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Abstract. Head and neck cancer is one of the most prevalent cancers in
the world. Automatic delineation of primary tumors and lymph nodes is
important for cancer diagnosis and treatment. In this paper, we develop
a deep learning-based model for automatic tumor segmentation, HNT-
AI, using PET/CT images provided by the MICCAI 2022 Head and
Neck Tumor (HECKTOR) segmentation Challenge. We investigate the
effect of residual blocks, squeeze-and-excitation normalization, and grid-
attention gates on the performance of 3D-UNET. We project the pre-
dicted masks on the z-axis and apply k-means clustering to reduce the
number of false positive predictions. Our proposed HNT-AI segmenta-
tion framework achieves an aggregated dice score of 0.774 and 0.759 for
primary tumors and lymph nodes, respectively, on the unseen external
test set. Qualitative analysis of the predicted segmentation masks shows
that the predicted segmentation mask tends to follow the high standard-
ized uptake value (SUV) area on the PET scans more closely than the
ground truth masks. The largest tumor volume, the larget lymph node
volume, and the total number of lymph nodes derived from the segmen-
tation proved to be potential biomarkers for recurrence-free survival with
a C-index of 0.627 on the test set.
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1 Introduction

Head and Neck (H&N) cancers are among the most common cancers world-
wide, including a group of tumors arising in the lip, oral cavity, pharynx, lar-
ynx, and paranasal sinuses [1]. The prognosis of H&N cancers varies greatly
with 5-year survival ranging from 85.1% in patients with the localized disease to
40.1% in those with distant disease [2]. This variance in outcomes emphasizes the
importance of accurate and timely diagnosis and staging, where imaging plays
a crucial role. 18F-FluoroDeoxyGlucose (FDG)-Positron Emission Tomography
(PET) and Computed Tomography (CT) are two important imaging modali-
ties for the initial staging and follow-up of H&N cancers. Nowadays, there is
an increasing need for the development of automatic segmentation algorithms
for H&N tumor diagnosis and staging, gross tumor volume (GTV) delineations
in radiotherapy planning, as well as establishment and validation of radiomics
models. PET and CT focused on metabolic and morphological characteristics,
respectively, which may provide complementary and synergistic information for
cancerous lesion segmentation as well as tumor characteristics predictive for
patient outcome. The manual delineation of tumors in head and neck cancer
suffers from inter-observer variability [3]. Hence, it is essential to develop auto-
matic segmentation tools for H&N cancers that are accurate, fast, robust, and
reproducible.

Deep neural networks are becoming popular due to the increasing amount
of available data and computational resources. Convolutional Neural Networks
(CNN) constitute a class of deep neural networks that have demonstrated state-
of-the-art performance on a variety of medical image segmentation challenges,
e.g., multi-center, multi-vendor, and multi-disease cardiac segmentation (M&Ms)
challenge [4], multi-modality whole heart segmentation [5], and auto segmen-
tation for thoracic radiation treatment planning [6]. No-new-UNet (nnUNet)
has emerged as a self-configuring method that makes automatic design choices
related to pre-processing, network architecture, and hyper-parameter tuning. It
has demonstrated state-of-the-art performance in many medical image segmen-
tation challenges [7].

The first and second editions of HEad and neCK TumOR (Hecktor) segmen-
tation and outcome prediction challenge were held in 2020 and 2021 [8] [11].
These challenges aim to provide multi-centric data and use a standardized eval-
uation criteria to develop and validate automatic segmentation tools for H&N
primary tumors in FDG-PET and CT images. The new edition of Hecktor 2022
extends Hecktor 2021 challenge by adding the additional task of lymph nodes
segmentation (GTVn) along with the primary tumor (GTVp) segmentation,
and it also provides data from three additional centers. In Hecktor 2021, a well-
tuned 3D nn-UNet with squeeze-and-excitation normalization [13] demonstrated
the best segmentation performance on the test set [12].

In this paper, we propose an HNT-AI segmentation framework based on
nnUNet that incorporates residual blocks, squeeze-and-excitation channel-wise
attention, and grid-attention gates. We also investigate if the primary tumor
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and lymph node segmentations produced by the proposed algorithm can serve
as valuable biomarkers for recurrence-free survival prediction.

2 Material and Methods

2.1 Data

The training dataset for GTVp and GTVn segmentation comes from 7 differ-
ent centers and consists of 524 training cases. A CT image and a corresponding
registered FDG-PET image are provided for each case. The clinical information
about each patient, including center, gender, age, tobacco and alcohol consump-
tion, performance status (Zubrod), and HPV status is provided for 489 training
cases. Additionally, the test dataset for evaluating the segmentation performance
consists of 359 cases and it comes from 3 centers. Training cases from two of these
centers are present in the training dataset.

