
 

 

 

Homotopy methods to compute equilibria in game
theory
Citation for published version (APA):

Herings, P. J. J., & Peeters, R. J. A. P. (2006). Homotopy methods to compute equilibria in game theory.
METEOR, Maastricht University School of Business and Economics. METEOR Research Memorandum
No. 046 https://doi.org/10.26481/umamet.2006046

Document status and date:
Published: 01/01/2006

DOI:
10.26481/umamet.2006046

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 13 Mar. 2024

https://doi.org/10.26481/umamet.2006046
https://doi.org/10.26481/umamet.2006046
https://cris.maastrichtuniversity.nl/en/publications/490c8985-a847-43d3-8ee9-24672148ae1d


P. Jean-Jacques Herings, Ronald Peeters 
 
Homotopy Methods to Compute Equilibria in 
Game Theory 
 
RM/06/046 
 
 
JEL code: C62, C63, C72, C73 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Maastricht research school of Economics 
of TEchnology and ORganizations 
 
Universiteit Maastricht 
Faculty of Economics and Business Administration 
P.O. Box 616 
NL - 6200 MD Maastricht 
 
phone : ++31 43 388 3830 
fax : ++31 43 388 4873 



 
 
 
 
 



Homotopy Methods to Compute Equilibria in Game Theory∗

P. Jean-Jacques Herings Ronald Peeters

October 2006

Abstract

This paper presents a complete survey of the use of homotopy methods in game theory.
Homotopies allow for a robust computation of game-theoretic equilibria and their refine-
ments. Homotopies are also suitable to compute equilibria that are selected by various
selection theories. We present all relevant techniques underlying homotopy algorithms.
We give detailed expositions of the Lemke-Howson algorithm and the Van den Elzen-
Talman algorithm to compute Nash equilibria in 2-person games, and the Herings-Van
den Elzen, Herings-Peeters, and McKelvey-Palfrey algorithms to compute Nash equilibria
in general n-person games.

JEL Classification Codes: C62, C63, C72, C73.

Keywords: Homotopy, Equilibrium computation, Non-cooperative games, Nash Equilibrium.

1 Introduction

Many research fields have benefited greatly from the development of game theoretic tools in
the twentieth century. The usual research strategy involves the modeling of the situation
of interest as a game, followed by an analysis of the outcomes of the game that satisfy a
particular solution concept, typically the one of Nash equilibrium or one of its refinements.

Since the analysis of Nash equilibria is key to the understanding of the situation at hand,
it should not come as a surprise that much attention has been given to the development of
methods by which Nash equilibria can be computed. We adhere to the view expressed in Judd
(1997) that computational methods will serve an important role in the further development
of economic theory, and in this case in the progress of game theory.

This survey provides an overview of a great variety of methods for Nash equilibrium com-
putation that have been proposed. Although quite distinct in the specifics of the mathematical
techniques used, all these methods share the property that they are guaranteed to converge
to some Nash equilibrium. We argue that the homotopy idea is common to all these methods,
and this idea should therefore be considered as the main driving force behind convergence.

∗Department of Economics, Universiteit Maastricht, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
E-mail: {P.Herings, R.Peeters}@algec.unimaas.nl. Both authors are financially supported by NWO.
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The homotopy idea is also extremely helpful in obtaining a thorough understanding of the
methods themselves.

Advantages of the use of homotopy methods include their numerical stability, their poten-
tial to be globally rather than only locally convergent, their ability to locate multiple solutions,
and the insight they provide into properties of the solutions. Favorable by-products are that
homotopies can be used for proving existence of an equilibrium and for the generic oddness
of the number of equilibria.

The homotopy idea is very simple. It consists of, first, the problem of interest, second
an artificial problem that can easily be solved, and third a continuous transformation of
the easy to solve artificial problem into the problem of interest. The homotopy idea then
consists of solving the easy artificial problem first and then using this solution to solve the
transformations of the easy problem until finally the problem of interest has been solved.
Section 2 explains why a deep mathematical result known as Browder’s fixed point theorem
(Browder, 1960), see also the extension by Mas-Colell (1974), is the fundamental reason that
this approach works under very general assumptions.

We will refer to the easy to solve problem as the starting problem, the problem of interest
as the terminal problem, and the problems created by the continuous transformation as the
intermediate problems. The choice of different starting problems and the choice of different
transformations of the starting problem to the terminal problem, creates different homotopy
algorithms. We will explain all algorithms in these terms.

Our survey consists of two main parts. Part 1 (Sections 4 and 5) are devoted to the
study of bi-matrix games, whereas Part 2 (Sections 6, 7, 8 and 9) treats general n-person
games. The reason for this distinction is that the linearity present in bimatrix games makes
it possible to find exact solutions for starting, intermediate and terminal problems, whereas
general n-person games require some approximation method to find solutions.

Section 4 starts with a presentation of what is probably the best-known algorithm for the
computation of Nash equilibria, the Lemke-Howson algorithm. This algorithm finds a Nash
equilibrium by solving a related linear complementarity problem. A generalization of the
Lemke-Howson algorithm is provided by the algorithm of van den Elzen and Talman (1991),
described in Section 5. The latter algorithm allows for an arbitrarily chosen starting point.

Section 6 presents an overview of the use of homotopy methods in general n-person games.
The algorithms of Sections 4 and 5 can be generalized to n-person games. For the Lemke-
Howson procedure, such a generalization is given in Rosenmüller (1971) and Wilson (1971).
Herings and van den Elzen (2002) extend the algorithm of van den Elzen and Talman (1991)
to the n-person case. A difficulty to compute Nash equilibria in n-person games is posed by
the non-linearity of the terminal problem. This makes it impossible to solve the intermediate
problems exactly. Herings and van den Elzen (2002) tackle this problem by approximating
the intermediate problems by piecewise linear ones, which can be solved exactly. Section 7
discusses the simplicial techniques that are needed for this approach. Section 8 presents the
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algorithm of Herings and Peeters (2001). This algorithms exploits the differentiability present
in game theoretic problems. The techniques needed for this approach are presented in detail.

The Herings-Van den Elzen and the Herings-Peeters algorithms, as well as the Van den
Elzen-Talman algorithm, compute the Nash equilibrium selected by the equilibrium selection
theory of Harsanyi and Selten (1988). Another algorithm with a nice game theoretic interpre-
tation is the one related to the quantal-response equilibrium of McKelvey and Palfrey (1995).
This approach is explained in detail in Section 9. Section 10 discusses how the methods pre-
sented in the other sections can be extended to extensive form games and dynamics games.
Section 11 concludes.

2 Homotopy Methods

In topology, two continuous functions from one topological space to another are called homo-
topic if one can be “continuously deformed” into the other. Such a deformation is called a
homotopy between the two functions. Formally, a homotopy between two continuous functions
f and g from a topological space X to a topological space Y is defined to be a continuous func-
tion H : [0, 1]×X → Y such that, for all points x in X, H(0, x) = f(x) and H(1, x) = g(x).
If we think of the homotopy-parameter in [0, 1] as “time”, then H describes a “continuous
deformation” of f into g: at time 0 we have the function f , at time 1 we have the function g.

A properly defined homotopy can be used to solve for the zeros of the function g starting
from the zeros of the function f and gradually solve the nearby systems for increasing values
of the homotopy parameter. These types of procedures are called homotopy methods. The
following mathematical result due to Browder (1960) delivers the key insight for why homo-
topy methods converge under very general circumstances.

Theorem 2.1 Let S be a non-empty, compact, convex subset of Rm and let H : [0, 1]×S → S

be a continuous function. Then the set of fixed points, FH = {(λ, s) ∈ [0, 1]×S | s = H(λ, s)}
contains a connected set, F c

H , such that ({0} × S) ∩ F c
H 6= ∅ and ({1} × S) ∩ F c

H 6= ∅.

The set of fixed points FH of H contains a connected subset F c
H that intersects the two ex-

tremes: {0} × S and {1} × S. This result suggests the following algorithm. Represent the
problem for which a solution has to be computed, the terminal problem, as a fixed point
problem, i.e. formulate a function H : {1} × S → S such that a fixed point of H yields a
solution to the terminal problem. Formulate the starting problem as a fixed point problem,
an artificial function H : {0} × S → S with usually a unique fixed point, say s0, that can be
computed easily. Define H : (0, 1)×S → S in any way that makes H continuous on [0, 1]×S.

By Theorem 2.1, the point (0, s0) is connected by F c
H to a fixed point (1, s1) of H. Homotopy

methods are methods to follow the connected set F c
H . A number of techniques is available to

do so, depending on the properties of F c
H .

3



The following result, due to Mas-Colell (1974), shows that Theorem 2.1 can be generalized
to the case of upper hemi-continuous correspondences.

Theorem 2.2 Let S be a non-empty, compact, convex subset of Rm and let H : [0, 1]×S → S

be an upper hemi-continuous correspondence that is non-empty, compact, and convex-valued.
Then the set of fixed points, FH = {(λ, s) ∈ [0, 1]× S | s ∈ H(λ, s)} contains a connected set,
F c

H , such that ({0} × S) ∩ F c
H 6= ∅ and ({1} × S) ∩ F c

H 6= ∅.

Since the fixed point problem related to H is a problem with m + 1 free variables and m

equations, it is usually possible to formulate appropriate regularity conditions for which the
solution is a compact, piecewise differentiable 1-dimensional manifold, i.e. a finite collections
of arcs and loops. If the starting problem is constructed to have a unique fixed point, then
there is a unique arc (also referred to as path or homotopy path) from this unique fixed point
to a fixed point in {1} × S. We will also present methods that work without such regularity
conditions.

There are two fundamental methods of numerically tracing the homotopy path: predictor-
corrector methods, and simplicial methods. Predictor-corrector methods approximately fol-
low exact solution curves, whereas simplicial methods exactly follow approximate solution
curves. For some problems the homotopy path is piecewise linear. Numerically tracking is
not needed, and it is possible to compute the homotopy path exactly by a finite sequence of
linear programming steps. This applies in particular to bimatrix games. After introducing
general notation for games in Section 3, we will turn to bimatrix games in Sections 4 and
5. For a detailed overview on path-tracking methods the reader is referred to Garcia and
Zangwill (1981) and Allgower and Georg (1990). For an overview of homotopy methods in
economic theory, see Eaves and Schmedders (1996).

3 Notation

A finite n-person noncooperative game in normal form is a tuple Γ = 〈N, {Si}i∈N , {ui}i∈N 〉,
where N = {1, . . . , n} is the finite set of players, Si = {si

1, . . . , s
i
mi} is the finite set of actions

that player i has at his disposal, and where ui is a real valued function on the set of all possible
action combinations S = S¶i∈NSi. A mixed action of player i is a probability distribution
on Si. Thereto we define Σi as the set of all probability distributions over Si. For σi ∈ Σi,
the probability assigned to pure action si

j is given by σi
j . The payoff function is extended

multi-linearly to the set of all mixed action combinations Σ = S¶i∈NΣi. Given a mixed action
combination σ ∈ Σ and a mixed action σ̄i ∈ Σi, we denote by (σ−i, σ̄i) the mixed action
combination that results from replacing σi by σ̄i. A mixed strategy combination σ ∈ Σ is
said to be a Nash equilibrium of game Γ if σi is a best response against σ−i for all i ∈ N .
The set of Nash equilibria of game Γ is denoted by NE(Γ).
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We define the disjoint union of the pure strategies over all players by S∗ =
⋃

i∈N Si with
m∗ =

∑
i∈N mi as the cardinality of this set. A subset B∗ of S∗ is called admissible if

B∗ ∩ Si 6= ∅ for all i ∈ N . An admissible subset B∗ of S∗ contains at least one pure strategy
for each player.

