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Abstract 

 
Background: Fundus cameras are widely used by ophthalmologists for monitoring and 

diagnosing retinal pathologies.  Unfortunately, no optical system is perfect, and the 

visibility of retinal images can be greatly degraded due to the presence of problematic 

illumination, intraocular scattering, and blurriness caused by sudden movements. To 

improve image quality, different retinal image restoration/enhancement techniques 

have been developed, which play an important role in improving the performance of 

various clinical and computer-assistant applications. Due to this, the researchers are 

attracted to these techniques.  

 

Scopes: This chapter presents a general introduction and review of retinal image 

restoration/enhancement techniques, and discusses their underlying mathematical 

models. Three main topics of retinal image restoration/enhancement techniques, i.e. 

illumination correction, dehazing, and deblurring are addressed. Finally, the aim and 

outline of this thesis are introduced. 
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1. The unique duality of eyes between their biological and 
optical roles 

The visual system, as shown in Fig. 1-1 is a complex network of structures and 

processes that allows humans (and other animals) to perceive and interpret visual 

information from the surrounding environment. The visual system includes the ocular 

system, which detects light and sends visual information to the brain, as well as the 

neural pathways in the brain that process and interpret this information [1]. Within, the 

ocular system plays a special and unique role due to its duality feature between 

biological and optical roles. 

 

Fig. 1-1. The sketch of the human visual system. The visual system consists of the ocular part (eyes) 

and neural pathways that go through the thalamus into the visual cortex. The figure is adapted from 

Wiki.  

1.1 From a biological perspective 

From a biomedical perspective, the eyes are a complex organ that allows us to perceive 

the world around us through the detection of light. The eyes are made up of several 
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interconnected structures as shown in Fig. 1-2, including the cornea, lens, iris, retina, 

and optic nerve, which work together to focus and transmit visual information to the 

brain [2].  

  

Fig. 1-2. The sketch sagittal plane of the anatomy of the eye. The figure is adapted from Wiki.  

Besides vision, the eyes also play a crucial role in regulating the body's circadian 

rhythms [3], which help to control sleep-wake cycles, hormone secretion, and other 

physiological processes. The ocular system contains specialized cells called 

melanopsin-containing retinal ganglion cells, which are sensitive to light and play a 

critical role in regulating the body's circadian rhythm, or internal biological clock. These 

cells help to synchronize the body's physiological processes with the 24-hour cycle of 

the day and are important for maintaining optimal health and well-being. 
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1.2 From an optical perspective 

From an optical perspective, the eyes function as an optical system that focuses light 

onto the retina [4]. The cornea, lens, and iris work together like a camera’s lens system 

that captures and focuses light to the retina. The amount of incident light can be 

controlled by the iris. The retina is a layer of tissue located at the back of the eye that 

contains millions of light-sensitive cells called photoreceptors.  

The retina plays a critical role in converting incoming light into electrical signals that 

can be transmitted to the brain for processing and interpretation, which works like the 

sensor plane of a camera. 

2. Ophthalmoscope 

 

Fig. 1-3. Hermann von Helmholtz, and his handheld ophthalmoscope. Images from left to right are 

Helmholtz, his ophthalmoscope, and a sketch of its optical path. 

The introduction of the ophthalmoscope by Helmholtz [5, 6] allowed for the capture of 

images of the retina, establishing ophthalmology as a separate sub-area of medicine. In 

his design as shown in Fig. 1-3, the ophthalmoscope, the subject’s eye, and the 

examiner’s eye together form two optical systems: (1) the illumination system, and (2) 

the detection system. In the illumination system, lights from the light source are 

reflected from the mirror and incident into the subject’s eye. The reflected light from 
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the retina is then collected and observed by the examiner’s eye. This two-system design 

becomes the fundament of all successor ophthalmoscopes and fundus cameras. 

The ophthalmoscope and fundus camera provide a non-invasive method for retinal 

checking. Since then, retinal images have been widely used by ophthalmologists for 

early detection, diagnosis, and monitoring of ocular diseases and their progression. 

Morphologic changes due to eye diseases like diabetic retinopathy [7, 8], glaucoma [9, 

10], and age-related macular degeneration [11-13] can be directly observed in these 

images. Moreover, neurological diseases such as stroke and cognitive dysfunction can 

be also diagnosed through retinal images [14, 15]. Obviously, the higher the image 

clarity, the more detailed information can be observed from the image, and the better 

their diagnostic capabilities. 

 

Fig. 1-4. Sketch of the optical design of a fundus camera.  

Similar to an ophthalmoscope, a typical retinal imaging platform can be seen as two 

interconnected imaging systems, as depicted in Fig. 1-4. One is the ocular system, and 

the other is a reflective imaging system that normally illuminates the fundus through 

the pupil and collects the reflected light from the retina, forming the image on the 

camera sensor.  
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3. Introduction to retinal image enhancement 

Retinal images can be severely degraded by opacities in the optical media of cataract 

eyes [16-18], retinal images for non-cataract subjects can as well be degraded by poor 

illumination conditions including uneven or insufficient illuminations shown in Fig. 1-5.  

 

Fig. 1-5. Demonstration of retinal images of good and low quality. (a1) to (d1) are sample images of 

high quality. (a2) low-quality retinal image with haze and uneven illumination. (b2) insufficient 

illumination. (c2) haze effect. (d2) uneven illumination and blurriness  

Diagnosing efficiency and precision are deeply related to the quality of retinal 

imaging. However, not every retinal image is perfect, and low-quality image occurrence 

is not a minor fact. Heaven et al. found 9.5% of all acquired images to be entirely 

unsatisfactory in a prospective study of 981 diabetic retinopathy patients [19]. Scanlon 

and Stephen found the ungradable image rate to be between 19.7% for nonmydriatic 

photography and 3.7% for mydriatic photography study of 3650 diabetic patients [20].  

The quality of retinal imaging can be improved either by including high-end fundus 

cameras and using adaptive optics to tackle the optical aberrations [21], or by using 
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image enhancement processing to correct for illumination artifacts [22-24], to enhance 

contrast [25-27] and to use dehazing algorithms [28-30].  

3.1 Categories of Retinal Image Enhancement Algorithms 

In order to improve image clarity, a number of image enhancement/restoration 

methods have been proposed, which can be broadly classified into two categories: data 

domain methods and restored model methods [31] as shown in Fig. 1-6. Data domain 

methods can be further divided into two families based on their algorithms.  

 

Fig. 1-6. Sketch of Retinal image restoration tasks and their solutions 

The first family is known as transform-domain algorithms, which involve 

transforming a raw image into a new function of other parameters, such as the spatial 

frequency domain corresponding to the Fourier transform [32], or the structure feature 

domain corresponding to the top-hat transform [33, 34]. The transformed image is 

processed and then transformed back into a new image with enhanced contrast. This 

method allows for global or local modification of the weight for different structures 

within the image. However, due to its high computational cost, the second family of data 

domain methods, known as image-domain algorithms, is generally preferred. 
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The main concept behind the image-domain algorithm is gray-level adjustment. For 

quick and simple enhancement of retinal images, histogram equalization and its 

improved version, the contrast limited adaptive histogram equalization (CLAHE), are 

commonly used [25]. Other histogram modification methods such as q-quantile [35] 

and gray-scale global spatial entropy method also show promising results in improving 

the image’s contrast [31, 36]. The global gray-level adjustment methods including the 

gamma map [37] and α-rooting [38] use a fixed function to convert the global gray-level 

distribution for adjusting the brightness of retina imaging.  

Another group of image-domain algorithms uses filters to enhance contrast. These 

algorithms are similar to transform-domain algorithms but use a convolution kernel to 

separate the background and foreground information of an image [38, 39]. The 

foreground information usually corresponds to the detailed structure of an image. By 

modifying the weights between the background and the foreground, the contrast of the 

detailed structure can be enhanced. In general, data domain methods belong to pure 

signal (image) processing techniques that normally take a few considerations of the 

physical insight of the image formation and enhancement.  

3.2 Inspired by Computational Imaging 

In order to obtain self-consistent methods for retinal imaging enhancement, 

restored model methods have been developed. These restored model methods share a 

similar idea of computational imaging, i.e. a physical model is built to describe the 

optical process of forming an image under the impact of degeneration agents. By 

directly or indirectly measuring the optical properties of these degeneration agents, 

one can compensate for the degeneration agents by digitally mimicking the propagation 

of the optical wave and modifying the wavefront of light [40-43]. Imaging through 

scattering media, for example, is a well-known application of computational imaging 

[42, 43].  

Different from computational imaging, the restored models for imaging 

enhancement do not measure the optical properties of the degeneration agents but try 
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to find the solutions corresponding to their statistical properties in optical or visual 

aspects. The solutions can be regarded as roughly estimated versions of those 

degeneration agents and can be also compensated by applying them to the image 

formation model, resulting in enhanced images. 

Restoration model methods are widely used for imaging de-hazing [44, 45], 

underwater image enhancement, and night image enhancement [46], while only a few 

studies have reported their use in retinal imaging enhancement. To our knowledge, the 

first publication about the application of restored model methods in retinal image 

enhancement can be traced back to 1989 [16], where the model for imaging the retina 

in photographs taken through intraocular scatter is considered similar to the model 

used to represent imaging of the earth from a satellite in the presence of light cloud 

cover. The scattering effect is removed (or suppressed) by using the Retinex theory.  

Based on the image formation model, Xiong et al. [31] proposed to use intensity 

correction and histogram adjustment to preprocess the image, then a transmission map 

is generated according to the intensity of the preprocessed image in each color channel. 

The haze effect can be therefore suppressed through dehazing. Although the 

performance of their approach is good, it relies on statistical and empirical properties 

of the retina imaging database to determine the algorithm parameters, which makes it 

hard to apply to different databases. A subsequent study [23] showed the results of 

using the illumination-reflectance model of image formation to correct the illumination 

of retinal images. In this research, the color-inversed dark-channel prior, also known as 

bright-channel prior [47], is employed which shows efficient illumination correction. 

Mitra et al. [48] proposed a model that includes a thin layer of cataracts. Gaudio et al. 

[49] demonstrated a pixel color amplification method for retina imaging enhancement 

which shows good performance in enhancing the detailed structure of retina images. 

In this introductory chapter, we first revisit the mathematical model used for retinal 

image restoration, their physical/mathematical insight, and how they are related to 

each other in Section 4. We further show how these image formation models are 
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applied to retinal image restoration in illumination correction in Section 5, dehazing in 

Section 6, and deblurring in Section 7. A brief introduction to deep-learning-based 

methods is discussed in Section 8. Potential clinical applications that can benefit from 

retinal image restoration/enhancement are present in Section 9. Finally, the aim and 

outline of this thesis are presented in Section 10. 

4. Mathematica model for retinal image restoration 

4.1 Pixel value stretch model 

Enhancing the quality of the retinal image can be achieved by simple manipulation 

of pixel values. For example, one can enlarge the pixel value if the original value is too 

small to be noticed or decrease the value of pixels if they are too bright.  

Accordingly, the gamma correction, given in Eq. (1-1), provides a simple and 

straightforward way for pixel adjusting.  

  ( ) ( )new olds s=x x ,  (1-1) 

When 𝛾 < 1, the nonlinear transform enlarges the small value of pixels, while if 𝛾 > 1, 

the small value is further suppressed. 

 ( ) ( )new news HE s=   x x ,  (1-2) 

Another method for pixel adjustment is histogram equalization (HE). When the 

image is represented by a narrow range of intensity values, the HE is able to make the 

intensity better distributed among the full dynamic range as shown in Fig. 1-7 (b) and 

Fig. 1-7 (f). To avoid the over and under-exposure effect of HE, the CLAHE [50] is 

proposed to adaptively achieve the histogram equalization according to the local 

contrast in the image’s sub-block.  
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Fig. 1-7. HE and CLAHE enhancement on retinal image. (a) Raw retinal image. (b) Enhanced image 

using HE. (c) Enhanced image using CLAHE. (e) Histogram for the color channels of the image in (a). 

Histogram of image in (b). (g) Histogram for image in (c).  

The HE and its improved version, the CLAHE, is widely used as a pre-processing 

method for retinal image enhancement, and the research has shown that the image 

formation model (IFM) -based methods gain better image restoration results than HE 

methods. 

4.2 Image formation model 

The widely used image formation model for retinal image enhancement is the 

illumination model which is given by 

 ( ) ( ) ( )s l r= x x x ,  (1-3) 

here s is the captured image by the camera, l is the illumination pattern from the light 

source which is assumed to be spatially slow varying, and r is the retinal reflectance as 

shown in Fig. 1-8. This model is used for retinal image illumination correction and can 

be combined with the dehazing model, which we will show later.  
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Fig. 1-8. Illumination model. 

 

Fig. 1-9. Natural scene haze formation model. 

To tackle the haze effect caused by intraocular scattering on retinal imaging, the 

haze formation model is adopted. The early-stage of the retinal image formation model 

was directly adopted from Koschmieder & McCartney’s model [51, 52] of hazy nature 

scenes, as shown in Fig. 1-9, which is given by  

 ( ) ( ) ( ) ( )1s t o a t=  + −  x x x x ,  (1-4) 

where o is the haze-free image, t is the transmission matrix of the haze medium 

describing the portion of the light that is not scattered and reaches the camera. a is the 

global atmospheric light, and s is the observed image. Here is a large amount of natural 

scene dehazing research based on Eq (1-4) [53], however, it was developed for natural 

scenes and may not be the optimal choice for fundus imaging since it ignores the 

double-pass property of fundus photography. 

( )l x

( )r x

( )s x

( ) ( )T x O x

( )1−A T

( )O x
Detection path



Chapter 1 

18 
 

1 

Peli et al. [16] developed an optical model for imaging the retina through cataracts 

which is  

 ( ) ( ) ( )1s l o l t=   +  −  x x x .  (1-5) 

where l is the flash illumination of the fundus camera and α is the attenuation of retinal 

illumination due to the cataract. Both l and α are considered as constant as shown in 

Fig. 1-10.  

 

Fig. 1-10. Peli’s retinal image formation model. 

Different from Eq. (1-4), Eq. (1-5) reveals that the illumination pattern also impacts 

the quality of retinal imaging. However, as L is constant, Eq. (1-5) loses the ability to 

correct the uneven (spatially varying) illumination of retinal imaging. In addition, the 

existing parameter α shows the basic idea of the double-pass property where the 

illumination light interacts twice with the cataract layer. (When the light goes inside the 

eye, and when it is reflected out from the fundus). 

In [54], an addition-formed retinal image formation model was proposed, which is  

 ( ) ( ) ( ) ( ) ( )clip , ;L L Ls l G r o s  =   + +  x x x .  (1-6) 

𝐺𝐿  is the Gaussian kernel determined by parameter 𝑟𝐿  and  𝜎𝐿 . l  is the illumination 

pattern. clip is a function that truncates the pixel value of the image in a certain dynamic 

range. β is the addictive noise signals. 

Although this model didn’t consider the optical processing when the image is 

produced, it shares a similar idea with the image structure model which will be 

L
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illumination

S

Photographed
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introduced later in Section 4.3. Based on Eq. (1-6), a Neural network was developed to 

achieve retinal image restoration. The network was trained based on the pair of high-

quality retinal images and degraded images using Eq. (1-6). 

4.3 Image structure model 

Besides the image formation model, there are also image structure models used for 

retinal image enhancement [27, 38, 39, 55], and the image structure models can be 

summarized as  

 ( ) ( ) ( )background structuress s s= +x x x , (1-7) 

where 𝑠𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  is the background information of the observed image which 

corresponds to the low-frequency components, while 𝑠𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠   denotes the detailed 

information implying the detailed structures and textures of the image as shown in Fig. 

1-11.  

 

Fig. 1-11. Image structure model. The raw image is decomposed into structured (high-frequency) 

components and background components. 

By giving a large weight to 𝑠𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠  and suppressing the 𝑠𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  one can obtain 

a contrast-enhanced image. 𝑠𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  can be obtained by low pass filtering of s [38, 
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55] and total variation regularization [27]. While 𝑠𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠  can be obtained by high 

pass filtering of s or subtracting 𝑠𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  from s. Note that Eq. (1-7) is not based on 

the optical process of how the image is formed and the physical insight is different from 

Eqs. (1-3) to (1-6). 

4.4 Retinex theory  

It is worth noting that the illumination model Eq (1-3) and image structure model 

Eq. (1-8) can be unified by the Retinex theory, which was developed first to explain the 

Land effect from a visual perspective [56]. It was later developed for uneven 

illumination correction in computer vision. A detailed implementation of Retinex can 

be categorized into several families including Variational Retinex [57-59], PDE Retinex 

[60], Threshold Retinex [61], center/surrounded Retinex (known also as filtering-

based Retinex)  [62], while the filtering-based Retinex gains a lot of research interesting 

due to its computational efficiency and implementation simplicity. Taking the logarithm 

to both sides of Eq. (1-3), we obtain 

 ( ) ( ) ( )log log logs l r= +x x x ,  (1-8) 

which is identical to the Eq. (1-8). Since 𝑙(𝒙) is assumed to be spatially slow-varying. A 

good estimation of 𝑙(𝒙) can be given by low-pass filtering 𝑠(𝒙) such that   

 ( ) ( )LowPassFilteringl s F s = x ,  (1-9) 

F is the low-passing filter which is known also as the surround function.  denotes the 

2D convolution. A Gaussian kernel is a good candidate for such a low-pass filter. 

According to Eq. (1-8) and Eq. (1-9), 𝑟(𝒙)  can be given by  

 ( )exp log logr s F s= −    . (1-10) 

In the practical implementation, a pixel value normalization should be applied to Eq. (1-

10), to avoid the intensity-distorted pixels. 
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5. Retinal image intensity correction 

Retinal image intensity correction is a very basic task for retinal image restoration. 

Statistical analysis shows that many retinal images are suffering from problematic 

illumination of certain degrees. Problematic illumination conditions can be due to the 

imperfect photography skill of ophthalmologists, imperfect head/eye position of 

subject participants, and problematic illumination path of the fundus camera. 

Since human visual assessment of image quality is highly related to the image’s 

brightness, a simple intensity correction on a retinal image can produce great and 

significant improvement in the image’s quality for visual assessment. In this section, we 

briefly introduce two methods: the gamma correction, and the retinex method for 

retinal image intensity corrections.  

5.1 Intensity correction using Gamma correction 

The intensity correction can be simply achieved by Gamma correction if 𝛾 < 1. As 

shown in Fig. 1-12 (a), when 𝛾 = 1/2.2, a small value, say, 0.218, becomes 0.5 after the 

Gamma correction. Using this, we can transform the input RGB retinal image shown in 

Fig. 1-12 (b) to HSV-color space, and then perform gamma correction to its V channel 

(Value). After that, the image is transformed back to RGB-color space resulting in 

illumination-corrected images as shown in Fig. 1-12 (e).    

By adjusting the value of γ, one can achieve different strengths of illumination 

correction, while the image contrast is not yet improved significantly.  
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Fig. 1-12. Retinal image intensity correction using Gamma correction.(a) Gamma correction. (b) raw 

image. (c) V channel of the image. (d) V channel after gamma correction. (e) Enhanced image. 

 

 

Fig. 1-13. Retinal image intensity correction using Gaussian filtering Retinex method. (a) raw image. 

(b) V channel. (c) background component of the V channel. (d) retinex correction. (e) Illumination 

corrected image. 



General introduction 

23 
 

1 

5.2 Intensity correction using Retinex 

As mentioned in Section 4.4, the intensity correction can be also achieved using Retinex. 

The low-frequency component of the V channel can be a good estimation of the 

illumination pattern as shown in Fig. 1-13 (c). Subtracting the illumination pattern from 

the original V channel (Fig. 1-13 (d))  and applying the intensity normalization, the 

output V channel is shown in Fig. 1-13 (d) and in Fig. 1-13 (e) for the RGB image where 

the uneven pattern is corrected. 

Besides the basic Gaussian-filtering Retinex method shown above, researchers have 

developed a more complex framework, such as variational Retinex of different 

regularizations and non-local Retinex to achieve illumination correction.  

It is also worth noting that the Retinex theory linked image illumination correction 

and image dehazing through some single algebras. This property will be further 

discussed in Section 6.2 and Section 6.3. 

6. Retinal image dehazing 

6.1 Dehazing using dark-channel prior 

The dark channel prior (DCP) [63] has been widely used for natural scene dehazing 

including underwater image enhancement and haze removal even for thick fog 

situations. Inspired by the visual similarity between the natural fog-induced haze and 

cataract-induced haze, the dark-channel prior is extended to retinal image restoration. 

The dark channel of an RGB image is given as  

 ( )
 

( ) 
, ,

min Minmum-Filter ,dark c
c R G B

x w


=   J J ρ ,  (1-11) 

which first filters the three color channels of the image using a local minimum filter with 

a size of w pixels, and then calculates the minimum value within the three color 

channels.  

The principle of DCP tells that in any haze-free image (in RGB color space) as shown 

in Fig. 1-14 (a), at least one pixel has zero intensity in at least one channel as shown in 
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Fig. 1-14 (c). As such the transmission map of a hazy image (Fig. 1-14 (b)) can be 

estimated using the dark channel of the image as shown in Fig. 1-14 (d). 

 ( )1 ,  where 0
s t o t o

Dark Dark Dark t Dark
a a a

      
= + −      

     
, (1-12) 

According to the image formation model in Eq. (1-4), the dehazed image can be then 

calculated.  

 

Fig. 1-14. Dehazing using dark-channel prior. (a) Hazy-free image. (b) Hazy image. (c) dark-channel 

of (a). (d) dark channel of (b). (e) digital dehazing results of (b) 

The results of DCP dehazing are promising. However, it is found that the 

performance of DCP on retinal image dehazing is limited, especially for thick cataracts 

due to different color statistical features between natural scene images and retinal 

images. Although the DPC fails to estimate the transmission map of the retinal image in 

RGB color space, it works in the intensity domain of the image since DCP is valid for 

gray-scaled image dehazing and the result is also promising [63].  

Accordingly, one is able to convert the retinal image from RGB color space to, for 

example, the CIE-LAB color space, and then perform dehazing to the L-channel 

(intensity channel). After that, the dehazed retinal image is obtained. Fig. 1-15 shows 
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the dehazing results on the cataractous retinal image after the illumination correction 

was applied. The haze effect is significantly suppressed as shown in Fig. 1-15. 

 

Fig. 1-15. Restoration of cataractous retinal images. First row: raw and enhanced images. Second 

row: partially zoomed-in images in the optical disk areas. Third row: zoomed-in images in the yellow 

boxes. 

6.2 The duality between intensity correction and dehazing 

The nature scene image dehazing seems to be unrelated to intensity correction since 

they are dealing with different problems. Later, as pointed out in Ref. [64] they are 

connected by a simple algebra modification of the haze formation model in Eq. (1-4) by 

assuming the input image is globally white-balanced that is  

 ( )1s t o t=  + − , (1-13) 

 
( ) ( )

1 1 1

1 1

s to t

s t o

 − = − − +

 − = −
 (1-14) 
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If we consider 1 − 𝑠 = 𝑠𝑛𝑒𝑤  and  1 − 𝑜 = 𝑟 , Eq. (1-14) is identical to Eq. (1-3). This 

implies an interesting phenomenon that the color-inversed hazy image looks like an 

image suffering from insufficient illumination as shown in Fig. 1-16. Using Eq. (1-13) 

and Eq. (1-14), the dark-channel prior can be used in the color inversed image to enable 

illumination correction [65], and the color-inversed version of dark-channel prior is 

also known as bright-channel prior [47]. 

 

Fig. 1-16. Dehazing task can be converted into an intensity correction task in color-inversed domain. 

Further, according to Retinex by assuming t is spatially slow varying, according to 

Eq. (1-14) and Eq. (1-13), we have  

 ( ) ( )1 Retinex 1 Dehazingo s s= − − = . (1-15) 

This formula is also proofed in Ref [64], and shows that the image dehazing task can be 

finished under the Retinex theory. As such, the Retinex theory is the bridge to image 

dehazing and image illumination correction [66]. 
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6.3 Dehazing using Retinex 

Tab. 1-1. List of publications on non-deep-learning based methods of single retinal image enhancement. 

Literature 
Image formation 

model 
Key idea 

Functions 

Illumination 
correction 

Contrast 
enhancement 

Dehazing 

[16] Eq (1-5) 
Filtering 
Retinex 

N/A Yes Yes 

[67]  Image Filtering Yes Yes N/A 

[25]  CLAHE N/A Yes N/A 

[39] Eq. (1-7) Filtering Retinex Yes Yes N/A 

[68] Eq. (1-3), Eq. (1-7) Filtering Retinex Yes Yes N/A 

[23] Eq. (1-3), Eq. (1-4) DCP, Retinex Yes N/A N/A 

[31] Eq. (1-4) HE, Filtering Yes Yes Yes 

[69] Eq. (1-7) CLAHE Yes Yes N/A 

[70]  HE Yes Yes N/A 

[48] Eq. (1-7) 
Filtering Retinex, 

HE 
Yes Yes Yes 

[37] Eq. (1-3) 
Gamma 

correction, 
CLAHE 

Yes Yes N/A 

[35] Eq. (1-3) 
Gamma 

correction, HE 
Yes Yes N/A 

[71] Eq. (1-3) HE Yes Yes N/A 

[55] Eq. (1-3), Eq. (1-7) 
Filtering, 
Retinex 

Yes Yes Yes 

[38] Eq. (1-3), Eq. (1-7) 
Filtering, 
Retinex 

Yes Yes Yes 

[49] Eq. (1-4) 
DCP, extension 

of DCP 
Yes Yes Yes 

[26] Eq. (1-4) Extension of DCP Yes Yes Yes 

[27] Eq. (1-3), Eq. (1-7) 
Filtering, 
Retinex 

Yes Yes N/A 

[72]  
Gamma 

correction, HE 
Yes Yes N/A 

[73] Eq. (1-3), Eq. (1-7) 
Filtering, 
Retinex 

Yes Yes N/A 

 

The application of Retinex theory in retinal image dehazing shares a similar idea of 

image structure model and filtering-based Retinex, where the haze layer is regarded as 

the slow-varying background component of the retinal image, and the dehazed image 

can be obtained by subtracting the background component from the hazy one.  Tab. 1-
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1 lists some of the start-of-the-art publications on non-deep-learning methods of single 

retinal image enhancement.  

7. Retinal image deblurring 

Apart from problematic illumination and haze impact, retinal images can be also 

degraded by optical aberrations such as defocus, and motion blur caused by unintended 

movement of a subject’s head. Such degenerations are modeled by a convolution 

process between the ideal retinal image and a blur kernel, and cannot be restored using 

the contrast enhancement methods mentioned above. To tackle the blurriness 

degenerations, the blind deconvolution method is needed as the kernels are usually 

unknown.  

Image blind deconvolution has been greatly developed and is mainly used for 

natural scene image deburring [74]. Much prior knowledge, including but not limited 

to the heavy-tail prior [75, 76], the dark-channel prior [77], and the local maximum 

gradient prior [78], has been explored to facilitate the single image blind deconvolution 

tasks. Nevertheless, blind deconvolution for retinal images is still problematic and 

challenging since there are a large number of retinal images suffering from poor 

illumination conditions which hide the structure (edge) information that is essential for 

proper deconvolutions. However, according to our investigation, only a few studies 

have reported on single retinal image blind deconvolution [79-82], which rather aimed 

to correct the blurriness caused by aberrations and motions during the retinal imaging. 

Andrés et al. proposed a two-step retinal image blind deconvolution method [80], in 

which the first step is estimating and compensating for the uneven illumination using a 

fourth-order polynomial. The second step is blind deconvolution with TV-

regularization corresponding to the Heavy-tail-prior to natural scene deburring. 

However, this method requires at least two paired retinal images of one identical 

subject. Francisco et al. limit the shape of the convolution kernel to a Gaussian shape 

and perform a line search to determine the size of the Gaussian kernel corresponding 

to the peak image quality score [81]. This method doesn’t correct the illumination 
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pattern of the retinal image, in addition, not all retinal images are degraded by a simple 

Gaussian kernel. Therefore, there is a need for methods that can solve two ill-posed 

problems in one scene, and achieve blind illumination correction and deconvolution 

simultaneously, which can potentially benefit clinical applications on retinal images. 

8. Deep learning methods 

With the development of computational power, deep-learning-based retinal image 

enhancements attracted a lot of research interest. Due to the lack of paired real retinal 

images for good and degenerated quality, most learning-based retinal image 

restoration methods published recently can be categorized as extensions of GAN 

(Generative Adversarial Network). These methods convert the retinal image 

restoration task into a style-transform task that transforms the image style from a bad-

quality retinal image to a good-quality one. To mitigate the risk of GANs introducing 

unexpected artifacts, many works focus on preserving information fidelity.  

Since there are no paired real retinal images, researchers use synthetic/simulated 

degenerated retinal images to train the networks. For instance, based on the image 

formation model proposed by Peli et al. [16], Luo et al. [28] trained an unpaired GAN to 

achieve cataract retinal image dehazing for mild cataract cases. Li et al. [30] proposed 

an annotation-free GAN for cataractous retinal image restoration. Based on the natural 

scene haze formation model, Yang et al. [83] trained a modified cycle-GAN for artifact 

reduction and structure retention in retinal image enhancement. Shen et al. [54] 

proposed a new mathematical model to formulate the image-degrading process of 

fundus imaging and train a network for retinal image restoration. Other researchers 

have modified the structures of the network or loss function to improve the 

performance of the networks [84, 85].  

While these learning-based methods produce impressive restoration results in both 

quality and naturalness preservation, they have limitations. Overfitting on synthetic 

data and lack of generalization are potential issues as we will show in Chapter 4 and 

Chapter 5. Additionally, the performance of trained networks is limited by the input 
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image resolution (typically 512×512), which is too small for clinical applications where 

image resolution, in general, is larger than 2000×1000. Furthermore, these methods 

lack interpretability and may introduce unexpected artifacts or elimination of 

important retinal structures, which can be detrimental to clinical applications. Thus, 

there is still a long way to go in both technical and ethical aspects of learning-based 

retinal image enhancement methods [86] 

9. Potential applications of enhanced retinal images 

9.1 Retinal image blood vessel segmentations 

Retinal image blood vessel segmentation provides the shape distributions of blood 

vessels, which is important for clinical diagnosis as the morphological changes of blood 

vessels are biomarkers for diseases such as lacunar stroke [87], cognitive dysfunction 

[88], cardiovascular risk [89], diabetes [90] and glaucoma [91].  

Blood vessel segmentation can be achieved by either human specialists or computer 

software. The former provides accurate results but is time-consuming. The latter option 

provides fast segmentation results but is less accurate than human specialists. 

Moreover, due to poor image contrast of the cataractous retinal image, hand-based 

segmentation is even more time-consuming, and automatic segmentation for hazy 

retinal images can be error-prone.  

With enhanced retinal image, blood vessel segmentation can be better performed 

due to the increment of image visual quality. 

9.2 Retinal image registration 

Image registration is an important application as it provides in the fields of 

computer vision, pattern recognition, and medical image analysis [92-94]. It aligns two 

or more retinal images together in the same spatial axis to provide an overall 

comprehensive understanding [92]. A promising retinal image registration relies on 

precise feature detecting and matching for images to be registered. Registration of 
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cataractous retinal images can be failed due to poor feature-paring results as the 

features are hidden by the haze effect of cataracts.  

With the enhancement of image contrast, the registration algorithm can better find 

the paired feature for accurate registration. 

9.3 Retinopathy diagnosis 

Finally, enhancement results in the areas that indicate retinopathy like hard 

exudates and hemorrhages can also benefit the related diagnosis due to the 

improvement of the image’s quality. For example, as shown in Fig. 1-17,  the retinopathy 

such as exudates can be clearly observed in the enhanced image in Fig. 1-17 (g2).  

 

Fig. 1-17. Enhancement of retinopathy areas using LRRL. (a) Raw image. (b) Restored image. (c) 

Labels of retinopathy areas. Red: Hard exudates; Green: Hemorrhages; Cyan: red small dots. (d1) to 

(g2) are zoomed-in pictures for regions in blue, green, yellow, and red boxes.  
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10. Aim and outlines of this thesis 

The research described in this thesis aims to develop comprehensible, non-deep 

learning-based algorithms for single retinal image restoration/enhancement, and 

investigate their applications in ophthalmology.  Such algorithms and their inside 

principles (each step and the intermedia products) can be fully understood by human 

specialists, especially ophthalmologists. This is vital for the model to produce reliable 

and interpretable enhanced images for further clinical applications.  

Research questions addressed in this thesis were: 

(1) What is the appropriate model, in both mathematical and optical aspects, that 

can best describe the image formation process in a fundus image?  

(2) How image illumination correction and image dehazing are combined for 

single cataract retinal image enhancement/restoration? 

(3) To what degrees can a cataract retinal image be enhanced using a dehazing 

algorithm?  

(4) Can the proposed model be further optimized? How? 

(5) How illumination correction and blind-deconvolution are combined for retinal 

image deblur?  

(6) How can the proposed models benefit the community of ophthalmology? 

 

The retinal image consists of two areas: the black background, and the central region 

of interest (ROI). In order to perform convolutional methods to achieve retinal image 

enhancement, a background filling should be performed to avoid the boundary effect of 

convolution operation happening to the edge of the black background and ROI. Such 

background-filling pre-processing was introduced in Chapter 2 where the background 

is filled in a reflective manner.  
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The first question is then addressed in Chapter 3 where the double-pass fundus 

reflection (DPFR) model was proposed, inspired by the optical properties of the fundus 

camera. With the DPFR model, the second question is addressed as well.  

To further improve the performance of the DPFR model, Chapter 4 developed a 

multi-level denoising strategy to significantly increase the image contrast of 

cataractous retinal images, which partially solves the third question and the fourth 

question. Within, the potential clinical applications of the proposed enhancement 

method are validated based on both simulation and experimental data.   

To fully answer the third question, we developed a new model in Chapter 5 to 

achieve color preservation retinal image enhancement. Chapter 6 together with 

Chapter 7 address the Fifth question. 

The sixth question is addressed in the combination of Chapter 4, Chapter 5, 

Chapter 6, and Chapter 7. Particularly in Chapter 8 the improvement for retinal image 

blood vessel tracking using the enhanced image is detailed.  
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Abstract 

 
Padding the black background for fundus images using similar colors allows the 

convolution kernel to move smoothly above the image and benefits all convolution-

based image processing methods. However, according to our knowledge, there is no 

report that is dedicated to reporting relevant techniques on fundus images. In order to 

fill this gap, in this study, we propose a simple and straightforward algorithm to achieve 

fundus image background padding in a reflective manner. The color of a given pixel in 

the black background area is replaced by the color of another pixel that is symmetric 

with respect to the cross point between the edge of the fundus area and the straight line 

between those two pixels. Experimental results show that our algorithm is suitable for 

any kind of fundus image and supports all convolution treatments. 

 

Keywords 

Retinal image; Image processing; Background padding; Convolution 
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1. Introduction 

Many fundus imaging processing algorithms rely on convolution methods, such as 

enhancing retinal images by the Retinex theory [5-11] or blood vessels segmentation 

using Match-filters [1, 12]. During those processes, the convolution kernel moves above 

the retinal image and extracts or removes the image’s features.  

Ideally, the convolution kernel is required to move smoothly (no rapid changes of 

pixel value in raw images). Most mathematical software packages including 

TensorFlow, MATLAB, and Mathematica, have already embedded the boundary 

padding processes to deal with the edge effect during the convolution [13, 14]. 

However, due to the universal feature of fundus images where the retinal area is within 

a disk region separated from the black background, the traditional padding method 

cannot handle the black ground since they are designed for squared areas. As a result, 

the convolution kernel suffers from sudden changes in pixel value at the boundary of 

the retinal area and black background, yielding problematic pixels at the boundary 

depending on the size of the convolution kernel.  

It is known that such problematic pixels can lead to failure in retinal image 

enhancement or misleading feature extracting [10, 11, 14], since the problematic pixels 

will be enhanced and accumulated in each processing step. To avoid the boundary 

problem at the edge of the retinal area, a background padding procedure that fills the 

black background with similar colors is needed.  

The content-aware padding method is a good candidate for retinal image 

background padding, however, this is a waste of computational power since the only 

aim of padding the background is to let the convolution kernel move smoothly, and the 

filled area will be removed once the convolution and subsequent tasks are finished. A 

simple and efficient algorithm to achieve black background padding is, therefore, in 

demand. According to our knowledge, there is no such report that is dedicated to 

reporting relevant background padding techniques for fundus images. 
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In order to fill this gap, in this research, we propose a simple and straightforward 

algorithm to achieve fundus image background padding. The remainder of this 

manuscript is structured as follows: Section 2 describes the background padding 

algorithm in detail. Experimental results are demonstrated in Section 3, where 

convolution results with and without background padding are compared. Section 4 is 

the closing remark. 

2. Method details  

2.1 Obtaining ROI mask 

Assuming I denote the 3D matrix of a given color fundus image, which size is 𝑀 × 𝑁 × 3. 

M and N are the numbers of the pixels in the vertical and horizontal directions, 

respectively. A typical fundus image is divided into two areas – the centered retinal 

imaging area and the black background area. Only the centered retinal imaging area is 

the region of interest (ROI) where further analyses are applied to the ROI mask can be 

obtained by setting a threshold in the red channel of I, which is  

 ( )
( )1,   , ,1

,
0,        

x y t
x y

otherwise


= 


I
M , (2-1) 

where t is the threshold and is set to 10 empirically for 8-bit color fundus images 

[1]. As shown in Fig. 2-1 (b), the ROI mask (colored in gray) is obtained from the fundus 

images given in Fig. 2-1 (a). Based on the ROI mask, the reflective padding procedure is 

applied to the outside of the ROI mask. Furthermore, the shape of ROI for all fundus 

images is round or can be approximated by convex polygons due to the design of the 

fundus camera. This feature will largely simplify our background padding task. 
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Fig. 2-1. The ROI for fundus image (a) is obtained using the threshold method and is shown in (b). (c) 

denotes the idea of how to find the Q that is on the line L and symmetric to P with respect to X.  

2.2 Reflective background padding 

A natural train of thought to achieve reflective padding has 4 detailed procedures. 

(1)First we draw a line, say L that connects the center point O of the image and the point 

P where the color needs to be padded; (2)Next, we pinpoint the intersection point X 

between the line and the edge of M as shown in Fig. 2-1 (c); (3)Then, we note the 

distance between P and X, and find the point Q which locates also on L and is 

symmetrical to P with respect to X; (4)Finally we copy the color at point Q to that of 

point P in the raw image I.  

These 4 procedures are straightforward and simple, but they should be applied to 

the M and S, which are discrete matrices. Therefore, line L should also be discretized. 

To do so, we first note the coordinates of points P and O on a 2D image by their pixels 

index which are (𝑥1, 𝑦1)  and (𝑥0, 𝑦0) , respectively. 𝑥0 , 𝑥1 , 𝑦0 , and 𝑦1  are positive 

integers. Then we use Bresenham's line algorithm [2] to create a discrete version of L. 

The algorithm is modified for the application in this research and is summarized in 

Algorithm 1 by pseudocode. In this algorithm, the pixels for L are generated from points 

P to O in sequence and will make point P always the starting point of L. Note that if O is 

assigned to the center pixel of the image, 𝑥0 = 〈𝑁/2〉, 𝑦0 = 〈𝑀/2〉 , and < > denotes 

round toward the nearest integer. 

P

O

P

X

Q

l1

l1

(a) (c)(b)

L

M
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As shown in Fig. 2-2 (a), the segment of L inside the ROI is colored in green where 

the pixel values of the M are 1. The segment outside the ROI is marked in red, and the 

corresponding pixel values in the M are 0.  

Next, the position of X and the distance between X and P are determined. Since the 

coordinates of all pixels in L are noted, if we search on M along L from point P to point 

O direction, the first pixel that equals 1 implies the first intersection point between L 

and M. Therefore the position of that pixel is noted to be X. As shown in Fig. 2-2 (b), X is 

marked in yellow. 

The distance between X and P can be determined by counting the number of pixels 

shifting between their coordinates in both horizontal and vertical directions. In the case 

shown in Fig. 2-2 (b), the horizontal pixel-shifting between P and X is 12 pixels, while 

the vertical pixel-shifting is 6 pixels.  

Algorithm 2-1: generating Bresenham's line 

( ) ( )

( )

( ) ( )

( )

( )

0 0 1 1

1 0 1 0

0 0 1 1

1 0 1 0

1 1 0

1 0 1 0
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Fig. 2-2. Sketch of padding process. (a) Discrete L in M. (b) partially zoom-in for the area in the yellow 

box in (a). (c) Padding results. 

The coordinates of Q can be determined in two ways. First, we can count the same 

pixels shifting with respect to X on L and find the position of Q. Second, since P is the 

first point of L, if X is the k-th point of L, Q must be the (2k-1)-th point of L. In this way, 

the position of Q can be also determined. Algorithm 2-2 summarizes the processes. 

 

Algorithm 2-2: Background Padding 
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Particularly, the pixel of Q should never exceed the pixel of O in order to avoid the 

case where the index of Q outside the I if P is very far from X. Finally, the color in pixel 

P is replaced by that of pixel Q in the original image I. Fig. 2-2 (c) shows the padding 

result of image Fig. 2-1(a). 

3.  Multi-threads accelerating 

 

Fig. 2-3. Multithreads acceleration by dividing the Raw image into several subsets. (a) Raw image. (b) 

Four subsets of (a). The padding algorithm is applied simultaneously to each subset as shown in (c). 

(d) is the padded subset and their combination forms the final output (e). 

The proposed algorithm can be accelerated using multi-threads. Fig. 2-3 

demonstrates the idea of multi-threads. The image I and its ROI mask M are divided into 

four subsets as shown in Fig. 2-3 (b) and Fig. 2-3 (c), respectively. The background 

padding algorithm is applied to each subset ( Fig. 2-3(c) ) simultaneously, yielding the 

padded subsets as shown in Fig. 2-3 (d). Finally, all subsets are combined into a single 

image as shown in Fig. 2-3 (e).  

Since the area of M in each subset has a fan shape in the case shown in Fig. 2-3, points 

O in each subset are assigned to the vertex of the fan. On the contrary, if the I and M are 

divided into 3 by 3 subsets, positions of point O in each subset are assigned in different 

ways. By using multi-threads accelerating, the average time that is needed to finish the 

entire background padding process can be improved by several times (depending on 

the subsets numbers) 
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4. Experimental results 

 

Fig. 2-4. Demonstration of background padding results. (a1) to (c1): raw images. (a2) to (c2): 

background padded results. (a3) to (c3) are zoomed-in of the region in yellow boxes. 

Three fundus images were randomly chosen from the DRIVE [3] and STARE [4] 

databases. The raw images were first zero-padded into different sizes as shown in the 

first row of Fig. 2-4 and then filled by the proposed method as shown in the second row 

of Fig. 2-4. The black backgrounds were filled in a reflective manner along the radial 

direction.  

Regions in the yellow boxes were enlarged to show detailed texture changing at the 

boundary of the ROI. As shown in the third row of Fig. 2-4, the color and textures are 

smoothly changing from inside toward the outside of ROI.  
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Fig. 2-5. Demonstration of background padding results. (a1) to (c1): I  of raw images of grayscale 

images. (a2) to (c2): background padded results. 

The smoothness of an image can be described by its first-order derivative. Here we 

use ‖∇𝑰‖ = 0.5(|𝜕𝑥𝐼| + |𝜕𝑦𝐼|) of a grayscale image (the color fundus image is average 

in three color channels to obtain the grayscale image) to measure the smoothness of an 

image. The grayscale of the raw images is normalized within [0, 1]. 

 ‖∇𝑰‖ for fundus images in Fig. 2-4 (a1) to (c1) are shown in Fig. 2-5(a1) to (c1).  

Where ‖∇𝑰‖  has a high value (white circular pattern) at the boundary of the ROI, 

denoting the rapid changes of grayscale values at the regions. ‖∇𝑰‖ of fundus images 

after background padding is shown in Fig. 2-5 (a2) to (c2). The small values of ‖∇𝑰‖ at 

the boundary of the ROI denote slow- variations of the pixel value. According to this 

feature, the convolution kernel can smoothly move during the convolution process. 

5. Retinex enhancement with and without background padding 

Background padding directly benefits all convolution-based methods. The Retinex 

method, which is able to uniform the illumination of the image can be one of the 

(a1) (b1) (c1)

(a2) (b2) (c2)
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examples to show the advantage of background padding. A typical Retinex method for 

retinal image enhancement can be expressed by [5] 

 ( )
2

2 2

1
exp log log exp

2 2
new   

 

     
 = + −  − + −         

r
I I I , (2-2) 

where ξ is a small value to avoid the situation of log(0), r is the 2D position vector. 

𝜔  is the width of the Gaussian kernel which should not be smaller than the largest 

structure of the fundus image (normally optical disk). In the following experiment 𝜉 =

0.01  and 𝜔 = 〈√𝑀𝑁/20〉 . For the background padding, the fundus images are first 

padded with zero elements according to the size of the kernel, and then the zero 

background is filled by our algorithm. 

A max-min color correction procedure is applied to each color channel of Inew to 

correct the color distortion.  

 ( ) ( )
( )

( ) ( )
( ),

min
max min min

max min

new new

new colorcorrection

new new

 −
= −  +     −  

I I
I I I I

I I
. (2-3) 

Fig. 2-6 compares the Retinex outputs without and with background padding. 

Results without background padding are shown in the second row of Fig. 2-6 from (a2) 

to (d2), where there are halo effects at the boundary of ROIs due to the sudden change 

of pixel values during the convolution process. Since the halo effects have high intensity 

than other parts of the image, the visual performance of the entire image is significantly 

decreased.  
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Fig. 2-6. Retinal image enhancement using the Retinex method. (a1) to (d1) Raw images. (a2) to (d2) 

Enhanced without background padding. (a3) to (d3) Enhanced with background padding. 

On the contrary, the background padding allows the convolution kernel to smoothly 

moves on the image and won’t lead to the halo effects, which largely increase the 

performance of enhanced images as shown in the third row of Fig. 2-6 from (a3) to (d3). 

Currently, many retinal image enhancement methods are inspired by the Retinex 

theory, where the Gaussian convolution kernel is used to suppress the low-frequency 

components and enhance the structure of the retinal images. The low-pass filtering and 

alpha-root (LPAR) method [11], for example, is a state-of-the-art retinal image 

enhancement method that shares a similar convolution algorithm. Here we take the 

LPAR method as an example to show the importance of background padding. 

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)
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Fig. 2-7. Retinal image enhancement using the LPAR method. (a1) to (d1) Raw images. (a2) to (d2) 

Enhanced without background padding. (a3) to (d3) Enhanced with background padding. 

The first row of Fig. 2-7 shows the raw images in this group of experiments. 

Enhancement results of LPAR outputs without and with background padding are shown 

in the second (a2) to (d2) and the third row (a3) to (d3) of Fig. 2-7, respectively. 

Without the background padding, the enhanced images show only mild contrast-

enhanced results. This is mainly due to the halo effects during the convolution process. 

In LPAR, the low-frequency removal is performed adaptively on the raw image 

according to the average pixel intensity in the ROI. Due to the high intensity of halo 

effects, the algorithm will wrongly estimate how many low-frequency components 

should be removed, and thus influents all subsequent procedures.  

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)
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The background padding prevents the convolution from the halo effects, and the 

algorithm can correctly and adaptively remove the low-frequency components, and 

successfully enhance the image quality as shown in the third row of Fig. 2-7.  

Note that the halo effects in Fig. 2-7 (a3) and (b3) are not caused by our background 

padding algorithm, but due to the halo effects on the raw images shown in Fig. 2-7 (a1) 

and (b1), and further enhanced by the LPAR method. 
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Abstract 

This study introduces a novel image formation model - the double pass fundus 

reflection (DPFR) model for retinal image enhancement (restoration). The DPFR model 

reveals the specific double pass fundus reflection feature that was hitherto neglected in 

modeling the light propagation of fundus imaging in all published reports on retinal 

image enhancement. Based on the DPFR model, the procedures of the proposed retinal 

image restoration algorithm are given. The failure of the dark channel prior on retinal 

images in RGB color space is clarified. While a solution about how to bypass the 

challenge is proposed. Each step of DPFR is tested experimentally with retinal images 

of different degraded situations to validate its robustness. Moreover, the DPFR method 

is tested on 906 images from five public databases. Six image quality matrixes including 

image definition, image sharpness, image local contrast, image multiscale contrast, 

image entropy, and fog density are used for objective assessments. The results are 

compared to the state-of-the-art methods, showing the superiority of DPFR over the 

others in terms of restoration quality and implementation efficiency.  

 

Keywords 

Ophthalmology; Retinal image; Image enhancement; Double pass 
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1. Introduction 

The introduction of the ophthalmoscope by Helmholtz [1] allowed to obtain images of 

the retina and put ophthalmology on the map as a separate sub-area of medicine. Ever 

since, retinal images are widely used by ophthalmologists for early detection, diagnosis, 

and monitoring of ocular diseases and their progression. Morphologic changes due to 

eye diseases like diabetic retinopathy [2], glaucoma [3], and age-related macular 

degeneration [4-6] can be directly observed in these images. Moreover, neurological 

diseases such as stroke and cognitive dysfunction can be also diagnosed through retinal 

images [7]. Obviously, the higher the image clarity, the more detailed information can 

be observed from the image, and the better their diagnostic capabilities. 

A typical retinal imaging platform can be regarded as two coupled imaging systems. 

One is the ocular system, and the other is a reflective imaging system that normally 

illuminates the fundus through the pupil and collects the reflected light from the retina, 

forming the image on the camera sensor. Retinal images may suffer from severe 

degenerations, not only because of uneven intraocular illumination, limited optical 

resolution, and aberrations of the eyes but also due to the blurry ocular media, including 

corneal edema, uveitis, vitreous hemorrhage, or cataracts. They all result in decreased 

image clarity. 

To increase the image clarity again, several contrast-enhancement methods have 

been proposed, which can be divided into two major categories: data domain methods 

and restored model methods [8]. Data domain methods are further divided into two 

families based on their algorithms. The first family is known as the transform-domain 

algorithm which transforms a raw image into a new function of other parameters such 

as spatial frequency domain corresponding to the Fourier transform [9], or structure 

feature domain corresponding to the top-hat transform [10, 11]. The image is processed 

in the transformed domain and then transformed back resulting in a new image with 

enhanced contrast. The transform-domain algorithm enables us to globally or locally 

modify the weight for different structures within the image. However, due to its 
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significant cost of computation resources, the image-domain algorithm, which is the 

second family of data domain methods, is favored the most. 

The core idea of the image-domain algorithm is the gray-level adjustment. 

Histogram equalization and its improved version, the contrast-limited adaptive 

histogram equalization (CLAHE), are usually used for quick and simple retinal image 

enhancement [12]. Other histogram modification method such as q-quantile [13] and 

gray-scale global spatial entropy method also shows promising results in improving the 

image’s contrast [8, 14]. The global gray-level adjustment methods including the 

gamma map [15] and α-rooting [16] use a fixed function to convert the global gray-level 

distribution for adjusting the brightness of retina imaging.  

Another group of image-domain algorithms uses filters to enhance contrast. These 

algorithms are similar to transform-domain algorithms but use a convolution kernel to 

separate the background and foreground information of an image [16, 17]. The 

foreground information usually corresponds to the detailed structure of an image. By 

modifying the weights between background and foreground, the contrast of the 

detailed structure can be enhanced. In general, data domain methods belong to pure 

signal (image) processing techniques that normally take a few considerations of the 

physical insight of the image formation and enhancement.  

In order to obtain self-consistent methods for retinal imaging enhancement, 

restored model methods have been developed. These restored model methods share a 

similar idea of computational imaging, i.e. a physical model is built to describe the 

optical process of forming an image under the impact of degeneration agents which 

could be optical aberrations, unstable vibrations, or limited optical resolution. By 

directly or indirectly measuring the optical properties of these degeneration agents, 

one can compensate for the degeneration agents by digitally mimicking the propagation 

of the optical wave and modifying the wavefront of light [18-21]. Imaging through 

scattering media, for example, is a well-known application of computational imaging 

[20, 21].  
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Different from computational imaging, the restored models for imaging 

enhancement do not measure the optical properties of the degeneration agents but try 

to find the solutions corresponding to their statistical properties in optical or visual 

aspects. The solutions can be regarded as roughly estimated versions of those 

degeneration agents and can be also compensated by applying them to the image 

formation model, resulting in enhanced images. 

Restored model methods are widely used for imaging de-hazing [22, 23], 

underwater image enhancement, and night image enhancement [24], while only a few 

studies have reported their use in retinal imaging enhancement. To our knowledge, the 

first publication about the application of restored model methods in retinal image 

enhancement can be traced back to 1989 [25], where the model for imaging the retina 

in photographs taken through intraocular scatter is considered similar to the model 

used to represent imaging of the earth from a satellite in the presence of light cloud 

cover. The scattering effect is removed (or suppressed) by using the Retinex theory.  

Based on the image formation model, Xiong et al. [8] proposed to use of intensity 

correction and histogram adjustment to preprocess the image, and then a transmission 

map is generated according to the intensity of the preprocessed image in each color 

channel. The haze effect can be therefore suppressed through dehazing. Although the 

performance of their approach is good, it relies on statistical and empirical properties 

of the retina imaging database to determine the algorithm parameters, which makes it 

hard to be applied to different databases. A subsequent study [26] showed the results 

of using the illumination-reflectance model of image formation to correct the 

illumination of retinal images. In this research, the color-inversed dark-channel prior, 

also known as bright-channel prior [27], is employed which shows efficient 

illumination correction. Mitra et al. [28] proposed a model that includes a thin layer of 

cataracts. Gaudio et al. [29] demonstrated a pixel color amplification method for retina 

imaging enhancement which shows good performance in enhancing the detailed 

structure of retina images. 
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All these models show satisfactory experimental results, however, the imaging 

formation models they used have the common drawback that they do not take into 

account the physical principle underlying the fundus imaging, in particular the double-

pass principle of the light path. Note that the restored models in all the above-

mentioned four studies are modified versions of Koschmieder [30] and McCartney’s [31] 

imaging formation formula, which applies to natural outdoor scenes where the 

illumination is provided by sunlight. Since the illumination light is far away from the 

scene and not in the same optical path as that of the camera, the transmission function 

of the haze or scatter is only applied to the reflected light from the scene which results 

in the exponential index of the transmission term to be one, however, this is rather 

different from retinal imaging.  

 

Fig. 3-1. The typical optical path in a fundus camera. Either a beam splitter or a mirror is used to 

deliver the illumination light into the ocular system. 

As shown in Fig. 3-1, the fundus camera is a reflective/Epi-illumination imaging 

system where the incident illumination light is in the same optical path as that of the 

reflected light from the fundus. Therefore, the transmission function should be not only 

applied to the incident illumination light but also applied to the reflected 

(backscattering) light from the fundus resulting in a doubled exponential index for the 

transmission term [32-34]. 

In section 2 of this paper, we briefly review the formation of retinal images and 

derive the imaging formation model according to the actual optical process of retinal 
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imaging. The updated fundus reflection model is called the double-pass fundus 

reflection (DPFR) model. The inverse problem of retinal image restoration is also 

derived in section 3. Our derivation shows that the enhanced retinal image restoration 

can be simply achieved by one step of low-frequency removing using the Retinex theory, 

and two steps of the imaging de-hazing. Our DPFR model embeds illumination 

correction, stray light removal, and contrast enhancement using a single retinal image, 

without the need for statistic properties of the image database, and as such widens its 

applications. 

In Section 4, we compare the performance of the DPFR model with different state-

of-the-art methods on five different databases for both visual and objective assessment. 

The final section includes our concluding remarks. In the following analyses, all pixel 

values are normalized within the range of [0,  1] . 

2. Forward problem: double-pass fundus reflection model  

The double-pass fundus reflection (DPFR) model is inspired by how a retinal image is 

formed, which is similar to a multi-layer model [35].  

 

Fig. 3-2. The sketch of the double-pass fundus reflection model. S is the final output image of the 

imaging system. 

In retinal imaging, intraocular scattering is very difficult to avoid, resulting in 

straylight that degenerates the retinal imaging quality. In the DPFR model as shown in 

Fig. 3-2, it is assumed that the intraocular scattering effect is caused by an intraocular 
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scatter, denoted by its transmission matrix 𝑻𝑠𝑐(𝒓), which could be the cataract, vitreous 

opacities, or more complex cases. Here 𝒓 = (𝑥, 𝑦) is the 2D coordinate vector. Although 

there could also be a scatter outside the eye (in region A) for a typical imaging system, 

we assume that the imaging system is carefully maintained, and outside scatter can be 

ignored. Corneal and lens reflection is ignored since it is removed by the pupil mask in 

all commercial fundus cameras. The transmission matrix of the cornea and lens is 

together regarded as 𝑻𝑙𝑒𝑛𝑠(𝒓). 