2.2 Data Preprocessing

The CT images and the corresponding PET images are first resampled to the
maximal bounding box covered by the field of view of both modalities. The CT
images have a higher image resolution than the corresponding PET images. The
median resolution of CT images in the training set was 0.98× 0.98× 3.27 mm3,
and the mean resolution of PET images in the training set was 4.26×4.26×3.27
mm3. We resample both the CT and the PET images to the resolution of 1×1×3
mm3. The images are resampled with spline interpolation, and the corresponding
segmentations are resampled using nearest-neighbor interpolation. We clip the
intensity values of CT images at 0.5 and 99.5 percentiles. We apply z-score
normalization on the CT images and min-max normalization on the PET images.

2.3 Network Architecture

The proposed architecture is shown in Fig. 1. This architecture is a modified
adaption of the nnUNet architecture [7]. Each encoder block comprises of resid-
ual skip connections [14]. Each convolutional block consists of 3 × 3 × 3 convo-
lutional layer following by drop-out layer with p = 0.5, instance normalization
and LeakyReLU activation function. Squeeze-and-excitation channel-wise atten-
tion mechanism is employed at each layer to learn important features by fusing
spatial and channel-wise features [15]. Grid-attention gates enable the network
to identify spatially important areas in the network and consequently aid in
false positive reduction [16]. Grid attention gates are incorporated at each skip
connection.
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Fig. 1. The proposed architecture for 3D-UNet with skip connections, squeeze-and-
excitation channel-wise attention mechanism and grid-attention gates.

2.4 Experimental Settings

We used a single RTX 3090 Graphics Card for training. The batch size was
set at 2. Adam optimizer was used with an initial learning rate of 10−3. Cosine
annealing scheduler was used to reduce the learning rate from 10−3 to 10−6 every
30 epochs. The model was trained for 250 epochs. The training process took 9 h
to complete. The patch size was set to be 192 × 192 × 128. Data augmentation
comprising of random rotation (−15◦ to +15◦), random scaling (0.85 to 1.15),
elastic deformation, addition of Gaussian noise (0 to 0.1), mirroring, and gamma
correction (0.75 to 1.25) was used to avoid overfitting. Five-fold cross-validation
was used to find the best network architecture and for hyperparameter tuning.

2.5 Loss Function

The loss function comprised of multi-class dice loss [17] and cross entropy loss.
The network is trained with deep supervision; thus, the computation of loss
function occurs at each decoder block. This allows the training to occur at each
layer. The loss computed at each decoder block is assigned a decreasing weight
from higher resolution to lower resolution.

2.6 Post Processing

We observe false positive predictions for GTVp and GTVn outside the area
of interest in the brain and the lung region. Furthermore, we observed small
false positive predictions that occur at a distance from the correct ground truth
prediction. To reduce the false positives, we projected the predicted binary mask
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Fig. 2. Post-processing based on k-means clustering.

onto the z-axis, and all the indices that contain a prediction are set to one. K-
means clustering is then applied to find the cluster with the largest cumulative
volume [9]. The indices on the z-axis that correspond to other clusters are set
to zero. The predicted binary mask slices that correspond to the largest cluster
are left remaining. The workflow for the post-processing is shown in Fig. 2.

2.7 Evaluation Metric

Aggregate dice score (DSCagg) is used as an evaluation metric. DSCagg is
defined as:

DSCagg =

N∑

i

∑

k

ˆyi,kyi,k

N∑

i

∑

k

( ˆyi,k + yi,k)

where yi,k is the ground truth for GTVp or GTVn and ˆyi,k is the corresponding
prediction. This metric is used because some images do not contain any tumor
or lymph node. The intersections and unions for all the images are accumulated
and then DSCagg is calculated at the end.

3 Results

3.1 Five-Fold Cross-Validation

Table 1 shows the performance of modified 3D-UNet architecture for five-fold
cross-validation. We started with nnUNet as a baseline. The proposed model
that contains residual skip connections, squeeze-and-excitation channel-wise
attention mechanism and grid attention gates achieves the best performances.
Figure 3 shows the qualitative performance of the proposed algorithm on an
image (CHUV-021) from the validation set. As shown, the predicted segmenta-
tion mask closely follows the boundary of the area with high SUV intake in the
PET images compared to the ground truth label.
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Table 1. Aggregated Dice DSCagg for GTVn and GTn for five-fold cross validation.