The case n = 2 is referred to as a bimatrix game. A bimatrix game can be represented by a
pair of m1×m2 matrices (A1, A2), where u1(σ1, σ2) = (σ1)>A1σ2 and u2(σ1, σ2) = (σ1)>A2σ2.

The vector ei is the column-vector of length mi for which each element is equal to 1, ei
j is

the column-vector of length mi for which the jth element is equal to 1 and all other elements
0, and 0i is the column-vector of length mi for which each element is equal to 0.

For a matrix M , we define by Mi · the ith row and by M · j the jth column of the matrix
M .

4 Bimatrix Games: The Lemke-Howson Algorithm

The problem of finding a Nash equilibrium in bimatrix games is equivalent to solving a
linear complementarity problem. As a result mathematical programming techniques that
are developed for solving linear complementarity problems are applicable to solve bimatrix
games. For a recent overview on the computation of equilibria for bimatrix games, we refer
the interested reader to von Stengel (2002).

The first path following algorithm to solve a nondegenerate bimatrix game has been de-
veloped by Lemke and Howson (1964). Their method finds a Nash equilibrium by solving a
related linear complementarity problem.

Theorem 4.1 (Lemke and Howson, 1964) A strategy pair (σ1, σ2) ∈ Σ constitutes a Nash
equilibrium of the bimatrix game (A1, A2) if and only if there exists a pair (µ1, µ2) ∈ R × R
such that

(σ1)>[(e1)>µ1 −A1σ2] = 0 (σ2)>[(e2)>µ2 − (A2)>σ1] = 0

σ1 ≥ 01 σ2 ≥ 02

(e1)>µ1 −A1σ2 ≥ 01 (e2)>µ2 − (A2)>σ1 ≥ 02

(e1)>σ1 − 1 = 0 (e2)>σ2 − 1 = 0.

(1)

The pair (µ1, µ2) is the pair of equilibrium payoffs corresponding to the Nash equilibrium
(σ1, σ2). The second and fourth lines determine that σ1 and σ2 are mixed actions, with
probabilities assigned to pure actions being non-negative and summing up to one. The third
line makes sure that there is no pure action of player 1 (2) that gives a higher payoff than µ1

(µ2) when player 2 (1) plays σ2 (σ1). According to the first line each pure action s1
j (s2

j ) is
played with zero probability or leads to the payoff µ1 (µ2) and is therefore optimal. It allows
for an optimal action to be played with probability zero.
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Theorem 4.1 states that the problem of finding a Nash equilibrium of the bimatrix game
(A1, A2) is equivalent to finding a solution to the linear complementarity problem (LCP) of
Eq. (1). Like von Stengel (2002), we follow Shapley’s (1974) exposition of the Lemke-Howson
algorithm. The algorithm is mainly based on the property that in an equilibrium each pure
action is played with probability zero or is a best response (or both).

Any mixed action σi is assigned a set of labels in S∗. In particular, σi is labeled by the
pure actions that are played with probability zero and the pure actions of the opponent that
are best responses to it:

L1(σ1) = { s1
j ∈ S1 | σ1

j = 0 } ∪ { s2
j ∈ S2 | (A2

· j)
>σ1 ≥ (A2

· `)
>σ1 (s2

` ∈ S2) },
L2(σ2) = { s2

j ∈ S2 | σ2
j = 0 } ∪ { s1

j ∈ S1 |A1
· j σ2 ≥ A1

· ` σ2 (s1
` ∈ S1) }. (2)

A profile of mixed actions σ = (σ1, σ2) is labeled by the union of the labels of σ1 and σ2:

L(σ) = L1(σ1) ∪ L2(σ2). (3)

A profile of mixed actions σ is called completely labeled if L(σ) = S∗ and called si
j–almost

completely labeled if L(σ) = S∗ \ {si
j}. The following result can easily be shown.

Theorem 4.2 A mixed action pair (σ1, σ2) ∈ Σ constitutes a Nash equilibrium of the bimatrix
game (A1, A2) if and only if it is completely labeled.

A bimatrix game with the property that any σi ∈ Σi has at most mi labels is called nonde-
generate. In this section, we will restrict the analysis to nondegenerate games. Wilson (1992)
amended the Lemke-Howson algorithm to handle non-generic games and, moreover, to select
a simply stable equilibrium.

Theorem 4.3 In a nondegenerate bimatrix game (A1, A2) only finitely many points in Σ1

have m1 labels and only finitely many points in Σ2 have m2 labels.

It follows as a result of this theorem that in a nondegenerate bimatrix game there are finitely
many points in Σ1 × Σ2 that have m1 + m2 labels. Consequently, there are finitely many
points that are completely labeled and hence finitely many Nash equilibria.

Consider a nondegenerate bimatrix game (A1, A2) and let Gi (for i = 1, 2) be the undi-
rected graph whose vertices are the points from Σi with mi labels, and an additional vertex
0i having all actions of player i as label (Li(0i) = Si). Any two vertices of Gi are joined by
an edge if they have exactly mi − 1 labels in common (and thus differ in one label precisely).

Let G = G1 ×G2 be the product graph with the vertices being all pairs of vertices of G1

and G2 and the edges being all vertex-edge pairs with vertices coming from G1 and edges from
G2 or vice versa. In line with the definitions above, an edge of G is called si

j–almost completely
labeled if the two vertices that are connected by it are si

j–almost completely labeled.
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A first observation is that for every si
j any completely labeled vertex (σ1, σ2) in G, that is

all Nash equilibrium and the additional vertex (01, 02), is adjacent to exactly one si
j–almost

completely labeled vertex (σ̃1, σ̃2). If si
j is a label of σ1, then σ1 is adjacent to σ̃1 in G1

(sharing the same remaining m1 − 1 labels) and σ2 = σ̃2. If si
j is a label of σ2, then σ2 is

adjacent to σ̃2 in G2 (sharing the same remaining m2 − 1 labels) and σ1 = σ̃1. A second ob-
servation is that any si

j–almost completely labeled vertex (σ1, σ2) in G is adjacent to exactly
two si

j–almost completely labeled vertices in G. A vertex (σ1, σ2) in G can only be si
j–almost

completely labeled if σ1 and σ2 both have one other label sk
` in common. One neighbor of

(σ1, σ2) is (σ̃1, σ2) with σ̃1 being a adjacent to σ1 by a sk
` –almost completely labeled edge in

G1. The other is (σ1, σ̃2) with σ̃2 being a adjacent to σ2 by a sk
` –almost completely labeled

edge in G2.

Theorem 4.4 (Lemke and Howson, 1964; Shapley, 1974) Let (A1, A2) be a nondegen-
erate bimatrix game and si

j be a label in S∗. Then the set of si
j–almost completely labeled

vertices and edges in G consists of disjoint paths and cycles. The end-points of the paths are
the completely labeled vertices (the equilibria of the game) and the completely labeled vertex
(01, 02) (the artificial equilibrium). The number of Nash equilibria of the game is odd.

The algorithm of Lemke-Howson starts in the artificial equilibrium (01, 02) that has all labels.
For given label si

j a path consisting of si
j–almost completely labeled edges and vertices is

followed that terminates at a Nash equilibrium of the game. From a computational point of
view, moving from one completely labeled edge to another, is equivalent to making a linear
programming pivot step. We will explain this in more detail for the Van den Elzen-Talman
algorithm presented in Section 5.

The essential reason that these pivoting methods converge is at best explained as follows.
Suppose there is a haunted house with a finite number of rooms. Each room has either zero,
one or two doors. There is only one entrance to the haunted house through which you just
came in. Since you are being haunted by a ghost there is no way back. The only way to
escape from the ghost is to hide in a room with one door (to which ghosts have no entry). If
the room you entered by entering the haunted house has one door, you are safe. If not, then
there is precisely one door leading to another room to which you have to escape. The room
you entered has at least one door (the one you entered). Again, either you are safe or there
is another door through which you should escape. This procedure either ends in a room with
one door only or continues ad infinitum. The latter can however not happen. Namely, by
finiteness of the number of rooms there is a moment that a room once visited is entered for
the second time. Since it is impossible to enter this room by the two doors already used (this
would imply that the room you are coming from was already visited twice), this room must
have a third door. This is not possible, and hence it is impossible to wander ad infinitum.
You can thus be sure to end up in a room having one door only. Using this door-in door-out
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principle we find convergence to a room with one door. In general this principle can be used
to show existence and oddness of the number of rooms with one door.

Consider the game of Figure 1. This game possesses a unique Nash equilibrium, the mixed
action profile (σ̄1, σ̄2) = ((2

3 , 1
3), (3

4 , 1
4)).

s2
1 s2

2

s1
1 2,2 1,4

s1
2 1,4 4,0

Figure 1: Example.

Figure 2 contains the graphs G1 and G2 for this game. The vertices are indicated by
the (mixed) actions, the labels by the pure actions with quotation marks. The path of s1

1–
almost completely labeled vertices and edges connects the artificial equilibrium (01, 02) via
the vertices (s1

1, 0
2), (s1

1, s
2
2), (σ̄1, s2

2) to the equilibrium (σ̄1, σ̄2).
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‘s2
1’

‘s2
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‘s1
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@
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@
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iv

Figure 2: Example Lemke-Howson.

Though perhaps not straightforward from the exposition above, the Lemke-Howson method
is a homotopy method. This can be seen as follows. In general, along the path of an si

j–almost
completely labeled path starting from the artificial equilibrium, the first vertex attained is
the profile composed by pure action si

j and the opponent’s best response to it. This profile
would constitute an equilibrium if si

j would be a best response in return. Generally this is
not the case, but by giving player i a sufficiently large bonus for playing the pure action si

j ,
the first action profile could be an equilibrium. Let α be a bonus sufficiently large to make
any pure action a dominant action once this bonus is given for the use of this action, for
instance α = maxi,σ ui(σ) − mini,σ ui(σ) + ε. According to Wilson (1992) the path of si

j–
almost completely labeled vertices and edges corresponds to a homotopy path of a homotopy
involving a gradually diminishing bonus for the use of action si

j starting from a bonus of size
α. To be more precise, the gradually diminishing bonus defines a series of bimatrix games
Γ(t) with t ∈ [0, 1] and payoff function vi(t; s) such that vk(t; s) = uk(s) + (1− t)α if sk = si

j

and vk(t; s) = uk(s) otherwise. Now, by construction, the first action profile on the path is
an equilibrium of the game Γ(0). By gradually increasing t from 0 to 1, the bonus on si

j is
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gradually decreased from α to 0 where the original game is reached (Γ = Γ(1)). During this
procedure a path of Nash equilibria is generated that starts in the first action profile in the
Lemke-Howson procedure and ends in the Nash equilibrium selected by the Lemke-Howson
procedure.

