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ABSTRACT
Fitting cross-classified multilevel models with binary response is challeng-
ing. In this setting a promising method is Bayesian inference through
Integrated Nested Laplace Approximations (INLA), which performs well in
several latent variable models. We devise a systematic simulation study to
assess the performance of INLA with cross-classified binary data under dif-
ferent scenarios defined by the magnitude of the variances of the random
effects, the number of observations, the number of clusters, and the degree
of cross-classification. In the simulations INLA is systematically compared
with the popular method of Maximum Likelihood via Laplace Approxima-
tion. By an application to the classical salamandermating data, we compare
INLA with the best performing methods. Given the computational speed
and the generally good performance, INLA turns out to be a valuable
method for fitting logistic cross-classified models.
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1. Introduction

Cross-classified data are non-hierarchical structures where lower level units belong to pairs or com-
binations of higher level units formed by crossing each other two or more higher level factors [1,2].
Examples include children cross-classified by primary and secondary schools [3] or by school and
neighbourhood [4], and responses nested in the combination of test items and persons [5]. There are
different degrees of cross-classification, that can be categorized essentially into two types [6]: (i) in a
complete cross-classification the units in a cluster of one factor belong to all the clusters of the other
crossed factor, and vice versa; (ii) in a partial cross-classification the units in a cluster of one factor
belong to a subset of the clusters of the other crossed factor.

Linear cross-classified models have been widely studied in literature [6–8] and the related esti-
mation issues have been satisfactorily addressed [4,9], as testified by the large number of published
applications (see [10] for a detailed review).

On the other hand, fitting logistic cross-classified models is difficult for two reasons: (i) the distri-
bution of the response conditional on the random effects is Bernoulli, thus the marginal likelihood is
not in closed form; (ii) due to the cross-classification of the random effects, the variance-covariance
matrix is not block-diagonal. In the simpler case of nested random effects (Generalized LinearMixed
Models), several methods are available to obtainMaximumLikelihood (ML) estimates, including lin-
earization (MQL [11], PQL [12]) and numerical integration, such as Laplace Approximation (MLLA)
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[13] and Adaptive Gaussian Quadrature (AGQ) [14]. In general, ML methods tend to underestimate
the variance components, especially in settings with a small number of clusters [15]. In the challeng-
ing case of crossed random effects, the above methods can still be used, even if better performances
can be obtained by special algorithms based on data augmentation, such Monte Carlo Expectation
Maximization (MCEM) [16] and Alternating Imputation Posterior (AIP) estimation [9,17].

Bayesian methods generally have a better performance in complex random effects models [18].
However, the standard Bayesianmethod, namelyMCMC [19], has some practical limitations because
of the computational burden and the difficulties in assessing convergence. A possible solution is rep-
resented by INLA, namely Integrated Nested Laplace Approximations [20]: indeed, INLA directly
approximates the posterior distribution, thus avoiding complex simulation-based methods. INLA is
promising because of the good performance observed in logistic models with nested random effects
[21], where it is fast (nearly as frequentist quadrature methods) and accurate (slightly more than
MCMC). The computational time ratio of MCMC over INLA depends on the sample size, for exam-
ple Grilli et al. [21] obtained a ratio of about 10 in a data set with 10 clusters of size 50, and a ratio of
about 50 in a data set with 100 clusters of size 50. Given these premises, it is worth to investigate the
performance of INLA in logistic cross-classifiedmultilevelmodels. In this setting, the only application
we are aware of is reported in the Supplementary Material of Fong et al. [22], where INLA is used to
fit model C of Karim and Zeger [19] on the classical salamander mating data. In that instance, INLA
seems to underestimate the variance components, but a comprehensive evaluation of the method
requires a systematic simulation study. We therefore devise a simulation study to evaluate INLA for
a logistic model with two crossed random effects under several scenarios. The results are compared
with those obtained with Maximum Likelihood via Laplace Approximation (MLLA), which is the
default choice in many programs and it is similar to INLA in terms of computational time. We do
not consider AGQ, which is generally superior to the Laplace Approximation, but it turns out to be
infeasible in some scenarios. In the simulation study, we devote particular attention to situations with
a small number of clusters, different degrees of cross-classification and low random effects variances.
Furthermore, in order to compare INLA with a wide set of estimation methods (MCMC, MCEM,
AIP), we apply it to the classical salamander mating data [17,19,23].

The rest of the paper is organized as follows. In Section 2 the INLA method is briefly introduced,
whereas in Section 3 the simulation design is described. In Section 4 the findings of the simulation
study are commented, comparing MLLA with INLA using two alternative prior distributions for the
variance components. In Section 5 INLA is applied to the salamander mating data, allowing a com-
parison with several efficient algorithms. Section 6 offers some final remarks. The Supplementary
Material collects further simulation results not reported in the paper.

2. The INLAmethod: a brief introduction

In this section we outline the INLA method; for a detailed illustration we recommend [20,24,25].
The INLAmethod is a deterministic approach to Bayesian inference in the wide framework of latent
Gaussian models, which includes Generalized Linear Mixed Models [22]. Let θ be a k-dimensional
latent Gaussian random field, that is, a vector of k latent Gaussian variable, that is, the parameters of
the model, then a Latent Gaussian Model can be constructed in three stages:

(1) Firstly, the observations y are assumed conditionally independent given θ and γ 1, a vector of
hyperparameters.

y | θ , γ 1 ∼ π(y | θ , γ 1).

(2) Secondly, the latent field θ is assumed to be Normally distributed conditional to the hyperpa-
rameters γ 2, with zero mean and precision matrix Q(γ2)

θ | γ 2 ∼ N(0,Q−1(γ2)).



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 2691

(3) Finally, a prior distribution for γ = (γ 1, γ 2) is specified

γ ∼ π(γ ).

