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Abstract: This paper introduces epsilon-stability as a generalization of the concept of

stochastic stability in learning and evolutionary game dynamics. An outcome of a model of

stochastic evolutionary dynamics is said to be epsilon-stable in the long-run if for a given model

of mistakes it maximizes its invariant distribution. We construct an efficient algorithm for

computing epsilon-stable outcomes and provide conditions under which epsilon-stability can be

approximated by stochastic stability. We also define and provide tighter bounds for contagion

rate and metastability as measures for characterizing the short-run and medium-run behavior

of a typical stochastic evolutionary model.

Keywords: Stochastic evolution, network games, epsilon-stable sets, expected
waiting time, metastability, contagion rate.

JEL classification: C73, D80.

1. Introduction

Multiplicity of equilibria is a well known phenomenon in economic models of strategic
interactions. A typical example is economic environments with strategic complementarities,
whereby the payoff a strategy or an action generates is a non-decreasing function of the
number of players who adopt it. The question as to which among the possible equilibria gets
selected or is much more likely in a long-run is of high interest in game theoretic modeling.
In their pioneering work Foster and Young (1990), Kandori et al. (1993) and Young (1993)
showed that a disequilibrium process in which agents learn their opponent’s play and sub-
sequently revise their strategies—generally known as a stochastic evolutionary model—can

∗Corresponding author: Opolot D. C., Maastricht University—UNU-MERIT, Keizer Karelplein 19, 6211
TC Maastricht, The Netherlands, (opolot@merit.unu.edu), Tel. +31 433884440, Fax +31 433884499.
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be employed as a mechanism for equilibrium selection.1 The basic idea of stochastic evo-
lution is that agents play their “optimal” strategies with high probability and with a small
probability—also known as the mutation rate—they randomize among the strategy set—
according to the mistakes distribution.2 The solution concept that is normally employed in
such evolutionary models is that of stochastic stability, according to Foster and Young (1990).
An outcome is said to be stochastically stable if the long-run probability with which it occurs
does not vanish as the mutation rates tend to zero. It is therefore that within which the
learning process spends the most time in the long-run.

The present paper aims to develop a general framework and convergence measures that
circumvent the limitations of stochastic evolutionary models. The first limitation concerns
the robustness of stochastic stability as a solution concept. Bergin and Lipman (1996) pointed
out that the long-run stable outcome of an evolutionary model strictly depends on the spec-
ifications made about the mutation rates. Stochastic stability relies on the assumption that
the stationary distribution converges uniformly in the limit of mutation rates. When this
assumption is relaxed it is possible to make any outcome stable in the long-run by suitably
choosing the mutation rates structure.3 Another limitation in relation to robustness, that
has not been discussed in the literature, concerns the mistakes distribution. In the literature
it is assumed that the mistakes distribution does not play a significant role in determining
the long-run stable set. We demonstrate in the motivational example of section 2 below that
such an assumption is not necessarily accurate, and that the long-run stable outcome also
strictly depends on the assumptions made about the mistakes distribution. More specifically,
we show that for every specification of the mutation rates, there exists a mistakes distri-
bution for which an arbitrary outcome is stable in the long-run. The second limitation of
stochastic stability, in particular the assumption of vanishing mutation rates, concerns the
convergence rate to stationarity. This assumption generally implies that the convergence
rate of the learning process to its stationary distribution becomes too low, casting doubts on
whether the long-run properties of such models carry any realizable economic implications.

The contribution of this paper is twofold. First, we define a solution concept—to be called
epsilon-stability or in short ε-stability—that is a generalization of stochastic stability. An
outcome is said to be ε-stable if for a given model of mistakes, it maximizes the stationary
distribution of the model. It is therefore a state or a subset of states within which the learning

1Since its development as an equilibrium selection mechanism, several applications and similar approaches
to stochastic evolutionary dynamics (such as bargaining, signaling, contagion and social innovation) have been
explored. See for example Vega-Redondo (1997), Nöldeke and Samuelson (1997), Kandori and Rob (1998),
Alós-Ferrer and Weidenholzer (2008), Huck et al. (2012).

2By optimal we mean a strategy that is prescribed by the given learning rule, such as best-reply and
imitation dynamics.

3The response in the literature to the criticism by Bergin and Lipman (1996) has been to construct classes
of models within which the outcomes of stochastic stability are robust. Examples include the learning models
with adjustment costs (van Damme and Weibull, 2002), and models in which the mutation rates are a function
of a single parameter (Maruta, 2002; Blume, 2003).
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process spends the most time in the long-run. But unlike stochstic stability, ε-stability does
not require the assumption of vanishing mutation rates. Implying that a stochastically stable
set is ε-stable only under strict restrictions on the model of mistakes, and in Proposition 2
we show conditions under which ε-stability can be approximated by stochastic stability.

We construct an algorithm for computing ε-stable sets that is independent of the model
of mistakes. Unlike the computation of stochastically stable sets, the computational process
for ε-stable sets requires determining both the sizes and “depths” of basins of attraction.
More specifically, we define the cost of a transition from one basin of attraction to another
as a function of the distance between them—to be called the diameter—and the collective
probability associated with the transition. The collective probability is captured by the
average of individual revision probabilities. We demonstrate that the average probability is
a sufficient statistic for capturing the effect of the collective probabilities. In addition to its
computational convenience, average probabilities also permit heterogeneity in probabilities
of mistakes across agents. For example they can depend on agents’ positions in the network
for the case of local interactions.

We then use the constructed costs of transitions between basins of attraction to define
four algorithmic measures that can be employed to compute the long-run ε-stable sets. The
resistance of the basin of attraction, is defined as the minimum cost of exiting the basin
of attraction starting from its corresponding metastable set.4 The coresistance of the basin
of attraction is the maximum cost of a direct transition from any other metastable set into
its boundaries. The third measure is the path potential of the directed path connecting two
basins of attraction, and is defined as the total cost of that path minus the total of minimum
deviations from it. It is a measure of how accessible or reachable a basin of attraction is
from another through a given path. The fourth measure is the stochastic potential of a
basin of attraction, which is computed following the combinatorial methods of Freidlin and
Wentzell (1984). An efficient algorithm for computing the long-run ε-stable set is then that
which combines the above four algorithmic measures in ascending order of computational
complexity.

The second contribution of this paper is to provide convergence measures that can be used
to characterize the short-run and medium-run behavior of a typical stochastic evolutionary
model. ε-stability concerns the long-run properties of the learning process (more specifically
the stationary distribution), but as as noted above in the motivational example of section 2
below, the time it takes to attain the stationary distribution can be unrealistically long in
some cases. Under such circumstances, it becomes essential to focus on the short-run and
medium-run behavior of the process. To this end, we introduce the measures of metastability
and contagion rate. The metastability of a metastable set is the minimum expected time the
process spends inside the boundaries of its basin of attraction, and the contagion rate within

4Metastable sets are an equivalent of limit sets in the model of learning with mistakes. They are subsets
in which the process spends extended amounts of time before making a transition to another.
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a basin of attraction is the speed at which the process converges to its quasi-stationary dis-
tribution once it has entered the boundaries of a given basin of attraction. The metastability
captures the transition between basins of attraction and hence the medium-run behavior of
the learning process. The contagion rate on the other hand captures the dynamics within the
basins of attraction, and hence the short-run behavior of the learning process. In particular,
it can be viewed as a measure of how fast a strategy diffuses across the population once its
threshold has been attained. In Theorem 2 we derive a tight lower bound for metastabil-
ity, while Theorem 3 provides the relationship between the contagion rate and the spectral
properties of the associated transition matrix and the interaction structure.

The definition of metastability in this paper is similar to the definition of the waiting
time in Ellison (1993, 2000). Ellison (1993, 2000) provides an upper bound for waiting time
while assuming vanishing mutation rates, which makes the result rather specific to the case
of state-independent mutation rates. The direct implication of the result in Ellison (1993,
2000) is that the metastable set with the largest basin of attraction is the most metastable.
On a contrary, Theorem 2 of this paper provides a tighter lower bound for metastability that
is independent of the model of mistakes and the assumption of vanishing mutation rate is
not necessary in the proof of the result. The expression we provide also implies that the
metastable set with the largest basin of attraction is not necessarily the most metastable.

Apart from stochastic stability, there exist other forms of evolutionary equilibrium se-
lection. Most notably the models that consider the equilibrium properties of the learning
process as the population size becomes large, such as Binmore and Samuelson (1997). The
expressions we provide for the expected waiting time in Theorems 2 can be directly employed
in such analysis. Finally, Theorems 2 and 3 can together be employed to characterize strate-
gic diffusion in networks. The specific cases in the literature are Morris (2000), Lee et al.
(2003), Montanari and Saberi (2010) and Young (2011). For example the finding in Morris
(2000), Montanari and Saberi (2010) and Young (2011) that strategic diffusion is faster if
the network structure is made up of cohesive subgroups, can be derived as a corollary of
Theorems 2 and 3.

The remainder of the paper is organized as follows. Section 2 provides a motivational
example demonstrating the non-robustness of stochastic stability. In Section 3, we outline
the general model for noisy stochastic evolutionary dynamics. Section 4 provides algorithmic
characterization for epsilon-stability and its applications to both random matching and local
interactions. Section 5 provides definitions and bounds for expected waiting time, metasta-
bility and contagion rate. The main proofs are relegated to the Appendix.

2. Motivational example

The criticism with regard to the structure of mutation rates is well discussed in Bergin
and Lipman (1996), so we focus on that concerning the mistakes distribution and convergence
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rates. In particular, we demonstrate that even in situations where the mutation rates are
state-independent and identical for all agents, there always exists a mistakes distribution for
every value of the mutation rate (except zero) for which an arbitrary metastable set gets
selected. And that the convergence time of the learning process increases exponentially with
the inverse of the mutation rate.

Consider a set of three players N = {1, 2, 3} who are uniformly and randomly matched
to play the coordination game in Table 1. Let the learning model be that defined in Young
(1993), in which each player follows the “Best Reply” dynamics with probability 1 − ε and
with probability ε randomizes among the action set. Given the action set X = {A,B}, let
x be the action profile, ui(x,x) be the payoff to i ∈ N when playing action x, and denote
by BRi(x,x) for the probability that i plays the Best Reply action. That is BRi(x,x) = 1
if x ∈ arg maxxi ui(xi,x) and zero otherwise. Let P(x,x) be the mistakes distribution (or
more specifically the probability mass function) identical to all players. Assume also that the
payoff is identical for all players, such that the probability of playing action x ∈ X given the
mutation rate ε and profile x is

(1) P(x,x) = (1− ε)BR(x,x) + εP(x,x)

From the payoff structure in Table 1, the states ~A and ~B in which all agents play A and

Table 1: The action profile (A,A) is risk-dominant.

player j
A B

i A 4 , 4 3 , 0

pl
ay
er

B 0 , 3 5 , 5

B respectively are the equilibria (limit singleton sets) of the best reply dynamics without
mistakes. They are also the metastable sets of the model of learning with mistakes whose
dynamics is governed by (1). When players are matched uniformly and randomly, there are
only four relevant states or action profiles; ~A, ~B, BBA in which one agent plays A and the
other two play B, and AAB in which one agent plays B and the other two play A. Write X for
the state space in the order X = ( ~A,AAB,BBA, ~B). Let Pε be the transition matrix of the
Markov chain (X, Pε) induced by the dynamics in (1). Pε is irreducible meaning that (X, Pε)
has a unique stationary distribution πε whose structure is determined by the (normalized)
left eigenvector corresponding to the leading eigenvalue of Pε. That is πεPε = πε.