Let S  be the final image on the camera sensor plane, it is mainly provided by two 

backscattering components 𝑹0(𝒓) and 𝑹1(𝒓). 𝑹0  denotes the backscattering from the 

retina 𝑶(𝒓), while 𝑹1 is the backscattering from the intraocular scatter. Let 𝑰𝑖𝑙𝑙(𝒓) be 

the illumination from the outside of the eye and is in the same optical path as that of 

detection for all fundus camera systems. Our DPFR model, therefore, considers how 𝑰𝑖𝑙𝑙  

enters the eye and interacts with the lens, intraocular scatters, and retina. Accordingly, 

𝑹0  and 𝑹1  is given by the product between the illumination and layers of scatter or 

retina, and can be separately expressed as 

 ( ) ( ) ( ) ( ) ( )
2

0 ill lens sc=     R r I r T r T r O r , (3-1)  

and  

 ( ) ( ) ( ) ( )2

1 ill lens sc=   −  R r I r T r 1 T r , (3-2) 

where 1 denotes the unit matrix. The square terms in Eq. (3-1) and Eq. (3-2) show the 

core idea of the DPFR model in which the illumination 𝑰𝑖𝑙𝑙  interacts twice with the 

scatter and lens. The final image S in the camera sensor is the sum of two backscattering 

components, which is 

 ( ) ( ) ( ) ( ) ( ) ( )2 2

0 1 ill lens sc sc
 = + =    + − S r R R I r T r T r O r 1 T r .  (3-3) 

The physical insight of Eq. (3-3) is clear, which shows that the degeneration of the 

retinal image is mainly due to three parts. (1) the uneven illumination condition 𝑰𝑖𝑙𝑙 , (2) 

the filtering by the human lens 𝑻𝑙𝑒𝑛𝑠 , and (3) the intraocular scattering 𝑻𝑠𝑐 . Obviously, 
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the retinal image O can be restored if the illumination matrix 𝑰𝑖𝑙𝑙 , and both of the 

transmission matrix 𝑻𝑙𝑒𝑛𝑠 and 𝑻𝑠𝑐  can be measured as precisely as possible.  

Although it is hard for us to measure the value for those matrixes based on a single 

retina image, we are able to get a rough estimation version of them according to some 

pre-known information about their statistical property. The pre-known information is 

also known as ‘prior’. With the estimations of the 𝑰𝑖𝑙𝑙 , 𝑻𝑙𝑒𝑛𝑠  and 𝑻𝑠𝑐 , we can solve Eq. (3-

3) and obtain an enhanced version for O. 

3. Inverse problem: image restoration. 

Our method is divided into four steps, (1) the image pre-processing; (2) coarse 

illumination correction; (3) fine illumination boosting; and (4) scattering suppression. 

3.1 Image pre-processing  

A retinal image is composed of two major regions - a circular retina and a black 

background. Since the image will be filtered using a low-pass filter in the following 

section, unexpected results often occur when the convolution kernel slides through the 

retinal due to the sudden change of pixel values. Padding the black areas before an 

enhancement is an effective way to reduce an over-enhancement of the retinal 

boundary. The padding can be based on a mirror reflection or content-aware filling.  

3.2 Coarse illumination correction 

In the section, the coarse illumination correction algorithm applies to the red, green, 

and blue channels repeatedly. Here, we demonstrate the algorithm in a single-color 

channel.  

We rewrite the illumination term, 𝑰𝑖𝑙𝑙 ∙ 𝑻𝑙𝑒𝑛𝑠
2  as 𝑰𝑖𝑙𝑙 ∙ 𝑻𝑙𝑒𝑛𝑠

2 = 𝑰𝑐𝑜𝑎𝑟𝑠𝑒 ∙ 𝑰𝑓𝑖𝑛𝑒 , where 

𝑰𝑐𝑜𝑎𝑟𝑠𝑒  , and 𝑰𝑓𝑖𝑛𝑒  denote the coarse illumination pattern (slowly varying in the spatial 

domain) and fine illumination pattern (fast varying in the spatial domain) projected on 

the retina, respectively. Practically, the coarse illumination pattern denotes the overall 

illumination provided by the light source, while the fine illumination pattern can be due 



Chapter 3 

66 
 

3 

to the intensity fluctuations or shadows of dust particles inside the optical path during 

the camera capturing and some noise. Eq. (3-3) is then rewritten as  

 ( ) ( ) ( )0coarse= S r I r S r , (3-4) 

with 

 ( ) ( ) ( )0 fine ic= S r I r S r , (3-5) 

and 

 ( ) ( ) ( ) ( )2

ic sc sc=  + −S r T r O r 1 T r .  (3-6) 

Eq. (3-4) is a typical illumination-reflectance model of image formation [26] where 

𝑰𝑐𝑜𝑎𝑟𝑠𝑒 ∙ 𝑰𝑓𝑖𝑛𝑒  is regarded as the global illumination and 𝑻𝑠𝑐
2 ∙ 𝑶 + 𝟏 − 𝑻𝑠𝑐   is regarded as 

the reflectance object.  

Since retinal images might have good illumination conditions or suffer from 

different levels of uneven illumination. We first need to correct the coarse illumination 

pattern, making the retinal images have even illumination conditions.  

Here we take advantage of the Retinex theory on illumination correction [36]. 

Taking logarithm to both sides of Eq. (3-4), yielding  

 ( ) ( ) ( )0log log logcoarse= +S I S , (3-7) 

Since 𝑰𝑐𝑜𝑎𝑟𝑠𝑒  is slowly varying in the spatial domain, a good estimation of 𝑰𝑐𝑜𝑎𝑟𝑠𝑒  can be 

generated by filtering S with a low-pass filter which is  

  
2

2 2

1
exp

2 2
coarse

 

  
=  −  

  

r
I S . (3-8) 

Here,   denotes convolution.   controls the full width at half maximum (FWHM) of 

the Gaussian kernel. The size of   is determined according to the size of the input 

image, where 𝜔 = ⌊𝑀/20⌋, M is the width (pixels) of the input image, and ⌊ ∙ ⌋ denotes 

round-toward-zero. Substituting Eq. (3-8) to Eq. (3-7), we have 
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 ( ) ( )
2

0 2 2

1
exp log log exp

2 2
  

 

     
 = + −  − + −         

r
S r S S . (3-9) 

Here ε is a small value to avoid the situation of log(0), 𝜀 =  0.01 in the following studies.  

Eq. (3-9) corrects the illumination in a single-color channel. By applying Eq. (3-9) to 

Eq. (3-7) to each color channel, an illumination-corrected image is obtained. However, 

due to the subtracting operation in Eq. (3-9), the RGB color of the output images will 

become rather different from the raw image. Therefore, the color correction treatment 

should be involved for each channel. Here we use the min-max approach to correct the 

color difference, which is given by 

 ( ) ( )
( )

( ) ( )
( )0 0

0,

0 0

min
max min min

max min
colorcorrection

 −
= −  +     −  

S S
S S S S

S S
, (3-10) 

where S is the corresponding color channel of the raw images.  

 

Fig. 3-3. Demonstration of step 2: coarse illumination correction. (a1) to (d1) are raw images after 

padding. (a2) to (d2) are outputs of coarse illumination correction. 

To demonstrate the effect of the coarse illumination correction, we choose four 

retinal images with different degraded conditions as shown in Fig. 3-3 (a1) to Fig. 3-3 
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(d1). The retinal image in Fig. 3-3 (a1) denotes a good illumination condition but with 

a thick haze effect due to the cataract. The image in Fig. 3-3 (b1) is taken from a healthy 

subject with relatively good but still uneven illumination. Fig. 3-3 (c1) and (d1) denote 

retinal images with different uneven illumination patterns and levels of blurriness.   

Images after the coarse illumination correction are shown in Fig. 3-3 (a2) to Fig. 3-3 

(d2), where the uneven illumination pattern is corrected as shown in Fig. 3-3 (c2) and 

(d2), however, we can still find that the illuminating brightness for Fig. 3-3 (d2) is 

insufficient in compared with Fig. 3-3 (a2). Therefore, we enter the second step, the fine 

illumination boosting, to boost the overall brightness of the image.  

In the following section, we will show that fine illumination boosting and scattering 

suppression can be unified into the same framework of dehazing and can be achieved 

by using the dark channel prior. However, before we continue, a background about the 

failure of dark channel prior on retinal images in RGB color space, and how can we 

overcome this challenge should be clarified. 

3.2 Failure of dark channel prior on retinal images in RGB color 
space 

The dark channel prior (DCP) and its improved version have been widely used for 

natural scene dehazing including underwater image enhancement and haze removal 

even for thick fog situations. The results of DCP dehazing are promising. Moreover, DCP 

can be used to correct the bad illumination condition by applying it to the color-

inversed image. Applying the DCP to retinal images for dehazing seems to be natural, 

since (1) the visual effect of haze effect in natural scenes and retinal images are similar 

to each other. (2) The physical model for haze-scattering and intraocular scattering are 

consistent with each other. Both of them can be modeled as random phase 

perturbations [34, 37]. However, it is found that the performance of DCP on retinal 

image dehazing is limited, especially for thick cataracts. Before introducing our 

proposed method, the failure of the DCP in RGB retinal images should be clarified. 
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The principle of DCP tells us that in any haze-free image (in RGB color space), at least 

one pixel has zero intensity in at least one channel. This assumption does not hold for 

normal retinal images and retinal images with severe cataracts, due to the unique 

spectral property of the ocular lens. In order to protect the fundus from harmful blue-

wavelength light, the human lens has high absorption for light rays of short 

wavelengths, which results in low intensities of the blue channel [1, 38, 39]. That is why 

most of the retinal images show reddish or yellowish in their photographs [40]. When 

the cataract is present, the absorption of short wavelengths will be even higher than the 

normal condition due to the presence of protein precipitation in the crystalline lens, 

and lens aging [41, 42].  

 The image formation model ignores the condition of light absorption. When DCP is 

applied to cataractous retinal images (searching for the minimum pixel value in red, 

green, and blue channels in a given small patch), the DCP will mostly extract the pixel 

value in the blue channel since it always tends to have a small intensity whether there 

is a cataract or not due to the absorption of short wavelength. As a result, the 

transmission maps will be over-estimated (under-estimate the haze thickness). 

We perform a statistical analysis on pixel value distribution for both cataractous and 

normal retinal images. The pixel value of the raw images is normalized into [0,1] 

(divided by 255). One cataractous retinal image is shown in Fig. 3-4 (a), and Fig. 3-4 (b) 

shows the histogram of its blue channel, where most of the pixels in the blue channel 

have small gray values that are close to 0.2. Fig. 3-4 (c) shows the histogram of the blue 

channel for all 100 images in a public database of cataract retinal images of different 

degrees [43]. The pixel values in the blue channel ranged from 0 to 0.5, and most of the 

pixels’ values are located between 0.25 to 0.5. That is mainly due to the short-

wavelength absorption of the ocular lens. By applying DCP to those cataract retinal 

images, the pixel values in the dark channel are shown in Fig. 3-4 (d) with a range of [0, 

0.5]. The distribution of the dark channel [Fig. 3-4 (d)] is similar to that of the blue 
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channel in Fig. 3-4 (c), as the DCP extracts the local minimum pixel value in RGB 

channels, and the local minimum pixel is located in the blue channels in this case. 

 

Fig. 3-4. Cataractous retinal image shown in (a) and its histograms of the blue channel shown in (b); 

(c) and (d) are blue channel and dark channel, respectively, for all images in the cataract retinal image 

database (100 images included); (e) and (f) are the blue and the dark channels for all images in the 

normal retinal image database (300 images included). 

We have also investigated the pixel value distributions for retinal images of normal 

eyes. A total of 300 images are taken from the public normal retinal images database in 

[43]. Their blue channel and dark channel distribution are shown in Fig. 3-4 (e) and Fig. 

3-4 (f), respectively. Apparently, this distribution does not agree with the DCP 

assumption for haze-free images, in which the pixel values should approach zero. 

Meanwhile, there is no distinct difference in the pixel values’ distribution between 

cataractous and normal retinal images. As a result, the DCP will treat the cataractous 

retinal images as normal retinal images and over-estimates the transmission map 
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(under-estimates the haze density). A similar problem will happen when DCP is used to 

correct the illumination for retinal images in RGB color space.  

However, one big advantage of the DCP is that it can be used for gray-scaled image 

dehazing and the result is also promising [44] if there are enough shadow regions in the 

image. Although this condition may not hold for retinal images, our following 

experimental results show its validity where the contrast is significantly improved. 

Accordingly, we can still take its advantage in the gray-scale image by applying DCP to 

a single channel of the retinal image to obtain a better estimation for the transmission 

map.  

For expression convenience, we assume the single gray-scale channel of the retinal 

image is Q channel. We choose the Q channel based on three principles: (1) The Q 

channel makes full use of valid information of the raw image. (2) When applying DCP to 

the Q channel, the transmission map is obtained more properly than using DCP in RGB 

color space. (3) Enhancement of the color space should efficiently improve the contrast 

of the raw image, and won’t lead to too many color distortions. Therefore, we are 

inspired by the color space transformation and let Q be the intensity or luminance 

channel of the retinal image in non-RGB color space, for example, the YUV, YCbCr, or 

CIE-LAB color space. 

 Here we choose to convert the color retinal image into YCbCr color space as its 

luminance channel Y = (65.481 R + 128.553 G + 24.966 B + 16) / 255, where Y is the 

linear combination of RGB channels with different weights. The green channel gains the 

most weight while the blue channel gains the least weight. This combination meets our 

requirement since that (1) it makes full use of valid information in the raw image as the 

red channel suffers less from the lens absorption, and the green channel includes 

important retinal structures like blood vessels [12]; (2) the blue channel gains the least 

weight which omits its impact on estimating the transmission map. Then we apply DCP 

to the Y channel for fine illumination boosting and dehazing, the output is transformed 

back to RGB color space yielding a contrast-enhanced image. Note that other color space 
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like CIE-LAB color space also provides promising enhancement results (see 

Supplementary Note 3-2). The HSV color space is not suitable for our requirements 

since the V component is given by the maximum value between RGB channels and it 

drops some information in one of the three color channels. 

3.4 Fine illumination boosting 

 Equation (3-5) is rewritten as  

 ( ) ( ) ( ) ( )0 fine ic fine− =  − + −  1 Y r I r 1 Y r 1 I r , (3-11) 

where 𝒀0 is the Y channel of 𝑺0 in YCbCr color space. Equation (3-11) shows the same 

mathematical form as that of the hazed image formation model [26]. We therefore can 

apply the imaging de-hazing to Eq. (3-11) and obtain the illumination-corrected 

reflectance object 𝒀𝑖𝑐  . Here we use the gray-scale dark-channel prior for image de-

hazing.  

The estimation of 𝒀𝑖𝑐  is given by 

 ( )
( ) ( )

( )
0 fine

ic

fine

− + −  
= −

1 Y r I r 1
Y r 1

I r
,  (3-12) 

with  

 ( )0fine dark
 −  −I 1 1 Y . (3-13) 

(𝟏 − 𝒀0)𝑑𝑎𝑟𝑘  is the dark channel of 𝟏 − 𝒀0. The dark channel 𝑱𝑑𝑎𝑟𝑘  of an arbitrary gray-

scale image J estimated in a local neighborhood Ω(𝑟) with the size of w pixels is equal 

to filtering the image using the local minimum filter [44]: 

 
( )

( )mindark


=
ρ r

J J ρ . (3-14) 

w is the patch size, which is given by 𝑤 = ⌊𝑀/150⌋, according to the size of the input 

image. The parameter 𝛼 ∈ [0, 1] is used to control the degree of illumination boosting. 

A large value of α will lighten the gray-scale image, and may also cause an overexposure 

effect where the pixel value is larger than 1. An appropriate value of α is important for 
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ensuring good enhancement results, we, therefore, use an adaptive manner to 

determine the value of α.  

To determine the value of α with low complexity but high accuracy, an intensity-

based global wise optimization function is designed as 

 
( )

( )

2

arg min 0.02
#

icY

pixels
 

      = − 
    

 r
r

, (3-15) 

where the function 𝑓[𝑌𝑖𝑐(𝒓)] = 1  for 𝑌𝑖𝑐(𝒓) > 1 , 𝑓[𝑌𝑖𝑐(𝒓)] = 0  for 𝑌𝑖𝑐(𝒓) ≤ 1 . Γ is the 

retinal area apart from the black background. #𝑝𝑖𝑥𝑒𝑙𝑠(Γ)  is the number of the total 

pixels in  . ∑ 𝑓[𝑌𝑖𝑐(𝒓)]𝒓 /#𝑝𝑖𝑥𝑒𝑙𝑠(Γ)  implies the percentage of overexposed pixels. 

Equation (3-15) ensures that the percentage of pixels that are overexposed during the 

illumination boosting should approach to 2%.  

Considering that Eq. (3-15) is a one-dimensional optimization function. In this work, 

the Fibonacci method (FM) is adopted to solve Eq. (3-15) since it is able to gradually 

narrow the search interval for a one-dimensional optimization problem until the 

convergence condition is satisfied [45]. 

Continue with Fig. 3-3, the Y channel before and after illumination boosting is shown 

in Fig. 3-5. The first row of Fig. 3-5 is the Y channel of S0. The second row shows the 

illumination estimation, 𝑰𝑓𝑖𝑛𝑒 , generated by the DCP. As shown in Fig. 3-5 (a2) to (d2), 

the illumination near optical disks has a higher value than that of other areas. After the 

illumination boosting, images that originally have different illumination intensities are 

now in the same level of illumination conditions as shown in Fig. 3-5 (a3) to (d3).  
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Fig. 3-5. Step 3: Fine illumination boosting in the Y channel. (a1) to (d1) are the Y channel of images 

in Fig. 3-3 (a2) to (d2). (a2) to (d2) are illumination estimations generated by the DCP. (a3) to (d3) 

are the Y channels after illumination boosting. 

3.5 Scattering suppression 

After the fine illumination boosting, we enter the last step to suppress the haze effect 

of the images. Substituting Eq. (3-12) to Eq. (3-6) yielding  

 ( )
( )

( ) ( )2
min ,

ic

o

scsc

 −
= +  

  

Y r 1 1
Y r 1

T rT r
. (3-16) 

again 

 
( )
( )minsc ic


 − 

ρ r
T 1 Y . (3-17) 

𝒀𝑜(𝒓) is the Y channel of the restored image. The minimum function in the second term 

of Eq. (3-16) is applied to each position of r  to prevent the image from overexposure 

effect due to the large value in 𝟏/𝑻𝑠𝑐(𝒓). The squared term in the denominator of Eq. 
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(3-16) shows the concept of double-pass. Due to the squared term of 𝑻𝑠𝑐(𝒓), the DPFR 

model has a stronger haze suppression ability than that of the image formation model 

for natural scenes. 

Parameter β is used to control the dehazing degree. A large value of β will have a less 

haze effect, but the intensity is also low. An appropriate value of β is also determined 

using an adaptive manner. Since the increase of β always decreases the value of 𝒀𝑜(𝒓) 

for a given 𝒀𝑖𝑐(𝒓), a global wise optimization function for the determination of β is 

designed as 

 ( ) 0arg min 0.55 mean = −   Y r , (3-18) 

Equation (3-18) ensures that the mean intensity of 𝒀𝑜(𝒓) should approach 0.55. Again, 

the Fibonacci method (FM) is adopted to solve Eq. 18.  

 

Fig. 3-6, Change of optimization function Eq. (3-18) with respect to β. (a) Value of the function. (b), 

(c) and (d) are ( )
o

Y r  patterns with β corresponding to the red, green, and blue circle in (a) 

Fig. 3-6 is an example that shows how ( )00.55 mean−   Y r  changes with 

respect to β, and the corresponding 𝒀𝑜 for the image in Fig. 3-5 (a3). As shown in Fig. 

3-6 (c), when 0.754 = , Eq. (3-18) has the minimum value as shown in the green circle 

in Fig. 3-6 (a). A smaller or larger value of   will decrease the visual quality of the 

image as shown in Fig. 3-6(b) for 0.478 = , and in Fig. 3-6 (d) for 0.841 = .  

(a) (b) (c) (d)

0.536  0.768  0.869 
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Fig. 3-7 Step 4: Scattering suppression in the Y channel. (a1) to (d1) are Y channel of images in Fig. 

3-3 (a2) to (d2). (a1) to (d1) are estimations of 2

scT  generated by the DCP. (a2) to (d2) are intensity 

normalized pattern of (a1) to (d1).  (a3) to (d3) are Y channels after dehazing. (a4) to (d4) are 

corresponding outputs in RGB color space. 

Followed by Fig. 3-5, results of scattering suppression are shown in Fig. 3-7. The 

first row in Fig. 3-7 is the estimation of 2

scT  generated by the DCP. As shown in Fig. 3-7 

(a1) and (c1), the images have low transmission maps due to the presence of cataracts. 

Since the intensity of the pattern of 2

scT  is low for haze retinal images, in order to have 

a clear observation of the transmission pattern, we normalized the intensity in the area 
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  as shown in the second row of Fig. 3-7, where the blood vessels are regarded as 

having high transmission.  

The Y channel after scattering suppression is shown in the second row of Fig. 3-7, 

where the contrast is significantly enhanced in comparison with that in Fig. 3-5. The 

YCbCr images are transformed back to the RGB color space giving us the final enhanced 

images as shown in the third row of Fig. 3-6. The padding area is clear.  

 

Fig. 3-8. Comparison of DCP in RGB color space and in Y channel. The intensity normalized map for 

(c2) is shown in Fig. 3-7 (a2). 

Taking Fig. 3-3 (a2) as an example, we demonstrated the failure of DCP in RGB color 

space. As shown in Fig. 3-8 when the DCP is applied to the RGB color space, the DCP 

over-estimates the transmission illumination and the transmission maps (pixels value 

are large), as it mostly extracts the pixels in the blue channel of the image. The haze 

effect in the final output is still obvious as shown in Fig. 3-8 (d1). While the DCP works 

well in the Y channel of the image as shown in Fig. 3-8 (b2) to (d2). The transmission 

map has small pixel values denoting the heavy haze effect in the raw image of Fig. 3-8 

(a).  
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As mentioned in section 3.2, theoretically the DCP might be invalid for a gray-scale 

image if there is not enough shadow region as shown in Fig. 3-5 (a3) to Fig. 3-5 (c3), 

however, our results show its validity. There are two inner mechanisms that work 

together to make the DCP valid in our case. (1) First, as shown in Fig. 3-5 (a3) to Fig. 3-5 

(c3), the pixel values approach to the global atmosphere color (which is 1 in this case) 

and will lead to the under-estimation of DCP on T as ( )1 0dark →= − IT , in other 

words, the DCP over-estimating the haze density. Since the values in T are small, after 

applying Eq. (3-16) the contrast of the image is largely increased, but many over-

enhanced pixels are also produced where they have negative gray values and decrease 

the image’s quality. This effect can be seen in Fig. 3-6 (d) where 0.869 = . (2) Thanks 

to our intensity-based adaptive determination of parameter  , the impact of under-

estimation of T will be canceled when a small value of   is assigned. These two inner 

mechanisms balance each other and make DCP valid in our case. 

A flow chart for the proposed enhancement method is summarized in Fig. 3-9. In 

general, our DPFR method employs Retinex theory and DCP image dehazing to achieve 

illumination correction and haze suppression, simultaneously.  
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Fig. 3-9. Flow chart for DPFR method. 

4. Experimental results 

This section compares the enhancement results from conventional methods and the 

proposed method qualitatively and quantitatively to verify the enhancement 

performance of the proposed method. We applied the proposed method (DPFR) and 

three start-of-art including the luminosity and contrast adjustment method (LCA) [15], 

the low-pass filtering and α-rooting (LPAR) [16], and the pixel color amplication 

method (PCA) [29]. In [16], it is proved that the enhancement performance of LPAR is 

better than methods in [8] and [28].  

In Section 4.1, we compared the results to assess the performance of the proposed 

method in terms of removing the haze effect and enhancing retinal structure visibility 

Input:

RGB retinal image

Image background padding

Retinex theory: 

Coarse illumination correction

RGB to YCbCr

YCbCr to RGB

Y 

channel (old)

Cb

channel

Cr

channel

Padding removal

Output:

RGB enhanced image

DCP theory: 

Fine illumination boosting 

DCP theory: 

Scattering suppression

Y 

channel (new)
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with images in Fig. 3-3 (a1) to Fig. 3-3 (d1). In Section 4.2, the performance of the 

proposed method is validated with various metrics for retinal images in Fig. 3-3 (a1) to 

3(d1). Lastly, we compared the enhancement results of the proposed algorithm and the 

conventional methods with a total of 906 retinal images from the Digital Retinal Images 

for Vessel Extraction (DRIVE-) [46], STructured Analysis of the Retina (STARE-) [47, 

48], Standard Diabetic Retinopathy Database Calibration level 1 (DiaRetDB1-) [49, 50], 

Cataract- [43], and Normal- images databases. 

4.1 Qualitative evaluations with images in Fig. 3-3(a1) to 3-3(d1) 

 

Fig. 3-10. Enhancement results for the image in Fig. 3-3(a1). Images in the first row are raw image, 

enhanced results of LCA, LPAR, PCA, and DPFR methods, respectively. The second third rows are 

enlarged parts in the corresponding yellow and magenta boxes. 

Enhancement results for Fig. 3-3 (a1) with different methods are shown in Fig. 3-10, 

where Fig. 3-10 (a1) to Fig. 3-10 (e1) are raw images, the results of LCA, LPAR, PCA, and 

DPFR method, respectively. The image is obtained from the cataract database, and 

shows blurriness due to cataract [Fig. 3-10 (a1)]. An area near the optical disk is 
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enlarged to show the detailed structure as shown in Fig. 3-10 (a2). The blood vessels 

can be hardly observed due to the haze effect of cataracts.  

 The results of LCA method are shown in Fig. 3-10 (b1). As shown in Fig. 3-10 (b2) 

and Fig. 3-10 (b3), the image contrast is slightly improved, and some blood vessels in 

Fig. 3-10 (b3) can be observed faintly. The haze effect is still dominant.   

The results of LPAR method are shown in Fig. 3-10 (c1), where the haze effect is 

removed as the blood vessels in Fig. 3-10 (c2) and Fig. 3-10 (c3) can be clearly observed. 

However, the LPAR causes an overexposure effect on the bright area of the optical disk 

as shown in Fig. 3-10 (c2).  

Fig. 3-10 (d1) to Fig. 3-10 (d3) are the results of PCA method. Since it uses the DCP 

in RGB space, the haze effect is not removed, and there is also an overexposure effect 

on the bright area of the optical disk as shown in Fig. 3-10 (d2).  

Results of DPFR method are shown in Fig. 3-10 (e1) to Fig. 3-10 (e3). The haze effect 

is efficiently suppressed as shown in Fig. 3-10 (e2) and (e3). Blood vessels that are 

hidden behind the cataract can be now observed. Meanwhile, the DPFR method won’t 

lead to overexposure effect, as it can restore a clear optical disk area as shown in Fig. 

3-10 (e2). 

 

Fig. 3-11. Enhancement results for the image in Fig. 3-3(b1). (a1) to (e1) are raw images, results of 

LCA, LPAR, PCA and DPFR, respectively. (a2) to (e2) are enlarged parts in the optical disk areas in 

corresponding white boxes. 
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Fig. 3-12. Enhancement results for image in Fig. 3-3(c1). (a1) to (e1) are raw image, results of LCA, 

LPAR, PCA and DPFR, respectively. (a2) to (e2) are enlarged parts in the optical disk areas in 

corresponding white boxes. 

 

Fig. 3-13. Enhancement results for the images in Fig. 3-3(d1). (a1) to (e1) are raw images, results of 

LCA, LPAR, PCA and DPFR, respectively. (a2) to (e2) are enlarged parts in the optical disk areas in 

corresponding gray boxes. 

Enhancement results for Fig. 3-3 (a2) are shown in Fig. 3-11. The image is obtained 

from a healthy subject from the NORMAL database [43]. We also enlarge the optical disk 

area as shown in Fig. 3-11 (a2), where the retinal structure can be clearly observed. 

Both four methods show their ability in contrast enhancement, while the LPAR and PCA 

methods lead to overexposure effect at the bright area as shown in Fig. 3-11 (c2) and 

Fig. 3-11 (d2). The LPAR seems to intensify the dark area of the retinal image (near the 

macular area) as shown in Fig. 3-11 (c1) and the illumination of the entire image is still 
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uneven. Our proposed DPFR method enhances image contrast and some small blood 

vessels within the optical disk can be observed. The uniform illumination is also 

achieved.  

Enhancement results for Fig. 3-3 (c1) and Fig. 3-3 (d1) are shown in Fig. 3-12 and 

Fig. 3-13, respectively. The performance of LCA method is limited since it uses only the 

CLAHE method to enhance the contrast as shown in Fig. 3-12 (b1) and Fig. 3-13 (b1). 

Note that the LPAR also employs the CLAHE for contrast refinement. It uses the Retinex 

method to suppress the haze effect, however, its illumination correct ability is limited 

and can lead to an overexposure effect at the bright optical disk area, similar results can 

be also found in [16].  

The PCA uses DCP in RGB color space to correct the illumination and suppress the 

haze effect as shown in Fig. 3-12(d1) and Fig. 3-12 (d1). However, due to the failure of 

DCP in RGB color space for retinal images, the PCA method shows limited performance. 

Meanwhile, the image formation model of PCA ignores the optical truth of double pass 

fundus reflection, which further limited its performance of enhancement. Accordingly, 

the DPFR method shows its ability on illumination correction and haze effect 

suppression as shown in Fig. 3-12 (e1) and Fig. 3-13(e1). 

4.2 Quantitative evaluations for experimental results 

In this sub-section, we conducted quantitative evaluations of the enhancement 

results in terms of (1) image definition, (2) image sharpness, (3) image local contrast, 

(4) image entropy, (5) image multiscale contrast, and (6) image fog density. All images 

are formatted in 8-bit unsigned integers (uint8, the gray-value is ranged in [0, 255]). 

The image definition implies the richness of texture information [28, 45] which is 

given by  

 
  ( )( )
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where 
cI  is the c channel of input images.   is the gradient operator. The DEs are 

evaluated in each RGB channel and are combined linearly with coefficients 
c  since the 

different color channel has different visual response. 0.299R = , 0.587G =  and 

0.114B =  are used according to the relative visual responses of the red, green, and 

blue channels [51].  

Sharpness is the attribute related to the preservation of fine details and edges. For 

images captured under the water, severe blurring occurs due to the forward scattering. 

This blurring effect causes degradation of image sharpness. 

The image sharpness is adapted from the underwater image sharpness measure 

(UISM) [51], since severe blurring occurs to both underwater image and retinal images 

due to the forward scattering. Moreover, since the UISM does not rely on the statistical 

property of images, it can be applied to retinal images, regardless of the statistical 

difference between retinal images and underwater images. 

To measure the sharpness on edges, the Sobel edge detector is first applied on each 

RGB color channel. The resultant edge map is then multiplied with the original image to 

get the grayscale edge map in the corresponding color channel. By doing this, only the 

pixels on the edges of the original retinal image are preserved. The UISM is given by  

 
1 2
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{ , , } 1 11 2 min, ,
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k l
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c R G B l k k l

I
UISM

k k I


 = =

  
=     

   
  , (3-20) 

where the image is divided into k1k2 blocks, max, , min, ,/k l k lI I  indicates the relative contrast 

ratio within each block. Images are divided into 10 × 10 blocks, viz 1 2 10k k= = . 

For retinal images, contrast degradation is usually caused by intraocular scattering, 

which has the same visual effect as that of fog scenes, or underwater images. Therefore, 

the Underwater Image Contrast Measure (UIConM) [51] can be also employed for 

evaluating the contrast of the retinal image. Also, the UIConM does not rely on the 

statistical property of images. The UIConM is given by  
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where an image is divided into blocks, and  ,  , and  are the PLIP operations in 

which 𝐴 ⊕ 𝐵 = 𝐴 + 𝐵 − 𝐴 ∙ 𝐵/𝛾(𝑀) , 𝐴 ∗ 𝐵 = 𝛾(𝑀) − 𝛾(𝑀) ∙ [1 − 𝐵/𝛾(𝑀)]𝐴 , and 𝐴 ⊖

𝐵 = 𝜅(𝑀) ∙ (𝐴 − 𝐵)/[𝜅(𝑀) − 𝐵] . 𝛾(𝑀) = 1024  and 𝜅(𝑀) = 600  are chosen in this 

study. Images are divided into 10 × 10 blocks, viz 
1 2 10k k= = . 

Image entropy (IE) describes the randomness distribution of the image and its value 

denotes the amount of image information [52, 53], which is given by 

 ( ) ( )
255

{ , , } 0

logc g g

c R G B g

IE P x x
 =

=   , (3-22) 

where 𝑃(𝑥𝑔) is the probability of the appearance of the pixels that have gray-value g in 

the gray-scaled image. Image entropy can be used to characterize the texture of the 

image [40] and determine the amount of image information. Images affected by haze 

tend to have low IE values due to the biased brightness distribution. In contrast, haze-

free images have a relatively high IE.  

The multiscale-contrast of the image, CRAMM, is calculated with a pyramidal multi-

resolution representation of luminance [54]. CRAMM is defined as  

 
( )( ) 8
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   , (3-23) 

where # pixel  denotes the total pixel numbers of the image, level  denotes the total 

level of down-sampling, in each level the image is halved without pre-filtering. In this 

paper, we use 6 levels of the down-sampling. The pixel numbers of retinal images in the 

databases are large enough for 6 levels of down-sampling. During the calculation, the 

down-sampling process is stopped if either the row pixel numbers, or the column pixel 

numbers of the next down-sampled image are less than 3. 
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Lastly, the fog aware density evaluator (FADE) [55] is used to numerically predict 

perceptual hazy density. MATLAB code for the FADE is available in [56].  

Tab. 3-1. Quantitative assessment of the enhanced images among Fig. 3-3(a1) to 3-3(d1) with six metrics. 

Raw image Matrixes Raw 
Methods 

LCA LPAR PCA DPFR 

Figure 3(a1) 

DE 0.7457 1.3930 8.5798 2.4048 11.3595 

UISM 3.3387 3.5016 7.1968 3.8122 6.3865 

UIConM 0.0870 0.1137 0.3605 0.2009 0.39273 

IE 3.7783 3.9032 5.0146 2.9855 5.0237 

CRAMM 2.0623 2.6328 8.2115 3.9342 8.476 

FADE 1.0455 0.7261 0.2143 0.5133 0.17273 

Figure 3(b1) 

DE 1.2298 2.8213 8.4657 5.6587 13.6305 

UISM 4.4821 5.2004 7.2436 7.1333 7.0683 

UIConM 0.1025 0.1990 0.3563 0.3558 0.39856 

IE 4.3621 4.6008 5.0771 3.8008 5.0585 

CRAMM 2.2474 3.7691 8.7034 6.5540 9.9654 

FADE 0.4719 0.3182 0.1703 0.2292 0.13138 

Figure 3(c1) 

DE 0.6909 1.7769 12.4526 3.7974 14.1229 

UISM 3.0368 3.7516 7.3951 4.3700 5.2604 

UIConM 0.0558 0.1050 0.3722 0.2513 0.38931 

IE 4.3999 4.1133 5.2492 4.2078 5.154 

CRAMM 1.5730 2.4297 8.1420 4.5733 8.3505 

FADE 1.1586 0.6600 0.2329 0.4872 0.19138 

Figure 3(d1) 

DE 0.9049 4.0778 10.1221 10.1379 18.2453 

UISM 2.9964 5.1093 4.9589 5.5718 5.4324 

UIConM 0.0164 0.0900 0.2105 0.3087 0.37906 

IE 4.0066 4.3095 5.0064 3.6781 5.0386 

CRAMM 0.6300 2.0243 5.0777 4.1120 6.6639 

FADE 0.4850 0.2389 0.1494 0.1496 0.17417 

Average 

DE 0.8928 2.5172 9.9051 5.4997 13.8615 

UISM 3.4635 4.3907 6.6986 5.2218 6.0576 

UIConM 0.0654 0.1269 0.3249 0.2792 0.3837 

IE 4.1367 4.2317 5.0868 3.6681 5.05362 

CRAMM 1.6281 2.7140 7.5337 4.79338 8.1211 

FADE 0.7903 0.4858 0.1917 0.3448 0.1673 

 

Tab. 3-1 demonstrates the enhancement results of the quantitative evaluations 

using the objective metrics. Here, High values of DE, UISM, UIConM, IE, and CRAMM 
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indicate high image quality, while low values of FADE indicate a better dehazing 

performance.  

As listed in Tab. 1, the value of FADE is large for retinal images with severe haze 

effects as shown in the raw images of Fig. 3-3(a1) and Fig. 3-3 (c1). Here FADE = 1.05 

for Fig. 3-3 (a1) and FADE = 1.16 for Fig. 3-3(c1). For the normal retinal image as shown 

in Fig. 3-3 (b1), the FADE is low as FADE = 0.47.  

Numbers marked in blue denote the best performance, while numbers marked in 

green denote the second-best performance. Among the four retinal images in Fig. 3-3 

(a1) to Fig. 3-3 (d1), the proposed DPFR method shows the best performance for DE, 

UIConM, CRAMM, and FADE, on average. It also shows the second-best performance for 

UISM, IE. The LPAR method has the highest values for UISM, and IE among the four 

retinal images.  

Additional experimental results for both qualitative and quantitative assessments 

are available in the first section of the Supplementary Note 3-1. 

4.3 Quantitative evaluations for public databases 

Tab. 2 demonstrates the enhancement results of the quantitative evaluation for a 

total of 906 images from five databases. In general, the DPFR model is able to achieve 

better image quality including image definition, image sharpness, and image contrast 

than current state-of-art methods. The haze density of the retinal image is efficiently 

suppressed as the results of DPFR method have the smallest value of FADE for all five 

databases.  

Note that the DPFR method has not yet used the CLAHE method to improve the 

contrast, it can be imaged that the performance of the DPFR method can be further 

improved by combined with the CLAHE.  
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Tab. 3-2. Quantitative assessment of the enhanced images for five databases with six metrics. 

Databases Matrixes Raw 
Methods 

LCA LPAR PCA DPFR 

DRIVE 

(20 images) 

DE↑ 1.7826 3.6015 12.3326 7.3283 16.9964 

UISM↑ 4.7703 5.3879 9.0585 8.4717 9.6539 

UIConM↑ 0.1375 0.2027 0.3679 0.3719 0.4055 

IE↑ 3.9502 4.2225 4.8263 3.4884 5.0333 

CRAMM↑ 2.9338 4.1783 8.6381 7.0552 9.2348 

FADE↓ 0.446 0.2956 0.1819 0.2804 0.1206 

STARE 

(397 images) 

DE↑ 1.4395 2.8692 8.9126 4.9638 12.9468 

UISM↑ 5.4539 6.2693 8.4133 7.3555 8.5576 

UIConM↑ 0.1499 0.2108 0.3549 0.3529 0.4006 

IE↑ 4.1664 4.2398 4.4953 3.0822 4.8957 

CRAMM↑ 2.7915 4.0455 8.29 6.4792 9.4374 

FADE↓ 0.4716 0.2855 0.1843 0.2746 0.1299 

DiaRet DB1 

(89 images) 

DE↑ 0.9119 2.9236 10.8005 7.0287 16.2699 

UISM↑ 2.8892 4.4872 5.7884 5.4441 5.6445 

UIConM↑ 0.03 0.1008 0.2653 0.2857 0.3824 

IE↑ 3.8249 4.1409 4.8895 3.0856 4.9728 

CRAMM↑ 0.9539 2.1664 7.0132 4.105 7.5133 

FADE↓ 0.4715 0.2775 0.1604 0.159 0.1442 

Cataract 

(100 images) 

DE↑ 0.7878 1.7825 10.6005 3.8732 13.0668 

UISM↑ 3.4133 3.8432 7.1361 4.9715 7.0112 

UIConM↑ 0.075 0.121 0.355 0.2623 0.38377 

IE↑ 3.8983 3.9858 5.0023 3.6359 4.8861 

CRAMM↑ 1.8511 2.6709 8.0554 4.7462 7.9459 

FADE↓ 0.9234 0.5757 0.2098 0.4029 0.16594 

Normal 

(300 images) 

DE↑ 1.0183 2.3513 8.6007 4.9219 12.815 

UISM↑ 3.9204 4.6155 7.388 6.2853 7.6355 

UIConM↑ 0.0859 0.1601 0.3542 0.3323 0.40141 

IE↑ 4.1601 4.323 5.0108 3.7073 5.0015 

CRAMM↑ 2.0443 3.2959 8.4536 5.9017 9.335 

FADE↓ 0.6569 0.4308 0.1862 0.3112 0.13741 

Average 

DE↑ 1.1880 2.7056 10.2494 5.6232 14.4190 

UISM↑ 4.0894 4.9206 7.5569 6.5056 7.7005 

UIConM↑ 0.0957 0.1591 0.3345 0.3210 0.3947 

IE↑ 4.0000 4.1824 4.8448 3.3999 4.9579 

CRAMM↑ 2.1149 3.2714 8.0901 5.6575 8.6933 

FADE↓ 0.5939 0.3730 0.1845 0.2856 0.1396 
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4.4 Enhancement of cataractous retinal images 

Due to the ability of scattering suppression of the DPFR model, it is able to enhance the 

image contrast for retinal images with thick haze effects. To demonstrate this, we apply 

the DPFR model to two groups of cataractous retinal images and show the results before 

and after the restoration. 

Fig. 3-14 shows the first group of restoration results for cataractous retinal images. 

Where the raw images in Fig. 3-14 (a1) to Fig. 3-14 (c1) have different levels of haze 

effect. As shown in Fig. 3-14 (c1), the raw image suffers from both uneven illumination 

and haze blurriness, where the blood vessels far from the optical disk can be hardly 

observed. Fig. 3-14 (a2) to Fig. 3-14 (c2) show the corresponding restoration results. 

The blood vessels can be clearly observed, and the restored images have better 

illumination conditions than that of raw images.  

 

Fig. 3-14. Restoration of cataractous retinal images. First row: raw images. Second row: restored 

images. 
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Tab. 3-3. FADE for cataractous retinal images before and after restoration in Fig. 3-14. 

 
Raw image Restoration 

(a1) (b1) (c1) (a2) (b2) (c2) 

FADE 0.8484 0.8408 0.8799 0.1452 0.1526 0.1706 

 

Tab. 3-3 lists the FADE value for raw and enhanced images, where the DPFR model 

decreases the fog density as the FADE value of the enhancement image is smaller than 

that of raw images.  

 

Fig. 3-15. Restoration of cataractous retinal images. First row: raw images. Second row: restored 

images. 

Fig. 3-15 shows the second group of restoration results for cataractous retinal 

images. All images in this group have good illumination conditions, however, the 

blurriness is even worse than that of the first group. As shown in Fig. 3-15 (b1) and Fig. 

3-15 (c1), only the blood vessels near the optical disk can be faintly observed. After the 
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restoration, as shown in the second row of Fig. 3-15, the haze effects are efficiently 

suppressed, as the blood vessels and their small branches can be clearly observed.  

Tab. 3-4 lists the FADE value for raw and enhanced images in Fig. 3-15. In general, 

the DPFR model can reduce the fog density of cataractous images.  

Tab. 3-4. FADE for cataractous retinal images before and after restoration in Fig. 3-15. 

 
Raw image Enhancement 

(a1) (b1) (c1) (a2) (b2) (c2) 

FADE 1.2509 1.1669 0.8827 0.2245 0.2239 0.1589 

 

5. Concluding remarks 

In this paper, we briefly review the formation of retinal images and derive the imaging 

formation model, particularly for retinal image enhancement, according to the light 

propagation in the fundus camera system. The updated model is called the double-pass 

fundus reflection (DPFR) model, in which the property of the special fundus reflection 

is taken into consideration. 

The DPFR model embedded the illumination correction and image de-hazing into a 

single image formation formula Eq. (3-3), and the mathematical derivation shows that 

the retinal image restoration can be simply achieved by the combination of the Retinex 

theory and two steps of the dark channel prior de-hazing process. The Retinex theory 

is to correct the coarse uneven illumination pattern. After that, the resultant images are 

converted into the YCbCr color space in order to bypass the failure of DCP in RGB color 

space. During the DCP dehazing process, the first de-hazing process is to boost the 

illumination of the entire image, and the second de-hazing is to reduce the haze-effect 

caused by intraocular scattering.  

Unlike previous restoration methods for retinal images where the natural scene 

image formation model is directly employed, our DPFR is physically self-consistent 

which obeys the wave propagation within a fundus imaging system. All parameters in 
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the DPFR model are automatically determined in an adaptive manner, which makes it 

efficient and simple to be applied to different databases.  

Our DPFR model significantly improves the contrast of the retinal images and 

reveals retinal structures that might be ignored by clinical doctors due to insufficient 

contrast of the raw images. Under the guidance of the raw retinal images, the enhanced 

image may improve the diagnosing accuracy for ophthalmologists, and facilitate 

diagnoses, such as drusen, hard exudates, bleeding hemorrhages, or microaneurysm 

detection, as these tasks may use more color or local detail information. The early 

detection of these findings may improve the outcome of treatment of retinal diseases 

like age-related macular degeneration, diabetic retinopathy, and venous occlusions. We 

plan to pilot test this in a follow-up study using clinical data. 

 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or 

personal relationships that could have appeared to influence the work reported in this 

paper. 

 

Funding. This research is supported by China Scholarship Council (CSC) 

(201908340078) 

  



Double-pass fundus reflection model 

93 
 

3 

References 

1. T. T. J. M. Berendschot, P. J. DeLint, and D. v. Norren, "Fundus reflectance—historical and present ideas," 

Progress in retinal and eye research 22, 171-200 (2003). 

2. J. Zhang, B. Dashtbozorg, F. Huang, T. T. J. M. Berendschot, and B. M. ter Haar Romeny, "Analysis of Retinal 

Vascular Biomarkers for Early Detection of Diabetes," in VipIMAGE 2017, J. M. R. S. Tavares and R. M. Natal 

Jorge, eds. (Springer International Publishing, Cham, 2018), pp. 811-817. 

3. M. C. V. S. Mary, E. B. Rajsingh, and G. R. Naik, "Retinal Fundus Image Analysis for Diagnosis of Glaucoma: A 

Comprehensive Survey," IEEE Access 4, 4327-4354 (2016). 

4. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging Polarimetry in 

Age-Related Macular Degeneration," Investigative Ophthalmology Visual Science 49, 2661-2667 (2008). 

5. M. Trieschmann, F. J. van Kuijk, R. Alexander, P. Hermans, P. Luthert, A. C. Bird, and D. Pauleikhoff, "Macular 

pigment in the human retina: histological evaluation of localization and distribution," Eye 22, 132-137 

(2008). 

6. T. Theelen, T. T. J. M. Berendschot, C. B. Hoyng, C. J. Boon, and B. J. Klevering, "Near-infrared reflectance 

imaging of neovascular age-related macular degeneration," Graefes Arch Clin Exp.Ophthalmol 247, 1625-

1633 (2009). 

7. S. Zafar, J. McCormick, L. Giancardo, S. Saidha, A. Abraham, and R. Channa, "Retinal Imaging for Neurological 

Diseases: “A Window into the Brain”," 59, 137-154 (2019). 

8. L. Xiong, H. Li, and L. Xu, "An enhancement method for color retinal images based on image formation 

model," Computer Methods and Programs in Biomedicine 143, 137-150 (2017). 

9. J. Mukherjee and S. K. Mitra, "Enhancement of Color Images by Scaling the DCT Coefficients," IEEE 

Transactions on Image Processing 17, 1783-1794 (2008). 

10. X. Bai, F. Zhou, and B. Xue, "Image enhancement using multi scale image features extracted by top-hat 

transform," Optics & Laser Technology 44, 328-336 (2012). 

11. M. Liao, Y.-q. Zhao, X.-h. Wang, and P.-s. Dai, "Retinal vessel enhancement based on multi-scale top-hat 

transformation and histogram fitting stretching," Optics & Laser Technology 58, 56-62 (2014). 

12. A. W. Setiawan, T. R. Mengko, O. S. Santoso, and A. B. Suksmono, "Color Retinal Image Enhancement using 

CLAHE," International Conference on ICT for Smart Society (2013). 

13. B. Gupta and M. Tiwari, "Color retinal image enhancement using luminosity and quantile based contrast 

enhancement," Multidimensional Systems and Signal Processing 30, 1829-1837 (2019). 

14. T. Celik, "Spatial Entropy-Based Global and Local Image Contrast Enhancement," IEEE Transactions on Image 

Processing 23, 5298 - 5308 (2014). 

15. M. Zhou, K. Jin, S. Wang, J. Ye, and D. Qian, "Color Retinal Image Enhancement Based on Luminosity and 

Contrast Adjustment," IEEE Transactions on Biomedical Engineering (2018). 

16. L. Cao, H. Li, and Y. Zhang, "Retinal image enhancement using low-pass filtering and α-rooting," Signal 

Processing 170, 107445 (2020). 

17. P. Dai, H. Sheng, J. Zhang, L. Li, J. Wu, and M. Fan, "Retinal Fundus Image Enhancement Using the Normalized 

Convolution and Noise Removing," International Journal of Biomedical Imaging 2016 1-12 (2016). 

18. N. D. Shemonski, FredrickA.South, Y.-Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, "Computational high-

resolution optical imaging of the living human retina," Nat. Photonics 9, 1-5 (2015). 

19. J. Chung, G. W. Martinez, K. C. Lencioni, S. R. Sadda, and C. C. Yang, "Computational aberration 

compensation by codedaperture- based correction of aberration obtained from optical Fourier coding and 

blur estimation," Optica 6, 647-661 (2019). 



Chapter 3 

94 
 

3 

20. A. Arias and P. Artal, "Wavefront-shaping-based correction of optically simulated cataracts," Optica 7, 22-

27 (2020). 

21. R. Dutta, S. Manzanera, A. Gambín-Regadera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, "Single-pixel 

imaging of the retina through scattering media," Biomedical Optics Express 10, 4159-4167 (2019). 

22. D. Singh and V. Kumar, "A Comprehensive Review of Computational Dehazing Techniques," Archives of 

Computational Methods in Engineering (2018). 

23. K. P. Senthilkumar and P. Sivakumar, "A Review on Haze Removal Techniques," Computer Aided Intervention 

and Diagnostics in Clinical and Medical Images, 113-123 (2019). 

24. S. Banerjee and S. S. Chaudhuri, "Nighttime Image‑Dehazing: A Review and Quantitative Benchmarking," 

Archives of Computational Methods in Engineering (2020). 

25. E. Peli and T. Peli, "Restoration of retinal images obtained through cataracts," IEEE Transactions on Medical 

Imaging 8, 401-406 (1989). 

26. B. Savelli, A. Bria, A. Galdran, C. Marrocco, M. Molinara, A. e. Campilho, and F. Tortorella, "Illumination 

correction by dehazing for retinal vessel segmentation," IEEE 30th International Symposium on Computer-

Based Medical Systems (2017). 

27. Y. Wang, S. Zhuo, D. Tao, J. Bu, and N. Li, "Automatic local exposure correction using bright channel prior for 

under-exposed images," Signal Processing 93, 3227-3238 (2013). 

28. A. Mitra, S. Roy, S. Roy, and S. K. Setua, "Enhancement and restoration of non-uniform illuminated Fundus 

Image of Retina obtained through thin layer of cataract," Computer Methods and Programs in Biomedicine 

156, 169-178 (2018). 

29. A. Gaudio, A. Smailagic, and A. e. Campilho, "Enhancement of Retinal Fundus Images via Pixel Color 

Amplication," International Conference on Image Analysis and Recognition (2020). 

30. H. Koschmieder, "Luftlicht und sichtweite," Naturwissenschaften, 26, 521-528 (1938). 

31. E. J. McCartney, "Optics of the Atmosphere: Scattering by molecules and particles," New york, 408 (1976). 
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Supplementary Notes for Chapter 3 
DPFR: A double-pass fundus reflection model for 

efficient single retinal image enhancement 
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Supplementary Note 3-1:  Experimental results for visual and 

quantitative assessments 

Tab. s3-1. Quantitative assessment of the enhanced images among Fig. s3-1(a1) to s3-2(d1) with six metrics. 

Raw image Matrixes Raw 
Methods 

LCA LPAR PCA DPFR 

Group 1 
(Fig. s3-1) 

DE 0.7033 1.6829 11.6208 3.1715 10.5461 
UISM 3.2169 3.6772 6.8555 4.5054 6.5344 

UIConM 0.0663 0.1112 0.3673 0.2330 0.3794 
IE 3.7828 3.7605 5.2418 3.7321 5.0104 

CRAMM 1.7218 2.5363 7.9630 4.3047 6.9873 
FADE 1.1502 0.7293 0.2123 0.5127 0.1705 

Group 2 
(Fig. s3-2) 

DE 0.7035 1.7578 10.2321 4.2726 10.6374 
UISM 2.9919 3.4943 7.5659 4.7161 6.6337 

UIConM 0.0520 0.0989 0.3536 0.2617 0.3723 
IE 4.2933 4.2000 5.1948 3.9056 4.8937 

CRAMM 1.5881 2.3981 7.7575 4.6301 6.8675 
FADE 0.8029 0.5088 0.2219 0.3503 0.1689 

Group 3 
(Fig. s3-3) 

DE 1.7946 4.2453 13.3563 8.2246 16.3367 
UISM 5.2235 6.0137 9.0230 9.2007 9.6236 

UIConM 0.1147 0.2060 0.3683 0.3896 0.4052 
IE 4.0018 4.5398 5.1823 3.7721 5.1266 

CRAMM 2.5071 4.2325 8.5827 7.4953 8.5843 
FADE 0.4434 0.2724 0.1793 0.2786 0.1317 

Group 4 
(Fig. s3-4) 

DE 0.9598 3.4012 7.9515 1.6917 14.0354 
UISM 3.6441 4.7619 6.2515 3.8831 6.8982 

UIConM 0.0365 0.1339 0.2973 0.2650 0.3358 
IE 3.8867 4.5507 5.2396 4.5239 5.2381 

CRAMM 0.9922 2.7305 5.7523 4.6707 7.2670 
FADE 0.5351 0.2097 0.1875 0.3604 0.1609 

Average 

DE 1.0403 2.7718 10.7902 4.3401 12.8889 
UISM 3.7691 4.4868 7.4240 5.5763 7.4223 

UIConM 0.0674 0.1375 0.3466 0.2873 0.3732 
IE 3.9912 4.2626 5.2146 3.9834 5.0672 

CRAMM 1.7023 2.9744 7.5139 5.2752 7.4265 
FADE 0.7329 0.4301 0.2003 0.3755 0.158 

 

In this section of the Supplementary Materials, additional four groups of experimental 

results are shown for visual and objective assessment. Tab. s3-1 lists the quantitative 

assessment of the four groups. 
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Fig. s3-1. Group 1 for visual assessment. Left to right are raw image, results of LCA, LPAR, PCA, and 

DPFR methods. 

 

Fig. s3-2. Group 2 for visual assessment. Left to right are raw image, results of LCA, LPAR, PCA, and 

DPFR methods. 
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Fig. s3-3. Group 3 for visual assessment. Left to right are raw image, results of LCA, LPAR, PCA, and 

DPFR methods. 

 

Fig. s3-4. Group 4 for visual assessment. Left to right are raw image, results of LCA, LPAR, PCA, and 

DPFR methods. 
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Supplementary Note 3-2: Experimental results in different color 

space 

In this section, we demonstrate the enhancement by converting the coarse illumination 

corrected image into different color space. Results are shown in Fig. s3-5. The CIE-Lab 

results have similar visuall effect as that of in YCbCr space. While the intensity of the 

entire image enhanced in CIE-Lab color space is slightly dimmer than that in YCbCr 

space. Enhanced results in HSV color space shows loose of texture information (near 

the optical disk) as the V component is given by the maximum value in RGB channels, 

and didn’t meet our first requirement where the intensity should make full use of valid 

information of raw images.  