Therefore, assuming that the number of hyperparameters γ is small (say lower than 6 [20]), the
targets of inference are:

π(θi | y) =
∫

π(θi | γ , y)π(γ | y) dγ , (1)

that is, the marginal posterior distribution of parameter θi, with i = 1, . . . , k, and

π(γj|y) =
∫

π(γ | y) dγ−j, (2)

the marginal posterior distribution of the hyperparameter γj, with j = 1, . . . , l. Thus, the INLA
algorithm is composed of three steps:

(1) Approximate the joint posterior distribution of the hyperparameters π(γ | y) with the following
Laplace Approximation

π̃(γ | y) ∝ π(θ , γ , y)
π̃G(θ | γ , y)

∣∣∣∣
θ=θ∗(γ )

, (3)

where π̃G(θ |γ , y) is the Gaussian approximation of π(θ |γ , y) derived by matching the mode
and the curvature at the mode and θ∗(γ ) is the mean of π̃G(θ | γ , y). In order to facilitate the
numerical integration in step 3, good evaluations points are selected exploring π̃(γ | y). Then,
the marginal posterior distribution π(γj|y) can be derived through numerical integration.

(2) Approximate π(θi | γ , y) with one of the following alternative approaches:
(2.1) Gaussian approximation:

π̃G(θi | γ , y) = N(θi;μi(γ ), σ 2
i (γ )), (4)

that can yield errors in location and/or lack of skewness.
(2.2) Laplace approximation:

π̃LA(θi | γ , y) ∝ π(θ , γ , y)
π̃GG(θ−i | θi, γ , y)

∣∣∣∣
θ−i=θ∗−i(θi,γ )

, (5)

where π̃GG(θ−i|θi, γ , y) is the Gaussian approximation to θ−i|θi, γ , y centred at the modal
configuration θ∗−i(θi, γ ). A drawback of this approach is that we must recompute π̃GG for
each value of θi and γ . Thus, k factorizations of the full precision matrix are needed.

(2.3) Simplified Laplace approximation: in simple terms, the Simplified Laplace Approximation
π̃SLA(θi|γ , y) consists in doing a series expansion of the numerator and denomina-
tor of π̃LA(θi|γ , y) up to the third order around θi = μi(γ ), this means to correct the
Gaussian Approximation π̃G(θi|γ , y) for location and skewness. The benefit is purely
computational.

(3) Combine 1 and 2 through numerical integration of π̃(γ | y)π̃(θi | γ , y) to compute the marginal
posterior distribution π̃(θi | y)

π̃(θi | y) =
∑
s

π̃(θi | γs, y)π̃(γ | y)�s, (6)

where the sum is over the values {γs} which are found in step 1, with area weights�s and π̃(θi | γs, y)
can be π̃G, π̃LA or π̃SLA depending on which approximation procedure we have chosen in step 2.
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3. The simulation design

3.1. Model and sample structure

We consider a random intercept logistic model with two crossed random effects. Let Yi(j1j2) be a
Bernoulli random variable for level 1 unit i (e.g. student) nested in two crossed classifications at
level 2 (e.g. school and neighbourhood) with j1 = 1, . . . ,N1 and j2 = 1, . . . ,N2. Defining πi(j1j2) =
P(Yi(j1j2) = 1|x1i(j1j2), x2i(j1j2), zj1 , zj2 , uj1 , uj2), the considered model is:

logit(πi(j1j2)) = α + β1x1i(j1j2) + β2x2i(j1j2) + γ1z1j1 + γ2z2j2 + uj1 + uj2 (7)

uj1 ∼ N(0, σ 2
uj1

) uj2 ∼ N(0, σ 2
uj2

),

where x1i(j1j2) is a continuous level 1 variable, x2i(j1j2) is a binary level 1 variable, z1j1 and z2j2 are binary
level 2 variables (the former related to classification 1, the latter related to classification 2). The contin-
uous covariate x1i(j1j2) is drawn from a standard Normal distribution, whereas the binary covariates
are drawn from independent Bernoulli distributions with success probability equal to 0.5. In the
Supplementary Material, we report simulation results for a success probability equal to 0.9, show-
ing that highly skewed binary covariates tend to reduce the performance of the estimators, though
the differences are often modest and the main patterns are preserved.

The true values of parameters in model (7) are set as follows: α = 0.1 (so that the baseline individ-
ual has a probability of success slightly greater than 0.5), β1 = 0.1, and β2 = γ1 = γ2 = 0.4. Given
that in a standard Normal distribution about 95% of the probability lies between −2 and +2, set-
ting β1 = 0.1 ensures that the continuous covariate has an effect comparable to that of the binary
covariates. The values of the regression coefficients are constant across all configurations.

On the other hand, several values are considered for the variances of the random effects σ 2
uj1

and
σ 2
uj2

since it is known that they strongly affect the performance of the estimation methods and the
importance of the prior distribution [18,26]. Specifically, we consider four configurations yielded by
setting the variances of the two randomeffects at either 0.01 (low impact of the randomeffects) or 0.25
(sizeable impact of the random effects). To see the impact of the random effects, note that a variance
σ 2
uj. = 0.01 corresponds to a standard deviation σuj. = 0.1, thus under normality the random effect

approximately has 95% probability of lying in the interval [−0.2, 0.2], corresponding to the central
interval [0.45, 0.55] in terms of probability of the response variable. Similarly, σ 2

uj. = 0.25 corresponds
to σuj. = 0.50 so that the central 95% interval of the probability is [0.27, 0.73]. In the Supplementary
Material we also report simulations with both variances at 1.00, though we do not putmuch emphasis
on the results since random effects of such size are rarely found in applications. Anyway, it is worth
to note that inference about random effects with variance 1.00 is not problematic and, indeed, the
performances of all the considered estimators are satisfactory.