To obtain an explicit formulation as a homotopy, it suffices to define the correspondence
H : [0, 1]× Σ → Σ by

H(t, σ) =
∏

i∈N βi(t; σ),

where βi(t; σ) = argmaxσi∈Σi vi(t; σ−i, σi) is the best response correspondence of player i in
game Γ(t). The set of strategies of the resulting homotopy path coincides with the set of
strategies generated by the Lemke-Howson algorithm. Convergence of the Lemke-Howson
algorithm for a nondegenerate game now follows easily from Theorem 2.2.

The homotopy H of the previous paragraph is a correspondence. Using the techniques
of Herings (2000) and Geanakoplos (2003), it is possible to define a continuous homotopy
function with exactly the same homotopy path.

An alternative way to obtain a homotopy whose homotopy path is equivalent to the Lemke-
Howson path, is by keeping the utility function of the terminal problem, and manipulating
the strategy space. In particular, for given si

j , we define Σi(t) = (1 − t){si
j} + tΣi and

Σ−i(t) = Σ−i. We define the correspondence H : [0, 1]× Σ → Σ by

H(t, σ) =
∏

i∈N βi
Σi(t)

(σ),

where βi
Σi(t)

(σ) = argmaxσi∈Σi(t) ui(σ−i, σi) is the best response correspondence of player i

in game Γ with restricted strategy set Σi(t). The set of strategies of the resulting homotopy
path coincides with the set of strategies generated by the Lemke-Howson algorithm.

5 Bimatrix Games: The Van den Elzen-Talman Algorithm

The Lemke-Howson algorithm always starts in a pure strategy profile, where for one player
a pure strategy is randomly chosen, and the other player uses a best response. Van den
Elzen and Talman (1991) developed an algorithm similar to the Lemke-Howson algorith that
allows for an arbitrary mixed strategy profile as the starting point. As before, nondegenerate
bimatrix games are considered.

The advantage of an arbitrary starting point is twofold. First, often some reasonable guess
of the actions that should be played in an equilibrium is available. Then it is natural to take as
a starting point of the algorithm a strategy that puts only weight on such actions. Secondly,
if there is an interest in detecting whether a given game has multiple Nash equilibria, or there
is a desire to compute several Nash equilibria if there exist multiple ones, the flexibility of the
starting point is a desirable feature.
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Let a starting vector ν ∈ Σ be given. For an admissible subset B∗ of S∗, Van den Elzen
and Talman (1991) consider the following system of equations.

σi
j = (1− t)νi

j + τ i
j (si

j ∈ S∗)

ui(σ−i, si
j) + λi

j = µi (si
j ∈ S∗)

∑
si
j∈Si τ i

j = t (i ∈ N)

τ i
j = 0 (si

j 6∈ B∗)

λi
j = 0 (si

j ∈ B∗)

(4)

with t ∈ [0, 1], τ i, λi ∈ Rmi

+ and µi ∈ R. Suppose (t, σ, τ, λ, µ) is a solution to (4) (notice that
not all B∗ admit solutions in general). The variable µi represents the maximum payoff that
player i can get against strategy σ−i. The pure actions in B∗ are all best responses. The
λi

j–s corresponding to best responses are therefore equal to zero. For actions not in B∗, the
corresponding variable τ i

j is equal to zero.
For bimatrix games the system above is linear and the second line of it can be replaced

by

A1
j ·σ

2 + λ1
j = µ1 (s1

j ∈ S1)

(σ1)>A2
· j + λ2

j = µ2 (s2
j ∈ S2).

(5)

By substitution of the first line of Equation (4) into these new equations we end up with the
following system of 2(m1 + m2 + 1) linear equations and 2(m1 + m2 + 1) + 1 variables.1

A1
j ·((1− t)ν2 +

∑
s2
`∈B∗τ

2
` e2

`) + λ1
j = µ1 (s1

j ∈ S1)

((1− t)ν1 +
∑

s1
`∈B∗τ

1
` e1

`)
>A2

· j + λ2
j = µ2 (s2

j ∈ S2)
∑

si
j∈Siτ i

j = t (i ∈ N)

τ i
j = 0 (si

j 6∈ B∗)

λi
j = 0 (si

j ∈ B∗).

(6)

Or, in matrix-vector notation,

(1− t)




A1ν2

(A2)>ν1

1
1


 +

∑
s1
`∈B∗ τ1

`




01

(A2
` ·)

>

1
0


 +

∑
s2
`∈B∗ τ2

`




A1
· `

02

0
1




+
∑

s1
` 6∈B∗ λ1

`




e1
`

02

0
0


 +

∑
s2
` 6∈B∗ λ2

`




01

e2
`

0
0


− µ1




e1

02

0
0


− µ2




01

e2

0
0


 =




01

02

1
1


 .

(7)

Given the number of equations and unknowns, for each admissible set B∗ a one-dimensional
solution set is what one expects. Van den Elzen and Talman (1991) define a bimatrix game
to be nondegenerate if the solution set is 1-dimensional for each admissible set B∗. As usual,

1Notice that τ i =
∑

si
`
∈B∗ τ i

`e
i
` and λi =

∑
si

`
6∈B∗ λi

`e
i
`.
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the empty set is considered to have any dimension. This means that for each B∗ the set of
solutions to the corresponding system is an empty set or a compact line segment.

Let B∗ be the set containing for each player i his best response against ν−i. For nonde-
generate games, this best response, and thereby B∗, is uniquely defined. It is easily verified
that t = 0, τ = 0, µi = ui(ν−i, si

j) for si
j ∈ B∗, and λi

j = µi−ui(ν−i, si
j), si

j ∈ S∗, is a solution
to (7). Notice that λi

j is strictly positive for si
j 6∈ B∗ and τ i

j is strictly positive for si
j ∈ B∗.

The idea is to keep B∗ fixed and to increase t until one of the constraints would get
violated, i.e. one of the λ–s or τ–s would become negative. Since the set of solutions is
a line segment, increasing t leads from the solution just identified, to the other boundary
point of the line segment. From a computational point of view, the operation just described
corresponds to a linear programming pivot step.

If the other boundary point of the line segment corresponds to t = 1, the algorithm stops.
It is easily verified that a solution to (7) with t = 1 yields a Nash equilibrium of the bimatrix
game Γ. Otherwise, we have to adapt the set B∗ such that the procedure can be continued.
For the first line segment generated, the case where τ i

j becomes negative for some si
j ∈ B∗

cannot occur. The end-point of the line segment is characterized by λi
j = 0 for some si

j 6∈ B∗.
In this case si

j is added to the set B∗ and the system of equations (7) is studied for B∗∪{si
j}.

The end-point of the previous line segment is the starting point of the line segment of solutions
to (7) for B∗ ∪ {si

j}. The end-point of this line segment satisfies either t = 1, in which case
a Nash equilibrium has been found, or τ i

j = 0 for some si′
j′ ∈ B∗ ∪ {si

j}, in which case a new
admissible set is defined as B∗ ∪ {si

j} \ {si′
j′}, or λi

j = 0 for some si′
j′ 6∈ B∗ ∪ {si

j}, and a new
admissible set is defined as B∗ ∪ {si

j} ∪ {si′
j′}.

The procedure stops when t is equal to 1. The door-in door-out principle of Lemke and
Howson guarantees that such will be the case after generating a finite number of admissible
sets B∗. Hence starting from a solution corresponding to (t, σ) = (0, ν) by linear programming
steps a piecewise linear path towards a Nash equilibrium is followed. The starting profile plays
an important role during the procedure since all adjustments are made relative to this initial
profile.

Theorem 5.1 Let (A1, A2) be a nondegenerate bimatrix game and let ν belong to the interior
of Σ. Then the algorithm finds a perfect Nash equilibrium.

Figure 3 displays the projection on Σ of the path for the game of Figure 1 for initial starting
profile ν = ((4

5 , 1
5), (2

5 , 3
5)). For player 1 and 2, the pure actions s1

2 and s2
2 are the best

responses against the initial action profile ν. Therefore we start tracking the solutions to
the system in (7) for B∗ = {s1

2, s
2
2} starting at t = 0. We can increase t until t reaches 1

6 ,

the strategy profile σ equals ((2
3 , 1

3), (1
3 , 2

3)), and λ2
1 becomes 0. This means that at t = 1

6

the pure action s2
1 has become a best response for player 2 and we should continue tracking

the system determined by B∗ extended with s2
1. In the new system for B∗ = {s1

2, s
2
1, s

2
2} we
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can keep t at 1
6 and increase τ2

1 until τ2
2 becomes 0 and action s2

2 should be eliminated from
the admissible subset B∗. The strategy profile reached equals σ = ((2

3 , 1
3), (1

2 , 1
2)). The next

system to solve is therefore determined by B∗ = {s1
2, s

2
1} and we move in the direction of

(s1
2, s

2
1) by increasing t, τ1

2 , and τ2
1 . At t = 7

12 , σ = ((1
3 , 2

3), (3
4 , 1

4)), λ1
1 becomes 0 and s1

1 should
be included in B∗: B∗ = {s1

1, s
1
2, s

2
1}. Next the path stays at t = 7

12 and τ1
1 is increased.

We can increase τ1
1 until τ1

1 = 1
3 (and τ1

2 = 1
4) when λ1

1 gets 0. The strategy profile reached
equals σ = ((1

3 , 2
3), (3

4 , 1
4)), the Nash equilibrium of the game. We complete the algorithm by

following the path for B∗ = {s1
1, s

1
2, s

2
1, s

2
2} keeping σ at the equilibrium value, towards t = 1.

s1
2 s1

1

s2
2

s2
1

• σ̄

• ν©©©©©©©

Z
Z

Z
Z

Z
Z

Z

A
A
AA

£
£
£
£
££

©©¼6
Z

Z
Z}

-

Figure 3: Example van den Elzen-Talman.

The procedure tracks a piecewise linear path starting at (0, ν) = (0, ((4
5 , 1

5), (2
5 , 3

5))), pro-
ceeding to (1

6 , ((2
3 , 1

3), (1
3 , 2

3))), (1
6 , ((2

3 , 1
3), (1

2 , 1
2))), ( 7

12 , ((1
3 , 2

3), (3
4 , 1

4))), and ( 7
12 , ((2

3 , 1
3), (3

4 , 1
4))),

and reaching t = 1 with the Nash equilibrium at (1, σ̄) = (1, ((2
3 , 1

3), (3
4 , 1

4))). Clearly, we could
have terminated the algorithm at t = 7

12 when we found the Nash equilibrium. More gener-
ally, as soon as a set B∗ = S∗ is reached, a fully mixed Nash equilibrium has been found, and
the algorithm can be stopped.

In Yamamoto (1993) the algorithm of van den Elzen and Talman (1991) is explained using
an expanding set which is a family of subsets Σ(t) of Σ, where Σ(t) = (1 − t){ν} + tΣ for
t ∈ [0, 1]. By defining a series of games Γ(t) with t ∈ [0, 1] and with the space of action
profiles defined above, by construction ν is a Nash equilibrium of the game Γ(0). Moreover
for increasing values of t, a path of Nash equilibria of the games Γ(t) is generated that
perfectly matches with the path in the procedure of van den Elzen and Talman. For a general
interpretation of path-following algorithms as projections on appropriately defined expanding
sets, see Herings (2002).