 

Fig. s3-5, Enhancement results in different color space. Columns from left to right are raw images, 

enhanced in the YCbCr color space, enhanced in the CIELab color space, and in the HSV color space, 

respectively. 
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Abstract 

In this research, we studied the duality between cataractous retinal image dehazing and 

image denoising and proposed that the dehazing task for cataractous retinal images can 

be achieved with the combination of image denoising and sigmoid function. To do so, 

we introduce the double-pass fundus reflection model in the YPbPr color space and 

developed a multilevel stimulated denoising strategy termed MUTE. The transmission 

matrix of the cataract layer is expressed as the superposition of denoised raw images 

of different levels weighted by pixel-wise sigmoid functions. We further designed an 

intensity-based cost function that can guide the updating of the model parameters. They 

are updated by gradient descent with adaptive momentum estimation, which gives us 

the final refined transmission matrix of the cataract layer. We tested our methods on 

cataract retinal images from both public and proprietary databases, and we compared 

the performance of our method with other state-of-the-art enhancement methods. Both 

visual assessments and objective assessments show the superiority of the proposed 

method. We further demonstrated three potential applications including blood vessels 

segmentation, retinal image registrations, and diagnosing with enhanced images that 

may largely benefit from our proposed methods. 

 

Keywords 

Ophthalmology; Retinal image; Cataract; Dehazing 
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1. Introduction 

Retinal images provide noninvasive measurement of fundus morphology and are 

widely used by ophthalmologists for early detection, diagnosis, and monitoring of 

ocular diseases and their progression [1-7]. However, imaging of cataract patients’ 

retina using fundus cameras is challenging since the image quality is severely degraded 

by light scattering of the turbid cataract layers. Dependent on the severity, many of the 

subtle retinal structures are hidden by the haze effect of cataract which largely limits 

the diagnosing accuracy and reliability for ophthalmologists, as a result, diagnosing 

according to cataractous retinal images is error-prone. 

Improving the cataractous retinal image quality by modifying the optical system of 

a fundus camera, for example, using laser source or confocal imaging technique is 

expensive and also inconvenient for quick and universal retinal image checking. 

Therefore, image processing methods draw more attention to cataractous retinal image 

enhancement as they are economical and practical [8-12]. Various algorithms were 

investigated for cataractous retinal image enhancement, within which the image 

formation model-based methods show their priority in experimental results.  

Given the similarity between cataractous retinal image and hazy image for natural 

scenes, many studies have adopted natural scene dehazing methods to achieve 

cataractous retinal image dehazing [8, 9, 13, 14], however, their results are limited. The 

main reason is that the spectral properties of retinal images are different from nature 

scenes due to the existence of intraocular lens, and absorption by ocular tissue [15]. 

Therefore, the natural scene dehazing methods suffer from the problem where the 

transmission matrix of cataract layers is underestimated (Supplementary Note 4-1). 

In our previous study [16] we reviewed the historical image formation model of 

retinal imaging and developed the double-pass fundus reflection model (DPFR) 

dedicated to retinal image enhancement. It incorporates a specific double-pass fundus 

reflection feature [15, 17, 18] that had been neglected hitherto in modeling the light 

propagation of fundus imaging in all reports on retinal image enhancement. In this 
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study, we continued this research and show that the dehazing of retinal images can be 

achieved in a framework of image denoising or smoothing. We developed a multilevel-

stimulated denoising strategy, called MUTE. In MUTE, the transmission matrix of the 

cataract layer is expressed as the superposition of denoised raw retinal images of 

different levels weighted by pixel-wise sigmoid functions. We further designed an 

intensity-based cost function that guides and stimulates the updating of the 

transmission matrix. A demonstration of experimental results of MUTE on cataractous 

retinal image dehazing is shown in Fig. 4-1.  

 

Fig. 4-1. Demonstrations of MUTE on cataractous retinal image dehazing. Images in the first row are 

cataractous retinal images. Images in the second row are outputs of MUTE. 

The subsequent manuscript is organized as follows. Section 2 briefly reviews related 

work. Section 3 introduces the basic formulas for our retinal image formation model 

and the preprocessing procedures that are applied to the retinal image before retinal 

image dehazing. Section 4 presents and analyzes the proposed multilevel-stimulated 
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denoising (MUTE) strategy in detail. Section 5 shows the experimental results for both 

visual and objective assessment in comparison to state-of-the-art (SOTA) algorithms. 

Demonstrations of some potential clinical applications of MUTE are also included in 

Section 5. Section 6 contains detailed ablation study of each module of MUTE. Section 7 

provides a Hessian denoising strategy to suppress the noise signals during the MUTE 

dehazing, and section 8 is discussions and the concluding remarks. 

2. Related works 

2.1  Retinal imaging formation/structuring model 

The early-stage of retinal image formation model was directly adopted from 

Koschmieder & McCartney’s model [19, 20] of hazy nature scenes, which is given by  

 ( ) ( ) ( ) ( )1c c cA= + −  S r T r O r T r , (4-1) 

where O is the haze-free image, T is the transmission matrix of the haze medium 

describing the portion of the light that is not scattered and reaches the camera. A is the 

global atmospheric light, S is the observed image. 𝒓 = (𝑥, 𝑦)  is the vector of spatial 

coordinates and { , , }c R G B  is the index of the color channels.  is the pixel-wise 

multiplication. 

Based on Eq. (4-1), many studies have been proposed to enhance the visual quality 

of hazy and underwater images, achieving promising results [21-24]. Some studies also 

introduced Eq. (4-1) for retinal image enhancement. In these applications, T was 

regarded as the transmission matrix of the cataract layer, as cataract also scatters light 

and imposes haze-effect on captured retinal images. Xiong et al. proposed to use 

intensity correction and histogram adjustment to preprocess the image, generating a 

transmission map according to the intensity of the preprocessed image in each color 

channel [9]. Haze effects were then suppressed through dehazing. Gaudio et al. 

demonstrated a pixel color amplification method for retinal imaging enhancement that 

showed good performance in enhancing the detailed structure of retinal images [14]. 

Cao et al. proposed the detail-richest-channel to estimate the transmission matrix T 
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[13]. However, Eq. (4-1) was developed for natural scenes and may not be the optimal 

choice for fundus imaging, ignoring its double-pass property.  

Peli et al. [8] developed an optical model for imaging the retina through cataracts 

which is  

 ( ) ( ) ( ) ( )1c cL L= + −  S r T r O r T r , (4-2) 

L is the flash illumination of the fundus camera and α is the attenuation of retinal 

illumination due to the cataract. Both L and α are considered as constant. Following Eq. 

(4-2), many methods have been proposed to enhance the cataractous retinal image. 

Mitra et al. proposed to use the Retinex theory to remove the haze effect [10], which is 

analogous to Peli’s work. Luo et al. developed an unpaired generative adversarial 

network to achieve haze removal [12].  

Different from Eq. (4-1), Eq. (4-2) reveals that the illumination pattern also impacts 

the quality of retinal imaging. However, as L is constant, Eq. (4-2) loses the ability to 

correct the uneven (spatially varying) illumination of retinal imaging. In addition, the 

existing parameter α shows the basic idea of the double-pass property where the 

illumination light interacts twice with cataract layer. (When the light goes inside the 

eye, and when it is reflected out from the fundus). 

In our previous study [16], we proposed the double-pass fundus reflection (DPFR) 

that deals with image formation in retinal imaging. This DPFR model is given by  

 ( ) ( ) ( ) ( ) ( ) ( )2 2 1c lens sc c sc
 = + − S r L r T r T r O r T r , (4-3) 

where 𝑳(𝒓)  is the illumination from the outside of the eye and is delivered by the 

illumination system of the fundus camera. We consider that the retina is illuminated by 

white light (identical value in R, G and B channels) which may have an uneven and 

insufficient illumination pattern. 𝑻𝑙𝑒𝑛𝑠(𝒓) is the transmission matrix of the combination 

of cornea and lens. 𝑻𝑠𝑐(𝒓) is the transmission matrix of intraocular scatter including 

cataractous. Eq. (4-3) reveals that the degeneration of the retinal image is mainly due 

to three parts: (1) an uneven illumination condition, (2) filtering by the human lens, and 
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(3) intraocular scattering. Based on Eq. (4-3), we now can correct the illumination 

problem and suppress the haze effect. 

Besides the image formation model, there are also image structure models used for 

retinal image enhancement [11, 25-27], and the image structure models can be 

summarized as  

 ( ) ( ) ( ), ,c c background c details= +S r S r S r , (4-4) 

where 𝑺𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  is the background information of the observed image which 

corresponds to the low-frequency components, while 𝑺𝑑𝑒𝑡𝑎𝑖𝑙𝑠  denotes the detailed 

information implying the detailed structures and textures of the image. By giving a large 

weight to 𝑺𝑑𝑒𝑡𝑎𝑖𝑙𝑠  and suppressing the 𝑺𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  one can obtain a contrast-enhanced 

image. 𝑺𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 can be obtained by low pass filtering of S [11, 26] and total variation 

regularization [27]. While 𝑺𝑑𝑒𝑡𝑎𝑖𝑙𝑠  can be obtained by high pass filtering of S or 

subtracting 𝑺𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  from S. Note that Eq. (4-4) is not based on the optical process 

of how the image is formed and the physical insight is different from Eqs. (4-1) to (4-3). 

2.2  Retinal image illumination correction 

Since retinal images may suffer from uneven and insufficient illumination 

conditions, correction of the uneven illumination is necessary to enhance its visual 

quality. Methods for illumination correction are categorized into model-based and non-

model-based.  

For non-model-based methods, Zhou et al. proposed to use gamma correction to the 

V channel of retinal images in HSV color space [28]. This process provides a luminance 

gain matrix, which can later be applied to RGB channels to correct the uneven 

illumination. Gupta et al. modified Zhou’s method by combining the adaptive gamma 

correction to refine the luminance gain matrix [29].  

For model-based methods, the Retinex theory and its variations are used in many 

reports about correcting the uneven illumination of retinal images. Based on the 

assumption where the illumination pattern of an image is the low-frequency 
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component, an estimation of the illumination pattern can be obtained by low-pass 

filtering the given retinal images and removed in the logarithm domain [11, 26]. Besides, 

based on the observation that the color reversed image which has insufficient/uneven 

illumination conditions is similar to the image with hazed effects, the bright channel 

prior (color inversed version of dark-channel prior) also provides an illumination 

correction method [13, 30], and they can be combined with the Retinex theory [16].  

2.3  Cataractous retinal image dehazing 

Dehazing of cataractous retinal image seems to be similar to a natural scene. 

Dehazing of a single natural scene image is ill-posed, therefore, many prior knowledges 

were proposed to obtain the transmission matrix 𝑻𝑠𝑐  from known only of raw haze 

image S. For example, in the framework of the dark channel prior [31], 𝑻𝑠𝑐  can be 

obtained by local minimum filtering of 𝑺𝑌
𝐼𝐶  among RGB color channel. In the color 

attenuation prior [32], 𝑻𝑠𝑐  can be estimated from the difference between image 

brightness and saturation. In the gamma correction prior [33], 𝑻𝑠𝑐  is given by the 

intensity difference before and after the gamma correction of the raw image.  

However, as we show in Supplementary Note 4-1, prior knowledges for natural 

hazed image fail to obtain the appropriate 𝑻𝑠𝑐  in the case of retinal image dehazing. For 

example, the dark channel prior fails because there are insufficient shadow areas in 

retinal image S. The color attenuation prior fails because the spectral statistical 

property of retinal images is different from nature images due to the existence of the 

ocular lens. While the failure of gamma correction prior fails is due to that Eq. (4-3) 

cannot be simplified to meeting the derivation of gamma correction prior due to the 

squared term of 𝑻𝑠𝑐 . In general, new dehazing algorithms that are dedicated to retinal 

image dehazing tasks need to be designed.  
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3. The DPFR model and image preprocessing 

3.1 The DPFR in the YPbPr color space 

As shown in Fig. 4-2 (a), the DFPR model for retinal image formation in RGB color 

space is described by Eq. (4-3). Let’s consider the linear transform matrix  that 

converts RGB color space to YPbPr color space,   is given by  

 
( ) ( )

( ) ( )

1

1

2 2 2
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, (4-5) 

and ( ) ( )1,1,1 1,0,0
T

 = . Applying Eq. (4-5) to both sides of Eq. (4-3), we obtained  

 2 2 0

0
B B

R R

Y Y sc

P lens sc P

P P

     − 
      

=    +      
                

S O 1 T

S L T T O

S O

. (4-6) 

Equation (4-6) reveals the mathematical insight that the hazed effect only happens 

to the Y channel of the retinal image as the Y channel has the haze term 𝑰𝑖𝑙𝑙 ∙ 𝑻𝑙𝑒𝑛𝑠
2 ∙

(1 − 𝑻𝑠𝑐) which denotes the backscattering of light from intraocular scatters as shown 

in Fig. 4-2 (b). For PB and PR channels, the existence of 𝑻𝑠𝑐  works similar to 𝑰𝑖𝑙𝑙  which 

only decreases the intensity of corresponding color channels of the haze-free image. 

According to ITU-R BT.601 standard, 0.299RK =  and 0.587GK = .  

According to Eq. (4-6), our proposed algorithm converts the color retinal image in 

YPBPR color space, and three channels are treated differently. Both intensity correction 

and dehazing are applied to the Y channel, while only intensity correction is applied to 

the PB and PR channels. After then, the retinal image is converted back to RGB color 
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space. In our proposed method, the grayscale is normalized between [0, 1] by dividing 

the loaded images (uint8) by 255. 

 

Fig. 4-2. The sketch of the double-pass fundus reflection model. S is the final output image of the 

imaging system. (a) in RGB color space. (b) in YPbPr color spave. HT: haze term; FRT: fundus 

reflection term. 

3.2 Image preprocessing 

Before entering the dehazing process, preprocessing including background padding 

and illumination correction is applied to the raw images. A retinal image is composed 

of two major regions - a circular retinal region of interest (ROI) and a black background. 

Let   be all pixels in the circular ROI. Since the image will be filtered by Gaussian 

kernels during the following process, unexpected enhancement results often occur 

when the convolution kernel slides through the retinal image due to the sudden change 

of pixel values. Padding the black areas before enhancement is an effective way to 

reduce the boundary effect during the convolution. Here we use mirror reflection 

padding to fill the black background. 
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Fig. 4-3. Image preprocessing. (a1) to (d1) are background padded retinal image. (a2) to (d2) are 

their Y channels, respectively. (a3) to (d3) show the illumination correction results. 

Hereafter, we apply our previously reported adaptive illumination correction 

method to the Y channel of the retinal image to correct its uneven and insufficient 

illumination pattern. The illumination correction can unify the intensity distribution of 

input images, and benefit following dehazing process. Since this research focuses on the 

dehazing process, we refer to Ref [16] or Supplementary Note 4-2 for detailed 

information on illumination correction. Moreover, the ablation study for illumination 

correction will be discussed in Section 6.2 and 6.3. Fig. 4-3 shows the raw cataractous 

retinal images and corresponding Y channels before and after illumination correction 

treatment.  
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4. Dehazing using pixel-wise stimulated multilevel denoising 

After retinal image illumination correction, the Y channel becomes 

 2IC

Y sc Y sc= + −S T O 1 T , (4-7) 

𝑺𝑌
𝐼𝐶  denotes the Y channel of the source image after illumination correction. The first 

term 𝑻𝑠𝑐
2 ○ 𝑶𝑌 of Eq. (4-7) is the scene term denoting the light reflected from the fundus 

and attenuated by the cataract layer. The second term 𝟏 − 𝑻𝑠𝑐  is the haze term denoting 

the backscattering light from the cataract layer. Once 𝑻𝑠𝑐  is known, 𝑶𝑌 can be retrieved 

by  

 
2

min ,1
IC

Y

Y

scsc

 −
= +  

 

S 1 1
O

TT
. (4-8) 

Considering that (I) the retinal image 𝑶𝑌 contains blood vessels, and many speckle-

like textures due to the scattering of biological tissues, and (II) the haze term is spatially 

slow-varying since the cataract lays on the pupil plane which is severely out-of-focus 

from the retinal plane [8, 34]. (III) Eq. (4-8) is analog to Eq. (4-4) as 𝑻𝑠𝑐
2 ○ 𝑶𝑌 can be 

regarded as the structure term and 𝟏 − 𝑻𝑠𝑐  can be regarded as the background term. 

We, therefore, are able to regard 𝑻𝑠𝑐
2 ○ 𝑶𝑌 as the “noise” imposed on 𝟏 − 𝑻𝑠𝑐  and can be 

removed by image denoising, yielding 

 ( ) ( )Denoising 1 DenoisingIC IC

Y sc sc Y −   −S 1 T T S , (4-9) 

Eq. (4-9) implies that the transmission matrix 𝑻𝑠𝑐  can be obtained by denoising (or 

smoothing) the input hazy image 𝑺𝑌
𝐼𝐶 .  
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Fig. 4-4. Multilevel-stimulated denoising strategy for retinal image dehazing. (a) input Y channel. (b) 

Multilevel denoised image controlled by stimulating functions. (c) the final output of estimation of 

scT . (d) final output Y channel of the restored image.  

Since off-the-shelf denoising algorithms are not designed for cataractous retinal 

image dehazing tasks, the denoised image needs to be further refined to form a good 

estimation of 𝑻𝑠𝑐 . Inspired by multi-scale treatment, we consider the 𝑻𝑠𝑐  as a linear 

combination of multiple denoised images of different denoising strengths. Images with 

strong denoising can be regarded as coarse estimation of 𝑻𝑠𝑐  since they contain large-

scale features of 𝑻𝑠𝑐 . While images with weak denoising can be regarded as fine 

estimation of 𝑻𝑠𝑐  but corrupted by the reflected components 𝑻𝑠𝑐
2 ○ 𝑶𝑌. We are further 

inspired by stimulating functions, and we assign stimulated functions to different levels 

of denoised images, so that we can design a cost function that guides the model on which 

pixel should contain more details and which pixel shouldn’t. (For the detailed 

relationship between image dehazing and image denoise, please refer to 

Supplementary Note 4-3.) 

Based on this idea, here we proposed the adaptively multilevel stimulated denoising 

strategy (MUTE) to obtain a delicate estimation of 𝑻𝑠𝑐 . The structure of MUTE is shown 

in Fig. 4-4. Eq (4-9) is rewritten as 

Multi-level  Stimulated Denoising Strategy

(a)

(c)

(d)

Denoised layers Stimulating functions (to be optimized)

(b)

1A

: Pixel-wise product

: Pixel-wise difference

+ : Pixel-wise addition

+

1

-
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 ( ) ( ) ( )0

1

1 IC IC

sc Y l l Y

l=

 
   = −  +    

 
T S r θ r S r
L

A S S , (4-10) 

where A  is a global amplitude term that controls the magnitude of all denoising terms.

lS , ( 0,  1,  2 1)l = −L is the denoising of 𝑺𝑌
𝐼𝐶  at l-th level of denoising strength (a total 

of L  levels, 2L ). ( )lθ r  is the pixel-wise stimulated (sigmoid) function which is 

given by 

 ( )
( )

1 1

1 1 exp
l

l

  
=  

− + −    L
θ r

φ r
 (4-11) 

that assigns different weights at point r for l-th denoising level. ( )lφ r  is the parameter 

that controls the stimulated weight for ( )lθ r . We choose the sigmoid function due to 

its simple expression of its first-order derivative and the sigmoid function gets 

saturated even if the value of ( )lφ r  gets very large, which makes the gradient descent 

won’t go too far from the optimal points in each iteration. The remaining tasks are to 

design a cost function that guides the automatic adjustment of ( )lφ r  and the amplitude

A . 

Recall that an underestimation of 𝑻𝑠𝑐  darkens the intensity of 𝑶𝑌 but enriches its 

texture information [35], while the overestimation of 𝑻𝑠𝑐  brightens the intensity of 𝑶𝑌 

but decreases the texture information due to the haze effect. To optimize the 

parameters ( )lφ r  and A , we design an intensity-based cost function 

 ( )
2 2

Y YE I = − −  
r r

O O , (4-12) 

where ( )0 mean IC

YI I


= 
r

S , and 𝐼0  is the intensity ratio that controls the dehazing 

strength. A small value of 𝐼0 leads to a strong dehazed effect while also darkening the 

image. The first term ensures that the output 𝑶𝑌 has a proper intensity distribution, 
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and the second term ensures the image has rich texture information. 𝜆 (𝜆 < 1, or 𝜆 = 0) 

is a small value to ensure the first term contributes most to the gradient.  

The MUTE can be regarded as a one-layer network, with only sigmoid functions. The 

derivative of Eq (4-12) with respect to parameters ( )lφ r  and A  can be either 

calculated by automatic differentiation, or calculated in closed-form as written in 

Supplementary Note 4-4.  

 

Fig. 4-5. Flow chart of proposed Y channel dehazing method. 

In MUTE, we use the Adam optimizer to update model parameters [36], 0.01 =  

(step size), 0.9 =  (first-order decay rate) and 0.99 =   (second-order decay rate) in 

all following experiments. Moreover, Let ( )
2

meann YR I


= −
r

O  be part of the residual of 

cost function in the n-th iteration and we stop the iteration process when Rn < 0.005. 

Fig. 4-5 shows the flow chart of the proposed dehazing algorithm. 

Many off-the-shelf image denoising algorithms can be used for computing lS  in Eq. 

(4-10), here we choose Gaussian filter for simplicity which are given by 

Input Y channel after 
preprocessing of raw image Multilevel Denoising Iteration solver

Transmission matrixDehazed Y channel Pixel-wise stimulation matrix
Learning

,  nφ A

&
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=  −  

   
S
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r S r , (4-13) 

and the size of the gaussian kernel at l-th level is  

 
1

20 2

l

l

M N
w

−
   

=        

L

. (4-14) 

Figure 6 shows 
YO  and corresponding 𝑻𝑠𝑐  when 1 = , 4=L  and 

0 0.50I =  for 

images in Figs. 3(a3) to 3(d3), respectively. As shown in Fig. 6 (a1) to (d1), the patterns 

of 𝑻𝑠𝑐  have low transmission maps due to the presence of cataracts. Since the intensity 

of the pattern is low for haze retinal images, in order to have a clear observation of the 

transmission pattern, we normalized the intensity in area   as shown in the second 

row of Fig. 4-6, where the areas near the blood vessels are regarded as having higher 

transmission than other places. 

Comparing images in Fig. 4-3 (a3-d3) to Fig. 4-6 (a3-d3), the haze effect is 

significantly suppressed as the retinal structures including optical disks and blood 

vessels can be clearly observed. Since the iteration could be fast and converged in only 

a few steps, we insert additional frames in the videos for better demonstration.  
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Fig. 4-6. Results for Y channel dehazing. (a1) to (d1) are obtained 𝑻𝑠𝑐 for images in Figs. 4-3(a3) to 

3(d3). The patterns are truncated by the mask of the region of interest. (a2) to (d2) are intensity 

normalized pattern of (a1) to (d1). (a3) to (d3) are dehazed Y channel. (a4) to (d4) are changes of the 

cost function with respect to iterations.  

In general, a flow chart for the proposed enhancement method is summarized in Fig. 

4-7. The Hessian denoising is an optional process that will be discussed in Section 7 in 

detail.   
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Fig. 4-7. A flow chart for MUTE method. Eq. (s21) and Eq. (s22) are in the Supplementary Note 4-5. 
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5. Experimental results 

To show its performance, this section compares, both qualitatively and quantitatively, 

MUTE with that of three recently published state-of-art methods, namely the 

decomposition and visual adaptation (DVA) [27], the detail-richest-channel method 

(DRC) [13], and the low-pass filtering and α-rooting (LPAR) [26]. Note that in [13] and 

[26] it was proven that the enhancement performances of DRC and LPAR are better 

than methods presented in [9] and [10]. Image black background padding was applied 

to all raw retinal images before retinal image enhancement. The treatment in Pb/Pr 

channel is not applied.  

In actual implementation, the kernel parameters for DRC and LPAR are determined 

adaptively according to the size of input images. Other parameters for DRC and LPAR 

models such as intensity correction strength can be automatically determined by the 

models. While for DVA method, it has two parameters, λ to determine the frequency 

band, and α to control the local contrast for the enhancement. In our implementation, λ 

= 0.3, α = 600 based on [27]. For MUTE, we choose 
0 0.52I =  in following experiments. 

Explanation of this selection will be discussed in Section 6.2.  

5.1 Visual assessments 

First of all, we compared the results to assess the performance of the proposed 

method in terms of removing the haze effect and enhancing retinal structure visibility 

with images in a public, and our proprietary cataractous retinal image databases. Four 

groups of raw images and corresponding enhanced images are shown in Fig. 4-8. The 

first row shows raw cataract retinal images, where each image has a severe haze effect 

as most of the structures including blood vessels and optical disks are hidden behind 

the cataract layer.  

From visual assessment, DVA corrects the haze effect for some images as shown in 

Fig. 4-8 (b2) and Fig. 4-8 (c2), as the blood vessels near the optical disks are enhanced. 

However, the performance of DVA is not stable as it failed to correct the haze effect for 
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images in Fig. 4-8 (a2) and Fig. 4-8 (d2), especially for the region that is far from the 

optical disks. 

 

Fig. 4-8. Cataractous retinal image enhancement results. Columns from left to right are raw images, 

enhanced results of DVA, DRC, LPAR, and MUTE methods. 

 The results of DRC are shown in Fig. 4-8 (a3) to Fig. 4-8 (d3), where the haze effects 

are still significant, although the detailed structures on the retinal image are enhanced. 

Results of LPAR are shown in Fig. 4-8 (a4) to Fig. 4-8 (d4), where the haze effect is 

removed as the blood vessels can be clearly observed. However, the LPAR causes an 

overexposure effect on the bright area of the optical disk as shown in Fig. 4-8 (b4) and 

Fig. 4-8 (c4).  
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Note that some DVA results are similar to that of LPAR method as shown in Fig. 4-8 

(b2) and Fig. 4-8 (b4), the main reason being that both belong to variations of Eq. (4-4). 

DVA uses TV regularization while the LPAR uses the Gaussian filter to obtain the 

background components of the retinal image. Meanwhile, the LPAR uses an adaptive 

strategy to determine the parameters for retinal image enhancement, thus, the LPAR 

has better performance on retinal images of different conditions than that of DVA 

method whose parameters still need hand-tuning.  

 

Fig. 4-9. Partially enlarged areas of raw images in the white boxes. Columns from left to right are raw 

images, enhanced results of DVA, DRC, LPAR, and MUTE methods. 

Results of MUTE are shown in the last column of Fig. 4-8. The haze effect is efficiently 

suppressed and blood vessels that are hidden behind the cataract can be now observed. 

Meanwhile, MUTE also uses an adaptive manner to determine model parameters. It 
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does not lead to an overexposure effect, as it can restore a clear optical disk area as 

shown in Fig. 4-8 (b5) and Fig. 4-8 (c5). 

 

Fig. 4-10. Partially enlarged areas of raw images in the yellow boxes. Columns from left to right are 

raw images, enhanced results of DVA, DRC, LPAR, and MUTE methods. 

Partially enlarged images for the areas in the white and yellow boxes are shown in 

Fig. 4-9 and Fig. 4-10, respectively. All four methods show their ability in contrast 

enhancement, while the DVA and LPAR methods lead to an overexposure effect at the 

bright area as shown in Fig. 4-9 (b2), (c2), (b4), and (c4). MUTE enhances image 

contrast and some small blood vessels within the optical disk can be observed as shown 

in Fig. 4-9 (b5) and Fig. 4-10 (a5) to Fig. 4-10 (d5). Some blood vessels that are hard to 

be observed in the raw images are now can be clearly found, especially in Fig. 4-9 (d5) 

and Fig. 4-10 (a5).  
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According to the experimental results, MUTE suppresses the haze effect of the 

cataractous retinal image and gains better contrast-enhanced results than other SOTA 

methods. 

5.2 Objective assessments 

To evaluate the performance of the four methods, we also conducted a quantitative 

evaluation in terms of (1) image sharpness, (2) image local contrast, (3) image entropy, 

(4) image multiscale contrast, and (5) image fog density. All images were reformatted 

in 8-bit unsigned integers (uint8, the gray-value is ranged in [0, 255]). 

We adapted the Underwater Image Sharpness Measure (UISM) and Underwater 

Image Contrast Measure (UIConM) for image sharpness and image local contrast since 

severe blurring occurs in both underwater images and retinal images due to forward 

scattering [37]. More importantly, both the UISM and the UIConM do not rely on the 

statistical property of images and thus can be applied to retinal images, regardless of 

the statistical difference between retinal images and underwater images. The UISM and 

the UIConM are calculated by 
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In Eq. (4-15), edgeI  denotes the product between the Sobel edge map and the original 

image in the corresponding color channel. c  is the weight that is assigned to each color 

channel according to the visual response. 0.299R = , 0.587G =  and 0.114B =  are 

used according to the relative visual responses of the red, green, and blue channels [37]. 
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The image is divided into k1k2 blocks, max, , min, ,/k l k lI I indicates the relative contrast ratio 

within each block.  

Image entropy (IE) describes the randomness distribution of the image and its value 

denotes the amount of image information [38, 39], which is given by 

 ( ) ( )
255

{ , , } 0

logc g g

c R G B g

IE P x x
 =

=   , (4-17) 

where ( )gP x  is the probability of the appearance of the pixels that have gray-value g in 

the gray-scaled image. Image entropy can be used to characterize the texture of the 

image [40] and determine the amount of image information. Images affected by haze 

tend to have low IE values due to the biased brightness distribution. In contrast, haze-

free images have a relatively high IE.  

The multiscale contrast of the image, CRAMM, was calculated with a pyramidal multi-

resolution representation of luminance [40]. CRAMM is defined as  
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where # pixel  denotes the total pixel numbers of the image, level  denotes the total 

level of down-sampling, in each level the image is halved without pre-filtering. In this 

paper, we use 6 levels of down-sampling. The pixel numbers of retinal images in the 

databases are large enough for 6 levels of down-sampling.  

Lastly, the fog-aware density evaluator (FADE) [41] [42] was used to numerically 

predict perceptual hazy density.  

Tab. 4-1 demonstrates the enhancement results of the quantitative evaluations 

using objective metrics. Here, High values of UISM, UIConM, IE, and CRAMM indicate 

high image quality, while low values of FADE indicate a better dehazing performance.  

Numbers marked in blue denote the best performance, while numbers marked in 

green denote the second-best performance. As listed in Tab. 4-1, MUTE performed best 



Cataractous retinal image dehazing 

127 
 

4 4 

in aspects of UISM, UIConM, IE, CRAMM, and FADE, as it gained better scores than the 

other three methods. The DRC, LPAR, and MUTE decrease the FADE value denoting 

good dehazing results. 

Tab. 4-1. Quantitative assessment of the enhanced images among Fig. 4-8 (a1) to 4-8 (d1) with five metrics. 

Raw image Matrixes Raw 
Methods 

DVA DRC LPAR MUTE 

Figure 8 (a1) 

UISM 0.7782 0.9069 2.9260 4.6992 6.7863 

UIConM 0.0578 0.0938 0.0780 0.2909 0.3851 

IE 5.2354 5.1692 5.6260 7.4339 7.5100 

CRAMM 1.1207 1.5072 1.4048 4.7888 7.5293 

FADE 0.5127 1.1202 0.6086 0.2214 0.1554 

Figure 8 (b1) 

UISM 0.8098 2.2411 3.2962 7.0178 5.9409 

UIConM 0.0739 0.1950 0.1129 0.3534 0.3759 

IE 5.8075 6.2273 6.0271 7.2154 7.3425 

CRAMM 1.3705 3.7879 1.9448 7.1645 8.8383 

FADE 0.4347 0.6151 0.4590 0.1746 0.1191 

Figure 8 (c1) 

UISM 0.7715 0.9615 2.9473 4.4087 7.1608 

UIConM 0.0745 0.0968 0.0914 0.2970 0.3876 

IE 5.0473 4.9388 5.4631 7.3920 7.4646 

CRAMM 1.2978 1.5133 1.5083 4.9293 8.0858 

FADE 0.6148 1.3645 0.7896 0.2260 0.1427 

Figure 8 (d1) 

UISM 1.1770 1.5114 3.3452 4.3085 8.1445 

UIConM 0.0274 0.0805 0.1279 0.2186 0.4020 

IE 6.1477 6.2052 6.3507 7.3024 7.5447 

CRAMM 0.7426 1.4215 1.9617 3.8497 8.4174 

FADE 0.7134 0.7112 0.2980 0.2129 0.1183 

Average 

UISM 0.8841 1.4052 3.1287 5.1086 7.0081 

UIConM 0.0584 0.1165 0.1026 0.2900 0.3877 

IE 5.5595 5.6351 5.8667 7.3359 7.4655 

CRAMM 1.1329 2.0575 1.7049 5.1831 8.2177 

FADE 0.5689 0.9528 0.5388 0.2087 0.1339 
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Tab. 4-2. Averages and standard deviations of enhancement results from both public and 

proprietary cataractous retinal image datasets. 

Databases 

mean ± std. 
Matrixes Raw 

Methods 

DVA DRC LPAR MUTE 

Cataract 

(100 images) 

 

UISM 
0.9002 

± 0.1432 

2.2829 

± 0.9623 

3.4599 

± 1.4614 

5.5883 

± 0.7461 

6.7884 

± 0.7869 

UIConM 
0.0573 

± 0.0123 

0.1752 

± 0.0532 

0.1097 

± 0.0437 

0.3257 

± 0.0294 

0.3890 

± 0.0093 

IE 
5.8443 

± 0.4449 

6.1823 

± 0.4350 

6.2841 

± 0.3819 

7.4230 

± 0.1960 

7.4151 

± 0.1338 

CRAMM 
1.2013 

± 0.1741 

2.9870 

± 1.0950 

1.9515 

± 0.4257 

6.2711 

± 0.8769 

8.1483 

± 0.6035 

FADE 
0.4715 

± 0.1155 

0.6769 

± 0.2548 

0.4502 

± 0.1388 

0.2031 

± 0.0321 

0.1469 

± 0.0228 

Proprietary 

(94 images) 

 

UISM 
1.2065 

± 0.3028 

2.2897 

± 0.9169 

3.8239 

± 0.7211 

3.9118 

± 0.9212 

6.8936 

± 1.1603 

UIConM 
0.0446 

± 0.0133 

0.1477 

± 0.0549 

0.1983 

± 0.0640 

0.2140 

± 0.0511 

0.3811 

± 0.0646 

IE 
6.8377 

± 0.5775 

6.8649 

± 0.4550 

6.7774 

± 0.4714 

7.3770 

± 0.1914 

7.4889 

± 0.4049 

CRAMM 
1.0378 

± 0.1741 

2.4631 

± 0.9972 

2.8145 

± 0.7723 

3.8878 

± 1.2095 

7.9087 

± 1.5078 

FADE 
1.0455 

± 0.3905 

0.9345 

± 0.5244 

0.2070 

± 0.2112 

0.3351 

± 0.1118 

0.1857 

± 0.1177 

Average 

(194 images) 

 

UISM 
1.0486 

± 0.2798 

2.2862 

± 0.9381 

3.6363 

± 0.6049 

4.7760 

± 1.1832 

6.8393 

± 0.9844 

UIConM 
0.0512 

± 0.0143 

0.1619 

± 0.0557 

0.1527 

± 0.0657 

0.2716 

± 0.0695 

0.3852 

± 0.0455 

IE 
6.3164 

± 0.7181 

6.5057 

± 0.5639 

6.5231 

± 0.4929 

7.4045 

± 0.1952 

7.4568 

± 0.2996 

CRAMM 
1.1221 

± 0.1920 

2.7332 

± 1.0785 

2.3696 

± 0.7532 

5.1163 

± 1.5891 

8.0322 

± 1.1388 

FADE 
0.7496 

± 0.4038 

0.8017 

± 0.4272 

0.4528 

± 0.1772 

0.2671 

± 0.1045 

0.1657 

± 0.0856 

 

Tab. 4-2 compares the average and standard deviation among five quality matrixes 

for raw and enhanced images from both public and proprietary cataractous retinal 

image datasets. In general, the performance of MUTE is better than those of the other 

three methods, as it has the best average scores among all four methods. The robustness 
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of MUTE is also better than the other three SOTA methods which are implied by the 

small standard deviation of MUTE. 

Apart from the cataractous retinal image, we test the performance of MUTE on non-

cataractous retinal images from public databases of DiaRet- , [43, 44] STARE-, 

MESSIDOR- [45], and NORMAL- [46] datasets, adding up to a total of 2116 retinal 

images.  

The results are listed in Tab. 4-3. For non-cataractous retinal images, DVA had the 

best score on IE, while MUTE showed the best score on UISM, UIConM, CRAMM, and FADE. 

In general, MUTE increases the contrast of retinal images by 7-fold, while decreasing 

their haze density by more than about 3-fold. The small standard deviation value of 

MUTE denotes its algorithm robustness. More experimental results for visual 

assessments are available in Supplementary Note 4-6 and Supplementary Note 4-7. 

Comparison results on the cataractous dataset between MUTE and SOTA deep-learning 

methods are available in Supplementary Note 4-12 for both visual and objective 

assessments.  

In the following subsection, we present demonstrates of MUTE’s potential 

contribution to three clinical applications including blood vessel segmentations, retinal 

image registration, and retinopathy diagnosis.  
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Tab. 4-3. Averages and standard deviations of enhancement results from non-cataractous retinal image databases 

Databases 

mean ± std. 
Matrixes Raw 

Methods 

DVA DRC LPAR MUTE 

DiaRetDB0+DB1 

(219 images) 

 

UISM 3.2857 ± 0.2107 3.5914 ± 0.5870 4.2797 ± 0.3261 5.3378 ± 0.8601 6.7373 ± 0.3610 

UIConM 0.0396 ± 0.0140 0.1793 ± 0.0393 0.0989 ± 0.0389 0.2419 ± 0.0471 0.3977 ± 0.0068 

IE 5.6481 ± 0.3389 6.2941 ± 0.2314 5.7972 ± 0.3434 5.8912 ± 1.8016 6.6910 ± 0.1443 

CRAMM 0.7169 ± 0.1332 2.4855 ± 0.7205 1.4165 ± 0.4100 3.7898 ± 1.2053 8.0577 ± 0.5667 

FADE 0.4752 ± 0.0395 0.4188 ± 0.0648 0.3094 ± 0.0461 0.2495 ± 0.1344 0.1278 ± 0.0156 

STARE 

(397 images) 

 

UISM 2.6542 ± 0.6460 4.1758 ± 1.0861 4.6212 ± 0.5306 5.5971 ± 1.0953 6.5124 ± 0.8229 

UIConM 0.0879 ± 0.0195 0.2440 ± 0.0458 0.1930 ± 0.0444 0.2863 ± 0.0499 0.3693 ± 0.0180 

IE 5.4185 ± 0.3468 6.3837 ± 0.2481 5.5470 ± 0.3198 5.5085 ± 1.2873 5.8185 ± 0.2760 

CRAMM 1.9010 ± 0.2998 5.1454 ± 1.4516 3.3505 ± 0.7190 5.4806 ± 1.2965 7.8314 ± 0.7522 

FADE 0.4744 ± 0.1274 0.3947 ± 0.1296 0.2367 ± 0.0617 0.2739 ± 0.1453 0.1331 ± 0.0236 

MESSIDOR 

(1200 images) 

 

UISM 1.8419 ± 0.3224 4.0235 ± 0.7075 5.0035 ± 0.4089 6.2763 ± 0.6584 7.0831 ± 0.4933 

UIConM 0.0746 ± 0.0185 0.2383 ± 0.0318 0.1608 ± 0.0418 0.2777 ± 0.0280 0.3660 ± 0.0073 

IE 5.1908 ± 0.3454 6.2726 ± 0.1881 5.6377 ± 0.3846 5.9916 ± 0.7165 6.0725 ± 0.2111 

CRAMM 1.1810 ± 0.1639 3.9134 ± 0.7737 2.2784 ± 0.4610 5.7179 ± 0.7411 7.6652 ± 0.5981 

FADE 0.4652 ± 0.0673 0.4361 ± 0.0842 0.2320 ± 0.0410 0.1812 ± 0.0726 0.1252 ± 0.0136 

NORMAL 

(300 images) 

 

UISM 1.5512 ± 0.2604 3.4903 ± 0.7928 4.7259 ± 0.3344 5.7581 ± 0.6043 6.9285 ± 0.4592 

UIConM 0.0768 ± 0.0152 0.2389 ± 0.0342 0.1700 ± 0.0336 0.3092 ± 0.0267 0.3733 ± 0.0047 

IE 5.5313 ± 0.2497 6.4120 ± 0.1878 5.8949 ± 0.2886 6.3338 ± 0.7880 6.3062 ± 0.1898 

CRAMM 1.2468 ± 0.1495 3.9861 ± 0.8219 2.5810 ± 0.4295 6.3165 ± 0.8719 8.3668 ± 0.4882 

FADE 0.6671 ± 0.1226 0.5629 ± 0.1132 0.3143 ± 0.0622 0.2096 ± 0.0876 0.1497 ± 0.0186 

Average 

(2116 images) 

 

UISM 2.1025 ± 0.6595 3.9318 ± 0.8274 4.8175 ± 0.4819 5.9783 ± 0.8516 6.9183 ± 0.5981 

UIConM 0.0738 ± 0.0219 0.2334 ± 0.0404 0.1618 ± 0.0478 0.2801 ± 0.0390 0.3709 ± 0.0137 

IE 5.3291 ± 0.3735 6.3154 ± 0.2130 5.6736 ± 0.3731 5.9391 ± 1.0404 6.1220 ± 0.3221 

CRAMM 1.2774 ± 0.3847 4.0071 ± 1.1709 2.4333 ± 0.7364 5.5587 ± 1.1420 7.8364 ± 0.6612 

FADE 0.4966 ± 0.1128 0.4445 ± 0.1094 0.2525 ± 0.0599 0.2097 ± 0.1062 0.1304 ± 0.0188 
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5.3 Potential clinical applications: Retinal image blood vessels 
segmentations 

Retinal image blood vessels segmentation provides the shape distributions of blood 

vessels, which is important for clinical diagnosis as the morphological changes of blood 

vessels are biomarkers for diseases such as lacunar stroke [3], cognitive dysfunction 

[47], cardiovascular risk [5], diabetes [48] and glaucoma [49]. Blood vessel 

segmentation can be achieved by either human specialists or computer software. The 

former provides accurate results but is time-consuming. The latter option provides fast 

segmentation results but is less accurate than human specialists. Moreover, due to poor 

image contrast of the cataractous retinal image, hand-based segmentation is even more 

time-consuming, and automatic segmentation for hazy retinal images can be error-

prone.  

 

Fig. 4-11. Demonstration of retinal blood vessels segmentation for the cataractous retinal image. (a1) 

to (a5) are raw, and enhanced images by DVA, DRC, LAPR, and MUTE, respectively. (b1) to (b5) are 

segmentation results of the Frangi filter. (c1) to (c5) are results for the Match filter.   
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Fig. 4-11 (a1) to Fig. 4-11 (c1) demonstrates the raw image and segmentation 

results given by two filtering-based methods including the Frangi filter [50] [Fig. 4-11 

(b1)] and the match filter [51] [Fig. 4-11 (c1)]. As shown in Fig. 4-11 (b1) and Fig. 4-11 

(c1), the blood vessels have a very weak response to the filters due to the hazy effect, 

resulting in the failure of blood vessels segmentation.  

Without other image preprocessing, enhancing the raw image using the DVA, DRC, 

LPAR, and MUTE methods before segmenting increases the performance of 

segmentation results in different degrees. The results for DVA and DRC are still limited 

as shown in Fig. 4-11 (b2) to Fig. 4-11 (c3), while the two methods are able to detect 

the vessels’ brunches for image enhanced by LPAR and MUTE as shown in Fig. 4-11 (b4) 

to Fig. 4-11 (c5).  

The response of blood vessels to the Frangi filters in Fig. 4-11 (a5) is higher than 

that of Fig. 4-11 (a5) as the intensity of blood vessels in Fig. 4-11 (b5) are higher than 

that in Fig. 4-11 (b4). This implies that the segmentation performance in Fig. 4-11 (a5) 

is better than Fig. 4-11 (a4). Note that the Frangi filter fails to detect the blood vessels 

near the edge of the ROI for LPAR enhanced image due to the halo effect as shown in 

Fig. 4-11 (a4). 

Another clinical application is shown in Fig. 4-12, reporting a cataractous retinal 

image with poor illumination conditions. Both Frangi filter and match filter are able to 

detect more blood vessels’ brunches for Fig. 4-12 (a5) than other enhanced images 

shown in Fig. 4-12 (b1) to Fig. 4-12 (c4).  

As there is no ground-truth blood vessel map for real cataractous retinal images 

since manually blood vessel segmentation is extremely hard due to the lack of image 

contrast for cataractous retinal images, we can only present the visual assessment to 

compare the segmentation results. In order to quantitatively present that MUTE 

benefits blood vessel segmentation, we perform simulation experiments based on 

simulated cataractous retinal images with well-defined ground-truth blood vessel maps 

in Supplementary Note 4-8 in detail. In general, our experimental and simulation 
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results show that MUTE improves the blood vessel segmentation in both visual and 

objective aspects.  

 

Fig. 4-12. Demonstration of retinal blood vessels segmentation for cataractous retinal image with 

poor illumination condition. (a1) to (a5) are raw, and enhanced images by DVA, DRC, LAPR, and 

MUTE, respectively. (b1) to (b5) are segmentation results of the Frangi filter. (c1) to (c5) are results 

for the Match filter.   

5.4 Potential clinical applications: Retinal image registration 

Image registration is an important application as it provides in the fields of 

computer vision, pattern recognition, and medical image analysis. It aligns two or more 

retinal images together in the same spatial axis to provide an overall comprehensive 

understanding. A promising retinal image registration relies on precise feature 

detecting and matching for images to be registered. Registration of cataractous retinal 

images can be failed due to poor feature paring results as the features are hidden by the 

haze effect of cataracts.  
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Fig. 4-13. Demonstration of retinal image registration with and without enhanced by MUTE. (a) to (c) 

are raw images, enhanced images, and post-surgery images, respectively. (d) indicates the matched 

features for (a) and (c), while (e) is the matched features for (b) and (c). (f) and (g) are montages of 

retinal image registration. 

Fig. 4-13 compares the registration results before and after being processed by 

MUTE. Fig. 4-13 (a) is the retinal image before cataract surgery, while Fig. 4-13 (b) is 

the enhanced image. Fig. 4-13 (c) is the retinal image after cataract surgery. We 

registered retinal image using Gaussian Field Estimator with Manifold Regularization 

(GFMR) method [52], Fig. 4-13 (d) shows the feature matching results between images 

in Fig. 4-13 (a) and Fig. 4-13 (c). The feature matching results are problematic as the 

algorithm failed to find the correct paired features in both images (indicated by green 

lines), resulting in a distorted registration as shown in Fig. 4-13 (f). Fig. 4-13 (e) shows 

the feature matching results between images in Fig. 4-13 (b) and (c) where the 

algorithm pinpoints the paired features as indicated by green lines. Successfully 

registered images are shown in Fig. 4-13 (g). 
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Fig. 4-14. Comparison of registration results for (a1-a3) MUTE, (b1-b3) LPAR, (c1-c3) DVA and (d1-

d3) DRC methods. (a1), (b1), (c1), and (d1) are enhancements. (a2), (b2), (c2), and (d2) are paired 

features (a3), (b3), (c3), and (d3) are registration results. (a4) to (d4) are zoomed-in part in the blue 

boxes.     

Fig. 4-14 shows the comparison of registration results for images enhanced by 

different methods. The GFMR can find sufficient paired features to perform registration 

based on MUTE, LPAR, and DVA outputs, however, according to the visual assessment 

in Fig. 4-14 (a3) to Fig. 4-14 (d4) the registration accuracy for MUTE is better than other 

methods. For example, as shown in Fig. 4-14 (a4) to Fig. 4-14 (c4), the blood vessels are 

correctly registered for MUTE [Fig. 4-14 (a4)] where the blood vessels overlapped in 

both enhanced image and post-surgery images, while the blood vessel is not completely 

overlapped for LPAR, DVA, and DRC as shown in Fig. 4-14 (b4) to (d4), respectively.  



Chapter 4 

136 
 

4 

As there is no ground-truth registration image to quantitatively evaluate the 

registration quality, we perform a simulation experiment in Supplementary Note 4-9 

in detail, and the results show that MUTE improves the registration quality also in 

objective aspects.  

In general, MUTE enhanced the contrast of the image by suppressing the haze effect 

of cataractous retinal images. As more retinal structures are revealed during the 

dehazing process, more paired features can be detected by GFMR, increasing the 

success rate of cataractous retinal image registration. 

5.5 Potential clinical applications: Retinopathy diagnosis 

Finally, we focus on the enhancement results in the areas that indicate retinopathy 

like hard exudates and hemorrhages. The enhancement results should increase the 

visual quality of the retinopathy area while do not create unexpected artifacts to 

guarantee structure fidelity.  

We first test MUTE on the DiaRetDB1 dataset, since the retinal images in this dataset 

are not as severely degraded as that of cataractous retinal images, and retinopathies are 

already marked by human specialists shown in Fig. 4-15 (b) and Fig. 4-15 (c). As shown 

in Fig. 4-15 (d1) to Fig. 4-15 (d4), MUTE increases the visual quality of the hard 

exudates. Some hard exudates which can hardly be observed in the raw image shown 

in Fig. 4-15 (d3) can be clearly found in the enhanced images in Fig. 4-15 (d4) due to 

the increase of image contrast. MUTE also increases the visual quality of hemorrhages 

as shown in Fig. 4-15 (e1) to Fig. 4-15 (e4), as the contrast between hemorrhage areas 

and the background increases in enhanced images [see Fig. 4-15 (e2) and (e4)]. 
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Fig. 4-15. Enhancement of retinopathy areas of MUTE. (a) Montage of raw and enhanced images. (b) 

labels of hard exudates areas. (b) labels of hemorrhage areas. (d1) to (d4) are enlarged parts of raw 

and enhanced images corresponding to green and blue boxes in (b). (e1) to (e4) are enlarged parts 

for (c). 

Then we tested MUTE on cataractous retinal images before and after cataract 

surgery. The retinopathy is manually marked based on the post-surgery retinal images 

as shown in Fig. 4-16 (b) and (f) for Groups Drusen and RPE Alteration, respectively. 

After image registrations, we enlarged the area in the yellow box where there is 

retinopathy (Drusen, and RPE alteration in these cases) for raw images and enhanced 

images. As shown in Fig. 4-16 (d1), the drusen in the raw images have visual quality due 

to cataracts, while it can be clearly observed in the post-surgery image shown in Fig. 

4-16 (d2), and so does the RPE alteration shown in Fig. 4-16 (e) and Fig. 4-16 (f). After 

image enhancement by different methods, the visual quality of the retinopathy areas 

increases, and the MUTE gains a better performance than the other three methods as it 
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significantly increases the image contrast which has also been shown in Tab 4-2 and 

Tab 4-3.  

MUTE increases the contrast of cataractous retinal images which may potentially 

facilitate the detection of retinopathy. Meanwhile, by comparing MUTE against the raw 

image, post-surgery image, and enhanced image by the other three methods, we found 

that MUTE won’t lead to additional artifact structure on enhanced images and 

guarantees the information fidelity. 

 

Fig. 4-16. Demonstration of enhancement for cataractous retinal images, with Drusen and RPE 

alteration. (a) and (e) are Montages of raw and enhanced images by MUTE. (b) and (f) are post-

surgery retinal images marked by specialists. (c) and (g) denotes the image registration between 

post-surgery images and enhanced images. (d1) to (d6) are enlarged parts in the yellow box in (c) 

for raw image, and post-surgery image, enhanced by DVA, DRC, LPAR and MUTE respectively. (h1) 

to (h6) are zoomed-in for yellow box in (g). 

 

 

 

 



Cataractous retinal image dehazing 
 

139 
 

4 

6. Ablation Study 

In this subsection, we perform ablation studies on the number of denoising layers, the 

type of denoising layers, the selection of I0 values, the function of illumination 

correction, and the treatment in Pb/Pr channels.  

6.1 On the denoising layers 

 

Fig. 4-17. Dehazing of Fig. 3 (d3) with different levels of Gaussian denoising. (a1) to (d1) are Tsc for

2=L , 4=L , 6=L , and 8=L . (a2) to (d2) are corresponding dehazed Y channel. (a3) to (d3) 

are evolution of cost function. 

Fig. 4-17 shows dehazing results of the image in Fig. 4-3 (d3) with different total 

numbers of Gaussian denoising levels. More levels give a more refined estimation of Tsc 

but increase the computational complexity. The visual quality of the dehazed image in 

Fig. 4-17 (b2) is better than that in Fig. 4-17 (d2), which still has a slight haze effect. The 

cost function for Fig. 4-17 (d2) is oscillating and decreasing with respect to iteration 
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numbers. This means that the optimization process for Fig. 4-17 (d2) is unstable due to 

large numbers of undermined parameters. According to the experimental trial, we 

found that  4,6L  was appropriate for most of the cataractous retinal images. 

Our proposed dehazing method is not sensitive to the choice of
lS . One can use total 

variance regularization [53] and its variants, or image gradient L0-norm regularization 

[54] for alternative methods when calculating 
lS . Supplementary Note 4-11 

compares the results of MUTE with different denoisers including Domain transform 

recursive filter and total-variations. The intermedia output of the parameter A and 

( )lφ r  are also shown in detail.  

In an extreme case, we can even simply let 1=L  and ( ) ( )0 1 1= =r rS S  since the 

uniform pattern can be regarded as an extremely denoised image. In this case, as shown 

in Fig. 4-18, the adaptive pixel-wise stimulated algorithm still returns an appropriate 

estimation of Tsc together with dehazed 
YO . 

 

Fig. 4-18. Results for Y channel dehazing when 2=L  and ( ) ( )1 2 1= =r rS S  for the image in Figs 

3(c3) and (d3). (a1) and (a2) are evolution of cost functions. (b1) and (b2) are Tsc. (c1) and (c2) are 

OY.  
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6.2 On the selection of I0 

To show the reason why 
0 0.52I =  is used in our experiments, we perform a 

statistical analysis of the Y channel average pixel value for raw images, images after 

illumination correction, and final outputs of MUTE. The analysis is applied to 194 

cataractous retinal images (100 images in the CATARACT dataset, and 95 images in our 

proprietary dataset), and 1200 retinal images from the MESSIDOR dataset.   

As shown in Fig. 4-19 (a1) and Fig. 4-19 (a2), the intensity of raw images from both 

the cataract dataset and the MESSIDOR dataset varies from 0.2 to 0.6. The normalized 

probability density functions (PDF) are fitted with Gaussian distribution (plotted in red 

curves) which has large standard variations. The distribution pattern implies the fact 

that not all retinal images are collected under good conditions, some of them suffer from 

bad and insufficient illumination problems.  

 

Fig. 4-19. Distribution of Y channel average value for (a1), (a2) raw images; (b1), (b2) illumination 

corrected images, and (c1), (c2) MUTE output images. (a1) to (c1) are results for cataractous retinal 

images (194 images included). (a2) to (c2) are results for MESSIDOR dataset (1200 images included).  

The distribution patterns after the illumination correction process are shown in Fig. 

4-19 (b1) and (b2), where the distributions are concentrated near 0.95. Since the 

(a1) (b1) (c1)

(a2) (b2) (c2)

Input raw images Illumination corrected MUTE outputs
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illumination correction is performed in an adaptive manner, it is suitable for retinal 

images of different illumination conditions. Moreover, the adaptive illumination 

correction process has a similar function as intensity normalization - that is adjusting 

the intensity of raw images to similar levels. This feature will benefit the subsequent 

dehazing process.  

As the dehazing process is performed based on the intensity cost function and the 

dehazing always decreases the intensity level, we consider the target intensity level 

being a constant ratio I0 between the corrected intensity level and the final output 

intensity level. As shown in Fig. 4-19 (a1) and (a2) the average Y channel value for the 

raw image approaches 0.4, and the average Y channel value for the illumination 

corrected images approach 0.95, we, therefore, can let 
0 0.4 / 0.95 0.4211I  = .  

 

Fig. 4-20. Results for Y channel dehazing when 4=L  with different values of I0 (a1) to (c1) are Tsc 

with 0 0.35I = , 0 0.55I = , and 0 0.65I = , respectively. (a2) to (c2) are dehazed Y channels.  