The first step in the computation of the stochastically stable set normally is to determine
the basins of attraction limit sets. From the payoff in Table 1, it can easily be shown through
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best reply argument that the basin of attraction Ã of ~A is Ã = { ~A,AAB,BBA}, and for
~B, B̃ = { ~B}. Let e = εP(B, ~A), f = εP(B,AAB) and h = εP(A, ~B). Then the transition
matrix Pε induced by the dynamics in (1) is given by,

Pε =


(1− e)3 3(1− e)2e 3(1− e)e2 e3

(1− e)(1− f)2 (1− f)(e+ 2f − 3ef) f(2e+ f − 3ef) ef2

(1− f)(2f + h− 3fh) (1− f)2(1− h) f2h f(f + 2h− 3fh)
h3 3(1− h)h2 3(1− h)2h (1− h)3


The dashed lines partition Pε into block matrices describing transitions within basins

of attraction (diagonal block matrices) and between basins of attraction (off-diagonal block
matrices). Since the size of Ã is greater than that of B̃, the computational algorithms in
Young (1993) and Ellison (2000) imply that the long-run stable equilibrium (stochastically
stable state) is ~A.

Now, consider the case in which ε = 0.01. Then there exists a mistakes distribution,
for example P(B, ~A) = 0.9, P(B,AAB) = 0.9 and P(A, ~B) = 10−5 for which π( ~B) =
0.71 > π( ~A) = 0.28. If ε = 10−4, then substituting P(B, ~A) = 0.9, P(B,AAB) = 0.9 and
P(A, ~B) = 10−9 into Pε yields π( ~B) = 0.70 > π( ~A) = 0.29.

In other words, for every value of ε ∈ (0, 1) there exists a mistakes distribution for which
an arbitrary limit set maximizes the stationary distribution (or gets selected in the long-run,
in the language of stochastic stability). In general, it is fair to say that when the mistakes
distribution is bounded then there exists an ε′ such that for any ε < ε′, stochastic stability is
a good approximation to the behavior of the process (X, Pε) in the long-run. We elaborate
on this argument in section 4

The question then becomes, how small should ε′ be for the convergence (mixing) time
of the process to have any economic implications? For the cases above where ε = 0.01 and
ε = 10−4, we find the mixing times through simulations to be over 108 and 1015 respectively.
That is the mixing time scales exponentially with the inverse of mutation rate. Such time
scales are definitely too high for the properties of the stationary distribution to have any
economic implications. Moreover this example has only four states and two metastable sets.

3. The model

Let Γ be an n−person game that can be either in strategic form or additively separable
preferences. Let N = {1, · · · , i, · · · , n} be the set of agents, and let Xi be a discrete and
finite set of actions available to i. Denote by t = 1, 2, · · · for the successive periods of play.
Agents simultaneously play the game Γ once each period. The strategies that each agent
reacts to depends on whether they interact with the entire population or locally through a
social network. Let the strategy (or simply the action) chosen by each i ∈ N at period t

be denoted by xi,t, and for xi,t ∈ Xi let xt = (x1,t, · · · , xn,t) denote the strategy profile at t.
Each xt ∈ X = ∏n

i=1Xi will also be referred to as the population state or simply the state of
the learning process at t, where X is the state space.
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The agents’ interaction can be global or local. Under global interactions, each agent is
randomly and uniformly matched with every other agent in the population while under local
interactions agents react to the strategies of a subset of the population referred to as their
neighborhood. Local interactions are defined in a graph theoretical manner or simply by a
social network. Let G(n,E) be a graph with n vertices, representing the number of agents
and E edges linking different pairs of agents such that a graph gij defines the connection
between i and j. If gij = 1 then a directed link exists from i to j, and zero implies otherwise.
We thus have a directed network G(n,E) describing the relationship of any one agent with
every other agent in the population. The adjacency matrix G of an interaction structure
with a network topology given by G(n,E) is basically an n×n matrix with entries being the
elements of gij. The neighborhood of agent i, Ni, is defined as Ni = {j ∈ n|gij = 1}, and
gives the set of players to which i is linked to. The cardinality #Ni = ki, is the degree of i.

3.1. Payoff structure

Let x−i be the strategy profile of all agents excluding i. The functions ui : X → R for
each i define the payoffs of the game, such that ui(xi,x−i) is the payoff of i when he plays xi
and the other players follow strategy profile x−i. In this paper we focus on games in which
ui(xi,x−i) exhibits strategic complementarity and substitutes. These include multi-action
coordination games and linear-quadratic network games. The following examples belong to
the category of games that satisfy such conditions.

Consider a coordination game with a binary action set Xi = {A,B} homogeneous to all
i ∈ N with the payoff structure in Table 2. Let vi(xi, xj) be the payoff to i from playing
action xi when his opponent j ∈ Ni plays actions xj. Then the total payoff to i from playing
xi when the other players follow strategy x−i is of the form.

(2) ui(xi,x−i) =
∑
j∈Ni

Jijvi(xi, xj),

The parameter Jij depends on whether players are randomly and uniformly matched with

Table 2: Payoff structure for the pure coordination game between i and j

player j
A B

i A
a , a d , c

pl
ay
er

B c , d b , b

every other in the population (global interactions) in which case Jij = 1
n
, or they interact
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locally through a network. Note that local interactions can also be random and uniform, in
which case Jij = 1

ki
. Otherwise, Jij ∈ [0, 1] for all j ∈ Ni and for each i ∈ N .

A more general case of network games of strategic complements and substitutes are the
linear-quadratic games with a general payoff structure of the form

(3) ui(xi,x−i) = si(xi) +
∑
j∈Ni

Sji (xi, xj).

The first term in the sum, ui(xi) is the intrinsic utility to i from playing strategy xi and
Sji (xi, xj) is the network externality or social utility to i from playing action xi when the
neighbor j’s action is xj. The notable examples include the status model of Akerlof (1997),
the social interactions model of Brock and Durlauf (2001) and the neighborhood effects
models discussed in Glaeser and Scheinkman (2001).

3.2. Revision probabilities

The main behavioral assumption of our model is that agents follow the Darwinian dynam-
ics, that is they respond myopically to the past strategies of their opponents. This assumption
is for the sake of clarity and the main theorems we present can be easily extended to other
forms of learning, such as that in Young (1993) in which agents respond to a bounded history
of their opponents strategies. Based on this assumption, we consider general evolutionary
dynamics in which agents play the “optimal” strategy with high probability and with a small
probability play that which is not necessarily optimal. By “optimal” we mean a strategy
that would be prescribed by a given learning rule. For example under Best-Reply dynamics
it would be the strategy which maximizes the associated utility function, and under imitation
dynamics it would be that which is the most successful in the population or neighborhood.
We focus on the case of Best-Reply dynamics in this paper.

Let BRi(xt+1 = x|xt) be the probability that i plays action x in the next period under
best-reply dynamics given that the current state is xt. Then

(4) BRi(xt+1 = x|xt) =

 1 if x ∈ arg maxxi∈Xi ui(xi,xt)
0 otherwise.

Let εi(x) be i’s state-dependent mutation rate, the probability that i randomizes among
the elements of Xi with the conditional distribution defined by Pi(x|x). Then the revision
probabilities for each i ∈ N under the model of learning with mistakes is defined as

(5) Pi(xt+1 = x|xt) = (1− εi(xt))BRi(xt+1 = x|xt) + εi(xt)Pi(xt+1 = x|xt)

where for each i ∈ N and xt ∈ X, ∑x∈Xi Pi(xt+1 = x|xt) = 1. Throughout this paper,
we refer to εi(xt) as the mutation rate, Pi(xt+1 = x|xt) as the mistakes distribution (or
more specifically mistakes probability mass function (PMF)) and the product Pi(x|xt) =
εi(xt)Pi(xt+1 = x|xt) as the probability of playing action x by mistake. We denote the vector
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of mutation rates by ε = (ε1(x), · · · , εn(x)). The structural assumptions made about ε and
Pi(xt+1 = x|xt) entail what we refer to as the model of mistakes.

For the applications in section 4.2 below we work with the revision probabilities of the
form

(6) Pi(xt+1 = x|xt) = (1− ε)BRi(xt+1 = x|xt) + ε
exp [βui(x,xt)]∑

y∈Xi exp [βui(y,xt)]

The revision probability in (6) captures most of the learning models that have been
analyzed in the literature. The models with a state-independent mutation rate such as those
in Kandori et al. (1993), Young (1993) and Ellison (2000) then corresponds to that in which
ε is the mutation rate that is identical to all agents and states, and the mistakes assume the
logit distribution with parameter β. When β = 0 one obtains the case in which the mistakes
are uniformly and randomly distributed. To recover the state-dependent mutation rates
learning models from (6), such as that in van Damme and Weibull (2002), we simply assume
that ε ∈ (0, 1] is some constant and the parameter β determines the mutation rate. More
specifically, under state-dependent mutation rates we take the limit of the process (X, Pε)
for β →∞ rather than ε→ 0. Setting ε = 1 recovers the Logit learning models such as that
in Blume (1995).

For the remainder of the paper the discussion will be centered on two Markov chains,
(X, P ) and (X, Pε) induced by best-reply and best-reply with mistakes dynamics respectively.
Hereafter, the mutationless and mutation models respectively. P and Pε are the transition
matrices whose elements P (x,y) and Pε(x,y) are defined by

(7) Pε(x,y) =
n∏
i=1

Pi(xt+1 = yi|xt = x) for each yi ∈ y

3.3. Limit sets, ε-stability and stochastic stability

It is well known and can be easily verified that the dynamics of the mutationless model
generates multiple equilibria in games of strategic complements and substitutes such as those
listed in subsection 3.1 above. The resulting equilibria are generally referred to as limit sets
or recurrent classes, formally defined as follows.

Definition 1: A set Ω ⊂ X is a limit set of (X, P ) if ∀y ∈ Ω, P(xt+1 ∈ Ω|xt = y) = 1,
and that ∀y, z ∈ Ω, there exists a τ > 0 such that P(xt+τ = z|xt = y) > 0

In the coordination game of Table 1 above for example, the limit sets include the singleton
sets in which all players play strategy A and in which they all play strategy B. Generally, the
limit sets of (X, P ) can include sets that are cycles and those in which players use different
strategies. When the interactions are governed by a social network , the number of limit sets
is enhanced. In particular, there will exists singleton limit sets in which strategies co-exists
and different cohesive subgroups adopt different strategies. The limit set of (X, P ) that
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results depends on the initial state of the process. We denote the set of limit sets of (X, P )
by Ω.

We refer to the equivalents of limit sets in the mutation model as metastable sets, denoted
by Ωε. The set of all metastable sets of a given (X, Pε) will be denoted by Ωε. The perturbed
process (X, Pε) has a unique invariant distribution πε = limt→∞ q0P

t
ε, where qt is the vector

of probability mass functions at period t . The existence of a unique stationary distribution
is a standard fact about aperiodic-irreducible Markov chains. The stationary distribution of
the process (X, Pε) describes the amount of time it spends in each state in the long-run.
The standard approach in the stochastic evolutionary literature is to assume that for small
values of the mutation rates, the stationary distribution (X, Pε) can be approximated by its
limit π = limε→0 πε. Or in the case of state-dependent mutation rates for the dynamics in
(6) above π = limβ→∞ πε. The metastable sets Ωε for which π(Ωε) > 0 are then said to be
stochastically stable.

The principal argument behind stochastically stable sets is that, they are sets within
which the process (X, Pε) spends the most time in the long-run. They are therefore assumed
to correspond to the metastable sets that maximize the stationary distribution. But as
discussed in the introduction and in section 2, this approximation is not robust to various
models of mistakes. Rather than focusing on the limit properties of πε, we characterize its
properties and algorithmic computation for any given model of mistakes. We then refer to
the metastable sets that maximize πε as ε-stable sets. Formally.

Definition 2: Let ε = (ε1(x), · · · , εn(x)) be the mutation rates of the process (X, Pε),
and let Pi(x|x) for all i ∈ N , for each x ∈ X and x ∈ X be the mistakes distribution. Then
a metastable set Ω∗ε is said to be ε-stable if Ω∗ε = arg maxΩε∈Ωε

πε(Ωε)

An ε-stable set can thus be equivalently defined as that for which πε(Ω∗ε) > πε(Ωε) for
all Ωε 6= Ω∗ε. A stochastically stable set is ε-stable only under some strict restrictions on the
model of mistakes. We construct an algorithm for computing an ε-stable set in next section,
and provide applications demonstrating its relationship with stochastically stable sets.