In our homotopy interpretation, it suffices to define the correspondence H : [0, 1]×Σ → Σ
by

H(t, σ) =
∏

i∈N βi
Σi(t)

(σ),

where βi
Σi(t)

(σ) = argmaxσi∈Σi(t) ui(σ−i, σi) is the best response correspondence of player i

in game Γ with restricted set of mixed strategies Σi(t). The set of strategies of the resulting
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homotopy path coincides with the set of strategies generated by the Van den Elzen-Talman
algorithm. Convergence of the Van den Elzen-Talman algorithm for a nondegenerate game
now follows easily from Theorem 2.2.

The formulation as a homotopy exemplifies the differences between the Lemke-Howson
algorithm and the Van den Elzen-Talman one. Apart from the general starting point in Van
den Elzen-Talman, the main difference is that for the starting and intermediate problems,
Lemke-Howson leaves the strategy set of one player unrestricted, whereas Van den Elzen-
Talman constrain both strategy sets. The formulation also clarifies that the Lemke-Howson
problem can be formulated with a general starting point.

In van den Elzen and Talman (1999) it is shown that given any prior and a generic
bimatrix game, the paths generated by the linear tracing procedure developed in Harsanyi
(1975) and the pivoting procedure outlined above are the same. The tracing procedure is the
key ingredient in the equilibrium selection method developed in Harsanyi and Selten (1988).
We will explain the linear tracing procedure in more detail in Section 7.

6 n-Player Games: General Overview

The problem of finding a Nash equilibrium in a game with more than two players is equivalent
to solving a non-linear complementarity problem. Therefore, linear programming techniques
are in general not directly applicable. An exception is the class of polymatrix games, studied
in Govindan and Wilson (2004). Polymatrix games are games where for each player the
payoffs are additive over the bilateral interactions with the other players. A polymatrix game
is therefore a linear combination of bimatrix games. Because of the linearity of the payoff
functions, polymatrix games can be relatively quickly solved using a variant of the Lemke-
Howson algorithm. By iteratively solving approximating polymatrix games (where in each
iteration the polymatrix approximation used depends on the current mixed action profile)
Govindan and Wilson exploit the linearity to increase the speed of their algorithm presented
in Govindan and Wilson (2003).

For general n-person games, algorithms to compute equilibria rely either on simplicial
subdivisions for approximating fixed points or numerical methods to solve systems of higher-
degree polynomial inequalities. Methods for the computation of equilibria for noncooperative
games with more than two players are surveyed in McKelvey and McLennan (1996).

Seminal papers on the computation of Nash equilibria in n-person games are the ones
by Rosenmüller (1971) and Wilson (1971). Both extend the Lemke-Howson procedure to
nondegerenerate n-person games by formulating the problem of finding a Nash equilibrium
as a nonlinear complementarity problem.

The Lemke-Howson procedure starts with fixing an action for one player and the best
response against it for the other player. This implies solving a 1-person game for its equilib-
rium. This starting point determines an almost-complementary node for the 2-person game
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from which a path towards an equilibrium originates.
The procedures of Rosenmüller (1971) and Wilson (1971) start with fixing an action for

(n − 1) players and compute the best response against it for the remaining player. The
point found determines an almost-complementary node for the 2-person game that results
after unfixing one of the players from its action from which a path towards an equilibrium
of this 2-person game originates. This equilibrium determines the starting node for the next
step in the procedure. The procedures of Rosenmüller and Wilson construct in this way an
equilibrium of an n-person game by successively constructing equilibria of k-person games,
1 ≤ k ≤ n.

The problem of the procedure is that the paths are no longer linear. To turn this procedure
into a numerical algorithm, a method is needed to follow the non-linear path. Here, there are
two options, one relying on simplicial approximations, explained in detail in Section 7, the
other on differentiability, see Section 8.

Although the methods of Rosenmüller and Wilson are not directly suitable for compu-
tational purposes, their common result, the existence of a non-linear path leading to an
equilibrium, was a very important step towards an implementable algorithm as developed by
Garcia, Lemke, and Lüthi (1973). Later, a more efficient algorithm was proposed in van der
Laan, Talman, and van der Heijden (1987). A problem of these algorithms is that they calcu-
late only an approximation of a sample Nash equilibrium, and do not take the game-theoretic
underpinning of the calculated equilibrium into consideration.

Another generalization of the Lemke-Howson algorithm to n-person games is provided by
Govindan and Wilson (2003). They indicate that one of the implications of the structure
theorem of Kohlberg and Mertens (1986) is that, above each generic ray emanating from
the true game (represented as a point in a Euclidean space), the graph of the equilibrium
correspondence is a 1-dimensional manifold. Moreover, at sufficient distance from the true
game there is a unique equilibrium. Therefore, starting from a sufficiently distant game along
any generic ray, one can traverse the line segment to the true game, tracing the 1-dimensional
manifold of equilibria along the way, to find an equilibrium of the true game at the terminus.
Wilson and Govindan (2003) propose to trace the manifold using a global Newton method. For
bimatrix games the algorithm jumps linearly from one boundary to another, and corresponds
to the Lemke-Howson algorithm.

Homotopy-based algorithms to solve for all Nash equilibria are developed in Kostreva and
Kinard (1991) and Herings and Peeters (2005). Both methods are based on the application of
numerical techniques to obtain all the solutions to a system of polynomial equations. Kostreva
and Kinard (1991) focuses on solving for polynomial optimization problems in general and
bimatrix games in particular. Herings and Peeters (2005) concentrates on solving n-person
noncooperative games for all its Nash equilibria. The proposed method is shown to be globally
convergent for an open set of games with full Lebesgue measure.

McLennan (2005) shows that the number of Nash equilibria in normal form games of
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modest size is huge on average. For instance, the mean number of Nash equilibria in a game
with 4 agents, each having 6 strategies, is estimated to be 2.037. This number increases rapidly
in the number of players and the number of strategies. To compute all Nash equilibria of a
game of moderate size is therefore not feasible within reasonable time limits. It is therefore
important to have methods that compute a Nash equilibrium with a sound game-theoretic
underpinning.

Yamamoto (1993) presents a homotopy to compute a proper Nash equilibrium. Yamamoto
makes use of an expanding set to define a homotopy whose homotopy-path connects the cen-
troid of the simplotope to a solution of a stationary point problem that is a Nash equilibrium
of the original game. For generic games, all Nash equilibria are proper. The ability to compute
a proper Nash equilibrium does therefore not solve the problem equilibrium selection.

Two methods of equilibrium selection stand out in the game-theoretic literature. The first
one is the equilibrium selection theory developed in Harsanyi and Selten (1988), which applies
to general n-person games. The Herings-Van den Elzen and Herings-Peeters algorithms that
are presented in Sections 7 and 8, respectively, compute the Nash equilibrium that is selected
by the linear tracing procedure—an important construct in the selection theory of Harsanyi
and Selten (1988). The second one is the (logit) quantal response equilibrium of McKelvey
and Palfrey (1995). The quantal response equilibrium is often applied by experimentalists
because of its good prediction of behavior. It incorporates probabilities of making mistakes
into the Nash equilibrium concepts. Quantal response equilibrium can be turned into a
theory of equilibrium selection by selecting the equilibrium that is obtained in the limit when
mistake probabilities go to zero. We present this method in Section 9. A drawback of this
selection theory is that the equilibrium selected is not invariant with respect to the chosen
representation of the preferences by utilities.

Another equilibrium selection method that has a bounded rationality interpretation is
the t–solution (Rosenthal, 1989). It relaxes the prescription that best responses are played
with probability one, by replacing it with a probabilistic choice in which better responses are
played with probabilities not lower than worse responses. The level of randomness of players’
behavior is parameterized by a single parameter t that can be interpreted as a measure of the
importance of the game. Voorneveld (2006) showed that for every game the set of t–solutions
constitutes a homotopy path starting at t = 0 and terminating in a Nash equilibrium at t = 1.
This path can be followed using the techniques presented in the next two sections. Moreover,
Voorneveld (2006) shows that for increasing values of t, the players eliminate successively
higher levels of never-best replies and that eventually the only actions that are chosen with
positive probability are rationalizable.
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7 n-Player Games: The Herings-Van den Elzen Algorithm

This section presents an algorithm that computes the Nash equilibrium selected by the linear
tracing procedure of Harsanyi (1975). Harsanyi’s linear tracing procedure starts from a prior,
reflecting the ideas of any player about the action used by the other player, and next players
react optimally thereupon. Then the players observe that their expectations are not met and
adjust them towards observed behavior and again react thereupon. By simultaneously and
gradually adjusting expectations, and reacting optimally against these revised expectations,
eventually an equilibrium is reached.

Consider some n-person game Γ and some prior p ∈ Σ and denote, for every t ∈ [0, 1], Γt

as the game 〈N, {Si}i∈N , {vi(t)}i∈N 〉, where the payoff function vi(t) : Σ → R of player i is
defined by

vi(t, σ) = tui(σ) + (1− t)ui(p−i, σi). (8)

The game Γ0 corresponds to a trivial game, where all players believe that their opponents
play with probability 1 according to the prior belief. The game Γ1 coincides with the original
game Γ. A best response against a strategy combination σ ∈ Σ in the game Γt corresponds
to a best response against the probability distribution t[σ] + (1 − t)[p] on S in the game Γ.
The latter probability distribution does in general not belong to Σ, since it may be correlated
when there are more than two players.

The set of all Nash equilibria related to the games Γt, t ∈ [0, 1], is denoted by

L(Γ, p) =
{

(t, σ) ∈ [0, 1]× Σ
∣∣∣ σ ∈ NE(Γt)

}
. (9)

Once the number of pure strategies of each player is fixed, a noncooperative game is completely
determined by the utility functions u, which can be represented by a vector in Rm∗n. The
standard topology and measure on Rm∗n therefore induce a topology and a measure on games.
The set of such games is denoted G.

Theorem 7.1 There exists a path in L(Γ, p) connecting a best response against the prior to
a Nash equilibrium of the game Γ. For an open set of games Γ ∈ G and priors p ∈ Σ with full
Lebesgue measure, this path is unique.

For a proof of the first statement, see Schanuel, Simon and Zame (1991) and Herings (2000),
for a proof of the latter statement, see Harsanyi (1975) and Herings and Peeters (2001). For a
better understanding of the result, we define the homotopy correspondence H : [0, 1]×Σ → Σ
by

H(t, σ) =
∏

i∈N βi(t; σ),

where as before βi(t;σ) is the set of best responses of player i in game Γt against strategy
profile σ. The proof of the first statement is now an immediate application of Theorem 2.2.
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The second statement needs that games are nondegenerate in a similar sense as before. It can
be proved that this is the case for generic games. We will return to this issue in Section 8.

The linear tracing procedure links a Nash equilibrium of the game Γ0 to a Nash equilibrium
of Γ1. That is, the linear tracing procedure traces the generically unique path in L(Γ, p). The
interpretation of the linear tracing procedure is that players gradually adjust their beliefs
about the behavior of their opponents by gradually putting less weight to the initial beliefs,
the prior.