In order to evaluate the influence of the degree of cross-classification on the performance of INLA
and MLLA [6], we consider three scenarios ranging from complete cross-classification to an almost
hierarchical structure:

• a complete cross-classified structure: we consider a square cross-classification matrix, namely the
two classification factors have the same number of clusters N1 = N2. Since Bayesian and fre-
quentist methods can differ substantially in scenarios with a small number of clusters, we focus
our investigation on the case N1 = N2 = 10, considering four different values for the number of
observations per cell n (1, 5, 10, 20). Moreover, in order to assess the asymptotic behaviour of the
estimators, we consider four different values forN1 = N2 (10, 20, 50, 80), with n= 10 observations
per cell in each scenario.

• two partial cross-classified structures: we generate those structures as follows [6]:
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Table 1. Partial cross-classified structure with 10 feeders and 5 receivers
(the symbol× denotes the presence of at least one observation).

Receivers

1 2 3 4 5 6 7 8 9 10

1 × × × × ×
F 2 × × × × ×
E 3 × × × × ×
E 4 × × × × ×
D 5 × × × × ×
E 6 × × × × ×
R 7 × × × × ×
S 8 × × × × ×

9 × × × × ×
10 × × × × ×

(1) Generate a hierarchical three-level model: classification 1 is the third level with 10 clus-
ters, classification 2 is the second level with 10 clusters within each third-level unit, and 100
observations are nested within each second-level unit.

(2) Randomly draw 10 second-level units (called feeders).
(3) Randomly draw k third-level units (called receivers), where k is set to either 2 or 5.
(4) For each feeder, randomly assign the observations to the receivers (50 observations per

receiver in case of 2 receivers, and 20 observations per receiver in case of 5 receivers).

Table 1 represents a partial cross-classified structure with 10 feeders and 5 receivers. Note that the
three structures outlined above have the same sample size (1000 observations), but they differ in the
distribution of the empty cells (which is an indicator of the degree of cross-classification [6]) and in
the number of observations per cell (n= 10 in the complete cross-classified structure, n= 50 in the
structure with 2 receivers, and n= 20 in structure with 5 receivers).

3.2. Estimationmethods and prior distributions

The simulation study is performed with the R software (version 3.2.2). We let our code available on
the web. In particular, we exploit the following packages:

• the inla package (version 0.0-1440400394) for INLA – Bayesian inference through Integrated
Nested Laplace Approximations [25,27];

• the lme4 package (version 1.1-9) for MLLA – Maximum Likelihood via Laplace Approxima-
tion [28].

We rely on the default approximationmethod of theinla package, namely the Simplified Laplace
Approximation. More complex methods, such as the Laplace Approximation and a Gaussian copula
correction proposed by Ferkingstad and Rue [29], are available in the inla package, but simulations
for the most challenging scenario show they are not worthwhile (see the Supplementary Material).

In Bayesian inference with INLA we specify a Normal prior distribution with zero mean and large
variance for the regression coefficients (the default of the inla function). Since we focus on scenar-
ios with small numbers of clusters and variances close to zero, the choice of the prior distribution for
the variance components is crucial. As usual in Bayesian software, the inla function allows us to
specify the prior distribution of the precision, instead of the variance. We avoid the default gamma
prior Ga(1, 0.0005) because it has a poor performance in logistic models with nested random effects
[21]. For the simulation study we choose two alternative priors for the precisions: Ga(0.001,0.001),
namely the standard choice in the popular BUGS software, and Ga(0.5, 0.003737) specified according
to the criterion proposed by Fong et al. [22], which consists in setting the parameters of theGamma in
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Figure 1. Probability densities of the considered prior distributions in [0, 40].

order to obtain a given marginal distribution for the random effects. In particular, Ga(0.5, 0.003737)
yields a marginal Cauchy distribution having 95% probability of euj. ∈ [ 13 , 3], corresponding to a cen-
tral interval for the probability of the response variable equal to [0.25, 0.75]. It is worth to note that the
selected prior Ga(0.5, 0.003737) is different from the prior usually derived by applying the Fong et al.
criterion (like in the simulations of Grilli et al. [21]), which is Ga(0.5, 0.0164). This prior amounts to
random effects with a stronger impact, as it yields a marginal Cauchy distribution having 95% proba-
bility of euj. ∈ [ 1

10 , 10], corresponding to a central interval for the probability of the response variable
equal to [0.09, 0.91]. In the simulations we tried both the priors derived by the Fong et al. criterion,
but we retained only Ga(0.5, 0.003737) as it was outperforming the other one. The densities of the
three mentioned priors are depicted in Figure 1, showing that Ga(0.5, 0.003737) is less informative
than Ga(0.5, 0.0164), though more informative than Ga(0.001,0.001).

4. Simulation results

4.1. Measures of performance

The performances of INLA andMLLA are compared on the basis of the following measures of accu-
racy [6–8], where m is one of the scenarios defined in Section 3.1 and l is one of the L Monte Carlo
replicates:

• relative bias for the estimates of the regression coefficients and variance components:

RB(θ̂m) = θ̂m − θ

θ
,

where θ̂m = ∑L
l=1 θ̂lm/L is theMonteCarlo average of the estimates θ̂lm (point estimates forMLLA

and posterior means for INLA) and θ is the population parameter;
• relative bias for the standard errors of the regression coefficients:

RB(S
θ̂m

) = SE(θ̂m) − SD(θ̂m)

SD(θ̂m)
,

where SE(θ̂m) = ∑L
l=1 SE(θ̂lm)/L is the Monte Carlo average standard error and SD(θ̂m) is the

Monte Carlo standard error, namely the standard deviation of the L estimates θ̂lm.
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The standard errors of the variance components are not considered because they are not provided
by the glmer function in the lme4 package (in general, it is not advisable to exploit the standard
errors to make inference on the variance components).