4. Epsilon-stable sets

In this section we prove the first theorem of this paper which provides the conditions
for a set to be ε-stable in the long-run. These conditions are then used to construct the
computational algorithm for identifying the ε-stable sets. The computation of an ε-stable
set can be performed by first determining the stationary distribution πε through the combi-
natorial methods of Freidlin and Wentzell (1984), or by use of the properties of quotients of
the stationary distribution. The former can identify the unique ε-stable set (if it exists) but
it is more computationally demanding than the later, and the reverse is true for the latter.
We thus construct an algorithm that combines both methods. In the next subsection we
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explicitly define the concepts of resistance, co-resistance, and path potential all of which are
associated with the notion of quotients, and the stochastic potential that is associated with
the notion of spanning trees. But first we formally define the notion of basins of attraction
and introduce the concept of the collapsed Markov chain of the process (X, Pε) that will be
the basis of analysis in the following sections.

The basin of attraction D(Ω) of a limit set Ω of the unperturbed process (X, P ) is D(Ω) =
{x ∈ X|P(∃T s.t xt ∈ Ω ∀ t > T |x0 = x) = 1}.

Similarly, the basin of attraction D(Ωε) of a metastable set Ωε of the perturbed process
(X, Pε) is D(Ωε) = {x ∈ X|P(∃T s.t xt ∈ Ω ∀ T < t <∞|x0 = x) > P(∃T s.t xt ∈ Ω ∀ T <

t < ∞|x0 = x)}. Without loss of generality, the model of mistakes is such that D(Ωε) is
equal to D(Ω) in composition. In other words D(Ωε) is the equivalent of D(Ω) in the process
(X, Pε).

The basins of attraction induce a partition on the state space into disjoint subsets D(Ω) ⊂
X. Let x̃ be the shorthand for D(Ω) and let X̃ be the state space consisting of x̃’s as its
states. A collapsed Markov chain (X̃, P̃ε), derived from (X, Pε) consists of x̃ as its states and
the transition probabilities among them defined as follows (a generalization of the collapsed
Markov chain in Aldous and Fill (1999, Chapter 2)):

P̃ε(x,y) = Pε(x,y),(8a)

P̃ε(y, x̃) =
∑
x∈x̃

Pε(y,x),(8b)

P̃ε(x̃,y) = 1
πε(x̃)

∑
x∈x̃

πε(x)Pε(x,y),(8c)

P̃ε(x̃, ỹ) = 1
πε(x̃)

∑
x∈x̃

∑
y∈ỹ

πε(x)Pε(x,y)(8d)

The following lemma is an immediate consequence of the above definition of a collapsed
Markov chain.

Lemma 1: Let πε and π̃ε be the stationary distributions of (X, Pε) and (X̃, P̃ε) respec-
tively. Then for any x̃ ∈ X̃, π̃ε(x̃) = πε(x̃) = ∑

x∈X̃ πε(x)

Proof. See Appendix A.1

The following proposition establishes a bound on the ratios or quotients of the stationary
distributions of the collapsed process (X̃, P̃ε), and will be pivotal in the characterization of
long-run ε-stable sets below.

Proposition 1: Let x̃ and ỹ be any two states in X̃ such that x̃ ∩ ỹ = ∅. Then

(9) πε(ỹ)
πε(x̃) ≤

maxx∈x̃ Pε(x, x̃c)
miny∈ỹ Pε(y, x̃)

where x̃c is the complement of x̃.
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Proof. See Appendix A.2

The right hand side of (9) has the following interpretation. Consider any two metastable
sets Ωε and Ω′ε and let x̃ and ỹ be their respective basins of attraction. Then maxx∈x̃ Pε(x, x̃c)
is equivalent to the probability of making a transition to x̃c in a single time step given that the
process starts from x ∈ Ωε. The denominator miny∈ỹ Pε(y, x̃) is equivalent to the probability
of making a transition to x̃ in a single time step given that the process starts from Ω′ε ∈ ỹ.

The quotients πε(ỹ)
πε(x̃) can be easily extended to the notion of paths whenever a path exists

from ỹ to x̃ whose total probability is less than the direct transition ỹ → x̃. This can be
achieved by use of the chain-rule argument. That is, if there exists an intermediate metastable
set Ω̄ε with a basin of attraction z̃ then,

(10) πε(ỹ)
πε(x̃) = πε(ỹ)

πε(z̃)
πε(z̃)
πε(x̃) ≤

maxz∈z̃ Pε(z, z̃c)
miny∈ỹ Pε(y, z̃)

maxx∈x̃ Pε(x, x̃c)
minz∈z̃ Pε(z, x̃)

In which case (X̃, P̃ε) starts from ỹ then to z̃ and finally to x̃.

4.1. Resistance, path potential and stochastic potential

In this section we introduce and define concepts of resistance, co-resistance, path potential
and stochastic potential that will be used in characterizing the long-run ε-stable sets. Given
the definition of the collapsed process (X̃, P̃ε), all the four concepts are defined on the state
space X̃ of the basins of attraction. The identification of the ε-stable sets is then based on
the notion that if a given point set x̃ ∈ X̃ satisfies the conditions of ε-stability, then so does
its corresponding metastable set.

Define the (normalized) diameter d(x̃i, x̃j) of the directed relation x̃i → x̃j as the fraction
of mistakes required to enter the basin of attraction of x̃j starting from the metastable set
Ωi

ε of x̃i. Equivalently, d(x̃i, x̃j) is the fraction of players required to simultaneously play a
different action by mistake for the process (X, Pε) to enter the boundary of x̃j given that it
is in the state x ∈ Ωi

ε.
The collective probability associated with the diameter d(x̃i, x̃j) or a direct transition

x̃i → x̃j is captured by its average probability. Formally, let Pi(xt+1 = y|xt = x) for
y ∈ y ∈ Ωj

ε ∈ x̃j and y /∈ x ∈ Ωi
ε ∈ x̃i be the probability that i plays an action belonging to

the state in a metastable set Ωj
ε ∈ x̃j that is different from that played in the state belonging

to the metastable set Ωi
ε ∈ x̃i, given that (X, Pε) is in x ∈ Ωi

ε. We can the define the average
probability PA(x̃i, x̃j) as

(11) PA(x̃i, x̃j) = 1
n

n∑
i=1

Pi(xt+1 = y|xt = x) for y ∈ y ∈ Ωj
ε and y /∈ x ∈ Ωi

ε

Take an example of the coordination game in Table 1 above where (Ωε = ~A and Ω′ε = ~B

are the two main metastable sets under uniform random interactions. The corresponding
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average probability of the transition between the basins of attraction Ã→ B̃ is

(12) PA(Ã, B̃) = 1
n

n∑
i=1

Pi(xt+1 = B|xt = ~A)

Clearly, under mutationless model (X, P ), PA(Ã, B̃) = 0 and generally PA(x̃i, x̃j) = 0 for
all x̃i, x̃j ∈ X̃. Under (X, Pε) on the other hand PA(x̃i, x̃j) = 1

n

∑n
i=1 Pi(xt+1 = y|xt = x),

where Pi(xt+1 = y|xt) is defined in (5) above.
Given the diameter and the average probability, we then define the cost c(x̃i, x̃j) of a

direct transition x̃i → x̃j as

c(x̃i, x̃j) = −d(x̃i, x̃j) ln (PA(x̃i, x̃j))

Given all direct transitions out of a basin of attraction x̃i, its resistance R(x̃i) is defined
as the minimum cost over all x̃j 6= x̃i. That is

R(x̃i) = min
x̃j 6=x̃i

{c(x̃i, x̃j)}

The co-resistance C R(x̃i) of x̃i is defined as the maximum cost over all direct transitions to
x̃i. That is

C R(x̃i) = max
x̃j 6=x̃i

{c(x̃j, x̃i)}

To define the path potential of a basin of attraction, we first define the potential associated
with each path terminating at the given basin of attraction. Let Hx̃ix̃j be the set of all directed
paths starting from x̃i ∈ X̃ and terminating at x̃j ∈ X̃, and let Hx̃ix̃j = (x̃i, · · · , x̃κ, · · · , x̃j)
be the typical path in Hx̃ix̃j . Then the path potential φ(Hx̃ix̃j) of Hx̃ix̃j is defined as

φ(Hx̃ix̃j) =
j−1∑
κ=i

(
c(x̃κ, x̃κ+1)−R(x̃κ+1)

)
That is, the total cost of the path minus the total of minimum deviations from the path. The
path potential is thus a measure of how accessible or reachable a given basin of attraction
is from another through that particular path. The logic behind the definition is that the
accessibility of x̃j from x̃i through Hx̃ix̃j depends on the total cost associated with Hx̃ix̃j and
the likelihood of deviating from Hx̃ix̃j . The higher the cost the more difficult it is to reach x̃j
through Hx̃ix̃j and the lower the resistance of the basins of attraction that the path traverses
to reach x̃j the more likely that the process will follow such a path.

We then define the maximum path potential of any given basin of attraction x̃j ∈ X̃ as
follows

(13) φ(x̃j) = max
x̃i 6=x̃j

min
Hx̃ix̃j∈Hx̃ix̃j

φ(Hx̃ix̃j)

To define the stochastic potential of a given basin of attraction, we need to define a graph
W on the state space X̃, in which each state x̃ ∈ X̃ is a vertex and the weight w(x̃i, x̃j) of a
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directed edge x̃i → x̃j defined as the minimum total cost over all paths Hx̃ix̃j ∈Hx̃ix̃j . That
is

w(x̃i, x̃j) = min
Hx̃ix̃j∈Hx̃ix̃j

j−1∑
κ=i

c(x̃κ, x̃κ+1)

Given W , we can then define the concept of an x̃i-tree according to Freidlin and Wentzell
(1984) as the spanning tree such that from every x̃j 6= x̃i, there is a unique path directed
from x̃j to x̃i. Denote by Tx̃i as the set of all x̃i-trees on W and index by τ for a typical
x̃i-tree in Tx̃i . The stochastic potential of x̃i is then defined as

(14) S (x̃i) = min
τ∈Tx̃i

∑
(x̃j ,x̃κ)∈τ

w(x̃j, x̃κ)

The following theorem and corollary show how the resistance, co-resistance and path
potential of basins of attraction can be used to compute the long-run ε-stable sets. It also
shows that the measures of the costs of transitions among basins of attraction (or metastable
sets) also satisfy the conditions of the usual spanning tree algorithm.

Theorem 1: Let (X, Pε) be a model of learning with mistakes, and let Ω̃ε be the union
of metastable sets Ωε ⊂ x̃ for which φ(x̃) < 0.

(i) Then the long-run ε-stable set of (X, Pε) lies in Ω̃ε.

(ii) The long-run ε-stable set Ω∗ε of (X, Pε) is that among all sets in Ω̃ε whose corresponding
basin of attraction x̃∗ is such that S (x̃∗) = minx̃i∈X̃ S (x̃i).

Proof. See Appendix A.3

Corollary 1: Suppose Ω̄ε is the union of metastable sets whose resistance and co-
resistance are such that R(x̃) > C R(x̃). Then the long-run ε-stable set of (X, Pε) lies in
Ω̄ε.

Proof. See Appendix A.3

Theorem 1 and Corollary 1 provide necessary and sufficient conditions for identifying
the long-run ε-stable sets. Theorem 1 (i) states that all metastable sets whose basins of
attraction are such that the maximum path potential is negative, belong to the union set
containing the long-run ε-stable set. Corollary 1 considers only direct transitions rather than
paths among basins of attraction, and is thus a coarser measure compared to the maximum
path potential.

