝑣𝑎𝑟 variable transportation costs from plant 𝑖 with 

transportation mode 𝑠, 𝑖 ∈ 𝐼 and 𝑠 ∈ 𝑇𝑠 

𝑇𝑑𝑖,𝑗,𝑠 transportation distance from plant 𝑖 to plant 𝑗 with 

transportation mode 𝑠, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼, and 𝑠 ∈ 𝑇𝑠 

 

GHG abatement emissions 

 

𝑒𝑚,𝑖 GHG emissions abatement in plant 𝑖 using feedstock 

𝑚, 𝑖 ∈ 𝑃𝑑 and 𝑚 ∈ 𝑅𝑚 

𝑒𝑠 GHG emissions from transportation mode 𝑠, 𝑠 ∈ 𝑇𝑠  

 

Scalars 

 

We present here constant values used in the optimization 

model. 

 

 𝑇𝑑𝐶𝑃 transportation distance co-product  - 100 km 

 𝑁𝑃𝑎 number of plants A – 50 

 𝑁𝑃𝑏 number of plants B – 21 

 𝑁𝑃𝑐 number of plants C – 9 

 𝑁𝑃𝑑 number of plants D – 9 

 𝑁𝑃𝑚 number of plants M – 6 

 𝑤𝐸𝐺 weight fraction of EG to produce PET – 0.3 

 𝑤𝑇𝑃𝐴 weight fraction of TPA to produce PET – 0.7 

 $𝑐𝑎𝑟𝑏𝑜𝑛 𝑡𝑎𝑥 carbon tax pricing – 25, 50, 100, 150 €/ton 

CO2 

 

Variables 

 

Binary Variables 

 

𝑈𝑃𝑖,𝑛  binary variable for plant 𝑖 and size 𝑛 ,  𝑖 ∈

𝐼; 𝑛 ∈ 𝑁; 𝑈𝑃𝑖,𝑛 ∈ {0,1} 

 

Continuous variables 

  

𝑥𝑚,𝑟,𝑖
𝑏  mass flow of feedstock 𝑚 in region 𝑟 to 

plant 𝑖, 𝑚 ∈ 𝑅𝑚, 𝑟 ∈ 𝑆𝑟 and 𝑖 ∈ 𝑃𝑎 

𝑥𝑘,𝑖,𝑗
𝑃  mass flow of product 𝑘 from plant 𝑖 to 

plant 𝑗, 𝑘 ∈ 𝑃, 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐼 

𝑥𝑔,𝑖
𝐶𝑃 mass flow of co-product 𝑔 from plant 𝑖, 𝑔 ∈

𝐶𝑃 and 𝑖 ∈ 𝐼 
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