4.2. Extreme estimates of the variance components

In order to give practical advice to applied researchers, it is worth to study when the two considered
estimators yield extreme values for the estimates of the variance components. ForMLLA it sometimes
happens that σ̂ 2

uj. = 0, namely the estimate is on the border of the parameter space. This problem does
not occur with INLA since the priors push the estimates into the parameter space; however, INLA
sometimes yields unrealistically large estimates. In the following, we label as aberrant the estimates
larger than 2, namely σ̂ 2

uj. > 2. Such threshold is necessarily subjective as it corresponds to the largest
value that a researcher is willing to trust. For each scenario we report the percentages of null estimates
of MLLA and aberrant estimates of INLA out of the 500 replicates.

In Bayesian inference with non-informative priors, the usual action in case of aberrant estimates is
to change the priors, therefore we discard the replicates where at least one of the variance components
is larger than 2 and compute the relative bias on the remaining replicates L ≤ 500 (note that in most
scenarios there are no aberrant estimates, thus L= 500). Discarding the replicates with aberrant esti-
mates has a noticeable effect on the Monte Carlo relative bias of the variance components, whereas
the effect on the regression coefficients is negligible.

4.3. Scenarios with few clusters

In our simulation study we devote particular attention to scenarios with few clusters because in
these cases the estimation of the variances of the random effects is challenging and the influence
of prior distributions is amplified, so that Bayesian andMLmethods may yield considerably different
results [18].

In Table 2 we compare the relative biases (net of aberrant estimates) for the regression coefficients
yielded by INLA and MLLA in a complete 10 × 10 cross-classification matrix with varying number
of observations per cell. Note that INLA andMLLA give similar results for the regression coefficients:
both methods yield relative biases smaller than 10% even with n= 5 observations per cell and they
decrease for larger cell sample sizes. However, the direction of the biases is hardly predictable. On the
other hand, INLA and MLLA differ in the estimation of the standard errors of the regression coef-
ficients: INLA yields more accurate standard errors for larger values of the variances of the random
effects σ 2

j1 and σ 2
j2 , whereas in this regard MLLA performs better when σ 2

j1 and σ 2
j2 are close to zero.

Figure 2 reports the relative biases (net of aberrant estimates) for random effects variances, high-
lighting the differences among MLLA and INLA with the two considered priors for the variance
components. When both variance components are low (0.01), all the methods overestimate the pop-
ulation values, but the biases rapidly decline as the cell sample size n increases (n= 10 is enough for
INLA, though not for MLLA as it underestimates the first variance). The two priors yield similar
results. When both variance components are sizable (0.25), the three methods perform well even for
small cell sample sizes. Note that, generally,MLLA underestimates the variance components, whereas
INLA overestimates it, with the prior Ga(0.5, 0.003737) outperforming Ga(0.001, 0.001). The cases
where the variance components have markedly different sizes (0.01 and 0.25) are troubling since
the low variance component can be badly estimated even for n= 10 or n= 20. It is worth to note
that these configurations have been considered as they are especially challenging, though they are
unlikely in practice. In the configuration with variance components σ 2

j1 = 0.01 and σ 2
j2 = 0.25, INLA

with the prior Ga(0.001, 0.001) shows an anomalous behaviour because the bias abruptly increases
when moving from cell size n= 10 to n= 20. This pattern is analysed in detail in the Supplementary
Material.
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Table 2. Relative bias for regression coefficients (relative bias of standard
errors in parenthesis).

n INLA Ga(0.001, 0.001) INLA Ga(0.5, 0.003737) MLLA

α

1 −0.118 (0.014) 0.167 (−0.148) −0.060 (−0.092)
5 0.078 (0.174) 0.380 (−0.020) 0.056 (−0.023)
10 −0.110 (0.102) −0.030 (0.003) −0.120 (−0.103)
20 −0.110 (0.002) 0.120 (−0.007) −0.120 (−0.153)

β1
1 0.364 (−0.141) 0.249 (−0.120) 0.270 (−0.078)
5 0.000 (0.000) 0.060 (−0.081) −0.014 (0.016)
10 0.050 (−0.018) 0.060 (−0.047) 0.040 (−0.012)
20 0.030 (0.016) −0.010 (−0.037) 0.020 (0.018)

β2
1 0.113 (−0.081) −0.057 (0.010) 0.035 (−0.011)
5 0.064 (0.015) 0.017 (−0.021) 0.050 (0.031)
10 0.025 (−0.006) 0.003 (0.065) 0.017 (0.008)
20 −0.003 (−0.038) −0.003 (−0.024) −0.005 (−0.036)

γ1
1 0.220 (−0.003) 0.110 (−0.149) 0.092 (−0.081)
5 0.022 (0.120) −0.105 (−0.044) 0.002 (−0.082)
10 0.008 (0.041) 0.080 (−0.009) 0.000 (−0.191)
20 −0.018 (0.069) 0.013 (0.002) −0.020 (−0.111)

γ2
1 0.230 (−0.062) 0.106 (−0.218) 0.142 (−0.148)
5 −0.053 (−0.132) −0.030 (−0.089) −0.064 (−0.158)
10 −0.008 (0.040) 0.065 (−0.025) −0.013 (−0.193)
20 −0.005 (−0.013) −0.018 (−0.015) −0.008 (−0.022)

Notes: Logistic model of Equation (7) with σ 2
j1

= σ 2
j2

= 0.25. Complete
cross-classificationwithN1 = N2 = 10 and varying number of observa-
tions per cell n.

Table 3. Percentage of extreme estimates out of the 500 replicates.