Ellison (2000) also derived conditions that are closely related to those in Theorem 1 (i)
and Corollary 1, but for computing the long-run stochastically stable set rather than the
general case of ε-stable sets. Ellison (2000) uses the radii and co-radii of limit sets as a
measure of their persistence and attractiveness respectively, which are based on counting the
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number of mutation required to exit the basins of attraction. As discussed in the introduction
and section 2, such measure are specific to the model of mistakes in which the mutation rates
are state-independent and identical for all agents. The resistance, coresistance and path
potentials above are independent of the model of mistakes. Theorem 1 (i) together with
its constructive proof also provides a theoretical foundation to the notion of step-by-step
evolution in Ellison (2000). In particular, the proof of Theorem 1 (i) which is based on the
quotients of stationary distributions of basins of attraction demonstrates that the modified
coradius argument of Ellison (2000) is basically a consequence of the chain-rule applied to
quotients.

Since the condition in Corollary 1 is coarser and hence more restrictive than that of
Theorem 1 (i), it is therefore computationally economical to first consider the resistances
and co-resistances of direct transitions to identify the union set containing the ε-stable set.
If this procedure leads to a null set, only then should it be necessary to compute the maximum
path potentials of basins of attraction. A conjecture we state here but whose proof is beyond
the scope of this paper, is that at least one among conditions in Corollary 1 and Theorem 1
(i) must result into a non-empty union set provided that εi(x) > 0 for all i and x.

Theorem 1 (ii) shows that the measures of resistance we construct can also be used in
the usual spanning tree algorithm employed in Kandori et al. (1993) and Young (1993). But
as in Ellison (2000), the measure of costs of transitions among metastable sets employed in
Kandori et al. (1993) and Young (1993) are specific to the model of mistakes in which the
mutation rates are state-independent and identical for all agents. We also demonstrate below
that such measures require an additional restriction that the mistakes distribution must be
bounded. The condition in Theorem 1 (ii) is tighter than those in Corollary 1 and Theorem
1 (i). It selects more than one ε-stable set only if there exist two or more metastable sets
with identical minimum stochastic potential, otherwise it selects a unique ε-stable set. A
computationally economical algorithm for identifying the long-run ε-stable set would then
entail the following three steps.

The first step is to identify the limits sets of the process (X, P ) and the associated basins
of attraction. This can usually be done heuristically by combining the properties of the
payoff function and the topology of the interaction structure. The limit sets of (X, P ) are
also the metastable sets of (X, Pε) with the respective basins of attraction. The second
step is to compute the resistances and co-resistances of direct transitions associated with
each basins of attraction. Identify the metastable sets whose basins of attraction have a
resistance greater than their co-resistance. If this procedure identifies one metastable set,
then it is the unique ε-stable set of the process (X, Pε). If the procedure leads to a null set,
then compute the maximum path potentials for each metastable set and identify those for
which the potential is negative. A set that is a union of all metastable sets whose maximum
path potential is negative, contains the long-run ε-stable set. If this procedure identifies one
metastable stable set, then it is the unique ε-stable set of (X, Pε). If either of the procedures
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selects more than one metastable set then proceed to the third step, which employs the
spanning tree algorithm to select a unique ε-stable set if it exists. More specifically, compute
the stochastic potentials of all sets that survived the second step and select those with the
minimum stochastic potential.

The spanning tree algorithm is therefore only necessary if the first two steps fail to select
a unique ε-stable set. Moreover, the first two steps reduce the number of metastable sets
for which one has to construct their spanning trees. This reduces the computational burden
of constructing the spanning trees of all metastable sets and of the associated stochastic
potentials.

The following proposition establishes the conditions under which stochastic stability can
be used to approximate ε-stability.

Proposition 2: Let (X, Pε) be a model of learning with state-independent homogeneous
mutation rates ε = (ε, · · · , ε), and action space X. Let also 0 < Pi(x|x) < 1 ∀ i ∈ N , ∀
x ∈ X and ∀ x ∈ X be the bounded mistakes probability mass function.

(i) Then there exists an ε′ > 0 such that for every ε < ε′, πε ∼ limε→0 πε. Where “∼”
stands for “can be approximated by”.

(ii) If Pi(x|x) = 1
#X ∀ i ∈ N , ∀ x ∈ X and ∀ x ∈ X, then πε ∼ limε→0 πε for all values of

ε.

Proof. See Appendix A.4

Proposition 2 provides conditions under which ε-stability can be approximated by stochas-
tic stability. First and most importantly, it is necessary that the mutation rates be state-
independent and homogeneous to all agents. If the mistakes are uniformly and randomly
distributed, then stochastic stability can be used to approximate ε-stability for any values of
ε ∈ (0, 1). The second necessary condition in the case of arbitrary mistakes distributions is
that the mistakes distribution must be bounded, but even so, the approximation is strictly
valid only for a range of values of ε.

The straightforward generalization of the state-independent and homogeneous mutation
rates condition above is the situations in which the stationary distribution converges uni-
formly in the limit of mutation rates, such as van Damme and Weibull (2002). A less general
case is the models whereby the mutation rates are a function of a single parameter, such as
Maruta (2002) and Blume (2003). Examples include the logit dynamics in (6) in which ε = 1
and β is the single parameter that controls the mutation rates.

4.2. Applications

We now provide applications of Theorem 1 to the learning process whose dynamics is
governed by (6). These applications will also demonstrate the robustness of the measures
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we have constructed above and the generality of Theorem 1. The game in the first example
is also used by Young (1993) and Ellison (2000) to show that the risk-dominant equilibrium
need not be selected in 3 × 3 games, and we use it here to demonstrate the relationship
between ε-stability and stochastic stability.

Example 1: Consider a normal form game Γ in Table 3, played by a sufficiently large
number n of agents that are uniformly and randomly matched over time. Let the learning
model be that prescribed by (6), and let ~x denote the state in which all players play x.

(i) Let the mutation rates ε = (ε, · · · , ε) be state-independent and homogeneous.

(a) If the mistakes are uniformly and randomly distributed (that is β = 0) then
πε( ~B) ∼ limε→0 πε( ~B) = 1 for all values of ε ∈ (0, 1).

(b) If β = 1, then πε( ~B) ∼ limε→0 πε( ~B) = 1 if and only if ε . 10−7, otherwise ~C is
the ε-stable set.

(c) If β = 10, then πε( ~B) ∼ limε→0 πε( ~B) = 1 if and only if ε . 10−57, otherwise ~C

is the ε-stable set.

(ii) Let the mutation rates be state-dependent and determined by the parameter β. Consider
the case of pure logit dynamics, that is set ε = 1. Then πε(~C) ∼ limβ→∞ πε(~C) = 1

Table 3: For any pair of agent i, j ∈ N the profile (C,C) is risk dominant.

A B C

A 6 , 6 0 , 5 0 , 0

B 5 , 0 7 , 7 5 , 5

C 0 , 0 5 , 5 8 , 8

Proof. The first step is to identify the metastable sets of the process (X, Pε) which are exactly
the same as the limit sets of (X, P ). Under uniform-random matching, the metastable sets
for the game in Table 3 are the singleton sets ~A, ~B and ~C. We then compute the diameters
and average probabilities of direct transitions between pairs of basins of attractions of ~A, ~B
and ~C denoted by Ã, B̃ and C̃ respectively. These can both be computed from the payoff
structure. For example the diameter d(Ã, B̃) of the directed relation Ã→ B̃ is given by5

5The expression on the right hand side of the inequality (15) follows from the fact that under best response
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d(Ã, B̃) > max
{

v(A,A)− v(B,A)
(v(A,A)− v(B,A)) + (v(B,B)− v(A,B)) ,

v(A,A)− v(B,A)
(v(C,A)− v(B,A)) + (v(B,B)− v(C,B))

}
(15)

where v(x, y) is the payoff derived from playing x when the opponent plays y. By substituting
the payoffs from Table 3 it follows that d(Ã, B̃) = 1/8. A similar argument applies to all
directed relations between all pairs of basins of attraction.

In the case of the average probability, recall that for any pair x̃i, x̃j ∈ X̃

PA(x̃i, x̃j) = 1
n

n∑
i=1

Pi(xt+1 = y|xt = x),

By making use of the definition of Pi(xt+1 = y|xt = x) in (6) it follows for the transition
Ã→ B̃ that

(16) Pi(xt+1 = B|xt = ~A) = ε
1

1 + e−5β + eβ
for all i ∈ N

where the powers of the exponents on the right hand side of (16) follow from the fact that
under uniform-random matching ui(B, ~A) = 1

n

∑n
j=1 v(B,A) = v(B,A) for all i ∈ N . Conse-

quently,
PA(Ã, B̃) = ε

1
1 + e−5β + eβ

We write fβ(a, b) as the shorthand for 1/(1 + eaβ + ebβ). The average probabilities for the
transitions between each pair of basins of attraction can then be computed in a similar
manner, and are generally of the form,

(17) PA(x̃i, x̃j) = ε
1

1 + eaβ + ebβ

The cost of each direct transitions among basins of attraction are as follows: c(Ã, B̃) =
−1

8 ln(εfβ(−5, 1)), c(B̃, Ã) = −7
8 ln(εfβ(5, 7)), c(B̃, C̃) = −2

5 ln(εfβ(−5, 2)),
c(C̃, B̃) = −3

8 ln(εfβ(−5, 3)), c(Ã, C̃) = −5
8 ln(εfβ(5, 6)) and c(C̃, Ã) = −5

6 ln(εfβ(5, 8)).
(i) (a) To recover the situation in which the mistakes are uniformly and randomly dis-

tributed, we simply substitute for β = 0. The substitution results into R(B̃) = −2
5 ln( ε3) >

−3
8 ln( ε3) = C R(B̃), R(Ã) < C R(Ã) and R(C̃) < C R(C̃) for all values of ε ∈ (0, 1).

Implying that πε( ~B) ∼ limε→0 πε( ~B) = 1.

dynamics d(Ã, B̃) must satisfy the following inequalities

d(Ã, B̃)v(B,B) + (1− d(Ã, B̃))v(B,A) > d(Ã, B̃)v(A,B) + (1− d(Ã, B̃))v(A,A)

d(Ã, B̃)v(B,B) + (1− d(Ã, B̃))v(B,A) > d(Ã, B̃)v(C,B) + (1− d(Ã, B̃))v(C,A)

18



(b) When β = 1, it follows directly from the values of costs of direct transitions among
basins of attraction above that R(B̃) > C R(B̃), R(Ã) < C R(Ã) and R(C̃) < C R(C̃) if
and only if ε . 10−7. In which case πε( ~B) ∼ limε→0 πε( ~B) = 1. Otherwise, for all values of
ε > 10−7 we have that R(B̃) < C R(B̃), R(Ã) < C R(Ã) and R(C̃) < C R(C̃). We thus
need to proceed to the second step of the computational algorithm since the first step leads
to a null set.

The second step of the algorithm involves computing the maximum path potentials for
each basin of attraction. By substituting the costs of direct transitions among basins of
attraction into (13), it follows that (though a tedious exercise) for all ε > 10−7, φ(Ã) > 0,
φ(B̃) > 0 and

φ(C̃) = −
(2

5 ln(εfβ(−5, 2))− 3
8 ln(εfβ(−5, 3))

)
(18)

= −
(

0.3 + 1
40 ln(ε)

)
< 0(19)

where the second equality follows from substituting for β = 1. We thus have πε( ~B) ∼
limε→0 πε( ~B) = 1 for all values of ε . 10−7, and ~C = arg maxΩε∈Ωε

πε(Ωε) for all ε > 10−7.
(c) Similarly, when β = 10, we have that R(B̃) > C R(B̃), R(Ã) < C R(Ã) and R(C̃) <

C R(C̃) if and only if ε . 10−57. And that for all ε > 10−57, φ(Ã) > 0, φ(B̃) > 0 and

φ(C̃) = −
(

3.25 + 1
40 ln(ε)

)
< 0(20)

Implying that πε( ~B) ∼ limε→0 πε( ~B) = 1 for all values of ε . 10−57, and ~C = arg maxΩε∈Ωε
πε(Ωε)

for all ε > 10−57.
(ii) When ε = 1 in (6), we have for all values of β that φ(Ã) > 0, φ(B̃) > 0 and

φ(C̃) = −
(2

5 ln(fβ(−5, 2))− 3
8 ln(fβ(−5, 3))

)
< 0(21)

Note that in the computation of the maximum path potential, direct transitions are also
considered. The conditions in Corollary 1 and Theorem 1 (i) thus sufficiently identify the
unique long-run ε-stable set, and the computation of the minimum stochastic potential is not
necessary. Nevertheless, we demonstrate how the third step of the computational algorithm
can be applied when it necessitates.