Admissible subsets B∗ can be used to decompose L(Γ, p) in subsets L(Γ, p, B∗), where
a set L(Γ, p, B∗) contains those elements of L(Γ, p) where only strategies in B∗ are played
with positive probability. The set Σ(B∗) = {σ ∈ Σ | ∀si

j 6∈ B∗, σi
j = 0} is the strategy set

consistent with B∗. The set Λ(B∗) = {λ ∈ Rm∗
+ | ∀si

j ∈ B∗, λi
j = 0} is the set of Lagrange

multipliers associated to B∗. A point (t, σ) ∈ [0, 1]×Σ(B∗) belongs to L(Γ, p, B∗) if and only
if there exists λ ∈ Λ(B∗) and µ ∈ Rn such that

vi(t, σ−j , si
j) + λi

j − µi = 0 (si
j ∈ S∗), (10)

We denote by v the function with components vi(t, σ−j , si
j) for si

j ∈ S. The next step is to
turn Theorem 7.1 and Equations (10) into an implementable algorithm.

Because we are dealing with a non-linear system of equations, we have to study approxi-
mations of Nash equilibria. Our ultimate aim is to compute a ε-Nash equilibrium of Γ with
ε an arbitrarily chosen positive number.

Definition 7.2 Let (Γ, p) be given. For ε ≥ 0, a mixed strategy combination σ ∈ Σ
is called an ε-Nash equilibrium of Γ if, for every i ∈ N, σi

k > 0 implies ui(σ−i, si
k) ≥

maxsi
j∈Si ui(σ−i, si

j)− ε.

In an ε-Nash equilibrium the loss in payoffs of using a suboptimal strategy is at most ε.

Though the suboptimal strategy itself might be far away from an optimal strategy, the loss
in payoff is small, which makes sense from a game-theoretic standpoint.

In Herings and van den Elzen (2002) a simplicial algorithm is used to generate a piecewise
linear path that approximates L(Γ, p). For every B∗, they define a piecewise linear approxi-
mation of the Equations (10), whose solution approximates L(Γ, p, B∗). Next it is shown that
the piecewise linear solutions paths for varying B∗ can be nicely fitted together, and result
in a piecewise linear path from a solution to the starting problem to an ε-Nash equilibrium
of the terminal problem.

For k ∈ N, a k-dimensional simplex or k-simplex ς in Rm is defined as the convex hull
of k + 1 affinely independent points x1, . . . , xk+1 of Rm. We write ς = ς(x1, . . . , xk+1) and
call x1, . . . , xk+1 the vertices of ς. A (k − 1)-simplex that is the convex hull of k vertices of
ς(x1, . . . , xk+1) is said to be a facet of ς. The facet τ(x1, . . . , xj−1, xj+1, . . . , xk+1) is called the
facet of ς opposite to the vertex xj . For a non-negative integer k′ less than or equal to k, a
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k′-simplex that is the convex hull of k′ + 1 vertices of ς is said to be a k′-face of ς.

A finite collection S of k-simplices is a triangulation of a k-dimensional convex subset T

of Rm if (1) T is the union of all simplices in S and (2) the intersection of any two simplices
in S is either empty or a common face of both. If S is a triangulation of T, and a facet τ of
ς1 ∈ S is a subset of the relative boundary of T, then there is no ς2 ∈ S such that ς2 6= ς1

and τ is a facet of ς2. If τ is not a subset of the relative boundary of T, then there is exactly
one ς2 ∈ Σ such that ς2 6= ς1 and τ is also a facet of ς2. The mesh size of a triangulation S
of T is defined by mesh(S) = max{‖x− y‖∞ | x, y ∈ ς, ς ∈ S}.

It is well-known that full-dimensional affine parts of the relative boundary of a set are
triangulated by the facets of the simplices in a triangulation. More precisely, let S be a
triangulation of a convex k-dimensional subset T of Rm, and let the (k−1)-dimensional subset
T of the relative boundary of T be such that T is equal to the affine hull of T intersected with
T. Then the collection S given by S = {τ ∈ T | ∃ς ∈ S, τ is a facet of ς} is a triangulation of
T , see Todd (1976), Theorem 2.3. For instance, the set {0} × Σ is triangulated by the facets
of the simplices in a triangulation of [0, 1]× Σ.

An example of a triangulation of [0, 1]× Σ is illustrated in Figure 4 for the case we have
two players each having two pure strategies. All 3-simplices in co(x3, x5, x6, x12, x14, x15) are
depicted in Figure 4. For later purposes we give all 3-simplices in the triangulation of Figure 4
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Figure 4: A triangulation of [0, 1] × Σ. The vertex x1 = (0, (1, 0), (1, 0)) refers
to the strategy vector at which both players play their first pure strategy.
Similarly, x3, x7, and x9 correspond to (0, (0, 1), (1, 0)), (0, (1, 0), (0, 1)), and
(0, (0, 1), (0, 1)), respectively.

in Table 1. In Table 1 only the 3-simplices in [0, 1
2 ]×Σ are given. The ones in [12 , 1]×Σ follow

by means of a translation. The position in the table is related to the position of a simplex in
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the triangulation.

co({x4, x7, x5, x14}) co({x8, x7, x5, x14}) co({x8, x9, x5, x14}) co({x6, x9, x5, x14})
co({x4, x7, x16, x14}) co({x8, x7, x16, x14}) co({x8, x9, x18, x14}) co({x6, x9, x18, x14})
co({x4, x13, x16, x14}) co({x8, x17, x16, x14}) co({x8, x17, x18, x14}) co({x6, x15, x18, x14})
co({x4, x1, x5, x14}) co({x2, x1, x5, x14}) co({x2, x3, x5, x14}) co({x6, x3, x5, x14})
co({x4, x1, x10, x14}) co({x2, x1, x10, x14}) co({x2, x3, x12, x14}) co({x6, x3, x12, x14})
co({x4, x13, x10, x14}) co({x2, x11, x10, x14}) co({x2, x11, x12, x14}) co({x6, x15, x12, x14})

Table 1: All full-dimensional simplices in [0, 1
2 ]× S.

A function v̄ : [0, 1] × Σ → Rm∗
is called a piecewise linear approximation of v with

respect to S if for each vertex xk of any ς(x1, . . . , xm∗−n+2) ∈ S, v̄(xk) = v(xk) and v̄ is
affine on each simplex of S. Hence, if x ∈ ς(x1, . . . , xm∗−n+2), so x =

∑m∗−n+2
k=1 αkx

k, αk ≥ 0,

k = 1, . . . , m∗ − n + 2,
∑m∗−n+2

k=1 αk = 1, then v̄(x) =
∑m∗−n+2

k=1 αkv̄(xk).
Let an admissible subset B∗ and a triangulation S of [0, 1] × Σ be given. We denote by

S(B∗) the collection of b-faces of simplices in Σ, where b = |B∗| + 1 − n, that are contained
in [0, 1]×Σ(B∗) and |B∗| denotes the cardinality of B∗. By repeated application of the result
that claims that the relative boundary of a set is triangulated by the facets of a triangulation,
it follows that S(B∗) is a triangulation of [0, 1]× Σ(B∗).

Let a simplex ς(x1, . . . , xb+1) ∈ S(B∗) be given. Consider solutions (α, λ, µ) ∈ Rb+1
+ ×

Λ(B∗) × Rn of the following system of equations, a piecewise linear approximation of the
system (10),

∑b+1
k=1 αk = 1,

∑b+1
k=1 αkv

i(xk) +
∑

si
j 6∈B∗ λi

je
i
j − µiei = 0i, i ∈ N.

(11)

Such solutions are called admissible. An admissible solution (α, λ, µ) corresponds to an ap-
proximate Nash equilibrium σ of Γt. Indeed, (t, σ>)> =

∑b+1
k=1 αkx

k, strategies in B∗ are best
replies for the payoff function v, λi

j is the payoff gap between strategy si
j and a best reply

for player i, and µi is the payoff for player i according to v when he uses a best reply. Since
ς ⊂ [0, 1] × Σ(B∗), strategies that are not a best reply are played with probability zero. A
solution to (11) is said to be degenerate if at least two of the variables αk, k = 1, . . . , b + 1,

and λi
j , si

j 6∈ B∗, are equal to zero.
The Herings-Van den Elzen algorithm generates by means of lexicographic pivoting tech-

niques a piecewise linear path of approximate Nash equilibria in [0, 1]×Σ joining {0} ×Σ to
{1} × Σ. The path is such that every (t, σ) on it corresponds to an admissible B∗, a simplex
ς ∈ S(B∗), and a solution (α, λ, µ). The Herings-Van den Elzen algorithm specifies in a unique
way how to move from one simplex to another.

For given (B∗, ς), (11) corresponds to a linear system with m∗ + 1 equations and m∗ + 2
variables. If we rule out degeneracies, then a non-empty solution set is a 1-dimensional
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compact line segment. The end-points of the line segment are either approximate Nash
equilibria for Γ0 or Γ1, or yield solutions for a new (B∗

, ς). Indeed, with degeneracies ruled
out, at an end-point either αk = 0 for exactly one k or λi

j = 0 for exactly one si
j 6∈ B∗.

In the first case, the end-point belongs to the facet τ of ς opposite to the vertex xk. If τ

belongs to the relative interior of [0, 1] × Σ(B∗), then there is a unique simplex ς ∈ S(B∗)
such that ς 6= ς, and τ is a facet of ς. The algorithm continues by generating a line-segment
of solutions in ς. If τ belongs to the relative boundary of [0, 1]×Σ(B∗), then the end-point is
either an approximate Nash equilibrium for Γ0, or an approximate Nash equilibrium for Γ1,

or τ ∈ S(B∗), with B
∗ a uniquely determined subset of B∗ having one element less, and the

algorithm continues with a line-segment of solutions in τ. If λi
j = 0, then also strategy si

j is
a best reply. The algorithm continues with a line-segment of solutions in ς, where ς is the
unique simplex in S(B∗ ∪ {si

j}) having ς as a facet.
In game theory degeneracy is not always a non-generic phenomenon. For instance, for a

normal form representation of a game in extensive form, degeneracy is the rule rather than
the exception, even if the payoffs in the extensive form game are randomly chosen. But also
in other normal form games, representing certain economic situations, degeneracy can easily
occur, simply because payoffs are not randomly chosen but reflect some structure that is
present in the economic model. Degeneracy can be dealt with by exploiting lexicographic
pivoting techniques. We explain next how lexicographic pivoting techniques can be used to
extend the ideas of the previous paragraph to handle degenerate games.

For an admissible B∗ and a facet τ(x1, . . . , xb) of a simplex in S(B∗), the (m∗+1)×(m∗+1)-
matrix AB∗,τ is defined by

AB∗,τ =




1 · · · 1 0 · · · · · · · · · · · · 0

E1 0 −e1 0

v̄(x1) · · · v̄(xb) 0
. . . 0 0

. . . 0

0 0 En 0 0 −en




,

where, for i ∈ N, Ei = [ei
j ]si

j 6∈B∗ and the zeros indicate submatrices with zeros of appropriate
dimension. The matrix AB∗,τ corresponds to the coefficients in (11) when a facet τ of a simplex
ς is considered. Suppose A−1

B∗,τ exists. From AB∗,τA
−1
B∗,τ = Im∗+1 (the (m∗ + 1)-dimensional

identity matrix), it follows that the first column of A−1
B∗,τ corresponds to an admissible solution

to (11) for any ς ∈ S(B∗) being the convex hull of τ and some vertex xb+1 ∈ [0, 1] × Σ(B∗),
whenever the first m∗ + 1 − n components of this column are non-negative. No restrictions
are imposed on the last n rows of A−1

B∗,τ . In a nondegenerate solution the first m∗ + 1 − n

components are all strictly positive, since αb+1 = 0 extends the solution for the facet τ to the
simplex ς.