INLA Ga(0.001, 0.001) INLA Ga(0.5, 0.003737) MLLA

n % σ̂ 2
j1

> 2 % σ̂ 2
j2

> 2 % σ̂ 2
j1

> 2 % σ̂ 2
j2

> 2 % σ̂ 2
j1

= 0 % σ̂ 2
j2

= 0

σ 2
j1

= σ 2
j2

= 0.01
1 0.4 1.0 5.4 3.8 47.0 54.2
5 0.0 0.0 0.0 0.0 46.6 42.0
10 0.0 0.0 0.0 0.0 44.6 35.6
20 0.0 0.0 0.0 0.0 34.0 24.0

σ 2
j1

= σ 2
j2

= 0.25
1 5.2 4.0 11.0 10.8 23.4 24.8
5 0.0 0.0 0.0 0.0 3.2 1.8
10 0.0 0.0 0.0 0.0 0.8 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0

σ 2
j1

= 0.01 σ 2
j2

= 0.25
1 0.6 5.6 4.0 12.0 38.0 28.4
5 0.0 0.0 0.0 0.0 29.0 2.2
10 0.0 0.0 0.0 0.0 39.4 0.0
20 0.0 0.0 0.0 0.0 33.4 0.0

σ 2
j1

= 0.25 σ 2
j2

= 0.01
1 6.0 0.6 12.6 4.4 26.6 38.0
5 0.0 0.0 0.0 0.0 5.2 22.8
10 0.2 0.0 0.0 0.0 1.0 19.6
20 0.2 0.0 0.0 0.0 0.0 20.0

Note: Complete cross-classification with N1 = N2 = 10 and varying number of observations
per cell n.
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Figure 2. Relative bias for the variance components of the logistic model of Equation (7). Complete cross-classification with
N1 = N2 = 10 and varying number of observations per cell n. Each pair of graphs corresponds to a combination of random effects
variances (σ 2

j1
, σ 2

j2
): (0.01, 0.01), (0.25, 0.25), (0.01, 0.25), (0.25, 0.01).

As discussed at the end of Section 4.2, the considered estimation methods are prone to differ-
ent kinds of extreme estimates for the variance components, namely MLLA may yield zero values,
whereas INLAmay yield very large values (here considered to be aberrant when larger than 2). Table 3
reports the percentage of extreme estimates out of 500 for each scenario. For MLLA the issue of zero
estimates is severe (above 20%) for low variance components even in large sample sizes, whereas it is
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Table 4. Relative bias for regression coefficients (relative bias of standard errors in parenthesis).

n Receivers INLA Ga(0.001, 0.001) INLA Ga(0.5, 0.003737) MLLA

α

50 2 0.230 (0.128) 0.020 (0.023) 0.220 (−0.051)
20 5 0.010 (0.028) 0.080 (0.244) 0.000 (−0.116)
10 10 −0.110 (0.102) −0.030 (0.003) −0.120 (−0.103)

β1
50 2 −0.020 (0.049) −0.030 (−0.037) −0.020 (0.054)
20 5 0.010 (0.016) 0.070 (0.002) 0.010 (0.021)
10 10 0.050 (−0.018) 0.060 (0.065) 0.040 (−0.012)

β2
50 2 −0.023 (−0.012) 0.005 (−0.037) −0.028 (−0.006)
20 5 0.017 (−0.020) −0.003 (0.002) 0.010 (−0.007)
10 10 0.025 (−0.006) 0.003 (0.065) 0.017 (0.008)

γ1
50 2 0.017 (0.115) 0.032 (0.214) 0.008 (−0.078)
20 5 −0.020 (0.069) −0.050 (0.164) −0.028 (−0.108)
10 10 0.008 (0.041) 0.080 (−0.009) 0.000 (−0.191)

γ2
50 2 0.000 (−0.056) −0.005 (0.025) −0.005 (−0.051)
20 5 0.025 (−0.011) 0.060 (−0.015) 0.020 (−0.006)
10 10 −0.008 (0.040) 0.065 (−0.025) −0.013 (−0.193)

Notes: Logistic model of equation (7) with σ 2
j1

= σ 2
j2

= 0.25. structures with different degrees
of cross-classification (10 feeders and varying number of receivers), and varying number of
observations per cell n.

severe for variance components at 0.25 only in scenarios with cell size n= 1. The opposite issue for
INLA, namely aberrant estimates, has noticeable percentages only for variance components at 0.25
and cell size n= 1. As expected, aberrant estimates are more likely with the more informative prior
Ga(0.5, 0.003737).

4.4. Comparing scenarios with different degrees of cross-classification

It is well known that omitting a crossed factor in a linear model yields a bias on the variance of the
remaining factor [7,30]. According to Luo and Kwok [6], the direction and magnitude of the bias
are related to the degree of cross-classification. In the evaluation of INLA we do not consider the
omission of a factor, anyway it is worth to check whether the degree of cross-classification plays a role
in the performance of the estimators.

Following Luo and Kwok [6], we measure the degree of cross-classification by the number of
receivers for a fixed number of feeders (see, e.g. Table 1). In particular, given 10 feeders, we con-
sider three configurations, namely 10 receivers (complete cross-classification, i.e. without empty
cells), 5 receivers (partial cross-classification with 50% empty cells), and 2 receivers (partial cross-
classification with 80% empty cells, a situation close to a hierarchical structure). The three configu-
rations have different numbers of observations per cell to ensure a total sample size of 1000. Table 4
reports the results obtained under different degrees of cross-classification for a scenario where the
variances of the random effects are equal to 0.25, in order to compare these results to those of Table 2.
The effect of the degree of cross-classification on the bias of the regression coefficients is conflicting,
but remarkably modest. Therefore, in a situation with 1000 observations in a 10 × 10matrix, the pat-
tern of empty cells is practically uninfluential for the estimation of the regression coefficients: this is
a noteworthy result since in many cross-classified data sets most of the cells are empty [8].

The effect of the degree of cross-classification on the estimation of the variances of the random
effects is shown in Figure 3. The effect is more sizable than for regression coefficients, especially if
the true variance is low (0.01): in such instances, the performance of INLA improves as the cross-
classification matrix becomes closer to completeness (10 receivers), especially for the prior Ga(0.5,
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Table 5. Percentage of extreme estimates out of the 500 replicates.