In our experiment, we choose 0 0.52I =  to let the intensity level for the output 

images becomes larger than 0.4211. The distribution for the Y channel average value of 

MUTE outputs are shown in Fig. 4-19 (c1) and (c2). Moreover, Fig. 4-20 shows the 
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dehazed results with different values of 𝐼0. In general, a small value of 𝐼0 increases the 

degree of dehazing as the hazed effect is significantly suppressed. However, the image 

intensity also decreases. According to the experimental results in Fig. 4-20and 

statistical analysis, we believe that 
0 0.52I =  is an appropriate setting.  

Finally, according to Eq. (4-3), the Pb/Pr channel can be restored through an 

illumination correction process with known of ( ) ( )2

lensL r T r  from illumination 

correction in Section 3.2, and ( )2

scT r  from dehazing in Section 4. According to the 

experiments (Supplementary Note 4-5), the Pb/Pc treatment can be skipped since this 

process won’t influent the final dehazing quality of MUTE. Please refer to 

Supplementary Note 4-5 for detailed experiment results. 

6.3 On the necessity of illumination correction  

As shown in Section 6.2, the illumination correction will normalize the intensity of 

various input retinal images into similar intensity levels approach 0.95. This high-

intensity level gives sufficient intensity adjusting tolerance for the dehazing process 

since image dehazing always decreases the intensity level of the image. As such, the 

illumination correction benefits MUTE dehazing. If we skip the illumination correction 

process, the MUTE may not output good dehazing retinal images. 

For example, if the input retinal images have low-intensity levels, the dehazing effect 

is not significant and may cause bad performance since the intensity level of input raw 

images is already very low. Further dehazing will decrease the image intensity and will 

distort image colors.  

For retinal images that have relatively good illumination conditions, if we skip the 

illumination correction, we need to manually adjust parameter I0 according to 

individual input images to optimize the dehazing results since the average intensity of 

the Y channel varies from 0.2 to 0.6. For example, Fig. 4-21 shows the dehazing results 

without illumination correction. The input image is shown in Fig. 4-21 (a) which has 

good and uniform illumination conditions. Its Y channel is shown in Fig. 4-21 (b) where 
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the mean value is 0.5357. Fig. 4-21 (c1) and Fig. 4-21 (c2) show the dehazed Y channel 

and Tsc for 
0 0.1I =  and 

0 0.2I = , respectively. The MUTE outputs are shown in Fig. 

4-21 (d1) for 
0 0.1I = and 21 (d2) for 

0 0.2I = , where dehazing effects for both images 

are not significant, as the MUTE overestimates the transmission matrix Tsc as shown in 

Fig. 4-21 (c3) and Fig. 4-21 (c4).  

 

Fig. 4-21. MUTE dehazing output without and with illumination correction process. (a) raw input 

image. (b) Y channel of (a). Without the illumination correction process, (c1) and (c3) are dehazed Y 

channel and Tsc with 
0 0.1I = . (c1) and (c3) are dehazed Y channel and Tsc with 

0 0.2I = . The MUTE 

outputs are in (d1) and (d2). With illumination correction, the illumination-corrected Y channel, Tsc 

and dehazed Y channel are shown in (c5), (c6), and (c7), respectively. (d3) is the corresponding 

MUTE output.  

With illumination correction as shown in Fig. 4-21 (c5), the Y channel is at a high-

intensity level where the mean value is 0.9721 and has a sufficient intensity range for 

the dehazing process to darken the image. The transmission map can be correctly 
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estimated as shown in Fig. 4-21 (c6), 
0 0.52I = . The dehazed Y channel is shown in Fig. 

4-21 (c7). The final output is shown in Fig. 4-21 (d3), where the contrast of the image 

is improved. 

 

Fig. 4-22. MUTE dehazing output without and with coarse illumination correction process. (a) raw 

input image. (b) Y channel of (a).  (c1) and (c2) are outputs of illumination correction without and 

with coarse illumination correction. (d1) to (d4) are MUTE dehazing for (c1) and (c2). (e1) and (e2) 

are final outputs.   

As proposed in Supplementary Note 4-2, our adaptive illumination correction 

contains two steps: coarse illumination correction and fine illumination correction. The 

first step uses Retinex to correct the uneven illumination pattern so that the 

illumination pattern over the entire image is flat. Without the first step, the dehazing 

quality of MUTE will be degraded for retinal images that have uneven illumination 

conditions.  
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For example, as shown in Fig. 4-22 (a) the raw image has an uneven illumination 

pattern where the intensity near the optical disk is higher than the areas far from the 

optical disk. Fig. 4-22 (c1) and (c2) show the output of intensity correction without and 

with coarse illumination correction. Although the intensity level can still be corrected 

based on the fine illumination correction step, we can still find that the intensity level 

near the optical disk in Fig. 4-22 (c1) is higher than the intensity in other places, and so 

does Fig. 4-22 (d1) for dehazed Y channel. The final outputs are shown in Fig. 4-22 (e1) 

and (e2) without and with coarse illumination correction, where the dehazing quality 

near the optical disk in Fig. 4-22 (e2) is better than that of Fig. 4-22 (e1). In general, the 

illumination correction process is essential for MUTE dehazing, while each step of 

illumination correction benefits the dehazing quality of MUTE.  

7. Suppressing noise effect of MUTE using Hessian 
regularization 

For retinal images that have poor illumination and heavy haze effects, the enhancement 

algorithm increases the contrast of the image while also enlarging the impact of noises 

simultaneously. A denoising process can be involved after Eq. (4-8) is finished. For 

biologic images, we would recommend using L1-norm Hessian (second-order gradient) 

regularization for image denoising, which is given by minimizing the following equation 

 ( )2

2 1 1 1
arg min 2dn dn xx dn yy dn xy dn= − +  +  + O O O O O O ,  (4-19) 

where O  is the image calculated by Eq. (4-8), and dnO  is the denoised image. The TV 

regularization is not recommended as it is calculated from the first-order partial 

derivatives and might over-sharpen the boundary between different regions while 

reducing the differences within a single region, which would result in staircase-like and 

aberrant reconstructed images 

In this section, we quantitatively analyze the noise level of MUTE output and 

propose using Hessian regularization to suppress the noise signals of MUTE. To 
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quantitatively measure the noise level without a reference image, we use the global 

noise estimation [27, 55]: 

 
( )( ) ,

1 2 1
1

,     2 4 2
2 6 2 2

1 2 1

Y

x yM N




− 
 

=  = − −
 − −
 − 

 N O N , (4-20) 

where 
YO  denotes the input Y channel. A larger value of   denotes stronger noise 

levels.  

Tab. 4-4. Noise level for 4 methods on cataract retinal image dehazing 

Databases 

mean ± std. 

Noise 

level 
Raw 

Methods 

DVA DRC LPAR MUTE 

Cataract 

(100 images) 
  

0.5127 

± 0.0724 

0.8148 

± 0.3496 

1.6710 

± 0.2535 

8.5224 

± 2.2421 

11.7200 

± 3.0493 

Proprietary 

(94 images) 
  

0.6979 

± 0.3680 

1.1143 

± 1.0150 

2.1283 

± 1.3075 

6.0175 

± 3.4333 

16.0702 

± 4.7823 

MESSIDOR 

(1200 images) 
  

0.5445 

± 0.1710 

1.4447 

± 0.4177 

1.8126 

± 0.6255 

5.1842 

± 1.8195 

8.5259 

± 2.4833 

 

We use Eq. (4-20) to measure the noise level of all four methods (DVA, DRC, LPAR, 

and MUTE) among cataract retinal images (100 images from the CATARACT dataset and 

94 images of our proprietary) and the MESSIDOR retinal images (1200 images), the 

results are listed in Tab. 4-4.  

As shown in Tab. 4-4, the MUTE can also enlarge the noise signals for retinal images 

corrupted by poor illumination and heavy hazy effects. Therefore a denoising process 

can be applied to the MUTE output. Here we choose L1-norm Hessian regularization for 

image denoising. The denoising process is only applied to the Y channel since Pb and Pr 

channels remain unchanged.  



Chapter 4 

148 
 

4 

As the   is the key parameter that controls the denoising level and data fidelity, it 

should be chosen carefully based on the noise level. We consider Eq. (4-20) as a 

reference value, and test /10 = , / 20 = , and / 30 =  for the 194 cataract 

retinal images. Again, we use IE, Cramm, UISM, UIConM, and FADE to measure the 

dehazing performance. Results are shown in Tab. 4-5.  

As listed in Tab. 4-5, the Hessian regularization significantly suppresses the noise 

level of MUTE outputs. When / 30 =  the noise level of denoised MUTE is less than 

the original MUTE by 3-fold, and is less than LAPR (Tab. 4) by 2-fold in the CATARACT 

dataset. The dehazing performance is also maintained, for example, the FADE score is 

less than 0.2 for both CATARACT and our proprietary datasets.  
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Tab. 4-5. MUTE with Hessian regularization denoising on cataractous retinal images. 

Databases 

mean ± std. 
Matrixes Raw 

MUTE,   value 

No denoise /10  / 20  / 30  

Cataract 

(100 images) 

 

UISM 0.9002 ± 0.1432 6.7884 ± 0.7869 5.3386 ± 0.4284 5.5770 ± 0.3952 5.7044 ± 0.4106 

UIConM 0.0573 ± 0.0123 0.3890 ± 0.0093 0.3298 ± 0.0303 0.3419 ± 0.0212 0.3467 ± 0.0189 

IE 5.8443 ± 0.4449 7.4151 ± 0.1338 7.1076 ± 0.2255 7.1581 ± 0.1787 7.1840 ± 0.1755 

CRAMM 1.2013 ± 0.1741 8.1483 ± 0.6035 6.0133 ± 0.8880 6.3177 ± 0.8098 6.4882 ± 0.7938 

FADE 0.4715 ± 0.1155 0.1469 ± 0.0228 0.2109 ± 0.0272 0.1903 ± 0.0234 0.1790 ± 0.0215 

  0.5127 ± 0.0724 11.7200 ± 3.0493 2.4091 ± 0.1913 2.7044 ± 0.5011 3.1508 ± 0.8263 

Proprietary 

(94 images) 

 

UISM 1.2065 ± 0.3028 6.8936 ± 1.1603 5.8507 ± 0.5926 6.1099 ± 0.6901 6.2199 ± 0.7329 

UIConM 0.0446 ± 0.0133 0.3811 ± 0.0646 0.3482 ± 0.0492 0.3548 ± 0.0497 0.3571 ± 0.0498 

IE 6.8377 ± 0.5775 7.4889 ± 0.4049 7.3438 ± 0.3763 7.3909 ± 0.3762 7.4144 ± 0.3760 

CRAMM 1.0378 ± 0.1741 7.9087 ± 1.5078 6.1696 ± 1.2147 6.5879 ± 1.2283 6.7936 ± 1.2309 

FADE 1.0455 ± 0.3905 0.1857 ± 0.1177 0.2062 ± 0.0474 0.1865 ± 0.0473 0.1790 ± 0.0469 

  0.6979 ± 0.3680 16.0702 ± 4.7823 3.9869 ± 1.5204 5.8252 ± 2.4833 7.2014 ± 2.9582 

Average 

(194 images) 

 

UISM 1.0486 ± 0.2798 6.8393 ± 0.9844 5.5869 ± 0.5737 5.8352 ± 0.6172 5.9542 ± 0.6419 

UIConM 0.0512 ± 0.0143 0.3852 ± 0.0455 0.3390 ± 0.0418 0.3483 ± 0.0386 0.3519 ± 0.0379 

IE 6.3164 ± 0.7181 7.4568 ± 0.2996 7.2258 ± 0.3313 7.2745 ± 0.3161 7.2992 ± 0.3146 

CRAMM 1.1221 ± 0.1920 8.0322 ± 1.1388 6.0915 ± 1.0642 6.4528 ± 1.0465 6.6409 ± 1.0443 

FADE 0.7496 ± 0.4038 0.1657 ± 0.0856 0.2086 ± 0.0386 0.1884 ± 0.0373 0.1790 ± 0.0364 

  0.5986 ± 0.2733 12.7902 ± 3.8432 3.1980 ± 1.3393 4.2648 ± 2.3749 5.1761 ± 2.9691 
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Tab. 4-6. MUTE with Hessian regularization denoising λ = σ / 30 on other datasets. 

Databases 
mean ± std. 

Matrixes Raw 

Methods 

DVA DRC LPAR MUTE 
MUTE 

/ 30  

DiaRetDB0+DB1 

(219 images) 

 

UISM 3.2857 ± 0.2107 3.5914 ± 0.5870 4.2797 ± 0.3261 5.3378 ± 0.8601 6.7373 ± 0.3610 6.0116 ± 0.2993 

UIConM 0.0396 ± 0.0140 0.1793 ± 0.0393 0.0989 ± 0.0389 0.2419 ± 0.0471 0.3977 ± 0.0068 0.3862 ± 0.0092 

IE 5.6481 ± 0.3389 6.2941 ± 0.2314 5.7972 ± 0.3434 5.8912± 1.8016 6.6910 ± 0.1443 6.6076 ± 0.1612 

CRAMM 0.7169 ± 0.1332 2.4855 ± 0.7205 1.4165 ± 0.4100 3.7898 ± 1.2053 8.0577 ± 0.5667 6.6918 ± 0.4953 

FADE 0.4752 ± 0.0395 0.4188 ± 0.0648 0.3094 ± 0.0461 0.2495 ± 0.1344 0.1278 ± 0.0156 0.1468 ± 0.0122 

  0.6522 ± 0.0507 0.9402 ± 0.2096 1.4415 ± 0.2781 4.6964 ± 1.5661 12.3944 ± 1.6480 6.6762 ± 1.2523 

STARE 

(397 images) 

 

UISM 2.6542 ± 0.6460 4.1758 ± 1.0861 4.6212 ± 0.5306 5.5971 ± 1.0953 6.5124 ± 0.8229 6.0333 ± 0.7143 

UIConM 0.0879 ± 0.0195 0.2440 ± 0.0458 0.1930 ± 0.0444 0.2863 ± 0.0499 0.3693 ± 0.0180 0.3619 ± 0.0189 

IE 5.4185 ± 0.3468 6.3837 ± 0.2481 5.5470 ± 0.3198 5.5085 ± 1.2873 5.8185 ± 0.2760 5.7667 ± 0.2869 

CRAMM 1.9010 ± 0.2998 5.1454 ± 1.4516 3.3505 ± 0.7190 5.4806 ± 1.2965 7.8314 ± 0.7522 7.2886 ± 0.7203 

FADE 0.4744 ± 0.1274 0.3947 ± 0.1296 0.2367 ± 0.0617 0.2739 ± 0.1453 0.1331 ± 0.0236 0.1363 ± 0.0159 

  0.8479 ± 0.1725 1.7854 ± 0.6727 2.5389 ± 0.6197 5.1547 ± 2.0209 8.5333 ± 2.3205 4.1078 ± 0.7908 

MESSIDOR 

(1200 images) 

 

UISM 1.8419 ± 0.3224 4.0235 ± 0.7075 5.0035 ± 0.4089 6.2763± 0.6584 7.0831± 0.4933 6.3791 ± 0.4139 

UIConM 0.0746 ± 0.0185 0.2383 ± 0.0318 0.1608 ± 0.0418 0.2777 ± 0.0280 0.3660 ± 0.0073 0.3608± 0.0083 

IE 5.1908 ± 0.3454 6.2726 ± 0.1881 5.6377 ± 0.3846 5.9916 ± 0.7165 6.0725 ± 0.2111 6.0158 ± 0.2074 

CRAMM 1.1810 ± 0.1639 3.9134 ± 0.7737 2.2784 ± 0.4610 5.7179 ± 0.7411 7.6652 ± 0.5981 6.9967 ± 0.5910 

FADE 0.4652 ± 0.0673 0.4361 ± 0.0842 0.2320 ± 0.0410 0.1812 ± 0.0726 0.1252 ± 0.0136 0.1303± 0.0098 

  0.5445 ± 0.1710 1.4447 ± 0.4177 1.8126 ± 0.6255 5.1842 ± 1.8195 8.5259 ± 2.4833 4.5249 ± 1.2562 

NORMAL 

(300 images) 

 

UISM 1.5512 ± 0.2604 3.4903 ± 0.7928 4.7259± 0.3344 5.7581 ± 0.6043 6.9285± 0.4592 6.3241± 0.4392 

UIConM 0.0768 ± 0.0152 0.2389 ± 0.0342 0.1700 ± 0.0336 0.3092 ± 0.0267 0.3733 ± 0.0047 0.3697± 0.0065 

IE 5.5313 ± 0.2497 6.4120 ± 0.1878 5.8949 ± 0.2886 6.3338 ± 0.7880 6.3062 ± 0.1898 6.2581 ± 0.1809 

CRAMM 1.2468 ± 0.1495 3.9861 ± 0.8219 2.5810 ± 0.4295 6.3165 ± 0.8719 8.3668 ± 0.4882 7.6748 ± 0.4834 

FADE 0.6671 ± 0.1226 0.5629 ± 0.1132 0.3143 ± 0.0622 0.2096 ± 0.0876 0.1497 ± 0.0186 0.1551 ± 0.0131 

  0.4923 ± 0.0778 1.1698 ± 0.3010 1.7765 ± 0.2532 5.4016 ± 0.9604 8.8852± 1.5514 3.9687 ± 0.9355 
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We compared the dehazing results for MUTE without and with the denoising 

process against other methods on 2116 non-cataract retinal images. / 30 =  for the 

Hessian regularization. As listed in Tab. 4-6, the Hessian denoising decreases the noise 

level of MUTE. The noise level is smaller than other methods while the dehazing 

qualities including UISM, UIConM, CRAMM, and FADE scores for Hessian denoised MUTE 

are maintained as it outperforms other state-of-the-art methods and approaches to un-

denoised MUTE.  

 

Fig. 4-23. Demonstration of MUTE with and without Hessian denoising process. / 30 = . Images 

in the first column are montages of raw and dehazed images. The third column and fourth column 

are original output and denoised output of MUTE for the zoomed-in area of red and green boxes.  

Fig. 4-23 shows visual assessments for two cataractous retinal images. As shown in 

the fourth column of Fig. 4-23, the Hessian regularization suppresses the noise signals, 

and the dehazing quality is still similar to those without the denoising process shown 

in the third column of Fig. 4-23.  
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8. Concluding remarks 

8.1 Discussion 

Due to the existence of the ocular lens and absorption of biological tissues, retinal 

images have much higher intensity in red/green channels than that in blue channels. 

Algorithms for cataractous retinal image dehazing should be designed under 

consideration of the spectral feature of retinal images.  

In this research, we applied the YPbPr color space transformation on the double-

pass fundus reflection (DPFR) model and obtain the YPbPr-DPFR model, which shows 

the haze effect of cataracts only impacts the Y channels of the image. For the YPbPr 

transformation matrix, it assigned the most weight to the green channel and the least 

weight to the blue channels, which is just corresponding to the prior feature of retinal 

images that is the green channel contains important retinal structures and the blue 

channel has less information due to the absorption.  

Then we were inspired by the duality between image dehazing and image denoising 

and proposed a multilevel-stimulated denoising strategy, termed MUTE, that is 

dedicated to cataractous retinal image dehazing. Through our experiments, we found 

that preprocessing is important as it eliminates the boundary effect and normalized the 

intensity levels for retinal images of different problematic illumination conditions.  

In general,  MUTE has six hyperparameters that need to be manually determined 

which are I0 for dehazing degree, and η, α, β τ, ξ for Adam-gradient descent. However, 

according to our massive experiment throughout 2318 images, we have found that the 

default values (I0 = 0.52, η = 0.01, α = τ = 0.9, β = ξ = 0.99) given in the main text are 

appropriate in order to obtain promising enhancement results. Therefore, there is only 

one parameter I0 that is needed to be manually adjusted to optimize the performance 

for MUTE.  

The algorithm for MUTE is composed using MATLAB 2018a and executed using a 

personal laptop with Intel Core i7-8750H CPU and 16 RAM. No GPU acceleration is used. 

Average executing times for images of different sizes are listed in Tab. 4-7. As the image 
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size increases,  MUTE takes a longer time to proceed with each image. For image size of 

2048 by 2048, it takes about 98.44s on average for each image. To speed up the MUTE, 

we propose a down-up-sampling strategy in Supplementary Note 4-10, which 

significantly decreases the executing times of MUTE while maintaining the 

enhancement quality. 

Tab. 4-7. Average executing time for DVA, DRC, LPAR and MUTE. 

Image Size DVA (s) DRC (s) LPAR (s) MUTE (s), 5=L   

5122 7.21 1.71 2.73 6.23 

10242 16.22 3.11 8.22 23.05 

20482 48.13 15.76 38.96 98.44 

 

8.2 Contribution of MUTE 

In this research, we propose the multilevel stimulated denoising strategy (MUTE) to 

achieve retinal image dehazing through the process of image denoising. The MUTE has 

the following novelty and contributions.  

First, we adapted our recently developed image formation model, the double-pass 

fundus reflection model, to formulate the optical process of retinal image formation. 

This model is physically self-consistent and can better model the retinal image 

formation than traditional models. We further revealed the mathematical insight that 

the haze effect in RGB color space only appears in its Y channel in the YPbPr color space. 

This allows us to separate the haze component from RGB-colored images and thus 

better handle the dehazing problem for retinal images since they have different 

statistical features from natural scenes/objects. 

Secondly, we mathematically unify the image dehazing task into the framework of 

image denoising which was historically thought to be unrelated (Supplementary Note 

3). We discover that an accurate estimation of the haze transmission matrix plays a 

crucial role in successful image dehazing, and this estimation can be achieved through 
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proper image denoising techniques. This finding has the potential to advance the 

combination of research in image denoising and dehazing, fostering new insights and 

techniques in both traditional and deep learning-based approaches. We employ an 

intensity-based cost function that exploits the observation that the dehazing process 

consistently decreases the image's intensity. This idea facilitates the development of 

adaptive and unsupervised tuning of dehazing parameters. 

Thirdly, MUTE outperforms SOTA traditional and learning-based methods, 

particularly in increasing the contrast of cataractous retinal images as presented in 

Section 5. The simplicity of the MUTE model structure allows for full monitoring and 

understanding of every intermediate step by human specialists such as mathematicians 

and ophthalmologists. This interpretability aspect ensures reliable and safe clinical 

trials and future applications of MUTE. 

8.3 Conclusion 

MUTE significantly improves the visual quality and the contrast of cataractous 

retinal images and reveals retinal structures that might not be detected by clinical 

doctors due to insufficient contrast of the raw images. It enables and facilitates the 

detection of features like drusen, hard exudates, bleeding hemorrhages, or 

microaneurysms, as these tasks may use more color or local detail information. Early 

detection of these findings through cataractous retinal images may improve the 

outcome of treatment of retinal diseases, and influent the decision-making on surgery 

that might be actually not necessary. For example, patients with severe cataracts might 

also have macular degeneration. In these cases, if the macular degeneration can be 

observed through enhanced cataractous retinal image, then ophthalmologists are able 

to choose a better treatment plan to minimize risks and stress for patients, for example, 

the patients can be counseled on the guarded visual prognosis and a less expensive lens 

can be used. 
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Supplementary Notes for Chapter 4 
MUTE: a multilevel-stimulated denoising strategy 

for single cataractous retinal image dehazing 
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Supplementary Note 4-1: Failure of the natural scene prior 

knowledge on retinal image dehazing. 

4-1.1 Color retinal image spectral property and failure of dark 
channel prior 

The dark channel prior (DCP) [1] and its improved version have been widely used 

for natural scene dehazing including underwater image enhancement and haze removal 

even for thick fog situations. The results of DCP dehazing are promising. Applying the 

DCP to retinal images for dehazing seems to be natural, since (1) the visual effect of haze 

effect in natural scenes and retinal images are similar to each other. (2) the physical 

model for haze-scattering and intraocular scattering are consistent with each other [2-

4]. Both can be modeled as random phase perturbations. However, it is found that the 

performance of DCP as its variations on retinal image dehazing is limited especially for 

thick cataracts.  

 

Fig. s4-1. Histograms of (a) blue channel for a retinal image shown in (b); (c) and (d) are blue channel 

and dark channel for all images in the cataract retinal image database (100 images included); (e) and 

(f) are the blue and the dark channels for all images in the normal retinal image database (300 images 

included). 
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The principle of DCP tells that in any haze-free image (in RGB color space), at least 

one pixel has zero intensity in at least one channel. This assumption does not hold for 

normal retinal images and retinal images with severe cataracts, due to the unique 

spectral property of the ocular lens. In order to protect the retina from harmful blue-

wavelength light, the human lens has high absorption for light rays of short 

wavelengths, which results in low intensities of the blue channel [5-7]. That is why most 

of the retinal images show reddish or yellowish in their photographs. When the cataract 

is present, the absorption of short wavelengths will be even higher than the normal 

condition due to the presence of protein precipitation in the crystalline lens, and lens 

aging.  

 The image formation model ignores the condition of light absorption. When DCP is 

applied to cataractous retinal images (searching for the minimum pixel value in red, 

green, and blue channels in a given small patch), the DCP will mostly extract the pixel 

value in the blue channel since it always tends to have small intensity whether there is 

a cataract or not due to the absorption of short wavelength. As a result, the transmission 

maps will be over-estimated (under-estimate the haze thickness). 

For example, Fig. s4-1(a) shows the histogram of the blue channel of a cataractous 

retinal image in Fig. s4-1 (b). Most of the pixels in the blue channel have small values 

that are close to 0.2. Fig. s4-1 (c) shows the histogram of the blue channel for all 100 

images in a public cataract retinal image of different degrees from 

https://www.kaggle.com/jr2ngb/cataractdataset. The pixel values in the blue channel 

range from 0 to 0.5, whose pixel values are also small. By applying DCP to those cataract 

retinal images, the pixel values in the dark channel are shown in Fig. s4-1 (d) with a 

range of [0, 0.5]. The distribution of the dark channel [Fig. s4-1 (d)] is similar to that of 

the blue channel in Fig. s4-1 (c), and most of the pixel values are located at 0.25 to 0.5.  

We have also investigated the pixel value distributions for retinal images of normal 

eyes. A total of 300 images are taken from the public normal retinal images database at 

https://www.kaggle.com/jr2ngb/cataractdataset. Their blue channel and dark channel 

https://www.kaggle.com/jr2ngb/cataractdataset
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distribution are shown in Fig. s4-1 (e) and Fig. s4-1 (f), respectively. Apparently, this 

distribution does not agree with the DCP assumption for haze-free images, in which the 

pixel values should approach zero. Meanwhile, there is no distinct difference in the pixel 

values’ distribution between cataractous and normal retinal images. As a result, the DCP 

and its variations will treat the cataractous retinal images as normal retinal images and 

over-estimate the transmission map.  

4-1.2 Demonstrations of failure of natural scene dehazing methods 
on cataractous retinal images. 

Apart from DCP, we have also tested other dehazing algorithms including boundary 

constraint dehazing [8], non-local dehazing [9], and color attenuation prior dehazing 

[10]. Demonstration results are shown in Fig. s4-2, where the above-mentioned 

dehazing methods fail to suppress the haze effect of cataractous retinal images.  

 

Fig. s4-2. Cataractous retinal image dehazing using different methods. (a1) to (a3) are raw 

cataractous retinal images. (b1) to (b3) are dehazed results for boundary constraint dehazing. (c1) 

to (c3) are dehazed results for nonlocal dehazing. (d1) to (d3) are results for color attenuation prior 

dehazing. (e1) to (e3) are results of MUTE.  
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The boundary constraint dehazing can be categorized as a variation of DCP, 

therefore, it fails to eliminate the haze effect for cataractous retinal images. The non-

local dehazing utilizes the haze-line to estimate the transmission matrix in Eq. (4-1), 

however, it also fails to estimate the haze density as the small value of blue channel in 

retinal images leads to under overestimating the transmission matrix. The color 

attenuation prior dehazing is based on the observation that haze changes the brightness 

and saturation of the natural scene images. This observation does not hold for retinal 

images due to its spectral property, and the model parameters are trained based on 

natural images rather than retinal images.  

Supplementary Note 4-2: Adaptive illumination correction for 

retinal images 

4-2.1 Image background filling 

A retinal image is composed of two major regions - a circular retina and a black 

background. Since the image will be filtered using a low-pass filter in the following 

section, unexpected results often occur when the convolution kernel slides through the 

retinal due to the sudden change of pixel values. Padding the black areas before an 

enhancement is an effective way to reduce an over enhancement of the retinal 

boundary. We fill the black background in a reflective manner [11].  

4-2.2 Adaptive illumination correction for Y channel. 

The double-pass fundus reflection model for Y channel is given by  

 2 IC

Y lens Y=  S L T S . (s4-1) 

We rewrite the illumination term, 2

lensL T  as 2

lens coarse fine = L T L L , where coarseL  and 

fineL  denote the coarse illumination pattern (slowly varying in the spatial domain) and 

fine illumination pattern (fast varying in the spatial domain) projected on the retina, 

respectively.  
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0 0,     IC

Y coarse fine Y=  = S L S S L S . (s4-2) 

Practically, the coarse illumination pattern denotes the overall illumination provided 

by the light source, while the fine illumination pattern can be due to the intensity 

fluctuations during the camera capturing, and some noise.  

Since retinal images might have good illumination conditions or suffer from 

different levels of uneven illumination. We first need to correct the coarse illumination 

pattern, making the retinal images have even illumination conditions.  

Here we take advantage of the Retinex theory on illumination correction. Taking 

logarithm to both sides of Eq. (s4-2), yielding  

 ( ) ( ) ( )0log log logY coarse= +S L S , (s4-3) 

Since 
coarseL  is slowly varying in the spatial domain, a good estimation of 

coarseL  can be 

generated by filtering S with a low-pass filter which is  

  
2

2 2

1
exp

2 2
coarse Y

 

  
=  −  

  

r
L S . (s4-4) 

Here,   denotes convolution.   controls the full width at half maximum (FWHM) of 

the Gaussian kernel. The size of   is determined according to the size of the input 

image, where / 20M =    , M is the width (pixels) of the input image, and       

denotes round-toward-zero. Substituting Eq. (s4-4) to Eq. (s4-3), we have 

 ( ) ( )
2

0 2 2

1
exp log log exp

2 2
Y Y  

 

     
 = + −  − + −         

r
S r S S . (s4-5) 

Here ε is a small value to avoid the situation of log(0), ε = 0.001 in the following studies.  

The formular for S0 is rewritten as  

 ( ) ( ) ( ) ( )0

IC

fine Y fine
 − =  − + − 1 S r L r 1 S r 1 L r , (s4-6) 
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We therefore can apply the imaging de-hazing to Eq. (s4-6) and obtain the illumination 

corrected reflectance object IC

YS . Here we use the gray-scale dark-channel prior refined 

by the guided filter for image illumination correction [12]. The illumination correction 

for gray-scale images using dark channel prior does not rely on the spectral properties, 

therefore it can correctly estimate the illumination pattern and correct the uneven 

illuminations.  

The estimation of IC

YS  is given by 

 ( )
( ) ( )

( )
0 fineIC

Y

fine

− + −  
= −

1 S r L r 1
S r 1

L r
,  (s4-7) 

with  

 ( )0fine dark
 −  −L 1 1 S . (s4-8) 

( )0 dark
−1 S  is the dark channel of 

0−1 S . The dark channel of a grey-scale image X 

estimated in a local neighborhood ( ) r  with the size of w pixels is equal to filtering the 

image using the local minimum filter [1]: 

 
( )

( )mindark


=
ρ r

X X ρ . (s4-9) 

w is the patch size, which is given by /150w M=    , according to the size of the input 

image. The parameter [0,  1]  is used to control the degree of illumination boosting. 

A large value of α will lighten the gray-scale image, and may also cause an overexposure 

effect where the pixel value is larger than 1. An appropriate value of α is important for 

ensuring good enhancement results, we, therefore, use an adaptive manner to 

determine the value of α.  

To determine the value of α with low complexity but high accuracy, a global wise 

optimization function is designed as 
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( )

( )

2

arg min 0.02
#

IC

Y

pixels
 

      = −      

 r
S r

, (s4-10) 

where the function [ ( )] 1IC

Yf =S r  for ( ) 1IC

Y S r , [ ( )] 0IC

Yf =S r  for ( ) 1IC

Y S r .   is the 

retinal area apart from the black background. ( )# pixels   is the number of the total 

pixels in  . ( )IC

Yf    r
S r / ( )# pixels   implies the percentage of overexposed pixels. 

Equation (s4-10) ensures that the percentage of pixels that are overexposed during the 

illumination boosting should approach to 2%.  

 

Fig. s4-3. Illumination coarse correction in the Y channel. First row: raw Y channel images. Second 

row: coarse illumination estimation. Third row: Y channel after coarse illumination correction.  

Considering that Eq. (s4-10) is a one-dimensional optimization function. In this 

work, the Fibonacci method (FM) is adopted to solve Eq. (s4-10) since it is able to 

gradually narrow the search interval for a one-dimensional optimization problem until 
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the convergence condition is satisfied [13]. Fig. s4-3 and Fig. s4-4 demonstrate the 

illumination corrections for retinal images under different illumination conditions. The 

coarse illumination correction can correct the uneven illumination pattern, while the 

fine illumination correction increases the intensity levels.  

 

Fig. s4-4. Illumination fine correction in the Y channel. First row: Fine illumination estimation based 

on the coarse-correction results. Second row: Final outputs of the illumination correction process. 

Supplementary Note 4-3: On the relationship of image dehazing, 

Retinex theory, and image denoising 

4-3.1 Image denoising as the retinex solvers 

Retinex was introduced by Edwin H. Land, and was originally defined as a color 

vision model of human perception which aims to explain the human ability to perceive 

color as stable regardless of changes in global illumination. Today, the Retinex theory 

has been applied to different image processing tasks including color constancy, shadow 

removal, illumination correction, and contrast enhancement. Especially, the Retinex 

theory was widely used in illumination correction tasks where the image formation 

model is given by the product of illumination component B, and reflectance R: 

  ( ) ( ) ( ), , ,I x y B x y R x y= , (s4-11) 
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Taking logarithm to both sides of Eq. (s4-11) yielding  

 ( ) ( ) ( ), , ,i x y b x y r x y= + , (s4-12) 

where ( )logi I= . The core idea of Retinex is that illumination b is supposed to be 

varying smoothly, and can be estimated by image smoothing according to 

practical algorithms.  

Based on the idea, the Retinex has various models and can be categorized into the 

threshold-based Retinex, reset-based Retinex, center-surround Retinex, and variational 

Retinex. Later, as pointed out in Ref. [14], all of the Retinex models can be unified in the 

framework of variational retinex with different local or non-local filters. For example, 

the center-surround retinex with a Gaussian filter can be regarded as a non-local filter 

by assigning Gaussian distributed weights to adjacent pixels. The unified Retinex model 

is written as  

 ( )
2

2
arg min w wr r i r=  − + , (s4-13) 

where w  is the local/non-local gradient, and ( )r  is the regularization term which 

can be total variation, non-local total variation, gradient L0-norm, or the gradient L2-

norm [14].  

As the illumination b is supposed to be varying smoothly, any image smoothing 

methods can be used for estimating b and thus benefit retinex in different degrees. It is 

also true that the (non-local )total variation and gradient L0-norm used in the unified 

retinex are originally designed for image denoising or image smoothing. The Gaussian 

filter is often used for center-surround retinex with single and muti-scales. If we 

consider image smoothing being an extreme case of image denoising, we can write the 

following notation: 

 
( )

( ) ( )

Denoise

Retinex Denoise ,linear

b i

r i i b i i

=

= = − = −
, (s4-14) 
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The exponential form is 

 ( ) ( )( )logRetinex exp Retinex loglinearR I I = =   , (s4-15) 

where the image denoising is a solver for retinex.  

4-3.2 The duality between nature scene image dehazing and Retinex 
theory 

The nature scene image dehazing seems to be unrelated to Retinex theory since they 

are dealing with different problems. Later, as pointed out in Ref. [15] they are connected 

by a simple algebra modification of the haze formation model by assuming the input 

image is globally white-balanced that is  

 ( ) ( ) ( ) ( ), , , 1S x y T x y O x y T= + − , (s4-16) 

 
( ) ( )

1 1 1

1 1

S TO T

S T O

 − = − − +

 − = −
 (s4-17) 

where S is the hazed image, O is the haze-free scene, and T is the transmission matrix of 

haze.  If we consider ( )1 S I− =  and  ( )1 O R− = , Eq. (s4-17) is identical to Eq. (s4-11). 

By assuming T is spatially slow varying, according to Eq. (s4-17) and Eq. (s4-15), we 

have  

 ( ) ( )log1 Retinex 1 DehazingO S S= − − = . (s4-18) 

This formula is also proofed in Ref [15], and shows that the image dehazing task can be 

finished under the retinex theory.  

4-3.3 Dehazing of cataractous retinal images can be regarded as a 
special image denoising task 

Our image formation model for the cataractous retinal image is given by Eq. (4-7) in 

the main text, and we also assume that Tsc is spatially slow varying. However, Eq. (4-7) 

can not be reformulated as a multiplication form since the orders of Tsc in Eq. (4-7) are 

different. Considering that Tsc is slowly varying, 1− sc
T  should also be slowly varying. 
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We, therefore, find the similarity between Eq. (4-7) and Eq. (4-4) in the main text. Since 

Eq. (4-4) is identical to Eq. (s4-12), we are able to regard 1 b− =
sc

T , and can be obtained 

by image denoising according to Eq. (s14): 

 ( )1 Denoisesc = −T S  (s4-19) 

As long as Tsc is determined, the haze-free image can be obtained. Therefore, our task is 

to find a denoise algorithm to solve Eq. (s4-19). 

Current denoising algorithms are not designed for cataractous retinal image 

dehazing tasks, and the denoised image needs to be further refined to form a good 

estimation of 
scT . Inspired by multi-scale treatment, we consider the 

scT  as a linear 

combination of multiple denoised images of different denoised strengths. For strong 

denoised images, they are regarded as coarse estimation of 
scT  since they contain large-

scale features of 
scT . While weak denoised images can be regarded as fine estimation 

of 
scT  but corrupted by the reflected components. We are further inspired by 

stimulating functions, and we assign stimulated functions to different layers of 

denoised image, and design a cost function that can tell the model which pixel should 

contain more details while which pixel shouldn’t. The resultant formula is given by Eq. 

(4-10) in the main text.  

In our model, we have a total of ( )1 1MN− +L  unknown parameters ( 1−L  layers 

with M-by-N pixels, plus the parameter A ) to be determined. If the stimulation 

function is assigned to 0S , then we have a total of 1MN +L  unknown parameters. It is 

possible to solve the unknown parameters since we have ( )1 MN+L  data points ( L  

denoised image plus one single input image), but we found according to our pioneering 

experiment trials that the robustness is not very good. One solution is to let the fine 

(coarse) denoised image (blurred by the smallest Gaussian kernel) as a basement and 

use other denoised images (blurred by different sizes of Gaussian kernels) to modify it. 
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In this way, we have enough data redundancy as there are ( )1 MN+L  data points for 

solving ( )1 1MN− +L  unknown parameters. The optimization can be more efficient 

and stable for different input cataractous retinal images.   

Supplementary Note 4-4: Learning for model parameters 

In this section, we perform the mathematical calculation for the closed-form gradient 

of Eq. (4-12) with respect to parameters ( )lφ r  and A , respectively.  

4-4.1 Learning for ( )lφ r  

Since we assume that there is no correlation between each pixel, when learning ( )lφ r  

Eq. (4-12) can be converted into a pixel-wise optimization problem which is  

 ( )
22

0Y YI = − − Ε O O , (s4-20) 

The derivatives of Eq. (4-13) with respect to ( )lφ r  are calculated as   

 ( ) ( )02 2 T Y

Y Y

l l

I 


 = − −   
  

OΕ
O O

φ φ
, (s4-21) 

where 

 

 
( )

( ) ( )

( )
( )2 3

12 exp

1 1 exp

IC

Yl ICY

l Y

l scl

− −
=  

 −  + −  

SφO
S

φ Tφ

A
S

L
. (s4-22) 

 

We update lφ  using the gradient descent method with adaptive moment estimation 

(Adam) [16], since our problem is non-convex. The initial value is given by ( ),0 0l =φ r . 

At the n-th iteration, lφ  is updated according to 
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( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

( )

,

, 1 ,

2

, 1 ,

, 1

, 1 ,

, 1

1    
,      

1

   

l

l n

l n l n l

l n l n l

l n

l n l n

l n

 


 




+

+

+

+

+


= 


 =  + − 



=  + − 



 = − 
 +

Ε
g r r

φ

m r m r g r
r

v r v r g r

m r
φ r φ r

v r

, (s4-23) 

  is the learning rate at n-th iteration, 
nm  (

0 0=m ) is the first momentum estimation, 

and 
nv  (

0 0=v ) is the second-moment estimation. 𝛼  and 𝛽  are decay rates for the 

moment estimations.   is a very small value used to avoid the condition of dividing by 

0. We choose 0.01 = , 0.9 =  and 0.99 =  in all following experiments.  

4-4.2 Learning for A   

The derivative of E with respect to A  is given by   

 
( )

( ) ( )0

1
2 2

#

T Y

Y YI
pixels 




 

   = − −       

r

O
O O

A A
, (s4-24) 

where ( )# pixels   denotes the total number of the pixels in  , and 

 
( )

( ) ( ) ( )03
1

2 1IC

Y IC ICY

Y l l Y

lsc =

−  
   = +      


L

S S
A

SO
S r θ r S r

T
. (s4-25) 

The initial value of A  can be an arbitrary value within [0.1,  0.2] . Similar to Eq. (s4-23), 

A  is also updated by the Adam-gradient method which is  

 
( )

( )

 

1

2

1

1

 1  

1

1

1

n

n n

n n

n

n n

n

g

g

g



   

   




 

+

+

+

+

+


= 


 =  + − 


=  + − 

 = − 

+

A

A A

. (s4-26) 
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We choose 0.9 =  and 0.99 =  in all following experiments. Let ( )
2

meann YR I


= −
r

O  

be part of residual of cost function in n-th iteration and we stop the iteration process 

when Rn < 0.005. Figure 4-5 shows the flow chart of the proposed dehazing algorithm. 

Supplementary Note 4-5: Treatment for Pb/Pr channels 

In this section we analyze the treatment for Pb/Pr channels and show that this process 

can be skipped since it won’t influent the final dehazing quality of MUTE. According to 

Eq. (4-3) in the main text, the image formation for Pb/Pr channel is given by  

 
( )

( )
( ) ( ) ( )

( )

( )
Pb Pb2 2

Pr Pr

lens sc

   
=   

   

S r O r
L r T r T r

S r O r
. (s4-27) 

With known of ( ) ( )2

lensL r T r  from illumination correction in Section 3.2 in the Chapter 

4, and ( )2

scT r  from dehazing in Section 4, the Pb/Pr channel can be restored by  

 ( )
( )

( ) ( ) ( )
Pb/Pr

Pb/Pr 2 2

lens sc

=
S r

O r
L r T r T r

. (s4-28) 

However, since 
scT  includes many pixels of small value, Eq. (s4-28) can lead to 

severe color distortion if the image is converted back to the RGB color space. Therefore, 

a color correction treatment is applied to both PbO  and PrO  after Eq. (s4-28). Here we 

use the min-max approach to correct the color difference, which is given by 

 ( ) ( )
( )

( ) ( )
( ), correction

min
max min min

max min

P P

P P P P

P P

 −
= −  +     −  

O O
O S S S

O O
, (s4-29) 

where  Pb,  PrP .  
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Fig. s4-5. Treatment of Pb and Pr channels for image in Fig. 3 (d1). (a) production of

( ) ( ) ( )2 2

lens scL r T r T r . (b1) and (b2) are the Pb channels before and after treatment. (c1) and (c2) 

are the Pr channels before and after treatment. 

Fig. s4-5(a) shows the product result of ( ) ( ) ( )2 2

lens scL r T r T r  for image in Fig. 4-3 

(d1). The Pb and Pr channel before and after treatment are shown in Fig. s4-5 (b1) to 

(b2) and Fig. s4-5 (c1) to (c2). Then we combine the treated Pb and Pr channel with the 

dehazed Y channel and transform them back to the RGB color space, yielding dehazed 

retinal images.  

Fig. s4-6 demonstrates 5 groups of raw images (the first row) and corresponding 

dehazed images (the second row). We also found according to the experiment that the 

treatment for the Pb/Pr channel can be skipped as it will not lead to large differences 

in the final enhanced images, as shown in the third row of Fig. s4-6. Therefore, in our 

experiment, we skip the Pb/Pr channel process. 

(a)

(b1) (b2)

(c1) (c2)
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Fig. s4-6. Demonstration of proposed retinal image dehazing. First row: raw images. Second row: 

enhanced images with Pb and Pr channel treatments. Third row: enhanced images without Pb and Pr 

channel treatments. 
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Supplementary Note 4-6: Additional results for cataractous 

retinal images using MUTE 

In this section of the Supplementary Materials, additional three groups of experimental 

results using MUTE are shown for visual assessment. 

 

Fig. s4-7. Three additional groups of experimental results for MUTE. 
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Supplementary Note 4-7: Enhancement results for non-

cataractous retinal images using MUTE 

In this section of the Supplementary Materials, additional four groups of experimental 

results are shown for visual assessment. The raw images are from DRIVE and 

DiaRetDB01 datasets. 

 

Fig. s4-8. Group 1 for visual assessment. The raw image is from DRIVE dataset. Left to right are raw 

images, results of DVA, DRC, LPAR, and MUTE methods. 

 

Fig. s4-9. Group 2 for visual assessment. The raw image is from DiaRetDB1 dataset. Left to right are 

raw image, results of DVA, DRC, LPAR, and MUTE methods. 
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Fig. s4-10. Group 2 for visual assessment. The raw image is from DRIVE dataset Left to right are raw 

images, results of DVA, DRC, LPAR, and MUTE methods. 

 

 

Fig. s4-11. Group 2 for visual assessment. The raw image is from DiaRetDB1 dataset. Left to right are 

raw image, results of DVA, DRC, LPAR, and MUTE methods. 

  



Cataractous retinal image dehazing 
 

179 
 

4 

Supplementary Note 4-8: Quantitative evaluation of blood vessel 

segmentation using simulation data 

In section 5.3 in the main text, we showed that MUTE benefits the blood vessel 

segmentation for cataractous retinal images. However, as there is no ground-truth 

blood vessel map for cataractous retinal images due to the difficulty of manual 

segmentation for cataractous images, we cannot perform a quantitative evaluation to 

show the performance of MUTE.  

In order to quantitatively evaluate the segmentation results, in this section, we 

perform simulations and generate the cataractous retinal image using the DPFR model. 

The raw images are taken from the DRIVE dataset, with paired ground-truth blood 

vessel map as shown in Fig. s4-12. As shown in Fig. s4-12 (d1) and (d2) the images are 

severely hazed due to the small value of the transmission map in Fig. s4-12 (c).  

 

Fig. s4-12. Simulation generation of cataractous retinal images (d1) and (d2) using raw images in 

(b1) and (b2) and transmission map (c). (a1) and (a2) are ground-truth blood vessel maps.  

Based on the simulated cataractous images in Fig. s4-12 (d1), we perform retinal 

image enhancement using DVA, DRC, LPAR, and MUTE. Enhancement results are shown 

in Fig. s4-13 (a1) to Fig. s4-13 (a5). Where both LPAR and MUTE show their ability on 

retinal image dehazing, which is corresponding to the results on real data. Then we 
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perform blood vessel segmentation using the Frangi filter as shown in Fig. s4-13 (b1) 

to (b5), and Matched filter as shown in Fig. s4-13 (c1) to (c5). The segmentation results 

are also consistent with those of real data shown in the main text.  

Segmentation results for Fig. s4-12(d2) are shown in Fig. s4-14, where the filter 

responses on MUTE are also better than on enhanced images of other SOTA methods. 

 

Fig. s4-13. Demonstration of retinal blood vessels segmentation for the cataractous retinal image. 

(a1) to (a5) are raw, and enhanced images by DVA, DRC, LAPR, and MUTE, respectively. (b1) to (b5) 

are segmentation results of the Frangi filter. (c1) to (c5) are results for the Match filter.   
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Fig. s4-14. Demonstration of retinal blood vessels segmentation for the cataractous retinal image. 

(a1) to (a5) are raw, and enhanced images by DVA, DRC, LAPR, and MUTE, respectively. (b1) to (b5) 

are segmentation results of the Frangi filter. (c1) to (c5) are results for the Match filter.   

We use the five matrixes, including Accuracy (ACC), Precision (PSS), Recall, F1-value, 

and Dice score, to evaluate the segmentation results for different enhancement 

methods. The matrixes are calculated according to: 

Matrix Formular 

Accuracy 
TP TN

TP TN F
AC

P FN
C

+
=

+ + +
 

Precision 
TP

T F
PSS

P P
=

+
 

Recall Recall
TP

TP FN
=

+
 

F1-value 1

1 1
2 /

Recall
F

PSS

 
= + 

 
 

Dice score 2
seg gt

seg gt

V V
Dice

V V


=

+
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where TP is True Positives denoting any pixels marked as the vessel in both ground 

truth and segmented image; FP is False positive denoting any pixels marked as a vessel 

pixel in segmented image which is marked as background pixel in ground truth; FN is 

False Negative denoting any pixels marked as a background pixel in segmented image 

which is marked as vessel pixel in ground truth; TN is True Negative denoting any pixels 

marked as background in both ground truth and segmented image. segV  is the binary 

set of pixels denoting the vessels in the segmentation image. gtV  is the binary set of 

pixels denoting the vessels in the ground-truth image. The larger value of ACC denotes 

better segmentation quality, and so do the other four matrixes.  

Those matrixes are calculated based on the binarized blood vessel map, and we 

binarized each gray-scale blood vessels map in Fig. s4-13 and Fig. s4-14 according to 

the regressed threshold 
re  by solving the following 1-D optimization problem  

( )
( )

, 256

1,      ,
arg max , ,    

0,      
re seg gt seg

N

Map x y
Dice V V V

else 




 

 
= = 


  

where Map  denotes the gray-scale blood vessels map given by the Frangi filter or 

Matched filter. We use the regressed threshold to bypass the effects of weak filter 

response due to low image contrast. For example, the blood vessel structures in Fig. 

s4-14 (c1) do exist, but can hardly be observed due to their small gray values (< 10) 

since the hazed image has very low contrast and the filter responses on the vessel 

structures are very weak.  

Tab. s1 lists the segmentation quality for the hazed image in Fig. s4-12 (d1). We also 

calculated the segmentation quality for raw non-hazed images (not shown), as listed in 

the third column of Tab. s4-1, the segmentation quality based on the raw image is good. 

While the quality directly based on the simulated hazy image is problematic as listed in 

the fourth column of Tab. s4-1, where the F1-value, Accuracy, and Dice scores are very 

small. While the segmentation based on MUTE enhanced image gains a larger score than 

other SOTA methods, especially for Dice score. This implies that the two filters can 
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recognize more vessel structure on MUTE enhanced images than on other images, 

which shows that MUTE benefits the segmentation of cataractous retinal images. A 

similar analysis is applied to Tab. s4-2.  

Tab. s4-1. Segmentation quality for Fig. s4-15 (d1) with Frangi and Matched filters 

Fig. 

s4-15(d1) 
Matrix 

Segmentation based on 

Non-hazed 

raw image 

Hazed 

image 
DVA DRC LPAR MUTE 

 

Frangi 

Filter 

ACC 0.1192 0.0016 0.0360 0.0275 0.1346 0.1123 

PSS 0.7306 0.9694 0.5398 0.7616 0.4378 0.5673 

Recall 0.7778 0.0143 0.1738 0.1873 0.5263 0.5692 

F1-value 0.7534 0.0281 0.2629 0.3006 0.4780 0.5682 

Dice score 0.7493 0.0278 0.2607 0.2979 0.4755 0.5650 

Matched 

Filter 

ACC 0.1187 0.1281 0.3046 0.1200 0.1301 0.1163 

PSS 0.6761 0.4946 0.2381 0.5059 0.4443 0.5820 

Recall 0.7169 0.5663 0.6479 0.5423 0.5163 0.6046 

F1-value 0.6959 0.5281 0.3482 0.5234 0.4776 0.5931 

Dice score 0.6921 0.5252 0.3471 0.5206 0.4751 0.5898 

Tab. s4-2. Segmentation quality for Fig. s4-15 (d2) with Frangi and Matched filters 

Fig. 

s4-15(d1) 
Matrix 

Segmentation based on 

Non-hazed 

raw image 

Hazed 

image 
DVA DRC LPAR MUTE 

 

Frangi 

Filter 

ACC 0.1042 0.0000 0.0058 0.0019 0.1481 0.1108 

PSS 0.7442 NaN 0.2451 0.9951 0.3783 0.4922 

Recall 0.6618 0.0000 0.0122 0.0160 0.4782 0.4655 

F1-value 0.7006 NaN 0.0233 0.0316 0.4224 0.4785 

Dice score 0.6934 0.0000 0.0228 0.0310 0.4188 0.4738 

Matched 

Filter 

ACC 0.1253 0.1400 0.2497 0.1786 0.1687 0.1199 

PSS 0.6459 0.4601 0.2331 0.4160 0.3731 0.5450 

Recall 0.6910 0.5499 0.4967 0.6343 0.5372 0.5578 

F1-value 0.6677 0.5010 0.3173 0.5024 0.4404 0.5513 

Dice score 0.6614 0.4966 0.3154 0.4986 0.4369 0.5461 

 

In general, the MUTE removes the hazed effect of cataractous retinal images and 

improves the image contrast, which benefits the blood vessels segmentation tasks on 

cataractous retinal images.  
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Supplementary Note 4-9: Quantitative evaluation of retinal 

image registration using simulation data 

In section 5.4 we showed that MUTE benefits the retinal image registration of 

cataractous retinal images by suppressing the haze effect. However, as there is no 

ground-truth for a cataractous retinal image due to the difficulty of manual feature 

segmentation for cataractous images, we cannot perform a quantitative evaluation to 

show the performance of MUTE.  

 

Fig. s4-15. Simulation generation of cataractous retinal images for image registration. (a) raw image. 

(b) transmission map. (c) simulated cataractous retinal image. (d) paired image for registration. (e) 

registration results. (f1) to (f4) are enhancement results with DVA, DRC, LPAR, and MUTE methods, 

respectively.  

In order to quantitatively evaluate the registration results, in this section we 

perform a simulation experiment based on paired retinal images as shown in Fig. s4-15 
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(a) and Fig. s4-15 (d) and generate the cataractous retinal image using the DPFR model 

as shown in Fig. s4-15 (c). The ground-truth registration result is shown in Fig. s4-15 

(e).  Enhancement results for four different methods are shown in Fig. s4-15 (f1) to (f4). 

 

Fig. s4-16. Demonstration of retinal image registration on the simulated cataractous retinal image. 

(a1) to (e1)  are images to be registered to Fig. s4-15 (d). (a2) to (e2) are features for registration. 

(a3) to (e3) are registration results. (a4) to (e4) are masks for the region of interest. 

Image registration results are shown in Fig. s4-16, where the registration qualities 

for LPAR and MUTE are good according to the visual assessment as shown in Fig. s4-16 

(d3) and (e3). The binary masks for the region of interest are shown in Fig. s4-16 (d4) 
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and (e4). The mask for ground truth is shown in Fig. s4-16 (a4). The registration quality 

precision can be directly calculated from the root mean square (RMS) of the difference 

between the ground-truth mask, and masks for other methods. The smaller the RMS, 

the better the registration quality. 

As listed in Tab. s4-3, the MUTE has the lowest RMS score denoting that registration 

using MUTE enhanced image has better quality than other methods.  

Tab. s4-3. Registration quality for enhanced image with different methods. 

Matrix 
Registration based on the enhanced image 

DVA DRC LPAR MUTE 

RMS 0.1888 0.2006 0.1100 0.0798 

 

Supplementary Note 4-10: Further increasing the speed of MUTE 

using down-up-sampling strategy 

As listed in Tab. 4-4 in the main text, the executing time for MUTE increases significantly 

when the size of the image becomes large. In this section of the Supplementary 

Materials, we propose the down-up-sampling strategy to speed up the MUTE and 

maintain the enhancement quality.  