The graphs W for the cases in which the mistakes are uniformly and randomly distributed
(CASE1), and that in which ε = 1 (CASE2) are shown in Figure 1. The weights w(x̃i, x̃j)
on the directed arrows correspond to the minimum cost over all paths (including direct
transitions) between x̃i → x̃j. For example the path of minimum cost from Ã to C̃ is
Ã→ B̃→ C̃ with the costs of

w(Ã, C̃) = −
(1

8 ln
(
ε

3

)
+ 2

5 ln
(
ε

3

))
w(Ã, C̃) = −

(1
8 ln(fβ(−5, 1)) + 2

5 ln(fβ(−5, 2))
)
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Figure 1: The left hand side figure is for CASE1 and that on the right hand side is for CASE2.

under CASE1 and CASE2 respectively.
From Figure 1 it follows that the minimum stochastic potential under CASE1 and CASE2

are respectively
S (B̃) = −

(1
8 ln

(
ε

3

)
+ 3

8 ln
(
ε

3

))
= 1

2 ln
(
ε

3

)

S (C̃) = −
(1

8 ln(fβ(−5, 1)) + 2
5 ln(fβ(−5, 2))

)

Example 1 clearly shows that not only does the long-run stochastically stable depend on
whether or not the mutation rate is state-dependent but also on the structure of the mistakes
distribution. This calls for extra caution when approximating ε-stability by stochastic sta-
bility. The result in Example 1 (ii), that the risk-dominat equilibrium is selected (ε-stable)
under logit dynamics, is consistent with others in the literature such as Blume (1995).

The next example presents a game in which there does not exists a unique risk-dominant
strategy such that ε-stability can be approximated by stochastic stability under both state-
dependent and state-independent mutation rates. It also further demonstrates the situation
in which the condition in Corollary 1 leads to a null set but the maximum path potential
argument identifies a unique ε-stable set.

Example 2: Consider a normal form game Γ in Table 4, played by n agents that are
uniformly and randomly matched over time. Let the learning model be that prescribed by (6).
Then for n sufficiently large, πε( ~B) ∼ limε→0 πε( ~B) = limβ→∞ πε( ~B) = 1

Proof. By following the same steps as in the proof of Example 1, the costs of transitions among
basins of attraction are as follows: c(Ã, B̃) = −4

7 ln(εfβ(2, 4)), c(B̃, Ã) = −3
7 ln(εfβ(−1, 3)),

c(B̃, C̃) = −2
3 ln(εfβ(1, 4)), c(C̃, B̃) = −1

3 ln(εfβ(−2, 2)), c(Ã, C̃) = −1
3 ln(εfβ(−2, 2)) and

c(C̃, Ã) = −2
3 ln(εfβ(2, 4)).

20



Table 4: For any pair of agent i, j ∈ N the profile (C,C) is risk dominant.

A B C

A 5 , 5 3 , 1 0 , 3

B 1 , 3 6 , 6 2 , 2

C 3 , 0 2 , 2 4 , 4

{θ}

1

2

3

4

5 6

7

8

9

{θc}

Figure 2: The red dashed line divides the network into subgroups θ = {1, 2, 3, 4, 5} and
θc = {6, 7, 8, 9}.

The condition in Corollary 1 leads to a null set for all values of ε ∈ (0, 1) and 0 ≤ β <∞.
We thus proceed to step two of the algorithm, which computes the maximum path potentials.
The maximum path potentials are such that for all values of ε ∈ (0, 1) and 0 ≤ β < ∞,
φ(Ã) > 0, φ(C̃) > 0 and

φ(B̃) = −
(3

7 ln(εfβ(−1, 3))− 1
3 ln(εfβ(−2, 2))

)
< 0.

Implying that πε( ~B) ∼ limε→0 πε( ~B) = limβ→∞ πε( ~B) = 1.

The next example will illustrate how local interactions can affect the resistance of basins
of attraction. The network topology can affect both the diameter of any pair of basins of
attraction and the associated average probabilities, and hence the speed of evolution between
them. If the network assumes a simple topology, then it is possible to compute d(x̃, x̃) by
first identifying the role each agent plays with respect to their degree.

Example 3: Consider a normal form game Γ in Table 1 and let the learning model
be that governed by the dynamics in (6). Denote by Ru(x̃) and φu(x̃) for the resistance and
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maximum path potential of x̃ respectively under uniform and random matching, and by Rl(x̃)
and φl(x̃) under uniform and local random matching with network topology in Figure 2. Then
under both uniform-random and uniform-local-random matching, πε( ~A) ∼ limε→0 πε( ~A) =
limβ→∞ πε( ~A) = 1. We also have that Ru(B̃) > Rl(B̃), Ru(Ã) > Rl(Ã), φu( ~B) > φl( ~B) and
φu( ~A) < φl( ~A).

Proof. Under uniform and random matching, when the process (X, Pε) is in ~B, at least 1
3 of

the population must play B for the transition ~B → ~A to occur. Implying that d(B̃, Ã) = 1
3 .

After computing the associated average probability PA(B̃, Ã), the cost of the transition ~B →
~A is c(B̃, Ã) = −1

3 ln(εfβ(2)), where fβ(a) = 1/(1 + eaβ). Similarly, c(B̃, Ã) = −2
3 ln(εfβ(4)).

Implying that Ru(B) < C Ru(B). The corresponding maximum path potentials are for all
values of ε ∈ (0, 1) and 0 ≤ β <∞:

φu(Ã) = −
(1

3 ln(εfβ(2))− 2
3 ln(εfβ(4))

)
< 0(22)

φu(B̃) = −
(2

3 ln(εfβ(4))− 1
3 ln(εfβ(2))

)
> 0(23)

Now consider the case of uniform local random matching for the network in Figure 2.
Under the mutationless model (X, P ) there are two additional limit sets. Let θ = {1, 2, 3, 4, 5}
be the subset of agents belonging to the subgroup on the left hand side of the network in
Figure 2. Then there exist two limit sets of (X, P ) induced by the network topology; ~Bθ

in which all players in subgroup θ play B and those in θc play A, and ~Aθ in which all
players in subgroup θ play A and those in θc play B. By considering intermediate metastable
sets ~Bθ and ~Aθ together with their basins of attraction B̃θ and Ãθ, the resistance of B̃ is
associated with the transition B̃ → B̃θ and is given by Rl(B̃) = 1

9 ln(εfβ(2)). Similarly for
Ã, we have that Rl(Ã) = 2

9 ln(εfβ(4)), which is associated with the transition Ã→ Ãθ. The
corresponding co-resistances are: C Rl(B̃) = 4

9 ln(εfβ(4)) and C Rl(Ã) = 1
3 ln(εfβ(2)).

It can also be easily shown (though a bit tedious exercise) that the maximum path po-
tentials for ~B and ~A are given by

φu(Ã) = −
(2

9 ln(εfβ(2))− 2
9 ln(εfβ(4))

)
< 0(24)

φu(B̃) = −
(2

9 ln(εfβ(4))− 1
9 ln(εfβ(2))

)
> 0(25)

Clearly, ~A is both the long-run ε-stable and stochastically stable set, and that Ru(B̃) >
Rl(B̃), Ru(Ã) > Rl(Ã), φu( ~B) > φl( ~B) and φu( ~A) < φl( ~A)

The presence of metastable sets induced by the network act to reduce the resistance of
the basins of attraction of other metastable sets and hence speeding up the evolution of the
process (X, Pε) between every pair of basins of attraction. This is precisely the effect of
step-by-step evolution discussed by Ellison (2000).
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5. Local stability and the speed of learning

In this section, we focus on characterizing the convergence rates of the process (X, Pε),
and in particular we construct three measures of convergence that can be used to characterize
the short-run and medium-run behavior of the system. That is, the expected waiting time
between metastable sets, metastability as a measure of how locally stable a metastable set
is, and the contagion rate as the measure of the convergence rate of the process to its quasi-
stationary distribution within a given basin of attraction. The contagion rate is equivalently
the measure of how fast a strategy diffuses across the population once its threshold has been
attained.

The rate at which the process (X, Pε) convergence to its long-run stationary distribution
is well studied in the literature under the concept of mixing time. The lower and upper
bounds for the mixing time of discrete Markov chains are well established in the literature,
generally as functions of the second largest eigenvalue and of the diameter of the associated
transition matrix.6 For this reason, we focus on measures of convergence that capture the
short-run and medium-run behavior of the process (X, Pε). Moreover, as demonstrated in
section 2, the mixing time of the process can be unrealistically long when the probabilities
of mistakes are small.

5.1. Expected waiting time and metastability

The expected waiting time between any pair of metastable sets is basically the expected
time it takes the process (X, Pε) to enter the boundary of the basin of attraction of the
second metastable set given that it starts from the state belonging to the first metastable
set. Metastability is a measure of how long it takes the process (X, Pε) to exit the basin
of attraction of a metastable set once it has entered its boundaries. Equivalently, it is the
measure of the persistence of the limit sets of (X, P ) to perturbations and can thus be used
to rank limit sets in terms of how locally stable they are. Formally,

Definition 3: Let Ωi
ε and Ωj

ε be two metastable sets of the process (X, Pε) with respective
basins of attraction x̃i and x̃j. Let n(x̃i, x̃j) be the number of agents that must play a different
action for the transition from Ωi

ε to the boundary of x̃j to occur. Then the expected waiting
time ET (Ωi

ε, x̃j) associated with such a transition and the metastability M (Ωi
ε) of Ωi

ε are
defined as follows.

ET (Ωi
ε, x̃j) = E [min {t| n(x̃i, x̃j) ≥ d(x̃i, x̃j)n}]

M (Ωi
ε) = min

x̃j 6=x̃i
ET (Ωi

ε, x̃j)

6The interested reader can refer to Aldous and Fill (1999) for detailed expositions concerning mixing times
of Markov chains.
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The following theorem provides lower bounds on both the expected waiting time and
metastability of metastable sets.

Theorem 2: Let (X, Pε) be a model of learning with mistakes, and let Ωi
ε and Ωj

ε be any
two of its metastable sets with corresponding basins of attraction x̃i and x̃j. Then

ET (Ωi
ε, x̃j) ≥ en[c(x̃i,x̃j)+f(d(x̃i,x̃j))]

M (Ωi
ε) ≥ en[f(d(x̃i))+R(x̃i)].

where f(α) = α ln
(

α
1−α

)
+ ln(1− α), and d(x̃i) = arg mind(x̃i,x̃j) c(x̃i, x̃j)

Proof. See Appendix A.5

The metastability of any metastable set is bounded from below by the exponential function
of the resistance of its basin of attraction and the diameter d(x̃i) that minimizes the cost
of exiting its basin of attraction. The direct implication is that, depending on the model
of mistakes, the metastable set with the largest size of basin of attraction is not necessarily
that with the highest level of metastability. By the size of basin of attraction we mean the
minimum number (or fraction) of mistakes required to exit a given basin of attraction. That
is for any x̃i ∈ X̃, the size of basin of attraction of x̃i is given by minx̃j 6=x̃i d(x̃i, x̃j)n. In
relation to the discussion of the step-by-step evolution argument above, it then follows that
the presence of intermediate metastable sets induced by the network structure act to reduce
the expected waiting time and metastability of other metastable sets.