INLA Ga(0.001, 0.001) INLA Ga(0.5, 0.003737) MLLA

Receivers n % σ̂ 2
j1

> 2 % σ̂ 2
j2

> 2 % σ̂ 2
j1

> 2 % σ̂ 2
j2

> 2 % σ̂ 2
j1

= 0 % σ̂ 2
j2

= 0

σ 2
j1

= σ 2
j2

= 0.01
2 50 0.0 0.0 0.0 0.0 36.6 35.0
5 20 0.0 0.0 0.0 0.0 39.4 30.6
10 10 0.0 0.0 0.0 0.0 44.6 35.6

σ 2
j1

= σ 2
j2

= 0.25
2 50 0.2 0.0 0.0 0.0 1.4 0.8
5 20 0.0 0.0 0.0 0.0 0.8 0.6
10 10 0.0 0.0 0.0 0.0 0.8 0.0

σ 2
j1

= 0.01 σ 2
j2

= 0.25
2 50 0.0 0.0 0.0 0.0 20.6 0.4
5 20 0.0 0.0 0.0 0.0 25.8 0.0
10 10 0.0 0.0 0.0 0.0 39.4 0.0

σ 2
j1

= 0.25 σ 2
j2

= 0.01
2 50 0.0 0.0 0.0 0.0 0.8 22.2
5 20 0.0 0.0 0.0 0.0 0.8 17.0
10 10 0.2 0.0 0.0 0.0 1.0 19.6

Note: Structures with different degree of cross-classification (10 feeders and varying number of receivers),
and varying number of observations per cell n.

0.003737). The effect on the performance of MLLA is more conflicting because in some scenarios
increasing the number of receivers implies a larger bias (even for variance equal to 0.25), while in
other scenarios the bias remains unchanged across the three degrees of cross-classification and in one
case it slightly decreases (for the second variance in the scenario with σ 2

j1 = 0.25 and σ 2
j2 = 0.01). This

contradictory behaviour can be explained by the high percentage of null estimates which undoubtedly
affects the bias. It is worth to note that, for all the estimators, the degree of cross-classification plays
a major role when the variances of the two factors are markedly different (0.01 and 0.25): in those
cases, if the matrix is sparse (2 receivers) the estimation of the low variance is largely out of the target.

Table 5 reports the percentages of extreme estimates for the variance components, showing that
the degree of cross-classification has a negligible role. Note that in the considered scenarios, all with a
total sample size of 1000, INLA produces almost no aberrant estimates, whereas MLLA yields many
zero estimates when the variance component is low (0.01).

4.5. Assessing the asymptotic behaviour

In order to evaluate the asymptotic behaviour of the considered estimation methods, we increase the
number of clusters per classification in a setting with complete cross-classification and constant cell
sample size n= 10. For the regression coefficients, Table 6 shows that INLA and MLLA have similar,
satisfactory performances: the relative biases are smaller than 5% with 20 clusters per classification
and the differences between the two methods decline sharply as the number of clusters increases.

Also for the variance components (Figure 4) the results of the three considered estimators become
similar as the number of clusters increases, though the requirement for a satisfactory performance is
higher (50 clusters per classification). As for the priors, INLA Ga(0.5, 0.003737) has the best perfor-
mance among the three estimators when N1 = N2 ≥ 50 regardless of the magnitude of the variance
components. On the other hand, in small cross-classification matrices (10 × 10 or 20 × 20) the per-
formance depends on the size of the variance components, with INLA Ga(0.001, 0.001) yielding the
best performance when the variance is low (0.01). It is worth to note that INLA with the two consid-
ered priors always overestimates the variance components. On the other hand,MLLA underestimates
a variance component with value 0.25, whereas the direction of the bias is unpredictable for a variance
component with value 0.01.
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Figure 3. Relative bias for the variance components of the logistic model of Equation (7). Structures with different degree of cross-
classification (10 feeders and varying number of receivers). The cell sample size n is set on the basis of the number of receivers to
ensure a total sample size of 1000. Each pair of graphs corresponds to a combination of random effects variances (σ 2

j1
, σ 2

j2
): (0.01,

0.01), (0.25, 0.25), (0.01, 0.25), (0.25, 0.01).

The percentages of extreme estimates are reported in Table 7. INLA with the considered priors
does not suffer from the issue of aberrant estimates even in the smallest design (10 × 10 with 10
observations per cell), while MLLA yields high percentages of zero estimates when estimating a low
variance component in 10 × 10 and 20 × 20 designs.
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Table 6. Relative bias for regression coefficients (relative bias of standard errors in parenthesis).

N1 = N2 INLA Ga(0.001, 0.001) INLA Ga(0.5, 0.003737) MLLA

α

10 −0.110 (0.102) −0.030 (0.003) −0.120 (−0.103)
20 0.080 (0.029) −0.070 (−0.022) 0.080 (−0.046)
50 −0.020 (−0.013) 0.140 (−0.021) −0.020 (−0.041)
80 −0.010 (−0.009) −0.040 (−0.067) −0.010 (−0.020)

β1
10 0.050 (−0.018) 0.060 (−0.047) 0.040 (−0.012)
20 0.030 (−0.018) 0.020 (−0.009) 0.030 (−0.017)
50 −0.010 (−0.039) 0.010 (0.075) −0.010 (−0.039)
80 0.000 (0.067) 0.010 (−0.005) 0.000 (0.067)

β2
10 0.025 (−0.006) 0.003 (0.065) 0.017 (0.008)
20 −0.010 (0.088) 0.003 (−0.011) −0.013 (0.090)
50 0.005 (−0.016) −0.003 (−0.064) 0.005 (−0.016)
80 0.000 (0.002) 0.000 (0.011) 0.000 (0.002)

γ1
10 0.008 (0.041) 0.080 (−0.009) 0.000 (−0.191)
20 −0.018 (0.023) 0.022 (−0.008) −0.020 (−0.060)
50 0.020 (0.039) −0.050 (0.014) 0.020 (0.012)
80 0.030 (−0.010) 0.022 (−0.008) 0.030 (−0.027)

γ2
10 −0.008 (0.040) 0.065 (−0.025) −0.013 (−0.193)
20 0.005 (−0.018) −0.025 (−0.026) 0.003 (−0.018)
50 0.003 (−0.027) 0.000 (−0.045) 0.003 (0.002)
80 0.000 (−0.036) 0.003 (−0.010) 0.000 (−0.036)

Notes: Logistic model of equation (7) with σ 2
j1

= σ 2
j2

= 0.25. Complete cross-classification with
varying number of clusters per classification N1 = N2 and n= 10 observations per cell.