A row vector x ∈ Rm∗+1 is lexicographically positive if it is not equal to the vector of zeroes
and its first non-zero entry is positive. The matrix A−1

B∗,τ is said to be semi-lexicopositive if
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each of the first m∗ + 1− n rows is lexicographically positive.

Definition 7.3 Let (Γ, p,S) and an admissible B∗ be given. A facet τ of a simplex in S(B∗)
is B∗-complete if A−1

B∗,τ exists and is semi-lexicopositive.

Given a linear system of equations as in (11), one can pivot in a uniquely determined new
column, either of the type (1, v̄(xb+1)) or of the type (0, 0, ei

j , 0). In the nondegenerate case
such a pivot step determines in a unique way a column out of the first m∗+1−n to be replaced.
In degenerate cases it is possible that the leaving column is not uniquely determined. A semi-
lexicographic pivot step is a pivot step where the leaving column is selected in such a way that
the inverse of the resulting matrix AB∗,τ is semi-lexicopositive. Herings and Van den Elzen
(2002) show that a semi-lexicographic pivot step determines in all cases a unique column out
of the first m∗ + 1− n to be replaced.

Theorem 7.4 describes all possible cases that may occur if a B∗-complete facet τ is given
and a semi-lexicographic pivot step with a vector (1, v̄(xb+1)) is made, where xb+1 is a vertex
of a simplex having τ as a facet opposite to it.

Theorem 7.4 Let (Γ, p,S) and a B∗-complete facet τ of a simplex ς ∈ S(B∗) be given. Then
exactly one of the following cases holds:

1. ς has exactly one other B∗-complete facet τ ,

2. ς is B
∗-complete for precisely one admissible B

∗
.

Theorem 7.5 describes all possible cases that may occur if a B∗-complete facet τ is given
that is also a simplex belonging to S(B∗), where B∗ = B

∗ ∪ {si
j}, and a semi-lexicographic

pivot step with a vector (0, 0, ei
j , 0) is made.

Theorem 7.5 Let (Γ, p,S) and a B∗-complete facet τ that belongs to S(B∗) for some admis-
sible B

∗ be given. Then exactly one of the following cases holds:

1. τ is B̂∗-complete for precisely one admissible B̂∗ with B̂∗ 6= B∗,

2. precisely one facet υ of τ is B
∗-complete.

The consideration of B∗-complete facets determines a unique starting point for the algo-
rithm. The admissible subset B∗0 is defined by the set of strategies si

j , where j is the largest
integer such that si

j is a best reply to the prior p for player i. Notice that |B∗0| = n. It can be
shown that the facet (vertex) τ = {0} × Σ(B∗0) is B∗0-complete and that there is no other
B∗-complete facet τ in {0}×Σ. Even in degenerate cases, the semi-lexicographic rules single
out the unique B∗0-complete facet {0} × Σ(B∗0), which serves as a unique starting point of
the algorithm.
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Notice that we are now in a position that makes the Lemke-Howson door-in door-out
principle applicable. There is a unique starting point in {0} × Σ, the B∗0-complete facet
{0} × Σ(B∗0). For any B∗-complete facet τ of a simplex in S(B∗), Theorems 7.4 and 7.5
determine another complete facet in a unique way. The finiteness of the number of simplices
guarantees that at some stage a facet that is a subset of {1} × Σ is reached. Such a facet
determines an approximate Nash equilibrium.

The formal steps of the Van den Elzen-Herings algorithm are as follows.

Algorithm 7.6 Let (Γ, p,S) be given.

Step 0. Let b = 1 and r = 1. Let B∗ = B∗0, τ1 = {0} × Σ(B∗), and let x2 be the unique
vertex of the 1-simplex of S(B∗) containing τ1 as the facet opposite to it.

Step 1. Let ς be equal to the convex hull of τ r and {xb+1}. Make a semi-lexicographic pivot
step with (1, v̄(xb+1)) into the system of equations (11) corresponding to AB∗,τr , yielding
a unique column k′ of AB∗,τr which has to be replaced. If k′ ∈ {b + 1, . . . , m∗ + 1− n},
then go to Step 3 with si′

j′ the pure strategy corresponding to column k′. Otherwise, go
to Step 2.

Step 2. Increase the value of r by 1 and let τ r be the facet of ς opposite xk′ . If τ r ⊂ {1}×Σ,

then the algorithm terminates with an approximate Nash equilibrium σ∗ of Γ1 induced
by the solution of (11) corresponding to AB∗,τr . If τ r ∈ S(B∗) for some admissible B

∗
,

then go to Step 4. Otherwise, there is exactly one b-simplex ς of S(B∗) such that ς 6= ς

and τ r is a facet of ς. Go to Step 1 with xb+1 as the unique vertex of ς opposite τ r.

Step 3. Let the admissible B
∗ be defined by B

∗ = B∗ ∪ {si′
j′}. There is a unique simplex ς

of S(B∗) having ς as a facet. Increase the value of both b and r by 1 and go to Step 1
with xb+1 as the unique vertex of ς opposite ς, B∗ = B

∗
, and τ r = ς.

Step 4. Let ς be equal to τ r. Make a semi-lexicographic pivot step with (0, 0, ei∗
j∗ , 0) into

the system of equations (11) corresponding to AB∗,τr , where si∗
j∗ is such that B

∗ ∪
{si∗

j∗} = B∗. This yields a unique column k′ of AB∗,τr which has to be replaced. If
k′ ∈ {b + 1, . . . , m∗ + 1 − n}, then decrease the value of both b and r by 1 and go to
Step 3 with si′

j′ the pure strategy corresponding to column k′ and B∗ = B
∗
. Otherwise,

decrease the value of b by 1 and go to Step 2 with B∗ = B
∗
.

Theorem 7.4 corresponds to the semi-lexicographic pivot step made in Step 1 of Algorithm 7.6.
Case 1 of Theorem 7.4 occurs if one goes from Step 1 of Algorithm 7.6 to Step 2, and Case 2 if
one goes from Step 1 to Step 3. Theorem 7.5 corresponds to the semi-lexicographic pivot step
performed in Step 4 of Algorithm 7.6. Case 1 of Theorem 7.5 happens if one goes from Step 4
of Algorithm 7.6 to Step 3, and Case 2 if one goes from Step 4 to Step 2. The algorithm
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terminates after a finite number of steps, after having generated a B∗-complete facet τ being
a subset of {1} × Σ(B∗).

The algorithm generates a piecewise linear approximation of the homotopy path generated
by the linear tracing procedure. For every ε > 0, there is δ > 0 such that a triangulation of
[0, 1]× Σ with mesh size smaller than δ makes the piecewise linear approximation generated
by the Herings-Van den Elzen algorithm within ε-Hausdorff distance from the homotopy path
generated by the tracing procedure and hence terminates with a ε-Nash equilibrium of Γ. If
the latter path is unique, and a sequence of triangulations with decreasing mesh size is taken,
then the generated piecewise linear approximations converge to the tracing procedure path
in the Hausdorff topology.

In Figure 5 the algorithm is illustrated for the game considered before. The prior p is taken
to be ((1

2 , 1
2), (3

4 , 1
4)). Since p2 is part of the Nash equilibrium, both pure strategies of player 1

are best responses, and this game is degenerate in the sense of Van den Elzen-Talman. We have
chosen this prior to illustrate that lexicographic pivoting techniques overcome degeneracies.
Since the game is a bimatrix game, we would in general recommend to use either the Lemke-
Howson or the Van den Elzen-Talman algorithm, rather than the Herings-Van den Elzen
algorithm.
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Figure 5: The Herings-Van den Elzen algorithm in action.

In the example the algorithm generates 13 facets before terminating with an approximate
Nash equilibrium. The 2-dimensional facets generated are shaded in Figure 5. The path
generated by the algorithm is illustrated by the heavily drawn line going from τ1 to τ13. The
dotted line represents L(Γ, p), which for this example consists of one component. It can be
decomposed into six sets L(Γ, p, B∗).
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8 n-Person Games: The Herings-Peeters Algorithm

Games with n players possess a nice piecewise differentiable structure that can be exploited
for computational purposes. This is exactly what the Herings-Peeters algorithm does. This
algorithm exploits the manifold structure of the sets L(Γ, p, B∗).

Theorem 8.1 For an open set of games Γ ∈ G and priors p ∈ Σ with full Lebesgue measure, for
all admissible subsets B∗ of S∗, the set L(Γ, p, B∗) is a compact 1-dimensional C∞ manifold
with boundary. Moreover, (t, σ) is a boundary point of L(Γ, p, B∗) if and only if either σi

j = 0
for exactly one si

j ∈ B∗, or exactly one si
j 6∈ B∗ is a best response to σ−i, or t = 0, or t = 1.

A compact 1-dimensional C∞ manifold with boundary consists of finitely many arcs and loops.
Theorem 8.1 therefore guarantees that generically L(Γ, p, B∗) has a simple mathematical
structure, excluding bifurcations, spirals, higher dimensional parts, etc. Theorem 8.1 is the
non-linear equivalent of the compact line segments of the Lemke-Howson, Van den Elzen-
Talman and Van den Elzen-Herings algorithms. One difference now is that loops are possible
and, moreover, L(Γ, p, B∗) may contain more than one arc or loop.

To prove Theorem 8.1, the theory of regular constraint sets as presented in Jongen, Jonker
and Twilt (1983) can be applied, see also Herings (1997) for a first application of this theory
to economics. For some r ≥ 1 a subset M of Rm is called a k-dimensional Cr manifold with
generalized boundary (MGB), if for every x̄ ∈ M there exists a Cr diffeomorphism ϕ : U → V ,
where U is an open subset of Rm containing x̄ and V is open in Rm, and some integer `(x̄) ≥ 0,
such that ϕ(x̄) = 0 and ϕ(U ∩M) equals {y ∈ V | yl = 0, l = 1, . . . , m − k, and yl ≥ 0, l =
m − k + 1, . . . , m − k + `(x̄)}. If for every element x̄ of an MGB M it holds that `(x̄) ≤ 1,
then M is called a manifold with boundary and the set of elements x̄ for which `(x̄) = 1 is
an (k − 1)-dimensional manifold, called the boundary of M .

Let K1 and K2 be two finite index sets and let gk for all k ∈ K1 and hk for all k ∈ K2,
be Cr functions defined on some open subset X of Rm. We define

M [g, h] = { x ∈ X | gk(x) = 0, ∀k ∈ K1, and hk(x) ≥ 0, ∀k ∈ K2 }.