Model DSCagg GTVp DSCagg GTVn Mean DSCagg

nnUNet 0.752± 0.471 0.731± 0.621 0.742± 0.546

3D UNet + Resnet 0.751± 0.508 0.744± 0.419 0.748± 0.463

3D UNet + SE 0.768± 0.398 0.759± 0.507 0.764± 0.452

Proposed 0.777±0.351 0.768±0.522 0.773±0.437

Table 2. Aggregated Dice DSCagg for GTVn and GTn of the three attempts on the
test set

Model DSCagg GTVp DSCagg GTVn Mean DSCagg

nnUNet 0.756 0.729 0.743

3D UNET (Resnet + SE + Grid-Attention) 0.768 0.758 0.763

Ensemble 0.774 0.758 0.767

3.2 Test Set

Table 2 shows the result of our three attempts on the unseen test set. In the
first attempt, we benchmarked the performance of nnUNet. For the second sub-
mission, 90% of the dataset was used for training and 10% of the dataset was
used for validation. The proposed 3D UNet model with residual skip connec-
tions, squeeze-and-excitation channel-wise attention and grid attention gates was
trained for 1000 epochs. For the final attempt, we combined the model used in
attempt 2 with the five other models from five-fold cross-validation. The ensem-
ble model was obtained by taking an average of the soft-max probabilities of the
six models.

3.3 Tumor and Lymph Node Volume as a Biomarker for Prognosis

The prognostic value of tumor and lymph node volume derived from the segmen-
tation are summarized in Table 3. Five-fold cross-validation shows that the model
combining the largest tumor volume, largest lymph node volume and number
of lymph nodes leads to the highest C-index of 0.597± 0.056 for recurrence-free
survival (RFS) prediction. The model showed a C-index of 0.627 in the test set.

4 Discussion

The proposed 3D-UNet architecture based on residual skip connections, squeeze-
and-excitation channel-wise attention, and grid-attention gates outperformed
other network configurations during five-fold cross-validation. The proposed
algorithm achieved DSCagg GTVp score of 0.777± 0.351 and DSCagg GTVn

score of 0.768± 0.522 during five-fold cross-validation. On the unseen test set,
the algorithm obtained DSCagg GTVp score of 0.768 and DSCagg GTVp score of
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Fig. 3. Qualitative analysis of the predicted GTVp and GTVn predictions. The pre-
dicted mask tends to follow the areas of high SUV uptake more closely as compared to
the ground truth labels.

Table 3. Prognostic value of tumor and lymph node volume for prediction of
recurrence-free survival

Variables in the model C-index± SD

Five-fold Cross-Validation Results

Largest Tumor Volume 0.565± 0.069

Largest Lymph Node Volume 0.534± 0.083

Number of Lymph Nodes 0.564± 0.033

Largest Tumor Volume + Largest Lymph Node Volume 0.570± 0.059

Largest Tumor Volume + Largest Lymph Node Volume +

Number of Lymph Nodes

0.597±0.056

Test Set Results

Largest Tumor Volume + Largest Lymph Node Volume +

Number of Lymph Nodes

0.627

0.758. Furthermore, the largest segmented tumor volume, the largest segmented
lymph node volume and the total number of segmented lymph nodes appeared
to be promising biomarkers for recurrence-free survival. These three features
obtained a C-index of 0.627 on the external test set for RFS prediction. The
proposed model demonstrates superior performance on the external test set as
compared to five-fold cross-validation. This could not be investigated due to the
absence of labels for the external test set.
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This study has some limitations. It is important to determine that the devel-
oped algorithms are fair with respect to age, gender, and other biases. Therefore,
metrics should also be calculated for these subgroups to report any biases. We
observed qualitatively that in some of the cases, the proposed segmentation algo-
rithm performs a better delineation. Therefore, an in silico trial that can obtain a
preference score to determine whether the radiologists prefer automatic segmen-
tation or manual delineations needs to be conducted [18]. We also observed that
false positives occur in areas where there is no probability of the tumor occur-
ring. The segmentation algorithm can be made more interpretable by including
an anatomical prior that calculates the probability of tumor occurrence at each
pixel value [19]. Furthermore, we also need to estimate uncertainty to avoid silent
failures on out-of-distribution cases [20].

5 Conclusion

In this paper, we proposed a segmentation framework demonstrating promising
performance for segmenting primary tumors and lymph nodes in head and neck
cancer. We also validated the quality of the segmentation by using the largest
segmented tumor and lymph node volumes as biomarkers for recurrence-free
survival prediction. In the future, we need to increase interpretability by incor-
porating anatomical priors, estimating uncertainty, and calculating the fairness
of the algorithm by evaluating the algorithm with respect to biases.
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