Let 
HY  be the Y channel of the raw retinal images, and 

HY  be the Y channel of the 

final output (enhanced image) of MUTE. We consider a pixel-wise transfer matrix HT  

that converts the HY  to 
HY  in an end-to-end manner, and we write the following 

equation 

 
H H H=Y YT . (s4-30) 

To determine the HT , we first down-sample the raw high-resolution image to a 

small size image. The Y channel of the small size image is noted by LY . Then, the LY  is 
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processed by MUTE which returns us the processed (enhanced) Y channel 
LY . Then we 

calculate the transfer matrix LT  through pixel-wise division  

 L

L

L 
=

+

Y

Y
T , (s4-31) 

where   is a small value to avoid the divided by 0 conditions. Then we up-sample the

LT  to the same size of the raw high-resolution image to obtain an estimated version of 

HT , and finally, we use Eq. (s4-30) to obtain the enhanced 
HY . The entire progress can 

be expressed by 

 
( )

( )

Mute Ds
Us

Ds

H

H H

H 

    
=  

+  

Y
Y Y

Y
, (s4-32) 

where Ds and Us denote down- and up-sampling operations. Mute  denotes our 

proposed retinal image enhancement methods. 

Fig. s4-17 and Fig. s4-18 show the enhanced results where the sizes of raw images 

are 2448 by 2448. We down-sample the raw images into 875 by 875 and calculate the 

LT  so that MUTE takes only 17 sec. to finish the retinal image enhancement. After then, 

LT  is up-sampled into 2448 by 2448 which is regarded as an estimation of HT . As 

shown in Fig. s4-17 and Fig. s4-18, MUTE significantly increase the contrast of the raw 

image for both non-cataracts and cataract retinal images, and the executing time is 

reduced.  
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Fig. s4-17. Enhanced results for high-resolution non-cataractous retinal images. Left to right are raw 

images, results of DVA, DRC, LPAR, and MUTE methods. 

 

Fig. s4-18. Enhanced results for high-resolution cataractous retinal images. Left to right are raw 

images, results of DVA, DRC, LPAR, and MUTE methods. 
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Supplementary Note 4-11: MUTE with different denoisers and 

the reason of choose Gaussian filter as our denoiser 

4-11.1 Visual assessment 

In this section, we consider using the other two denoisers, which are domain transform 

recursive filter (DRF) [17] and total variation (TV) filter [18], to estimate the denoised 

layers. We demonstrate the MUTE on non-cataractous and cataractous retinal images 

as shown in Fig. s4-19 (a) and Fig. s4-19 (b), respectively.  

 

Fig. s4-19. Retinal images that were used to show the results of different denoisers. 
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Fig. s4-20. Demonstration of ( ),  0,1,2,3,4l l =S  generated by different denoisers.  

 

Fig. s4-21. Latent parameters φl and A  after optimization for different denoisers.  
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The domain transforms recursive filter has three parameters indication filter spatial 

standard deviation, filter range standard deviation, and noise standard deviation. The 

TV has one parameter corresponding to the penalty strength on the L1-norm of the 

image gradient. These parameters are varying from strong denoise to weak denoise 

according to the denoising level in MUTE. For example, as shown in Fig. s4-20, different 

denoisers generate different estimations of denoising layers.  

 

Fig. s4-22. MUTE output for Fig. s4-19 (a) with different denoiser. First row: pattern of Tsc. Second 

row: MUTE enhancements. 

The optimization outputs including φl and A  for three denoisers are shown in Fig. 

s4-21. The latent parameters φl for different denoisers and different layers are similar 
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from the visual aspect as they converge to similar values, however, they are different in 

details. The parameter A  also converges to different values but approaches 0.39.   

As Tsc is the aggregate result of 
lφ , A , and 

lS , and is directly related to the 

dehazing results, we show Tsc together with the dehazed image in Fig. s4-22. As shown 

in the first row of Fig. s4-22, although the Tsc are different according to given denoisers, 

the final outputs are similar as the visual performances are the same. A similar analysis 

was applied to the retinal image in Fig. s4-19 (b), and the latent products are shown in 

Fig. s4-23 to Fig. s4-25.  

 

Fig. s4-23. Demonstration of ( ),  0,1,2,3,4l l =S  generated by different denoisers for image in Fig. 

s4-19 (b).  
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Fig. s4-24. Latent parameters φl and A  after optimization for different denoisers.  

 

Fig. s4-25. MUTE output for Fig. s4-19 (b) with different denoiser. First row: pattern of Tsc. Second 

row: MUTE enhancements. 
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4-11.2 Objective assessment 

Based on the domain transform recursive filter and TV regularization filter, we 

perform MUTE on the CATARACT dataset and compare their performance. The MUTE 

outputs are denoised with Hessian regularization / 30 = . As listed in Tab. 4-6 in the 

maintext, there is no significant difference in the dehazing performance among three 

different denoisers. This shows the feature that MUTE is not sensitive to the type of 

denoiser, as mentioned in the main text.  

Tab. s4-4. Quantitative assessment for MUTE with different denoisers. 

Databases 
mean ± std. 

Matrixes Raw 
MUTE, Denoiser 

Gaussian filter DRF TV 

Cataract 
(100 images) 

 

UISM 
0.9002 ± 
0.1432 

5.4597 ± 0.4898 
5.4325 ± 
0.4686 

5.4417 ± 
0.5393 

UIConM 
0.0573 ± 
0.0123 

0.3632 ± 0.0222 
0.3625 ± 
0.0213 

0.3617 ± 
0.0280 

IE 
5.8443 ± 
0.4449 

7.1898 ± 0.1756 
7.1929 ± 
0.1713 

7.1368 ± 
0.2023 

CRAMM 
1.2013 ± 
0.1741 

6.7353 ± 0.7251 
6.6984 ± 
0.7024 

6.8003 ± 
0.8442 

FADE 
0.4715 ± 
0.1155 

0.1790 ± 0.0215 
0.1783 ± 
0.0202 

0.1835 ± 
0.0253 

  
0.5127 ± 
0.0724 

3.1508 ± 0.8263 
3.1530 ± 
0.8225 

3.1447 ± 
0.8326 

 

Since MUTE is not sensitive to the denoiser, we can choose the simplest Gaussian 

filter to achieve the estimation of lS , as the Gaussian filter needs only one parameter 

(kernel size), and requires only two calculations of Fourier transform and one pixel-

wise matrix multiplication.   
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Supplementary Note 4-12: Comparing against State-of-the-art 

deep-learning methods.  

In this section, we compare our proposed MUTE against three SOTA deep-learning 

methods including ArcNet [19], ScrNet [20], and ArSrNet [21]. All three methods are 

published in 2022. We test the performance on cataractous retinal image dataset. For 

ArcNet and ScrNet, we used the published pre-trained model in 

https://github.com/liamheng/Annotation-free-Fundus-Image-Enhancement. For 

ArSrNet, we asked the author to process the images in their local machine and sent them 

back to us.  

 

Fig. s4-26. Comparison against SOTA deep learning methods. (a1)-(d1) raw images. (a2)-(d2) outputs 

of ArcNet. (a3)-(d3) outputs of ScrNet. (a4)-(d4) outputs of  ArSrNet. (a5)-(d5) output of MUTE.  

https://github.com/liamheng/Annotation-free-Fundus-Image-Enhancement
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The raw images are resized into 512 by 512 pixels in order to produce good results 

since these three networks are trained based on simulated cataract retinal images of 

the same size. Where the ArcNet is trained based on images of 256 by 256 pixels. For 

the larger size of input images, the network should be trained again due to their lack of 

generalization. While our proposed MUTE can be applied to any size of input images. 

 

Fig. s4-27. Zoomed-in images for the region in the white boxes in Fig. s26. (a1)-(d1) raw images. (a2)-

(d2) outputs of ArcNet. (a3)-(d3) outputs of ScrNet. (a4)-(d4) outputs of  ArSrNet. (a5)-(d5) output 

of MUTE.  

Fig. s4-26 and Fig. s4-27 show the output images of four methods. Except for Fig. 

s4-26 (a1), where the cataract is mild, the cataracts in Fig. s4-26 (b1) to (d1) are rather 

severe. The enhancements for all three SOAT Networks can merely improve the 

contrast of the image to a limited degree. The cataract effect as shown in Fig. s4-26 (b2) 



Cataractous retinal image dehazing 
 

197 
 

4 

for ArcNet, and Fig. s4-26 (b4) for ArSrNet are still pronounced. While the MUTE 

significantly improves the image contrast as shown in Fig. s4-26 (b5). Similar results 

can be also found in the zoomed-in images in Fig. s4-27.  

Tab. s4-5. Quantitative assessment for retinal image enhancement results in Fig. s4-26. 

Raw image Matrixes Raw 
Methods 

ArcNet ScrNet ArSrNet MUTE 

Fig. s4-26 (a1) 

UISM 1.1599 1.7425 1.8711 1.9078 3.8646 

UIConM 0.0797 0.0826 0.1063 0.0727 0.3476 

IE 5.7880 5.9789 6.3074 5.8403 7.3208 

CRAMM 2.0155 2.0973 2.2553 1.9387 7.7648 

FADE 0.3924 0.2695 0.2837 0.2841 0.1352 

σ 0.5862 0.4426 0.9217 1.0030 3.5575 

Fig. s4-26 (b1) 

UISM 1.1188 1.5567 1.3384 1.4918 4.0252 

UIConM 0.0946 0.0794 0.0736 0.0757 0.3265 

IE 5.2076 5.8317 6.0489 5.5855 7.2288 

CRAMM 2.1192 1.9930 1.8268 1.8556 7.2337 

FADE 0.5572 0.3092 0.3629 0.3070 0.1489 

σ 0.5725 0.3590 0.6832 1.1588 1.3042 

Fig. s4-26 (c1) 

UISM 1.3660 1.6098 1.3196 1.5484 4.2620 

UIConM 0.0928 0.0760 0.0721 0.0773 0.2999 

IE 5.5182 5.7829 6.2343 5.4319 7.0442 

CRAMM 2.0319 1.8701 1.7859 1.7791 5.8601 

FADE 0.7310 0.3168 0.3788 0.3362 0.1505 

σ 0.6837 0.4354 0.5644 1.0740 2.9904 

Fig. s4-26 (d1) 

UISM 1.1144 1.5886 1.9574 1.2968 3.6856 

UIConM 0.0819 0.0658 0.1019 0.0676 0.2991 

IE 5.2409 5.5612 6.4547 4.8506 7.0558 

CRAMM 1.9275 1.8016 2.1814 1.6819 5.9793 

FADE 0.6085 0.3310 0.3409 0.3881 0.1842 

σ 0.5604 0.3427 0.7253 0.8832 1.5557 

 

Note that the ArcNet is trained on images of 256 by 256 pixels, when it is applied to 

larger images, it will introduce unexpected problematic pixels as can be seen in the 

black spot in Fig. s4-26 (b2), and Fig. s4-27 (b2). In practical cases, the size of retinal 

images can be even larger than 2000 by 2000 pixels and vary between different brands 

of fundus cameras from different companies. The input image size does not influent the 



Chapter 4 

198 
 

4 

output quality of MUTE thanks to the down-up-sampling strategy proposed in 

Supplementary Note 4-10.  

Tab. s4-6. Quantitative assessment for retinal image enhancement results in cataract dataset. The images 

are resized to 512 by 512 pixels 

Databases 

mean ± std. 
Matrixes Raw 

Methods 

DVA DRC LPAR MUTE 

Cataract 

(100 images) 

 

UISM.  
1.2050 

±0.1054 

1.7907 

±0.1609 

1.7668 

±0.2522 

1.7658 

±0.2260 

3.7250 

±0.3782 

UIConM 
0.0691 

±0.0163 

0.0772 

±0.0066 

0.0876 

±0.0091 

0.0678 

±0.0082 

0.3315 

±0.0224 

IE 
5.8285 

±0.4496 

5.8318 

±0.1535 

6.2697 

±0.1655 

5.8190 

±0.3155 

7.2347 

±0.1682 

CRAMM 
1.8163 

±0.2616 

2.0137 

±0.1099 

2.1168 

±0.1669 

1.8042 

±0.1519 

7.1012 

±0.8085 

FADE 
0.4481 

±0.1050 

0.2827 

±0.0230 

0.3023 

±0.0253 

0.3054 

±0.0295 

0.1460 

±0.0143 

σ 
0.5825 

±0.0577 

0.4384 

±0.0762 

0.8012 

±0.1473 

0.9835 

±0.0922 

3.6337 

±1.3543 

 

The score for objective assessments is listed in Tab. s4-5 for images in Fig. s4-26, 

and Tab s4-6, for statistic results for 100 images in the cataractous retinal images 

dataset. Accordingly, our MUTE increases the image edge information (UISM) larger 

than SOTA deep-learning method by 2-folds, and increases the image contrast (UIConM, 

and CRAMM) by 3-folds. The MUTE also decreases the haze effect of cataract retinal image 

(FADE) by 2-folds less than SOTA deep-learning methods.  
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Abstract 

We present a semi-learning-based algorithm called intensity-quenching (InQue) to 

achieve fully unsupervised single retinal image enhancement. It doesn’t need any 

synthetic images in any form, the only input is a single retinal image. InQue consists of 

four modules namely color implantation, luma heater, luma cooler and luma rectifier. 

In the color implantation module, the background color of the input retinal image is 

replaced by a desired color, sampled from a normal retinal image. The image is then 

converted into the YCbCr color space, and the luma heater, a one-layer network, 

increases the intensity of the Y-channel of the color-implanted image to a certain level 

while correcting uneven or insufficient illumination. Next, the luma cooler, also a one-

layer network, decreases the intensity of the Y-channel, increasing the contrast of the 

image. The cooled-down Y channel is further rectified by the luma rectifier including 

denoising and unifying the intensity distribution. Finally, the output Y channel, together 

with the original Cb and Cr channels, is then converted back into the RGB color space, 

yielding the final enhanced retinal image. We tested InQue on cataract retinal images 

from public databases and compared its performance with other state-of-the-art deep-

learning-based methods using both visual and objective assessments, where it 

outperformed the others. We also conducted ablation studies on each module and 

demonstrated potential applications of InQue in enhancing ultra-wide-field retinal 

images, retinal image vessel tracking and diagnosing.  

 

Keywords 

Retinal image enhancement; Unsupervised learning; Cataract retinal image; Large scale 
image. 
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1. Introduction 

The invention of the ophthalmoscope by Helmholtz in the 19th century enabled 

ophthalmologists to obtain images of the retina, leading to the emergence of 

ophthalmology as a separate subfield of medicine. Since then, retinal images have been 

widely used for early detection, diagnosis, and monitoring of ocular diseases such as 

diabetic retinopathy [1, 2], glaucoma [3-5] and age-related macular degeneration [6-8] 

as well as for diagnosing neurological diseases like stroke and cognitive dysfunction 

and cardiovascular diseases [9-11]. 

However, sufficient quality of retinal images is crucial for accurate diagnosis and 

monitoring of ocular and neurological diseases. Unfortunately, a significant percentage 

of acquired retinal images are of low quality, with unsatisfactory images ranging from 

3.7% to 19.7% in studies of diabetic retinopathy [12] and mydriatic patients [13]. 

While modifying the optical system of a fundus camera can improve retinal image 

quality, such methods can be expensive and inconvenient for universal use. As a result, 

image processing methods have become increasingly important. Various algorithms 

have been investigated for enhancing retinal images, including deep-learning and 

traditional algorithms. 

In this research, we propose a semi-learning method called Intensity-Quenching 

(InQue) to achieve fully unsupervised single retinal image enhancement. In Section 2, 

we briefly review related works and their limitations. In Section 3, we introduce the 

framework of InQue and explain the quenching process in detail. Section 4 presents the 

experimental results of InQue and compares them against state-of-the-art methods. 

Section 6 shows some clinical applications of InQue including diagnosis using an 

enhanced-image, enhancement on ultra-wide-field images, and blood segmentations. 

Section 6 is an ablation study on the main modules of InQue. Finally, we provide 

concluding remarks in Section 7. 
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2. Related works 

2.1 Non-learning-based methods 

Retinal images can be enhanced by traditional image enhancement methods, such 

as gamma correction for illumination adjustment, histogram equalization (HE), and its 

improved version including but not limited to the contrast limited adaptive histogram 

equalization (CLAHE) for contrast improvement. For example, Zhou et al. proposed in 

[14] to achieve luminosity and contrast adjustment based on the combination of gamma 

correction in HSV color space and CLAHE in CIE-Lab color space. Gupta et al. further 

improves this idea in [15] using q-quantile-based HE. Although these methods are 

simple and quick, they cannot be applied to retinal images affected by complex issues 

such as uneven illumination and cataractous effects. 

Filtering-based methods have been proposed to achieve better illumination 

correction and contrast enhancement. These methods are mainly based on the Retinex 

theory, which divides a single retinal image into background (low-frequency) and 

structure (high-frequency) components and enhances the structures by assigning a 

larger weight to them. For instance, Cao et al. proposed a low-pass Gaussian filtering 

and α-rooting method to stretch the contrast of retinal images [16], while Wang et al. 

proposed to use total variation as the low-pass filter to separate the background and 

detailed components [17].  

Filtering-based methods can be combined with an image formation model to further 

improve the methods’ physical consistency. Peli et al. [18] proposed a cataract retinal 

image formation model and used a Gaussian filter to estimate the transmission matrix 

of the cataract layer. Mitra et al. [19] followed a similar idea and incorporated the HE 

into the contrast enhancement procedure to improve the contrast of retinal images with 

thin cataracts. Xiong et al. [20] used the natural scene hazing model for retinal image 

enhancement. The natural scene hazing model can be extended for illumination 

correction [21] and combined with dark-channel prior and its variation for retinal 
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image dehazing [22, 23]. Zhang et al. [22] proposed a double-pass fundus reflection 

model which is more physically consistent compared with former image formation 

models for retinal imaging.  

Non-learning-based methods have high interpretability and do not rely on specific 

data distributions. They can improve the contrast of retinal images, but sometimes 

severely distort the color and naturalness of the output images.  

2.2 Learning-based methods 

With the development of computational power, deep-learning-based retinal image 

enhancements attracted a lot of research interest. Due to the lack of paired real retinal 

images for good and degenerated quality, most of learning-based retinal image 

restoration methods published recently can be categorized as extensions of GAN. These 

methods convert the retinal image restoration task into a style-transform task that 

transforms the image style from a bad-quality retinal image to a good-quality one. To 

mitigate the risk of GANs introducing unexpected artifacts, many works focus on 

preserving information fidelity.  

Since there are no paired real retinal images, researchers use synthetic/simulated 

degenerated retinal images to train the networks. For instance, based on the image 

formation model proposed by Peli et al. [18], Luo et al. [24] trained an unpaired GAN to 

achieve cataract retinal image dehazing for mild cataract cases. Li et al. [25] proposed 

an annotation-free GAN for cataractous retinal image restoration. Based on the natural 

scene haze formation model, Yang et al. [26] trained a modified cycle-GAN for artifact 

reduction and structure retention in retinal image enhancement. Shen et al. [27] 

proposed a new mathematical model to formulate the image-degrading process of 

fundus imaging and train a network for retinal image restoration. Other researchers 

have modified the structures of the network or loss function to improve the 

performance of the networks [28, 29].  
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While these learning-based methods produce impressive restoration results in both 

quality and naturalness preservation, they have limitations. Overfitting on synthetic 

data and lack of generalization are potential issues as we will show in the experimental 

sections. Additionally, the performance of trained networks is limited by the input 

image resolution (typically 512×512), which is too small for clinical applications where 

image resolution, in general, is larger than 2000×1000. Furthermore, these methods 

lack interpretability and may introduce unexpected artifacts or elimination of 

important retinal structures (Section 5.1), which can be detrimental to clinical 

applications. Thus, there is still a long way to go in both technical and ethical aspects of 

learning-based retinal image enhancement methods [30]. 

Overall, the retinal image enhancement/restoration communities seek 

contributions that combine the strengths of both non-learning-based and learning-

based methods. Such methods should have wide generalization, high interpretability, 

and efficiently enhance the contrast of retinal images while preserving naturalness. 

2.3 Our contributions 

Our proposed InQue is a semi-learning-based, fully unsupervised retinal image 

enhancement algorithm. It doesn’t need any synthetic images in any form, the only 

input is a single retinal image. InQue learns the model parameter based on a single input 

and returns an enhanced retinal image, maintaining color preservation. Fig. 5-1 shows 

the output of InQue for retinal images under different degeneration situations including 

cataracts, low light, and uneven illuminations. InQue has the following contributions: 

1) A color implantation module that standardizes the color distribution of the 

input images while retaining detailed information of the retinal images. This stabilizes 

the output and preserves the naturalness of the images.  

2) Unifying the retinal image enhancement process into two steps: 

illumination correction and dehazing. We propose an intensity-based cost function 

based on the observation that illumination correction increases the average intensity 



Intensity Quenching for retinal image enhancement 

207 
 

5 

of the image, while dehazing decreases it. This allows InQue to learn model parameters 

based on single images and tune the output performance adaptively.  

3) Our proposed InQue is not limited by the resolution of input images and 

can be applied to an image of arbitrary resolutions from 5122 to 40962 or larger. 

High computational efficiency is maintained. 

4) The most significant contribution of InQue is its improvement of retinal image 

quality and contrast, benefiting clinical applications. The algorithm does not 

introduce any artifacts and is interpretable by both mathematicians and clinical 

specialists. 

 

Fig. 5-1. Demonstration of InQue output on different degraded retinal images. First row: input 

images. Second row: output of InQue. (a1) low-light & cataract. (a2) low-light. (a3) cataract. (a4) 

uneven-light & cataract.  

3. Quenching the intensity of retinal images 

The image formation model for fundus photographs can be described using the double-

pass fundus reflection model [31], which is given by: 

 ( ) ( ) ( ) ( ) ( )  2 1 ,     , ,c c c R G B = + −  S r L r T r O r T r ,  (5-1) 
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where 
cS  is assumed to be the captured image on the camera the size of 

cS  is assumed 

to be of M by N pixels. 
cO  is the un-degraded retinal images of which the quality will be 

decreased by the potential problematic illumination, L and intraocular scattering such 

as cataract layers, where [0,  1]T  is the transmission matrix of the scattering layer. 

Both L and T remain unchanged between different color channels. Ignoring the 

absorption of the scattering layer, 1 ( )−T r  is the backward scattering component that 

can lead to the haze effect in fundus imaging. 

In a more practical situation, the color distribution of captured retinal images varies 

from image to image due to unexpected aspects such as lens aging, intraocular 

reflection, and environmental background intensity. For example, as shown in the first 

row of Fig. 5-1, all four retinal images have distinguished color distributions, where the 

first one is reddish, and the last one is rather yellowish. To model this, we introduce the 

background color distortion matrix, 
cC , in Eq. (1) yielding  

 
c c c=S C S , (5-2) 

Here 
cS  is the final observation of retinal imaging, and our goal is to restore O from 

known only of 
cS .  

This task is highly ill-posed as 
cC , L, and T are all unknown. We therefore separated 

this task into four sequential modules which are (1) Color implant, (2) Luma Heater, (3) 

Luma Cooler and (4) Luma Rectifier. The Color implant module aims to correct 
cC , 

while the Luma Heater and Luma Cooler modules are for blind estimating L and T. With 

that, we are able to use Eq. (5-1) and (5-2) to restore the O , and finally, the Luma 

Rectifier remaps the obtained O  to the noise-reduced pattern.  

Fig. 5-2 shows a flow chart of our proposed InQue. As it will be mentioned in Section 

3.2, the intensity of Luma will be first increased and then decreased, which is similar to 

a ‘quenching process’ if the gray-scaled Y channel is regarded as a heated plane, we, 
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therefore, refer our proposed method to the intensity quenching (InQue) method. In the 

following subsection, we will present detailed calculations and learning processes for 

each module.  

 

Fig. 5-2. The flowchart of Luma Quenching.  

Before entering the retinal image blind deconvolution, an image background 

reflective padding process was applied in order to remove the boundary effect during 

the convolution process [32]. Further, throughout the manuscript, pixel values were 

normalized within the range of [0, 1]. 

3.1  Color implant 

The first “color implant” module aims to correct the impact of the color distortion 

matrix, cC . It first removes the original background color matrix cC  and implants a 

guiding background color cC  from a more natural color distribution to the original 

input images. Considering the background can is the low-frequency component of the 

image, we use Eq. (5-3) to achieve the color implant. 
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 ( ) ,       c

c c d c

c

=  = 
S

S C g M C S g
C

, (5-3) 

where 
cC  is the guiding background color to be implanted, which can be sampled from 

known retinal images of good illumination quality. In this research, we use a uniform 

color of ( ) ( ), , 0.80,0.54,0.24R G B =  be
cC . Here M is the binary region of interest (ROI), 

and g is a Gaussian kernel to extract the background component from the input RGB 

image. The size g is ( )min , / 3M N  pixels to ensure no high-frequency components in 

the background.   is the 2D convolution. Zero-padding is used to diminish boundary 

effects during the convolution.  

 

Fig. 5-3. Color implant module that converts the background color of input images (first left column) 

to a more natural background color distribution. The images in the last column are the Luma 

components (Y channel in YCbCr color space)  

Output images are shown in the third column of Fig. 5-3, where all images now have 

a similar color distribution. The image formation model of the output images is then 

given by Eq. (5-1). Let   be the matrix that converts RGB color space to YPbPr color 

space, then   is written as 
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, (5-4) 

and ( ) ( )1,1,1 1,0,0
T

 = . According to ITU-R BT.601 standard, 𝐾𝑅 = 0.299 and 𝐾𝐺 =

0.587. Applying Eq. (5-4) to both sides of Eq. (5-1), we obtained the image formation 

model in the YCbCr color space, which reads 

 2 0

0
B B

R R

Y Y

P P

P P

     − 
      

=   +      
                

S O 1 T

S L T O

S O

. (5-5) 

According to Eq. (5-5), the hazing effects only affect the Y channel of the retinal image 

as the Y channel has the haze term 𝑳 ∙ (1 − 𝑻)  which denotes the backscattering of light 

from intraocular scatters. For Cb and Cr channels, the existence of T works similar to L 

which only decreases the intensity of corresponding color channels of the haze-free 

image.  

3.2  Heater and cooler 

In the quenching process, both the Luma heater and Luma cooler are applied to the 

Y-channel (SY) of Eq. (5-5). The Luma heater corrects the impact of L which is an 

illumination correction task, while the Luma cooler corrects the impact of T which is a 

dehazing task. Notably, by employing some simple algebra, the illumination correction 

task can be converted into a special case of dehazing task [33, 34]. Let

2 1Y Y= + −Q T O T , 1Y Y= −Q Q , and 1Y Y= −S S , we reformulate the Eq. (5-1) for the 

luma component and we now have two dehazing tasks of different purposes which are  
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 1Y Y= + −S L Q L , (5-6) 

and 

 2 1Y Y= + −Q T O T , (5-7) 

The task for the Luma Heater module is to solve 
YQ  with known of 

YS  based on Eq. (5-

6), while the task for the Luma Cooler is to solve 
YO  with known of 

YQ  based on Eq. (5-

7). Since both Eq. (5-6) and Eq. (5-7) are of similar mathematical form, we can put them 

into a similar mathematical framework.  

Luma Heater: For Eq. (5-6), we consider that the illumination component L is 

spatially slow varying according to the Retinex theory, then 1 − 𝑳 should also be slow 

spatially varying. We, therefore, assume that 1 − 𝑳 can be estimated from the smoothed 

version of 
YS . Here, we use the linear superposition of multi-level smoothed 

YS  and L 

can be expressed as  

 ( )
1

1 Smooth
L

h h

l l Y

l

w
=

= −  L S , (5-8) 

Here h  and h

lw  are scalar parameters to weigh the global and individual amplitude 

of smoothed layer. And Smoothl
(X) is an image smoothing function that smooths the 

input image X. Based on Eq. (5-6) and Eq. (5-8), we can design a cost function that guides 

the updating of these parameters.  

Considering that the illumination correction process increases the intensity 

distribution of YQ , the cost function is designed based on the ratio between the number 

of over-exposured pixels between the total number of pixels in the ROI which is  

 ( )
( ) ( )
( )

     

# 11
, ,

#

Yh h M N

Heater l Heater

Heater

w R
R

 
   

= − →


r Q r r M

r M
L . (5-9) 
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Here, /Y Y=Q S L  according to Eq. (5-6). # is the counting function that counts the 

number of all pixels r  that meet the given conditions. 𝒓 ∈ {𝑸𝑌(𝒓) > 1}  denotes the 

over-exposured pixels where the gray-values are larger than 1. ( )# r M  denotes the 

total number of pixels in the ROI which is a constant and can be calculated once the 

input images are given. [0,  1]HeaterR   is the target ratio. For example, when 0.5HeaterR =

, minimizing Eq. (5-9) means that there will be 50% percent of pixels in the ROI that are 

over-exposured. 

Since the counting function has the same behavior as the L0-norm, Eq. (5-9) is non-

differentiable. To make the parameters learnable, we use the sigmoid function to 

approximate the counting function and Eq. (5-9) can be approximately calculated as  

 ( )
( )

( )
1

     

Sigmoid 11
, ,

#

Yh h M N

Heater l Heater

Heater

w R
R


 

−  
= − →



Q

r M
L . (5-10) 

The shifted sigmoid function in Eq. (5-10), approaches to 0 when the pixel value of x is 

less than 1, while it approaches 1 when the pixel value is larger than 1. Scalar parameter 

β controls the speed of the stimulation process. When  → , the sigmoid function 

becomes a unit step function beginning at 1. By giving an appropriate value of β, the 

sigmoid function in the numerator of Eq. (5-10) can mimic the behavior of the counting 

function. Eq. (5-10) is now differentiable with respect to heater  and 
heater

lw , and with 

the given target ratio HeaterR  the model parameters together with the YQ  for the Luma 

Heater can be adaptively determined (learned).  

Luma Cooler: Similar to the Luma Heater, we rewrite the T as  

 ( )
1

1 Smooth
L

c c

l l Y

l

w
=

= −  T Q , (5-11) 

given that T is also spatially slow varying. Since the dehazing process always decreases 

the intensity of the correction process and increases the intensity distribution of YO , 
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we designed a cost function using the ratio between the number of under-exposured 

pixels between the total number of pixels in the ROI as  

 ( )
( ) ( )
( )

     

# 01
, ,

#

Yc c M N

Cooler l Cooler

Cooler

w R
R

 
   

= − →


r O r r M

r M
L . (5-12) 

Here, 2( 1) / min(1/ ,1)Y Y= − +O Q L T  according to Eq. (5-7). Again, we used the sigmoid 

function to approximate the counting function and Eq. (5-12) can be approximately 

calculated as  

 ( )
( )

( )
1

     

Sigmoid1
, ,

#

Yc c M N

Cooler l Cooler

Cooler

w R
R


 

− 
= − →



O

r M
L . (5-13) 

Model parameters together with the 
YO  for the Luma Cooler can be adaptively learned. 

The pixels in output YO  that are less than -1 are clipped to -1.  

In this research, we chose the Gaussian filter to be the smooth function. The 

Gaussian kernel width is /100l MN  pixels for the l-th level. A total of L = 5 levels.

30 = , 0.2HeaterR =  and 0.05CoolerR = . We used auto-differentiation in MATLAB 2022b. 

Parameters were updated using the Adam optimizer with 0.9, and 0.999 decay rates. 

The initial learning rate was 0.01 and decreased to 0.001 if the value of the cost function 

was less than 50%. Following Fig. 5-3 (c), Fig. 5-4 (a) shows the Luma heater output 

where the intensity of Luma components are at similar levels. Then the Luma cooler 

decreases the intensity of these Luma components. During this cooling process, the 

contrast of detailed structure of retinal images like blood vessels gradually becomes 

prominent as shown in Fig. 5-4 (b).  

Luma from the Cooler is not the final output of our InQue since they are not 

normalized. As shown in Fig. 5-4 (b), the Luma component for the central image is 

brighter than the other two images, while the intensity in the optics disk is also brighter 
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than in other regions. To suppress these situations, we introduce the Luma Rectifier to 

refine the Luma components.  

3.3 Luma rectifier 

With the 
YO  from Luma cooler, the output of Luma rectifier is calculated according 

to  

 

( )

0

, 1

#

Y fin Y

Y

I

 

= 



r M

O O

O r
r M

,  (5-14) 

where ,Y finO  is the final output of Luma component of InQue. 
0I  is a scalar parameter, 

and P  is calculated according to 
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( ) ( )
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                                                                                     min
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 −
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 +
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r M r M
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P O O

P P
P O O

P P

O

O P

. (5-15) 

The first step in Eq. (5-15) can be regarded as a multi-scaled Retinex process that 

rectifies the intensity distribution of input YO  so that the intensity for the optical disk 

area won’t be too much brighter than other areas of in 
YO . Similar to the Cooler/Heater 

module, the smooth function here is a Gaussian filter but the width of the Gaussian 

kernel is 3 /100l MN . The second step in Eq. (5-15) shifts the dynamic range of 

corrected images, P , to the dynamic range of the input images using max-min methods. 

The arctangent function in the third step of Eq. (5-15) is a stimulated function that 

normalizes the gray-scale distribution between -1 to 1, so that the output Y-channel YO  

will maintain the contrast while won’t cause severe color distortion. The ‘Denoising’ in 
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Eq. (5-15) means an arbitrary denoising process for given inputs, and in this research, 

we chose the self-guided filter with a window size of 2 pixels.  

After P  is obtained, Eq. (5-14) remaps the average value of P  to a target value 
0I , 

so that the average intensity distribution of ,Y finO  becomes similar even for different 

input images as shown in Fig. 5-4 (c) where 𝐼0 = 0.52 for example. Combining the new 

Luma component ,Y finO  with the original SCb and SCr calculated from Eq. (5-5), we 

transfer them back to the RGB color space, and the final RGB retinal images are shown 

in Fig. 5-4 (d). Ablation studies on each module are detailed in Section 5. 

 

Fig. 5-4. Quenching processing on the intensity pattern of the retinal image. (a) Intensity pattern after 

heating. (b) after cooling. (c) Intensity pattern after the rectifying. (d) final outputs of InQue. 

4. Experimental results 

In this research, we chose 𝐿 =  5. 𝛽 = 30, 𝑅𝐻𝑒𝑎𝑡𝑒𝑟 = 0.05 and 𝑅𝐶𝑜𝑜𝑙𝑒𝑟 = 0.02. We used 

auto-differentiation in MATLAB 2022b. The parameters were updated using the Adam 

optimizer with 0.9, and 0.999 decay rates. The initial learning rate was 0.01 and 

decreased to 0.001 if the value of the cost function was less than 50%. 𝐼0 = 0.52  for the 

Luma Rectifier as this value is tested to be appropriate to produce enhanced retinal 

images with natural visual prospectives [35]. We tested InQue on 6 public datasets 
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including Messidor- (1200 images) [36], CATARACT - (100 images) [37], Normal- (300 

images) [37], DiaRet DB - (219 images) [38, 39], IDRiD- (516 images) [40] and E-ophtha 

MA- (381 images) [1] datasets. In the main text, we show only the experimental results 

for the CATARACT dataset, more results can be found in Supplementary Note 5-1.  

InQue is compared against four other SOTA deep-learning-based methods, ArcNet 

[25], ScrNet [41], DANet [42] and ArSrNet [26]. All images were down-sampled into 512 

by 512 pixels in order to fit the input size of deep-learning methods. For ArcNet, ScrNet, 

and DANet, we used the author-published pre-trained models. While for ArSrNet, we 

asked the author to process the images on their local machine. Outputs of InQue were 

also down-sampled into 512 by 512 for fair comparisons. In addition, the InQue is also 

compared against SOTA non-deep learning methods, namely the Luminosity and 

Contrast Adjustment (LCA) [14], Decomposition and Visual Adaptation (DVA) [17], the 

detail-richest-channel method (DRC) [23], the low-pass filtering and α-rooting (LPAR) 

[16], and the Double-pass Fundus Reflection model (DPFR) [31]. Results can be found 

in Supplementary Note 5-2.  

4.1 Visual assessments 

Fig. 5-5 shows the results of four groups of enhanced images. All five methods 

effectively restore color in the images, resulting in more uniform background colors. 

Additionally, they all improve the visual quality of cataractous retinal images by making 

retinal structures such as blood vessels and optical disks visible, which were previously 

obscured by the cataract effect. Examples of these improvements are shown in Fig. 5-5 

(b1) to (b6), and Fig. 5-5 (c1) to (c6). Among the methods, InQue output provides the 

most prominent contrast, as demonstrated in Fig. 5-5 (b6) and Fig. 5-5 (d6) compared 

to Fig. 5-5 (b2) to (b5) or Fig. 5-5 (d2) to (d5). The outputs of SrcNet as shown in Fig. 

5-5 (c3) has black error blocks due to the lack of generalization of the network.  

Partially enlarged images for the region in the white boxes are shown in Fig. 5-6 for 

detailed observation. For the deep-learning-based methods ScrNet, DANet, and ArSrNet, 

the outputs images have chessboard effects as shown in Fig. 5-6 (b2), (a4), and (c5).  
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Fig. 5-5. Comparison results on cataractous retinal image enhancement. (a1) to (d1) are raw images. (a2) to (d2) are outputs of ArcNet. 

(a3) to (d3) are outputs of ScrNet. (a4) to (d4) are outputs of DANet. (a5) to (d5) are outputs of ArSrNet, and the final column is the output 

of InQue. 
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Fig. 5-6. Partially enlarged images for the region in the white boxes in Fig. 5-5. (a1) to (d1) are raw images. (a2) to (d2) are outputs of 

ArcNet. (a3) to (d3) are outputs of ScrNet. (a4) to (d4) are outputs of DANet. (a5) to (d5) are outputs of ArSrNet, and the final column is 

the output of InQue
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This effect is probably due to the transpose convolution during the generation of 

images. In Fig. 5-6 (a4) and Fig. 5-6 (c5), there are red spot-like artifacts in the optical 

disk area, which can be wrongly regarded as hemorrhages leading to misdiagnosis. Such 

artifacts are common problems in deep-learning-based methods as reported in [25]. 

Although the ArSrNet reduces the artifacts in the generated images, its dehazing ability 

as shown in Fig. 5-6 (b5) and Fig. 5-6 (c5) is weaker than that of InQue as shown in the 

last column of Fig. 5-6.  

The dehazing effect of InQue is significant as the branches of small blood vessels can 

be clearly observed as shown in Fig. 5-6 (b6) to (c6) and Fig. 5-6 (d6). Meanwhile, InQue 

has no artifacts, preserving the data fidelity of the restored images. Every step and 

corresponding intermediate products of InQue is explicable, which is important for 

medical images and their applications.  

4.2 Objective assessments 

We performed objective assessments on each image in Fig. 5-5 and all images in the 

cataract dataset. We used non-references-based evaluation matrixes including image 

entropy (IE), image multi-scale contrast (CRAMM) [43], image sharpness measurement 

(UISM), image contrast measurement (UIConM) [44] and image fog density estimation 

(FADE) [45]. The references-based evaluations such PSNR and SSIM are not used 

because they are not related to human visual prospection [46] and lack fairness [47], 

since they require real ground-truth images. Such ground truth of medical images is 

practically not well-defined (some medical images that are regarded as being of good 

quality when they are collected can be still enhanced for better visual quality). 

Results for images in Fig. 5-5 are listed in Tab. 5-1, where InQue obtains better 

results than the other methods in all evaluation matrices. Particularly, InQue achieves 

a lower FADE score, indicating promising dehazing results on cataract retinal images. 

For example, the FADE score of the image in Fig. 5-5 (b1) is reduced from 0.4485 to 

0.1751 after being enhanced by InQue. InQue also significantly improves image 

contrast, as indicated by its high scores in UISM, UIConM and CRAMM. For the image in 
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Fig. 5-5 (c1), in UISM the contrast is increased by more than 3 times compared to the 

original image.  

Tab. 5-1. Quantitative assessment of the enhanced images among Fig. 5-5 (a1) to (d1) with five metrics. 

Raw image Matrixes Raw 
 Methods 

ArcNet ScrNet DANet ArSrNet  InQue 

Fig. 5-5 (a1) 

UIConM ↑ 0.0795 0.0967 0.0846 0.0980 0.0727 0.1648 

UISM ↑ 1.1856 1.4435 1.5265 2.3394 1.9078 4.4290 

IE ↑ 5.8863 6.2905 5.9440 6.7442 6.3616 6.0533 

CRAMM ↑ 1.9977 2.4131 2.1578 2.3595 1.9387 3.5313 

FADE ↓ 0.3941 0.2693 0.2725 0.2421 0.2841 0.2028 

Fig. 5-5 (b1) 

UIConM ↑ 0.0637 0.0614 0.0659 0.0692 0.0658 0.1858 

UISM ↑ 1.3908 1.2140 1.5202 2.4293 1.6773 4.4512 

IE ↑ 6.1030 6.3725 6.0189 6.6719 6.4123 6.3375 

CRAMM ↑ 1.7081 1.8300 1.8202 1.8958 1.7027 3.8016 

FADE ↓ 0.4485 0.3005 0.3151 0.2656 0.3102 0.1751 

Fig. 5-5 (c1) 

UIConM ↑ 0.0944 0.0825 0.0743 0.0860 0.0757 0.1192 

UISM ↑ 1.1528 0.9800 1.5461 2.5178 1.4918 3.8217 

IE ↑ 5.6353 6.2942 5.8789 6.9150 6.2938 5.6565 

CRAMM ↑ 2.0947 2.0407 1.8857 2.1733 1.8556 2.7400 

FADE ↓ 0.5622 0.3639 0.3259 0.2891 0.3070 0.2531 

Fig. 5-5 (d1) 

UIConM ↑ 0.0887 0.0864 0.0750 0.0869 0.0752 0.1469 

UISM ↑ 1.1570 1.0753 1.4116 2.4253 1.5175 4.0842 

IE ↑ 5.7905 6.3311 5.8247 6.8460 6.4521 6.1191 

CRAMM ↑ 2.0437 2.1569 2.0449 2.2390 1.9220 3.4423 

FADE ↓ 0.4638 0.3190 0.2893 0.2642 0.2916 0.1973 

 

Statistical results are listed in Tab. 5-2 for all 100 images in the CATARACT dataset 

including both averages and standard deviations. According to Tab. 5-2, the average 

scores of InQue outperformed the other 3 deep-learning-based methods, while the 

small standard deviation values imply the robustness of InQue among different retinal 
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images. More experiment results on the other 5 published dataset, including DiaRet 

dataset, E-optha_MA dataset, IDRiD dataset, Messidor dataset and NORMAL dataset, can 

be found in the Supplementary Note 5-1. 

Tab. 5-2. Averages and standard deviations of enhancement results from both public and 

proprietary cataractous retinal image datasets. 

Databases 

mean ± std. 
Matrixes Raw 

 Methods 

ArcNet ScrNet DANet ArSrNet  InQue 

Cataract 

(100 images) 

 

UIConM (↑) 
0.0689 

 ±0.0163 

0.0774 

 ±0.0145 

0.0745 

 ±0.0059 

0.0856 

 ±0.0073 

0.0679 

 ±0.0082 

0.1758 

 ±0.0293 

UISM (↑) 
1.2874 

 ±0.1971 

1.3390 

 ±0.2852 

1.6026 

 ±0.2792 

2.4310 

 ±0.1816 

1.7656 

 ±0.2261 

4.3753 

 ±0.2686 

IE (↑) 
5.8933 

 ±0.2622 

6.2380 

 ±0.1728 

5.9048 

 ±0.1197 

6.7477 

 ±0.1073 

6.3738 

 ±0.1798 

6.1375 

 ±0.2310 

CRAMM (↑) 
1.8005 

 ±0.2608 

2.0926 

 ±0.2672 

1.9770 

 ±0.1364 

2.2044 

 ±0.1351 

1.8050 

 ±0.1518 

3.7292 

 ±0.5667 

FADE (↓) 
0.4354 

 ±0.0796 

0.2969 

 ±0.0363 

0.2983 

 ±0.0299 

0.2524 

 ±0.0196 

0.3057 

 ±0.0296 

0.1911 

 ±0.0253 

 

Tab. 5-3. Averages execution time of InQue for different size of images. 

Image size 5122 10242 20482 40962 

Average execution duration 2.85 9.35 30.23 107.38 

 

4.3 Execution time 

To demonstrate the processing efficiency of InQue, we measured its average 

execution time on images of varying sizes ranging from 5122 to 40962 pixels, using 

laptop DELL precision 7550 (Intel Xeon W10855M CPU 2.80GHz, 32GB RAM). As listed 

in Tab. 5-3, for images of 5122 pixels, InQue exhibited an average processing time of 
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fewer than 0.3 seconds, which is comparable to that of learning-based methods. 

However, for larger images such as those with 20482 or 40962 pixels, the execution time 

increased. Nevertheless, for images with sizes less than 20482 pixels, InQue's execution 

speed was less than 30 seconds. 

5. Potential clinical applications 

5.1  Retinopathy diagnosis on problematic retinal images 

As InQue restores image intensity and improves the contrast, it can benefit clinical 

diagnosis. To illustrate this, we focussed on the restoration results in areas that indicate 

retinopathy, as shown in Fig. 5-7 (b). The raw image in Fig. 5-7 (a) suffers from 

insufficient illumination and low contrast, which makes it difficult to diagnose 

retinopathy. In contrast, InQue-enhanced images provide greater clarity and detail, 

making it easier to identify abnormalities. 

We compared InQue's results with those of deep-learning-based methods in Fig. 5-7 

(c2) to (c5) for the purple box area and Fig. 5-7 (d1) to (d5) for the green box area. As 

seen in Fig. 5-7 (b), the purple box area contains hard exudates and red small dots. 

InQue improved the contrast of this area, making the white spot of hard exudates more 

obvious in Fig. 5-7 (c5) than in Fig. 5-7 (c1) (the raw image). On the other hand, deep-

learning methods such as ArcNet and ScrNet seem to decrease the intensity of hard 

exudates as shown in Fig. 5-7 (c2) and (c3), respectively. Additionally, InQue enhanced 

the area of hemorrhages, as shown in Fig. 5-7 (d5), which is indicated by the green box 

in Fig. 5-7 (b). In contrast, the raw images in Fig. 5-7 (d1) do not provide clear 

visualization of the hemorrhages.  

Overall, InQue's ability to increase the clarity of retinal images may facilitate the 

detection of retinopathy without leading to the loss of information or additional artifact 

structures, as observed in the comparison with deep-learning-based methods. 
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Fig. 5-7, Enhancement of retinopathy. (a) Raw image. (b) Labels of retinopathy areas. Red: Hard 

exudates; Green: Hemorrhages; Cyan: red small dots. (c1) to (c5) are zoomed-in pictures for regions 

in the purple box. They are raw image, results of ArcNet, results of ScrNet, results of DANet, and 

results of InQue, respectively. (d1) to (d5) are zoomed-in pictures for regions in the green box.  

 



 

 
 

2
2

5
 

In
ten

sity Q
u

en
ch

in
g

 fo
r retin

a
l im

a
g

e en
h

a
n

cem
en

t 

5
 

 

 

Fig. 5-8. InQue enhancement for UWF retinal image. (a) raw images. (b) enhanced. (c1) and (c2) are zoomed-in images for the blue box. 

(d1) and (d2) are zoomed-in for the green box. (e1) and (e2) are zoomed in for the purple box, and (f1) and (f2) are zoomed-in of the white 

box.  
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5.2 Enhancement of ultra-widefield retinal images 

Ultra-wide field (UWF) imaging system allows capture of 200 degrees of the retina 

(approximately 82% of retinal surface area) in a single shot. It provides non-contact, 

high-resolution images of retina for clinicians to analyze retinal disorders [48, 49]. 

Imaging using UWF system can also suffer from illumination problems, and haze effects 

due to imperfect photographing conditions. Here we demonstrate the application of 

InQue in enhancing UWF images. 

Fig. 5-8 shows the enhancement for UWF retinal images. The raw image is shown in 

Fig. 5-8 (a), where insufficient illumination and haze effects are prominent. The 

enhanced one is shown in Fig. 5-8 (b). while the retinal structures including the optical 

disk and blood vessels are zoomed in Fig. 5-8 (c1) to (f2). Accordingly, the image clarity 

of the enhanced image is significantly improved, and blood vessels can be clearly 

observed.  

 

Fig. 5-9. Match-filtering of UWF image for blood vessel detection.  

5.3 Retinal vascular tracking 

With the enhanced image in Fig. 5-8 (b), we perform the blood vessel tracking using 

match-filters. Results are shown in Fig. 5-9 (a) for tracking results of the raw image and 
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in Fig. 5-9 (b) for the enhanced one. By increasing the contrast of the image, InQue 

benefits the tracking results, as shown in Fig. 5-9 (b) where small blood branches can 

be correctly tracked by the filters.  

6. Ablation study and discussions 

6.1 On the Color implant  

In this section, we conduct an ablation study on the color implantation module. This 

module replaces the original background color with a sampled color from normal 

retinal images, which can achieve color preservation for the enhanced images, making 

them have more natural color distribution.  

 

Fig. 5-10. Ablation study on color implant module. (a1) to (a3) are raw images. (b1) to (b3) are 

enhanced images when the color implant module is turned on. (c1) to (c3) are enhanced images when 

the color implant module is turned off. (d1) to (e2) are enhanced images with a different sampled 

background color. 

As shown in Fig. 5-10 (a1) to (b3), although the raw input images are different, for 

example, Fig. 5-10 (a1) are orange while Fig. 5-10 (a2) are black/purple, the output 

images of the InQue in Fig. 5-10 (b1) to (b3) have similar color distribution. In this way, 

the color implant module can correct the color distortion during the fundus photograph  
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process. As the Gaussian kernel for the color implant is sufficiently large, this process 

won’t cause a loss of detailed image information. 

Without the color implant module, as shown in Fig. 5-10 (c1) to (c3), the images may 

lose color saturation due to the insufficient illumination condition. For example, the 

background of the output image in Fig. 5-10 (c2) is gray, and both the color and 

naturalness severely degenerate. Note that the color implant won’t impact subsequent 

heating and cooling procedures as the contrast of output images is still improved.  

Furthermore, we can use a different sampled background color to achieve the color 

implant. For example, as shown in Fig. 5-10 (d1) and (d2), we used the purple color 

sampled from the HRF dataset to achieve the color implant. While we can also use the 

orange background color sampled from Fig. 5-10 (a1) to achieve the color implant as 

shown in Fig. 5-10 (e1) and (e2).  

6.2 On the Luma heater 

In this section, we performed an ablation study on the Luma heater module. As 

shown in the experimental results section, Luma heater can increase the average 

intensity of the Luma channel of input images and normalize the intensity distribution 

to a narrow range. To further analyze this property, we calculated the average intensity 

distribution for the Y channel of retinal images after each step of InQue. The average 

intensity distribution of the raw images has a large deviation, as shown by the blue bar 

in Fig. 5-11. After the color implantation, the average intensity distribution 

concentrates in a narrower range as shown by the orange bars. The Luma heater further 

increased the average intensity.  

It is worth noting that contrast improvement occurs in the Luma cooler module 

through dehazing, which generally decreases the intensity level. Insufficient intensity 

may lead to poor contrast improvement, as the cooling process reaches the requirement 

of the cost function too early. The results of turning off the Luma heater are presented 
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in Fig. 5-12 (a1) to (a3), which demonstrate that the contrast of these final output 

images is not as good as that in Fig. 5-10 (b1) to (b3). 

 

Fig. 5-11. the average intensity distribution of raw images and processed images in each step of 

InQue.  

On the other hand, the Luma cooler significantly decreases the intensity of input 

images, thereby improving the image's contrast. As shown in the purple bars in Fig. 5-11, 

the average intensity of the cooled-down images is even lower than that of the raw 

images, and the deviation is also large. With the Luma rectifier, the intensity 

distribution becomes concentrated again, as shown by the green bars in Fig. 5-11. 

We also studied the impact of parameter HeaterR  on the final output of InQue. For 

example, as shown in Fig. 5-12 (b1) to (b3) and (d1) to (d3), the contrast improvement 

becomes better for larger value of HeaterR . For example, the contrast of Fig. 5-12 (d3) 

where 0.5HeaterR =  is better than that of Fig. 5-12 (d1) where 0.01HeaterR = . The 

intermediate Luma channels are shown in Fig. 5-12 (c1) to (e3). Note that we should 

not let too many pixels being over-exposured as it may causes problematic pixels and 

loss of image information. We, therefore, use 0.02HeaterR =  in our experiments to 

ensure data fidelity.  
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Fig. 5-12. Ablation study on Luma heater module. (a1) to (a3) are enhanced images without Luma 

heater. (b1) to (b3) are enhanced images on (a1) with Luma heater, for 0.01HeaterR = , 0.05HeaterR = , 

and 0.5HeaterR = , respectively. (c1) to (c3) are corresponding Luma channel after the heating 

process. (d1) to (d3) and (e1) to (e3) are similar experiments applied to (a2). 

6.3 On the Luma rectifier 

In this section, we present results of our ablation study on the Luma rectifier module. 

As discussed in the experimental results section, the Luma rectifier plays a crucial role 

in normalizing the output of intensity distribution from the Luma heater. Without the 

Luma rectifier, the pixel values in the Luma channel may exceed the correct intensity 

range of 0 to 1, leading to over-exposed or under-exposed images, as shown in Fig. 5-13 

(a1) to (a3). Although the contrast of the images is significantly improved, the 

naturalness is severely degraded, which is considered to be an incorrect enhancement. 
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Fig. 5-13. Ablation study on Luma rectifier module. (a1) to (a3) are enhanced images without Luma 

rectifier. (b1) to (b3) are enhanced images without using Eq. (5-14). 

However, these incorrect enhancements are not entirely useless, as demonstrated 

in Fig. 5-13 (a1) to (a3). The contrast of blood vessels is significantly improved, with 

vessel branches being more easily distinguishable from the background, and the color 

distribution along the vessel structures is more uniform. We believe that these images 

could potentially benefit blood vessel segmentations. 

Equation (5-14) is a simple but important component of the Luma rectifier module. 

It remaps the intensity distribution into a contrast value so that the final average Luma 

intensity distribution of all output images is normalized to a similar level. The output 

without Eq (5-14) is shown in Fig. 5-13 (b1) to (b3), where the image in Fig. 5-13 (b3) 

is distorted, while the images in Fig. 5-13 (b2) are not bright enough to provide 

comfortable visual performance, compared to Fig. 5-13 (b1).  
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6.4 On the smooth layer 

In this section, we perform an ablation study on the smooth layer and smooth function 

in both Luma heater and cooler modules. As written in Eq. (5-8) and Eq. (5-11), the 

smooth layer and the smooth function play important roles in the framework of InQue. 

However, we will show that the InQue is not sensitive to the number of smooth layers, 

nor sensitive to certain image smooth functions.  

 

Fig. 5-14. Ablation study on smooth layers. (a1) to (a4) are enhanced images for 2L = , 5L = , 8L =

, and 16L = . (b1) to (b4) are enhanced images using the guided filter, median filter, domain transfer, 

and total variation as smooth function. (c1) to (c4) are the first smoothed layer for corresponding 

outputs.  

Fig. 5-14 (a1) to (a4) shows the final output of InQue for 2L = , 5L = , 8L = , and

16L = , respectively. The overall contrast enhancement effects are similar to each other 
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among the four images. While the intensity near the optic disk shown in Fig. 5-14 (a4) 

is larger than others. Note that large smooth layers contain over-smoothed images. In 

the extreme case, the over-smoothed images become constant white color blocks where 

no detailed image information appears. In such cases, these over-smoothed images lose 

the function of intensity correction/dehazing.  

Increasing the number of smoothed layers without changing the smooth strength 

for each layer may not benefit the retinal image enhancement in InQue. By decreasing 

the initial kernel size of the Gaussian filter, we can ensure that the larger layers contain 

sufficient detailed information for a retinal image but increase the computational cost.  

The smooth function used in InQue is not limited by a Gaussian filter. We have also 

tested other image smooth functions such as guided filter, median filter, domain 

transfer, as well as total variation. Results are shown in Fig. 5-14 (b1) to (b4). Again, the 

overall enhancement effects are similar except for the optic disk area. The feasibility 

and efficiency of different smooth functions of InQue originates from the observation 

that either the illumination or haze layer is spatially slow varying. Under such an 

assumption, we can regard the smooth function as the feature extractor that extracts 

the illumination/haze feature from the given images.  

Different smoothing degree extracts different scales of features, as such, the 

illumination/haze can be efficiently represented and estimated using the linear 

combination of different smooth layers as shown in Eq. (5-8) and Eq. (5-11). Since 

image smoothing function including guided filter, median filter, domain transfer, and 

total variation can all smooth the image to different degrees according to the model 

parameters, they are in principle valid to achieve image illumination correction and 

dehazing as shown in Fig. 5-14. (b1) to (b4).  