For x ∈ X we define the set K0(x) = {k ∈ K2 | hk(x) = 0}. If for every x̄ ∈ M [g, h] it holds
that

{ ∂xgk(x̄) | k ∈ K1 } ∪ { ∂xhk(x̄) | k ∈ K0(x̄) } (12)

is a set of independent vectors, then M [g, h] is called a Cr regular constraint set (RCS). In
Jongen, Jonker and Twilt (1983) it is shown that every Cr RCS is an (m−|K1|)-dimensional
Cr MGB with `(x̄) = |K0(x̄)| for every x̄ ∈ M [g, h]. If a set is a k-dimensional manifold with
generalized boundary, then the neighborhood of a point x̄ belonging to that set looks, in a
well-defined sense, like Rk−`(x̄) × R`(x̄)

+ .
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We can therefore show L(Γ, p, B∗) to be a C∞ 1-dimensional manifold with boundary, if
we can represent it as a C∞ regular constraint set with index sets K1 and K2, functions gk

for k ∈ K1 holding with equality, and functions hk for k ∈ K2 holding with weak inequality,
where |K1| = m− 1. Moreover, we have to show that |J0(x̄)| = 1 for every x̄ ∈ M [g, h].

A point (t, σ) belongs to L(Γ, p, B∗) if and only if there exists λ ∈ Rm∗
and µ ∈ Rn such

that

vi(t, σ−i, si
j) + λi

j − µi = 0 (si
j ∈ S∗)

σi
j = 0 (si

j 6∈ B∗)

λi
j = 0 (si

j ∈ B∗)
∑

si
j∈Si σi

j − 1 = 0 (i ∈ N)

σi
j ≥ 0 (si

j ∈ B∗)

λi
j ≥ 0 (si

j 6∈ B∗)

t ≥ 0

−t + 1 ≥ 0.

(13)

The set K1 corresponding to (13) has cardinality 2m∗+n. This is indeed one less than the
number of free variables, which is equal to 2m∗ + n + 1. Unfortunately, (13) is not a regular
constraint set in general. The set corresponding to (12) may not consist of independent
vectors. Moreover, it is easy to construct examples such that |J0(x̄)| ≥ 2 for some x̄ ∈ M [g, h].
Fortunately, such examples can be shown to be exceptional cases. To prove that, a result
known as the transversality theorem comes to rescue, see for instance Mas-Colell (1985).
Let C1 manifolds X, Y, and Z, Z being a subset of Y, an element x̄ of X, and a function
f ∈ C1(X, Y ) be given. The function f is said to intersect Z transversally at x̄ ∈ X, denoted
by f >¤ ¡ Z at x̄, if

f(x̄) 6∈ Z, or f(x̄) ∈ Z and Tf(x̄)Z + ∂f(x̄)(Tx̄X) = Tf(x̄)Y,

where Tx̄X denotes the tangent space of X at x̄. For regular constraint sets, the tangent space
of X at x̄ is easily computed as

Tx̄X = {x ∈ Rm | ∂g(x̄)(x) = 0},

where 0 is an (m− k)-dimensional vector of zeroes with k being the dimension of the tangent
space. The function f is said to intersect Z transversally if f >¤ ¡ Z at every x ∈ X. Transver-
sality of f implies that the inverse image of f has a particularly nice structure.

Theorem 8.2 For k1, k2, k3 ∈ {0} ∪ N, for r ∈ N ∪ {∞}, let a k1-dimensional C1 manifold
X, a k2-dimensional C1 manifold Y, and a k3-dimensional C1 manifold Z, Z being a subset
of Y, be given, and let the function f ∈ C1(X,Y ) be such that f >¤ ¡ Z. If k1−k2 +k3 < 0, then

25



f−1(Z) = ∅. If f ∈ Cr(X, Y ), f >¤ ¡ Z, and k1 − k2 + k3 ≥ 0, then f−1(Z) is a (k1 − k2 + k3)-
dimensional Cr manifold.

We are now in a position to state the transversality theorem.

Theorem 8.3 For k1, k2, k3 ∈ {0} ∪ N, for r ∈ N ∪ {∞}, let a k1-dimensional Cr manifold
X, a k2-dimensional Cr manifold Y, a k3-dimensional Cr manifold Z being a subset of Y, a
Cr manifold Ω, and a function f ∈ Cr(X × Ω, Y ) be given, with r ≥ max({1, k1 − k2 + k3}).
For every ω ∈ Ω, define a function fω ∈ Cr(X, Y ) by fω(x) = f(x, ω), ∀x ∈ X. Then f >¤ ¡ Z

implies fω >¤ ¡ Z, except for a subset of Ω having Lebesgue measure zero in Ω.

We apply Theorem 8.3 in the following way. We take as the set of parameters Ω the set
of games and priors. Then we specify three types of regular constraint sets. The first type
consists of all equalities of (13), the second type of all equalities plus one inequality of (13),
and the third type of all equalities plus two inequalities of (13). Thus we obtain three types
of functions f, with variables t, σ, λ, µ, ω, that can be shown to satisfy f >¤ ¡ {0}, and as a con-
sequence fω >¤ ¡ {0} for almost every ω ∈ Ω. Counting the number of equations and unknowns,
using Theorem 8.2, it follows that a function fω of the third type, with two inequalities, can
only be transversal if fω−1{0} = ∅. From this we derive the conclusion that, generically, it is
impossible that two inequality constraints are binding at the same time. The transversality
of the first two types of functions leads to the conclusion that, generically, (13) is a regular
constraint set. This concludes the basic steps in the proof of Theorem 8.1.

Using the representation of L(Γ, p, B∗) as a regular constraint set, we also find that a point
(t, σ) is a boundary point of L(Γ, p, B∗) if and only if either σi

j = 0 for exactly one si
j ∈ B∗ or

exactly one si
j 6∈ B∗ is a best response to σ−i, or t = 0, or t = 1. Moreover, two sets L(Γ, p, B∗)

and L(Γ, p, B̄∗) can only have boundary points in common, since otherwise (13) would have a
solution with two inequality constraints binding at the same time. When there is a common
boundary point, there is an optimal action si

j that is played with zero probability, with the
two admissible subsets only differing in this action: (B∗ ∪ B̄∗) \ (B∗ ∩ B̄∗) = {si

j}. Moreover,
in each point at most two sets can meet, as we would again obtain a case where (13) has two
inequality constraints binding at the same time. We see that all subsets L(Γ, p, B∗) of L(Γ, p)
are nicely connected. What we have obtained is a full non-linear analogue of the arguments
underlying the Lemke-Howson algorithm.

Theorem 8.4 For an open set of games Γ ∈ G and priors p ∈ Σ with full Lebesgue measure,
L(Γ, p) is a compact one-dimensional piecewise C∞ manifold with boundary. All boundary
points of L(Γ, p) are in {0, 1} × Σ. The boundary point in {0} × Σ is unique.

For almost every Γ and p, the set L(Γ, p) consists of a finite number of paths and loops.
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Although it is not necessarily the case that these paths and loops are smooth, the number
of non-differentiabilities is finite at most. All paths in L(Γ, p) start and end in {0, 1} × Σ.
Each such path consists of a finite sequence of smooth arcs of the sets L(Γ, p, B∗). A loop
in L(Γ, p) consists either of a finite sequence (at least two) of differentiable arcs in the sets
L(Γ, p, B∗) or is a loop of one set L(Γ, p, B∗).

Since L(Γ, p) consists of finitely many 1-dimensional C∞ manifolds with boundary, it is
possible to use standardized software based on predictor-corrector methods, to approximately
follow each manifold. We refer the interested reader to Allgower and Georg (1990) for a
detailed exposition on predictor-corrector methods. Although this is certainly feasible, it is
attractive to avoid switching from one system of equations to the next, and to formulate one,
differentiable, system of equations whose solution corresponds to L(Γ, p).

Define for α ∈ Rm∗
, differentiable and monotone (and strictly monotone on the domain

where they are non-zero) functions σi
j(α) and λi

j(α) such that σi
j(α) ≥ 0, λi

j(α) ≥ 0, and
σi

j(α) · λi
j(α) = 0. Next consider the system

vi(t, σ−i(α), si
j) + λi

j(α)− µi = 0 (si
j ∈ S∗)

∑
si
j∈Si σi

j(α)− 1 = 0 (i ∈ N)

t ≥ 0

−t + 1 ≥ 0.

(14)

For each point (t, α, µ) satisfying the (in)equalities (14), the point (t, σ(α), λ(α), µ) satisfies
the (in)equalities (13) with B∗ = { si

j ∈ S∗ | σi
j(α) > 0 }.

Let H : [0, 1]×Rm∗×Rn → Rm∗×Rn be the continuously differentiable homotopy function
defined by

H(t, α, µ) =

(
vi(t, σ−i(α), si

j) + λi
j(α)− µi (si

j ∈ Si, i ∈ N)
∑

si
j∈Si σi

j(α)− 1 (i ∈ N)

)
. (15)

The zeros of this homotopy function describe the linear tracing procedure: (t, α, µ) ∈ H−1({0})
if and only if (t, σ(α)) ∈ L(Γ, p). Starting at the unique point (0, α0, µ0) ∈ H−1({0}) at t = 0
and following the path described by the zeros of H, we end up in a point (1, α̃, µ̃) ∈ H−1({0}).
This point generates the Nash equilibrium σ(α̃) of Γ selected by the Harsanyi-Selten theory.

Theorem 8.5 For an open set of games Γ ∈ G and priors p ∈ Σ with full Lebesgue measure,
H−1({0}) is a compact 1-dimensional C1 manifold with boundary. All boundary points of
H−1({0}) are in {0, 1} × ×Rm∗× Rn. The boundary point in {0} × Rm∗× Rn is unique.

The set H−1({0}) consists of finitely many differentiable arcs and loops. All arcs start and
end in {0, 1} × Rm∗× Rn. Loops have no points in common with {0, 1} × Rm∗× Rn. There is
exactly one arc that starts in {0} × Rm∗× Rn and that ends in {1} × Rm∗× Rn with a point
(1, α̃, µ̃) that generates the Nash equilibrium selected by the tracing procedure. This arc is a
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transformation of the feasible path of the tracing procedure. All other arcs start and end in
{1} × Rm∗× Rn and connect two points inducing Nash equilibria of Γ.

The structure of H−1({0}) is even simpler than the one of L(Γ, p). Not only, like for
L(Γ, p), are complications like bifurcations, spirals, higher dimensional solutions sets, diverg-
ing behavior, etc. excluded. The arcs and loops in H−1({0}) are differentiable everywhere. It
is the transformation of variables that smoothes out the kinks. As a direct consequence, it is
possible to calculate the derivative at each point of the feasible path, which makes it possible
to follow the path by means of differentiable as opposed to simplicial methods. In Herings
and Peeters (2001) we report numerical results using the software-package Hompack, a For-

tran77 program. This program implements three predictor-corrector methods, see Watson,
Billups, and Morgan (1987) for an introduction to Hompack.