The definitions of expected waiting time and metastability above are closely related to the
notion of hitting time in discrete Markov chains. Theorem 2 together with its constructive
proof thus provide a novel and tighter lower bounds to hitting time in general. Ellison (1993,
2000) also studies the concept of waiting time and provides an upper bound while assuming
vanishing mutation rates, which is rather specific to the case of state-independent mutation
rates. On the contrary, Theorem 2 provides tighter lower bounds that are independent of the
model of mistakes and the assumption of vanishing mutation rates is not necessary in proof
of the result.

The expression we provide for metastability can also be independently employed as a mea-
sure for equilibrium selection in some specific settings of stochastic evolutionary dynamics.
For example, in some evolutionary models such as those pioneered by Binmore and Samuel-
son (1997), the interest is in the properties of the learning process as the population size
becomes arbitrarily large. The expressions for the expected waiting time and metastability
in Theorem 2 imply that the equilibria that are stable in a long-run are those for which the
diameter of the basins of attraction are independent of the population size. To see this, let Ω∗ε
be a metastable set that satisfies such conditions, and x̃∗ be its respective basin of attraction.
Then

M (Ω∗ε) ∝ en ln(PA(x̃∗,x̃min))

24



where x̃min is the basin of attraction that minimizes the cost of exiting the boundaries of x̃∗.
It then follows that limn→∞M (Ω∗ε) =∞.

5.2. Contagion rate

The expected waiting time and metastability measures above are concerned with inter-
metastable sets transitions, and hence the medium-run behavior of the process (X, Pε). In
this subsection, we characterize the short-run behavior of (X, Pε), which is the dynamics
within the basins of attraction. Once the process enters the boundaries of the basin of
attraction of a given metastable set, it acquires a quasi-stationary distribution over the state
space of the given basin of attraction. The quasi-stationary distribution attained places most
weight on the corresponding metastable set. We define the contagion rate within the basin
of attraction as the rate at which (X, Pε) converges to the quasi-stationary distribution it
attains within the given basin of attraction. Formally,

Definition 4: Let Ωε be any metastable set of (X, Pε) with the respective basin of at-
traction x̃. Let νx̃ be the quasi-stationary distribution (X, Pε) attains within x̃. Then the
contagion rate within x̃ is 1− γx̃, where

γx̃ = lim sup
t→Tx̃

∣∣∣∣∣∣P t
εqx̃ − νx̃

∣∣∣∣∣∣ 1
t

where Tx̃ is the period at which (X, Pε) attains νx̃ once its in x̃ and qx̃ is the PMF that
places most weight on the initial state of (X, Pε) in x̃. Though the definition above applies to
all basins of attraction of (X, Pε), we are specially interested in the contagion rate within the
basin of attraction of the long-run ε-stable set. If the ε-stable set is that in which all players
play (coordinate on) the same action, then the contagion rate within its basin of attraction
measures the rate at which the corresponding action spreads across the population once its
threshold has been reached. By threshold we mean the minimum number of agents required
to initially play the action before it diffuses to the rest of the population.

We show in the theorem below that γx̃ can be deduced from the spectral properties of the
transition matrix Pε and of normalized adjacency matrix of the interaction network. That is
the matrix formed by normalizing each players influence by their degree.

Theorem 3: Let (X, Pε) be a model of learning with mistakes and x̃∗ be the basin of
attraction of its long-run ε-stable set. Let 1 > λ2 ≥ · · · ≥ λmin and 1 ≥ η2 ≥ · · · ≥ ηn be the
eigenvalue spectra of Pε and the normalized adjacency matrix of the network respectively.

(i) If L is the number of metastable sets of (X, Pε), then γx̃∗ ≤ |λL+1|

(ii) If the payoff structure is such that there do not exists metastable sets induced by the
network, then γx̃∗ ≤ |η2|

Proof. See Appendix A.6
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Theorem 3 states that provided the payoff structure is such that the network does not
induce metastable sets, then the contagion rate can be deduced from the second largest
eigenvalue (or the spectral gap) of the normalized adjacency matrix. The second eigenvalue of
an adjacency matrix is a well studied property of networks, normally characterized in terms of
its conductance measure. Generally, network topologies that are sparsely connected (such as
the one-dimensional cyclic structure) and those that are near-completely decomposable have
a higher second largest eigenvalue than identical size networks that are densely connected.
This argument follows directly from the principal of interlacing eigenvalues.

Theorems 2 and 3 can together be employed to characterize strategic diffusion in net-
works. The specific cases in the literature are Morris (2000), Lee et al. (2003), Montanari
and Saberi (2010) and Young (2011). For example the finding in Morris (2000), Montanari
and Saberi (2010) and Young (2011) that strategic diffusion is faster if the network structure
is made up of cohesive subgroups, can be derived as a corollary of Theorems 2 and 3. The
following example illustrates this argument.

Example 4: Consider two extreme cases in which n players are arranged in a cirlce such
that each is connected to two other players (hereafter cyclic interaction structure) and that in
which they interact globally (that is each player interacts with every other player). Let agents
play a coordination games with payoff structure in Table 1. The direct implication is that
there are two metastable sets ~B and ~A with respective basins of attraction B̃ and Ã. Assume
that the learning process is at B̃. It follows directly from (15) that under cyclic interactions,
dc(B̃, Ã) = 2

3n and that under global interactions is dg(B̃, Ã) = 1
3 . Assume that the dynamics

is governed by (6) with β = 0 (that is, mistakes are uniformly and randomly distributed),
which implies that the risk dominant action ~A is the ε-stable state. Then the cost of the
transition B̃ → Ã under cyclic and global interactions are respectively cc(B̃, Ã) = − 2

3n ln( ε2)
and cg(B̃, Ã) = −1

3 ln( ε2)
From Theorem 2, we thus have the respective expected waiting times to be:

ETc( ~B, Ã) ≥ Ke−
2
3 ln( ε2 ) =

(
ε

2

)− 2
3

(26a)

ETg( ~B, Ã) ≥ Ke−n
1
3 ln( ε2 ) =

(
ε

2

)−n3
(26b)

Implying that ETc( ~B, Ã) > ETg( ~B, Ã) for any value of n ≥ 3. Theorem 3 on the other hand
directly implies that once the process has entered the boundaries of Ã, the contagion rate γc

Ã

under cyclic interactions is greater then γg
Ã
under global interactions for any n ≥ 4. This di-

rectly implies that the network topology with optimal rate of strategic diffusion lies between
these to extreme cases. Thats is, it should consists of subgroups that are small enough to
favor lower expected waiting times, but large enough with high connectivity to favor a higher
contagion rate.
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The expressions for the expected waiting time in (26a) and (26b) are also consistent with
the findings in Ellison (1993) and others, that under cyclic interactions the waiting time is
independent of the population size and it is not the case for global interaction.

6. Conclusion

Stochastic evolutionary modeling has been and still is an important approach in game
theory. It is most appealing in its remarkable ability to select among multiple equilibria and
as a means of modeling boundedly-rational strategic players. This paper developed a general
framework for noisy stochastic evolutionary dynamics with the objective of circumventing
some of the main limitations and criticisms surrounding such models. The first main con-
tribution of this paper has been to define the concept of epsilon-stability as a more robust
solution concept than the commonly used notion of stochastic stability. We then provided
an efficient algorithm for computing epsilon-stable sets that is based on fairly fundamental
measures.

The second main contribution is the derivation of bounds for expected waiting time,
metastability and contagion rate. The expressions we provided for the expected waiting time
and metastability can in addition (to being measures for characterizing the short-run and
medium-run behavior of learning dynamics) be independently employed as measures for equi-
librium selection in some specific settings of stochastic evolutionary dynamics. In conclusion,
we hope that the characterization we have provided in this paper will fix some of the skep-
ticism toward stochastic evolutionary models as a mechanism for equilibrium selection, and
consequently allow for more of their application to modeling social and economic behavior.

A. Appendix

A.1. Proof of Lemma 1

Note that πε(x̃) = ∑
x∈x̃ πε(x). Let #X and #X̃ be the cardinalities of X and X̃ respec-

tively. Define an event matrix E as an #X ×#X̃ matrix whose entries take on a value one
if a state x ∈ X belongs to x̃ ∈ X̃ and zero otherwise. Denote by Ex̃ for the x̃th column of
E . It then follows that PεE = EP̃ε, and that

πε(x̃) = πεEx̃ ∀ x̃ ∈ X̃

Consequently, πεE = πεPεE = πεEP̃ε. Implying that πεE is the stationary distribution of P̃ε,
hence π̃ε = πεE .

A.2. Proof of Proposition 1

Consider the subsets x̃, ỹ ∈ X̃ such that x̃ ∩ ỹ = ∅, and let Ux̃ỹ = x̃ ∪ ỹ and U c
x̃ỹ its

complement. From irreducibility of (X̃, P̃ε) it follows that
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πε(x̃)P̃ε(x̃, x̃) + πε(ỹ)P̃ε(ỹ, x̃) + πε(U c
x̃ỹ)P̃ε(U c

x̃ỹ, x̃) = πε(x̃)

πε(x̃)(1− P̃ε(x̃, x̃)) = πε(ỹ)P̃ε(ỹ, x̃) + πε(U c
x̃ỹ)P̃ε(U c

x̃ỹ, x̃)

πε(ỹ)
πε(x̃) = 1− P̃ε(x̃, x̃)

P̃ε(ỹ, x̃)
−
πε(U c

x̃ỹ)
πε(x̃)

P̃ε(U c
x̃ỹ, x̃)

P̃ε(ỹ, x̃)
By substituting for 1− P̃ε(x̃, x̃) = P̃ε(x̃, x̃c), we then have

πε(ỹ)
πε(x̃) ≤

P̃ε(x̃, x̃c)
P̃ε(ỹ, x̃)

From the definition of (X̃, P̃ε), we have

P̃ε(x̃, x̃c) = 1
πε(x̃)

∑
x∈x̃

∑
y∈x̃c

πε(x)Pε(x,y)

≤ 1
πε(x̃)

∑
x∈x̃

∑
y∈x̃c

πε(x) max
x∈x̃

Pε(x,y)

=
∑
y∈x̃c

max
x∈x̃

Pε(x,y) = max
x∈x̃

Pε(x, x̃c)

Similarly,

P̃ε(ỹ, x̃) = 1
πε(ỹ)

∑
y∈ỹ

∑
x∈x̃

πε(y)Pε(y,x)

≥ 1
πε(ỹ)

∑
y∈ỹ

∑
x∈x̃

πε(y) min
y∈ỹ

Pε(y,x)

=
∑
x∈x̃

min
y∈ỹ

Pε(y,x) = min
y∈ỹ

Pε(y, , x̃)

which completes the proof.

A.3. Proof of Theorem 1

(i) The proof of Theorem 1 involves deriving bounds for the probabilities on the right
hand side of (9). We adopt the notation Ωi

ε ∈ Ωε for the typical metastable set of (X, Pε) ,
and x̃i ∈ X̃ for its corresponding basin of attraction. We also write x̃c for the complement
of x̃. Through out the proof, we write n(x̃i, x̃j) for the number of agents who must switch
their action by mistake for the transition from x ∈ Ωi

ε into the boundaries of x̃j to occur in a
single time step. From the definition of the transition probabilities of the collapsed process
(X̃, P̃ε) we have

max
x∈x̃i

Pε(x, x̃ci ) = Pε(x ∈ Ωi
ε, x̃ci ) =

∑
y∈x̃ci

Pε(x ∈ Ωi
ε,y)

≤
∑
y∈x̃c

max
y∈x̃c

Pε(x ∈ Ωi
ε,y) = K1 max

y∈ỹ∈x̃c
Pε(x ∈ Ωi

ε,y)

= K1 max
x̃j 6=x̃i

P
(
n(x̃i, x̃j) ≥ d(x̃i, x̃j)n

)
(A.1)
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Where K1 is some positive constant proportional to the cardinality of x̃c. Similarly, for
Ωj

ε ∈ x̃j ∈ x̃c and x ∈ x̃,

min
y∈ỹ

Pε(y, x̃) ≈ Pε(y ∈ Ωj
ε, x̃) =

∑
x∈x̃

Pε(y ∈ Ωj
ε,x)

≈ K2 max
x∈x̃

Pε(y ∈ Ωj
ε,x)

≥ K2P
(
n(x̃j, x̃i) ≥ d(x̃j, x̃i)n

)
.(A.2)

where K2 is some positive constant.We thus seek to provide a bound on P(n(x̃i, x̃j) ≥
d(x̃i, x̃j)n) for every pair (x̃i, x̃j) ∈ X̃.