6.5 Limitations of InQue 

InQue has in general two limitations. The first limitation is related to the tuning of 

its parameters. A total of three parameters, including HeaterR , coolerR  and I0 can influent 
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the performance of InQue. For example, a larger value of 
coolerR  increases the contrast 

of the enhancement, while also decreasing the intensity. Users may need to manually 

adjust these parameters for better enhancement quality. Fortunately, our experiments 

on 2716 images show that 0.02HeaterR = , 0.01coolerR =  and 
0 0.52I =  are appropriate to 

obtain promising restoration quality.  

Secondly, InQue can sometimes introduce unexpected color distortion near the 

optical disk area due to the color implant module. Currently, we use a pre-determined 

value for the background color, which is not adaptive determined based on different 

locations of different input images. As such, the naturalness of InQue outputs is not as 

good as that of learning-based methods. Further research on this topic includes using a 

network to achieve the color implant for naturalness preservation while using a non-

learning-based method to achieve contrast enhancement for sake of interpretation.  

7. Concluding remarks 

In this research, we proposed InQue for color retinal image restoration. It corrects 

insufficient and uneven intensity distributions while suppressing haze effects. The 

naturalness of the retinal image is maintained.  

The effectiveness of InQue doesn’t rely on the simulated degraded retinal image in 

some certain pixel size. InQue was tested on different datasets with varying pixel sizes. 

The algorithm proved to be effective across 6 published datasets, demonstrating its 

versatility and reliability in a clinical setting. Additionally, the interpretability of each 

step and intermediate product of InQue allows ophthalmologists to understand and 

trust the algorithm's enhancement process. 

We believe that InQue provides a reliable and safe way for retinal image 

enhancement, which could have further clinical applications. By improving the visual 

quality and naturalness of retinal images, InQue can assist ophthalmologists in 

accurately diagnosing and treating various retinal diseases, such as diabetic 

retinopathy, macular degeneration, and glaucoma. Furthermore, the ability of InQue to 
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enhance ultra-wide-field retinal images could prove valuable in detecting peripheral 

pathologies that may be missed with traditional imaging techniques. Particularly, the 

ability of how InQue can assist clinical applications, and how it can be further improved 

on image naturalness preservation and contrast enhancement will be investigated in 

the future. 
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Supplementary Notes for Chapter 5 
InQue: An intensity-quenching scheme for large-

scale fully unsupervised retinal image enhancement 
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Supplementary Note 5-1: Additional results for retinal images 

using InQue 

In this section of the Supplementary Materials, additional three groups of experimental 

results using InQue are shown for visual assessment.  

 

Fig. s5-1. Restoration results for images in DiaRet dataset. Image from left to right columns are raw, 

image and enhanced image by ArcNet, ScrNet, DANet, and InQue, respectively. 
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Tab. s5-1. Objective assessments for images in Fig. s5-1. 

Raw image Matrixes Raw 
Methods 

ArcNet ScrNet DANet  InQue 

1st row 

UIConM ↑ 0.0371 0.0557 0.0611 0.0690 0.2090 

UISM ↑ 2.1514 2.3798 2.5441 1.9321 4.2210 

IE ↑ 6.5335 6.5843 6.7679 6.9028 6.8273 

CRAMM ↑ 1.1418 1.6036 1.6140 1.6176 3.9403 

FADE ↓ 0.3309 0.3206 0.3285 0.2978 0.1560 

2nd row 

UIConM ↑ 0.0407 0.0567 0.0570 0.0769 0.2425 

UISM ↑ 1.7551 2.3160 2.2620 2.0901 4.2670 

IE ↑ 5.5170 6.4439 6.3437 6.8846 6.5068 

CRAMM ↑ 1.1285 1.5049 1.5149 1.7071 4.2711 

FADE ↓ 0.3491 0.3360 0.3619 0.2910 0.1545 

3rd row 

UIConM ↑ 0.0440 0.0675 0.0697 0.0814 0.2385 

UISM ↑ 2.5360 2.7650 2.7310 2.1407 4.3903 

IE ↑ 6.5993 6.4786 6.6187 6.8607 6.8697 

CRAMM ↑ 1.2721 1.7605 1.7200 1.8865 4.1520 

FADE ↓ 0.3201 0.2930 0.3282 0.2790 0.1547 

4th row 

UIConM ↑ 0.0225 0.0388 0.0629 0.0775 0.2038 

UISM ↑ 2.4864 2.6003 2.5510 2.3117 4.2604 

IE ↑ 6.2962 6.2189 6.5495 6.8210 6.7909 

CRAMM ↑ 0.9382 1.3860 1.6806 1.9038 3.7757 

FADE ↓ 0.3584 0.3339 0.3368 0.2758 0.1577 
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Fig. s5-2. Restoration results for images in IDRiD dataset 
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Tab. s5-2. Objective assessments for images in Fig. s5-2. 

Raw image Matrixes Raw 
Methods 

ArcNet ScrNet DANet  InQue 

1st row 

UIConM ↑ 0.0651 0.0906 0.0687 0.0841 0.2557 

UISM ↑ 1.4097 1.7491 1.9927 1.7678 4.2259 

IE ↑ 6.6627 7.1117 6.6713 6.8535 6.9420 

CRAMM ↑ 1.7909 2.3043 1.8836 1.9626 5.4494 

FADE ↓ 0.2994 0.2708 0.3134 0.2917 0.1462 

2nd row 

UIConM ↑ 0.0505 0.0742 0.0722 0.0810 0.2143 

UISM ↑ 1.3749 1.8759 2.3743 1.9348 4.0983 

IE ↑ 6.6037 6.8223 6.8575 7.0137 7.0826 

CRAMM ↑ 1.4876 1.9138 1.8828 2.0239 4.2629 

FADE ↓ 0.4062 0.3054 0.3007 0.2882 0.1770 

3rd row 

UIConM ↑ 0.0857 0.1089 0.0765 0.1004 0.2955 

UISM ↑ 2.0622 2.3654 2.7104 2.0101 4.6910 

IE ↑ 6.7087 7.0537 6.6848 6.8176 6.9008 

CRAMM ↑ 2.0157 2.6741 2.0023 2.0897 5.8417 

FADE ↓ 0.2377 0.2244 0.2746 0.2613 0.1351 

4th row 

UIConM ↑ 0.0485 0.0814 0.0716 0.0749 0.2731 

UISM ↑ 1.3022 1.9576 2.0907 1.7464 4.4586 

IE ↑ 7.3940 7.0033 6.7484 6.9294 7.1208 

CRAMM ↑ 1.4531 2.0553 1.8242 1.8356 5.2829 

FADE ↓ 0.5698 0.3024 0.3069 0.2971 0.1572 
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Fig. s5-3. Restoration results for images in Messidor dataset 
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Tab. s5-3. Objective assessments for images in Fig. s5-3. 

Raw image Matrixes Raw 
Methods 

ArcNet ScrNet DANet  InQue 

1st row 

UIConM ↑ 0.1489 0.1505 0.1042 0.1296 0.1856 

UISM ↑ 1.3450 1.4791 1.7171 2.5468 4.5321 

IE ↑ 5.1925 6.1719 5.9570 6.9079 5.9742 

CRAMM ↑ 3.0826 3.2274 2.3463 2.8747 3.7685 

FADE ↓ 0.3145 0.2165 0.2211 0.2147 0.1885 

2nd row 

UIConM ↑ 0.0738 0.0833 0.0865 0.0990 0.1828 

UISM ↑ 1.8882 1.9131 3.2330 2.7633 4.8145 

IE ↑ 5.6373 5.9396 5.7351 6.6232 5.7733 

CRAMM ↑ 1.9475 2.2349 2.2166 2.4314 3.8098 

FADE ↓ 0.2317 0.2098 0.2307 0.2011 0.1586 

3rd row 

UIConM ↑ 0.0753 0.0945 0.0983 0.1044 0.2002 

UISM ↑ 1.5542 1.5180 1.9053 2.4069 4.5999 

IE ↑ 5.7460 6.0755 5.8994 6.5432 6.0200 

CRAMM ↑ 1.8926 2.3373 2.3328 2.3710 4.0795 

FADE ↓ 0.2749 0.2412 0.2551 0.2240 0.1617 

4th row 

UIConM ↑ 0.0581 0.0689 0.0806 0.1076 0.1964 

UISM ↑ 1.9748 1.9798 3.0509 2.5039 4.6448 

IE ↑ 5.5756 5.5759 5.8291 6.8333 6.0338 

CRAMM ↑ 1.7436 1.9477 2.0706 2.8085 3.9281 

FADE ↓ 0.2972 0.2470 0.2519 0.2021 0.1646 
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Fig. s5-4. Restoration results for images in E_optha_MA dataset 
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Statistical analysis of objective assessments for images from 5 published datasets 

are listed in Tab. s5-5. Accordingly, the proposed InQue outperforms other deep-

learning methods in both contrast enhancement and hazing elimination.  

In general, our proposed InQue method corrects the uneven and sufficient 

illumination as shown in Fig. s5-3 and Fig. s5-4 while also enhancement the contrast of 

the image. The color naturalness is also maintains and can be even better than that of 

deep-learning method as shown in the second column and fifth column in Fig. s5-2 to 

Fig. s5-4. 

Tab. s5-4. Objective assessments for images in Fig. s5-4. 

Raw image Matrixes Raw 
Methods 

ArcNet ScrNet DANet  InQue 

1st row 

UIConM ↑ 0.0199 0.0308 0.0688 0.0605 0.2138 

UISM ↑ 1.6235 2.1624 1.5804 2.2556 4.5975 

IE ↑ 5.2678 5.6683 6.2244 6.3681 6.5480 

CRAMM ↑ 0.9253 1.2263 1.9358 1.8735 4.3129 

FADE ↓ 0.4897 0.3431 0.3179 0.2631 0.1644 

2nd row 

UIConM ↑ 0.0238 0.0333 0.0746 0.0753 0.2174 

UISM ↑ 1.9683 2.5016 2.0489 2.3944 4.6185 

IE ↑ 5.5167 5.7091 6.2558 6.4246 6.5191 

CRAMM ↑ 0.9982 1.2755 2.0096 2.1063 4.2110 

FADE ↓ 0.3795 0.3332 0.3109 0.2399 0.1668 

3rd row 

UIConM ↑ 0.0299 0.0424 0.0778 0.0799 0.2016 

UISM ↑ 1.8073 2.1607 1.7356 2.3650 4.4800 

IE ↑ 5.7400 5.8194 6.3294 6.5339 6.5666 

CRAMM ↑ 1.2294 1.5497 2.1224 2.2338 4.1239 

FADE ↓ 0.3364 0.2895 0.2746 0.2315 0.1728 

4th row 

UIConM ↑ 0.0231 0.0368 0.0741 0.0949 0.1904 

UISM ↑ 1.9422 2.1761 2.6805 2.2027 4.4602 

IE ↑ 5.1526 5.2168 5.7335 6.5959 5.9199 

CRAMM ↑ 1.0295 1.3103 1.9654 2.6409 3.9724 

FADE ↓ 0.3155 0.2900 0.2781 0.2038 0.1459 
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Tab. s5-5. Objective assessments for images from 5 published datasets. 

Databases 
mean ± std. 

Matrixes Raw 
Methods 

ArcNet ScrNet DANet InQue 

DiaRet 
(219 images) 

 

UIConM↑ 0.0349 ± 0.0134 0.0533 ± 0.0171 0.0634 ± 0.0063 0.0751 ± 0.0066 0.2236 ± 0.0285 

UISM↑ 2.1293 ± 0.3066 2.3928 ± 0.1874 2.4570 ± 0.1797 2.0575 ± 0.1620 4.2592 ± 0.2135 

IE↑ 6.2678 ± 0.4556 6.4382 ± 0.2704 6.6119 ± 0.1192 6.8389 ± 0.0550 6.7715 ± 0.1319 

CRAMM↑ 1.1209 ± 0.2438 1.5309 ± 0.2923 1.6589 ± 0.1096 1.7941 ± 0.1124 4.1653 ± 0.5135 

FADE↓ 0.3495 ± 0.0331 0.3264 ± 0.0343 0.3337 ± 0.0217 0.2814 ± 0.0126 0.1571 ± 0.0151 

E_optha_MA 
(381 images) 

UIConM↑ 0.0558 ± 0.0224 0.0742 ± 0.0255 0.0901 ± 0.0111 0.0967 ± 0.0099 0.2099 ± 0.0235 

UISM↑ 1.9814 ± 0.4603 2.3062 ± 0.3920 2.5058 ± 0.8442 2.4847 ± 0.2737 4.5085 ± 0.3208 

IE↑ 5.8492 ± 0.3294 6.0748 ± 0.3227 6.1562 ± 0.2651 6.6559 ± 0.1133 6.3212 ± 0.2877 

CRAMM↑ 1.6644 ± 0.3896 2.0980 ± 0.4372 2.2478 ± 0.1546 2.4526 ± 0.1863 4.2550 ± 0.4096 

FADE↓ 0.3100 ± 0.0432 0.2373 ± 0.0465 0.2420 ± 0.0437 0.2175 ± 0.0188 0.1662 ± 0.0165 

IDRiD 
(516 images) 

UIConM↑ 0.0555 ± 0.0143 0.0827 ± 0.0177 0.0733 ± 0.0094 0.0870 ± 0.0081 0.2535 ± 0.0352 

UISM↑ 1.6781 ± 0.2591 2.2884 ± 0.2801 2.4219 ± 0.3021 1.9561 ± 0.1723 4.3493 ± 0.2423 

IE↑ 6.8749 ± 0.4103 6.8609 ± 0.2087 6.6792 ± 0.1682 6.9580 ± 0.0673 6.9900 ± 0.1280 

CRAMM↑ 1.5661 ± 0.2416 2.1277 ± 0.2810 1.8785 ± 0.1356 2.0194 ± 0.1133 4.9788 ± 0.7325 

FADE↓ 0.4281 ± 0.0990 0.2694 ± 0.0262 0.2968 ± 0.0237 0.2739 ± 0.0148 0.1540 ± 0.0159 

Messidor 
(1200 images) 

UIConM↑ 0.0707 ± 0.0180 0.0858 ± 0.0180 0.0887 ± 0.0067 0.1023 ± 0.0064 0.1979 ± 0.0146 

UISM↑ 1.8860 ± 0.3411 1.8960 ± 0.2985 3.0062 ± 0.6421 2.6863 ± 0.1282 4.7216 ± 0.1375 

IE↑ 5.7305 ± 0.2147 5.9929 ± 0.1638 5.8864 ± 0.1144 6.6984 ± 0.0961 5.9891 ± 0.1064 

CRAMM↑ 1.8749 ± 0.2913 2.2453 ± 0.2632 2.2321 ± 0.1100 2.4912 ± 0.1193 4.0391 ± 0.2619 

FADE↓ 0.2717 ± 0.0259 0.2246 ± 0.0173 0.2361 ± 0.0147 0.2054 ± 0.0115 0.1611 ± 0.0113 

Normal 
(300 images) 

 

 

 

UIConM↑ 0.0736 ± 0.0148 0.0920 ± 0.0148 0.0854 ± 0.0047 0.0989 ± 0.0061 0.2048 ± 0.0219 

UISM↑ 1.5712 ± 0.2847 1.7946 ± 0.2679 2.0733 ± 0.5546 2.5942 ± 0.1415 4.7192 ± 0.1877 

IE↑ 6.1005 ± 0.2449 6.2678 ± 0.1615 6.0993 ± 0.1374 6.6686 ± 0.0717 6.2734 ± 0.1356 

CRAMM↑ 1.9931 ± 0.2334 2.4263 ± 0.2377 2.2287 ± 0.0847 2.4332 ± 0.0997 4.2579 ± 0.4721 

FADE↓ 0.3246 ± 0.0370 0.2386 ± 0.0194 0.2473 ± 0.0145 0.2202 ± 0.0111 0.1732 ± 0.0127 
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Supplementary Note 5-2: Comparing against State-of-the-art 

non-deep-learning methods.  

To show its performance, this section compares, both qualitatively and quantitatively, 

MUTE with that of three recently published state-of-art methods, namely the 

Luminosity and Contrast Adjustment (LCA) [14], Decomposition and Visual Adaptation 

(DVA) [17], the detail-richest-channel method (DRC) [23], the low-pass filtering and α-

rooting (LPAR) [16], and the Double-pass Fundus Reflection model (DPFR) [31].  

In actual implementation, the kernel parameters for DRC, LPAR and DPFR are 

determined adaptively according to the size of input images. Other parameters for DRC, 

LPAR and DPFR models such as intensity correction strength can be also automatically 

determined by the models. While for DVA method, it has two parameters, λ to determine 

the frequency band, and α to control the local contrast for the enhancement. In our 

implementation, λ = 0.3, α = 600 based on [17]. All methods are tested on CATARACT 

dataset, and experimental results for visual assessments are shown in Fig. s5-5 to Fig. 

s5-7.  

 

Fig. s5-5. Restoration results for image 001 in cataract dataset 
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Fig. s5-6. Restoration results for image 021 in cataract dataset 

 

 

Fig. s5-7. Restoration results for image 096 in cataract dataset 
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Tab. s5-5. Objective assessments for images from CATARACT datasets for non-deep learning methods 

Databases 

mean ± std. 
Matrixes Raw 

Methods 

LCA DVA DRC LPAR DPFR InQue 

Cataract 

(100 images) 

 

UIConM↑ 
0.0689 

±0.0163 

0.1261 

±0.0133 

0.1411 

±0.0376 

0.1103 

±0.0250 

0.2767 

±0.0346 

0.3574 

±0.0098 

0.1758 

±0.0293 

UISM↑ 
1.2874 

±0.1971 

1.5189 

±0.3059 

1.7437 

±0.6517 

3.8750 

±0.3056 

4.5895 

±0.6136 

6.2512 

±0.5429 

4.3753 

±0.2686 

IE↑ 
5.8933 

±0.2622 

5.8931 

±0.3915 

6.8396 

±0.2169 

5.9145 

±0.2169 

6.3014 

±0.1046 

6.1507 

±0.1159 

6.1375 

±0.2310 

CRAMM↑ 
1.8005 

±0.2608 

2.7764 

±0.2762 

3.1611 

±0.8805 

2.5847 

±0.5026 

6.6565 

±1.1019 

8.4800 

±0.5915 

3.7292 

±0.5667 

FADE↓ 
0.4354 

±0.0796 

0.3324 

±0.0791 

0.7405 

±0.2723 

0.2584 

±0.0553 

0.1947 

±0.0390 

0.1336 

±0.0109 

0.1911 

±0.0253 

 

Statistical analysis are listed in Tab s5-5. In general, the traditional methods such as 

LPAR and DPFR significantly improve the contrast of the cataract retinal image, while 

distord the color naturalness. Methods such as DVA, DRC, and LPAR may cause 

overexposure effect at the bright area, optical disk, of the retinal image. Although the 

InQue cannot increases the contrast as high as that of LPAR and DPFR methods, as 

shown in Fig. s5-6, it maintain the naturalness and won’t cause distortion of colors.  
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Abstract 

Increasing imaging quality is of importance for microscopy.  In this research, we 

proposed a universal method termed BDIC to boost the performance of an arbitrary 

optical microscopy system. The BDIC is an imaging processing technique, including 

blind deconvolution and none reference illumination correction. The only information 

that is needed for BDIC is a single raw image captured by a microscope, and the BDIC 

returns a blurriness-suppressed, illumination corrected enhanced images without any 

modification or prior knowledge of the imaging system. We demonstrate the BDIC 

experimentally on different samples, including USAF targets, plant root tissue, and 

human blood smears. Both subjective and objective assessments imply that the BDIC 

increases the image's visual quality including its contrast and signal-to-noise ratio.  
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1. Introduction 

The imaging quality of a microscopy system is limited mainly by two optical 

subsystems: the illumination system and the detection system. In a traditional optical 

microscope, the illumination system aims to deliver a uniform and clear illumination 

pattern to illuminate the sample. While the detection system aims to form an ideal 

image of the sample and suppress the influence of noises.  

However, no optical system is perfect. There are two agents happened in the 

collection and illumination system that are to be blamed for the microscopy imaging 

degrading. The first one is image blurriness. Blurriness is present in every image with 

different degrees during the imaging collection and degrades the image quality. The 

blurriness can be caused by optical aberrations, defocusing, accidental slight motion of 

the imaging platform or samples.  

Fortunately, it is possible to compensate such blurriness agents as long as they can 

be measured or bypassed. Under the framework of adaptive optics [1], for example, the 

optical aberrations can be measured by wavefront sensor, and be compensated using 

deformable mirrors [2]. Moreover, in the framework of computational imaging, 

aberrations can be also bypassed using the lensless imaging method [3] including 

quantitative phase imaging or ptychography [4]. Meanwhile, the aberration can be 

measured indirectly using double-passing techniques [5, 6] or coded aperture methods 

like Fourier ptychography [7, 8] and other aperture synthesis methods. Defocusing and 

be regarded as one kind of optical aberration and thus can be corrected in the same 

methods. As for motion blur, it can be overcome by using coded illumination or coded 

exposure [9, 10].  

Normally, the above-mentioned computational imaging methods rely on multiple 

capturing of the image of an identical sample [11, 12]. The illumination and detection 

system are modified to work cooperatively to produce the coded raw image data for 

digitally solving the clear images. Thus, these methods have special requirements to the 
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microscopy system and cannot be directly applied to an arbitrary optical microscopy 

system.  

To provide a universal way of removing the blurriness of images, single-image blind 

deblurring is proposed [13, 14]. The blind deblurring is based on information theory 

and the Heavy-Tailed priors of blurred images [15]. In this case, both the raw clear 

image and the blur kernel are unknown, and the algorithm is aimed to find the best 

combination of the blur kernel and the estimation of a raw image that fits the Heavy-

Tailed priors. These methods have been widely applied for medical imaging [16, 17], 

astronomical imaging [18, 19], remote sensing, photography deblurring [15, 20-24].  

The biggest advantage of the blind deblurring methods is that they are pure 

mathematical methods. They have no special requirement for photographing devices 

and thus can be adapted for different situations. Experimental results of blind 

deblurring are promising in comparison with the raw blurred images but not as good 

as that of the computational imaging method. After all, the single blurred image is the 

only available information we have during the blind deblurring. 

Another agent that causes the degrading of microscopy imaging is uneven 

illumination. Many factors, including misaligned optics, dust, nonuniform light sources, 

and vignetting, contribute to uneven illumination [25]. 

Correction of uneven illuminations for microscopy is complex, and thus their 

impacts are ignored in many cases of computational imaging or are carefully measured 

and celebrated before experiments. Severe uneven illuminations problems can be 

largely reduced using high-quality but expensive light sources like a laser, but mild 

uneven illuminations still exist.  

Most illumination correction methods need reference images, and only a few 

research has reported on non-reference (single image) illumination correction [25, 26]. 

Even though, there is no report that shows the combination of single image deblurring 

and illumination correction on microscopy. 
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In order to fill this gap, in this study, we proposed an imaging processing method 

termed BDIC to boost the image quality of an arbitrary optical microscopy system. The 

BDIC method consists of two image restoration procedures - blind deconvolution (BD) 

and illumination correction (IC). Both procedures are based on a single image, which 

means that the only input of BDIC is the raw image captured during the microscopy. 

The rest of this article is organized as follows: in Section 2, the procedures of BDIC are 

detailed. The intermedia products in each step of BDIC show how the raw degraded 

image is becoming a deblurred, evenly illuminated image. In section 3, experimental 

results on different samples are demonstrated to show the robustness and universality 

of BDIC. Sections 4 and 5 are the discussion and conclusion. 

2. Image restoration 

 

Fig. 6-1. Sketch for a typical microscopy system. 

Assuming O to be the 2D intensity distribution of a sample, and S to be the gray-scaled 

image of O captured by a monochromic camera. For a typical microscopy system with 

an incoherent illumination source as shown in Fig. 6-1, the image formation model of a 

thin sample can be expressed as [27-29] 

 ( )=  +S O I p ε ,  (6-1) 

where I is the illumination intensity pattern projected by the illumination system, and 

p is the shift-invariant point spread function (PSF) of the imaging system. ε is the noise 

term imposed on the captured image S.  denotes the pixel-wise matrix multiplication 

(Hadamard product), and   denotes the 2D-convolution. 

Sample: o

Illumination: I

Imaging: sSystem point spread 

function: k

Incoherent light 

source
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Equation (6-1) implies that the degrading of a microscopy image is due to three 

aspects: (1) the unsatisfactory illumination condition such as uneven illumination and 

insufficient illumination intensity; (2) the blurriness caused by the system’s point 

spread function(PSF) including defocusing, inadvertently motion, and optical 

aberrations; and (3) noises. On the other hand, a good image of O can be recovered 

digitally using Eq. (6-1) if those degrading conditions are measured. Our goal is to solve 

a good estimation of O from known only of S.  

2.1 Blind deconvolution 

The BDIC consists of two procedures. The first procedure is blind deconvolution. Here 

we use blind deconvolution under patch-wise minimal pixels regularization [23]. Let

= Q O I , the blind deconvolution is transferred to an optimization problem which is  

 ( )
2 2 2

2 2 2 0 0
,

arg min     − + +  − + + P
Q p

Q p S p Q G G Q , (6-2) 

where γ, β, µ, and α are positive weight parameters for Lagrange multipliers. G is an 

auxiliary variable for solving the regularization imposed on Q . ( )QP  is the patch-

wise minimal pixels of Q  . For an arbitrary matrix X, ( )XP  is given by 

 ( )( )
( ) ( )

( )
0 0

0 0
, ,

, min ,
x y x y

x y x y


=   P X X , (6-3) 

which first divides the matrix X into many squared patches centered at (x, y) with the 

width of w pixels. Pixels in one small patch are denoted by ( ),x y  and function P  

extracts the single pixel that has the minimum value in the corresponding patch. 

Assuming the size of X is M by N, the number of squared patches is given by

/ /M w N w       , and     denotes ceiling. In this research the size of each patch is

( )0.0125 M N+   . 

Eq. (6-2) implies two priors imposed on the none-blurred images: (1) The L0-norm 

of the gradient of a none-blurred image should be a sparse matrix, and (2) The L0-norm 
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of the patch-wise minimal pixels should also be a sparse matrix. Eq. (6-2) is solved in 

an iterative manner. Since it is not the aim of this research, readers may see [23] for its 

detailed description of solving for Eq. (6-2).  

Fig. 6-2 demonstrated one of the results for the blind deconvolution, where a USAF 

resolution target is imaged by a microscopy system with uneven haze-like illumination. 

The blind deconvolution generates an estimation of the blind kernel as shown in Fig. 

6-2 (b), and the deconvoluted image as shown in Fig. 6-2 (c) for upcoming illumination 

correction.  

 

Fig. 6-2. The output of blind deconvolution procedure. (a) Raw image. (b) estimated kernel. (c) 

deconvoluted image. 

2.2 Illumination correction 

The second procedure of BDIC is illumination correction. Here, we use our own 

developed illumination correction algorithm, which is a combination of the Retinex [30] 

and the dark-channel prior [31] theories. The output of Eq. (6-2) includes Q which is a 

deblurred image but may still suffer from uneven or insufficient illumination 

conditions. Q is rewritten as  

 
coarse fine=Q I I O ,  (6-4) 

where Icoarse and Ifine denote the coarse illumination pattern (slowly varying in the 

spatial domain) and fine illumination pattern (fast varying in the spatial domain) 
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projected on the sample, respectively. The coarse illumination pattern denotes the 

overall illumination pattern provided by the light source, while the fine illumination 

pattern can be due to the intensity fluctuations caused by floating dust.  

Correction of Icoarse is achieved using the Retinex theory [30]. Since the Icoarse is slowly 

varying, a good estimation of Icoarse is given by low-pass filtering of Q, and thus can be 

removed by [30] 

 ( )
2

0 2 2

1
exp log log exp

2 2
  

 

      
  = + −  − + −           

N
r

Q Q Q , (6-5) 

where 0 fine= Q I O , and   is a small value to avoid the situation of log(0).    is the 

width of the Gaussian kernel and is given by /10MN  =
 

, ( )XN  denotes the 

normalization function that normalizes the gray-value of the image X into [0, 1]. 

Fig. 6-3 demonstrates the coarse illumination correction results. As shown in Fig. 

6-3 (a), pixels on the upper side of the image have a higher intensity than that of on the 

lower side of the image. After the coarse illumination correction, as shown in Fig. 6-3 

(c), the overall image is in the same intensity level but still has a black-cloud effect.  

 

Fig. 6-3. Output of coarse illumination correction procedure. (a) Raw image in Fig. 2(c). (b) estimated 

coarse illumination pattern. (c) coarse illumination corrected image. 

Correction of Ifine is achieved using dark-channel prior [32, 33], and O is given by  
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( ) ( )

( )
0 0

0

1 1
1

1 1





− + −
= −

− −

D
D

Q Q
O

Q
.  (6-6) 

( )01−QD  is the dark channel of 
01−Q  and is refined by the guided filter. The dark 

channel of a gray-scale image I  estimated in a local neighborhood ( ) r  with the size 

of w pixels is equal to filtering the image using the local minimum filter. w = 5 in this 

research.  

The parameter [0,  1]   is used to control the degree of illumination correction. A 

large value of α will lighten the grayscale image and may also cause an overexposure 

effect where the pixel value is larger than 1. An appropriate value of σ is important for 

ensuring good enhancement results, we, therefore, use an adaptive manner to 

determine the value of σ.  

To determine the value of α with low complexity but high accuracy, a global wise 

optimization function is designed as  

 ( )
2

1 1

1
arg min , 0.65

N M

y x

x y
MN


= =

 
= − 

 
O , (6-7) 

Equation (6-7) is a one-dimensional optimization function. In this work, the 

Fibonacci method (FM) is adopted to solve Eq. (6-7) since it is able to gradually narrow 

the search interval for a one-dimensional optimization problem until the convergence 

condition is satisfied [34]. 

Fig. 6-4 demonstrates the find illumination correction results. As shown in Fig. 6-3 

(c), the black-cloud effect is significantly suppressed.  
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Fig. 6-4. The output of fine illumination correction procedure. (a) Raw image in Fig. 6-3 (c). (b) 

estimated find illumination pattern. (c) fine illumination corrected image. 

3. Experimental results 

In the following experiments, the size of the blur kernel is 51 by 51 pixels, and

31 10 −=  . Other parameters for blind deconvolution are consistent with those in [23]. 

The raw images are captured by a self-built microscope and a commercial Olympus 

microscope. Parameters of two microscopy systems are not recorded since we don’t 

need this information for the BDIC algorithm.  

3.1 USAF Target 

First, we applied the BDIC to the imaging of USAF targets. Each image is obtained under 

unknown different illumination conditions and slightly defocusing as shown in Fig. 6-5 

(a1) to (d1). Here, only Fig. 6-5 (c1) has even illumination, and the other three images 

suffer from uneven illuminations or insufficient illuminations (Fig. 6-5 (d1)). An 

overview of the BDIC enhanced images is shown in Fig. 6-5 (a2) to (d2). One can find 

that all images are at a similar intensity illumination level.  

The partially enlarge images for Groups 8 and 9 in the USAF target are shown in Fig. 

6-6.  The BDIC is able to correct the illumination and suppress the blurriness of the raw 

image without loss of resolution. The visual quality of raw images is significantly 

enhanced. In some cases, as shown in Fig. 6-6 (c2) and (d2), the resolutions are slightly 

increased as due to the effect of deblurring and illumination correction.  
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Fig. 6-5. Output of the BDIC on USAF target. (a1) to (d1) are raw images. (a2) to (d2) are enhanced 

results of BDIC. (a3) to (d3) are estimated blurring kernels. 

 

Fig. 6-6. Enlarged parts for groups 8 and 9. (a1) to (d1) are raw images. (a2) to (d2) are the output of 

BDIC.  

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

(a1)

(a2)
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Pixels values along the yellow lines in Fig. 6-6 are plotted in Fig. 6-7 in comparison 

with the raw images. Our BDIC method increases the contrast of the image as the 

distance between the peaks (pixels with large gray value) and valleys (pixels with small 

gray value) after BDIC treatments becomes larger that the raw images, especially for  

Fig. 6-6 (d1) and (d2). Moreover, the blind deblurring process also increase the 

resolution of the images.  

 

Fig. 6-7. Plots for pixels values along the yellow line in Fig. 6. Black lines are pixels values in the raw 

images, while red lines are pixels values after BDIC treatment. 

For objective assessment, we collect 121 images under different imaging conditions, 

for example, imaging the same USAF target using an objective lens with different NA 

and magnifications. The illumination condition for each image is also diverse. We have 

also collected the images after careful adjustment of the imaging platform.  

Tab. 6-1. The average value of objective assessment. A total of 121 images are collected. 

 PSNR SSIM IE Cramm 

Raw image 11.071 0.585 4.238 8.503 

BDIC enhanced 15.501 0.673 4.327 16.809 

 

These images are regarded as ground truth or reference images for the calculation 

of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). For none 

reference measurement, we use image entropy (IE)  and image multiscale contrast 

(Cramm) [35]. The average values are listed in Tab. 6-1, where the PSNR and Cramm are 

(b) (c) (d)(a)
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significantly increased after BDIC enhancement. The SSIM of the enhanced image is also 

larger than that of raw images.  

3.2 Plant root tissue 

We have tested the performance of BDIC on plant root tissues. The plant root tissue has 

a more intricate structure than that of USAF. A wide-field image of plant root tissue is 

obtained under uneven illumination and slightly defocusing as shown in Fig. 6-8 (a1). 

The BDIC output is shown in Fig. 6-8 (a2) where the uneven illumination is corrected. 

The image in Fig. 6-8 (a3) is captured under careful system celebration and good 

illumination conditions, which can be regarded as the ground truth of Fig. 6-8 (a1).  

Partially enlarged images in the yellow, red, and green boxes are shown in Fig. 6-8 

(b1) to (d3), respectively, to demonstrate the blind deconvolution results. Experimental 

results show that the BDIC is able to correct the uneven illumination over the entire 

field of view, and the deblurring results are also consistent with that of the ground truth 

image. 

3.3 Human blood smear 

We have tested the performance of BDIC on human blood smears as shown in Fig. 6-9 

(a1). The raw image is 1920 by 1200 pixels and is divided uniformly into 5 by 5 subsets 

(384 by 240 pixels for each subset). The blurring kernel is estimated separately in each 

subset as shown in Fig. 6-9 (b). The shapes of the blurring kernel are similar to each 

other implying that the imaging system suffers less from spatial-variant point spread 

function.  

Afterward, the illumination correction is applied to the entire image. The output of 

BDIC is shown in Fig. 6-9 (a2), where the illumination condition becomes good, and 

uniform. Enlarged parts in yellow boxes are shown in Fig. 6-9 (c1) and (c2). 
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Fig. 6-8. Experimental results on plant root tissue. (a1) captured raw image. (a2) BDIC enhanced image. (a3) images with good focusing 

position and illumination condition. (b1) to (b3) are enlarged parts in corresponding boxes for (a1). (c1) to (c3) are enlarged parts in 

corresponding boxes for (a2). While (c1) to (c3) are enlarged parts (a3). The scale bar is 10 µm.  

(a1)
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(a3)
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(b2)

(b3)

(c1)

(c2)

(c3)
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Fig. 6-9. Experimental results on the human blood smear. (a1) captured raw image. (b) Estimated 

kernel. (a2) BDIC output. (c1) and (c2) are enlarged parts in the yellow of (a1) and (a2), respectively. 

The scale bar is 10 µm.  

3.4 With motion blurring 

In some cases, there would be motion blurring imposed during the imaging procedure, 

due to unstable imaging platform, and accidental vibration of the sample. These 

problems usually happen to low-cost microscopy systems. Our BDIC can correct the 

motion blurring as well. We test the BDIC on the USAF target and the blood smear. The 

stage is driven and moved by a piezoelectric platform in a random direction to create 

motion blurring as shown in Fig. 6-10 (a). The stripe pattern is blurred due to the 

motion.  

The BDIC output is shown in Fig. 6-10 (b) where a clear, none motion blurring image 

is recovered, together with the blurring kernel shown in Fig. 6-10 (c). 

(a1) (a2)

(b)
(c1) (c2)
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Fig. 6-10. Recovery of motion blurring on the USAF target. (a) captured raw image. (b) BDIC output. 

(c) Estimated kernel.  

Experiments on blood smears are shown in Fig. 6-11. Images on the first row of Fig. 

6-11 are the captured raw images, where they are severely blurred due to the sudden 

motion during the exposure. The BDIC recovery results are shown in the second row of 

Fig. 6-11 for corresponding images, where the motion blurriness is removed. Note that 

if the raw image contains objects that are stationary while the sample is moving, for 

example, dust particles on the lens, the objects will cause artifacts due to the 

deconvolution as shown in the red circles in Fig. 6-11 (c2). 
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Fig. 6-11. Recovery of motion blurring on the blood smear. (a1) to (c1) captured raw image. (a2) to (c2) BDIC outputs. (a3) to (c3) Estimated 

kernel. The scale bar is 10 µm. 
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4. Discussion  

The BDIC is a purely mathematical method that doesn’t involve the modification of the 

optical microscopy system. This feature makes it very easy to be deployed and 

performed among different type of microscopy. The BDIC is divided into two parts, 

blind deconvolution and illumination correction. In our method, the blind 

deconvolution is achieved by patch-wise minimal pixels regularization, however, it 

should be noted that other blind deblurring methods are also available such as local 

maximum gradient regularization [21], and patch-wise maximum gradient 

regularization [36]. There are two reasons for choosing patch-wise minimal pixels 

regularization in this research. First, the patch-wise minimal pixels (PMP) 

regularization has a low-memory usage requirement [23]. The PMP matrix ( )P X  is a 

sparely sampled version of raw images X, which makes it easy in programming. 

Moreover, due to the sparsity of ( )P X , the execution time is also short which makes 

this method suitable for running on a personal computer. The second reason is that the 

PMP is a special case of dark-channel [20]. By using the PMP, the deconvolution part 

and the illumination part can be organized into an identical framework.  

The reliability of the BDIC is tested by comparing its results with the ground truth 

images captured by the carefully calibrated imaging system. Experimental results show 

that the BDIC can improve the imaging quality with different degrees depending on the 

quality of a raw image. Note that BDIC is an imaging processing method, the only thing 

that it can do to make full use of the information provided by the raw image. Thus, it 

cannot recover the information that does not exist on the raw images, and may also 

enhance the noise signal as mentioned in Fig. 6-11 (c2). However, the single image 

requirement, cheap usage, and universal for different microscopy systems are unique 

advantages of the BDIC. In conclusion, the BDIC aims to provide a simple and fast 

solution to enhance the performance of microscopy under limited conditions and may 

also support the results computation imaging before and after the image reconstruct.  
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Although both blind deconvolution and illumination correction can be achieved 

through deep-learning methods [23, 37, 38], the requirement of training data and 

massive computational resources largely limit their application, and their inner 

mechanism of each layer of the network and intermedial products are also unknown. 

On the contrary, no training data is needed for BDIC, and it is a transparent algorithm. 

The procedure about how a degraded raw image becomes the better one can be shown 

step by step.  

5. Conclusion 

In conclusion, we have developed an imaging processing algorithm that suppresses the 

blurriness and corrects the uneven illumination of microscopy images. The proposed 

image formation model together with the BDIC algorithm perfectly combines the 

framework of blind deblurring (BD) and illumination correction (IC). To prove the 

effectiveness of the BDIC, we test it on different microscopy samples. The experimental 

results show that our algorithm greatly improves the imaging performance. Due to its 

simplicity and universality, the BDIC has great potential applications 
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Abstract 

Background and Objective: Due to imperfect imaging conditions, retinal images can 
be degraded by uneven/insufficient illumination, blurriness caused by optical 
aberrations and unintentional motions. Degraded images reduce the effectiveness of 
diagnosis by an ophthalmologist. To restore the image quality, in this research we 
propose the luminosity rectified Richardson-Lucy (LRRL) blind deconvolution 
framework for single retinal image restoration. Methods: We established an image 
formation model based on the double-pass fundus reflection feature and developed a 
differentiable non-convex cost function that jointly achieves illumination correction 
and blind deconvolution. To solve this non-convex optimization problem, we derived 
the closed-form expression of the gradients and used gradient descent with Nesterov-
accelerated adaptive momentum estimation to accelerate the optimization, which is 
more efficient than the traditional half quadratic splitting method. Results: The LRRL 
was tested on 1719 images from three public databases. Four image quality matrixes 
including image definition, image sharpness, image entropy, and image multiscale 
contrast were used for objective assessments. The LRRL was compared against the 
state-of-the-art retinal image blind deconvolution methods. Conclusions: Our LRRL 
corrects the problematic illumination and improves the clarity of the retinal image 
simultaneously, showing its superiority in terms of restoration quality and 
implementation efficiency. 

 

Keywords  

Retinal image; Image restoration; Blind deconvolution; Illumination correction; 
Adaptive momentum estimation. 
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1. Introduction 

Retinal imaging is widely used by ophthalmologists all over the world, where it plays a 

key and fundamental role in the diagnosis and management of ophthalmologic 

disorders [1], such as diabetic retinopathy [2, 3], glaucoma [4], and age-related macular 

degeneration [5, 6]. Moreover, since the retina has a high metabolism rate and is the 

place in the human body where the blood vessels and neuro branches can be non-

invasively observed in-vivo, some psychiatric diseases including schizophrenia and 

bipolar disorder can be detected according to the tortuosity features of the blood 

vessels and neurons [7, 8]. Certain cardiovascular risk factors can be also determined 

based on the morphology of retinal blood vessels [9, 10] and optic cup-optic disk ratio 

[11]. Retinal oxygen saturation can be measured using retinal oximetry [12] and 

biomarkers for early Alzheimer’s disease diagnosis can be found using hyperspectral 

retinal imaging [13].  

Diagnosing efficiency and precision are deeply related to the quality of retinal 

imaging. However, not every retinal image is perfect and low-quality image occurrence 

is not a minor fact. Heaven et al. found 9.5% of all acquired images to be entirely 

unsatisfactory in a prospective study of 981 diabetic retinopathy patients [14]. Scanlon 

and Stephen found the ungradable image rate to be between 19.7% for nonmydriatic 

photography and 3.7% for mydriatic photography study of 3650 diabetic patients [15].  

Retinal images can be severely degraded by opacities in the optical media of cataract 

eyes [16-18], retinal images for non-cataract subjects can as well be degraded by poor 

illumination conditions including uneven or insufficient illuminations. The quality of 

retinal imaging can be improved either by including high-end fundus cameras and using 

adaptive optics to tackle the optical aberrations [19], or by using image enhancement 

processing to correct for illumination artifacts [20-22], to enhance contrast [23-25] and 

to use dehazing algorithms [26-28]. Most of these methods aim to improve the contrast 

of the retinal image by adjusting pixel values, either using histogram adjustment or 

using image formation models (IFM). For the IFM-based methods, since they digitally 
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inverse the progress of how a degraded image was formed, they are also known as 

retinal image restoration methods. 

In addition, retinal images can be also degraded by optical aberrations such as 

defocus, and motion blur caused by unintended movement of a subject’s head. Such 

degenerations are modeled by a convolution process between the ideal retinal image 

and a blur kernel, and cannot be restored using the contrast enhancement methods 

mentioned above. To tackle the blurriness degenerations, the blind deconvolution 

method is needed as the kernels are usually unknown. However, according to our 

investigation, only few studies have reported on single retinal image blind 

deconvolution [29-31], which rather aimed to correct the blurriness caused by 

aberrations and motions during the retinal imaging. 

Image blind deconvolution has been greatly developed and is mainly used for 

natural scene image deburring. Much prior knowledge, including but not limited to the 

heavy-tail prior [32, 33], the dark-channel prior [34] and the local maximum gradient 

prior [35], has been explored to facilitate the single image blind deconvolution tasks. 

Nevertheless, blind deconvolution for retinal images is still problematic and challenging 

since there are a large number of retinal images suffering from poor illumination 

conditions which hide the structure (edge) information that is essential for proper 

deconvolutions.  

Traditional methods consider the illumination correction and blind deconvolution 

as two unrelated problems. Both problems are ill-posed since the number of un-known 

parameters is more than known parameters. Andrés et al. proposed a two-steps retinal 

image blind deconvolution method [30], in which the first step is estimating and 

compensating for the uneven illumination using a fourth-order polynomial. The second 

step is blind deconvolution with TV-regularization corresponding to the Heavy-tail-

prior to natural scene deburring. However, this method requires at least two paired 

retinal images of one identical subject. Francisco et al. limit the shape of the convolution 

kernel to a Gaussian shape and perform a line search to determine the size of the 
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Gaussian kernel corresponding to the peak image quality score [31]. This method 

doesn’t correct the illumination pattern of the retinal image, In addition, not all retinal 

images are degraded by a simple Gaussian kernel. Therefore, there is a need for 

methods that can solve two ill-posed problems in one scene, and achieve blind 

illumination correction and deconvolution simultaneously, which can potentially 

benefit clinical application on retinal images.   

 

Fig. 7-1. Demonstration of LRRL on retinal images from DiaRet database. Images in the first row are 

raw images, and images in the second row are outputs of LRRL. 

In this study, we proposed the luminosity rectified blind Richardson-Lucy 

deconvolution (LRRL) algorithm. Our research has the following four contributions: (1) 

we proposed a new cost function for the blind deconvolution problem that can correct 

the problematic illumination of the retinal image while achieving image blind 

deconvolution at the same time. (2) we proposed a differentiable approximation to 

efficiently solve the L0-norm problem, and the closed-form gradient is deduced. (3) we 

proposed an embedded illumination correction cost function with Hessian 

regularization for the non-blind deconvolution task to obtain the final output of our 

model. (4) our proposed model outperforms other state-of-the-art retinal image blind 



Chapter 7 

280 
 

7 

deconvolution methods. Fig. 7-1 shows the results of our LRRL approach on retinal 

image deconvolutions.  

The rest of this manuscript is arranged as follows: Section 2 introduces the double-

pass fundus reflection model and its simplified version for single retinal image 

deconvolution. Section 3 proposes the blind Richardson-Lucy deconvolution 

framework with an extended cost function for the estimation of the latent image, the 

latent illumination pattern, and the convolution kernel. With knowledge of the 

convolution kernel and illumination pattern, we designed a non-blind luminosity 

rectified deconvolution framework under Richardson-Lucy deconvolution with 

Hessian regularization. Section 4 compares LRRL against state-of-the-art blind 

deconvolution methods using both visual and objective assessment. Section 5 

demonstrates the potential clinical applications of our proposed method for computer-

aided diagnosing. Section 6 discussed the contributions and limitations of the LRRL 

method, and concluding remarks make up the final section. 

2. Double-pass fundus reflection model  

Here we consider the double-pass fundus reflection process of retinal image 

formation and ignore the intraocular scattering problem caused by opacities in the 

optical media. 

Fig. 7-2 shows a schematic sketch of the light path in a fundus camera, where 
0 ( )p r  

is the point spread function of the eye, ( )o r  the retinal reflectance (an M-by-N matrix) 

and ( , )x y=r  the coordinate vector. 

 i0 is the illumination pattern generated by the light source at a certain distance and 

is imaged by the ocular system forming i — the image of i0 that illuminates the retinal 

surface. Therefore 0 0= i p i  as the fundus camera uses incoherent white light for 

illuminations. Then, the reflectance from the retina surface is imaged by the imaging 

system which is the combination of the ocular system and fundus camera, yielding the 
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final observed retinal images. The double-pass fundus reflection model is written as 

[36, 37]: 

   0 0( ) ( ) ( ) ( ) ( ) =   +s r p r p r i r o r , (7-1) 

where ( )p r  is the point spread function of the combined imaging system of the fundus 

camera and eye, ( )s r  is the observed retinal image, and   is an unavoidable noise 

signal.   is the 2D-convolution and  the pixel-wise matrix multiplication. 

 

Fig. 7-2. Sketch for optical path in fundus camera. A beam splitter is used to deliver the illumination 

light into the eyes. 

Since 
0 0( ) ( )p r i r  works as a new illumination component cast on the retina, we 

are able to further simplify Eq. (1) to:  

  ( ) ( ) ( ) ( ) =  +s r p r i r o r , (7-2) 

Our LRRL approach aims to simultaneously recover the estimations of ( )p r , ( )i r  and 

( )o r  with knowledge only of ( )s r .  

Before entering the retinal image blind deconvolution, an image background 

padding process was applied in order to remove the boundary effect during the 

deconvolution process. Further, throughout the manuscript, pixel values were 

normalized within the range of [0, 1] (divided by 255 for uint8 format images).  
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3. Luminosity rectified blind deconvolution 

Assuming that the convolution kernel for three color channels is identical, we can 

convert the RGB color image into the gray-scale image, and perform blind 

deconvolution. Our luminosity rectified blind deconvolution model is given by an 

optimization problem, where the cost function to be minimized is  

 ( ) ( ) ( ) ( ) ( )
2

2
, ,E   =  − + + +o i p p i o s o i p . (7-3) 

The first term is a data fidelity term, which restricts the estimation of (o, i, p) to be 

consistent with the observed image s. This data fidelity term is consistent with the 

Richardson-Lucy deconvolution under the assumption of Gaussian noise.  

Since the single image blind illumination correction and deconvolution task are 

severely ill-posed as there exist many different solution groups of (o, i, p) that give rise 

to the same s, the ( ) o , ( ) i  and ( ) p  are penalty functions that restrict the solution 

of o, i, p, respectively, in order to make the problem well-posed. Here, α, β, and γ are 

penalty parameters. 

( ) o  is the l0-norm of the gradient of o which retains large gradients and removes 

tiny details [35, 38], and ( ) p  is the l2-norm of p. We assume that i is spatially slow 

varying and therefore we use the total-variation to ensure this property of i. By 

vectorizing the o and s we obtain the following optimization problem  

 ( )
2

1 22 0
, ,E   = − +  +  +O I K KIO S O I K ,  (7-4) 

where K  is an MN-by-MN matrix denoting the convolution operation. I is an MN-by-

MN diagonal matrix denoting the pixel-wise illumination operation. Eq. (7-4) is further 

converted into two sub-problems (1) with knowledge of K, the latent image O, and 

illumination pattern I are solved. (2) With knowledge of IO, an estimation of K is 

obtained. These two steps are iteratively implemented among the coarse-to-fine multi-

scale of the image. 
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3.1 Estimation of latent image and illumination pattern 

As Eq. (7-4) involves the L0-norm term which is an NP-hard problem, it can be solved 

using the Half Quadratic Splitting (HQS) methods [39] by introducing two auxiliary 

variables with respect to O  and I . O  or I  can be solved by setting the derivative 

of (4) with respect to O  or I to zero. However, as we have shown in Supplementary 

Note 7-1, the half quadratic splitting method requires a large amount of computation 

and is also time-consuming due to the presence of I. 

 

Fig. 7-3. Approximation of L0-norm using exponential functions. (a) plots of Eq. (5) with respect to 

parameters c and x. (b) derivative of Eq. (5) with respect to x. 

To tackle the L0-norm in Eq. (7-4) and maintain computational efficiency, here we 

propose to approximate the L0-norm of a vector/matrix using an element-wise 

function:  

 ( ) ( ) ( )1 exp ,    0,   f x c x f x x R= − −    . (7-5) 

As shown in Fig. 7-3 (a), Eq. (7-5) can approximate the L0-norm by assigning a large 

value to parameter c. We, therefore, are able to approximate the L0-norm of a 

vector/matrix X by calculating the element-wise summation of the vector/matrix
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( )f X . Supplementary Note 7-2 shows the details of this approximation. The 

derivative of ( )f X  with respect to x is shown in Fig. 7-3 (b).  

The sub-problem for latent image and illumination pattern is then given by 

 ( ) ( ) ( )
2

1 12 1
, , 1 expE c =  − + − −  + o i p p i o s o i ,  (7-6) 

we can use the L1-norm to represent the element-wise summation since ( )f X  is a 

non-negative function. Moreover, since Eq. (7-6) is differentiable everywhere except 

the origin, we are able to optimize it using gradient descent methods, and the 

(sub)gradient of E1 with respect to o is given by 

 ( ) ( )1 2 * * expTE
c c

  
=   −  +  −        

o
i p p i o p s o

o o
, (7-7) 

while the (sub)gradient with respect to i is given by 

 ( )1 2 * *  TE


  
=   −  +         

i
o p p i o p s

i i
. (7-8) 

Here ( )*= −p p r . Without i, the first term in Eq. (7-7) is consistent with the standard 

Richardson-Lucy deconvolution with Gaussian noise likelihood [40]. (also in 

Supplementary Note 7-5.) 

Equation (7-6) is non-convex, and the gradient of the exponential term is very small 

when x is large according to Fig. 7-3. While when the x becomes small, the gradient of 

the exponential term increases rapidly. As such, the normal gradient descent method 

with static step-size may not ensure the convergence of Eq. (7-6), especially for the 

exponential term. It is hoped that the optimization can be accelerated when the gradient 

is flat, while can be also slowed down a bit when the gradient is extremely large. Here, 

in this research, we choose the Nesterov accelerated adaptive momentum estimation 

(N-Adam) [41] to boost the gradient descent method and avoid the gradient bursting 
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problem in Eq. (7-7). For detailed validation and comparison between different 

optimizers, please see Supplementary Note 7-2.  

 

Algorithm 7-1: Estimation of latent image and illumination pattern 

Input: kernel p; image s; V-channel v; parameters α and β. 

1t =   

Calculate i0 using Eq. (7-9) 

0/o =o s i   

While 
maxt t  do  

    Calculate the gradient 
1o E  using Eq. (7-7)  

    Calculate the gradient 
1i E  using Eq. (7-8) 

    Updating o t and i t using N-Adam optimizer 

    1t t +   

End while 

Output: Latent image o and latent illumination pattern i. 

 

The initial guess of i is given by 

  
2

0

2 2

1
exp

2 2 

  
= −   

  

r
i v , (7-9) 

according to the Retinex theory in which the illumination pattern is obtained by low-

pass filtering of the raw image [42]. /10MN =  controls the size of the Gaussian 

kernel, and v is the V-channel of the raw image by converting the RGB image of 

corresponding scales into HSV color space. While the initial guess of o is given by s/i0. 

This algorithm is summarized in Algorithm 7-1, which contains only one loop and is 

more efficient than HQS methods. maxt  is the maximum iteration number for solving o 

and i, and max 25t =  in our experiments. 
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3.2 Estimation of the convolution kernel 

With the combination of estimated o and i, we enter our next step: the kernel 

estimation. Similar to other existing state-of-the-art methods, the kernel is estimated 

based on the gradient of s and i o  which is given by the following optimization 

problem [34, 35, 38, 43, 44] 

 ( ) ( )
2 2

2 22
E =   − +  p p io s p . (7-10) 

The image gradient in Eq. (7-10) benefits the estimation of the kernel by utilizing the 

edge information. Eq. (7-10) is quadratic, and the solution of p can be directly calculated 

by setting the derivative of Eq. (7-10) with respect to p to 0. The convolution in Eq. (7-

10) can be accelerated by the Fourier transform, and p is then given by  

 
( ) ( ) ( ) ( )

( ) ( )
1

22

conj conj
Re

x x y y

x y 

−

     +       
=   

   +  +
  

io s io s
p

io io

F F F F
F

F F
. (7-11) 

Here, F  denotes the 2D Fourier transform, and conj(x) denotes the complex 

conjugate of variable x. Re(x) denotes the real path of the complex variable x. 

Furthermore, the estimated kernel is refined by setting the negative elements to zero 

and normalization so that ( ) 1=r
p r .  

Fig. 7-4 shows the latent image and illumination estimation for two groups of 

experiments of retinal image blind deconvolutions. As shown in Fig. 7-4 (a1) and Fig. 

7-4 (a2) both raw images have uneven and insufficient problematic illumination 

conditions, while our LRRL deconvolution generates the illumination-corrected latent 

images as shown in Fig. 7-4 (b1) and Fig. 7-4 (b2), together with the illumination 

patterns as shown in Fig. 7-4 (c1) and Fig. 7-4 (c2). Accordingly, the estimation of 

illumination patterns corresponds to the raw images as regions near the optical disk 

have a higher intensity than other places.  
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Fig. 7-4. Latent images and illumination patterns for blind illumination correction and deconvolution. (a1) and (a2) are raw images in 

grayscale corresponding to the images in Fig. 7-1 (a1) and (b1), respectively. The convolution kernels are estimated in 51-by-51 pixels and 

are up-sampled to 128-by-128 in Fig. 7-4 for better observation. (b1) and (b2) are latent images. (c1) and (c2) are latent illumination 

estimations.  