For the game in Figure 1 and as prior the mixed action combination p = ((1
2 , 1

2), (1
2 , 1

2)),
the corresponding set L(Γ, p) is given by

L(Γ, p) = { (t, (s1
2, s

2
1)) | t ∈ [0, 1

2 ] } ∪ { (1
2 , ((r, 1− r), s2

1)) | r ∈ [0, 5
6 ] }

∪ { (t, ((3t+1
6t , 3t−1

6t ), (2t+1
4t , 2t−1

4t ))) | t ∈ [12 , 1] }. (16)

At t = 0, for player 1 and player 2 the actions s1
2 and s2

1 respectively are the best responses
against the prior. The first part of the path of L(Γ, p) is therefore determined by L(Γ, p, B∗)
for B∗ = {s1

2, s
2
1}. As long as t ≤ 1

2 the path stays at (s1
2, s

2
1). At t = 1

2 action s1
1 of player 1

becomes optimal and has to be added to the admissible set B∗ such that the path continues
in L(Γ, p, B∗) for B∗ = {s1

1, s
1
2, s

2
1}. In this new component, at t = 1

2 the weight on player 1’s
action s1

1 is increased until either it gets weight 1 or until player 2’s unused action s2
2 becomes

optimal. This latter happens when the weight on action s1
1 reaches the value 5

6 . The final
part of the path is determined by the component L(Γ, p, B∗) with B∗ including all actions.

The first plot of Figure 6 shows the values of t, σ and λ along the homotopy path that is
generated by the linear tracing procedure as a function of pathlength. To make the plot more
clear, only informative values of the variables are depicted. In particular this means that for
each pure strategy si

j , either σi
j or −λi

j is plotted, depending on which one is non-zero. We
see that at two values of τ kinks in the paths occur. These values of τ correspond to the two
points where we had to adapt the admissible subset B∗ in the description above.

The second plot shows the values of t and α as a function of pathlength and therefore cor-
responds to the feasible path of the tracing procedure after application of the transformation
σi

j(α) = [max{0, αi
j}]2 and λi

j(α) = [max{0,−αi
j}]2. From the plot it is seen that the trans-

formation indeed causes the kinks in the path to disappear. At the points where previously
kinks occurred, now the derivatives of all variables with respect to pathlength are equal to
zero, except the variable that passes zero at that point. It is precisely the transformation of
variables that does the trick.
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Figure 6: The homotopy path before and after transformation.

9 n-Person Games: The McKelvey-Palfrey Algorithm

Quantal response equilibria as introduced by McKelvey and Palfrey (1995) are statistical
versions of Nash equilibria where each player’s payoff is subject to random error. For a
given specification of the error structure, a quantal response equilibrium is a mixed action
combination that is consistent with optimizing behavior subject to that error structure. One
possible interpretation of this is that players make calculation errors according to some random
process when calculating their expected payoffs.

Player i’s payoff when playing pure strategy si
j against a mixed strategy combination σ−i

is subject to an error and is given by

ûi(σ−i, si
j) = ui(σ−i, si

j) + εi
j . (17)

Player i’s error vector εi is distributed according to a joint distribution with density function
ϕi(εi). The marginal distribution of ϕi exists for each εi

j and E(εi) = 0. For any possible
opponents’ mixed action combination σ−i, the si

j–response set Ri
j is defined as the set of error

vectors that make strategy si
j the best response, so

Ri
j(σ

−i) = { εi | ûi(σ−i, si
j) ≥ ûi(σ−i, si

`) for all si
` ∈ Si }. (18)

The probability of choosing pure action si
j is then given by

πi
j(σ

−i) =
∫

Ri
j(σ

−i)
ϕi(εi) dεi. (19)

The function πi is called the statistical reaction function, or the quantal response function
and satisfies the feature that better actions are more likely to be chosen than worse actions.
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A quantal response equilibrium (QRE) is a mixed action combination σ that is consistent with
the error structure:

σi
j = πi

j(σ
−i) for all si

j ∈ Si and all i ∈ N . (20)

Theorem 9.1 (McKelvey and Palfrey, 1995) For any game Γ and for any density
function ϕ, a QRE exists.

For any parameter λ ≥ 0, the logistic quantal response function is defined by

πi
j(σ

−i) =
exp(λui(σ−i, si

j))∑
si
`∈Si exp(λui(σ−i, si

`))
(21)

and is obtained when ϕi corresponds to the extreme value (or log-Weibull) distribution.
Therefore, if each player uses a logistic quantal response function, the corresponding QRE,
called logit equilibrium, requires that

σi
j =

exp(λui(σ−i, si
j))∑

si
`∈Si exp(λui(σ−i, si

`))
for all si

j ∈ Si and all i ∈ N . (22)

The parameter λ is inversely related to the error level. When λ = 0, the choice of the players
is completely determined by the errors which induces all players to play all their pure actions
with equal probability. When λ approaches infinity, the influence of the error disappears.

The logit equilibrium correspondence L : R+ → Σ is given by

L(λ) =
{

σ ∈ Σ
∣∣∣σi

j =
exp(λui(σ−i, si

j))∑
si
`∈Si exp(λui(σ−i, si

`))
(si

j ∈ Si, i ∈ N)
}

. (23)

Theorem 9.2 (McKelvey and Palfrey, 1995) When λ approaches infinity, the set of
logit equilibria converges to a subset of the set of Nash equilibria. For an open set of games
Γ ∈ G with full Lebesgue measure, the graph of L contains a unique path of logit equilibria
that starts at the centroid for λ = 0 and converges to a unique Nash equilibrium as λ goes to
infinity.

The latter unique Nash equilibrium is called the limiting logit equilibrium of the game Γ. This
induces a unique selection from the set of Nash equilibria by ‘tracing’ the graph of the logit
equilibrium correspondence beginning at the centroid of the strategy simplex and continuing
for increasing values of λ.

Define the correspondence L̃ from [0, 1] to Σ by

L̃(t) =

{
L( t

1−t) if t ∈ [0, 1)

NE(Γ) if t = 1
(24)
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Theorem 9.3 (Herings, 2002) For all games Γ ∈ G the graph of L̃ contains a component
containing an element at t = 0 and at t = 1.

The (homotopy) path of logit equilibria can be traced from the centroid at t = 0 towards the
limiting logit equilibrium at t = 1 using one of the two methods described in the previous
two sections.

10 Extensive Form and Dynamic Games

Since extensive form games can be represented as a normal-form game, in principle it is
possible to apply any of the algorithms of the previous sections. There are two caveats. First,
since the normal-form representation of an extensive form game is non-generic, it becomes
crucial to handle degeneracies appropriately. Second, from a computational point of view, it
might be much more attractive to work with the extensive form representation. Here, we will
restrict ourselves to a brief overview of this important stream of the literature.

Wilson (1972) applied the Lemke-Howson algorithm to a two-person extensive form game
with perfect recall. By making use of the extensive form directly, the developed method
never deals with the entire linear complementary problem, and leads to significant savings in
storage.

In the same journal issue, von Stengel (1996) and Koller, Megiddo and von Stengel (1996)
propose algorithms to solve two-person extensive form games with perfect recall: the first for
the class of such games with zero-sum payoff structure, the latter for general payoffs. Perfect
recall implies that players never forget what they once knew or what they did earlier. For
games with perfect recall mixed strategies are essentially equivalent to behavioral strategies.
This allows for studying the sequence form, rather than the normal form, of the extensive
form. The advantage of the sequence form in comparison to the normal form is that the size
of the sequence form is linear and not exponentially in the size of the game tree. For the
resulting problem the algorithm of Lemke-Howson is applied.

Later von Stengel, van den Elzen and Talman (2002) present yet another algorithm for
solving two-person extensive form games with perfect recall. Just like the earlier contribu-
tions by von Stengel c.s. the sequence form is used rather than the normal form. In this
contribution, instead of applying the Lemke-Howson algorithm, the van den Elzen-Talman
algorithm is used. The advantages of that method are the potential to find multiple equilibria
and to find normal form perfect equilibria.

McKelvey and Palfrey (1998) extend the logit quantal response equilibrium defined for
normal form games to the logit agent quantal response equilibrium (AQRE) for extensive
form games. In an AQRE, at each information set players choose better actions with higher
probabilities than worse actions. They show that limit points of the logit AQRE yield a refine-
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ment of sequential equilibria for any finite extensive form game, but are not logically related
to other refinement criteria (such as the intuitive criterion or trembling hand perfection).

For stochastic games, homotopy based algorithms have been proposed by Filar and Ragha-
van (1984), Nowak and Raghavan (1993), and Raghavan and Syed (2002). All papers con-
centrate on two-person games with the single-controller property (i.e. only one player has
partial control over the state transitions): the first for discounted games with zero-sum pay-
off structure, the second for discounted games with general payoff structure, the third for
undiscounted games. In all papers a stationary equilibrium is defined as a solution to a lin-
ear complementary problem, where linearity is obtained as a result of the single-controller
property. Subsequently, the Lemke-Howson algorithm is applied to solve for a stationary
equilibrium.

Herings and Peeters (2004) extend the linear tracing procedure to a related procedure that
is suitable for general finite discounted stochastic games. The extension is shown to possess
the same geometric properties as the linear tracing procedure possesses for normal form
games. By numerically following the exact homotopy path, which is shown to be generically
unique, an approximation of a stationary equilibrium results. Since this method allows for
an arbitrary starting point, it has the potential to find multiple equilibria.

11 Conclusions

The paper presents an overview of homotopy algorithms as applied to non-cooperative game
theory. Advantages of homotopy algorithms include their numerical stability, their abil-
ity to locate multiple solutions, and the insight they provide in the properties of solutions.
Homotopy algorithms can be implemented easily with the aid of existing, professionally pro-
grammed, software.

From an algorithmic point of view, it is useful to distinguish bi-matrix games from games
with more than two players. The reason is that the problem of finding a Nash equilibrium
in a bi-matrix games is equivalent to solving a linear complementarity problem, whereas the
general problem is equivalent to solving a non-linear complementarity problem.

We present two algorithms in detail that are suitable to compute Nash equilibria for bi-
matrix games, the Lemke-Howson algorithm and the Van den Elzen-Talman algorithm. We
argue that both algorithms are best understood as following a solution path generated by a
homotopy. We also explain how the door-in door-out principle of Lemke-Howson applies to
both algorithms.

For general n-person games, it is usually not possible to compute an equilibrium exactly,
which calls for different methods. We present the two main ideas in detail, one using simplicial
methods, the other predictor-corrector methods. The Herings-Van den Elzen algorithm relies
on the simplicial approach, the Herings-Peeters algorithm on the predictor-corrector idea.
Both algorithms converge to an approximate Nash equilibrium for general n-person games.
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For both methods we also illustrate how they can be understood as following a solution path
generated by a homotopy. We also explain how the door-in door-out principle of Lemke-
Howson applies to both algorithms. The third method we propose to find a Nash-equilibrium
of a general n-person game is related to the quantal-response equilibrium of McKelvey and
Palfrey.

Since the number of Nash equilibria of an arbitrary game tends to be enormous, we
emphasize the importance of computing a Nash equilibrium with a good game-theoretical
underpinning. The algorithms of Van den Elzen-Talman, Herings-Van den Elzen, and Herings-
Peeters are all related to the equilibrium selection methods of Harsanyi and Selten. The
McKelvey-Palfrey algorithm has an interesting behavioral interpretation.

We conclude with a brief overview of how extensions of these methods have been applied
to games in extensive form and to dynamic games. We think that this is a still underexplored
research area and we expect more exciting work to be done in the future.
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