Table 7. Percentage of extreme estimates out of the 500 replicates.

INLA Ga(0.001, 0.001) INLA Ga(0.5, 0.003737) MLLA

N1 = N2 % σ̂ 2
j1

> 2 % σ̂ 2
j2

> 2 % σ̂ 2
j1

> 2 % σ̂ 2
j2

> 2 % σ̂ 2
j1

= 0 % σ̂ 2
j2

= 0

σ 2
j1

= σ 2
j2

= 0.01
10 0.0 0.0 0.0 0.0 44.6 35.6
20 0.0 0.0 0.0 0.0 19.8 12.4
50 0.0 0.0 0.0 0.0 0.0 0.0
80 0.0 0.0 0.0 0.0 0.0 0.0

σ 2
j1

= σ 2
j2

= 0.25
10 0.0 0.0 0.0 0.0 0.8 0.0
20 0.0 0.0 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0 0.0 0.0
80 0.0 0.0 0.0 0.0 0.0 0.0

σ 2
j1

= 0.01 σ 2
j2

= 0.25
10 0.0 0.0 0.0 0.0 39.4 0.0
20 0.0 0.0 0.0 0.0 17.2 0.0
50 0.0 0.0 0.0 0.0 0.0 0.0
80 0.0 0.0 0.0 0.0 0.0 0.0

σ 2
j1

= 0.25 σ 2
j2

= 0.01
10 0.2 0.0 0.0 0.0 1.0 19.6
20 0.0 0.0 0.0 0.0 0.0 12.0
50 0.0 0.0 0.0 0.0 0.0 0.0
80 0.0 0.0 0.0 0.0 0.0 0.0

Note: Complete cross-classification with varying number of clusters per classification N1 = N2 and
n= 10 observations per cell.



2702 L. GRILLI AND F. INNOCENTI

Figure 4. Relative bias for the variance components of the logisticmodel of Equation (7). Complete cross-classificationwith varying
numbers of clusters per dimension N1 × N2 and n= 10 observations per cell. Each pair of graphs corresponds to a combination of
random effects variances (σ 2

j1
, σ 2

j2
): (0.01, 0.01), (0.25, 0.25), (0.01, 0.25), (0.25, 0.01).

5. The salamander mating data

In this Sectionwe summarize the results obtained by applying INLA to the famous salamandermating
data, which have become a standard test for estimation methods of cross-classified logistic models.
The salamander mating data, presented for the first time by McCullagh and Nelder [23], were col-
lected in 1986 by S. Arnold and P. Verell of the University of Chicago, Department of Ecology and
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Table 8. The salamander mating data structure: columns represent factor 1 (male), rows represent factor 2 (female).
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Table 9. Results for salamander data. standard errors in parenthesis.

MCEMa AIP with AGQa MLLAa MCMCb INLA Ga(0.001, 0.001) INLA Ga(0.5, 0.003737)

β0 1.02 1.02(0.41) 1.00(0.37) 1.03(0.43) 1.01(0.40) 0.98(0.38)
β1 −0.69 −0.70(0.48) −0.70(0.44) −0.69(0.50) −0.69(0.45) −0.67(0.43)
β2 −2.96 −2.96(0.58) −2.91(0.50) −3.01(0.60) −2.94(0.55) −2.84(0.54)
β3 3.63 3.64(0.65) 3.59(0.54) 3.74(0.68) 3.61(0.60) 3.50(0.59)
σ1 1.12 1.11 1.03 1.17 1.10 1.02
σ2 1.18 1.17 1.08 1.22 1.17 1.10
a From [17, Tables 1 and 2.]
bFrom [19, Table 3] (uniform prior; posterior medians; SE is the range of the 90% CI divided by 3.3).

Evolution, through 3 experiments on 40 mountain dusky salamanders belonging to 2 different popu-
lations. The two populations, called Rough Butt andWhiteside from the names of the locations where
they lived, were geographically isolated from one another, thus the aim of the three experiments was
to investigate the extent to which Rough Butt and Whiteside would interbreed. In each experiment
40 salamanders were involved: they were divided in 2 groups each composed by 5 Rough Butt males,
5 Rough Butt females, 5 Whiteside males and 5Whiteside females. Each salamander was paired with
6 partners, 3 belonging to the same population and 3 from the other, then across the 3 experiments
360 pairs were formed.

We consider model A of Karim and Zeger [19], which is a two-level random intercept logis-
tic cross-classified model similar to the one defined by Equation (7). Specifically, the model for
salamander mating has two covariates at level 2 and an interaction term:

logit(πi(j1j2)) = β0 + β1x1j1 + β2x2j2 + β3x1j1x2j2 + uj1 + uj2 (8)

uj1 ∼ N(0, σ 2
uj1

) uj2 ∼ N(0, σ 2
uj2

),

where πi(j1j2) is the probability of a successful mating between male j1 (crossing factor 1) and female
j2 (crossing factor 2). The binary covariates x1j1 and x2j2 take the value 1 if the salamander is aWhite-
side male or Whiteside female, respectively. Each factor of classification is composed by 60 clusters,
within each cluster there are 6 level 1 units (i.e. male–female pairs), within each cell or pair of clusters
belonging to the two factors there is a single level 1 unit. The data structure is sketched in Table 8, with
60 rows for the females, 60 columns for the males, and 6 blocks representing groups of salamanders
across the three experiments. Therefore, the data are partially cross-classified with no replications
within cells (i.e. the cell sample size is one) and 90% of empty cells. This structure is quite differ-
ent from the structures considered in our simulation study, thus the findings of Section 4 do not
necessarily carry over.