The derivation follows a combinatorial argument, where we first transform individual
transition probabilities into Boolean random variables. That is, let Pi(x̃i, x̃j) = Pi(xt+1 =
y|xt = x) for y ∈ y ∈ Ωj

ε ∈ x̃j and y /∈ x ∈ Ωi
ε ∈ x̃i. Define a parameter p ∈ [0, 1] such that

if Pi(x̃i, x̃j) ≥ p agent i chooses y ∈ y or else he does not. This leads to a random variable
denoted by Ii, which is equal to one if i chooses y and zero otherwise. Let I = (I1, · · · , In)
be the realization of Ii for all i ∈ N . From the definition of n(x̃i, x̃j), we then rephrase our
problem as the case of bounding P

(∑n
i=1 Ii ≥ d(x̃i, x̃j)n

)
.

Now, consider the problem of a binomial independent sampling over the vector I, Bin(n, σ),
such that with probability σ, Ii is picked and with 1− σ it is not. Denote the n-dimensional
vector generated by Bin(n, σ) by u = (u1, · · · , un), where P(ui = 1) = σ and P(ui = 0) =
1− σ. We can then regard the problem of bounding P

(∑n
i=1 Ii ≥ d(x̃i, x̃j)n

)
as determining

the probability of “efficiently” finding a subset S ⊆ N of at least d(x̃i, x̃j)n players all of
whom simultaneously switch to play y. Define an event ∀i∈SIi = 1; that is all members of S
choose y, and consequently P(∀i∈SIi = 1) is the probability that all i ∈ S choose y. We can
then define the following conditional relation,

(A.3) P
(

n∑
i=1

Ii ≥ d(x̃i, x̃j)n
)
≤

E
[
∀i∈SIi = 1

]
E
[
∀i∈SIi = 1|∑n

i=1 Ii ≥ d(x̃i, x̃j)n
] ,

where the expectations are taken over the vector u. Since the elements of u are a result of
independent sampling, we have

E[∀i∈SIi = 1] ≤
∑
S⊆N

(
σ#S(1− σ)n−#S ∏

i∈S
Pi(x̃i, x̃j)

)
= E∀ui∈u

[
n∏
i=1

(Pi(x̃i, x̃j)|ui)
]
,

where the first inequality follows from the fact that P(∀i∈SIi = 1) ≤ ∏i∈S Pi(x̃i, x̃j). It follows
that,

E
[
∀i∈SIi = 1

]
≤

n∏
i=1

Eui
[
Pi(x̃i, x̃j)|ui

]
=

n∏
i=1

(
σPi(x̃i, x̃j) + 1− σ

)
(A.4)

If we define PA(x̃i, x̃j) = 1
n

∑n
i=1 Pi(x̃i, x̃j) as the arithmetic average of all Pi(x̃i, x̃j), then
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from the convex relation between the logarithms of the arithmetic and geometric means,

1
n

n∑
i=1

ln
(
σPi(x̃i, x̃j) + 1− σ

)
≤ ln

(
σPA(x̃i, x̃j) + 1− σ

)
E
[
∀i∈SIi = 1

]
≤

n∏
i=1

(
σPi(x̃i, x̃j) + 1− σ

)
≤
(
σPA(x̃i, x̃j) + 1− σ

)n
(A.5)

To obtain the bound for E
[
∀i∈SIi = 1|∑n

i=1 Ii ≥ d(x̃i, x̃j)n
]
, recall that 1 − σ is the

probability that ui = 0. We also note that if at least d(x̃i, x̃j)n of the elements of u are ones,
then there are at most n− d(x̃i, x̃j)n zeros, that is at most n− d(x̃i, x̃j)n agents are not in
set S. It follows that

(A.6) E
[
∀i∈SIi = 1|

n∑
i=1

Ii ≥ d(x̃i, x̃j)n
]
≥ (1− σ)(1−d(x̃i,x̃j))n

Equations (A.5) together with (A.6) when substituted into (A.3) yield,

(A.7) P
(

n∑
i=1

Ii ≥ d(x̃i, x̃j)n
)
≤


(
σPA(x̃i, x̃j) + 1− σ

)
(1− σ)(1−d(x̃i,x̃j))

n ,

If we choose σ that optimizes the quantity g =

(
σPA(x̃i,x̃j)+1−σ

)
(1−σ)(1−d(x̃i,x̃j)) (by equating the derivative

to zero and solving for σ) and substituting back gives

(A.8) P
(

n∑
i=1

Ii ≥ d(x̃i, x̃j)n
)
≤

(PA(x̃i, x̃j)
d(x̃i, x̃j)

)d(x̃i,x̃j)(1− PA(x̃i, x̃j)
1− d(x̃i, x̃j)

)1−d(x̃i,x̃j)
n

Re-expressing (A.8) in exponential form results to

(A.9) P(n(x̃i, x̃j) ≥ d(x̃i, x̃j)n) ≤ e
n

[
d(x̃i,x̃j) ln

(
PA(x̃i,x̃j)
d(x̃i,x̃j)

)
+(1−d(x̃i,x̃j)) ln

(
1−PA(x̃i,x̃j)
1−d(x̃i,x̃j)

)]

Note that each Pi(x̃i, x̃j) = Pi(xt+1 = y|xt = x ∈ Ωi
ε) � 1, hence ln(1 − PA(x̃i, x̃j)) �

ln(1− d(x̃i, x̃j)) such that

(A.10) P(n(x̃i, x̃j) ≥ d(x̃i, x̃j)n) ≤ e−n[f(d(x̃i,x̃j))−d(x̃i,x̃j) ln(PA(x̃i,x̃j))]

where f(d(x̃i, x̃j)) = d(x̃i, x̃j) ln
(

d(x̃i,x̃j)
1−d(x̃i,x̃j)

)
+ ln (d(x̃i, x̃j)). Recall that the cost of the tran-

sition x̃i → x̃j is
c(x̃i, x̃j) = −d(x̃i, x̃j) ln (PA(x̃i, x̃j)) .

It then follows from the definition of the resistance R(x̃i) of x̃i that

max
x̃j 6=x̃i

P(n(x̃i, x̃j) ≥ d(x̃i, x̃j)n) ≤ max
x̃j 6=x̃i

e−n[f(d(x̃i,x̃j))+c(x̃i,x̃j)] = e−n[f(d(x̃i))+R(x̃i)](A.11)

where d(x̃i) = arg mind(x̃i,x̃j) c(x̃i, x̃j).
To obtain a lower bound for P(n(x̃j, x̃i) ≥ d(x̃j, x̃i)n) from the steps above, we assume

that there exists a positive constant K3 for which the geometric mean is greater than the
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arithmetic mean and likewise for the inequality in (A.3) and (A.6) (the rest of the proof
follows), such that for some positive constant K4,

P(n(x̃j, x̃i) ≥ d(x̃j, x̃i)n) ≥ K4e
−n[f(d(x̃j ,x̃i))+c(x̃j ,x̃i)]

Now, consider a typical path Hx̃j x̃i = (x̃j, · · · , x̃κ, · · · , x̃i) from x̃j to x̃i. By substituting for
the expressions in (A.1) and (A.2), we obtain the quotient πε(x̃j)

πε(x̃i) to be

πε(x̃j)
πε(x̃i)

≤ maxxi∈x̃i Pε(xi, x̃ci )
minxj∈x̃j Pε(xj, x̃j)

(A.12)

≤ Ken[(c(x̃j ,x̃i)−R(x̃i))+(f(d(x̃j ,x̃i))−f(d(x̃i)))](A.13)

By applying the chain rule on the quotients, we have

πε(x̃j)
πε(x̃i)

= πε(x̃j)
πε(x̃j+1) · · ·

πε(x̃κ)
πε(x̃κ+1) · · ·

πε(x̃i−1)
πε(x̃i)

≤ Ken[
∑j−1

κ=i(c(x̃κ,x̃κ+1)−R(x̃κ+1))+
∑j−1

κ=i(f(d(x̃κ,x̃κ+1))−f(d(x̃κ+1)))](A.14)

= KF
(
Hx̃j x̃i

)
en[
∑j−1

κ=i(c(x̃κ,x̃κ+1)−R(x̃κ+1))](A.15)

where F
(
Hx̃j x̃i

)
= en[

∑j−1
κ=i(f(d(x̃κ,x̃κ+1))−f(d(x̃κ+1)))] and

φ(Hx̃j x̃i) =
j−1∑
κ=i

(c(x̃κ, x̃κ+1)−R(x̃κ+1))

is the path potential of Hx̃j x̃i . Implying that πε(x̃i) > πε(x̃j) if φ(Hx̃j x̃i) < 0.We thus have
φ(Hx̃j x̃i) < 0 as the necessary condition for πε(x̃i) > πε(x̃j).

Consider all paths Hx̃j x̃i from x̃j → x̃i and let H∗x̃j x̃i = arg minHx̃j x̃i∈Hx̃j x̃i
φ(Hx̃j x̃i). If

φ(H∗x̃j x̃i) < 0 then for all Hx̃j x̃i 6= H∗x̃j x̃i we have that φ(Hx̃j x̃i) < 0.
Similarly, let x̃∗j = arg maxx̃j 6=x̃i φ(H∗x̃j x̃i). If φ(H∗x̃∗j x̃i) < 0 then for all H∗x̃j x̃i 6= H∗x̃∗j x̃i we

have that φ(H∗x̃j x̃i) < 0. Implying that a metastable set for which φ(H∗x̃∗j x̃i) < 0 belongs to
the union set containing the ε-stable set.