Chapter 7 

288 
 

7 

According to Fig. 7-4 (b1) and Fig. 7-4 (b2), the latent images are illumination 

corrected, however, their intensity levels are different as Fig. 7-4 (b2) is brighter than 

that of Fig. 7-4 (b1), therefore an intensity refinement needs to be applied to the final 

non-blind deconvolution process as we will show in the next subsection.  

In general, the two-step blind deconvolution is summarized in Algorithm 7-2. 

Algorithm 7-2: Luminosity rectified blind Richardson-Lucy deconvolution 

Input: Raw retinal image s, an initial guess of kernel p from the estimation in the last 

coarser-scale 

While κ < max_iter do 

    Updating i and o using Algorithm 7-1  

    Updating p using Eq. (7-11)  

    1  +   

End While 

Output: Latent image o, illumination pattern i, convolution kernel p 

Notes: s, i and p are then the inputs of subsequent Richardson-Lucy Hessian 

deconvolution. 

 

3.3 Non-blind deconvolution: RL-Hessian cost 

The latent image is not the final output of LRRL since it is over-smoothed. With the 

estimation of illumination pattern i and convolution kernel, a final non-blind 

deconvolution process is applied to the raw RGB retinal image. We design the new cost 

function which is  

 ( ) ( )
( )

2

2

3 2 1

2

,E I 


=  − + + −
s

o p l o s o
l

H ,  (7-12) 

to simultaneously achieve illumination correction, deconvolution, and noise 

suppression, where  

 ( ) ( )1 1 = −  −l i . (7-13) 
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( )3E o  in Eq. (7-12) is our proposed Richardson-Lucy-Hessian cost, and the data fidelity 

term is derived from Richardson-Lucy deconvolution under the assumption of Gaussian 

noise distribution.  

The second penalty function in Eq. (7-12) suppresses the noise signal during the 

deconvolution process, H  denotes the Hessian gradient of image o, viz, the second-

order gradient. We are not using the TV regularization since it uses the first-order 

gradient and will cause staircase-like artifacts. Retinal images differ from natural scene 

images as they do not contain sharp edges, while natural scenes do. Therefore, the stair-

case-like artifacts will largely decrease the naturalness of biomedical images [45] 

including retinal images.  

The third term restricts the average intensity distribution of o approaching the 

target intensity I . If the average intensity of the raw image is larger than I , no 

illumination correction is applied. We are not using the original illumination pattern i 

as it may cause color distortion for RGB images. Instead, we use Eq. (7-13) as a 

replacement for the illumination pattern and   is a scalar parameter that controls the 

illumination correction degree since not all retinal images need to be corrected. 

Again, we use gradient descent with N-Adam to solve Eq. (7-12), and the derivative 

(sub-gradient) of 
3E  with respect to o is  

 ( )* *3 2 TE



 =   −  +  

o
l p p l o p s

o o

H
H

H
, (7-14) 

and the derivative of 3E  with respect to   is  

 ( )3

2
1

E
I



   
= − −  

   


r

s s
i

l l
. (7-15) 
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Algorithm 7-3: Richardson-Lucy Hessian deconvolution 

Input: Raw retinal image s, estimation of illumination pattern i, convolution kernel p 

from Algorithm 7-2 

While κ < max_iter do 

    Updating o using Eq. (7-14) 

    Updating η using Eq. (7-15)  

    1  +   

End While 

Output: Restoration image o 

 

The non-blind deconvolution procedure is summarized in Algorithm 7-3. In 

summary, a flow chart for a complete LRRL method has two main steps, which are 

summarized in Fig. 7-5. First, with the input image, we use the blind-deconvolution to 

obtain the estimation of illumination pattern and blurry kernel (Section 3.1 and 3.2). 

Second, with the illumination pattern and kernel, we apply non-blind deconvolution 

(Section 3.3) to the input image to obtain the luminosity rectified, deconvoluted images.  

 

Fig. 7-5. Flow chart for the complete LRRL method including both blind deconvolution and non-blind 

deconvolution. 
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3.4 Model parameters 

In our proposed model, we have a total of 6 parameters that need to be adjusted, 

which are α, β, γ, ζ, I , and kernel size. Parameters α, β, and γ are for the blind 

deconvolution and 𝛾 = 1  according to historical literature. In the following 

experiments, we set 𝛽 = 2  to ensure the illumination pattern is spatially smoothly 

varying, and 𝛼 = 0.0025 according to experimental trials. The kernel size should be 

manually adjusted like other blind deconvolution methods. In this study, the default 

kernel size is 51 by 51. 

For the non-blind deconvolution part, 𝐼 ̅ = 0.55 to ensure maintain the naturalness 

of the output retinal images and the final parameter ζ is chosen according to the noise 

level and we use a noise-estimator [46] 

 ( )
1 1 1

1 1 1
,

50

C M N

n

n x y

s x y
C MN


= = =

=  L , (7-16) 

to adaptively adjust the value of  . Where C is the number of color channels, M and N 

are the size of the image in x and y directions.  1,2, 1;2, 4,2; 1,2, 1= − − − − −L  is the 

Laplacian operator as it is sensitive to noise signals. For noise-free images, the Laplacian 

operator extracts the edge information. On the contrary, for noise-corrupted images, 

the Laplacian operator enlarges the noise signals. Therefore, the average absolute pixel 

value of the filtered image can be regarded as a measurement of the noise level.  

Fig. 7-6 shows the final output of LRRL for two retinal images from the DiaRet 

database. The LRRL corrects the uneven illumination and improves the clarity of the 

images as shown in Fig. 7-6 (b1) to Fig. 7-6 (c2). It is worth noting that in many retinal 

image enhancement methods, illumination correction may cause intensity saturation 

for regions near the optical disk which usually has a large intensity distribution. Thanks 

to our proposed average intensity strategy in Eq. (7-12) and Eq. (7-13), the LRRL will 

overcome this problem and will maintain the naturalness of the retinal images. 
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Fig. 7-6. Montage of raw and output retinal images for the image in Fig. 7-1 (a1) and Fig. 7-1 (a2). 

(b1) and (c1) are enlarged parts in the yellow box in (a1). (b2) and (c2) are enlarged parts in the 

yellow box in (a2). 

4. Experimental results 

We test the LRRL on DiaRet retinal image database (219 images included) [47, 48], 

NORMAL database (300 images included) [49] and Messidor database (1200 images 

included) [50]. A total of 1719 images are processed. We compare the results of LRRL 

against two state-of-the-art blind deconvolution methods, which we refer the method 

in [44] as PMP, and the method in [31] as SLC. Method in Ref. [30] is not included since 

it requires paired two retinal images where in our case we only have a single 

measurement. The kernel size is 51 by 51.  



Retinal image blind deconvolution  

293 
 

7 

 

Fig. 7-7. Experimental results on image047 from DiaRetDB01 dataset. (a1) to (d1) are raw image, and 

output of PMP, SLC, and LRRL. (a2) to (d2) are zoomed-in parts in the region of the white box. (a3) 

to (d3) are zoomed-in parts in the region of the yellow box.  

4.1 Qualitative evaluations 

Fig. 7-7 shows the experimental results on image047 from DiaRetDB01 dataset. 

Where the raw image has uneven and insufficient problematic illumination conditions 

as shown in Fig. 7-7 (a1). The raw image is also blurred as shown in Fig. 7-7 (a2). All 

three methods correct the blurriness as shown in Fig. 7-7 (b2) to (d3), where the clarity 

of the retinal structures including blood vessels and tissue textures are improved in 

comparison with the raw image shown in Fig. 7-7 (a2) and (a3).  

SLC estimates the Gaussian kernel as shown in Fig. 7-7 (c1). However, since the 

kernel cannot be simply approximated by the Gaussian distribution, SLC slightly 

overestimates the size of the Gaussian kernel yielding the ringing effect, especially at 

the edge of the blood vessels as shown in Fig. 7-7 (c2).  

The LRRL can further correct the illumination pattern as shown in Fig. 7-7 (d1), and 

the visual quality of Fig. 7-7 (d1) is better than that of Fig. 7-7 (b1) due to the 
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illumination correction, while the blurriness correction abilities of all three methods 

are similar according to the visual assessment.  

 

Fig. 7-8. Experimental results on image088 from DiaRetDB01 dataset. (a1) to (d1) are raw image, 

output of PMP, SLC, and LRRL. (a2) to (d2) are zoomed-in parts in the region of the white box. (a3) 

to (d3) are zoomed-in parts in the region of the yellow box. 

Fig. 7-8 and Fig. 7-9 show other two groups of experimental results on image037 

from the DiaRetDB01 dataset, and image 2 from the MESSIDOR dataset, respectively. 

PMP shows its ability on blind deconvolution as the clarity of the output images 

becomes better than the raw images as shown in Fig. 7-8 (b1) and Fig. 7-9 (b1), 

however, the visual quality of the raw images is still limited by the poor illumination 

condition.  

Although SLC also achieves deconvolution as the clarity of the resultant images in 

Fig. 7-8 (c1) to Fig. 7-8 (c3) are improved, it fails to estimate the small structure of the 

kernel since it limits the shape of the kernel to be Gaussian, while in this case, the kernel 

has side lobes as shown in Fig. 7-8 (b2) and Fig. 7-8 (d2). Moreover, according to Fig. 
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7-9 (c1), SLC overestimates the size of the kernel causing ringing effects along the tube 

structures like blood vessels.  

 

Fig. 7-9. Experimental results on image 2 from MESSIDOR dataset. (a1) to (d1) are raw image, output 

of PMP, SLC, and LRRL. (a2) to (d2) are zoomed-in parts in the region of the white box. (a3) to (d3) 

are zoomed-in parts in the region of the yellow box. 

On the contrary, the LRRL method corrects the illumination pattern output images, 

as shown in Fig. 7-8 (d1) and Fig. 7-9 (d1) which have good intensity distribution. The 

visual quality is therefore improved as the visual perception is more sensitive to 

intensity than to structures. The zoomed-in images are shown in group Fig. 7-8 (d2) 

and Fig. 7-8 (d3), and in group Fig. 7-9 (d2) and Fig. 7-9 (d3). The LRRL method also 

improves image clarity by blind-deconvolution.  

In general, the LRRL achieves state-of-the-art deconvolution results for retinal 

images while also correcting poor illumination which largely increases the visual 
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quality of the restored retinal images. More experimental results for visual assessment 

are found in Supplementary Note 7-4.  

4.2 Quantitative evaluations 

In this sub-section, we conducted quantitative evaluations of the enhancement 

results in terms of (1) image definition [51], (2) image sharpness [52], (3) image 

entropy, and (4) image multiscale contrast [53]. All images are formatted in 8-bit 

unsigned integers (uint8, the gray-value is ranged in [0, 255]). Supplementary Note 

7-3 includes the details on the calculation of these four quality matrixes.  

Tab. 7-1 lists the quantitative evaluations for the image restoration quality. Here, 

high values of DE, UISM, IE, and CRAMM indicate high image quality. The raw images have 

low DE and UISM scores due to the blurriness of the image – convolution of a clear image 

with the blurry kernel reduces the edge information of the images, leading to the 

decrease in images’ sharpness. Since the DE is calculated from the first-order gradient 

of the image, it is also reduced by the blurriness of the image.  

As listed in Tab. 7-1, both PMP and LRRL show their ability of success in 

deconvolution as DE and UISM scores for resultant images are increased by at least two-

fold. PMP gains a better UISM score than that of LRRL. The CRAMM of LRRL method is 

better than those of PMP and SLC, which is mainly due to the intensity correction. 

Especially for Fig. 7-7, the CRAMM = 0.6061 for the raw image, while the LRRL 

enhancement gains CRAMM = 2.0022, which is three times larger than that of the raw 

images and results of SLC.  

The SLC method may fail to achieve good deconvolution results since the DE for Fig. 

7-7 and Fig. 7-8 decrease after the deconvolution. Additional experimental results for 

both qualitative and quantitative assessments are available in Supplementary Note 

7-4. 
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Tab. 7-1. Quantitative assessment of the enhanced images among Fig. 7-7 to Fig. 7-9 with four metrics. 

Raw image Matrixes Raw 
Methods 

PMP SLC LRRL 

Fig. 7-7 (a1) 

DE 1.4871 3.4013 1.6955 5.5548 

UISM 1.4613 4.9876 2.6535 4.3643 

IE 6.3506 6.4752 6.4126 6.7060 

CRAMM 1.6499 2.0181 1.8385 2.9068 

Fig. 7-8 (a1) 

DE 1.1784 2.3878 0.7949 5.8679 

UISM 2.5338 4.7432 2.6968 5.0562 

IE 5.7798 5.8742 5.8065 6.5662 

CRAMM 0.6061 0.8611 0.6291 2.0022 

Fig. 7-9 (a1) 

DE 2.2186 4.0115 2.1513 6.1596 

UISM 1.9077 5.3364 4.3909 5.2341 

IE 6.0099 6.2245 6.1172 6.3419 

CRAMM 1.8655 2.1924 2.0474 2.5251 

Average 

DE 1.6280 3.2669 1.5472 5.8609 

UISM 1.9676 5.0224 3.2471 4.8849 

IE 6.0468 6.1913 6.1121 6.5380 

CRAMM 1.3738 1.6905 1.5050 2.4780 

 

Tab. 7-2 demonstrates the enhancement results of the quantitative evaluation for a 

total of 1719 images from three databases. In general, the DPFR model can achieve a 

better quality of image restoration including image definition, image entropy, and 

image contrast than current state-of-art methods. The blurriness and problematic 

illumination are corrected. 

Note that we are not using any contrast enhancement processes such as HE or 

CLAHE. The improvement of image contrast is directly related to the effect of 

deconvolution and illumination correction. The image contrast of the LRRL-restored 

images can be further improved by using subsequent contrast enhancement algorithms 

like CLAHE, and others. 
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Tab. 7-2. Quantitative assessment of the enhanced images for 3 databases. 

Datasets Matrixes Raw 
Methods 

PMP SLC LRRL 

DiaRet db00 

(130 images) 

DE 1.3650± 0.1474 2.5955± 0.3577 1.2925± 0.3388 4.5285± 0.9611 

UISM 2.3573± 0.2036 4.4178± 0.3807 2.6097± 0.2301 4.0793± 0.4590 

IE 6.0696± 0.3549 6.2002± 0.3294 6.1135± 0.3564 6.3766± 0.2444 

CRAMM 0.9829± 0.1805 1.3394± 0.2405 1.1162± 0.2711 1.9423± 0.3148 

DiaRet db01 

(89 images) 

DE 1.3188± 0.1356 2.5146± 0.3643 1.1637± 0.2307 4.6585± 1.1380 

UISM 2.4132± 0.1980 4.3910± 0.4989 2.6688± 0.2039 4.2663± 0.5751 

IE 5.9016± 0.3546 5.9968± 0.3244 5.9400± 0.3467 6.3437± 0.2527 

CRAMM 0.8910± 0.1916 1.1232± 0.1982 0.9889± 0.2212 1.9254± 0.3168 

NORMAL 

(300 images) 

DE 1.2650± 0.1811 3.2126± 0.5307 2.0208± 0.4667 3.3397± 0.9278 

UISM 1.5047± 0.2625 4.5128± 0.4582 3.4600± 0.4224 3.9061± 0.5383 

IE 6.1324± 0.2962 6.2475± 0.3068 6.2548± 0.2766 6.2010± 0.3186 

CRAMM 1.7388± 0.1994 2.0199± 0.2413 2.0241± 0.2688 2.2926± 0.3495 

Messidor 

(1200 images) 

DE 1.4641± 0.2676 3.6115± 0.7298 2.1037± 0.5575 4.4378± 1.0826 

UISM 1.8228± 0.3220 5.2395± 0.5439 4.0469± 0.4322 4.6991± 0.5196 

IE 5.7119± 0.2882 6.0221± 0.2896 5.9131± 0.3068 6.1544± 0.2630 

CRAMM 1.6444± 0.2455 2.0343± 0.3258 1.9001± 0.3114 2.1564± 0.3004 

Average 

DE 1.4144± 0.2540 3.4083± 0.7510 1.9792± 0.5894 4.2645± 1.1345 

UISM 1.8383± 0.3828 5.0066± 0.6268 3.7644± 0.6344 4.4914± 0.6141 

IE 5.8221± 0.3455 6.0736± 0.3116 5.9893± 0.3352 6.1892± 0.2801 

CRAMM 1.5718± 0.3348 1.9320± 0.3996 1.8153± 0.4163 2.1520± 0.3260 
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4.3 Comparing with non-deconvolution methods 

The LRRL aims to correct the blurriness and problematic intensity imposed on the 

retinal images. It won’t increase the image contrast as much as that of contrast 

enhancement methods such as CLAHE, and other retinal image enhancement methods. 

To show this, we compare the output of LRRL against Luminosity and Contrast 

adjustment (LCA) [54], and DPFR methods as shown in Fig. 7-10, Fig. 7-11, and Fig. 

7-12.  

Tab. 7-3 Quantitative assessment of the enhanced images for Fig. s9 and s10. 

Raw image Matrixes Raw 
Methods 

LCA DPFR LRRL LRRL+CLAHE 

Fig. 7-10 

DE 1.4171 4.1591 9.7376 3.9061 9.0067 

UISM 1.5993 2.5288 6.5334 5.0967 6.3662 

IE 5.8493 7.0311 7.4273 6.5383 7.2597 

CRAMM 1.7189 3.8928 7.3846 2.8848 5.1714 

Fig. 7-11 

DE 1.8946 4.1273 6.8521 5.7311 12.0209 

UISM 3.5776 3.5587 5.5637 5.3548 7.6116 

IE 6.1559 6.1436 6.3648 6.6497 6.5854 

CRAMM 1.8915 2.8682 5.8095 2.1537 3.5687 

Fig. 7-12 

DE 1.5401 4.6584 9.4748 5.5939 12.7236 

UISM 3.7516 5.3423 5.5333 4.9767 6.3695 

IE 5.4914 6.6040 7.2645 6.2261 7.0355 

CRAMM 1.5086 3.6568 8.0187 2.6189 5.5024 

 

Tab. 7-3 shows the quantitative evaluation for the results in Fig. 7-10 to Fig. 7-12. 

As shown in Fig. 7-10 (b1) to Fig. 7-10 (d3), and according to Tab. 7-3, both LCA and 

DPFR methods increase the image’s contrast as the color in the blood vessel region is 

deeper than in other background regions, the DE, UISM, IE, and CRAMM scores are also 

largely improved. But the enhanced images still have blurriness problems, for example, 

the small blood vessel in the optical disk in Fig. 7-10 (b2) and Fig. 7-10 (c2) are not as 

clear as that in Fig. 7-10 (d2). Similar results can be found in Fig. 7-11 and Fig. 7-12. 
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While for the LRRL method as shown in Figs. 7- 10, 11, 12 (d1), the blurriness is 

corrected compared with the raw image, but the improvement in the image’s contrast 

is not as much as that of LCA and DPFR outputs as listed in Tab. 7-3.  

The main reason is that the LRRL models the image degrading process differently 

from the CLAHE or DPFR. In LRRL, the image degrading is described by a convolution 

process, while the contrast enhancement method such as CLAHE models the image 

degrading as changes in the statistical distribution of pixel values. For other model-

based enhancement methods including the DPFR, the image degrading is modeled by a 

hazing formation process (matrix element-wise production). Note that the DPFR model 

distorts the color of retinal images.  

Since the physical and mathematical insights are different, we would consider the 

combination of LRRL and contrast enhancements to further improve the image’s 

contrast. Fig. 7-10, 7-11, and 7-12 (e1) show the LRRL output with the enhancement of 

CLAHE in L* channel in the LAB color space. Comparing Fig. 7-10 (e2) and (e3) to Fig. 

7-10 (b2) and (e2), for example, the CLAHE further improves the image’s contrast.  

Furthermore, with the combination of deconvolution and contrast enhancement, 

the final output can have better visual quality as listed in Tab. 3, scores for all four 

evaluation matrices are improved after the CLAHE is applied. In addition, as shown in 

Fig. 7-9(e2) [also in Fig. 7-10 (e2), and Fig. 7-12 (e2)], the blood vessels in the optical 

disk are more clear than that in Fig. 7-9 (a2), (b2), (c2), and (d2).  

In summary, the LRRL aims to correct the blurriness caused by the convolution 

process. Its unique deblurring ability together with further contrast enhancement can 

achieve promising image restoration results for retinal images that have blurriness 

such as Fig. 7-10 (a1) to Fig. 7-12 (a1). 
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Fig. 7-10. Comparison with non-deconvolution methods. (a1) to (a3) are raw, and zoomed-in images. (b1) to (b3): LCA enhancement. (c1) 

to (c3), DPFR enhancements. (d1) to (d3) LRRL output. (e1) to (e3), CLAHE enhancements based on (d1) to (d3). 



 

 
 

3
0

2
 

C
h

a
p

ter 7 

7
 

 

Fig. 7-11. Comparison with non-deconvolution methods. (a1) to (a3) are raw, and zoomed-in images. (b1) to (b3): LCA enhancement. (c1) 

to (c3), DPFR enhancements. (d1) to (d3) LRRL output. (e1) to (e3), CLAHE enhancements based on (d1) to (d3).  

     



 

 
 

3
0

3
 

7
 

R
etin

a
l im

a
g

e b
lin

d
 d

eco
n

vo
lu

tio
n

 

 

Fig. 7-12. Comparison with non-deconvolution methods. (a1) to (a3) are raw, and zoomed-in images. (b1) to (b3): LCA enhancement. (c1) 

to (c3), DPFR enhancements. (d1) to (d3) LRRL output. (e1) to (e3), CLAHE enhancements based on (d1) to (d3). 
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5. Retinopathy diagnosis using LRRL restored images 

As LRRL restores image clarity and corrects for uneven illuminations, the restored 

images can benefit clinical applications like retinopathy diagnosis. In this section, we 

focus on the restoration results in areas that indicate retinopathy, including hard 

exudates and hemorrhages. The restoration results should increase the visual quality 

of the retinopathy area, without creating unexpected artifacts to guarantee structure 

fidelity. 

 

Fig. 7-13. Enhancement of retinopathy areas using LRRL. (a) Raw image. (b) Restored image. (c) 

Labels of retinopathy areas. Red: Hard exudates; Green: Hemorrhages; Cyan: red small dots. (d1) to 

(g2) are zoomed-in pictures for regions in blue, green, yellow, and red boxes.  
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We tested LRRL on the DiaRetDB1 dataset, since the retinopathies were already 

marked by human specialists [shown in Fig. 7-13 (c)]. The raw image shown in Fig. 7-13 

(a) has problematic illumination conditions which improved after LRRL as shown in 

Fig. 7-13 (b). 

As shown in Fig. 7-13 (d1), (d2), (f1), and (f2), LRRL increases the visual quality of 

the hard exudates, as the intensity of the corresponding area is better than that in the 

raw images.  

 

Fig. 14. Enhancement of retinopathy areas using LRRL. (a) Raw image. (b) Restored image. (c) Labels 

of retinopathy areas. Red: Hard exudates; Green: Hemorrhages; Cyan: red small dots. (d1) to (g2) are 

zoomed-in pictures for regions in blue, green, yellow, and red boxes.  

Blurriness was also corrected, as the white spot of the hard exudates becomes clear. 

Some hard exudates which can hardly be observed in the raw image shown in Fig. 7-13 



Chapter 7 

306 
 

7 

(d3) can be clearly found in the restored images in Fig. 7-13 (f1) and (f2). The visual 

quality of hemorrhages as shown in Fig. 7-13 (e1) and Fig. 7-13 (e2) also increased.  

Another group of comparisons is shown in Fig. 14. As shown in Fig. 14 (d1) and 14 

(d2), the blurriness was significantly corrected, while no artifacts were introduced. 

Hemorrhages are shown in Fig. 14 (e1), 14 (e2), 14 (g1) and 14 (g2). The hemorrhage 

areas and blood vessels in the neighborhood can be clearly observed. The red small 

spots in the raw image shown in Fig. 14 (f1) are blurred and can hardly be found as they 

are tiny structures. After the restoration as shown in Fig. 14 (f2), the visibility of the red 

small spots increased.  

In general, LRRL increases the clarity of retinal images which may potentially 

facilitate the detection of retinopathy. Meanwhile, by comparing LRRL restored images 

against raw images, we found that LRRL did not lead to additional artifact structure on 

enhanced images and guarantees the information fidelity in both structure and color 

aspects.  

6. Discussion 

6.1 Contributions of LRRL 

Our LRRL embeds the illumination correction in the framework of deconvolution, 

and efficiently avoids the problem where the kernel estimation may be degraded by 

problematic image intensity. Our experimental results on retinal image blind 

deconvolution prove the efficiency and correctness of this L0-approximation strategy. 

Our adaptive parameter adjustment largely simplifies the parameter adjustment, and 

only 2 parameters including α, and I  need to be manually adjusted for better blind 

deconvolution results.  

In the non-blind deconvolution process, we also adopt extended Richardson-Lucy 

deconvolution with the Hessian penalty to suppress the impact of noise signals and 

achieve deconvolution and illumination correction simultaneously. Experimental 

results show the superiority of LRRL over the other state-of-the-art retinal image blind 
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deconvolution methods in terms of restoration quality and implementation efficiency, 

which enables and facilitates the detection of features like drusen, hard exudates, 

bleeding hemorrhages, or microaneurysm, as these tasks may use more color or local 

detail information. 

6.2 Limitation of LRRL 

Currently, the LRRL has the following two limitations. First, being a blind 

deconvolution algorithm, the LRRL shares limitations with non-learning-based blind-

deconvolution methods, where the hyperparameters α, β, and γ for blind deconvolution 

need to be manually adjusted. According to published literature in blind deconvolution, 

α is manually adjusted according to the shape and size of the kernels, and also related 

to the raw blurred images. Fortunately, our experiments on 1719 images show that α = 

0.0025, β = 2, and γ = 1 are appropriate to obtain good deconvolution quality. These 

values can be used as a reference for further parameter adjustments.  

Secondly, the LRRL can be time-consuming as it requires several iterations for 

solving the latent images, especially for retinal images with large resolutions. In this 

case, the execution time of LRRL can be significantly increased. As listed in the following 

tables for kernel size of 51 by 51. (Tested on i9-7940X, 64 GB RAM). 

Tab. 7-4. Computational duration for LRRL and PMP methods. 

 Pixel size 5122 10242 15802 21602 

Execution Time (s) 
LRRL 34.65 96.82 188.04 423.54 

PMP 46.34 143.79 277.05 914.07 

 

7. Conclusion 

In this research, we developed the luminosity rectified blind Richardson-Lucy 

deconvolution (LRRL) to simultaneously achieve illumination correction and 

deconvolution. The LRRL corrects the insufficient and uneven intensity distribution and 
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increases the clarity of input retinal images, benefiting the visual quality of retinal 

images from both objective and subjective aspect. Although the LRRL has its limitations 

such as parameters tuning and being time-consuming due to the iterative 

deconvolution, it is believed that the LRRL supports the clinical diagnosis, and can be 

improved in future studies.  
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Supplementary Notes for Chapter 7 
LR2L: Luminosity rectified blind Richardson-Lucy 

deconvolution for single retinal image restoration 
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Supplementary Note 7-1: Solving latent images in Eq. (7-4) using 

the Half-Quadratic Splitting method, and its shortages 

Recall Eq. (7-4) in the main text, and the problem of the latent image is given by the 

following 

 ( )
2

12 0
,E  = − +  + O I KIO S O I .  (s7-1) 

In this case, we have two latent images – O and I that need to be solved.  

In a traditional blind-deconvolution framework, the latent images are solved using 

the Half Quadratic Splitting (HQS) method by introducing auxiliary variables 

corresponding to each latent image. In our case, we introduce two auxiliary variables G 

with respect to O  and L with respect to I , and Eq. (s7-1) is converted into the 

following two groups of optimization problems: 
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Where 
0  and 

0  are sufficient large penalty parameters such that they enforce the L2-

norm terms approach to 0.  

The L0-norm problem in Eq. (s7-2) can be approximately solved using the hard-

threshold method, while the L1-norm problem in Eq. (s7-3) can be solved using the soft-

threshold method. Since solving Eq. (s7-2) and Eq. (s7-3) are quite similar, in the 

following analysis, we consider only the problem in Eq. (s7-2). 
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In a typical HQS framework, O and G are iteratively solved. For example, first, we 

assume an initial value of O and use it to solve the value of G using the hard-threshold 

method [1, 2]: 

 

2

0,   /

0,        else

   
= 


O O
G   (s7-4) 

With the known of G we solve the 
oE  setting the derivative of 

oE  with respect to O to 

zero and set several iterations in which 
0  gradually becomes larger and larger to 

ensure the solution convergence [1, 3]. However, in our case the derivation of 
oE  with 

respect to O is  

 
( )

( )

0 0

0 0

2 2 2 0T T T T T T

T T T T T T

E
 

 


= +   − −  =



 +   = + 

I K KI O I K S G
O

I K KI O I K S G

, (s7-5) 

and cannot be calculated using Fourier transform methods due to the existence of I , 

and also the calculation of the inverse matrix of ( 0

T T T+  I K KI ) is hard since the 

matrix T T
I K KI  is very large that it requires large storage and calculation durations 

[4]. For most of the retinal images, the size is larger than 1024 by 1024, therefore, the 

size of K is larger than 1048576 by 1048576. 

An alternative method to solve Eq. (s7-5) is using the conjugate gradient, and at least 

20 iterations are needed to guarantee convergence. Therefore, the process for solving 

O can be summarized in Algorithm s7-1.  

The executive efficiency of Algorithm s7-1 is much lower than that of Algorithm 7-

1 in the main text. For example, 𝛼max = 105 and 𝑎 = 2 is a comment setting [1]. If 𝛼0 =

0.01 , it takes 24 iterations, and therefore the total number of iterations is at least

24 20=480 . While in Algorithm 7-1 in the main text only 25 iterations are needed. A 

similar analysis applies to the solution of Eq. (s7-3).  
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Algorithm s7-1: Half quadratic splitting for Eq. (s7-2) 

Input: Raw image S, illumination pattern I, point spread function K , penalty 

parameters  , 
0  ,  

While 
0 max   do  

        Solving G  via Eq. (s7-4) with given O  

        
0    

        For t =1, 2, 3, 4 …… max_iteration 

                Solving O using Eq. (s7-5) and conjugate gradient method.  

        End For 

        
0 0a     

End While 

Output: Latent image O 

 

In conclusion, the HQS can be used for solving the latent images, but the 

computational efficiency is way lower than our proposed Richardson-Lucy method. 

Supplementary Note 7-2: Exponential function as the 

approximation of L0-norm 

7-2.1 Principle 

The L0-norm of a matrix denotes the accounting number of non-zero elements. Since 

the L0-norm is performed in an element-wise manner, the function for an individual 

element x can be given by  

 ( )0

0,   0

1,   

x
y L x

else

=
= = 


. (s7-6) 

The shape of the function (s7-6) is a “T” as shown in Fig. 7-3(a) in the main text. Our 

goal is to find a function that is differentiable and also approaches the T-shape L0-norm 

function, and here we use ( ) ( )1 expf x c x= − − . 
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This function is able to approximate the L0-norm with a given value of c. For 

example, as the c increases, the curve of ( )f x  gets closer and closer to the black “T” as 

shown in Fig. 7-3(a) in the main text. With an appropriate value of c we are able to 

perform ( )f x  to every element of the matrix to approximately represent its L0-norm. 

Figure s1 represents how the ( )f x  can approximate the L0-norm of the matrix X. Since 

( )f x  is a non-negative function, the element-wise summation of ( )f=Y X  equals to

1
Y . 

 

Fig. s7-1, representation of the approximation of L0-norm using ( ) ( )1 expf x c x= − − . c = 10. 

According to Fig. 7-3(b) in the main text, the gradient for ( )f x  becomes large when 

x approaches 0, therefore a very small step-size needs to be used for conventional 

gradient descent methods. However, the small step-size also limits the convergent 

speed of the optimization. In order to achieve fast convergence while avoiding the 

gradient busting problem, we propose to use the adaptive moment estimation with 

Nesterov Acceleration (N-Adam). Parameter o is updated according to 
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, (s7-7) 

where 
t (

0 0 = ) is the first momentum estimation, and 
t  (

0 0 = ) is the second-

momentum estimation. ̂  and ̂  are bias-corrected of 
t  and 

t  respectively. 
1  and 

2  are decay rates for the momentum estimations. 
1 0.9 =  and 

2 0.999 =  are used in 

the following experiments. 0.05 =  is the step size (learning rate).   is a small value 

to avoid the condition of dividing by 0.  

7-2.2 Validation 

To validate our proposed L0-norm approximation strategy, we considering a 2D image 

smoothing task using gradient L0-regularization: 

 ( )
2

2 0
E = − + o o s o , (s7-8) 

where s denotes the observed image, and o is the smoothed image. The first term is the 

data fidelity term, and the second term denotes the gradient L0-regularization. 

The classical solution for Eq. (s7-8) is using half quadratic splitting method and is 

transformed into two sub-problems by introducing an additional variable, while the L0-

norm can be achieved using the Hard-threshold method. In addition, Eq. (s7-8) can be 

also solved using our proposed L0-norm approximation function using adaptive 

moment gradient descent with Nesterov Acceleration (N-Adam). The cost function is 

rewritten as  
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 ( ) ( )
2

2
1 expE c  = − + − −  o o s o , (s7-9) 

and the (sub)gradient of Eq. (s9) is calculated as  

 ( ) ( ) ( )
 ,

2 exp signT

x y

E
c c  






  = − +    −  
 

o s o o
o

, (s7-10) 

 

Fig. s7-2. Image smoothing using gradient L0-regularization. (a1) and (b1) are raw images. (a2) and 

(b2) are results using HQS methods. 0.1 = for (a2), 1 = for (a3).  (a3) and (b3) are results using 

our proposed approximation. 0.04 = for (a3), 0.4 = for (b3). 

Fig. s7-2 (a1) and Fig. s7-2 (b1) are the raw images while tiny structures exist. The 

results using the traditional HQS method are shown in Fig. s7-2 (a2) and Fig. s7-2 (b2) 

where the small gradient pixels are erased, remaining the color block structures. Our 

proposed L0-approximation achieves similar results to the traditional HQS method [1]. 

Since the penalty strength for the hard-threshold and proposed approximation method 
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are different as the hard-threshold is stronger than the approximations, a large value of 

the penalty parameter   is assigned to the approximation methods in order to achieve 

a similar regularization effect.  

7-2.3 NAdam VS Other optimizers including SGD, AdaDelta, Adam. 

In this section, we compare the performance of different optimizers including SGD, 

AdaDelta, Adam, and NAdam on our proposed L0-norm approximation method with 

different values of  .  

 

Fig. s7-3. Solving problem in (s7-8) using different optimizers. First row: output images. Second row: 

gradient maps. α = 0.01. 

When 0.01 = , the contribution of gradient from the exponential term becomes 

less. The output images are shown in the first row of Fig. s7-3 for different optimizers. 

The learning rate is 0.01 for SGD, Adam, and NAdam. A total of 50 iterations. The 

gradient maps for each image are also shown in the second row of Fig. s7-3. The 
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gradient map is calculated as ( )log x xD o D o + + , and 510 −=  to avoid log(0). Pixel 

values that are less than -5 are not shown. According to the gradient map, both NAdam 

and Adam generate a sparser image gradient, while SGD and AdaDelta optimizers fail 

to obtain the sparse gradient map and more iterations are needed.  

When 0.2 = , the contribution of gradient from the exponential term becomes 

prominent and the gradient exploding problem can happen. In these cases, the SGD 

optimizer cannot obtain stable results as shown in the first column of Fig. s7-4. The 

convergence of AdaDelta is not good as shown in the second column of Fig. s7-4. Both 

Adam and NAdam obtain promising results as the gradient maps, as shown in the third 

and fourth columns of Fig. s4, are sparser than that of AdaDelta. 

 

Fig. s7-4. Solving problem in (s7-8) using different optimizers. First row: output images. Second row: 

gradient maps. α = 0.2. 
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We also plotted the change of cost function with respect to iterations for Fig. s7-3 

and Fig. s7-4. As shown in Fig. s7-5, the NAdam has the fastest convergence speed 

among these four optimizers, while both Adam and NAdam can converge to a similar 

value of cost function which is smaller than that of AdaDelta and SGD. Accordingly, we 

choose NAdam in our research due to its faster convergent speed, better convergence 

properties (lower energy), and implementation efficiency.  

 

Fig. s7-5. Change of cost function with respect to iterations. (a) for Fig. s7-3, α = 0.01. (b) for Fig. s7-4, 

α = 0.2. 

Supplementary Note 7-3: Calculation of four quality matrixes 

The image definition [5] implies the richness of texture information which is given 

by the first-order gradient of the image: 

 
 

2

, , 1 1

1

2

M N
c

c

c R G B x y

DE
MN


 = =


=  

I
, (s7-11) 

where cI  is the c channel of input images. The DEs are evaluated in each RGB channel 

and are combined linearly with coefficients c  since the different color channel has 

different visual response. 0.299R = , 0.587G =  and 0.114B =  are used according to 

the relative visual responses of the red, green, and blue channels.  

(a) (b)
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Image sharpness is the attribute related to the preservation of fine details and edges. 

Blurred images have low sharpness score than clear images. In this study, we adopted 

the underwater image sharpness measure (UISM) to measure the sharpness of the 

retinal image [6]. In UISM, the Sobel edge detector is first applied on each RGB color 

channel. The resultant edge map is then multiplied with the original image to get the 

grayscale edge map in the corresponding color channel. By doing this, only the pixels 

on the edges of the original retinal image are preserved. The UISM is then given by  

 
1 2

max, ,

{ , , } 1 11 2 min, ,

2
log

edgek k
k l

c edge
c R G B l k k l

I
UISM

k k I


 = =

  
=     

   
  , (s7-12) 

where the image is divided into k1k2 blocks, 
max, , min, ,/edge edge

k l k lI I  indicates the relative contrast 

ratio within each block of the grayscale edge map. 

Image entropy (IE) describes the randomness distribution of the image and its value 

denotes the amount of image information, which is given by 

 ( ) ( )
255

{ , , } 0

logc g g

c R G B g

IE P x x
 =

=   , (s7-13) 

where ( )gP x  is the probability of the appearance of the pixels that have gray-value g 

in the gray-scaled image. Image entropy can be used to characterize the texture of the 

image and determine the amount of image information.  

The multiscale-contrast of the image, CRAMM, is calculated with a pyramidal multi-

resolution representation of luminance. CRAMM is defined as [7]  

 
( )( ) 8

1

8 # #
RAMM i j

level pixel neigh

C P P
pixel levels   −

  
= −  

   
   , (s7-14) 

where # pixel  denotes the total pixel numbers of the image, level  denotes the total 

level of down-sampling, in each level the image is halved without pre-filtering. In this 

paper, we use 6 levels of down-sampling. The pixel numbers of retinal images in the 
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simulation and databases are large enough for 6 levels of down-sampling. During the 

calculation, the down-sampling process is stopped if either the row pixel numbers, or 

the column pixel numbers of the next down-sampled image are less than 3. 

 

Fig. s7-6. (a) GQ image; (b) BG image. (c) enhanced image for (a); (d) enhanced image for (b) 

We use the non-reference-based evaluation and don’t use the reference-based 

evaluation such as PSNR and SSIM due to following reasons:  

1) Unlike natural scene images, a clear un-degraded retinal image can hardly be 

obtained in real life. For example, images in the HRF dataset 
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(https://www5.cs.fau.de/research/data/fundus-images/) that are regarded 

as being of good quality still suffer from problematic illumination as shown in 

the following picture. Using reference-based evaluation can lead to the wrong 

conclusion with can conflict with a human’s visual perspective. 

2) The non-reference-based evaluation Metrics used in our study are designed 

based on a human-visual perspective, as the evaluation scores are related to 

the human’s visual feelings. In this way, we are able to evaluate the quality of 

retinal images that are more related to human experts. These metrics are well-

defined and do not depend on the statistical feature of certain retinal images 

dataset. 

To illustrate the problem for reference-based evaluation, we collect the good quality 

(GQ) images (18 images) and corresponding bad quality images (BQ) (18 images) from 

the HRF dataset. We also perform illumination correction and contrast enhancement 

using CLAHE on both GQ and BQ images. One example is shown in Fig. s7-6.  

Then we calculate the PSNR and SSIM between (1) GQ images and BQ images, (2) 

GQ images and enhanced GQ images, (3) GQ images and enhanced BQ images as listed 

in the Tab. s7-1. In all these calculations, the GQ images are set as the reference images. 

Tab. s7-1. PSNR and SSIM for images in Fig. s7-6 

Image pairs (input, ref) PSNR SSIM 

(b), (a) 22.9488 0.8116 

(c), (a) 12.8905 0.5078 

(d), (a) 11.1248 0.5053 

 

The table implies that Fig. s7-6 (c) and Fig. s7-6 (d) have worse image quality than 

that of Fig. s7-6 (b), which conflicts with human visual assessment. In this case, the 

decrease in PSNR and SSIM is largely due to the change of the image’s intensity level, 

especially for SSIM as it depends on the intensity level between the given image and the 

reference image.  

https://www5.cs.fau.de/research/data/fundus-images/
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In addition, we have analyzed the statistical distribution of average intensity level 

for all 1200 images from the Messidor retinal image dataset (the black background of 

each retinal image is not taken into account). As shown in Fig. s7-7, almost 50 % of 

retinal images have intensity problems of different degrees as their average intensities 

are less than 0.4.  

 

Fig. s7-7. Average intensity of retinal images from Messidor dataset 

Since there are a large among of retinal images in our experimental data that have 

illumination problems, using PSNR and SSIM to assess the performance of our proposed 

model can lack fairness and practicality, especially for medical images where the real 

ground truth is not well-defined.  
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Fig. s7-8. Comparison of images with different types of distortions and their SSIM and PSNR scores. 

Additional examples that demonstrate the unpredictable behavior of SSIM and 

PSNR are shown in Fig. s7-8. Even the image is degraded by some major types of 

distortions such as Gaussian blur, motion blur, and noises, the related SSIM and PSNR 

scores can be larger than the enhanced image, which far contradicts to human visual 

prospect. More related works showing the drawback of SSIM and PSNR can be found in 

[8-11]. 

Supplementary Note 7-4: Additional experimental results 

7-4.1 Visual assessments 

In this section, we show additional four groups of experimental results as shown in Fig. 

s7-9 (a1) to (d1), where the raw images are blurred and have illumination problems 

including uneven illumination, as shown in Fig. s7-9 (a1) and Fig. s7-9 (b1) or 

insufficient illuminations, as shown in Fig. s7-9 (c1). The latent illumination patterns 

are shown in the second row of Fig. s7-9. The last row shows the output of LRRL 
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method, where the images have good illumination conditions, and the clarities are also 

improved. Fig. s7-10 shows the estimation of kernels for using LRRL (first row), PMP 

(second row), and SLC (last row) methods. For each image, we enlarge parts in the 

white and yellow boxes to show detailed changes of structures.  

 

Fig. s7-9. (a1) to (d1) are raw images. (a2) to (d2) are latent illumination pattern. (a3) to (d3) are 

outputs of LRRL methods.  

 

Fig. s7-10. Estimation of blurriness kernel using (a1)-(d1) LRRL, (a2)-(d2) PMP, (a3)-(d3) SLC. 
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Fig. s7-11. Results of image in Fig. s7-9 (a1). (a1) to (d1) are raw image, results of PMP, SLC, and LRRL methods, respectively. (a2) to (d2) 

are zoomed-in parts for the white box. (a3) to (d3) are for the yellow box.  
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Fig. s7-12. Results of image in Fig. s7-9 (a2). (a1) to (d1) are raw image, results of PMP, SLC, and LRRL methods, respectively. (a2) to (d2) 

are zoomed-in parts for the white box. (a3) to (d3) are for the yellow box.  
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Fig. s7-13. Results of image in Fig. s7-9 (a3). (a1) to (d1) are raw image, results of PMP, SLC, and LRRL methods, respectively. (a2) to (d2) 

are zoomed-in parts for the white box. (a3) to (d3) are for the yellow box.  
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Fig. s 7-14. Results of image in Fig. s7-9 (a4). (a1) to (d1) are raw image, results of PMP, SLC, and LRRL methods, respectively. (a2) to (d2) 

are zoomed-in parts for the white box. (a3) to (d3) are for the yellow box.  
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7-4.2 Objective assessments 

The Tab. s7-2 lists the objective assessment of the four groups from Fig. s7-11 to Fig. s 

7-14. 

Tab. s7-2. Quantitative assessment of the enhanced images among Fig. s7-9 (a1) to (d1). 

Raw image Matrixes Raw 
Methods 

PMP SLC LRRL 

Fig. s7-9 (a1) 

DE 1.0449 2.8778 1.4811 4.0610 

UISM 1.8927 5.2896 3.6692 4.5101 

IE 5.7818 6.0520 5.8422 6.3562 

CRAMM 1.1888 1.8050 1.3743 2.9894 

Fig. s7-9 (b1) 

DE 1.2653 2.4638 1.6520 4.2269 

UISM 1.6671 4.7171 3.7081 4.5685 

IE 6.2798 6.4050 6.3869 6.7220 

CRAMM 1.3142 1.7159 1.6795 2.7714 

Fig. s7-9 (c1) 

DE 1.2868 3.0557 1.0147 3.6350 

UISM 1.3371 4.6375 3.3394 4.4732 

IE 6.4412 6.5684 6.4529 6.7740 

CRAMM 1.5473 2.0436 1.6045 3.0164 

Fig. s7-9 (d1) 

DE 1.3747 2.2809 1.4154 4.7336 

UISM 2.3511 4.0714 2.4111 4.1135 

IE 6.2428 6.3501 6.2981 6.5461 

CRAMM 1.0203 1.3097 1.1572 2.1570 

Average 

DE 1.2429 2.6696 1.3908 4.1641 

UISM 1.8120 4.6789 3.2820 4.4163 

IE 6.1864 6.3439 6.2450 6.5996 

CRAMM 1.2677 1.7186 1.4539 2.7336 
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Supplementary Note 7-5: Richardson-Lucy deconvolution and 

its variation 

We assume that the image formation model is described by a convolution process which 

is given as  

 ( ) ( ) ( ), , ,s x y p x y o x y=  , (s7-15) 

where s is the observed image, o is the original image and p is the convolution kernel. x 

and y are the spatial coordinates.   denotes the 2D convolution. Eq. (s7-15) ignores the 

noise signals.  

7-5.1 Standard RL deconvolution: in the presence of the Poisson 
process 

If the image is corrupted by Poisson noise, s meets the Poisson distribution. The 

deconvolution process where we wish to solve the o under the observation of s equals 

to maximize the probability ( )|o sP . Based on the Bayesian approach, this can be 

rewritten as [12]  

 

( ) ( )
( )

( )

( )

( )

( )
( )

,

arg max | arg max |

arg max exp
!

s

x y

o
o o s s o

s

o p o
p o

s s

= =


= − 

P
P P

P

P
P

, (s7-16) 

where ( )|s oP  is the likelihood probability, ( )|o sP  is the posterior probability. 

( )oP  is the prior of image o. ( )oP  is assumed to be a constant for simplicity. Taking 

the logarithm to both sides of Eq. (s7-16) and ignoring the constant term yielding: 

 
( ) ( )

( ) ( )

arg min log | arg min

                where      log d d
x y

o o s o

o p o s p o x y

= −   

=  −    

P L

L
, (s7-17) 
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( )oL  is the cost function to be minimized. By setting the derivative of ( )oL  with 

respect to o to zeros, and using d d 1
x y

p x y =  , we obtain:  

 * *1 0 1
s s

p p
o p o p o


= −  =  = 

  

L
, (s7-18) 

where ( )* ,p p x y= − − . By assuming that at convergence the ratio 
1 / 1k ko o+ = , Eq. (s7-

18) can be rewritten as  

 *

1k k

k

s
o o p

p o
+

 
=  

 
, (s7-19) 

which is the standard form of multiplicative RL deconvolution. Eq. (s7-19) has three 

main drawbacks. The first one is that it amplifies the noise signal and may not converge 

to a suitable solution. The second one is that it converges slow. Finally, due to the 

divided form in Eq. (s7-19), it may result in problematic pixels where zero values are 

present to the denominator, and the convergence behavior of Eq. (s7-19) is thus 

unstable. The pixel value should be manually truncated to avoid the problem of dividing 

by zeros.  

To avoid the problem, we can use the additive form of the algorithm. Following the 

conventional gradient descent method, we are able to use 1k k oo o + = −  L  to update 

the parameters yielding the additive-form RL deconvolution:  

 
*

1 1k k

s
o o p

p o
+

 
= −  −  

 
, (s7-20) 

  is the step-size. When 
ko = , Eq (s7-20) is equivalent to Eq. (s7-19). Since Eq. (s7-

20) is standard gradient descent, we are able to extend it using more advanced 

optimizers such as momentum, or adaptive learning rate to update the parameters.  
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7-5.2 RL deconvolution in the presence of Gaussian process 

When the noise signal is assumed to be Gaussian, Eq. (s7-15) is written as 

( ) ( ) ( )s x p x o x =  +  where   is the Gaussian noise. The likelihood follows Gaussian 

distribution, and Eq. (s7-17) now becomes: 

 
( ) ( )

( ) ( )
2

arg min log | arg min

                where      d d
x y

o o s o

o p o s x y

= −   

=  − 

P L

L
. (s7-21) 

The derivative of ( )oL  with respect to o is  

 ( )*2 p p o s
o


=   −



L
. (s7-22) 

Eq. (s7-22) is suitable for gradient descent-based methods.  

7-5.3 RL deconvolution with Hessian regularization 

In the above sections, we ignored the prior of the image o as ( ) constanceo =P . While 

in practice point of view, the ( )oP  highly depends on a certain type of input images 

and implementation purposes. For example, for denoising purposes, we can assume 

that the gradient of a noise-free o  is less than a noise-corrupted one. Therefore, we 

incorporate this prior knowledge of images to the cost function as the penalty term to 

regularize the possible solution of o. For medical images, we use the Hessian gradient-

the spatial second-order gradient, to penalize the cost function which is written as  

 

( )

( ) ( ) ( )

( ) ( )

1

2 22

log

2 d d                    for anisotropic
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1 1
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P

.  (s7-23) 
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Taking the anisotropic Hessian regularization and Gaussian noise assumption as an 

example, submitting Eq. (s7-23) into Eq. (s7-21), yielding the Hessian regularized cost 

function: 

 ( ) ( )
2

d d 2 d dxx yy xy
x y x y

o p o s x y H o H o H o x y=  − +   +  +    L , (s7-24) 

where   is the penalty parameter.  

Then the derivative of ( )oL  with respect to o reads 

 
( ) ( )

( ) ( )

* *

* *

2

                 2

xx xx

yy yy xy xy

p p o s H sign H o
o

H sign H o H sign H o




=   − +  

+   +  


L

. (s7-25) 

Here sign  denotes the sign function. With the gradient, we can update parameter o 

based on the gradient descent method and its extensions.  

7-5.4 RL deconvolution with illumination correction 

We now introduce the illumination pattern i to Eq. (s7-15), and the new image 

formation model is written as  

 ( ) ( ) ( ) ( ), , , ,s x y p x y i x y o x y =   +   , (s7-26) 

where we use the Gaussian process and   is the Gaussian noise. The cost function is 

given by  

 ( ) ( )
2

, d d
x y

o i p i o s x y=   −   L . (s7-27) 

The derivative of ( )oL  with respect to o can be calculated by chain rule which is  

 
( ) ( )

( )

( )
( )*

, ,
2

o i o i io
i p p i o s

o io o

  
= =     −    

L L
,  (s7-28) 

similarly, the derivative of ( )oL  with respect to i is given by  
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( ) ( )

( )

( )
( )*

, ,
2

o i o i io
o p p i o s

i io i

  
= =     −    

L L
.  (s7-29) 

Eq. (s7-28) and Eq. (s7-29) form the first term for the Eq. (7-7) and Eq. (7-8) in the main 

text.  
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Abstract 

Retinal images are often used to examine the vascular system in a non-invasive way. 

Studying the behavior of the vasculature on the retina allows for noninvasive diagnosis 

of several diseases as these vessels and their behavior are representative of the 

behavior of vessels throughout the human body. For early diagnosis and analysis of 

diseases, it is important to compare and analyze the complex vasculature in retinal 

images automatically. In previous work, PDE-based geometric tracking and PDE-based 

enhancements in the homogeneous space of positions and orientations have been 

studied and turned out to be useful when dealing with complex structures (crossing of 

blood vessels in particular). In this article, we propose a single new, more effective, 

Finsler function that integrates the strength of these two PDE-based approaches and 

additionally accounts for a number of optical effects (dehazing and illumination in 

particular). The results greatly improve both the previous left-invariant models and a 

recent data-driven model, when applied to real clinical and highly challenging images. 

Moreover, we show clear advantages of each module in our new single Finsler 

geometrical method. 

 

Keywords 

Geodesic Tracking; Optical Image Enhancement; TV-Flow Enhancement; Vascular Tree 

Tracking; Finsler Geometry. 
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1. Introduction 

The retina allows for noninvasive examination of the vascular system since the vessels 

in the eye, and their corresponding behavior, are representative of the behavior of 

vessels throughout the rest of the body. Therefore, studying the behavior of the 

vasculature on the retina allows for noninvasive diagnosis of several diseases, like 

diabetes, hypertension, and Alzheimer’s disease [1-3]. Automatic vessel tracking 

algorithms help the efficient diagnosis of these diseases. Here, we rely on geodesic 

tracking methods which calculate the shortest path connecting two points on the same 

blood vessel, following the biological structure. We will show that the single geodesic 

model will also allow for acceptable tracking of full vascular trees on realistic retinal 

images of limited quality. 

Diseases such as cataract disease give rise to cloudy retinal images [4], while camera 

movements lead to motion artifacts [5] and uneven illumination [6]. This affects the 

clarity and visibility of the vasculature in the images we want to track. To cope with the 

limitations in the quality of ophthalmology images in practice, we must integrate both 

contrast enhancement from optical image processing [7] and crossing-preserving 

contextual TV-flows, in our correct geodesic tracking of the vasculature, as we will 

show. 

Many approaches have been used when studying geodesic tracking methods on 2D 

images. However, in many methods, problems arise when dealing with difficult 

structures, like crossings and bifurcations, where standard geometric algorithms acting 

in the image domain 2R  often take the wrong exit. Therefore, one lifts the image to the 

homogeneous space of positions and orientations M2. In this lifted space, difficult 

structures are disentangled, cf. Fig. 8-2 (a). In previous works by various authors, it has 

been shown that PDE-based geometric tracking algorithms [8-11] perform well in 2M

. Here, one first calculates a distance map which is based on the image data. After 

computing the distance map, the steepest descent algorithm is applied to find each 

shortest path from a tip (an endpoint) to the corresponding seed (a starting point). 
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Fig. 8-1. Geodesic tracking on the original image, (contrast-)enhanced image, and enhanced image 

after which TV-flow enhancement is done (left to right). The seeds and tips are indicated in resp. 

green and red. Yellow (/red) circles indicate tracking mistakes that are (/are not) fixed in the tracking 

of another column. 

In our tracking, we integrate PDE-enhancements, like crossing-preserving total 

variation flow (TV-flow) enhancement in 2M  [12]. We will show this improves the 

results. Furthermore, optical enhancement [7] of limited-quality retinal images is 

required to keep equal contrast and intensity across the whole vasculature. This 

inevitably creates small noisy structures that are non-aligned with other structures in 

the data. Applying the TV-flow enhancement in 2M  leads to crossing-preserving 

contextual denoising that preserves crossings, and line structures, and removes noisy 

non-aligned structures from the optical enhancement. Altogether the scheme results in 

a vascular tracking algorithm that provides better results as wavefronts follow the 
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complex branching vasculature better than the approach in [8], see Fig. 1. Even a single 

geodesic front propagation, where fronts follow the entire vasculature in one run 

produces good results, see Fig. 8-2. 

 

Fig. 8-2. Distance map built in 2M  (2a; top) and iso-contours of the minimum projection back onto 

2R  (2a; bottom). The iso-contours of the minimum projection of the distance map are constructed 

based on the original image and enhanced image after which TV-flow enhancement is done (in Fig. 

2b and 2c resp.). 