In order to specify the priors for the parameters in INLA, we choose the two distributions inves-
tigated in our simulation study, namely Ga(0.001, 0.001) and Ga(0.5, 0.003737), for the variance
components and, following Karim and Zeger [19], a Normal distribution with zero mean and large
variance for each regression coefficient.

Table 9 reports the point estimates of the parameters of model (8) for several estimation methods.
We consider MLLA (as in our simulation study), MCEM (taken by Cho and Rabe-Hesketh [17] and
Rabe-Hesketh and Skrondal [31] as the gold-standard), AIP with AGQ (the most accurate algorithm
in [17]), as well as the Bayesian MCMC estimates of Karim and Zeger [19] obtained with uniform
priors for both variance components (results with other priors are reported in Table 3 of Cho and
Rabe-Hesketh [17]).

Table 9 shows that, takingMCEM as the benchmark, INLAwith prior Ga(0.001, 0.001) has a good
performance, similar to that ofAIPwithAGQ, and better thanMLLAandMCMCwith uniformprior.
On the other hand, INLA with prior INLA Ga(0.5, 0.003737) has a less satisfactory performance,
similarly to the results reported in the Supplementary Material of Fong et al. [22]. Overall, INLA



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 2705

is a valuable method also in the peculiar framework of salamander data, confirming the encourag-
ing findings of simulation studies (Section 4 for cross-classified models and [21] for nested random
effects). In addition to accuracy, INLA is considerably faster than MCEM, AIP and MCMC, indeed
computation with the salamander data requires only a few seconds.

6. Conclusions

We investigated the performance of INLA for fitting two-level random intercept logistic models with
crossed random effects. The investigation exploited a detailed simulation study, entailing a compar-
ison with MLLA, and an application to the classical salamander data, entailing a comparison with
several competing methods (MCEM, AIP and MCMC).

In the simulation study we paid attention to scenarios with a small number of clusters, varying
degrees of cross-classification, small magnitudes of random effects variances and different prior spec-
ifications. Both INLA and MLLA give quite accurate estimates of the fixed effects even in scenarios
with a small number of clusters and it turns out that 5 units per cell are enough for a satisfactory
performance. On the other hand, estimation of the variance components is challenging: in particular,
when the true value is low (0.01) INLA has a severe upward bias if the cell sample size is less than
20. As discussed below, this behaviour is due to the role of the prior distribution. For sizable variance
components (0.25) the performance of INLA is satisfactory, improving over MLLA when the prior
Ga(0.5, 0.003737) is used. The degree of cross-classification has a little role on the performance of the
estimators, even if in settings with small variances INLA yields better results when the data structure
is closer to complete cross-classification.

The simulation study showed that INLA and MLLA sometimes fail in estimating the variance
components, though in a different way. In fact, MLLA can yield zero estimates: when the variance
component is close to zero (0.01) the issue of zero estimates is serious even with 20 observations per
cell, whereas for sizable variance component (0.25) the issue of zero estimates becomes negligible
with 10 observations per cell. On the other hand, INLA never yields zero estimates, though it occa-
sionally provides aberrant estimates of the variance components in scenarios with one observation
per cell. This problem, though relevant only in few scenarios, should be further investigated in order
to prevent it.

For low to intermediate values of the variance components, namely σ 2
uj. = 0.01 and σ 2

uj. = 0.25,
INLA tends to overestimate these parameters, even after eliminating aberrant estimates (σ̂ 2

uj. > 2).
This is a consequence of the Bayesian approach with a small sample and a non-informative prior on
a parameter bounded to be positive when the true value is close to the bound. In this situation, very
low estimates are prevented by the bound, while very large estimates occasionally appear since the
flat prior, which is given a high weight in the posterior, does not smooth enough the contribution
from the likelihood. For large values of the variance components the bound has little role, indeed for
σ 2
uj. = 1 considered in the Supplementary Material we found a negative bias, consistently with the

results of Ferkingstad and Rue [29].
The application to the salamander data showed that INLA is competitive with respect to the most

efficient algorithms for cross-classified random effects (MCEM, AIP with AGQ, MCMC) since it
has similar accuracy, but lower computational time. In general, INLA has the advantage of directly
approximating the posterior distribution, thus avoiding the subtle issue of assessing the convergence
as in MCMC and AIP.

According to the findings of our simulation study, it is advisable to take care of the specification of
the non-informative prior distribution for the variance components, especially when the true values
are low and the sample size is small. In general, the prior distribution should be coherent with the
plausible range of the size of the random effect. In this regard, the criterion of Fong et al. [22] is helpful
as it allows to set the parameters of the prior in order to obtain a given marginal distribution for the
random effect. It is worth to note that the difficulty of specifying a suitable prior distribution for the
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variances of the random effects, which is common to all Bayesian methods, is alleviated with INLA
since its computational speed enables a thorough sensitivity analysis [32,33]. For an overview of the
issue of assigning priors in INLA we recommend Section 5 of Rue et al. [25], whereas Simpson et al.
[34] provide a discussion of the methods to construct non-subjective priors in Bayesian hierarchical
models and propose a widely applicable criterion in this framework.

In summary, INLA is an effective method for fitting logistic models with crossed random effects.
It is preferable to MCMC in terms of speed and simplicity of implementation, and it can outperform
MLLA depending on the chosen prior distribution for the variance components. In settings with
limited sample sizes all methods have difficulties, which may hopefully be attenuated by improve-
ments in the algorithms and in the specification of the prior distribution, see [29] and [35] for recent
developments in INLA.
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