(ii) The proof of Theorem 1 (ii) makes use of the combinatorial methods of Freidlin and
Wentzell (1984, Chapter 6, Lemma 3.1). That is, if we define a number qε(x) for every state
x ∈ X with its associated set of x-trees Tx as

(A.16) qε(x) =
∑
τ∈Tx

∏
(y,z)∈τ

Pε(t, z)

Then the stationary distribution πε of Pε can be equivalently expressed as

(A.17) πε(x) = qε(x)∑
y∈X qε(y) for each x ∈ X

In a similar manner, we can define an equivalent number qε(x̃i) for a typical state x̃i ∈ X̃ as

(A.18) qε(x̃i) =
∑
τ∈Tx̃i

∏
(x̃j ,x̃κ)∈τ

P(x̃j, x̃κ)
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where τ is a typical x̃i-tree on the graph W , such that P(x̃j, x̃κ) is the transition probability
associated the minimum cost path from x̃j to x̃κ. Since the minimum cost path is also the
maximum probability path, we then have that

P(x̃j, x̃κ) = max
Hx̃j x̃κ∈Hx̃j x̃κ

∏
(x̃l,x̃m)∈Hx̃j x̃κ

P̃ε(x̃l, x̃m)

≤ K1 max
Hx̃j x̃κ∈Hx̃j x̃κ

∏
(x̃l,x̃m)∈Hx̃j x̃κ

P(n(x̃l, x̃m) ≥ d(x̃l, x̃m)n)

≤ K1 max
Hx̃j x̃κ∈Hx̃j x̃κ

∏
(x̃l,x̃m)∈Hx̃j x̃κ

e−n[f(d(x̃l,x̃m))+c(x̃l,x̃m)]

= K1 max
Hx̃j x̃κ∈Hx̃j x̃κ

e
−n
[∑

(x̃l,x̃m)∈Hx̃j x̃κ
f(d(x̃l,x̃m))+

∑
(x̃l,x̃m)∈Hx̃j x̃κ

c(x̃l,x̃m)
]

= K1e
−n
[
S(H∗x̃j x̃κ )+w(x̃j ,x̃κ)

]
(A.19)

where S(H∗x̃j x̃κ) = ∑
(x̃l,x̃m)∈H∗x̃j x̃κ

f(d(x̃l, x̃m)) and H∗x̃j x̃κ is the minimum cost path. Substi-
tuting for P(x̃j, x̃κ) in (A.18) yields

qε(x̃i) = K1
∑
τ∈Tx̃i

∏
(x̃j ,x̃κ)∈τ

e
−n
[
S(H∗x̃j x̃κ )+w(x̃j ,x̃κ)

]
(A.20)

= K1
∑
τ∈Tx̃i

ψ(τ)e−n
[∑

(x̃j ,x̃κ)∈τ w(x̃j ,x̃κ)
]

(A.21)

≤ K5 max
τ∈Tx̃i

ψ(τ)e−n
[∑

(x̃j ,x̃κ)∈τ w(x̃j ,x̃κ)
]

(A.22)

= K5ψ(τ ∗)e−n[S (x̃i)](A.23)

where K5 is some constant, ψ(τ) = e
−n
[∑

(x̃j ,x̃κ)∈τ S(H∗x̃j x̃κ )
]
and the last equality follows from

the definition of stochastic potential. That is

S (x̃i) = min
τ∈Tx̃i

∑
(x̃j ,x̃κ)∈τ

w(x̃j, x̃κ).

Since qε(x̃i) ∝ πε(x̃i), it follows that x̃∗ = arg maxx̃∈X̃ πε(x̃) ≡ arg maxx̃∈X̃ qε(x̃) is that
whose stochastic potential is such that S (x̃∗) ≤ S (x̃) for all x̃ 6= x̃∗. That is, S (x̃∗) is the
minimum stochastic potential.
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A.4. Proof of Proposition 2

(i) Recall that for any basin of attraction x̃i ∈ X̃, R(x̃i) = minx̃j 6=x̃i {c(x̃i, x̃j)}, and
C R(x̃i) = maxx̃j 6=x̃i {c(x̃j, x̃i)}. If ε = (ε, · · · , ε), then

R(x̃i) = min
x̃j 6=x̃i

{c(x̃i, x̃j)}

= min
x̃j 6=x̃i

{−d(x̃i, x̃j) ln (PA(x̃i, x̃j|G))}

= min
x̃j 6=x̃i

{
−d(x̃i, x̃j) ln

(
ε

1
n

n∑
i=1
Pi(y|x ∈ Ωi

ε)
)}

(A.24)

where Ωi
ε is the metastable set of basin of attraction x̃i, and y ∈ y ∈ Ωj

ε ∈ x̃j, y /∈ x ∈ Ωi
ε

Similarly, for an x ∈ x ∈ Ωi
ε,

C R(x̃i) = max
x̃j 6=x̃i

{
−d(x̃j, x̃i) ln

(
ε

1
n

n∑
i=1
Pi(x|y ∈ Ωj

ε)
)}

(A.25)

If the mistakes probability mass function is bounded, that is 0 < Pi(x|x) < 1 ∀ i ∈ N , ∀
x ∈ X and ∀ x ∈ X, then so must be the averages 1

n

∑n
i=1Pi(.|y). Implying that there must

exist an ε′ close to zero for which the quantities ln
(
ε 1
n

∑n
i=1Pi(.|y)

)
are very much close to

−1, such that

R(x̃i) ∼ min
x̃j 6=x̃i

d(x̃i, x̃j)(A.26)

C R(x̃i) ∼ max
x̃j 6=x̃i

d(x̃j, x̃i)(A.27)

In which case d(x̃i, x̃j) is a sufficient measure of the cost of transition x̃i → x̃j. These are
precisely the measures employed in the computation of the long-run stochastically stable set.
For example minx̃j 6=x̃i d(x̃i, x̃j) and maxx̃j 6=x̃i d(x̃j, x̃i) are the radius and coradius respectively
in Ellison (2000). Implying that πε ∼ limε→0 πε.

(ii) When Pi(x|x) = 1
#X ∀ i ∈ N , ∀ x ∈ X and ∀ x ∈ X, then

R(x̃i) = − ln
(

ε

#X

)
min
x̃j 6=x̃i

d(x̃i, x̃j)(A.28)

C R(x̃i) = − ln
(

ε

#X

)
max
x̃j 6=x̃i

d(x̃j, x̃i)(A.29)

In which case d(x̃i, x̃j) is a sufficient measure of the cost of transition x̃i → x̃j, an hence
πε ∼ limε→0 πε.

A.5. Proof of Theorem 2

From the definition of ET (Ωi
ε, x̃j), we have that

(A.30) ET (Ωi
ε, x̃j) = 1

P(n(x̃i, x̃j) ≥ d(x̃i, x̃j)n)
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It then follows from (A.10) that

(A.31) ET (Ωi
ε, x̃j) ≥ en[f(d(x̃i,x̃j))+c(x̃i,x̃j)]

In the case of metastability, we have that

M (Ωi
ε) = max

x̃j 6=x̃i
ET (Ωi

ε, x̃j) ≥ max
x̃j 6=x̃i

en[f(d(x̃i,x̃j))+c(x̃i,x̃j)] = en[f(d(x̃i))+R(x̃i)](A.32)

A.6. Proof of Theorem 3

(i) The proof makes use of the spectral properties and near-complete decomposability
of transition matrix Pε. Under the mutationless process (X, P ), the transition matrix is
completely decomposable into the form

P =


M∗1

. . .
M∗l

. . .
M∗L


where M∗

l for l = 1, · · · , L is a block matrix describing the transitions within each basin of
attraction under (X, P ). The rest of the undisplayed elements are zeros and L is the number
of limit sets. All leading eigenvalues of the block matrices are ones.

When each εi(x) > 0 (but small) and mistakes probability mass functions are bounded,
the transition matrix Pε is near-completely decomposable into L “loosely” connected block
matrices that we denote by Ml for l = 1, · · · , L. That is we can write Pε = P + εP ∗,
where ε is a small real number and P ∗ is an arbitrary #X by #X matrix. A more detailed
exposition on the notion of near-complete decomposability can be found in Simon and Ando
(1961). For ε small enough, the leading eigenvalues of the diagonal block matrices of Pε

are close to one. Let λil denote the ith eigenvalue of the lth diagonal block matrix, such
that (λ11 , λ12 , · · · , λ1L) are the largest eigenvalues in blocks 1 to L, and (λ21 , λ22 , · · · , λ2L)
are the respective second largest eigenvalues. Index by nl as the number of columns in
diagonal block l such that the eigenvalue spectrum ρ(Pε) of Pε can be written as ρ(Pε) =(
λ11 , λ21 , · · · , λn11 , · · · , λ12 , · · · , λ1l , · · · , λnll , · · · , λ1L , · · · , λnLL

). The spectral decomposition of
(X, Pε) is then given by

q0P
t
ε = q0r11z′11 +

n1∑
j=2

λtj1q0rj1z′j1 + λt12q0r12z′12 +
n2∑
j=2

λtj2q0rj2z′j2

+ · · ·+ λt1Lq0r1Lz′1L +
nL∑
j=2

λtjLq0rjLz′jL(A.33)

where the “prime” implies the transpose, and rjl and zjl are the right and left eigenvectors of
λjl . We would like to show that the second largest eigenvalue λ2l of Ml describes the rate at
which (X, Pε) converges to its quasi-stationary distribution within x̃l. Let xl be the initial

34



state of (X, Pε) in x̃l and qx̃l be the #X-dimensional vector of zeros except a one at the
point corresponding to the state xl. Let tl be the period at which (X, Pε) is in the state xl
and Tx̃l the period at which it exits x̃l (or equivalently the period at which it attains the
quasi-stationary distribution νl). Then for tl ≤ t ≤ Tx̃l and all l = 1, · · · , L,

qt = λt1lqx̃lr1lz′1l +
nl∑
j=2

λtjlqx̃lrjlz′jl

νl = lim
t→Tx̃l

qt = λ
Tx̃l
1l qx̃lr1lz′1l ≈ λt1lqx̃lr1lz′1l

where the approximation holds form the fact that λ1l is close to one for all l. It then follows
that

γx̃l = lim sup
t→Tx̃l

∣∣∣∣∣∣P t
εqx̃l − νx̃l

∣∣∣∣∣∣ 1
t

≈ |λ2l | lim sup
t→Tx̃l

∣∣∣∣∣∣
∣∣∣∣∣∣qx̃lr2lz′2l +

nl∑
j=3

(
λjl
λ2l

)t
qx̃lrjlz′jl

∣∣∣∣∣∣
∣∣∣∣∣∣

1
t

≈ |λ2l |

Implying that the contagion rate within x̃∗ is γx̃∗ = γx̃1 ≈ |λ21 | ≤ |λL+1|.
(ii) To prove the second part of the theorem, we consider the linearization of (X, Pε) of

the form

(A.34) qtΨ = q0P
t
εΨ = q0ΨΠt

ε

where Ψ is the event matrix derived by stacking into rows all possible realizations of states
of (X, Pε) written in the basis vector form. The choice basis vector for each player i ∈ N

is a vector of zeros except a one in a position corresponding to the action i is playing. For
example for a binary action set X = {A,B}, a vector (1, 0) implies that i is playing action
A and (0, 1) implies that i is playing action B. In the case of two players and binary action
set, there are four possible realization such that

(A.35) Ψ =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1


where the first row corresponds to the state in which both players play action A, and so
forth. Let the action set X = (x1, · · · , xm) be the same for all i ∈ N . Then for n players,
Πε is an nm × nm matrix defined by Πε = A ′ ⊗ Σ, where ⊗ is a Kronecker product, A ′ is
the transpose of the normalized adjacency matrix A and Σ is the action-transition matrix
defined as follows. For any directly connected pair of players, let P(xj|xi) be the probability
that a given player plays action xj ∈ X in the next period given that his opponent is playing
xi ∈ X in the current period. Then Σ is given by

(A.36) Σ =


P(x1|x1) P(x2|x1) · · · P(xm|x1)
P(x1|x2) P(x2|x2) · · · P(xm|x2)

... ... . . . ...
P(x1|xm) P(x2|xm) · · · P(xm|xm)
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A detailed exposition on the validity of (A.34) can be found in Asavathiratham (2001,
Chapter 5). The following lemma follows directly from (A.34) and the definition of Πε above.

Lemma 2: Let ρ(Πε) = λ̃1, · · · , λ̃nm, ρ(A ) = (η1, · · · , ηm) and ρ(Σ) = (δ1, · · · , δn) denote
the eigenvalue spectra of Πε, A and Σ respectively.

(a) If λ1 and λ̃1 are the unique largest eigenvalues of Pε and Πε respectively, then λ1 =
λ̃1 = 1.

(b) ρ(Πε) = (δiηj) ∀δi ∈ ρ(Σ), ηj ∈ ρ(A ).

Proof. Multiplying (A.34) by the right eigenvector ri of Pε, we have PεΨr1 = ΨΠεr1. Since
Pε is a stochastic matrix, λ1 = 1, which implies that PεΨr = Ψr1, which is true if and only if
Πεr1 = r1. That is λ̃1 = λ1 = 1. For the proof of Lemma 2 (b) see Horn and Johnson (1990,
page 245, Theorem 4.2.12).

It then follows that if the payoff structure is such that the network does not induce
metastable sets (which also automatically implies that the network must be connected), then
for small enough values of εi(x) ∀ i ∈ N and x ∈ X, λL+1 ≤ λ̃L+1 = η2δ1 = η2.
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