The main contributions of this article are: 1) the development of a new asymmetric, 

data-driven left-invariant Finsler geometric model that includes contextual contrast 

enhancement via TV-flows on ( )2SE ; 2) experiments that show that application of this 

new Finsler geometric model reduces many tracking errors compared to previous left-

invariant models [9, 13] and the recent data-driven model [8], 3) the new model 

performs very well on both realistic, unevenly illuminated retinal images and allows 

full vascular trees computations from a single distance map. The optical and TV-flow 

enhancements no longer require a 2-step approach as in [8]. 
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2. Lifted space of positions and orientations 2M   

As explained in the introduction, it is beneficial to perform image processing (denoising, 

tracking) in the space of positions and orientations 
2M . This 3D space will offer us 

sufficient space to separate difficult (crossing) structures. 

Definition 1 (Space of positions and orientations
2M  .  The space of two-

dimensional positions and orientations 
2M   is defined as a smooth manifold

12

2 : S=M R , where ( )1 / (2 ) 2S SO R Z  using the identification 

 ( ) ( )cos ,sin 2R SO  = ⎯→ ⎯→ n , (8-1) 

where R   is the counter-clockwise planar rotation over angle θ. Elements in 
2M   are 

denoted by ( ) 2, / (2 )  x R R Z . To stress the semi-direct product of roto-translation 

group ( ) ( )22 : 2SE SO=R  acting on 
2M , we write 12

2 : S=M R . 

We lift the image from 2R  to ( )2 2SEM  in order to separate crossing structures, 

using the orientation score transform. 

Definition 2 (Orientation Score.  The orientation score transform :W f

( ) ( )2

2 2 2→L R L M   using anisotropic wavelet ψ maps an image ( )2

2f L R   to an 

orientation score U W f=  and is given by 

 ( )( ) ( ) ( )
2

1, :  dW f R f   − = − x y x y y
R

  

In our experiments, we use cake wavelets [12, 14] as they do not temper data evidence. 

In order to perform tracking in the lifted space of positions and orientations 2M , 

we need to introduce a metric that is used to describe distances. This metric needs to 

satisfy the property that a roto-translation of the input yields the same roto-translation 

on the output. 
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Definition 3 (Left-Invariant Metric.  A metric tensor field G  on 
2M  is called 

left invariant if 

 ( )* *( ) , ( ) ,g g gL L
  = G G

p p
p p p p , 

for all 
2p M . , all ( )2T

p
p M  and all ( )2SEg  , where ( ) ( ),gL g R=  = p p y

( ) ( ), ,R  = + +x y x  with push-forward ( )
0 0*( )g x x gL U U L = 

p p
.  

 

More generally, a possibly asymmetric Finsler function defined on tangent-
bundle ( ) ( ) ( ) 2 2, |T T= 

p
p p pM M   given by ( )2:T +→F M R   is left invariant 

if ( ) *, ,  ( )gg L =  p p p pF F  for all ( ) ( ) ( )2, ,  2T g SE p p M . 

Thereby the distance is left invariant: 

( ) ( ) ( ) ( ) ( ) ( )
1

1 2 1 1 2 1 2

0

, inf , d , 0 , 1 ,d t t t d g g     
  

=  = = =     
  
p p p p p pF FF ,  

for all ( )2g SE , optimizing over the set 
1  of piecewise ( )1

2[0,  1],  C M -curves. 

In our application, the asymmetric Finsler function will restrict backward movement 

as we will see in Sect. 3, and consequently cusps are avoided [9]. 

3. Existing Reeds-Shepp Car Models 

Over the years, many geometric control problems have been proposed for geodesic 

tracking of blood vessels or vehicles. The ones closest to our model are the symmetric 

and asymmetric Reeds-Shepp car models. The symmetric Reeds-Shepp Car model, 

proposed in [15, 16], is given by 

 ( ) ( )
2

2 2 22 2

2
, C






 
=  +  + 

 
p

p p p x n x n nG , (8-2) 

for all ( ) 2,= p x n M  , ( ) ( )2, T= 
p

p x n M   with 
2 2 2

: = − x n x x n  , where n is 

constructed using the identification in (1). The asymmetric Reeds-Shepp Car model, 

proposed in [9], is given by the asymmetric Finsler norm/function: 
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 ( ) ( ) ( ) ( ) ( )
2 22 2 2, , 1C x −

−
= + − 

p p
p p p p p nF G ,  (8-3)  

for all ( ) 2,= p x n M , ( ) ( )2, T= 
p

p x n M  with  : min 0,a a− = . The parameter 

influences the flexibility of the tracking, weighing between spatial and angular 

movement. The anisotropy parameter   penalizes sideways movement. When 0  , 

the classical sub-Riemannian model appears. 

The cost function  2: ,  1 ,  0C  → M  discourages movement outside the 

vascular structures via a crossing-preserving vesselness map ( )pV  [17],[[8], App.D]. 

Typically [[15], eq.5.1] one has ( ) ( )
1

1
p

C 
−

 = +
 

p pV . The choice of the cost function 

is important and, in this article, (Sec. 4, 5, 6) we propose to include illumination 

enhancement and crossing preserving TV-flow (prior to the vesselness map 

computation) in the cost function as this will greatly improve tracking results. 

In the asymmetric Reeds-Shepp car model, the parameter ( 0,1   describes how 

strongly the model has to adhere to the forward gear. When 1 = , we are in the 

symmetric model. When 0  , backward motion becomes prohibited. 

Computation of shortest paths (geodesics) connecting seeds and tips is done in 2 

steps. First, the distances to all points in the domain are calculated, resulting in a 

distance map. Then, the shortest path is obtained by a steepest descent algorithm 

applied on this distance map. In all experiments we use the Anisotropic Fast Marching 

[15, 18] by J.-M. Mirebeau for distance map computations. 

4. Methodology 

4.1 Illumination Enhancement 

Previous approaches in retinal vessel tracking typically consider the unprocessed 

picture S taken by the ophthalmologist, e.g. [9, 13, 17]. However, this may deviate from 



Geodesic tracking of retinal vascular trees 

347 
 

8 

the actual retinal image O which we aim to recover, due to possible cataract and uneven 

illumination. 

 

Fig. 8-3. Visualization of the physical model when imaging the retina; O is the actual image we would 

like to recover, Sc is the perceived image (sum of purple and red reflected light). I stands for input 

illumination, Tl a nd Tsc resp. denote the transmission ratio of the lens and the intraocular scattering 

(incl. cataract). 

The physical model of the construction of the output image is visualized in Fig. 8-3. 

This yields the following standard optics formula: 

 ( ) ( ) ( ) ( ) ( )2 21   with  c sc c sc lS L T O T L I T = + − =  x x x x x ,  (8-4) 

where c denotes the color channel in RGB or Y in YPbPr color space, and L, Tsc : Ω → [0,1] 

denote the illumination from outside the eye and transmission of the intraocular 

scattering respectively on domain 2 x R . We apply an illumination correction, as 

done in [19]. After determining the illumination L, we re-express the Y channel (in 

YPbPr color space) of Eq. (8-4) to 

 

( ) ( ) ( ) ( )  

( )

1 2

1 1

1

1 / ,   0,1   

1 1
    with   1 ( ) ( ) ( ) ( )

1 exp ( ) l

Y Y sc sc Y

n

sc

l

O L x S x T x T x O x

T A L S G L S
n







−

− −

=

 = − +    

  
 = −   +     + −   


,  (8-5) 

with Gaussian kernel standard deviations 12l

l pixelsize −=   of the retinal image at 

scale level  1, ,l n  where we took 4n =  and where the sigmoids on scale 

coefficients above are included to control the range in [0,1] and to allow for stable 

optimization below. The Y channel of the actual image O is obtained by solving the Euler 
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Lagrange equation of the Tikhonov regularization problem via the Karush-Kuhn-

Tucker conditions including the constraints  0,1YO  : 

 ( ) ( ) ( ) ( ) 
22

2 2min min

,
, arg min Y Y YA
A O O O

 
 = − + 

LL
,  (8-6) 

w. r. t. 0A  and ( )
1

n n

l l
 

=
= R . Here, 

YO R  is an estimation of the desired 

intensity level [19] in Sec. 3, 4.2, and λ regulates the smoothness of OY . After optimal 

non-constant ( )min min,Y YO O A=  is retrieved by (8-5), image O follows by linear 

conversion of YPbPr- to RGB-colors, via updated Pb- and Pr-channels. 

4.2 TV-flow Enhancement 

TV-flow enhancement is a valuable technique to denoise surfaces, but at the same time 

preserve sharp edges. Recall that the metric intrinsic gradient is given by 

 ( ) ( )( ) ( )1

2 2,  d T −  = G G
p

p p p pM M ,  

using G  in (2) with 1,  10C C = = = . Then TV-flow ( )0 ,  U W t  is given by 

 
( )

( )

( )
( )

( ) ( )

222

,
, ,     ,   0 

,

,0

t

W t
W t div t

W t

W U











     =   
  +     
 =

G

G

p p p

p p

M
  

And ( ) ( )0 0
, lim ,W t W t

=p p . For proof of the 2L -convergence, see [12]. Training of 

the end-time t of the TV-flow is not needed as for all lifted optically enhanced (cf. Sec. 

4) images U of the STAR-dataset [20], end-time t = 0.5 is nearly optimal for subsequent 

tracking, and ∆t = 0.1 always remains in the stability region [12]. The same settings 

provided optimal PSNR-ratios in [12]. 
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4.3 A Finsler Metric on 
2M  that Includes the Enhancements 

Our goal was to track vasculature accurately. In order to do so, one needs a metric 

tensor field that describes distances on the manifold. In some cases, it is beneficial to 

construct a metric tensor field UG  that depends explicitly on the underlying 

orientation score data U. This “data-driven” metric tensor field needs to be left invariant 

with respect to the roto-translation of the underlying data: 

Definition 4 (Data-Driven Left-Invariant Metric (DDLIM)). The metric tensor fields 

UG  and UF  on 
2M  are data-driven left invariant when they satisfy for all 

( ) ( )2, Tp p M  and all ( )2g SE : 

 ( ) * *, ( ) , ( )gUU

g g gL L
 =  

LG G
p p

p p p p , and ( ) *, , ( )gUU

gg L =  
LF Fp p p p , (8-7) 

where ( ) ( ) ( )1

1

2: : ,  g g
U U L U g h−

−= =   L h h h M . 

The considered data-driven left-invariant metric tensor fields are given by 

 ( ) ( ) ( )
( )

( )

2

2 *

2

*1

,  
, ,  

max ,  

U
HU

C
HU



=


= +



p

p p

p
q

p
p p p p p

q

G G , (8-8) 

 ( ) ( ) ( )
( )

( )

2

2 2 2 *

2

*1

,  
, ,  

max ,  

U
HU

C
HU



=


= +



p

p
q

p
p p p p p

q

F F , (8-9) 

for all ( ),=p x n , ( ),=p x n , representing the symmetric and asymmetric metric 

tensor fields respectively. In Eq. (8-8) and Eq. (8-9), the metric tensor fields G and F

were introduced in (2) and (3) respectively. The Hessian field HU is defined as 

( ): dHU U= , w. r. t. plus Cartan connection  +
  for computational details see [21], 

[[8], Rem.8], and 
*

   denotes the dual norm w. r. t. ( ),
P

p pG , where 1C = = = . 
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The parameter 0µ  regulates the inclusion of the new data-driven term, and C(p) 

denotes the cost function described in [[8], App. D]. 

Remark 1. The construction of this cost now relies on the orientation score U of the 

optically enhanced image with TV-flow enhancement, whereas previously it relied on 

the orientation score of the unprocessed image. Akin to [4, App.C], one can show that 

the new Finsler/Riemannian metric tensor fields (8-8) are DDLIM. 

The geodesics are calculated by steepest descent on distance maps using a metric 

that describes distances in 
2M . 

Definition 5 (Data-Driven Riemannian Distance). The data-driven Riemannian 

distance Ud
G

  from a point 
2p M  to a point 

2q M  is given by 

 ( )
( )
( )

( ) ( ) ( )
1

1

,
00 ,

1

, inf ,  dU

U

t
d t t t

 



 


=

=

=   G
G

p

q

p q ,  (8-10) 

where    ( ) 1

1 2 2: : 0,1 0,1 ,PC  = → M M  with 1PC  the space of piecewise 

continuously differentiable curves in 
2M , and ( ) ( ): d dt t t = . The quasi-distance that 

belongs to the asymmetric Finslerian model (8-9) is given by  

 ( )
( )
( )

( )
( )
( )

( ) ( )
1 1

1

, ,
00 , 0 ,

1 1

, inf inf ,  dU U

Ud t t t
   

 
 

 
 

= =

= =

= =   F F
F

p p

q q

p q L . (8-11) 

Lemma 1. If UF  is DDLIM (Def. 4) then distance Ud
F

 satisfies:  

 
( ) ( ) ( )

1 2 2, 1 2 1 22
: , ,U Ugg SE
d g g d

    =
p p

p p p pL FFM
.   (12) 

Proof. One has ( )
( )
( )

( )
( )

( )
( )

( )
1

1 1
1

1 1
12

2

7
1

1 2
, ,

0 , 0 ,
1

1

, inf infU U Ug g
g

g g
g g

d g g g
   
 
 

 
−

−

−

−

  
=   =
= 

 =

  = =  =

p p
p

p

p pL L FF F
L L   
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( )1 2,Ud
F

p p , where 1

1 1g    −     , from which (12) follows.  

The shortest curves are computed using the steepest descent on the distance map, 

departing from tip 
2p M  towards seed 

0 2p M  as described in Theorem 1. 

Theorem 1. The shortest curve 
2:[0,  1] →M  with ( )0 = p  and ( ) 01 = p  can be 

computed by steepest descent tracking on distance map ( ) ( )0,UW d=
F

p p p   

 ( ) ( ) ( )  
0,: ,      0,1Ut t Exp tv W t = =   p p p ,  (8-13) 

where Exp integrates the following vector field on ( ) ( )2 : : Uv W W W= − 
F

pM  and 

where W is the viscosity solution of the eikonal PDE system 

 
( )

( )

*

2

0

,d 1      ,

0,

U W

W

 =    


=

F p p p

p

M
  (8-14) 

assuming p is neither a 1st Maxwell-point nor a conjugate point, with dual Finsler function  

( ) ( ) ( ) *

2
ˆ ˆ, : max , ,     , 1U

U T with=  
p

p p p p p p pF FM . As ( )v W  is data-driven left 

invariant, the geodesics carry the symmetry 

 ( ) ( ) ( )  
0 0, , 0 2    2 , , , 0,1gU U

g g t g t for all g SE t   =   
p p p p

p p M
L

.  (8-15) 

Proof. This is a special case of [[8], Thm.1] with Lie group ( ) 22SE M . Then this yields 

the symmetric case ( ) 1U W =p
G

 in the usual eikonal PDE form. Inclusion of the 

asymmetric front propagation (relying on asymmetric Finsler metric UF  ) requires a 

replacement of ( ) 1U W =
G

p  with a dual norm expression ( )* ,d 1U W =  F p p , 

where one takes the positive part of the spatial momentum component in direction

( )*

2cos d cos dx y T +  M . This is similar to the technique in [[9], Thm.4] but due to 

the data-driven behavior UF  this is subtle [[8], Eq.43, Lem. 3] and also directly applies 
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to our model (8-16) using cost function C (incl. optical & TF-flow enhancement) as 

explained in Remark 1. Also, the backtracking requires a subtle adaptation: instead of 

ordinary intrinsic gradient descent in direction ( )
1

dU

UW W
−

 =
G

G  it now becomes 

more general descent in direction ( ) ( )*: d ,  dU UW W  =    F
F  as explained in [[9], 

prop.4].  

In the experimental section, we rely on the mixed metric tensor field, which is 

needed to avoid wrong exits at complex structures, see [8], and is given by: 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2 2 2

, , 1 , ,   ,

, , 1 , ,

M U

M U

 

 

= + − =   

= + −  

p p p
p p x p p x p p p x n

p p x p p x p p

MG G G

F F F
  (8-16) 

with 
A G = 1  and A the crossing structure locations and Gaussian 1 pixG = . 

5. Experimental Results 

We rely on the asymmetric metric tensor field (16) to calculate the geodesics of the 3 

different models. These models are constructed based on a) the picture taken by the 

ophthalmologist (original image), b) the original image with illumination enhancement 

as explained in Sec. 4.1 (enhanced image), and c) the enhanced image with crossing-

preserving TV-flow enhancement discussed in Sec. 4.2. In this section, we illustrate the 

results for a specific image and refer to Tab. 8-1 for an overview of the performance of 

the different models on the STAR dataset [1,19]. These results are consistent with the 

discussed example, and for reproducible code and all processed images see 

github.com/anonymous. In all experiments we set standard parameter settings [[15], 

eq.5.1], [[8], eq.65] for cost-function ( )3, 1000C p = = , for the metrics ( )0.1 = =  in 

(2), for TV-flow ( )0.5t = . 

In prior research, the “original image” directly entered the metric tensor field on M2 

when calculating the geodesics. These images are of varying quality, depending on the 

patient’s condition and the used equipment. Applying a tracking algorithm, like 
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Anisotropic Fast Marching [8], on the metric tensor field based on the original image, 

often results in tracking mistakes due to uneven illumination, both along vascular 

structures and on the background, making it hard to distinguish different structures. In 

Fig. 8-1, one sees the tracking results on an original, unevenly illuminated, non-

enhanced image, where all vessels were tracked in one single run. At a lot of locations 

(13), the tracking connects the seeds 
0p  and tips p incorrectly.  

 

Fig. 8-4. Tracking of Vascular Tree per Vessel Type: Tracking with the mixed model (
2M , MF ) 

proposed in Eq. (7-16) with µ = 15. Prior classification of vascular trees by type (artery/vein resp. 

white/cyan) only results in perfect tracking of the vessel tree on the enhanced images. Yellow circles 

indicate tracking mistakes. 

The optical enhancement explained in Sec. 4.1 corrects for uneven illumination. 

Calculating the geodesics using the metric tensor field relying upon the enhanced 

image, reduces the number of tracking mistakes significantly (to 5), cf. Fig. 8-1 (b). Due 

to pointwise optimization in the optical enhancement, noise is generated. The crossing-

preserving total variation flow enhancement suppresses this noise and indeed results 

in even fewer tracking mistakes (3), cf. Fig. 8-1 (c). 

Calculating the tracking results in Fig. 8-1 uses no knowledge about the vasculature, 

apart from seed and tip locations. One might incorporate prior knowledge A) on vessel 

types (artery/vein), or B) on the connectivity of tips and seeds. 
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Fig. 8-5. Tracking of Vascular Tree per Seed on the Optic Disk: Tracking with the mixed model (
2M ,

MF )  proposed in Eq. (16) with µ = 15. Prior grouping of tips (in red) and seeds (in green) only 

results in perfect tracking of the vessel tree on the enhanced images. Tracking mistakes are indicated 

by yellow circles. 

We start by investigating prior knowledge on A), where we first connect all tips on 

arteries to the seeds on arteries, and similarly for the tips and seeds on veins. Fig. 8-4 

shows that the tracking results improve significantly for all cases; the number of 

tracking mistakes at crossings reduces from (13, 5, 3) to (5, 0, 0) for resp. the original, 

enhanced and enhanced with TV-flow image. 

Second, we investigate the prior knowledge on B). In Fig. 8-5, the tracking results 

connecting the tips to their corresponding seed are presented. The number of correct 

tracks has improved once again, to only (3, 0, 0) mistakes for resp. the original, 

enhanced and enhanced with TV-flow image. 

We report the tracking results for the three different approaches on images from 

STAR [20, 22], in particular the example in Fig. 8-1, Fig. 8-4, and Fig. 8-5. We observe 

the same trend in performance for other images which we summarize in Tab. 7-1. We 

calculate the (weighted) percentage of incorrectly calculated geodesics by means of: 
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( )

( )
0

0 0
2 2

1
: 1 , 0

T
x y

C
T N N




 −
 = −    +
 


y

y x y
x y y , (7-17) 

Here S, T denote the sets of resp. seeds (near the optic disk) and tips. The image size is

x yN N . The ground truth seed and calculated seed (first arriving front in the distance 

map, cf. Fig. 8-2) corresponding to the tip y are resp. denoted by ( )0 Sx y  and 

( ) Sx y . Function  0 : 0,1C S T →  is given by ( )0 , 0C =x y  if the tracking between 

x and y is correct and ( )0 , 1C =x y  otherwise. 

Tab. 7-1. Error measure ε of each tracking applied to STAR images in [23], calculated by Eq. (7-17). Green: 

best results per tracking. 

 
Original 

image 

Enhanced 

image 

Enhanced image with crossing-
preserving TV-flow 

Single Run 0.34 0.23 0.20 

Per Type (A/V) 0.25 0.12 0.10 

Per Seed 0.23 0.09 0.09 

 

We evaluate with a harsh error measure Eq. (7-17): one crossing mistake (indicated 

by a circle) often causes more errors, when the vessel bifurcates after the crossing. 

The illumination enhancement and TV-flow regularization applied on the original 

images, result in more accurate geodesics compared to those calculated directly on the 

original images, as can be seen in Tab. 7-1. The more prior information we use, the more 

accurate the geodesics follow the vasculature. Remarkably, tracking requiring artery-

vein classification of seeds and tips performs similarly and is easier to automate than 

tracking with knowledge of seed-tip connectivity. 
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6. Conclusion 

We developed a new asymmetric, data-driven left-invariant Finsler geometric model 

that includes contextual contrast enhancement via TV-flows on SE(2). Experiments 

reveal that application of this new Finsler geometric model has benefits over previous 

left-invariant models [9, 13] and the recent data-driven model [8]. The new model 

reduces many errors and performs very well on both realistic and challenging low-

quality retinal images where full vascular trees are computed from a single asymmetric 

Finslerian distance map. Although we have shown that both the contrast enhancement 

and the TV-flow on SE(2) in the new Finslerian model are highly beneficial, there are 

still exceptional cases where vessel tracts take the wrong exit. This happens at places 

where both a crossing and a bifurcation occur [cf. the red circles in Fig. 8-1 (c)]. 

Therefore, in future work, we aim to tackle these cases by automatic artery vein 

classification via PDE-G-CNNs [24], as our experiments show this allows us to obtain 

the same good practical results as with the ‘tracking per seed’ (that requires too costly 

user-knowledge). 
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1. General discussions 

Retinal images contain rich information such as retinal structure information (blood 

vessels, ocular disk, nerve bundles), and tissue color information, which are deeply 

associated with eye-related diseases and systemic diseases [1]. Image quality is related 

to diagnosis accuracy and impacts applications such as computer-aided diagnosis. 

Increasing retinal image quality using high-end fundus cameras is an option, however, 

it lacks generalization, and not all eye clinics can afford such expensive equipment. 

Therefore, digital retinal image restoration has attracted interest as it may provide a 

simple and cheap way to increase the image’s quality.  

In this thesis, we propose to use non-deep-learning-based methods to achieve single 

retinal image restoration tasks. These tasks are categorized into (1) retinal image 

illumination correction; (2) cataractous retinal image dehazing; (3) retinal image blind-

deconvolution. We designed comprehensible algorithms to bring the degraded retinal 

image back to high-visual quality in which each step can be understood by 

mathematicians and ophthalmologists. Therefore, the safety of these algorithms can be 

evaluated not only by their final outputs but also by their intermediate products, while 

the deep-learning method can’t.  

Since we use convolution in our algorithms, we first, in Chapter 2, developed a 

reflective background padding method to pad the black background in every retinal 

image. This background padding will reduce and even eliminate the boundary effects of 

the convolution process. Then in Chapter 3, we developed a double-pass fundus 

reflection (DPFR) model based on the optical pathways in a fundus camera, to describe 

how a retinal image may be degraded step-by-step and proposed a simple restoration 

algorithm to validate our proposed DPFR model. Further in Chapter 4 and Chapter 5, 

we present two improvements on the DPFR model, one for cataract retinal images, and 

the other one for color-naturalness preservation retinal image restoration. In Chapter 

6, and Chapter 7 we investigated the possibility of combining image illumination 
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correction and image blind deconvolution. Finally, Chapter 8 explores how retinal 

image restoration can benefit blood vessel segmentation. 

1.1 On Chapter 3 

The main focus of Chapter 3 is establishing a mathematical model to describe the 

formation of retinal images. The image formation model (IFM) based retinal image 

restorations share a similar idea of computational imaging, i.e. a physical model built to 

describe the optical process of forming an image that is affected by optical aberrations, 

unstable vibrations, or a limited optical resolution. By directly or indirectly measuring 

the optical properties of these degeneration agents, one can compensate for the 

degeneration agents by digitally mimicking the propagation of the optical wave and 

modifying the wavefront of light [2-5]. 

We noticed that in previous publications the IFMs were not designed nor optimized 

for retinal image restorations. We, therefore, developed the DPFR model, which reveals 

the specific double pass fundus reflection feature that was hitherto neglected in 

modeling the light propagation of fundus imaging. The DPFR model considers how the 

illumination light enters the ocular system, interacts with different layers (say 

intraocular scattering layers (cataracts)), and is reflected by the retina. We modeled the 

transmission of light through a certain layer as the product between the incident light 

matrix and a transmission matrix. To validate our DPFR, we used off-the-shelf image 

enhancement methods, viz Retinex, and dark-channel prior to achieve retinal image 

contrast enhancement. Our experimental results on retinal images show the DPFR’s 

promising ability and potentiality on single retinal image restoration!  

Although we were quite happy with the outcomes of the DPFR model, we liked to 

further specialize the DPFR model on cataractous retinal image dehazing, motivated by 

the fact that some patients with cataracts can also have macular degeneration. In the 

latter case, their visual ability cannot recover to a normal level even if cataract surgery 

is performed. If ophthalmologists were able to “see through” the cataract layers to find 

out whether cataract patients have macular degeneration, they could make better and 
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more accurate decisions on the necessity of cataract surgery. This idea contributed to 

our development of MUTE, a multilevel-stimulated denoising strategy for single 

cataractous retinal image dehazing in Chapter 4.  

1.2 On Chapter 4 

Chapter 4 discusses the MUTE algorithm, developed to enhance the contrast and 

reveal the hidden structures in cataractous retinal images. We studied the duality 

between cataractous retinal image dehazing and image denoising and found that the 

dehazing task for cataractous retinal images can be achieved with a combination of 

image denoising and a sigmoid function. To do so, we introduced the double-pass 

fundus reflection model in the YPbPr color space and developed a multilevel stimulated 

denoising strategy termed MUTE.  

The transmission matrix of the cataract layer was expressed as the superposition of 

denoised raw images of different levels weighted by pixel-wise sigmoid functions. We 

further designed an intensity-based cost function that can guide the updating of the 

model parameters. They are updated by gradient descent with adaptive momentum 

estimation, which gives us the final refined transmission matrix of the cataract layer.  

We tested our methods on cataract retinal images from both public and proprietary 

databases and compared the performance of our method with other state-of-the-art 

enhancement methods including deep-learning-based methods. Both visual 

assessments and objective assessments show the superiority of our method. We further 

demonstrated three potential applications that may benefit from our methods,  

including blood vessel segmentation, retinal image registrations, and diagnosing with 

enhanced images.  

To further validate the safety of MUTE, we collaborated with a vitreo-retinal 

surgeon who collected 100 retinal images from patients before and after cataract 

surgery. The MUTE indeed eliminated the haze effect, without introducing any 

unexpected artifacts. In conclusion, the MUTE algorithm significantly improves the 

visual quality and the contrast of cataractous retinal images and reveals retinal 
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structures that might not be detected due to insufficient contrast in the raw images. It 

enables and facilitates the detection of features like drusen, hard exudates, bleeding 

hemorrhages, or microaneurysms, as these tasks may use more color or local detail 

information. Early detection of these findings through cataractous retinal images may 

improve the outcome of treatment of retinal diseases, and influent the decision-making 

on surgery. 

1.3 On Chapter 5 

Although the MUTE algorithm significantly increases the contrast of the image, it 

distorts the color naturalness of the retinal image. To solve this problem, we propose in 

Chapter 5, the intensity quenching (InQue) scheme for color-restored retinal image 

restoration/enhancement. In InQue, we present a semi-learning-based algorithm to 

achieve fully unsupervised single retinal image enhancement. It does not need any 

synthetic images in any form, the only input is a single retinal image.  

InQue consists of four modules namely color implantation, luma heater, luma cooler, 

and luma rectifier. In the color implantation module, the background color of the input 

retinal image is replaced by a desired color, sampled from a normal retinal image. The 

image is then converted into the YCbCr color space, and the luma heater, a one-layer 

network, increases the intensity of the Y-channel of the color-implanted image to a 

certain level while correcting uneven or insufficient illumination. Next, the luma cooler, 

also a one-layer network, decreases the intensity of the Y-channel, increasing the 

contrast of the image. The cooled-down Y channel is further rectified by the luma 

rectifier including denoising and unifying the intensity distribution. Finally, the output 

Y channel, together with the original Cb and Cr channels, is then converted back into 

the RGB color space, yielding the final enhanced retinal image. We tested InQue on 

cataract retinal images from public databases and compared its performance with other 

state-of-the-art deep-learning-based methods using both visual and objective 

assessments, where it outperformed the others. We also conducted ablation studies on 
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each module and demonstrated potential applications of InQue in enhancing ultra-

wide-field retinal images, retinal image vessel tracking, and diagnosing.  

Compared with methods in Chapter 3 and Chapter 4, the InQue has the following 

two main contributions: 

 (1) A color implantation module that standardizes the color distribution of the 

input images while retaining detailed information of the retinal images. This stabilizes 

the output and preserves the naturalness of the images.  

(2) Unify the retinal image enhancement process into two steps: illumination 

correction and dehazing. We propose an intensity-based cost function based on the 

observation that illumination correction increases the average intensity of the image, 

while dehazing decreases it. This allows InQue to learn model parameters based on 

single images and tune the output performance adaptively.  

The InQue outputs a naturalness-preserved retinal image with contrast 

enhancement. It can normalize the intensity and color distribution of input images even 

from different datasets. We believe that InQue can assist ophthalmologists in accurately 

diagnosing and treating various retinal diseases, such as diabetic retinopathy, macular 

degeneration, and glaucoma. Furthermore, the ability of InQue to enhance ultra-wide-

field retinal images could prove valuable in detecting peripheral pathologies that may 

be missed with traditional imaging techniques.  

1.4 On Chapters 6 and 7 

Chapter 6 and Chapter 7 focus on a different category of retinal image restoration, 

namely deconvolution, modeled by a convolutional process of the clear retinal image 

and a blur kernel. Since retinal images may also suffer from problematic illumination, 

we embedded the illumination correction in the deconvolution task. We first proposed 

a separate version, which first corrects the illumination, and then performs the 

deconvolution. This method was validated on microscopic images in detail in Chapter 

6. Since the illumination pattern and convolution kernel are unknown, they should be 

simultaneously estimated during the image restoration. Motivated by this, we 
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investigated the LR2L method which embedded illumination correction on retinal 

image blind deconvolution under the framework of Richardson-Lucy deconvolution in 

Chapter 7.  

Since the single image blind illumination correction and deconvolution task are 

severely ill-posed, as there exist many different solution groups of illumination pattern, 

blurry kernel, and clear image that give rise to the same observation, we use the L0-

norm penalty on the spatial gradient of the clear latent image to promote its sparsity 

and L1-norm penalty on the spatial gradient of illumination pattern to promote its 

smoothness. As the L0-norm is non-differentiable, we further developed a differentiable 

approximation of the L0-norm. The illumination rectified-blind deconvolution is 

described by a non-convex optimization problem. To solve this, we derived the closed-

form expression of the gradients and used gradient descent with Nesterov-accelerated 

adaptive momentum estimation to accelerate the optimization, which is more efficient 

than the traditional half quadratic splitting method. 

The LR2L was tested on 1719 images from three public databases. We used four 

image quality matrixes including image definition, image sharpness, image entropy, and 

image multiscale contrast for objective assessment, to compare the LRRL against state-

of-the-art retinal image blind deconvolution methods. In conclusion, our LRRL corrects 

the problematic illumination and improves the clarity of the retinal image 

simultaneously, showing its superiority in terms of restoration quality and 

implementation efficiency. As the LR2L restores image clarity and corrects for uneven 

illuminations, the restored images can benefit clinical applications like retinopathy 

diagnosis. 

1.5 On Chapter 8 

Finally, in Chapter 8, we investigated how retinal image enhancement can benefit 

retinal blood vessel tracking. We propose a single new, more effective, Finsler function 

that integrates the strength of these two PDE-based approaches and additionally 

accounts for a number of retinal image enhancements (dehazing and illumination in 
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particular). This greatly improved both the previous models and a recent data-driven 

model, when applied to real clinical and highly challenging images. Moreover, we show 

clear advantages of each module in our new single Finsler geometrical method. 

2. Concluding remarks 

Now we are able to answer the six questions proposed in Chapter 1. 

(7) What is the appropriate model, in both mathematical and optical aspects, 

which can best describe the image formation process in a fundus image?  

The double-pass fundus reflection model is the most physically self-consistent model 

according to literation. While it can be regarded as the combination of a haze-formation 

and illumination model from an optical point-of-view, it also can be simplified into an 

image structure model from an information point-of-view. Although, the DPFR model 

also simplified the optical process of retinal image formation, algorithms developed 

based on this model generate promising results for both visual and objective 

assessment. 

(8) How image illumination correction and image dehazing are combined for 

single cataract retinal image enhancement/restoration? 

The Retinex theory is a bridge to illumination correction and dehazing. As such, 

illumination correction can be achieved using dehazing, and vice versa. Furthermore, 

assuming that illumination patterns and haze layers are spatially smoothly varying, the 

dehazing and illumination tasks can be achieved by image denoising.  

(9) To what degrees can a cataract retinal image be enhanced using a dehazing 

algorithm?  

This is answered in Chapter 4, where the original hazy retinal image is significantly 

enhanced. Hidden structures of the retinal image can be clearly observed after 

enhancement.  

(10) Can the proposed model be further optimized? How? 

We proposed two ways to optimize the DPFR model, one for dehazing and one for color-

naturalness preservation. The DPFR model may be further optimized by a Physics 
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Informed Neural Network as the DPFR contains the optical knowledge for retinal image 

formation. However, there is still a long way to go before the method is safe for clinical 

applications. 

(11) How illumination correction and blind-deconvolution are combined for 

retinal image deblur?  

The illumination pattern can be regarded as an additional model parameter to be 

optimized, with the same size as the input image. However, the optimization is ill-posed 

since the number of unknown parameters is way more than the known parameters. To 

make it well-posed, a penalty function should be introduced to regularize the solution 

of the optimization. By choosing a proper regularization function, the optimization 

problem can be solved using gradient descent, and related methods.  

(12) How can the proposed models benefit the community of ophthalmology? 

We demonstrated how restoring retinal images benefits clinical applications like blood 

vessel segmentation, retinal image registration, and diagnosis. It enables and facilitates 

the detection of features like drusen, hard exudates, bleeding hemorrhages, or 

microaneurysms, as these tasks may use more color or local detail information. The 

correction of illumination restored the visual quality and structures hidden by the 

shadow can be observed after enhancement. The dehazing method further increases 

the image’s contrast, especially for cataractous retinal images. Early detection of 

findings through cataractous retinal images may improve the outcome of treatment of 

retinal diseases, and influent the decision-making on surgery. For example, patients 

with severe cataracts might also have macular degeneration. If macular degeneration 

can be observed through enhanced cataractous retinal images, ophthalmologists are 

able to choose a better treatment plan to minimize risks and stress for patients. 

In conclusion, in this thesis, we developed non-deep learning-based methods for 

retinal image restoration. The results are very promising, and we expect that after 

further and massive clinical validation of the safety, reliability, and efficiency of the 

retinal image restoration methods, they will come from theory to practice., which will 
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result in better diagnosis and prognosis and lead to more diverse therapeutic strategies 

and personalized medicine for health care in ophthalmology.  
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1. Scope of this thesis 

In this thesis, we propose to use non-deep-learning-based methods to achieve single 

retinal image restorations tasks. These tasks are categorized into (1) retinal image 

illumination correction; (2) cataractous retinal image dehazing; (3) retinal image blind-

deconvolution. We designed comprehensible algorithms to bring the degraded retinal 

image back to high-visual quality. The scientific and social impacts are highlighted here. 

2. Scientific Impact 

The chapters have been published in peer-reviewed scientific journals and presented 

at (inter)national conferences. They contribute to research in the field of 

ophthalmology, mathematics, and the ophthalmic photography community.  

(1) Better physical(optical) model. The first scientific impact is our double-pass 

fundus reflection model, which enables modeling image formation in retinal 

photography physically and mathematically correct.  

(2) State-of-the-art enhancement ability. Following (1), the second scientific 

impact is the ability of our model to tackle cataractous retinal images. Our algorithm 

significantly improves the visual quality of hazy retinal images which has great 

potential in clinical applications. Our research got noticed by the Ophthalmic 

Photographers’ Society and the author was invited to present his works in an oral 

presentation in ICOP 2023.  

(3) Reveals deep relationship between different image processing tasks. Our 

contribution to using image denoising to achieve image dehazing/illumination 

correctly unifies three classical image processing tasks into a single framework, which 

can further bring new scientific research topics to the image processing community. 

(4) New retinal image deconvolution algorithm. We first demonstrated the 

embedded illumination correction for retinal image blind deconvolution, which 

outperformed other state-of-the-art methods. 
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(5) User-friendly designing. Most of our models adaptively adjust the model 

parameters according to the input images. This allows user-friendly designing of 

software for people who are not familiar with image processing.  

(6) Safe and reliable. We are not using a deep-learning model to tackle the retinal 

image restoration, but take an analytical approach, which allows each step as well as 

intermediate outcomes of the algorithms can be understood by users. As such, we 

believe that our models are safer, more interpretable, and more reliable than deep-

learning methods, that act as black boxes between input and output. 

3. Social Impact 

A fundus camera is a basic device that is not only used in every eye clinic, but also 

more generally, such as in general practice and by optometrists where it is used in areas 

including but not limited to education, research, and diagnosis. Digital retinal image 

restoration provides a simple and cheap way to increase the image quality of every 

fundus camera and as such our restoration models have the following social impacts: 

Early detection of eye diseases 

The retinal image enhancement algorithm can improve the quality of images taken 

of the eye, making it easier for doctors to identify early signs of eye diseases such as 

glaucoma, macular degeneration, and diabetic retinopathy. Early detection of findings 

through cataractous retinal images may improve the outcome of treatment of retinal 

diseases, and influent the decision-making on surgery that might in some cases even be 

not necessary. For example, patients with severe cataracts might also have macular 

degeneration. In these cases, if the macular degeneration can be observed through 

enhanced cataractous retinal image, ophthalmologists are able to choose a better 

treatment plan to minimize risks and stress for patients. 

Access to healthcare 

The high cost of equipment and lack of trained professionals can limit access to 

techniques of retinal imaging, particularly in low-income and rural areas. By developing 
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novel image processing algorithms that can enhance retinal images, this research can 

potentially reduce the need for expensive equipment and trained professionals, making 

retinal imaging more accessible and affordable for patients in these areas.  

Additionally, our research can contribute to the development of telemedicine 

applications for retinal imaging. Telemedicine enables remote consultation and 

diagnosis of patients by healthcare professionals, which can be particularly beneficial 

for patients in rural or remote areas who may not have access to specialized medical 

care. By enhancing the quality of retinal images, this research can improve the accuracy 

of telemedicine diagnosis, reducing the need for patients to travel long distances for 

medical appointments.  

Furthermore, our research can also contribute to the development of mobile health 

(mHealth) applications for retinal imaging. These applications can enable patients to 

take retinal images using their smartphones or other mobile devices, which can be sent 

to healthcare professionals for diagnosis. By developing image processing algorithms 

that can enhance the quality of these images, our research can potentially improve the 

accuracy of diagnosis through mHealth applications, making healthcare more 

accessible and affordable for patients. 

Better surgical outcomes 

The retinal image enhancement algorithm can help ophthalmologists obtain clearer 

images of the eye during surgery, which can help improve surgical outcomes and reduce 

the risk of complications. 

Further, during retinal surgery, obtaining a clear and detailed image of the eye is 

essential for accurate diagnosis and treatment. Our image restoration algorithm can 

enhance the clarity and detail of retinal images, which can help ophthalmologists 

visualize the structures of the eye more clearly during surgery. This, in turn, can 

improve surgical outcomes and reduce the risk of complications. 



Impact 

377 
 

Improved visualization can also help ophthalmologists identify and avoid critical 

structures, such as blood vessels, during surgery, which can further reduce the risk of 

complications and improve patient safety. 

Collaboration research 

During the development of the algorithms in this thesis, the author collaborated 

with researchers from the Vitreo-Retinal Surgeon in India, the Technology University 

of Eindhoven, and OiVi from Norway. He has established a network of experts with 

diverse backgrounds, skills, and perspectives, which enriched our research and led to 

new ideas and innovations including investigation of new retinal image processing 

methods, solving practical clinical problems, and commercialization of algorithms. 

The author presented research at high-level conferences in the fields of optics, 

biomedical science, and ophthalmology, including ARVO (The Association for Research 

in Vision and Ophthalmology), SPIE Photonics Europe, and ICOP (International 

Conference on Ophthalmic Photography). These presentations generated significant 

interest and discussion around the research presented in this thesis, contributing to the 

broader dissemination of knowledge and potential collaborations with other 

researchers and institutions. 

Economic 

As mentioned in Access to Healthcare, the research in this thesis has the potential 

to reduce healthcare costs. Besides this, it can contribute to the development of new 

medical technologies and products. For example, our image processing algorithm can 

be integrated into existing retinal imaging equipment, creating a new product that can 

be sold to healthcare providers. This can generate revenue for companies that 

manufacture and sell this equipment and create job opportunities in the medical device 

industry.  

Our research can also lead to the development of new telemedicine and mHealth 

applications, creating new business opportunities for healthcare providers and 

companies. For example, telemedicine companies can incorporate our image-
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processing algorithm into their platforms, improving the accuracy of diagnosis and 

treatment and attracting more customers. 

4. Target audience 

The first target audiences for this research are academics and researchers in the field 

of medical image processing, ophthalmology, and computer science. They may be 

interested in learning about our novel image-processing algorithm and its potential 

applications in the diagnosis and treatment of eye diseases. 

Second, ophthalmologists and healthcare providers who work with patients with 

retinal diseases may also be interested in this research, since providing clearer and 

more detailed images of the eye, can help to make more accurate diagnoses and tailor 

treatments more precisely to each patient's needs. This can lead to better patient 

outcomes, including improved visual acuity and quality of life. 

Last, the medical device industry, including companies that manufacture and sell 

retinal imaging equipment, may be interested in my research as well. Our image 

processing algorithm can be integrated into existing equipment or used to develop new 

products that can improve patient care and generate revenue. 
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Over the past four years, my Ph.D. journey has been a profound and transformative 

experience, akin to a captivating odyssey through the realms of knowledge. It has been 

a journey illuminated by the pursuit of truth, guided by the compass of resilience, and 

marked by the sheer joy of intellectual exploration. In the quiet depths of research, I 

unearthed the most resounding echoes of inspiration, and amidst the challenges and 

late nights, I discovered the boundless beauty of academic growth. Each experiment 

conducted, each thesis page written, and each hurdle overcome served as brushstrokes 

on the canvas of this remarkable expedition, painting a portrait of unwavering 

determination and unbridled passion. As I prepare to stand on this threshold of 

graduation, I am reminded that this journey was not solely about acquiring expertise; it 

was about forging connections, nurturing relationships, and celebrating the triumph of 

human potential. These four years have been an enduring testimony to the limitless 

capacity of my mind to explore, discover, and innovate, and I am profoundly grateful for 

every moment that has shaped this remarkable chapter of my life. I would like to thank 

so many people and institutions for accompanying me and helping me along the way. 

Dear all, I am grateful to have you in my life. You lighten my world and warm my heart. 

 

First, I sincerely appreciate my promotor, Prof. Dr. Carroll A. B. Webers, for offering to 

accept me as a Ph.D. candidate under this supervision. I sincerely thank the Chinese 

Scholarship Council for granting me the scholarship to support me in pursuing a Ph.D. 

degree at Maastricht University, the Netherlands. I also thank my daily supervisor, Dr. 

Tos T. J. M. Berendschot, for supervising me, guiding me, and helping me to realize my 

academic dream. From the very beginning, you have been an inspiring source of 

knowledge and wisdom. Your dedication to research, your passion for your field, and 

your unwavering commitment to the success of your students have made a lasting 

impact on me. I feel incredibly fortunate to have had the opportunity to work under your 

supervision. Your guidance has not only helped shape my research but has also 

contributed significantly to my personal and professional growth. I appreciate your 

patience during the challenging moments and your encouragement during the times 

when I needed it the most. Your mentorship has not only equipped me with the 

necessary skills but has also instilled in me a deep passion for research and learning. As 

I prepare to embark on the next phase of my academic and professional journey, I want 

you to know that your influence will continue to guide me throughout my career. 
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Throughout these four years of rigorous PhD studies, I've been fortunate to have 

Christian as one of my best friends in the Netherlands and a steadfast companion on 

this academic journey. Your warm friendship extended far beyond the classroom and 

research labs. Your selfless efforts in introducing me to the campus and helping me 

navigate the academic landscape were invaluable.  

 

I would also like to thank Dr Ashwin Mohan, and my colleagues, Luigi, Magali, Pascal, 

Maartje, Lindsay, Joukje, Yu Yu, Lotte, and Wenting for providing me the great support 

during my stay at the University.  

 

接下来，我要衷心感谢来自祖国的同胞和亲友们在这四年来的关心，照顾和帮助。是你们的

存在和出现丰富温暖了我在异国他乡的学习和生活。衷心祝愿大家生活顺利，事事开心。 

        我想趁着这个特殊的时刻向我的爷爷张景桥先生表达我的感激之情。您是我生命中的一

位不可或缺的导师和启发者，您的陪伴和教导对我而言是无价之宝。自从我还是个孩子的时

候，您就以丰富的知识和温和的智慧为我讲述科普小故事。每当晚上睡前，那些故事都如一

颗颗珍贵的种子，落在我心灵深处，激发了我的好奇心。这些瞬间不仅丰富了我的童年，也

在我心中埋下了追求知识、探索未知的激情。正是您，让我明白了知识的珍贵和力量。您是

一位早年的大学生，拥有丰富的学识和经验，并从不吝啬地将这一切分享给我。您的耐心教

导和无私支持，为我塑造了坚韧和勇气，这些品质在我攻读研究生学位的道路上发挥了至关

重要的作用。如今，我站在即将获得博士研究生学位的门槛上，我要感谢您的教导，这个成

就与您的关怀和支持分不开。您一直是我前进路上的灯塔，您的智慧和善意激励着我继续追

求知识，继续探索未知的领域。亲爱的爷爷，我深知没有您，我不会成为今天的自己。感恩

您一直以来的教导和关爱。我永远珍惜这份特殊的亲情和知识的馈赠。 

        亲爱的父亲张洪涛先生、母亲许宇漫女士以及孙荣叔叔，我希望能借此机会表达我深深

的感激之情，感谢你们为我创造了温暖、健康的家庭，以及给予了我无限的理解与支持。在

我追求自己热爱事物的旅程中，你们的陪伴和鼓励一直是我最大的动力。父亲，您一直是我

动手和逻辑思维能力的榜样。您拥有一双灵巧的双手，创造出令人惊叹的手工模型，这一直

是我学习计算机编程并开发问题解决算法的灵感来源。您的耐心指导和技巧传授一直都是我

成长过程中的宝贵财富。母亲，您是我自律和抗压能力的楷模。您一直展现出女强人的形象，
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不断强调自我约束和抵抗压力的重要性。这使我能够在海外生活中保持坚韧，时刻充满开朗

和自信。孙荣叔叔，感谢您一直以来对我和母亲的支持与帮助。您的陪伴让我在海外学习期

间感到安心和宽慰。您的关心和支持为我们提供了坚实的后盾。你们的爱和支持是我成为今

天的自己的基石。感谢你们无私的奉献和慷慨的爱，使我能够追求我的梦想并不断前进。我

将永远珍视你们为我创造的幸福家庭和美好回忆。 

        尊敬的周金华老师、梁振老师、龚雷老师和任宇轩老师，感谢您们在我学术生涯中的关

怀、栽培和指导。周老师和梁老师，您们是我硕士学业中的伟大导师。在您们的悉心指导下，

我不仅提高了解决问题和论文写作的技能，还培养了对科研的深刻兴趣。您们的包容和耐心

使我能够不断成长，为将来的学术道路打下了坚实的基础。龚老师和任老师，感谢您们在我

博士阶段的指点和帮助。您们的专业知识和慷慨分享为我的博士研究提供了宝贵的支持。您

们的教导使我能够更快地融入新的科研领域，提高了我的学术能力。在您们的指导下，我不

仅在学术方面取得了进展，还在人生道路上受益匪浅。您们的教诲和支持塑造了我成为一个

更好的学者和更有价值的人。再次感谢您们为我所做的一切。我将永远珍惜您们的指导和帮

助，对您们的感激之情无法言表。 

        我要向我的爱人庄堰林女士表达我深深的感激之情。在我即将获得博士学位的时刻，我

不仅仅想要庆祝这个成就，还想要感谢你为我所做的一切。整个博士学位的过程是漫长而充

满挑战的，但有你一直在我身边，支持我，鼓励我，陪伴我度过了这段旅程。你的理解、耐

心和无私的支持一直是我不断前进的动力。你在我生活中的存在让我倍感幸运。我还记得你

在我最困难的时候为我做的一切：夜晚的陪伴，为我做饭，倾听我的烦恼，鼓励我不放弃。

这一切都深深地烙在我的心中，我永远不会忘记。现在，我获得了博士学位，这是我们共同

的成就，因为没有你的陪伴和支持，我可能不会走到今天。未来充满了希望和机会，我知道

有你在我身边，我们将一起迎接这一切挑战。 

        我要感谢我的好朋友陈军华。你的友情和帮助在我博士研究中起到了至关重要的作用，

特别是在探索机器学习领域方面。正是你将我引入了机器视觉这个令人兴奋世界，为我提供

了宝贵的指导和建议。你分享的见解和思考方式不仅激发了我的好奇心，还启发了我对医学

图像处理的热情。正是与你的探讨给了我博士第一篇论文的思路，这是我学术生涯中的一个

重要里程碑。你的支持和友情一直是我前进路上的明灯。我感到非常幸运能够拥有你这样一

个出色的朋友，一个总是愿意分享知识和启发思考的朋友。 

        张硕学长，我想借此机会表达我的感激之情。尽管我们共事的时间并不长，但您在我的

就业指导和心态调整方面发挥了关键作用。我永远不会忘记您为我所做的一切。每当我在就
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业方面遇到困难时，您总是一位不知疲倦的导师和朋友。您耐心地倾听我的问题，细心指导

我，给予我宝贵的建议。更重要的是，您在我心理辅导方面的帮助，帮我度过了许多焦虑和

犹豫的时刻。您的支持和关心让我感到无比温暖和鼓舞。感谢您不仅为我的职业发展提供了       

        帮助，还为我树立了一个榜样，展示了如何成为一位善良、慷慨的人。我由衷感谢您的

耐心和善意。祝愿您的事业蒸蒸日上，愿您的爱人和孩子们在您的陪伴下幸福美满。您的友

情和支持对我意义深远，我将永远感激不已。后面一起多发论文！ 

        亲爱的赵沅蒂、孙思雨、杨金洲、李囡囡、汪婷、王甜甜、曾海燕、凡行、吴敏、于雨，

我想趁此机会向你们表达我的感激之情。四年前我们的生活并没有交集，但是从那以后在我

生活中的各个阶段，你们都是我宝贵的朋友，伴随我走过了许多旅程。你们的陪伴和帮助对

我而言意义非凡。每一次我们在一起度过的时光都是宝贵的回忆，充满欢笑和互相支持。无

论是分享生活琐事，还是探讨人生哲理，你们的存在使我的生活更加丰富多彩。虽然我可能

即将回国，但我深信我们的友情将一直保持。我期待着将来有机会再一起享受美味的火锅、

辣糊糊、胡辣汤、螺蛳粉，深入探讨人生的各种可能性。你们是我生活中不可或缺的一部分，

我感到非常幸运能够拥有你们这样的朋友。再次感谢你们的陪伴和帮助。愿我们的友情继续

在未来绽放，共同创造更多美好的回忆。 

        我要感谢我的挚友们张锴、秦天健、彭康豪，我们一起度过的那些课余时光，组成的四

人团队，是我宝贵的回忆，也是我学生生涯中的一大幸运。在我们的团队中，我们共同努力，

合作无间，克服了一个个的难关。康豪兄总是无论是面临学术挑战还是娱乐乐趣，我们总是

相互支持，共同前行。你们的友情和团队精神让我感到无比幸运。在这段时间里，我们不仅

仅是玩伴，更是彼此的知己和伙伴。我们一起成长，一起分享成功和挫折（笑，这些经历将

永远珍藏在我的心中。再次感谢你们的陪伴和合作。愿我们的友情继续长久，一直支持彼此

的成长和追求。期待着未来还有更多的冒险和欢笑。 

        最后，我深知，我所取得的一切成就都离不开祖国的培养和关怀。祖国提供了良好的教

育资源和科研环境，为我提供了广阔的发展空间。她鼓励了我的求知欲望，培养了我的才华，

让我有机会在国际舞台上展示自己的价值。在遥远的异国他乡，我时刻感到祖国的鼓励和温

暖，这让我充满信心去追求更高的目标。祖国的培养之恩永远铭刻在我的心中。无论我身在

何地，我都将继续传承祖国的文化，积极参与国际交流，为祖国的发展贡献一份微薄的力量。 
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Shuhe Zhang was born in Wuhan, 13-August 1994. He has a 10-year education 

background and experience in the field of optics. He is proficient in Geometrical optics, 

Physical optics, as well as Fourier Optics in both experimental and simulation studies. 

He masters the professional software and hardware skills required for optical imaging 

instruments from theoretical analysis, and simulation to design and testing. He obtained 

his bachelor's degree in July 2016 at Anhui Medical University and continued to finish 

his master’s degree in Biomedical Engineering in July 2019. In the same year, he was 

supported by the China Scholarship Council to pursue his Ph.D. degree at Maastricht 

University, the Netherlands. He has rich experience in in-depth cooperation with 

English-speaking international teams and has led a small scientific research team to 

develop a new quantitative phase imaging system. 

 

Research projects and experiences during the Ph  D’s study 2019 to 2023 

•  Image processing algorithm for fundus imaging 
 
Shuhe Zhang takes fully responsible for the collection of pre- and post-operative 
retinal images for cataract patients, model design, and algorithm research for 
cataracts retinal image restoration. In cooperation with Vasan Eye Center in India, 
He develops fundus image enhancement algorithms that are beneficial to clinical 
diagnosis. He is now collaborating with the Eindhoven University of Technology, and 
developing a fundus blood vessel segmentation algorithm. Related works are 
published in Signal Processing, as well as ARVO 2021 and ARVO 2022. Other related 
works are published on Medical Image Analysis and Computer methods and programs 
in biomedicine. 
 
• Computational imaging: New reconstruction algorithm for quantitative differential 
phase imaging 
 
Shuhe Zhang participated in the development of a quantitative phase microscopy 
platform and algorithm based on differential phase contrast (DPC) imaging in 
cooperation with Anhui Medical University. He was fully responsible for the 
development of new phase reconstruction algorithms to enhance the robustness of 
quantitative DPC microscopy to system background errors and noise signals. 
Compared with the traditional algorithm, the algorithm proposed by his team can 
stably reconstruct high-fidelity phase information under 10 times the noise intensity, 
which greatly improves the practicability and stability of quantitative DPC 
microscopy. The related work was submitted in Computer methods and programs in 
biomedicine. This work is funded by the University Fund of the Province of Limburg 
(SWOL 2022), The Netherlands. 
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• Computational imaging: New reconstruction algorithm for Fourier ptychographic 
microscopy 
 
He developed a new reconstruction algorithm for Fourier ptychographic microscopy 
to improve the robustness of imaging quality to systematic errors. Compared with 
the traditional algorithm, the new reconstruction algorithm proposed by his team 
enhances the stability of the system to 100 times the intensity of Gaussian noise, 
1000 times the intensity of salt and pepper noise, and 10 times the intensity of 
Poisson noise. And the reconstruction quality is no longer affected by the LED 
lighting position deviation within 2mm. This work was published on Signal 
Processing. 
 
• Developing hyperspectral fundus camera 
 
Shuhe Zhang participated in the research and development of hyperspectral fundus 
cameras. In cooperation with the internal scientific research of Maastricht University 
in the Netherlands, we have explored the system design and data analysis of 
multispectral fundus cameras. 
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